Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from methylococcus capsulatus (Bath) BALENDRA, S., LESIEUR, C., SMITH, T. J. http://orcid.org/0000-0002-4246-5020 and DALTON, H. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/368/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. ## **Published version** BALENDRA, S., LESIEUR, C., SMITH, T. J. and DALTON, H. (2001). Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from methylococcus capsulatus (Bath). Biochemistry, 41 (8), 2571-2579. ## **Copyright and re-use policy** See http://shura.shu.ac.uk/information.html Table 1. Effect of cross-linking and covalent modification reagents on activity of the hydroxylase. | Reagent | Assay | Specific activity | | |--------------------------------|----------------|---|--| | | | (nmol min ⁻¹ [mg of hydroxylase] ⁻¹) | | | None | Whole complex | 220 ± 8 | | | | Peroxide shunt | 98 ± 2 | | | | | | | | BS ³ (cross-linker) | Whole complex | 0 | | | | Peroxide shunt | 97 ± 4 | | | | | | | | Sulfo-NHS-acetate (primary | Whole complex | 0 | | | amine neutralizer) | Peroxide shunt | 93 ± 5 | | | | | | | | <i>p</i> -hydroyphenylglyoxal | Whole-complex | 0 | | | (arginine modifier) | Peroxide shunt | 97 ± 4 | | | | | | | Table 2. Effect of covalent modification of the hydroxylase on NADH oxidation activity. | Assay components | Rate of NADH oxidation (nmol min ⁻¹ [mg of hydroxylase] ⁻¹). | |--|---| | Hydroxylase | 0 | | Reductase | 1.93 | | Hydroxylase + reductase | 24.1 | | Hydroxylase + reductase + protein B | 20.3 | | Hydroxylase +reductase + protein B + | 29.4 | | propene | | | | | | Primary amine-blocked hydroxylase + | 1.44 | | reductase | | | Primary amine-blocked hydroxylase + | 2.41 | | reductase + protein B | | | Primary amine-blocked hydroxylase + | 1.76 | | reductase + protein B + propene | | | | | | Arginine-blocked hydroxylase + reductase | 6.59 | | + protein B | | **Table 3.** Effect of covalent modification of the hydroxylase on inhibition of the peroxide shunt reaction by protein B. Specific activity was measured at 1 mg.mL⁻¹ of hydroxylase and expressed in nmol of epoxypropane formed min⁻¹.(mg of hydroxylase)⁻¹. | Protein B ^a | Specific activity via the peroxide shunt (nmol min ⁻¹ [mg of hydroxylase] ⁻¹) | | | | |------------------------|--|---------------|-------------------|--| | | Native hydroxylase | Primary-amine | Arginine modified | | | | | neutralised | hydroxylase | | | | | hydroxylase | | | | 0 | 98 ± 2 | 93 ± 5 | 97 ± 4 | | | 5 | 30 ± 3 | 91 ± 7 | 93 ± 4 | | ^a Concentration of protein B expressed as moles per mole of hydroxylase $\alpha\beta\gamma$ monomer _