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Abstract—In an era marked by the advanced capabilities of
social robots in personal and public spaces, the issue of pervasive
data collection by these entities becomes increasingly pertinent.
Social robots, deployed by government entities, hospitals, and
corporations, are at the forefront of gathering sensitive personal
data, necessitating careful consideration of privacy concerns. The
vast amounts of data collected by these robots, while beneficial
for decision-making and fostering research, also pose significant
privacy risks. In particular, the challenge intensifies when robots
collect and potentially share data that includes sensitive personal
information. This paper presents a user-friendly Differential
Privacy (DP) library that addresses this challenge. The library
incorporates a risk threshold and evaluates the potential impact
of data disclosure to accurately quantify privacy levels. Designed
for nontechnical users, it enables the secure release of statistical
data without the risk of privacy breaches. With privacy breaches
and re-identification becoming increasingly common, this library
offers a robust solution for safeguarding individuals’ privacy
while facilitating the sharing of valuable insights.

Index Terms—differential privacy, social robotics, sensitive
data, data disclosure

I. INTRODUCTION

In the evolving field of social robotics, where robots inter-
act closely with individuals in settings ranging from homes
to healthcare facilities, privacy concerns have become in-
creasingly critical. The extensive personal data collected by
these robots, ranging from behavioral patterns to personal
preferences, intensifies the need for stringent data security
and confidentiality measures. As these robots become more
integrated into daily activities, both for personal use and
in broader institutional settings, the imperative for robust
privacy protection mechanisms grows. Historical instances
of data breaches and the inadequacy of traditional privacy

This work is funded by Marie Sklodowska-Curie Action Horizon 2020
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methods have highlighted the urgency for a paradigm shift
in data privacy approaches, particularly in the context of
social robotics, where the stakes of personal privacy are
significantly heightened [1]. One pivotal milestone in this
transformative journey was the introduction of Differential
Privacy by Cynthia Dwork [2] and her colleagues. At its core,
Differential Privacy is a revolutionary concept that re-frames
the discourse on privacy in the digital era. It offers a principled
and rigorous framework to balance the conflicting objectives
of data analysis and individual privacy protection. Unlike
traditional methods that often rely on anonymization or data
aggregation, Differential Privacy introduces a mathematical
approach that guarantees privacy, even in the presence of
powerful adversaries. Differential Privacy is founded on a
simple, yet powerful principle: the impact of any individual’s
data on the output of a computation should be minimal.
To formalize this concept, Dwork proposed a mathematical
definition of differential privacy as follows [3]:

Definition 1: A randomized algorithm M with domain N|X |

is (ε,δ)-differential private if for all S ⊆ Range(M) and for
all x, y ∈ N|X | such that ∥x− y∥1 ≤ 1 :

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ
In simple terms, a computation is differentially private if

the probability of obtaining a particular result remains roughly
the same, whether a specific individual’s data is included or
excluded. The key mechanism employed to achieve Differen-
tial Privacy involves the intentional introduction of controlled
noise into the data or its analysis. This noise serves to mask
the contribution of any single individual, ensuring that the
presence or absence of their data does not unduly influence
the overall result.

Figure 1 shows the Differential Privacy framework where
the difference in the computation results of two neighbouring
dataset could be at most of ε. This ε is also known as the
privacy parameter. The privacy parameter (ε) quantifies the
level of privacy protection, with smaller values of epsilon



Fig. 1. Differential Privacy framework. Here we have two datasets, first is
complete dataset and second is where information of one individual is removed
or replaced. After computation, the maximum difference between the results
is at most of ε.

indicating stronger privacy guarantees. This paper navigates
the intricacies of Differential Privacy, delving into its funda-
mental definitions, underlying mechanisms, and implications
for the broader landscape of data privacy. As the implemen-
tation of Differential Privacy poses challenges, especially for
individuals without a technical background in this domain,
understanding the paradigm’s significance becomes crucial.

The goal of this paper is to present an algorithm designed
to assist users in estimating the privacy parameter (ε). This
parameter, fundamental to the inclusion of controlled noise in
datasets, is crucial for those seeking to make the data col-
lected by the robot, differentially private before releasing stats
about it. Recognizing that many individuals lack the technical
expertise required to apply Differential Privacy algorithms to
their data, our algorithm seeks to simplify this process. By
asking the user basic details, we aim to estimate the privacy
parameter (ε), contributing to a more accessible and user-
friendly approach to Differential Privacy.

The remainder of this paper is organized as follows. Section
2 addresses privacy breaches in the past, examining existing
Differential Privacy algorithms and libraries. Section 3, details
the methodology of our proposed algorithm. The experimental
results are discussed in Section 4. Finally, the paper concludes
in Section 5.

Our contributions to this paper are:

• Simplified Differential Privacy library that can easily be
used by non-experts in this area.

• Estimation of the privacy parameter ε by taking into
account the risk threshold (RT ) and the impact of data
disclosure (I).

Through this exploration, our goal is to not only contribute
to the ongoing dialogue on privacy in the field of social
robotics but also to highlight the instrumental role that Dif-
ferential Privacy plays in shaping a more secure and ethically
grounded data ecosystem.

II. BACKGROUND

The growing trend of data sharing has raised privacy
concerns, as research suggests that combining seemingly in-
nocuous information such as date of birth, gender, and zip
code can uniquely identify a significant portion of the US
population. In Canada, the risk of information disclosure
has increased dramatically by 160% annually. The California
Consumer Privacy Act (CCPA) [4] and the General Data
Protection Regulation (GDPR) [5] have been introduced to
provide rigorous privacy guarantees for users when analyzing
and collecting data. Fraudsters stole 16.8 billion from US
consumers in 2017 [6], posing a significant risk to users’
personal information. The vulnerability of privacy preservation
models to background knowledge attacks further complicates
data protection. Several high-profile privacy failures have
fuelled ongoing debates about these issues.

The AOL Privacy Debacle in 2006, the release of medical
records by the Insurance Commission (GIS), and the Netflix
Prize competition, all exposed the risk of privacy breaches de-
spite claims of anonymization. These incidents demonstrated
that even anonymized data can compromise privacy when
linked with publicly available information. Researchers were
able to re-identify many subscribers in the Netflix dataset
by linking it with external databases such as The Internet
Movie Database (IMDB). Other instances of re-identifying
users from vehicle sensor data and extracting signals from
logs also underscore the persistent risk of privacy breaches
even with anonymized data.

These privacy failures highlight the urgent need for en-
hanced privacy techniques. Differential Privacy emerges as
a potent solution, capable of neutralizing the aforementioned
attacks and preventing such breaches by introducing controlled
noise into datasets. By incorporating Differential Privacy, users
participating in studies can be assured that their privacy will
not be compromised, offering a crucial safeguard in the era of
escalating privacy concerns.

A. Preliminaries

Differential Privacy aims to hide the participation of indi-
viduals. One of the basic approaches is the Laplace mechanism
which adds the noise taken from the Laplace distribution [7].

Definition 2: Laplace Mechanism
Given any function f : N |x| → Rk, the Laplace mechanism
is define as:

ML(x, f(.), ϵ) = f(x) + (Y1, . . . , Yk)
where Yi are i.i.d random variables drawn from Lap(∆f

ϵ ).
By this definition the Laplace mechanism is (ε,δ)-

differential privacy or ε-differentially private, where δ is
always equal to 0. The Laplace mechanism is commonly used
for numeric queries like count, sum, mean and variance.

B. Open-Source DP Libraries

Practical applications in the field of Differential Privacy
have lagged behind theoretical advancements, with a no-
table scarcity of practical implementations. IBM-diffprivlib



TABLE I
COMPARISON OF DIFFERENTIAL PRIVACY LIBRARIES. [7], [8]

Libraries
Parameters Owner Usecase Programming

Languages

Type of
Mechanisms

Type of
Queries

ε
Managment

Calculating

Sensitivity

SmartNoise [9] Microsoft
Data science

and
large systems

Python
Laplace, Gaussian,

Exponential,
Geometric

Count, Sum, Mean, Var,
Histogram, Max, Min, Median Yes Yes

Google DP [10] Google
Production

ready
applications

C++, Java,
Go

Laplace, Gaussian,
Exponential

Count, Sum,Mean, Var,
Histogram, Max, Min,

Median
Yes Yes

Diffprivlib [11] IBM Data science Python
Laplace, Gaussian,

Exponential, Geometric,
Binary, Vector

Count, Sum, Mean, Var,
Histogram Yes Yes

Diffpriv [12] B. Rubinstein
et al. Data science R Laplace, Gaussian,

Exponential,
Any, provided the sensitivity

sampler N/A Yes

Chorus [13] J. P. Near
et al.

large Scale
systems Scala Laplace, Gaussian, Noisy Max,

FLEX,SVT, Aggregate
Count, Sum, Mean,

Histogram Yes Yes

GRAM-DP [14] M.Aitsam large Scale
systems Python Laplace Count, Sum, Mean,

Variance Yes Yes

[11], OpenDP-Smartnoise [9], Openmined-PyDP [10], Diff-
priv [12], Pinq, TensorFlow-Privacy, and Opacus-PyTorch, are
few open-source frameworks that claim to validate global
Differential Privacy for specific datasets. In one of comparative
study G.Garrido [8] investigates seven open-source libraries.
Microsoft in collaboration with Harvard University (OpenDp
initiative) provides an open-source library. SmartNoise [9] is a
tool for accounting for the privacy budget, APIs for performing
DP analysis, releasing statistics, and measuring the utility of
the outputs. Although SmartNoise is designed for large-scale
systems, it does not perform well for multiple datasets. Since
one database must follow a special framework and others use,
e.g., Sklearn, it fails machine learning implementations.
OpenMined provides the Google DP library [10], which is
licensed under Apache-2.0 and supports Python and C++
libraries. Although experts can use the library directly, the
Apache Beam tool provides a layer for non-expert users.
Google DP offers advantages such as tracking privacy budgets,
estimating analytical sensitivity bounds, and using a stochastic
tester that does not break the DP guarantee. However, Google
DP does not include machine learning algorithms.
The IBM general-purpose Diffprivlib library [11], implements
in Python. It is based on the worst-case, so the development
of the mechanisms requires theoretical sensitivity analysis. It
uses formal mechanisms such as Exponential, Gaussian, or
Laplace, and also includes the Vector [15], the Staircase [16],
and Geometrics [17]. Its disadvantage is not having a floating
point. On the other hand, running the Sklearn classifiers gives
the ability to track the privacy budget in this library.
Diffpriv library [12] provides new approaches to execute user-
defined functions with R language. Moreover, its sampler can
determine the sensitivity of a user-defined function according
to the bounded Differential privacy. Of this advantage, the
sensitivity does not need to be calculated by non-expert
users. However, this new library cannot determine the privacy
budget of accountants, and computing the sensitivity would be
expensive even for simple queries.
Chorus library in Scala language [13], uses the existing mech-

anisms with collaborating SQL databases. This library consists
of three main components: accounting for the privacy budget, a
query rewriting frame that modifies a query before execution,
and the framework for query analysis which calculates the
sensitivity of the query. The important note is that this library
is a framework for research and is not a complete system for
deployment. Moreover, Chorus has less built-in mechanisms
in comparison to other Libraries.
However, to effectively utilize these libraries, users must
possess a thorough understanding of Differential Privacy,
including its parameters and the operational mechanisms of
the chosen library. Once invoked, the library generates dif-
ferentially private results based on the specified parameters.
For newcomers, comprehending these factors may pose a
significant challenge. To address the aforementioned problems,
one of the open-source libraries offers a solution. GRAM-DP
is a library that requires users to specify their desired privacy
level. The framework then takes care of the rest, returning
differentially private results. In this paper, we are introducing
the updated version of GRAM-DP, known as GRAM-DP 2.0.

III. GRAM-DP 2.0

GRAM-DP 2.0 is written in Python 3, a popular language
for data analysis. Utilizing the functionality of the well-known
NumPy package, the library ensures instant recognition of
functions, and default parameters make it accessible to all
users. Released under the MIT Open Source license, GRAM-
DP is free to use and modify, welcoming user contributions
to enhance its features. The library focuses on providing basic
queries for statistical analysis and essential building blocks for
differential privacy and handling noise addition. Its primary
goal is to make Differential Privacy easily understandable,
especially for those new to the concept. In its second release,
the library is emphasizing the accurate estimation of ε (privacy
parameter) based on specific queries, data sensitivity, and user
requirements on the risk and impact of data disclosure. In this
release, the user has to provide desired privacy and have to
answer some qualitative questions related to the data. Through
these values, the framework will calculate the risk threshold
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Fig. 2. Usage of GRAM-DP2.0 for social robotics. The social robot interacts with multiple users and saves their personal data. When a user queries about
these data, GRAM-DP2.0 will make these data differentially private and return DP results.

TABLE II
QUERY AND EQUATION FOR SENSITIVITY [9]

Query Sensitivity
Count 1
Sum M −m
Mean (M −m)/n

Variance ((M −m)2) ∗ (n/(n2 − 1))

(RT ) and impact of data disclosure (I) which will eventually
be used to estimate the ε. For sensitivity, we used the equations
proved in the Harvard privacy tools project [9]. Here M and
m are the maximum and minimum of data respectively, and
n is the size of the data.

IV. PRIVACY PARAMETER (ε) ESTIMATION

Epsilon (ε) or privacy budget, is the most important pa-
rameter in Differential privacy which controls the level of
privacy. In most practical Differential privacy case studies,
the appropriate value of ε is hardly calculated, so researchers
prefer to consider fixed values for ε. Moreover, decision-
makers often struggle to comprehend the significance of this
key parameter. They typically base their decisions on the
potential risks and consequences involved. They may have
established risk thresholds that guide their decision-making
process. The subsequent theorem establishes a connection
between the privacy budget (ε), the risk threshold (RT ), and
the impact of data disclosure (I).

A. Risk and Privacy Budget

Privacy budget (ε) is intuitively formulated, by using the
confidence probability of the noise estimation.

Theorem 1: [18] If ξ is the number of values in the estimated
distribution and the max(Lap( 1λ )) ≥ ξ−1

2 , then we can
formulate ε as follow:

max(Lap( 1λ )) = − ε×ln(2−2γ)
∆q ≥ ξ−1

2

⇒ ε×ln(2−2γ)
∆q ≤ 1−ξ

2

⇒ ε ≤ ∆q(1−ξ)
2×ln(2−2γ)

Here, ε is estimated according to its relationship with the risk
of data disclosure (RoD). The following Theorem gives an
upper bound for the privacy budget ε based on I and RT .

Theorem 2: [7] Let q be a query and I be the impact of its
privacy disclosure. Let RT be a risk threshold (the maximum
risk that the company can tolerate). The privacy budget ε with
Laplace noise needs to be equal to or less than

u× (1− I
RT

)

where u = ∆q
2×ln(2−2γ) .

This Theorem is for single-dimensional data. Now we gener-
alize the theorem to n queries.

Theorem 3: [7] Let q1, . . . , qn be n queries and I1, . . . , In
be the impacts of their privacy disclosures, respectively. Let
RT be a risk threshold (the maximum risk that the company
can tolerate). The global privacy budget ε with Laplace noise
is equal to or less than

U −
∑n

i=1 ui×Ii
RT

where U =
∑n

i=1 ui and ui =
∆qi

2×ln(2−2γ) .
The proofs of Theorems 1 and 2 are described in [7]. Rec-
ognizing that many individuals lack the technical expertise
required to apply differential privacy algorithms to their data.
We use this simplified notion for ε along with the GRAM-DP
2.0 library to facilitate understanding Differential Privacy.

V. METHODOLOGY

To assess our proposed solution, we substitute the value of
ε by Rt and I . Then we use GRAM-DP 2.0 for three datasets,
namely Adult Dataset [19], Diabetes Health Indicator Dataset
[20], and Life Style Dataset [21] to get the differential private
results. We chose the ’Age’ column for our experiments as it
is one of the most common data collected by robots. Another
reason behind choosing this column is that it satisfies most of
the queries (except sum query).
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Fig. 3. Average estimated epsilon for each query.

Figure 2 shows the overall process. Here social robot
interacts with multiple users and during interaction it also
saves personal information to provide personalized responses
in the next interaction. All of these data are stored in the
robot’s data storage unit. When the user (not malicious and
wants to release data to the public) queries the robot for
some information regarding the users, the GRAM-DP 2.0 will
ask about its desired privacy and qualitative measures. From
this information, GRAM-DP 2.0 will estimate the value for ε
which will then be used to add noise to the query result and
make it differentially private. The user will get this DP result
for the query.

From the equation derived in section IV, to estimate ε value,
we need sensitivity, Laplacian noise, Risk Threshold (RT ) and
Impact of Data Disclosure (I).

1) Sensitivity: Table II provides the equations for the cal-
culation of sensitivity, depending on the query.

2) Laplacian Noise: To calculate the Laplacian curve we
need the initial value of epsilon. Instead of asking this value
from the user, which could be difficult for him/her, we
estimated this value from the user’s answer to the question
of desired privacy. If the user desires to have high privacy
then the estimated value of the initial epsilon will be lower
and vice versa. Note that this is an initial value of epsilon
ε which is needed to calculate Laplace noise in the final ε
equation.

3) Risk Threshold (RT ): Risk Threshold depends on the
desired privacy level. The user (e.g. company’s manager) has
to tell the desired privacy level (very high, high, moderate,
low, very low).

4) Impact of Data Disclosure (I): Understanding the im-
pact of one result on another is hard to estimate. It depends
on various factors like background knowledge, source, size,
relevance, and sensitivity of the dataset. In this work, we
estimated this value by taking into account two factors. 1)
Qualitative measures where the user will be asked a series
of general questions related to the dataset. 2) Utilizing the
Identity Ecosystem Report [22] as a reference to know the
importance of each attribute in the dataset. The average score
of these factors is our total score for I . Refer to our GitHub
(https://github.com/aitsam12/GRAM-DP2.0.git) for more de-

tails about these factors.

VI. RESULTS AND DISCUSSION

We used three open-source datasets: Dataset 1 represents
Life Style Dataset, Dataset 2 is the Adult Dataset, and Dataset
3 is the Diabetes Health Indicator Dataset. These datasets have
varying sizes, making them suitable for evaluating GRAM-DP
2.0’s performance on both small and large datasets.

Our main goal of this study is to estimate the privacy
parameter ε. In the first experiment (Figure 3), for each dataset,
we show the average ε of 100 runs for different privacy levels
where the qualitative measures are maximum (a) and minimum
(b). The Maximum level of qualitative measures indicates that
the data is highly sensitive, while the lowest level of qualitative
measures suggests that the data is not particularly sensitive.
Figure 3(a) shows that when the data is sensitive, the value
of epsilon is mostly low for all the queries which means that
more noise is added to the true results. In Figure 3(b) where
data is considered as less sensitive, less noise is added to the
true results. This shows that GRAM-DP 2.0 complies with the
basic definition of differential privacy.

Our proposed solution has been demonstrated to be consis-
tent with the differential privacy definition. The next step is to
determine the error in the data. In Figure 4, for every dataset,
we took the average of 100 error values for each privacy level.
Figure 4(a) shows the results for very sensitive data. Here for
the count and sum query, the error is high till moderate privacy
level. In the mean and variance query, we can see that the size
of the dataset came into play. For small datasets, the error is
higher as compared to large datasets. Similarly, in Figure 4(b)
for less sensitive data, this trend follows for mean and variance
queries. However, for count query error rate is almost similar
irrespective of the size of the dataset. This is because of the
nature of this query and its sensitivity value.

VII. CONCLUSION

Addressing the critical need for data privacy in the field
of social robotics, we introduce GRAM-DP 2.0, a user-
friendly Differential Privacy (DP) library. The proposed so-
lution presents a dual advantage: it robustly safeguards indi-
vidual privacy and simultaneously facilitates the sharing of
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Fig. 4. Average Error for each query.

insightful data. The results show that GRAM-DP 2.0 adheres
to the principles of global differential privacy, making it a
reliable tool in environments where sensitive data is prevalent.
Designed for ease of use by nontechnical individuals, GRAM-
DP 2.0 ensures an accurate estimate of the privacy parameter
(ε) by taking minimum input from the user. In essence,
GRAM-DP 2.0 is a pivotal step toward balancing the benefits
of social robotics with the imperatives of data privacy in the
modern era.
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