

Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from methylococcus capsulatus (Bath)

BALENDRA, S., LESIEUR, C., SMITH, T. J. http://orcid.org/0000-0002-4246-5020> and DALTON, H.

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/368/

This document is the Accepted Version [AM]

Citation:

BALENDRA, S., LESIEUR, C., SMITH, T. J. and DALTON, H. (2001). Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from methylococcus capsulatus (Bath). Biochemistry, 41 (8), 2571-2579. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Table 1.	Effect of cross-linking	and covalent	modification	reagents	on activity
of the hy	droxylase.				

Reagent	Assay	Specific activity	
		(nmol min ⁻¹ [mg of hydroxylase] ⁻¹	
None	Whole complex	220 ± 8	
	Peroxide shunt	98 ± 2	
BS ³ (cross-linker)	Whole complex	0	
	Peroxide shunt	97 ± 4	
Sulfo-NHS-acetate (primary	Whole complex	0	
amine neutralizer)	Peroxide shunt	93 ± 5	
<i>p</i> -hydroyphenylglyoxal	Whole-complex	0	
(arginine modifier)	Peroxide shunt	97 ± 4	

Assay components	Rate of NADH oxidation (nmol min ⁻¹ [mg
	of hydroxylase] ⁻¹).
Hydroxylase	0
Reductase	1.93
Hydroxylase + reductase	24.1
Hydroxylase + reductase + protein B	20.3
Hydroxylase +reductase + protein B +	29.4
propene	
Primary amine-blocked hydroxylase +	1.44
reductase	
Primary amine-blocked hydroxylase +	2.41
reductase + protein B	
Primary amine-blocked hydroxylase +	1.76
reductase + protein B + propene	
Arginine-blocked hydroxylase + reductase	6.59
+ protein B	

Table 2. Effect of covalent modification of the hydroxylase on NADH oxidationactivity.

Table 3. Effect of covalent modification of the hydroxylase on inhibition of the peroxide shunt reaction by protein B. Specific activity was measured at 1 mg.mL⁻¹ of hydroxylase and expressed in nmol of epoxypropane formed min⁻¹.(mg of hydroxylase)⁻¹.

Protein B ^a	Specific activity via the peroxide shunt (nmol min ⁻¹ [mg of hydroxylase] ⁻¹)				
	Native hydroxylase	Primary-amine	Arginine modified		
		neutralised	hydroxylase		
		hydroxylase			
0	98 ± 2	93 ± 5	97 ± 4		
5	30 ± 3	91 ± 7	93 ± 4		

^{*a*} Concentration of protein B expressed as moles per mole of hydroxylase $\alpha\beta\gamma$ monomer

.