
Object recognition and real-time tracking in microscope
imaging

WEDEKIND, Jan, BOISSENIN, Manuel, AMAVASAI, Balasundram P.,
CAPARRELLI, Fabio and TRAVIS, Jon R.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/3738/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

WEDEKIND, Jan, BOISSENIN, Manuel, AMAVASAI, Balasundram P., CAPARRELLI,
Fabio and TRAVIS, Jon R. (2006). Object recognition and real-time tracking in
microscope imaging. In: Proceedings of the 2006 Irish Machine Vision and Image
Processing Conference (IMVIP 2006). Dublin, Vision System Group, 164-171.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Object Recognition and Real-Time Tracking in

Microscope Imaging

J. Wedekind, M. Boissenin, B.P. Amavasai, F. Caparrelli, J. Travis

MMVL, Materials and Engineering Research Institute

Sheffield Hallam University,

Pond Street,

Sheffield S1 1WB

{J.Wedekind,B.P.Amavasai,F.Caparrelli,J.R.Travis}@shu.ac.uk,

Manuel.Boissenin@student.shu.ac.uk

30.6.2006

Abstract

As the fields of micro- and nano-technology mature, there is going to be an increased need for

industrial tools that enable the assembly and manipulation of micro-parts. The feedback mechanism

in a future micro-factory will require computer vision.

Within the EU IST MiCRoN project, a computer vision software based on Geometric Hashing

and the Bounded Hough Transform to achieve recognition of multiple micro-objects was imple-

mented and successfully demonstrated. In this environment, the micro-objects will be of variable

distance to the camera. Novel automated procedures in biology and micro-technology are thus con-

ceivable.

This paper presents an approach to estimate the pose of multiple micro-objects with up to four

degrees-of-freedom by using focus stacks as models. The paper also presents a formal definition for

Geometric Hashing and the Bounded Hough Transform.

Keywords: object recognition, tracking, Geometric Hashing, Bounded Hough Transform, microscope

1 Introduction

Under the auspices of the European MiCRoN[MiCRoN consortium, 2006] project a system of multiple

micro-robots for transporting and assembling µm-sized objects was developed. The micro-robots are

about 1 cm3 in size and are fitted with an interchangeable toolset that allows them to perform manipula-

tion and assembly. The project has developed various subsystems for powering, locomotion, positioning,

gripping, injecting, and actuating. The task of the Microsystems & Machine Vision Lab was to develop

a real-time vision system, which provides feedback information to the control system and hence forms

part of the control loop.

Although there are various methods for object recognition in the area of computer vision, most

techniques which have been developed for microscope imaging so far do not address the issue of real-

time. Most current work in the area of micro-object recognition employs 2-D recognition methods (see

e.g. [Begelman et al., 2004]) sometimes in combination with an auto-focussing system, which ensures

that the object to be recognised always stays in focus.

This paper presents an algorithm for object recognition and tracking in a microscope environment

with the following objectives: Objects can be recognised with up to 4 degrees-of-freedom, refocussing

is not required, tracking is performed in real-time.

The following sections of this paper will provide a formalism to Geometric Hashing and the Bounded

Hough Transform, how they can be applied to a pre-stored focus stack, and how this focus stack can be

used to recognise and track objects, the results, and finally we draw some conclusions.

2 Formalism

In applying Geometric Hashing and the Bounded Hough Transform to micro-objects, recognition and

tracking with three degrees-of-freedom is first developed. Later this is expanded to four degrees-of-

freedom.

2.1 Geometric Hashing

[Forsyth and Ponce, 2003] provides a complete description of the Geometric Hashing algorithm first

introduced in [Lamdan and Wolfson, 1988]. Geometric Hashing is an algorithm that uses geometric

invariants to vote for feature correspondences.

2.1.1 Preprocessing-Stage

Let the triplet ~p := (t1, t2, θ)
⊤ ∈ P be the pose of an object and P := R

3 the pose-space. dim(P) =
3 is the number of degrees-of-freedom. The object can rotate around one axis and translate in two

directions. It can be found using a set M ⊂ R
d+1 of homogeneous coordinates denoting 2-D (d = 2)

feature points (here: edge-points acquired with a Sobel edge-detector) as a model

M :=
{

~mi = (mi,1,mi,2, 1)⊤
∣∣i ∈ {1, 2, . . .}

}
(1)

First the set of geometric invariants L(M) has to be identified. A geometric invariant of the model

is a feature or a (minimal) sequence of features such that the pose of the object can be deduced if the

location of the corresponding feature/the sequence of features in the scene is known.

Consider the example in fig. 1. In this case the correspondence between a two feature points ~s1, ~s2 ∈
S in the scene S ⊂ R

d+1 and two feature points ~m1, ~m2 ∈ M of the model M would reveal the pose ~p
of the object. Therefore feature tuples can serve as geometric invariants.

In practice only a small number of feature tuples can be considered. A subset of M ×M is selected

by applying a minimum- and a maximum-constraint on the distance between the two feature points of a

tuple (~l1, ~l2). Hence in this case, L is defined as L(A) =
{
(~l1, ~l2) ∈ A × A

∣∣ gu ≤ ||~l1 − ~l2|| ≤ go

}
for

any set of features A ⊆ R
d+1.

∑

~u

VM (~u, (~m1, ~m2))”

VM(

(
1
1

)
, (~m1, ~m2))

VM (

„

1
1

«

, (~m′

1, ~m′

2))

VM (

„

1
1

«

, (~
m′′

1 ,
~

m′′

2))

x1

x2

~m1

~m2

~m′

1

~m′

2

~
m′′

1

~
m′′

2

3
1 4 5

4

0
3 2 1

1

2
0 1 0

1

’’best match

with highest

~̂m1, ~̂m2: model feature-pair with highest sum of votes

~s1, ~s2: randomly selected pair of scene features

~t, α: presumed pose of object

α
~t

~s1

~s2

~̂m1
~̂m2

feature tuple coord.−system

object coordinate system

Figure 1: Geometric Hashing to locate a syringe-chip (courtesy of IBMT, St. Ingbert) in a microscope

image (reflected light) allowing three degrees-of-freedom

Geometric Hashing provides a technique to establish the correspondence between the geometric

invariants (~m1, ~m2) ∈ L(M) and (~s1, ~s2) ∈ L(S) where S, M ⊂ R
d+1.

To apply Geometric Hashing a function

t :

{
L(Rd+1) → R

(d+1)×(d+1)

(~ln) 7→ T
(
(~ln)

) (2)

is chosen which assigns an affine transformation matrix T
(
(~ln)

)
to a geometric invariant (~ln) :=

(~l1, ~l2, . . . ~ln) in L(M) ⊂ L(Rd+1) or L(S) ⊂ L(Rd+1). The affine transformation inverses the trans-

formation which is designated by the sequence of features (~l1, ~l2, . . . ~ln). E.g. in this case t must fulfil

∀ ~p ∈ P, (~l1, ~l2) ∈ R
3 × R

3 : t
(
(R(~p) · ~l1,R(~p) · ~l2)

)
= R(~p) · t

(
(~l1, ~l2)

)

where R(




t1
t2
θ



) :=




cos(θ) − sin(θ) t1
sin(θ) cos(θ) t2

0 0 1



 (3)

Furthermore t must conserve the pose-information, i.e. dim
(
aff(t(L(Rd+1))

)
= dim(P) where

aff(X) is the affine hull of X .

Note that ~l and ~l′ are homogeneous coordinates of points, and for simplification we can use l3 =
l′3 = 1. Using this, a possible choice for t is given by

t
(
(~l, ~l′)

)
=

1
√

(l′1 − l1)2 + (l′2 − l2)2




l′2 − l2 l1 − l′1 0
l′1 − l1 l′2 − l2 0

0 0 1








1 0 − 1

2 (l1 + l′1)
0 1 − 1

2 (l2 + l′2)
0 0 1



 (4)

The choosen transformation t
(
(~m1, ~m2)

)
maps the two feature points ~l and ~l′ on the x2-axis as

shown in figure 1.

Let h be a quantising function for mapping real homogeneous coordinates of feature positions to

whole-numbered indices of voting table bins of discrete size ∆s:

h :






R
d+1 → Z

d

~x 7→ ~u where ui =

⌊
xi

xd+1 ∆s
+

1

2

⌋
, i ∈ {1, 2, . . . , d}

(5)

[Blayvas et al., 2003] offers more information on how to choose the bin size ∆s properly. Note that

xd+1 = 1 since h is going to be applied to homogeneous coordinates of points only.

First a voting table VM : Z
d × L(M) → N0 for the model M is computed (see alg. 1)1. In practice

VM only needs to be defined on a finite subset of Z
d, while L(M) is finite if M is.

Algorithm 1: Creating a voting table offline, before doing recognition with the Geometric Hashing

algorithm[Forsyth and Ponce, 2003]

Input: Model M ⊂ R
d+1

Output: Voting table VM : Z
d × L(M) → N0

/* Set all elements of VM to zero */

VM (·, ·) 7→ 0;

foreach geometric invariant (~mn) = (~m1, ~m2, . . . , ~mn) ∈ L(M) do

foreach feature point ~m′ ∈ M do

/* Compute index of voting table bin */

~u := h(t
(
(~mn)

)
· ~m′);

/* Add one vote for the sequence of features (~mn) */

VM

(
~u, (~mn)

)
7→ VM

(
~u, (~mn)

)
+ 1;

end

end

(t
(
(~m1, ~m2)

)
· ~m′) is the position of ~m′ relatively to the geometric invariant (~m1, ~m2) ∈ L(M).

This relative position is quantised by h and assigned to ~u. VM

(
~u, (~m1, ~m2)

)
is the number of features

residing in the bin of the voting table with the quantised position ~u relative to the geometric invariant

~m ∈ L(M).

2.1.2 Recognition-Stage

A random pair of features (~s1, ~s2) is picked from the Sobel-edges of the scene-image. All other features

of the scene are mapped using the transform t
(
(~s1, ~s2)

)
(see alg. 2). The accumulator a is used to

decide where both features are located on the object and whether they are residing on the same object at

all.

On success, sufficient information to calculate the pose of the object is available. The pose ~p =
(t1, t2, θ)

⊤ of the object can be calculated using:

R(~p) = t
(
(~s1, ~s2)

)−1
t
(
(~̂m1, ~̂m2)

)
(6)

2.2 Bounded Hough Transform

As Geometric Hashing alone is too slow to achieve real-time vision, a tracking algorithm based on the

Bounded Hough Transform[Greenspan et al., 2004] was employed. Thus after a micro-object has been

located, it can be tracked in consecutive frames with much lower computational cost.

1
N0 := N ∪ {0}

Algorithm 2: The Geometric Hashing algorithm for doing object

recognition[Forsyth and Ponce, 2003]

Input: Set of scene features S ⊂ R
d+1

Output: Pose ~p of object or failure

Initialise accumulator a : L(M) → N0;

Randomly select a geometric invariant (~sn) = (~s1, ~s2, . . . , ~sn) from L(S);

foreach feature points ~s′ ∈ S do

/* Compute index ~u of voting table bin */

~u := h(t
(
(~sn)

)
· ~s′);

foreach (~mn) ∈ L(M) do

/* Increase the accumulator using the voting table */

a
(
(~mn)

)
7→ a

(
(~mn)

)
+ VM (~u, (~mn));

end

end

/* Find accumulator bin with maximum value */

(~̂mn) := argmax
(~mn)∈L(M)

(
a
(
(~mn)

))
;

if a
(
(~̂mn)

)
is bigger than a certain threshold then

/* t
(
(~sn)

)−1
t
(
(~̂mn)

)
contains suggested pose of object.

Back-project and verify before accepting the

hypothesis[Forsyth and Ponce, 2003] */

else

/* Retry by restarting algorithm or report failure */

end

2.2.1 Preprocessing-Stage

The basic idea of the Bounded Hough Transform is to transform the positions of all features ~s ∈ S to

the coordinate-system defined by the object’s previous pose ~p. If the speed of the object is restricted by

r1, r2, . . . (i.e. |p′i − pi| ≤ ri, ~r ∈ R
dim(P)) and the change of pose is quantised by q1, q2, . . . (i.e.

∃k ∈ Z : p′i − pi = k qi, ~q ∈ R
dim(P)), the problem of determining the new pose ~p′ ∈ P of the object

is reduced to selecting an element ~̂d := ~p′ − ~p from the finite set D ⊂ P of pose-changes

D :=
{

~d ∈ P
∣∣∀i ∈ {1, . . . ,dim(P)} : |di| ≤ ri ∧ ∃k ∈ Z : di = k qi

}
(7)

Fig. 2 illustrates how the Bounded Hough Transform works in the case of two degrees-of-freedom

(~p = (t1, t2)
⊤). The hough-space of pose-changes D is limited and therefore only the features residing

within a small local area of M can correspond to the scene-feature ~s ∈ S. Each possible correspondence

D
R−1(~p)~s

t1

t2
peak in Hough space

scene features
model features

local region

Figure 2: Bounded Hough Transform with 2 degrees-of-freedom

votes for one pose-change (in the general case it may vote for several different pose-changes). As one

can see in fig. 2, accumulating the votes of two scene-features already can reveal the pose-change of the

object.

First a voting table HM is computed as shown in alg. 3. In practice HM only needs to be defined on

a finite subset of Z
d while D is finite.

The functions C : R
d+1 → P and W : R

d+1 → R
+
0 are required to cover HM properly. In the case

of two degrees-of-freedom one can simply use C(~m) = {~0} and W (~m) = 1 if the quantisation of the

Algorithm 3: Initialising voting table offline, before doing tracking using the Bounded Hough

Transform algorithm

Input: Model M ⊂ R
d+1, ranges ~r, quantisation ~q

Output: Voting table HM : Z
d × D → N0

/* Set all elements of HM to zero */

HM (·, ·) 7→ 0;

foreach pose difference vector ~d ∈ D do

foreach feature point ~m ∈ M do

foreach pose difference vector ~c ∈ C(~m) do

/* Compute index of voting table bin */

~u := h(R(~d + ~c) · ~m);

/* Update votes for pose-change ~d */

HM (~u, ~d) 7→ HM (~u, ~d) + W (~m);
end

end

end

translation in D does not exceed the bin-size (i.e. qi ≤ ∆s).

In the case of three degrees-of-freedom (~p = (t1, t2, θ)
⊤) the density of the votes depends on the

features distance from the origin (radius). If the radius is large, several bins of HM may have to be

increased. If the radius is very small, the weight of the vote should be lower than 1 as the feature cannot

define the amount of rotation unambiguously. Therefore in the general case C and W are defined as

follows

C(~m) :=
{
~c ∈ P

∣∣∀i ∈ {1, . . . ,dim(P)} : |ci| ≤
qi

2

∣∣∣
∣∣∣
δR(~x)

δxi

~m
∣∣∣
∣∣∣ ∧ ∃k ∈ Z : ci = k ∆s

}
(8)

W (~m) =

dim(P)∏

i=1

min
(
1,

∣∣∣
∣∣∣
δR(~x)

δxi

~m
∣∣∣
∣∣∣
)

(9)

In the case of three degrees-of-freedom C and W are defined using

(∣∣∣
∣∣∣
δR

(
(t1, t2, θ)

⊤
)

δt1
~m

∣∣∣
∣∣∣,

∣∣∣
∣∣∣
δR

(
(t1, t2, θ)

⊤
)

δt2
~m

∣∣∣
∣∣∣,

∣∣∣
∣∣∣
δR

(
(t1, t2, θ)

⊤
)

δθ
~m

∣∣∣
∣∣∣
)⊤

=




m3

m3√
m2

1 + m2
2





(10)

Note that ~m is a homogeneous coordinate of a point and therefore m3 = 1.

2.2.2 Tracking-Stage

The tracking-stage of the Bounded Hough Transform algorithm is fairly straightforward. All features of

the scene are mapped using the transform R(~p)−1 defined by the previous pose ~p of the object (see alg.

4). The accumulator b is used to decide where the object has moved or whether it was lost.

2.3 Four Degrees-of-Freedom

In practice the depth information contained in microscopy images can be used to achieve object recogni-

tion and tracking with four degrees-of-freedom. Recognition and tracking with four degrees-of-freedom

is achieved by using two sets of competing voting tables {VM1 , VM2 , . . .} and {HM1 ,HM2 , . . .}, which

have been generated from a focus stack of the object. Figure 3 shows an artificial focus stack of the text-

object “Mimas”, which is being compared against an artificial image, which contains two text-objects.

The voting tables for recognition can be stored in a single voting table V ∗
M if an additional index

for the depth is introduced. Furthermore during tracking only a subset of {HM1 ,HM2 , . . .} needs to be

considered as the depth of the object can only change by a limited amount. In practice an additional

index for change of depth is introduced, and a set of voting tables {HM1,2 ,HM1,2,3 ,HM2,3,4 , . . .} is

created from images of neighbouring focus-layers. During tracking only a single voting table in this set

needs to be considered.

Algorithm 4: The Bounded Hough Transform algorithm for tracking objects

Input: Set of scene features S ⊂ R
d+1, previous ~p of object

Output: Updated pose ~p′ of object or failure

Initialise accumulator b : D → N0;

foreach feature point ~s ∈ S do

/* Compute index ~u of voting table bin */

~u := h
(
R(~p)−1 ~s

)
;

foreach vector of pose-change ~d ∈ D do

/* Increase the accumulator using the voting table */

b(~d) 7→ b(~d) + HM (~u, ~d);
end

end

/* Find accumulator bin with maximum value */

~̂d = argmax
~d∈D

(
b(~d)

)
;

if b(~̂d) is bigger than a certain threshold then

/* ~p′ = ~p + ~̂d is the suggested pose of the object */

else

/* Report failure */

end

Figure 3: Geometric Hashing with four degrees-of-freedom
Figure 4: Test environment

3 Results

In order to observe the tools and micro-objects, a custom built micro-camera was developed and mounted

on a motorised stage (see fig. 4). The micro-camera has an integrated lens system and a built-in focus

drive that allows the lens position to be adjusted. The field of view is similar to that obtained from a

microscope with low magnification (about 0.8 mm×0.5 mm field of view).

The test environment (see fig. 4) allows the user to displace a micro-object using the manual trans-

lation stage. The task of the vision-system is to keep the micro-object in the centre of the image and in

focus using the motorised stage.

Figure 5 shows a list of results acquired on a 64-bit AMD processor with 2.2 GHz. The initialisation

time for the voting-tables has not been included as they are computed offline. First recognition using

geometric hashing was run on 1000 frames. The recognition rate indicates the percentage of frames,

when the object was recognised successfully. In a second test tracking was applied to 1000 frames.

The last column in the table shows the corresponding improved frame-rate. In both tests the graphical

visualisation was disabled (which saves 0.013 seconds per frame). To require less memory for VM and

HM , recognition and tracking are performed on down-sampled images. The disadvantage is that the

resulting pose-estimate for the micro objects is coarser.

The recognition rate can be increased at the expense of allowing more processing time. However

in reality a low recognition rate is much more tolerable than a low frame-rate. Furthermore recognition

is only required for initial pose-estimates, when new objects are entering the scene. As the tracking-

Figure 5: Results for object recognition with Geometric Hashing in a variety of environments

video resolution

(down-

sampled)

time per

frame (recog-

nition)

stack

size

degrees-

of-

freedom

recognition-

rate

time per

frame (track-

ing)

384×288 0.20 s 7 (x, y, z) 88% 0.020 s

160×120 0.042 s 10 (x, y, z, θ) 87% 0.016 s

384×288 0.27 s 16 (x, y, z, θ) 88% 0.025 s

384×288 0.072 s 14 (x, y, z, θ) 88% 0.018 s

192×144 0.32 s
9

1

(x, y, z, θ)
(x, y, θ)

35%

45%
0.022 s

dry run (load

frames only)
384×288 0.0081 s - - - -

rate (the complement of the recognition-rate) always is near 100%, a low recognition rate does not

necessarily affect the overall performance of the system.

The recognition rates are particularly low when the object is small, when the object has few features,

when there is too much clutter in the scene image, or when multiple objects are present in the scene.

The reason is that the final feature (or feature-tuple), which leads to a successful recognition of the

object, needs to reside on the object. Furthermore both features of a feature-tuple need to reside on the

same object. If all corresponding features to the features of the model M are present in the scene S, the

probability of randomly selecting a suitable sequence of features is (|M |/|S|)n.

The focus stack must not be self similar. For example the depth of the micro-capacitor in fig. 7

cannot be estimated independently because a planar object which is aligned with the focused plane will

have the same appearance regardless whether it is moving upwards or downwards.

The grippers displayed in fig. 6 and 7 show a rough surface due to the etching step in the gripper’s

manufacturing process. From a manufacturing point of view it would be desirable to smooth out this

“unwanted” texture. This surface texture however led to the best of all results because it is rich with

features.

As both recognition and tracking are purely combinatorial approaches, the memory requirements for

the algorithms are high. In the case of the video showing the micro-gripper and the micro-capacitor, 130

MByte of memory was required for the tracking- and 90 MByte for the recognition-algorithm. State-

of-the-art algorithms like RANSAC (see [Fischler and Bolles, 1981]) use local feature context so that

less features are required. RANSAC in combination with Linear Model Hashing also scales better with

number of objects[Shan et al., 2004].

In Geometric Hashing, it is only feasible to compute VM from a small subset of M × M . By

considering only a part of M , one can reduce the size of HM in a similar fashion. Experimentally HM

was initialised only from features fulfilling ||~m|| q3 ≥ 1 without affecting the tracking performance.

4 Conclusion

The presented algorithm was applied successfully in a variety of environments: the micro camera envi-

ronment as shown in figure 4, reflected light microscope environment, and transmitted light microscope

Figure 6: Micro camera image of gripper with

uniform background with superimposed pose es-

timate

Figure 7: Gripper placing a capacitor (courtesy of

SSSA, Sant’ Anna) with superimposed pose esti-

mates for gripper and capacitor

environment.

According to [Breguet and Bergander, 2001] the future micro-factory will most probably require

automated assembly of micro-parts. The feedback mechanism for the robotic manipulators could be

based on computer vision. A robust computer vision system which allows real-time recognition of

micro-objects with 4 or more degrees-of-freedom would be desirable.

The algorithm presented in this paper has been implemented using the computer vision library of the

Microsystems & Machine Vision Lab called Mimas, which has been under development and refinement

for many years. The library and the original software employed in the MiCRoN-project are available

for free at http://vision.eng.shu.ac.uk/mediawiki/ under the terms of the LGPL.

References

[Begelman et al., 2004] Begelman, G., Lifshits, M., and Rivlin, E. (2004). Map-based microscope

positioning. In BMVC 2004. Technion, Israel.

[Blayvas et al., 2003] Blayvas, I., Goldenberg, R., Lifshits, M., Rudzsky, M., and Rivlin, E. (2003).

Geometric hashing: Rehashing for bayesian voting. Technical report, Computer Science Department,

Technion Israel Institute of Technology.

[Breguet and Bergander, 2001] Breguet, J. M. and Bergander, A. (2001). Toward the personal factory?

In Microrobotics and Microassembly III, 29-30 Oct. 2001, Proc. SPIE - Int. Soc. Opt. Eng. (USA),

pages 293–303.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–95.

[Forsyth and Ponce, 2003] Forsyth, D. A. and Ponce, J. (2003). Computer Vision: A modern Approach.

Prentice Hall series in artificial intelligence.

[Greenspan et al., 2004] Greenspan, M., Shang, L., and Jasiobedzki, P. (2004). Efficient tracking with

the bounded hough transform. In CVPR’04: Computer Vision and Pattern Recognition.

[Lamdan and Wolfson, 1988] Lamdan, Y. and Wolfson, H. J. (1988). Geometric hashing: A general

and efficient model-based recognition scheme. In Second International Conference on Computer

Vision, Dec 5-8 1988, pages 238–249. Publ by IEEE, New York, NY, USA.

[MiCRoN consortium, 2006] MiCRoN consortium (2006). Micron public report. Technical report, EU

IST-2001-33567. http://wwwipr.ira.uka.de/˜seyfried/MiCRoN/PublicReport_

Final.pdf.

[Shan et al., 2004] Shan, Y., Matei, B., Sawhney, H. S., Kumar, R., Huber, D., and Hebert, M. (2004).

Linear model hashing and batch ransac for rapid and accurate object recognition. volume 2 of Pro-

ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, pages 121–8.

http://vision.eng.shu.ac.uk/mediawiki/
http://wwwipr.ira.uka.de/~seyfried/MiCRoN/PublicReport_Final.pdf
http://wwwipr.ira.uka.de/~seyfried/MiCRoN/PublicReport_Final.pdf

	Introduction
	Formalism
	Geometric Hashing
	Preprocessing-Stage
	Recognition-Stage

	Bounded Hough Transform
	Preprocessing-Stage
	Tracking-Stage

	Four Degrees-of-Freedom

	Results
	Conclusion

