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Abstract

Sleep apnoea (SA) is a hazardous condition characterized by interrupted breathing during sleep.
This prevalent medical issue affects individuals of all ages, potentially leading to severe
complications when untreated including, cardiovascular problems, diabetes, and daytime fatigue
etc. Unfortunately, SA often remains undiagnosed due to the costly and inconvenient diagnostic
procedures associated with it. It stands as a significant global health concern, impacting nearly
one billion people worldwide, with a prevalence of 17 to 23% in women and 34 to 50% in men.
SA is recognized as a risk factor for cardiovascular disorders (CVD) and carries substantial
individual, societal, and economic burdens. The economic costs of SA diagnosis and treatment

services run into billions of dollars annually.

The reference standard for diagnosing SA is polysomnography (PSG), conducted in a laboratory
setting by trained professionals. However, this process is time-consuming, susceptible to human
error, and demands technical expertise for both execution and interpretation. The inconvenience
of in-lab PSG has spurred the need for new, simplified methods. This thesis posits that
Computer-Aided Diagnosis (CAD) systems can enhance diagnostic efficacy. To explore this
hypothesis, the thesis introduces innovative real-time detection techniques for Obstructive Sleep
Apnoea (OSA) and the development of a high-performance OSA detection system. This system,
offering continuous OSA detection, addresses the practical challenges associated with
traditional diagnostic approaches. The integration of Internet of Things (loT) and advanced
Artificial Intelligence (Al) technologies, with a focus on the Lifetouch sensor, represents a
novel approach to improve the accuracy of OSA detection. This innovative strategy aims to

overcome barriers to timely and reliable diagnosis and monitoring of sleep disorders.

To thoroughly assess the algorithm, a clinical study enrolled 15 patients with a history of OSA.
Simultaneously, standard PSG monitoring and diagnosis were conducted, serving as the
benchmark for comparison. This dual approach ensured a robust evaluation of the DL
algorithm's performance against established PSG methods, providing a comprehensive
understanding of its capabilities in OSA detection. The trial results highlight the potential of the
proposed technology model, showing a high level of patient acceptance and satisfaction with
Lifetouch wearables. However, the identification of only two OSA cases among the 15 patients
studied was lower than anticipated. These findings emphasize the need for improved detection
methods, as addressed by the novel techniques introduced in this thesis. The results presented
here also highlight the efficacy of the developed methods, showcasing their ability to deliver
quick, reliable, and standardized analyses an essential step forward in overcoming the

limitations of conventional diagnostic approaches.
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Chapter 1 Introduction

Chapter 1 provides an overview of the thesis. Section 1.1 introduces an overview of Sleep
Apnoea (SA), while Section 1.2 discusses the current diagnostic challenges. role of artificial
intelligence (Al) in healthcare is present in section 1.3. The motivation behind our research is
presented in Section 1.4. Section 1.5 presents the research problem, followed by an outline of
our aims and objectives in Section 1.6. Section 1.7 presents the research questions. The major
contributions of this thesis are listed in Section 1.8, and the structure of the thesis is explained in
Section 1.9.

1.1 Overview

SA is a serious sleep disorder characterized by recurrent interruptions in breathing during sleep,
resulting in inadequate oxygenation of the body and various health problems such as
hypertension, cardiovascular disease, stroke, and diabetes (Elmoaget et al., 2020). SA is the
repeated temporary closure of the upper airways during sleep Figure 1.1. SA manifests in
obstructive (OSA) or central (CSA) forms. OSA is the predominant type, a life-threatening,
underdiagnosed condition, characterized by symptoms such as fatigue, daytime sleepiness,
cardiac arrhythmia, and systemic hypertension. SA can also lead to excessive daytime
sleepiness, reduced quality of life, and increased risk of accidents and injuries (Dhruba et al.,
2021). Cognitive impairment and dementia have also been associated with SA (Michael Pearson
and Oliver Faust, 2019), highlighting the need for early detection and treatment to prevent or

minimize these health problems.

1.2 Current Diagnostic Challenges

PSG is widely acknowledged as the gold standard method for diagnosing SA!, typically
conducted in a supervised sleep laboratory (Berry et al., 2012). However, recent advancements
have introduced alternative contact and non-contact methods for unattended home-based OSA
diagnosis. PSG involves a sleep study conducted in a lab, where the patient spends the night
connected to over 15 channels that collect sleep data, expensive, and time-consuming, which
can be inconvenient and uncomfortable. The waiting times for patients to undergo a PSG can be
prolonged and may vary across different healthcare centres. A trained sleep technician manually
annotates this data, utilizing various channels for different types of information, such as
electroencephalogram (EEG) and Electrooculogram (EOG) for sleep stages, Electromyogram
(EMG) for wake periods, arousals, or movements, Electrocardiogram (ECG) for potential
emergencies, and airflow, oxygen desaturation, and respiratory effort signals for categorizing

apnoea events (Almazaydeh et al., 2012; Imtiaz, 2021). Conducting these studies in home or

! https://www.nhs.uk/conditions/narcolepsy/diagnosis/
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unattended settings would be a more practical, cost-effective, and time-efficient approach.
PSG's main outcome, the Apnea Hypopnea Index (AHI), is a standard measure of OSA severity,
calculated by dividing the total apnoea and/or hypopnea events by total sleep time. The AHI
quantifies the severity of the OSA condition based on guidelines from the American Academy
of Sleep Medicine (AASM) (Syeda Quratulain Ali et al., 2019).

The growing awareness of SA and its consequences has led to an increased demand for PSG
studies at sleep laboratories. However, the existing sleep laboratory facilities are insufficient to
meet this demand. Moreover, PSG is limited in its applicability for large-scale population
screening, particularly in unattended or home-based settings. Consequently, there is a
substantial need for a simplified SA screening device that is cost-effective, user-friendly, and
reliable. The need for alternative approaches arises from the limitations of PSG, emphasizing
the significance of developing machine learning (ML) -based methods. These approaches aim to
provide more accessible, cost-effective, and potentially home-based solutions for SA diagnosis,

addressing the challenges posed by PSG's resource-intensive nature.

Typical breathing during sleep Obstructive sleep apnea

Tongue

Hard palate

Soft palate

Open airway
Blocked airway

Figure 1.1 Obstructive sleep apnoea occurs when the patient's airway becomes obstructed.?
1.3 Role of Artificial Intelligence (Al) in healthcare

The healthcare sector grapples with significant challenges related to various diseases, elevating
it to a critical global concern. Research and technological advancements in healthcare aim to
enhance life quality through improved diagnostic and treatment methods, with Al standing out
as a transformative force in the field. Al's widespread adoption is fuelled by its demonstrated
successes, exemplified by innovations like ChatGPT, (Holzinger et al., 2023). In recent times,
various Al techniques have been implemented to assist healthcare professionals in diagnosing,
monitoring, and treating various human disorders. ChatGPT stands out as a widely used Al-
based chatbot that utilizes the GPT (Generative Pretrained Transformer) parser to generate
responses resembling human interactions, based on the text input provided by the user (Cheong
et al., 2023; Manik Sharma & Sharma, 2023)

2 https://www.mayoclinic.org/



ChatGPT, an advanced Al system created by OpenAl, holds significant promise in offering
valuable assistance within the healthcare domain. Its capability to facilitate virtual consultations
with healthcare professionals for health data analysis has the potential to bring about a
transformative impact on the healthcare sector. The integration of ChatGPT technology in
healthcare has the power to redefine the manner in which patients access care and receive
support (Manik Sharma & Sharma, 2023).

The Al introduces unprecedented potential solutions, contributing to essential sustainability
development goals. these encompass food security, health and well-being, clean water, clean
energy, responsible consumption and production, climate action, life below water, and the
sustainable management of terrestrial ecosystems (Holzinger et al., 2023). Al's pervasive
influence extends to the life sciences, incorporating ML, big data analytics, knowledge
discovery, biomedical ontologies, natural language processing, and decision support tools. Al,
with its ability to compute, analyse, reason, learn, and discover meaning, is evolving rapidly,
encompassing both 'narrow Al' for focused tasks and 'broad Al' for diverse functions. The broad
spectrum of Al applications, including language processing, image recognition, big data
analytics, and robotics, holds the potential to revolutionize healthcare by enhancing diagnostics,
facilitating new treatments, and extending healthcare accessibility. These technological
advancements are not limited to healthcare, as Al applications in various sectors present

opportunities to benefit society at large (Federspiel et al., 2023).

1.3.1 Artificial Intelligence's Impact on Healthcare

Al plays a pivotal role in managing critical situations (S. Ali et al., 2023) and offers reliable
diagnostic capabilities for a wide range of diseases in healthcare organizations (S. Patil, 2022).
It has the potential to enhance healthcare services by assessing disease risks, providing
continuous patient care, and reducing complications associated with illnesses (Shaik et al.,
2023). The evolution of Al, incorporating narrow and broad Al applications, extends beyond
healthcare, presenting opportunities to benefit society at large. However, it's essential to

consider the impact of Al on human health and well-being (Dave et al., 2020).

1.3.2 Artificial Intelligence in Healthcare Industry Transformation

Al brings about long-term changes in the healthcare industry, aiding organizations in diagnosing
patients and tailoring treatments with high accuracy. In radiology, Al supports physicians in
clinical decision-making and, in certain cases, can even replace human judgment. Al's reliance
on computers enhances efficiency, predictability, and decision-making in medical systems. The

transformative potential of Al in healthcare underscores the ongoing evolution of technological



advancements to improve diagnostics, treatments, and accessibility to healthcare services
(Panch et al., 2019; Yousef Shaheen, 2021; Yusriadi et al., 2023).

1.4 Research Motivation

The motivation for this research lies in addressing the escalating global health concern of SA,
which poses risks of severe health complications and even death if left undetected. Recognizing
the potential of computing and Al technologies, this thesis aims to develop automated
classification systems to aid physicians in timely SA diagnosis. This pursuit is driven by the
need to alleviate healthcare personnel's workload and tackle the issue of underdiagnosis,
particularly due to the limitations and costs associated with PSG. By harnessing Al
technologies, the research seeks to offer a cost-effective alternative for SA detection, aligning
with efforts to address the underdiagnosis problem highlighted by the World Health
Organization. Ultimately, the goal is to enhance individuals' quality of life by enabling accurate,

accessible SA diagnoses through innovative Al-driven approaches.
1.5  Problem Statement

The research addresses a critical issue in sleep medicine: the substantial limitations of PSG as
the predominant diagnostic tool for SA, coupled with the urgent demand for alternative
diagnostic methodologies. Despite its widespread use as the gold standard, PSG's efficacy is
marred by exorbitant costs, lengthy examination durations, and patient discomfort, necessitating
the exploration of more accessible and patient-centric SA diagnostic approaches. Leveraging the
transformative potential of 10T devices and advanced Al technologies, the study endeavours to
revolutionize SA diagnosis by delving into sophisticated algorithms and conducting
comprehensive large-scale data analyses. Through the development of innovative solutions
tailored to address entrenched challenges, this research aims to catalyse a paradigm shift in
diagnostic practices within sleep medicine, ultimately fostering improved patient care and

outcomes.
1.6 Research Aim and Objectives

In response to the identified shortcomings and gaps in current SA diagnosis methods, the
primary aim of this thesis is to harness the revolutionary potential of smart technology for SA
detection. The research centres on pioneering loT-based solutions, comprising cutting-edge
sensors, wearable devices, and advanced data analytics methodologies. These technological
innovations are designed to surmount the constraints inherent in conventional diagnostic
modalities such as PSG and elevate the precision of SA detection, thereby advancing the
diagnosis and treatment of this pervasive sleep disorder. By harnessing the transformative

capabilities of intelligent 10T technology, the research endeavours to make a substantial



contribution to the field of SA diagnosis, ultimately culminating in superior patient outcomes.

To realize this overarching aim, the research delineates the following specific objectives:

e To evaluate loT-based sensors and wearable devices for accurately capturing relevant
physiological data during sleep, with a specific focus on SA indicators.

e To design and implement advanced data analytics techniques that enable the detection
and monitoring of SA episodes. Additionally, the research explores the feasibility and
effectiveness of remote monitoring solutions using smart 10T technology.

e The study aims to conduct comprehensive validation studies, assessing the performance
and effectiveness of the developed loT-based SA detection system. This includes
comparing its performance with traditional diagnostic methods such as PSG and
evaluating its potential for real-time monitoring and long-term management of SA.

1.7 Research Questions

In alignment with the identified issues in current SA diagnosis methods and the overarching aim
of exploring the potential of smart technology, the research questions in this thesis are
strategically crafted to focus on the integration of smart 10T technology in SA detection and
monitoring. Specifically, the study seeks to address the question: How can smart 10T technology
revolutionize the detection of SA? By delving into this pivotal research question, the thesis aims
to uncover the multifaceted ways in which loT devices and connectivity can revolutionize SA
detection and facilitate seamless remote monitoring. The study proposes the deployment of
innovative loT-based sensors and wearable devices capable of precisely capturing pertinent
physiological data during sleep. Advanced data analytics techniques will be harnessed to
meticulously analyse and interpret the amassed data. The ultimate objective is to explore the
feasibility, accuracy, and potential advantages of integrating 10T solutions in SA detection,
thereby propelling the field of SA diagnosis forward through the transformative capabilities of
smart loT technology.

1.8 Research Contributions

This research seeks to make significant contributions to the evolution of SA diagnosis by
integrating 10T and Al technologies to analyse datasets obtained from patients suspected of
having SA. The primary goal is to propose novel, automated approaches for SA diagnosis,
leveraging the insights derived from comprehensive data analysis. A major contribution of this
work is the integration of loT and advanced Al technologies, with a specific focus on the
Lifetouch sensor, to enhance SA detection. This integration aims to bridge any existing gaps
between emerging classification techniques and the current methods for SA detection. By
merging cutting-edge technologies, the research aspires to advance the accuracy of SA

diagnosis, ultimately contributing to the evolution of diagnostic practices in sleep medicine.
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1.9  Summary of Chapters

The thesis comprises six chapters, each focusing on different aspects of the research topic. In
addition, two manuscripts have been published as part of the thesis. The content covered in each

chapter is summarized as follows:

Chapter 1: This chapter is divided into nine sections that provide background information on
SA, discuss the role of Al in healthcare, summarize the research motivation, present the
research problem statement, describe the aims and objectives, outline the thesis question, and

provide an overview of the thesis structure.

Chapter 2: This chapter presents a comprehensive literature review relevant to the research. It
covers various topics related to sleep, including sleep disorders, traditional methods for SA
detection, risk factors, financial implications, and consequences of untreated SA. Additionally,
it explores Al innovations in SA diagnosis, DL, computer-aided SA detection systems, and
automated sleep stage scoring. Moreover, it identifies research gaps to provide readers with a

clear understanding of the background and context of the study.

Chapter 3: This chapter focuses on the manuscript titled "Environmental Benefits of Sleep
Apnoea Detection in the Home Environment" published in Processes. It assesses the
environmental consequences of SA detection, particularly the exploration of Remote
Monitoring (RM) as a solution to enhance resource efficiency and minimize travel-related
impacts.

Chapter 4: This chapter offers an overview of the methodology, drawing insights from the
work of Faust et al. (2021) on "Accurate detection of sleep apnea with a long short-term
memory network based on RR interval signals”. Additionally, it provides insights into the
utilization of DL in SA detection. Moreover, the chapter summarizes data collection and
preprocessing activities, elucidating the process through which research objectives have evolved
over time. The LSTM method discussed in this chapter mirrors the one applied for OSA

detection in the clinical study.

Chapter 5: This chapter dives into how experiments were set up to detect OSA using DL
methods in real medical settings. The researchers zero in on a specific sensor known as Isansys
Lifetouch. Here, the chapter details the planning of the study, collected data, analyzed it, got
approvals from regulators, and considered ethical issues. Then, it discusses the results of the
study, pointing out important discoveries and insights gained from analyzing the data. It gives a
thorough summary of what they found, highlighting any trends or patterns they noticed. After
that, the chapter moves on to a critical discussion of the results. It talks about what these
findings mean, how they fit into existing research, and suggests ideas for future studies in this

area.



Chapter 6: This chapter provides a comprehensive summary of the conclusions derived from
the preceding chapters of the thesis. It presents the key findings and insights obtained
throughout the research, acknowledges the limitations of the current study, and identifies
potential areas for future research and development based on the research outcomes.



Chapter 2 Literature Review

This chapter provides a comprehensive literature survey related to SA. Section 2.2 delves into
sleep disorders. Section 2.3 focuses on PSG for SA evaluation, while Section 2.4 describes risk
factors associated with SA. Section 2.5 covers the financial costs of SA, while Section 2.6
highlights treatment approaches. Sections 2.7 to 2.11 cover, Al innovations in SA diagnosis,
DL, computer-aided SA detection, automated sleep stage scoring, and research gap
identifications respectively.

2.1 Introduction

Healthy sleep is essential for individuals of all ages as it comprises approximately one-third of a
person's life (Yan et al., 2021). Sufficient sleep has been shown to enhance work productivity
and overall mood (Koenker et al., 2013). Conversely, inadequate sleep can contribute to various
health issues, including cardiovascular disease, endocrine disorders, memory impairment, and
decreased attention span. Systematic reviews and meta-analyses have established a correlation
between shortened sleep durations and these health problems. Given that cardiovascular disease
is a leading global cause of mortality, the identification and detection of sleep disorders have
become crucial public health priorities due to their detrimental effects on mental and

cardiovascular well-being (Hongyun Dong et al., 2020).
2.2  Sleep Disorders

Sleep disorders have a significant impact on individuals' well-being, affecting their physical,
cognitive, and emotional functioning. Achieving restful sleep becomes a challenge for
individuals with sleep disorders (Heima et al., 2019; Michael Pearson and Oliver Faust, 2019).
The International Classification of Sleep Disorders (ICSD-3) categorizes sleep disorders into
seven groups, including insomnia, sleep-related breathing disorders, and circadian rhythm sleep-
wake disorders (Ophoff et al., 2018; Sateia, 2014). The prevalence of sleep disorders varies
depending on the type and severity of the condition. Insomnia, for example, affects
approximately 30% of adults, with up to 10% experiencing chronic insomnia (Urtnasan et al.,
2021). In the United States, an estimated 50 to 70 million individuals have challenging-to-
identify sleep disorders, and the adverse effects may not manifest immediately but can have
long-lasting consequences (Ademola Bello & Algasemi, 2021; Princy, 2021; C. Sun et al.,
2022). Sleep disorders affect approximately 23% of the U.S. population and 20% of the
population in Finland (Loh et al., 2020).

Other sleep disorders, such as restless leg syndrome (RLS) and narcolepsy, also impact a
significant portion of the population. RLS, causing uncomfortable leg sensations and an urge to

move the legs, affects approximately 5-15% of individuals. Narcolepsy, characterized by sudden



uncontrollable sleep episodes, affects about 1 in 2,000 people. Loh et al., (2020) found that the
prevalence of sleep difficulties is substantial, with around 16.6% of adults, or about 150 million
individuals, experiencing sleep difficulties. This number is projected to increase to 260 million
by 2030. Moreover, according to the National Highway Traffic Safety Administration
(NHTSA), sleep-related problems have significant consequences beyond individual health.
Falling asleep while driving contributes to over 100,000 car accidents annually in the United
States. Sleep-related problems account for 20% of traffic accidents in the United Kingdom and
25% of incidents in Germany (Santaji & Desai, 2020).

Sleep disorders often go undiagnosed and untreated, leading to chronic health issues and a
decrease in overall quality of life (Watson & Fernandez, 2021). Some individuals may not
recognize the symptoms of a sleep disorder, considering them normal. Others may avoid
seeking medical attention due to a lack of awareness, available treatments, or the stigma
associated with sleep disorders. Untreated sleep disorders have serious consequences for overall
health and wellbeing. They impair cognitive performance, reduce workplace productivity, and
increase the risk of accidents and injuries. Sleep disorders can also contribute to chronic
conditions like diabetes, cardiovascular disease, and depression. Emotional functioning is
significantly affected, leading to mood disturbances and reduced quality of life (EImoaget et al.,
2020; Heima et al., 2019).

To address the consequences of untreated sleep disorders, it is crucial to increase awareness and
improve access to diagnostic and treatment options. Healthcare providers play a critical role in
identifying and treating sleep disorders by conducting thorough assessments and referring
individuals to specialists as needed. Individuals can also take steps to improve their sleep
hygiene by maintaining regular sleep schedules, avoiding stimulating activities before bedtime,

and creating comfortable sleep environments.

Treatment approaches for sleep disorders vary depending on the type and severity of the
condition. Lifestyle modifications, such as improving sleep hygiene or making changes to diet
and exercise, can alleviate symptoms. Medical interventions, such as the use of continuous
positive airway pressure (CPAP) machines for SA or medications for insomnia, may be
necessary in some cases. Behavioural therapies, such as cognitive-behavioural therapy for
insomnia (CBT-I), have also proven to be effective (Massie et al., 2023). Sleep disorders have a
significant economic impact due to their prevalence and associated symptoms, affecting sectors
reliant on alertness and decision-making abilities (Imtiaz, 2021; Perslev et al., 2021).
Undiagnosed sleep problems in the United States resulted in an estimated economic burden of
$149.6 billion in 2016, with an additional $49.5 billion projected for diagnosing and treating
sleep problems in the future (Dietz-Terjung et al., 2021). Lin et al., (2021) found that the impact

on healthcare expenses is evident, particularly among older adults who experience sleep
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problems and delayed sleep time. These findings underscore the importance of screening,
detecting, diagnosing, and monitoring sleep disorders. There is a need for simple and accurate
methods of detection or classification to ensure that individuals receive the necessary
interventions and support for better sleep health.

2.2.1 Sleep Apnoea

SA is a challenging disorder to diagnose due to its complex nature (Salari et al., 2022). Apnoea
is a Greek word that has the meaning “without breathing”. Clinically, an apnoea event is defined
as a cessation of airflow during sleep lasting 10 seconds or more, whereas a hypopnea event is
characterized by an airflow reduction rather than a full cessation (Baillieul et al., 2022;
JeyaJothi et al., 2022; Zarei et al., 2022). As a result, the body is unable to enter a deep sleep
state, and blood oxygen levels decrease. Brief awakenings may occur to restore normal
breathing (Moridian, Shoeibi, Khodatars, & Pachori, 2022; Schiitz et al., 2021; Zarei et al.,
2022). A patient’s SA severity can be expressed by their AHI, which is simply the number of
apnoea and hypopnea events per hour of sleep (Syeda Quratulain Ali et al., 2019; Alsubie &
BaHammam, 2017). Table 2.1 provides an illustration of the four severity groups used to
categorize the severity of OSA.

Table 2.1 The four severity groups of OSA.

AHI <5 No OSA
5<AHI<I15 Mild OSA
15 <AHI <30 Moderate OSA

AHI > 30 Severe OSA

SA has a significant global impact and is particularly prevalent in certain populations (Baillieul
et al., 2022; Benjafield et al., 2019; Xia & Sawan, 2021). Children aged 2 to 8 years, especially
pre-schoolers, are at higher risk, often due to enlarged adenotonsils (Duman & Vural, 2022).
The elderly population is particularly susceptible to SA (Mukherjee et al., 2021). However,
despite its prevalence, SA is often underdiagnosed and inadequately treated. The challenges in

detecting and predicting SA contribute to rising healthcare costs (Baillieul et al., 2022).

The cost burden of SA is substantial, with significant economic implications. In the United
States alone, the cost of identifying and treating SA was estimated to be approximately $12.4
billion in 2015 (Benjafield et al., 2019). Frost & Sullivan, (2016) estimated that the undiagnosed
SA among US adults resulted in an estimated cost burden of $149.6 billion in the same year,
considering factors such as lost productivity, increased comorbidity risks, motor vehicle
accidents, and workplace accidents. Diagnosing and treating all adults in the US would incur an
additional cost of $49.5 billion but result in savings of $100.1 billion. While global cost

10



estimates are limited, early recognition and treatment of SA are crucial due to its significant

long-term consequences.

SA is not only a respiratory disorder but also a significant risk factor for various health
problems, including CVD, stroke, car accidents, and diabetes (Dhruba et al., 2021; Moridian,
Shoeibi, Khodatars, & Pachori, 2022). Breathing interruptions during sleep, characteristic of
SA, can contribute to oxygen depletion, increased nerve activity, blood pressure fluctuations,
and changes in heart rate. This puts individuals with SA at a higher risk of developing CVD and
other cardiovascular issues (Kristiansen et al., 2021). Heima et al., (2019); Mashrur et al.,
(2021) found that the link between SA and health problems is supported by several studies.
Increased apnoea episodes in SA have been associated with a higher likelihood of developing
CVD, stroke, car accidents, and potentially diabetes. However, identifying the cause of health
problems associated with SA can be challenging due to patients' unawareness of their
awakenings (Kristiansen et al., 2021). Common symptoms of SA include daytime fatigue, loud
snoring, breathing difficulties during sleep, trouble concentrating, restlessness, morning
headaches, and dry mouth (Syeda Quratulain Ali et al., 2019; Gandbhi et al., 2021; Kristiansen et
al., 2018, 2021; Salari et al., 2022; San & Malhotra, 2021; Sweed et al., 2019) These symptoms,
detailed Figure 2.1 can significantly impact an individual's quality of life and disturb their bed
partner's sleep. Recognizing these signs and seeking timely diagnosis and treatment is crucial to
mitigate potential health risks and improve overall well-being. Addressing SA and its associated
symptoms can lead to improved sleep quality, reduced daytime tiredness, and a lowered risk of

developing cardiovascular and other related health conditions.

Heavy snoring

Night sweats Day time
sleepiness

Choking Morning
sounds Headaches
Sleep
Apnoea
Symptoms
Weight gain Fatigue
Waking with Difficulty

chest pin Mood concentrating
changes

Figure 2.1 Different symptoms of SA.2

3 BioRender (2022). Circular Diagram (Layout 10x1). https://app.biorender.com/biorender-templates/figures/all/t-
62c6407810101923a912315-circular-diagram-layout-10x1
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2.2.2 Prevalence of Sleep Apnoea

SA is a common sleep disorder affecting a significant number of individuals worldwide (Faust
et al., 2021). According to the WHO, nearly one billion people globally are affected by SA
(Baillieul et al., 2022; Benjafield et al., 2019; Mukherjee et al., 2021; Xia & Sawan, 2021).
However, most cases go undiagnosed, with an estimated 80% of individuals with SA remaining
unidentified. This highlights the need for increased awareness and improved diagnostic tools to
address this underdiagnosis (Shieu et al., 2022).

The prevalence of SA has been increasing globally in recent years. Reported rates vary across
regions, with Europe and North America having prevalence rates of 9-38%, and China reporting
rates of 8.8-24.2% (Duan et al., 2022; Natsky et al., 2021; Senaratna et al., 2017). OSA, a
subtype of SA characterized by breathing pauses due to a blocked airway during sleep, has an
estimated 5-year incidence of 7-11% in middle-aged adults. Symptoms of SA are experienced
by at least 4% of men and 2% of women worldwide, with approximately 34% of men and 17%
of women in the general population affected by SA (Tietjens et al., 2019). The reasons for the
higher prevalence of SA in men compared to women are not entirely clear, but potential
explanations include differences in sex hormones, upper airway shape, craniofacial morphology,
pattern of fat deposition, and variations in occupational and environmental exposures (Young et
al., 2002).

Evidently, the prevalence of SA varies remarkably across countries and regions, underscoring
the urgent need for improved awareness, advanced diagnostic tools, and enhanced treatment
accessibility. In the United States, it is estimated that 22 million individuals suffer from SA,
with a high proportion of cases going undiagnosed (Ademola Bello & Algasemi, 2021; Hassan
& Haque, 2016). The prevalence rates in Europe range from 4% in Portugal to 24% in Croatia.
In Asia, Japan has the highest prevalence, affecting an estimated 7.5 million individuals. In
Australia, approximately 9% of adults have moderate to severe SA (Deloitte Access Economics,
2011; Faust, Barika, et al., 2021). Despite the high prevalence of SA, improved awareness, and
diagnostic tools, as well as increased access to treatment, are needed to address this significant

public health issue.

2.2.3 Physiology of Sleep Apnoea

Section 2.2.3 delves into the Physiology of SA, a condition with various manifestations, such as
OSA, CSA, and MSA (Bertuzzi et al., 2022; Elmoaget et al., 2020). This section unravels the
physiological intricacies underlying these distinct types, providing insights into the mechanisms
and factors that characterize the different forms of SA. Understanding these physiological

aspects is crucial for a comprehensive grasp of the condition and its diverse presentations.
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2.2.3.1 Obstructive Sleep Apnoea

OSA is indeed the more common type of SA, affecting a significant portion of the adult
population. Despite the frequency of this condition and the serious consequences of leaving it
untreated, the OSA remains largely unknown. Studies have estimated the prevalence of OSA to
be between 3% and 7% among adults (Baillieul et al., 2022; EImoaget et al., 2020; Faust et al.,
2016; Foldvary-Schaefer & Waters, 2017; Natsky et al., 2021; Salari et al., 2022; Senaratna et
al., 2017). It is more prevalent in men and individuals who are overweight or obese (Jung et al.,
2017). The global estimate for the number of OSA patients exceeds 200 million, with 425
million experiencing moderate-to-severe OSA (Elmoaget et al., 2020).

In specific regions, such as Norway, OSA affects a significant portion of the population, with
22.1% of individuals aged 30-69 experiencing the condition. The frequency of moderate-to-
severe OSA in the general population ranges from 6% to 17% (Benjafield et al., 2019; Chung,
2021; Kapoor et al., 2022; Kristiansen et al., 2021; Mashrur et al., 2021). In the United
Kingdom, approximately 1.5 million people are affected by OSA, and the condition is
associated with hypertension (39%), obesity (34%), depression (19%), gastroesophageal reflux
disease (GERD) (18%), diabetes mellitus (15%), hypercholesterolemia (10%), and asthma (4%)
(Miller & Cappuccio, 2021). Studies conducted in different countries, such as Russia and Italy,
have also highlighted the prevalence of OSA among the population. For example, a survey in
Russia found a high prevalence of AHI among citizens aged 30 to 70, and investigations in Italy
revealed a significant probability of developing OSA among children aged 6 to 12 (Khokhrina
et al., 2020; Paduano et al., 2019; Saldias Pefafiel et al., 2020; Santilli et al., 2021).

OSA prevalence can be even higher in specific high-risk populations. For example, patients
undergoing major noncardiac surgery may have OSA rates as high as 68 to 70% (Chan et al.,
2019). In the context of diabetes, Feher et al., (2019) conducted a study in the United Kingdom
to assess the prevalence of OSA among individuals with type 1 or type 2 diabetes in a primary
care setting. The study found an overall OSA prevalence of 0.7% in the examined population.
Among individuals with type 2 diabetes, the prevalence was 0.5% in those with normal weight
and 9.6% in the obese category. For type 1 diabetes patients, the prevalence was lower at 0.3%
for those with normal weight and 4.3% for the obese category. The study revealed that among
all the groups examined, obese adults with type 2 diabetes had the highest rate of OSA (9.6%).
When comparing the genders, a higher proportion of men than women in the overweight and
obese categories were found to have OSA. This difference was particularly notable in the obese
category, with a prevalence of 6.5% for men and 2.6% for women. A similar pattern was
observed for individuals with type 1 diabetes ((Feher et al., 2019), Figure 2.2 (a) and (b))s,
reproduced from (Feher et al., 2019).
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Figure 2.2 OSA prevalence in 1 275 461 adults with (a) Type 2 diabetes and (b) Type 1 diabetes
in the UK, according to BMI category and gender.

OSA not only has significant negative health impacts on individuals but also carries substantial
economic consequences globally Deloitte Access Economics, (2011). In Australia, OSA is the
primary contributor to sleep disorder-related expenses, with total health system costs reaching
$408.5 million and indirect financial costs totalling $2.6 billion. In the United States, the
economic burden of OSA is estimated to be $149.6 billion annually, encompassing both direct
and indirect costs (Khor et al., 2023).

The costs associated with OSA include expenses related to its diagnosis and treatment, as well
as the impact on productivity, absenteeism, and increased healthcare utilization. Diagnosis often
involves a sleep study, which can be costly and may not always be covered by insurance.
Treatment options for OSA include CPAP therapy, oral appliances, and surgery. CPAP therapy
is the most common and effective treatment, but it can also be expensive and may not be fully
covered by insurance. Oral appliances and surgery are alternative options, but their effectiveness
may vary compared to CPAP therapy. It is worth noting that the treatment approach for patients
with OSA can vary depending on their symptoms and the country of residence (Benjafield et al.,
2019), In general, a diagnosis of OSA is typically made if a patient exhibits symptoms, some of
its symptoms and consequences are fatigue, daytime sleepiness, cardiac arrhythmia, and

systemic hypertension (Massie et al., 2023; Sateia, 2014)
2.2.3.2 Central Sleep Apnoea

In contrast, CSA is a sleep disorder characterized by disruptions in breathing due to the lack of
respiratory effort by the individual (Massie et al., 2023). Unlike OSA, which is caused by
airway obstruction, CSA occurs when the brain fails to send proper signals to the respiratory
muscles, resulting in temporary pauses in breathing (Ademola Bello & Algasemi, 2021; Schiitz
et al., 2021). Compared to OSA, CSA is a less well-known condition and has a genetic
component (Culebras, 2021). Whereas the symptoms of CSA are often similar to those of OSA,
the choice of therapy depends on the type of SA. In cases where CSA is secondary to another

medical condition, addressing the primary condition may help alleviate the symptoms. For
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example, improving heart function in patients with heart failure can lead to the resolution of
CSA. In cases of idiopathic CSA, positive airway pressure (PAP) therapy, such as CPAP or
bilevel positive airway pressure (BiPAP), can be used to assist with breathing during sleep.
Supplemental oxygen therapy may also be beneficial in certain cases (Massie et al., 2023).
Hence, in order for clinicians to make optimal therapeutic decisions, it is crucial to distinguish
between CSA and OSA in patients with SA.

2.2.3.3 Mixed Sleep Apnoea

MSA is a complex sleep disorder that combines features of both OSA and CSA. It is
characterized by symptoms similar to both OSA and CSA, such as snoring, daytime sleepiness,
and disrupted sleep patterns (Bernardini et al., 2021; Pavsic et al., 2021). MSA can be caused by
various underlying medical conditions, including congestive heart failure, obesity, and chronic
obstructive pulmonary disease (COPD). The treatment of MSA primarily focuses on addressing
the underlying medical condition that leads to the sleep disorder. By managing and treating the
underlying condition, the symptoms of MSA can be alleviated. In addition to addressing the
underlying cause, PAP therapy may also be employed as a treatment option. PAP therapy
includes methods such as CPAP, BiPAP or adaptive servo-ventilation (ASV) to assist with

breathing during sleep.
2.3 Polysomnography for Sleep Apnoea Evaluation

This study underscores the pivotal role of PSG as a cornerstone in diagnosing sleep disorders.
PSG offers a comprehensive evaluation of sleep, empowering researchers, and clinicians with
accurate diagnostic capabilities. This work centres on appraising the reliability of PSG in
identifying sleep disorders, delving into its merits and constraints as a research tool, and probing
its implications for clinical management. Furthermore, the study addresses the emergence of
portable home-based PSG devices, spotlighting their user-friendly convenience and accessibility
for sleep monitoring. As an invaluable diagnostic instrument, PSG stands as an essential asset
for sleep medicine practitioners in the clinical management of sleep disorders. For instance,
diagnosing SA hinges on multiple criteria encompassing symptoms, obstructive respiratory
events, and physiological metrics (Feng et al., 2021; Loh et al., 2020; Sateia, 2014). Typically
implemented using electrodes or sensors, PSG necessitates the patient to be wired, as depicted

in Figure 2.3, possibly presenting an inconvenience.
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Per the AASM manual, diagnosing SA via PSG involves a substantial decrease of 90% or more
in the amplitude of the oronasal thermal sensor signal (Choi et al., 2018). PSG offers an all-
encompassing assessment of sleep's physiological and behavioural dimensions, as asserted by
Mathias et al., (2018). Nevertheless, the accuracy of PSG in diagnosing sleep disorders can
vary, as illuminated by Stuginski-Barbosa et al., (2017). Their research highlighted PSG's
reliability in diagnosing conditions like OSA and periodic limb movements (PLMS), yet its
accuracy in identifying narcolepsy, insomnia, and other parasomnias is comparatively lower.
The accuracy of PSG diagnoses is influenced by factors including sleep specialists' expertise,
data quality, and interpretation. Further exploration is necessary to refine our comprehension of
PSG's accuracy across diverse sleep disorders.

PSG plays a vital role in diagnosing a spectrum of sleep disorders, encompassing conditions like
OSA, insomnia, and RLS. Beyond its diagnostic prowess, PSG enables the exploration of sleep
stages such as REM and NREM and stands as a linchpin in unravelling the physiological and
pathological underpinnings of sleep. Research driven by PSG has delved into the ramifications
of sleep deprivation and fragmentation, spotlighting their impacts on cognitive function, mood,
and immune responses. Additionally, studies have unveiled the roles of sleep-in memory
consolidation and restorative processes. While PSG is a robust diagnostic tool for sleep-related
disorders, it does exhibit limitations. Cost emerges as a significant hurdle, as PSG involves
pricy equipment, skilled technicians, and meticulous interpretation (Chen et al., 2015; Faust et

al., 2019). Expenses vary substantially, spanning from several thousand dollars to even higher

4 BioRender (2022). Icon Pack - Patient. https://app.biorender.com/biorender-templates/figures/all/t-63481d37f6cd3a17c56d1193-

icon-pack-patient
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figures, contingent upon the study's demands and location. This financial barrier can impede

access, particularly for uninsured or financially constrained patients.

For instance, Cagle et al., (2023) documented PSG costs ranging from $2581 to $2874, and
Mihaera, (2004), reported average costs of around $1100 and $900 in New Zealand. In the
USA, annual PSG costs per patient can range from $4,000 to $6,000 (Harvard Medical School,
2010). ECG stands as a prevalent alternative due to its cost-effectiveness, convenience, and non-
invasiveness (Mukherjee et al., 2021; C. Sun et al., 2022; Tan et al., 2018). An additional
limitation lies in the inconvenience and discomfort associated with overnight stays in sleep
laboratories. The unfamiliar setting, electrodes, and sensors can disrupt natural sleep patterns,
affecting sleep quality (Barika et al., 2022; Rahul K. Pathinarupothi et al., 2017). The need for
multiple wire attachments and channel montages adds further discomfort (Syeda Quratulain Ali
etal., 2019; Bsoul et al., 2011; Kalaivani, 2020; Zarei et al., 2022; Zarei & Asl, 2019).

Home-based PSG devices emerge as a convenient alternative, offering the flexibility of
conducting sleep studies at home. Despite their benefits, they might not match in-lab PSG's
accuracy due to simpler equipment and less comprehensive sensors. Data interpretation
requires sleep medicine expertise to ensure accurate diagnosis and treatment decisions. Despite
these limitations, home-based PSG devices revolutionize sleep disorder diagnosis and
management, expanding accessibility and enabling longitudinal monitoring. They shape the
landscape of sleep medicine, enhancing research and providing personalized care for individuals

with sleep disorders.
2.4  Risk Factors for Sleep Apnoea

According to the study conducted by (Sin et al., 1999), the risk factors for OSA and CSA
exhibit variations, particularly between genders. The research highlights that atrial fibrillation is
a risk factor for CSA but not OSA, whereas hypocapnia increases CSA risk in both men and
women. Additionally, the study reveals that for men, the most substantial OSA risk factor is an
increase in BMI, while for women, advancing age is the primary risk factor. Intriguingly,
increasing age is not a risk factor for OSA in men, and BMI increase is not a risk factor for OSA
in women. SA as a sleep disorder, disrupts sleep, leading to fatigue and heightened risks of
health issues like stroke, hypertension, decreased productivity, and heart attack. It is also
associated with an elevated risk of accidents, including motor vehicle accidents, which entail
significant financial ramifications. SA development is influenced by various factors, including
age, gender, weight, smoking, alcohol use, certain medications, and medical conditions like
heart disease, hypertension, and diabetes (Duan et al., 2022; Y. Li et al., 2020; Salzano et al.,
2021). The combination of these factors creates a hazardous situation, as the individual may
struggle to restore their oxygen levels and faces a risk of suffocation during sleep. Family

history of SA and anatomical features such as a narrow airway or large tongue also contribute
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(Xiu et al., 2020). Age, gender, and weight stand as significant risk factors for SA (Bachrach et
al., 2021; Young et al., 2002), with age over 40 and being male heightening susceptibility
(Alonderis et al., 2020) as highlighted in Figure 2.4.
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Figure 2.4 The main risk factors for SA®.

Overweight individuals face increased risks due to airway pressure, making breathing more
difficult (Jaiswal et al., 2017). Obesity is a prominent SA risk factor and a global health concern
(Bachrach et al., 2021). Weight significantly contributes to SA development, with obesity
prevalence steadily rising worldwide. Obesity-related risk factors include a large neck
circumference, airway restriction, hypertension, diabetes, and smoking (Baker et al., 2020; Park
etal., 2021).

The global count of obese adults continues to escalate, with predictions indicating this trend's
continuation. Even minor weight reduction substantially alleviates SA severity (Agha & Agha,
2017). In England, obesity prevalence was 28% among women and 33% among men in 2010,
and up to 27% of the population was obese in 2015. Projections based on current trends
anticipate that by 2050, 60% of males and 50% of females will be obese, as supported by Figure

2.5 and Figure 2.6. Notably, even modest weight loss can significantly ameliorate SA severity.

5> Lugano, G. (2022). Risk Factors for Sleep Apnea. https://app.biorender.com/biorender-
templates/figures/all/t-63a25cb326£5d6a8ffd76703-risk-factors-for-stroke
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2.5  Sleep Apnoea Financial Costs

Assessing the financial impact of SA on healthcare systems involves a comprehensive
evaluation of both direct and indirect costs. Direct costs encompass expenses related to the
diagnosis, treatment, and management of SA, such as medical consultations, sleep studies, and
specialized equipment like CPAP machines. These costs can vary based on healthcare provider
charges, insurance coverage, and the severity of the condition. Indirect costs, on the other hand,
reflect the economic consequences of SA on productivity and quality of life. These include
factors like accidents, property damage, legal proceedings, and even loss of life, which
contribute significantly to the overall economic burden. Quantifying the economic parameters of
SA, including cost-effectiveness and cost-benefit ratios, can be complex due to the challenge of
assessing the value of healthy individuals compared to those affected by SA. Nevertheless,
studies have endeavoured to analyse the economic ramifications of SA and have underscored
the substantial financial strain it places on individuals and healthcare systems (Baillieul et al.,
2022).

On a broader scale, the impact of SA on healthcare systems is substantial. The increasing global
prevalence of SA translates to escalating healthcare expenses as a growing number of
individuals necessitate diagnosis, treatment, and ongoing management. Empirical data has
revealed staggering figures for the annual costs linked to SA. For instance, in the United States
alone, a staggering $65 billion is expended each year on health services for the diagnosis and
treatment of SA. The collective indirect costs of sleep disorders, encompassing SA, hover
between $50 to $100 billion annually. These figures paint a vivid picture of SA's pronounced
economic repercussions on both individuals and society as a whole (Abad & Guilleminault,
2022; Ademola Bello & Algasemi, 2021; Natsky et al., 2021; Senaratna et al., 2017). A study
conducted by Hossain & Shapiro, (2002) delved into societal costs associated with sleep

disorders, including medical services and medication. The analysis estimated that in 1995, sleep
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disorders incurred a societal cost of $2 billion in France and $13.9 billion in the USA. Hospital
visits related to sleep disorders amounted to $700 million annually in each country, with over-

the-counter sleep aids constituting an additional annual cost of $84 million.
2.6 Treatment of Sleep Apnoea

SA, a sleep disorder with potential consequences if left untreated, can be effectively managed
through various treatment options. Figure 2.7 provides an overview of different strategies for
treating SA, including CPAP therapy and surgical interventions aimed at addressing anatomical
obstructions. This section will delve into the primary types of treatment used to alleviate SA

symptoms and improve overall sleep quality.
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Figure 2.7 Types of SA treatment.®

2.6.1 Continuous Positive Airway Pressure

The primary and widely accepted treatment for preventing the collapse of the pharyngeal airway
in both children and adults for SA is nasal CPAP (C. Li et al., 2021; National Institute for
Health and Care Excellence, 2021). Despite substantial individual variability in response to
CPAP therapy duration, research indicates that utilizing CPAP for four or more hours enhances
cognitive functioning, subjective sleepiness, and overall quality of life (Tolson et al., 2023).
CPAP functions as a pneumatic splint, effectively stabilizing the upper airway, and proves
successful with proper adherence. However, achieving consistent adherence poses a
considerable challenge, influenced by socio-demographic factors, psychosocial characteristics,
disease severity, and treatment-related side effects. Despite enhancements in machine
technology and interventions to improve compliance, CPAP non-adherence rates persistently

range between 30% and 40% (Brennan & Kirby, 2023). CPAP involves a mask worn during

6  BioRender (2022). Semicircular Diagram (Layout). https://app.biorender.com/biorender-templates/figures/all/t-

61f9812fa30d5d009e189901-semicircular-diagram-layout.
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sleep, covering the nose or mouth (M.K. et al., 2020), linked to a machine that delivers

pressurized air to prevent airway collapse Figure 2.8.
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Figure 2.8 Continuous positive airway pressure setup.’

However, a notable limitation lies in suboptimal adherence to CPAP therapy, with an estimated
50% of patients failing to meet the recommended usage duration of four hours per night.
(Brostrom et al., 2010; Tolson et al., 2023). Additionally, the noise generated by the CPAP
machine can disrupt both the patient and their sleeping partner (Brostrom et al., 2010).
Outcomes are mixed (Brill et al., 2018), necessitating further research. Consistent nightly CPAP
use at home is optimal, although not always practical. Regular check-ups are advised to assess
adherence, address side effects, and replace components (S. P. Patil et al., 2019). Diagnosis and

CPAP wait times vary globally, as illustrated in Table 2.2 (Flemons et al., 2004).

7 BioRender (2022). Icon Pack - Patient. https://app.biorender.com/biorender-templates/figures/all/t-63481d37f6cd3a17c56d1193-

icon-pack-patient
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Table 2.2 Waiting time for diagnosis and treatment with CPAP in five countries in 2001.

Country Population Waiting Time
United Kingdom 58,800,000 7-60
Belgium 10,000,000 2
Australia 18,970,000 3-16
United States 280,000,000 2-10
Canada 31,400,000 4-36

2.6.2 Bilevel Positive Airway Pressure

In recent years, the use of BiPAP ventilators have demonstrated notable benefits, including
enhanced clinical effectiveness, reduced rates of invasive ventilation with endotracheal
intubation during acute exacerbations, and shorter hospitalization durations for patients with
associated pneumonia and stable-phase acute exacerbations (C. Zhang & Liu, 2023). However,
research on the impact of BiPAP on mental disorders in COPD patients with comorbid anxiety
and depression remains limited. Illustrated in Figure 2.9, BiPAP shares similarities with CPAP,
utilizing a mask connected to a machine delivering pressurized air to the airways. Unlike CPAP,
BiPAP provides two distinct levels of air pressure for inhalation and exhalation, offering
particular advantages to patients who struggle with exhalation against a constant pressure (Abad
& Guilleminault, 2022).

Figure 2.9 BiPAP setup.?

2.6.3 Oral Appliances

Oral appliances are specifically designed devices that are worn in the mouth during sleep with
the aim of keeping the airway open. They are commonly recommended for individuals with

8 https://userfiles.steadyhealth.com/images/ic/bipap.jpg
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mild to moderate SA and can be an alternative option for patients who find it challenging to
tolerate the pressure of CPAP therapy (Abad & Guilleminault, 2022; Aurora et al., 2010).

2.6.4 Surgery

Surgery is sometimes considered as a treatment option for individuals with severe SA who have
not experienced improvement with other methods. There are different surgical procedures
available, including Uvulopalatopharyngoplasty (UPPP) and Maxillomandibular advancement
(MMA). UPPP involves the removal of excess tissue from the throat, while MMA involves
moving the jaw forward to widen the airway (Aurora et al., 2010). These surgical interventions
aim to address the anatomical factors contributing to SA and can be considered in select cases

after a thorough evaluation by a healthcare professional.

2.6.5 Lifestyle Changes

Implementing lifestyle changes can be an effective strategy in managing SA symptoms. Weight
loss, avoiding alcohol and sedatives before bedtime, and adopting a side-sleeping position
instead of sleeping on the back are all recommended approaches to reduce the severity of SA
(Duan et al., 2022; Y. Li et al., 2020). Studies have demonstrated that a 10% reduction in weight
can lead to a significant improvement in the AHI, with a corresponding 26% reduction in its
severity (C. Li et al., 2021). These lifestyle modifications, when combined with appropriate

medical treatment and guidance, can contribute to better management of SA.
2.7  Artificial Intelligence Innovations in Sleep Apnoea Diagnosis

The evolution of technology, particularly in Al, offers a transformative potential for the field of
sleep medicine. Al has the capability to efficiently process and analyse extensive volumes of
digital health data originating from various inpatient and outpatient sources. This enables the
creation of predictive diagnostic and treatment models. Al tools excel in tasks such as data
cleansing, disease classification, and detection of specific disease patterns tasks that surpass the
capacity of human biological intelligence. With each patient generating more than 80 megabytes
of clinical data annually, a figure that continues to rise, the manual review of patient data during
limited clinical sessions is increasingly challenging. This surge in data underscores the necessity
for advanced technological interventions in diagnosing and managing sleep disorders (Alattar &
Govind, 2024).

The Al, which includes various techniques, has emerged as a transformative force in the
detection and diagnosis of SA. Algorithms, when applied to diverse datasets including clinical
records, PSG data, and even wearable device recordings, enable the identification of patterns
indicative of SA. These algorithms can analyse vast amounts of information to recognize subtle
variations in breathing patterns, sleep stages, and physiological parameters associated with sleep
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disorders. Moreover, advanced algorithms, with their ability to automatically extract intricate
features from raw data, have shown promise in enhancing the accuracy and efficiency of SA
detection. By training on large datasets, these models can learn complex representations of
sleep-related signals, enabling more precise identification of apneic events and aiding in the
differentiation between obstructive, central, and mixed forms of SA (Alattar & Govind, 2024;
Moridian, et al., 2022).

The integration of Al techniques into SA detection systems has revolutionized diagnostic
approaches by offering non-invasive, cost-effective, and scalable solutions. These technologies
facilitate the development of intelligent tools capable of continuous monitoring and real-time
analysis of sleep-related parameters, empowering healthcare professionals to identify
individuals at risk of SA earlier and intervene promptly. Furthermore, the automation of SA
detection processes through Al-driven algorithms streamlines diagnostic workflows, reduces the
burden on healthcare providers, and enhances patient access to timely and accurate sleep
disorder assessments. As research in this domain continues to advance, the synergy between Al
and sleep medicine holds tremendous potential to improve the early detection, management, and
treatment outcomes of SA worldwide (Alattar & Govind, 2024; Moridian, et al., 2022).

2.8 Deep Learning

DL is a type of ML that uses large datasets to train a neural network with multiple hidden layers
(Faust et al., 2018; Lih et al., 2020; S. Patil, 2022). According to Esteva et al., (2019), it plays a
vital role in understanding physiological data and improving the performance of medical
systems (Faust et al., 2018). The concealed layers don't directly generate functions to map data
for classification. Instead, they furnish valuable information for categorizing a data set into a
cluster and extract features and aspects from the input space. DL holds immense potential in
healthcare and medicine, particularly due to the growing volume of data generated by medical
devices and digital record systems (Esteva et al., 2019). Its application in developing accurate

SA detection systems has been a critical area of research in healthcare (Mukherjee et al., 2021).

Researchers have utilized ML and DL techniques to detect apnoea, achieving high accuracy
(Cen et al., 2018). For instance, Chang et al., (2020) proposed a 1-D Convolutional Neural
Networks (CNN) architecture for OSA detection, achieving an overall accuracy of 87.9%.
Mashrur et al., (2021) developed a Scalogram-based CNN for detecting OSA using PhysioNet
Apnea ECG signals (Penzel et al., 2000), achieving an accuracy of 94.30%. W.ith the need to
record patient data accurately for medical procedures such as SA detection and diagnosis, DL
significantly enhances the capabilities of advanced technical aspects. Healthcare professionals
and doctors can benefit from learning DL processes with the assistance of Al technology,
enabling them to improve their performance while delivering critical treatments to patients

(Holzinger et al., 2023).
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2.9  Computer Aided Sleep Apnoea Detection System

Computer-aided sleep apnoea detection system (CASADS) uses computer tools to analyse
physiological signals like heart rate and breathing patterns during sleep. ML and DL are often
used to identify patterns suggesting SA from large datasets. CASAD is a promising tool for
diagnosing and managing sleep disorders by offering objective measurements to guide
treatment. However, more research is needed to confirm the accuracy, reliability, accessibility,
and affordability of these techniques for both patients and healthcare providers (Mousavi et al.,
2019). According to Moridian, et al., (2022), the CASADS, which integrates ML and DL
approaches for automated SA diagnosis. This research aims to offer valuable support to
specialists by enhancing the accuracy of SA detection through ML and DL techniques. By
harnessing advanced algorithms rooted in ML and DL, the study aims to empower clinicians to
identify and diagnose SA more effectively. This collaborative integration of Al methodologies
not only streamlines the diagnostic process but also contributes to refining treatment strategies

for patients with sleep disorders.
2.9.1 Sleep Apnoea Detection with Machine Learning, Incorporating Deep Learning

The use of modern technology, such as CAD, can assist in the identification of SA, resulting in
faster and more cost-effective diagnosis. Some ML techniques have shown high accuracy in
diagnosing SA, but issues such as complexity, memory inefficiency, and the need for human
intervention need to be addressed (Syeda Quratulain Ali et al., 2019). Bozkurt et al., (2020)
conducted a study using ECG data from ten patients with OSA and ten healthy controls to
classify the presence of OSA. They utilized HRV and a digital filter to extract the QRS
component at various frequencies and employed the k-Nearest Neighbors (k-NN) algorithm for
classification. The study reported a classification accuracy of 82.11% and 85.12% when three
and thirteen features were used, respectively. Erdenebayar et al., (2019a) used data from 86
patients, with 69 used for training and 17 for testing, and employed a residual neural network
(RNN) algorithm. The study reported the highest accuracy of 99% using this DL approach,
indicating its usefulness for automatically detecting SA. F. Chung et al., (2012) improved
accuracy to 93.7% for an AHI of 30, despite primarily including surgical patients in their
sample. The use of statistical techniques enabled them to achieve diagnostic ability that was
most similar to the ML approach. Khandoker et al., (2009) identified 24 variables from the
examination of two forms of SA in 83 people using SVM on 125 sets of ECG data. The

technique showed a 92.85% accuracy for leave-one-out cross-validation (LOOCV).

Recent studies have focused on utilizing DL methods for the identification and classification of
apnoeic events. Long Short-Term Memory (LSTM) networks have demonstrated high accuracy
in diagnosing SA, achieving 99% accuracy according to studies by (Faust et al., 2021; Tan et
al., 2018). Pathinarupothi et al., (2017) diagnosed SA using a single-sensor approach and
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LSTM-RNN with specific network configurations. CNN are effective techniques commonly
used in signal processing, image analysis, and computer vision applications (Zarei et al., 2022).
Choi et al., (2018) employed CNNs and PSG signals to develop an automatic apnoea detection
method. Erdenebayar et al., (2019a) utilized CNN and RNN-based structures to detect apnoeic
events using ECG signals. Dey & Chaudhuri, (2018) developed a supervised apnoea detection
method based on the CNN architecture and ECG signal.

Various classifiers, including Random Forest (RF), SVM, K-Nearest Neighbors (KNN),
Adaboost, Linear Regression (LR), the Hidden Markov Model (HMM), Deep Neural Network
(DNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to identify
segments of OSA (Sarah Qasim Ali & Hossen, 2018; K. Li et al., 2018; Usha Kumari et al.,
2020). Al-Ratrout & Hossen, (2018) achieved 100% accuracy in classifying SA by combining
SVM with fivefold wavelet decomposition and dbl filters. Tagluk et al., (2010) introduced a
new approach for Sleep Apnoea Syndrome (SAS) classification, combining wavelet transforms
and an Artificial Neural Networks (ANNs). Their method involved training the network with
different momentum coefficients. Utilizing multi-resolution wavelet transforms, they divided
abdominal respiration signals into spectral components, serving as inputs for the neural
network. Configured with three outputs, the network classified patients' SAS conditions. Figure

2.10 reproduced from (Tagluk et al., 2010) illustrates their methodology.
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Figure 2.10 Structure of the proposed classification method.

DL-based algorithms have been employed for the categorization of SA by researchers such as
(Leino et al., 2021; Mostafa et al., 2017; Rahul Krishnan Pathinarupothi et al., 2017; Yildirim et
al., 2019). Cheng et al., (2017) utilized a Recurrent Neural Network (RNN) model with 97.8%
accuracy for SA identification. The accuracy of DL algorithms for identifying SA is
summarized in Table 2.3. The presented table underscores diverse studies employing distinct

classifiers and databases in SA detection, underscoring fluctuations in detection performance.

26



Prominent gaps involve enhancing specificity in specific models, tackling issues related to
respiratory signal detection, and investigating innovative approaches to augment overall
accuracy and resilience in real-world contexts. Ng et al., (2008) achieved a sensitivity of 70.29-
86.25% by using thoracic and abdominal signals as input features for SA detection. Qin et al.,
(2021) investigated the relationship between OSA and HRV and found that HRV decreases with
the severity of apnoea disease.

Table 2.3 DL networks.

Detection Performance

Authors Classifiers Database Signals
Acc% Sen% Spec%
J. Zhang et al., 2021 CNN-LSTM  Apnea-ECG ECG 99.80 96.94  98.97
Wu et al., 2021 1D-CNN EEG and EOG EEG, EOG 97.62 9434 92.33
Faust, et al., 2021 LSTM Apnea-ECG ECG 99.80 99.85 99.73
Acharyaetal., 2011 CNN MIT-BIH arrhythmia ECG 9250 98.09 93.13
Morales et al., 2017 DBN Apnea-ECG ECG 9764 7875 95.89
RNN 85.4 97 87
Acharya et al., 2011 LSTM Nocturnal ECG ECG 98 98 98
GRU 99 99 99
Song et al., 2016 CNN-LSTM  Apnea-ECG ECG 96.1 96.1 96.2
Pinho et al., 2019 Bi-LSTM PSG and respiration respiratory - 903 837
signals signals

2.9.2 Signals for Sleep Apnoea Detection

The detection of SA relies on the analysis of various physiological signals, including EEG,
EOG, EMG, ECG, HR, and SpO2. These signals are essential in the diagnosis and management
of SA and can be non-invasively monitored during sleep using a diverse array of sensors and
devices. In the following subsections, detailed information regarding these physiological signals
will be presented, shedding light on their significance and relevance in SA detection and

treatment.
2.9.2.1 Electrocardiogram

This passage explores the utilization of ECG signals in the detection of SA. While ECGs are
commonly used to assess CVD, they can also be employed to evaluate SA and other sleep
disorders (Behar et al., 2021). ECG signals capture the electrical activity of the heart and are
typically recorded by placing bioelectrodes on the body's surface. ECG data extraction entails
analysing signals from electrodes on the skin to interpret heart rate, rhythm, and intervals,

utilizing algorithms for in-depth insights into cardiac activity, crucial for diagnostic and
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monitoring applications in healthcare. However, it's important to note that ECG signals can vary
among individuals based on factors such as physical activity and stress levels (Dhruba et al.,
2021; Faust et al., 2016).

To detect SA, numerous research studies have utilized ECG signals in combination with other
measurements like respiratory airflow and SpO2 due to the limited sensitivity and specificity of
ECG alone. These studies have employed various approaches, such as decomposing ECG
signals, extracting entropy features, and employing classifiers like support vector machines
(SVM) (Banluesombatkul et al., 2019; Bozkurt et al., 2020). Respiratory airflow is measured
through methods such as pneumotachography, thermal-based sensors, ultrasonic flowmeters,
and capnography, each chosen based on factors like accuracy, patient comfort, and the
application context in clinical diagnostics, research, or home monitoring (Ragette et al., 2010).
For instance, Hassan & Haque, (2016) employed empirical mode decomposition (EMD) to
decompose ECG signals into intrinsic mode functions (IMFs). Nishad et al., (2018) utilized a
tunable-Q wavelet transform to decompose ECG signals and extracted entropy features for SA
classification using diverse classifiers. Martin-Gonzélez et al., (2017) proposed a feature
extraction technique that classified SA using Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), and Logistic Regression (LR) using HRV information captured
from ECG signals. Chen et al., (2015) employed an automatic ECG signal segmentation scheme
to obtain segments of varying lengths for classification, with a SVM utilized to screen apnoeic
segments. Additionally, Tripathy, (2018) suggests using HRV and electrocardiogram-derived
respiration (EDR) signals for SA detection.

In a normal ECG, distinct signal components, including the P, QRS, and T waves, can be
visually identified. These waves correspond to specific physiological events during the cardiac
cycle (Almazaydeh et al., 2012; Faust, Kareem, et al., 2021). Figure 2.11 provides a schematic
representation of a normal ECG, illustrating the different waveforms and their significance (Faal
& Almasganj, 2021).
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Figure 2.11 ECG signal shows P, Q, R, S, T waves, QRS complex and RR interval.
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2.9.2.2 Electrooculogram

The EOG signal is a bio-electric signal generated by eye movement. It is recorded by placing
electrodes around the eyes and measures the electrical potential associated with eye movements.
Figure 2.12 illustrates the placement of electrodes for recording EOG signals, following the
guidelines provided by AASM (Faust et al., 2019). EOG signals have broad applications in
clinical settings for diagnostic purposes and in research settings for studying eye movement and
visual processing. They provide valuable insights into ocular activity and are instrumental in

understanding various eye-related conditions and phenomena.

Figure 2.12 EOG electrode is placed above the right eye, while the other electrode is placed
above the left eye.®

2.9.2.3 Electroencephalogram

The EEG is a measurement of the electrical activity of the brain and plays a crucial role in
identifying different sleep stages based on their distinct patterns. Various classification systems
have been developed to categorize sleep stages using specific features derived from EEG
signals. Signal processing techniques, such as time-domain analysis, spectral analysis, time-
frequency analysis, and nonlinear analysis, have been employed to extract relevant sleep-related
information from EEG signals. The advent of wearable technologies has made the acquisition of
EEG signals more accessible, and the rich information contained within EEG signals has made
them an indispensable tool in sleep research. Researchers rely on EEG signals to gain insights
into sleep architecture, brain activity during sleep, and the dynamics of sleep-related disorders
(Yildirim et al., 2019).

9 https://cvgclinical.co.za/paediatric-and-adult-sleep-study-clinic/
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2.9.2.4 Electromyogram

The EMG signal, also known as the myoelectric signal in biomedicine, is a type of biomedical
signal that records the electrical currents produced by muscles during contraction. It provides
valuable insights into neuromuscular processes. Muscle activity, whether it involves contraction
or relaxation, is controlled by the nervous system. Consequently, the EMG signal is a complex
indicator that is regulated by the nervous system and influenced by the anatomical and
physiological characteristics of the muscles. By analysing the EMG signal, researchers can gain
a deeper understanding of muscle function, motor control, and the coordination of muscle
activity. The EMG signal has various applications in clinical and research settings, including the
study of muscle disorders, movement analysis, and the assessment of muscle performance and

fatigue (Merletti et al., 2009; Reaz et al., 2006).
2.9.2.5 Heart Rate

HR, or heart rate, is a physiological signal that reflects the number of heartbeats per unit of time,
typically measured in beats per minute (bpm) (Obi, 2022; Wdjcikowski & Pankiewicz, 2020).
The normal range for adults usually falls between 60 to 100 bpm, although it can vary
depending on factors such as age, gender, and level of physical activity (Dhruba et al., 2021).
Abnormal increases in HR can indicate sleeping disorders or SA, which can also influence HR.

Conversely, a lack of oxygen in the body can lead to a lower HR (Dhruba et al., 2021).

HR signals consist of consecutive beat-to-beat intervals, which can be extracted from either an
ECG or a photoplethysmogram (PPG) signal (Loh et al., 2022). HRV, or heart rate variability, is
a significant physiological parameter that quantifies the variations in time intervals between
consecutive heartbeats. It is closely associated with heart health and often evaluated in the
diagnosis of cardiovascular diseases (Achten & Jeukendrup, 2003; Olmedo-Aguirre et al.,
2022). Higher HRV values indicate a healthier cardiac condition and a lower risk of death. SA
episodes can affect heart rhythm, and HRV can objectively detect these changes. However, it is
important to consider the influence of age and gender on HRV (Faust, O., Yi, L.M. and Hua,
L.M., 2013).

2.9.2.6 Oxygen Saturation

Several studies have utilized single biological markers, such as SpO2, for SA detection (Burgos
et al., 2010; Ramachandran & Karuppiah, 2020). The AASM Task Force has included blood
SpO2 as a measurement to characterize SA and hypopnea episodes (Burgos et al., 2010). In
healthy individuals, SpO2 levels typically range between 95% and 100%, indicating well-
saturated haemoglobin with oxygen (Moshtaghi-kashanian et al., 2021; Olmedo-Aguirre et al.,
2022). However, SA patients often exhibit lower SpO2 values, around 90% (Dhruba et al.,
2021). Stone et al., (2016) discovered that SA patients with SpO2 levels below 90% for more

than 10% of their sleep had nearly twice the risk of stroke compared to those without such
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saturation declines. SpO2 values are categorized as normal and healthy, mild hypoxemia,
hypoxic, and severely hypoxic, with oxygen levels below 90% considered dangerous and levels
below 80% harmful to vital organs (Elfasakhany et al., 2021; Olmedo-Aguirre et al., 2022).
Many studies combine SpO2 and ECG signals to detect apnoeic events, as research has shown
that HR and systolic blood pressure rise in response to these episodes (Erdenebayar et al.,
2019b). Burgos et al., (2010) utilized SpO2 measurements in their SA detection study.

2.9.2.7 The RR interval

The RR interval, referred to as the interbeat interval, signifies the time between consecutive R-
waves during a heartbeat as depicted in Figure 2.11. These R-waves are identified as the highest
peaks of specific QRS complexes. QRS complexes correspond to the waveform deflections seen
in an ECG trace, representing the ventricular activity of the heart. (Shaffer & Ginsberg, 2017). It
is a measure of HRV, which is influenced by the dynamic balance between parasympathetic and
sympathetic activity in the autonomic nervous system (Shaffer & Ginsberg, 2017). The healthy
heart exhibits complex and non-linear variability, allowing it to adapt to changing environments
(Shaffer & Ginsberg, 2017). Almazaydeh et al., (2012) describe the process of generating an RR
interval time series for each ECG beat.
rr@=r(i+1)-r(@), i=112,...n 2.1

In this equation, r(i) represents the time of occurrence of the i-th heartbeat, and rr(i) represents
the time interval between the i-th and (i+1)-th heartbeat, which is commonly referred to as the

RR interval.

2.10 Automated Sleep Stage Scoring

Sleep staging is an essential for diagnosing sleep-related illnesses (Satapathy & Loganathan,
2021). Automated sleep stage scoring aids human and animal sleep analysis since the late 1960s
(Grieger et al., 2021). PSG analysis relies on physiological signals like EEG, EOG, ECG, EMG,
Sp0O2, airflow, and respiratory effort, divided into 30-second sleep epochs manually classified
by sleep specialists (Krauss et al., 2021; Sokolovsky et al., 2020). These epochs are labeled as
wake, light sleep, intermediate sleep, deep sleep, or Rapid Eye Movement (REM) sleep,
following AASM recommendations (Yan et al., 2021).

In 1968, Rechtschaffen (R) and Kales (K) proposed a five-stage sleep system, defining standard
rules for sleep stage scoring (Hussain et al., 2021; Malafeev et al., 2018). R&K divides sleep
cycles into Non-Rapid Eye Movement (NREM) stages 1, 2, 3, 4, and REM. AASM's 2012
revision merged stages S3 and S4 into a single Slow Wave Sleep (SWS) class (Chriskos et al.,
2021; Michalek-Zrabkowska et al., 2021; Perslev et al., 2021; Yildirim et al., 2019). A typical
sleeper transitions between these stages during the night, with S2 being the most common
(Malik et al., 2018). NREM sleep occupies 75%-80% of total sleep time, while REM sleep

accounts for 20%-25% (Manish Sharma et al., 2021). ML methods have emerged to categorize
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sleep stages with high accuracy, particularly useful for detecting disorders and sleep stages
(Santaji & Desai, 2020). Table 2.4 outlines some commonly used ML approaches for sleep

stage classification.

Table 2.4 ML approaches that are often used for sleep stage classification.

Category Techniques Technique variations
Supervised Learning Classification LDA, SVM, hidden Markov model, Bayesian
Supervised Learning Classification KNN
Supervised Learning Classification Decision tree (DT)
Supervised Learning Ensemble Ada-boost, random forest
unsupervised Learning Clustering K-means clustering
Supervised Learning Regression Techniques specific to regression tasks

2.10.1 Deep Learning Approaches for Automated Sleep Staging

DL can outperform traditional ML in various domains due to its capacity to automatically
extract intricate features from raw data, handle large and complex datasets, and model intricate
relationships, allowing for more accurate and nuanced predictions. The hierarchical
representation learning in DL architectures enables the automatic discovery of hierarchical
features, contributing to superior performance across diverse and intricate tasks. These features
has motivated researchers to employ DL techniques for automatic sleep stage classification
(Eldele et al., 2021). Sleep staging entails the categorization of sleep into various stages and has
been addressed through classifiers like CNNs, DNNs, and combinations such as CNN+RNN or
DNN+RNN (Faust et al., 2019). Many studies have focused on processing raw PSG data using
CNNs and RNNs. Alternatively, successful approaches have utilized precomputed spectrograms
along with CNNs and RNNs, capturing the frequency content of signals over time. Between
2010 and 2020, it is worth noting that approximately 75% of research on automated sleep stage

classification has employed DL methodologies (Loh et al., 2020).
2.10.1.1 Convolutional Neural Networks

CNNs are ML models inspired by the human visual system. They consist of convolutional,
pooling, and fully connected layers that perform a series of operations on input data
(Sokolovsky et al., 2020). CNNs have been widely employed for sleep stage classification,

leveraging their success in image recognition tasks (Sokolovsky et al., 2020).

Yulita et al., (2018) achieved an 84% accuracy in automatic sleep stage classification by
employing a fast-convolutional method for feature extraction. Dong et al., (2018) utilized

LSTM to classify sleep stages from EEG signals, achieving an accuracy of 78.94% to 83.60%.
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Zhao et al., (2022) utilized the 1D CNN-LSTM method to automatically classify sleep stages
using various physiological signals. They achieved an accuracy of 93.47% when using the Fpz-
Cz channel EEG signal and 94.15% when combined with the EOG signal. Malik et al., (2018)
applied a CNN classifier to a single-lead ECG signal for automatic sleep staging. They also
investigated the effects of using a CNN on the instantaneous heart rate (IHR) series as an
approach to quantify heart rate fluctuation. H. Sun et al., (2020) developed a set of DNNs to
classify sleep stages using ECG and/or respiration signals, utilizing a large-scale dataset of 8682
PSGs acquired at the Massachusetts General Hospital sleep laboratory (MGH).

2.10.1.2 Recurrent Neural Network

RNN, In the 1980s, the RNN was developed with an architecture consisting of input, hidden,
and output layers. RNNs use repeating modules in a chain-like structure to serve as memory,
retaining important information from previous steps. Unlike feedforward networks, RNNs
include a feedback loop, allowing them to process sequences by incorporating the output from
the prior step into the current step. This sequential processing capability makes RNNs effective
for learning and analysing sequences, as depicted in Figure 2.13 (Abdullah et al., 2022; Le et
al., 2019).
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Figure 2.13 depicts a basic RNN expanded into a complete network, featuring one input unit,
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one output unit, and one recurrent hidden unit, where X; is the input at time step t and h is the

output at time step t.

RNNs have emerged as the state-of-the-art approach for various tasks, including natural
language processing and speech recognition. In the context of language processing, sequential
data can be represented as sequences, such as words (sequences of letters), sentences (sequences
of words), and documents (sequences of sentences) (Michielli et al., 2019). Suited for
modelling time series data with long-term dependencies, RNNs, as a subset of ANNS,
incorporate time delay units and feedback connections. Particularly useful in automatic sleep
stage classification, RNNs extensively use DL models trained with subsets of PSG recordings,

comprehensive tests capturing various physiological signals during sleep.

Table 2.5 provides an overview of some of the PSG recordings used in previous studies for

training DL models in the context of automatic sleep stage classification.
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Table 2.5 Summarizes the DL algorithms used for automated sleep stage classification in the

Sleep-EDF dataset, utilizing PSG recordings.

. Tools/Programming Accuracy

Author Signals Samples  Approach

Languages (%)
Zhu et al., 2020 EEG 15,188 attention CNN - 93.7
Qureshi et al., 2019 EEG 41,900 CNN - 925
Yildirim et al., 2019 EEG 15,188 1D-CNN Keras 90.8
Hsu et al., 2013 EEG 2880 Elman RNN - 87.2
Michielli et al., 2019 EEG 10,280 RNN-LSTM MATLAB 86.7
L. Wei etal., 2018 EEG - CNN - 84.5
Seo et al., 2020 EEG 42,308 CRNN TensorFlow 84.9
X. Zhang et al., 2020 EEG - CNN PyTorch 83.6
Supratak et al., 2017 EEG 41,950 CNN-BIiLSTM - 82.0

Multi-task
Phan et al., 2019 EEG - - 81.9
CNN
) EEG

Tripathy et al., 2018 HRY 7500 Autoencoder MATLAB 73.7
Biswal et al., 2018 PSG 10,000 RCNN PyTorch 87.5
Xu et al., 2020 PSG - DNN - 86.1
J. Zhang & Wu, 2018 EEG - CUCNN MATLAB 87.2

2.10.1.3 Long Short-Term Memory

The LSTM, a specialized type of RNN developed by Hochreiter, gained popularity for its
unique architecture addressing long-term dependency issues (Nifa et al., 2023). Widely used in
sleep stage classification for handling variable-length sequences, LSTM dominates sleep staging
studies (Ebrahimi & Alizadeh, 2022; Faust et al., 2018). Studies exploring LSTM's impact on
sleep staging depth find a single hidden layer often sufficient for high accuracy in various
applications. (Radha et al., 2018; Y. Wei et al., 2019; Yulita et al., 2017).

LSTM algorithms, widely applied in analysing time series data, find utility in domains like
natural language processing, speech recognition, and handwriting recognition (Fu et al., 2021,
Oh et al., 2018). Their architecture, with gates controlling information flow, enables long-term
memory retention. The LSTM structure includes key components like the cell state,
representing long-term memory, and input and hidden states. Gates, including forget, input, and
output gates, regulate information flow (Nifa et al., 2023; Urtnasan et al., 2020). For more
information about the LSTM, please Kindly consult Chapter 4 in 4.2.3.1 for detailed insights.
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2.11 Research Gap

The current landscape of SA diagnosis faces formidable challenges attributed to invasive, time-
consuming, and costly conventional methods, primarily the PSG conducted in sleep
laboratories. PSG's limitations, including inconvenience and discomfort, underscore the need for
alternative, non-invasive, and cost-effective diagnostic tools. This research identifies a critical
research gap and positions the convergence of 10T and Al technologies as a promising avenue to
address this challenge and reshape SA diagnostics. 10T devices such as wearables, smart beds,
and smartphones have demonstrated their capability to collect diverse sleep-related data,
encompassing heart rate, respiratory patterns, and snoring sounds. Simultaneously, Al
algorithms, spanning ML and DL, exhibit potential in constructing predictive models for
accurate SA detection. However, despite these advancements, a research gap persists in

optimizing the integration of 10T and Al for optimal SA detection.

The identified gap prompts further exploration into the intricacies of loT-Al integration,
specifically focusing on defining effective sensor setups, refining data preprocessing methods,
and selecting Al algorithms that ensure reliable SA detection. To address this gap
comprehensively, clinical trials become imperative, serving to validate system performance,
scalability, and usability in real-world scenarios. Moreover, the thesis emphasizes the necessity
for investigating individual variations and comorbidities to enhance diagnostic accuracy.
Recognizing the potential of real-time feedback and interventions within loT-Al systems
emerges as a critical area for improvement in SA treatment and management. This research
endeavour aims to bridge these identified gaps, laying a robust foundation for the development
of advanced SA diagnostic tools. The ultimate goal is to propel sleep medicine forward, offering
enhanced diagnostic accuracy and, consequently, improving patient outcomes in the realm of

sleep disorders.
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Chapter 3 Environmental Benefits of Sleep Apnoea Detection in the

Home Environment

The content in this chapter is based on a manuscript titled "Environmental Benefits of Sleep
Apnoea Detection in the Home Environment" by Barika et al., (2022). The manuscript's primary
objective is to evaluate the environmental consequences associated with the detection of SA,
specifically focusing on the potential of Remote Monitoring (RM) as a solution.

This research discusses the environmental impact of SA detection methods and proposes RM as
a solution. The document highlights the detrimental effects of SA on mental and cardiovascular
health and the need for its detection as a public health priority. Currently, PSG, the gold
standard diagnostic procedure, is resource-intensive and negatively affects sleep quality and the
environment. The document suggests that RM using mobile communication, cloud computing,
and Al could establish SA detection and diagnosis support services in the home environment,
leading to improved clinical outcomes and reduced environmental impact. However, the
adoption of RM technology faces barriers. The document reviews 113 scientific studies and
finds that over half of the proposed RM-based SA detection systems use real-time signal
processing, while 30% rely on measurement devices that require travel when the internal buffer
is full. The establishment of SA detection services through RM technology could reduce travel,

resource sharing, and environmental impact.
3.1 Introduction

SA is a prevalent sleep disorder affecting nearly one billion people globally (Corrigan et al.,
2020). In developed countries, at least 20% of adults are estimated to suffer from SA
(Banluesombatkul et al., 2019). SA is associated with various comorbidities, including high
blood pressure (Kristiansen et al., 2021), CVD (Sweed et al., 2019), type 2 diabetes mellitus,
and stroke (DM) (Gurrala et al., 2021; Kristiansen et al., 2021; San & Malhotra, 2021). While
SA diagnosis currently relies on the AHI and clinical criteria, this approach has limitations.
Overnight monitoring in a sleep lab is resource-intensive and contributes to environmental
degradation. To address these challenges, RM technology, which integrates mobile
communication, cloud servers, and artificial intelligence, has emerged as a promising and
sustainable alternative for SA diagnosis. The widespread adoption of RM for SA detection is
expected to improve clinical outcomes by enabling early and real-time SA detection, reducing
hospitalizations, and decreasing waiting lists. However, it is crucial to consider the

environmental impact associated with RM-based SA detection.

This work examines the potential environmental benefits of utilizing RM based SA detection
services in the home environment. The authors argue that RM-based SA detection services can
offer lower environmental impact compared to traditional methods of detecting sleep disorders.
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This is primarily due to reduced travel for both patients and healthcare specialists, as well as the
ability to share resources. The authors conducted a comprehensive review of 113 papers on SA
detection systems and found that the key factor influencing the environmental impact of a
system is whether the measurement evaluation is conducted online or offline. They discovered
that over 50% of the reviewed RM-based SA detection systems employed online processing,
while approximately 20% did not report this feature, indicating that at least 30% of the studies
did not prioritize minimizing their environmental impact. The authors also observed that
environmental considerations were rarely addressed in the reviewed articles, emphasizing the
importance of promoting the environmental benefits of RM-based SA detection in the home

environment.
3.2  Background

Sleep is characterized by a temporary suspension or altered state of consciousness, particularly
during the REM sleep stage (Loh et al., 2020). However, direct measurement of consciousness
is challenging, which poses difficulties in detecting sleep disorders. To overcome this, a wide
range of physiological signals are typically recorded during a sleep study (Faust et al., 2019).
These studies, often in the form of PSG, involve recording sleep-related data for at least one
night, and manual analysis of the data can take up to 4 hours per night. With the emergence of
RM-based SA detection services that can collect data over multiple nights without limitations,
manual analysis by human experts becomes impractical and demanding. Therefore, an essential

aspect of all SA detection services should include automated data analysis based on Al models.

3.3  Sleep Apnoea Detection in the Home Environment

In this section, we describe the evaluation process used to assess technologies for detecting SA
in the home environment. To identify relevant research articles, we conducted a comprehensive
search using Google Scholar, focusing on articles published between 2018 and 2022. This time
frame was chosen to capture the latest advancements in Al, which is crucial in the context of SA
detection. Using predefined Boolean search terms, we queried the database, specifically
targeting the keyword "apnea home." The initial search yielded 179 matches, as indicated in
Table 3.1. To ensure the selection of high-quality studies, we applied the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) method, following the approach
outlined by Faust et al., (2022). The PRISMA flow diagram, presented in Figure 3.1, illustrates
the process of filtering and selecting articles. During the screening process, we excluded
duplicate entries, review articles, conference papers, non-English publications, and submissions
lacking appropriate findings related to automated SA detection. Through this rigorous selection
process, a total of 65 papers were excluded, resulting in a final selection of 113 unique research
publications for further analysis.
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Table 3.1 Boolean search strings.

Title AND (Full-Text and Metadata) Database No. of Studies

“Apnea home” “Apnea home” Google Scholar 179

Google Scholar:
Total: 179

Duplicates: 2
(Removed)

Number of unique
Records: 177

Notin English: 1
Conference Paper: 1
Review \ paper: 4
Master research: 1
Total: 7

Number of reports (Removed)
assessed for
eligibility: 170

Number of reports
excluded:
Did not provide
model accuracy
Results: 57
(Removed)

Number of studies
included in review:
113

Figure 3.1 Flow chart of the PRISMA maodel for article selection.
34  Results

The article examines 113 studies on SA detection systems in the home setting and provides
information on the signals used, detection methods employed, data handling, participant count,
and detection performance. The choice of physiological signal used for SA detection
significantly impacts the environmental footprint of the system, considering factors such as
setup requirements, communication bandwidth, storage capacity, and processing power.
Analysing the detection mechanism and participant count can help determine the technology

readiness level of these systems.

Table 6.1 presents a summary of the SA detection performance and detection methods used in
the 113 studies analysed. While some studies achieved high detection performance as measured

by the ACC score, it is important to note that these findings were specific to the "apnea home"
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examination and may not represent a general pattern across all studies. Duplicate items, review
articles, non-English publications, master's theses, and works unrelated to the criteria were
excluded from the analysis. Additionally, some papers meeting the criteria were identified
through their abstracts during the search process. The analysis reveals the variety of signals
employed in the research, each serving a unique purpose. The signals used in the SA detection
studies include PSG, SpO2, home respiratory polygraphy (HRP), home polygraphy (HPG),
ECG, seismocardiography (SCG), PPG, polygraphy (PG), respiratory inductance
plethysmography (RIP), audio, and HR. Figure 3.2 provides a visual representation of the
signals used across the 113 analysed studies. For additional details on these SA detection
studies, Table 6.1 in Appendix 10 can be referred to. Figure 3.3 shows the SA detection
methods used in the research, with the percentages in the pie charts indicating the number of

studies that reported each technique.

m PSG

= HR
» ECG

¢ m SpO2
m Others

Figure 3.2 PGS, HR, ECG, SpO2, and others are the signals used to detect SA.

Among the 113 research articles analysed, PSG signals were the most explored method, with 78
articles utilizing this signal. ECG signals were used in only three studies, while HR signals were
used in eight studies. SpO2 was employed in just one study. Figure 3.2 presents a pie chart
illustrating the distribution of signal usage in the research articles. In terms of additional signals,
23 research articles utilized signals other than PSG, ECG, HR, and SpO2. ML and DL
techniques were each applied in four studies. Among the 113 studies, sleep doctors were most
frequently reported as the method for identifying SA, with 75 studies employing this approach.
Figure 3.3 showcases a pie chart displaying the utilization of various SA detection methods.
Regarding data management strategies, 48 studies did not report their data handling method,
while 30 studies conducted their analysis offline, and 35 studies conducted it online. Figure 3.4

provides an overview of the data management strategies used in the studies.
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Figure 3.3 SA detection method. Figure 3.4 Data handling method.

Figure 3.5 presents the number of participants involved in the research, with a total of 101
participants, including 12 who opted out. Figure 3.6 depicts the distribution of accuracy
reported in the studies. It also highlights the characteristics of 53 studies that did not report their

accuracy and 60 studies that did report their accuracy.

® Number of m Detection

participant performanc
s e

= Not ® Not
reported reported

Figure 3.5 Number of participants reported.  Figure 3.6 SA detection performance stated.

35 Discussion

This study focuses on the environmental impact of SA detection and highlights the challenges
associated with traditional diagnostic testing conducted in sleep labs. The setup and supervision
of data collection in sleep labs require significant resources, including the presence of a
professional sleep technologist throughout the night. Furthermore, the analysis of collected data
by a sleep physician can be time-consuming, leading to delays in obtaining results. The need for
patients to travel to sleep labs also contributes to environmental drawbacks, such as increased

carbon emissions and resource scarcity.

RM offers a promising solution to minimize travel and improve access to healthcare services.
By employing RM for SA detection within the confines of one's home, automated detection
becomes possible, thereby alleviating the requirement for physical travel while concurrently
offering real-time monitoring. Advancements in technology, such as covert sensors, cloud
computing, and increased internet connectivity, have greatly enhanced the monitoring and
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management of human health (Dimitrievski et al., 2021). The loT paradigm has revolutionized
healthcare monitoring, with wearable technologies capable of tracking physical activity and
heart rate. The widespread adoption of RM technology and increased internet connectivity
further contribute to the expansion of RM in healthcare.

During our review, we examined the application of Al models in computer-aided SA diagnosis,
as well as the use of RM systems for SA detection in home settings. Figure 3.1 provides an
overview of the research output in Al models, indicating a growing focus on automated SA
detection. This suggests an active field with ongoing advancements in tools and techniques for
Al-based SA detection. The integration of RM methods further enhances the positive
environmental impact. However, we also observed a significant development in DL for SA
detection, which introduces uncertainty regarding its environmental impact. DL models
typically have higher computational complexity compared to traditional ML models, raising

concerns about their environmental footprint (Faust et al., 2018).

Our analysis of SA detection in the home setting revealed that PSG measurements are the
primary source of objective data in most systems. However, this approach is not
environmentally ideal due to the complex equipment and resources required for PSG signal
measurements. For instance, the setup of measuring equipment often necessitates a nurse or
sleep technologist to travel to the patient's home. In contrast, individual signals such as HR,
ECG, and SpO2 are simpler to measure and require less setup than a complete PSG
measurement. Among these individual signals, HR signal acquisition requires the least amount
of setup, making it conducive to patient-led data acquisition. In this scenario, patients can install
the sensor and ensure that the data is transmitted to a cloud server. The cloud server utilizes a
DL model to automatically detect SA. Such a service would have minimal environmental
impact since the communication infrastructure and cloud server facilities are shared and require
very little additional energy. Considering environmental impact alongside moral considerations,
technological feasibility, and financial expenses is crucial when evaluating SA detection

systems.
3.6 Conclusions

The prevalence of SA is a significant economic and health concern, particularly in developed
countries. To assess the environmental benefits of RM-based SA detection, the authors
conducted a study examining SA detection systems in the home environment and evaluating the
supporting technologies. The study emphasized the importance of physiological signals and
their analysis in SA detection, with Al-based methods emerging as a promising technology.
However, only a small number of studies 8 out of 113 utilized Al methods for SA identification,

indicating the need for further advancement in this area.
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The study highlighted the progress in SA detection and diagnosis assistance services using RM
technology, which can be implemented without causing significant harm to the environment by
leveraging existing infrastructure. While recognizing the important role of sleep labs in research
and diagnosis of sleep disorders, the authors argued that RM enables early detection of SA with
comparable or slightly increased resource utilization. As a result, the need for constructing new
specialized sleep labs from an environmental perspective is reduced, as the existing
infrastructure can be utilized, or the requirements significantly minimized. In summary, the
integration of RM-based SA detection offers the potential for improved patient outcomes while

minimizing the environmental impact associated with building new sleep labs.
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Chapter 4 Methodology

4.1 Introduction and Background Integration

The methodology chapter draws heavily from Faust et al.,'s (2021) manuscript on "Accurate
detection of SA with long short-term memory network based on RR interval signals,”
implementing a similar approach in a clinical study. It details the use of advanced techniques,
notably the LSTM network, for precise detection of SA, emphasizing meticulous data
collection, preprocessing, and validation phases to demonstrate reliability and effectiveness. The
clinical study mirrors Faust et al.'s methodology, employing bidirectional LSTM models and
comprehensive performance evaluation metrics like Receiver Operating Characteristic (ROC)
analysis to achieve promising SA detection results. Illustrated in Figure 4.1 is a customized
system configuration, showcasing each processing step as a block with arrows indicating data
flow. Additionally, the chapter addresses identified weaknesses and gaps, presenting a clear
methodology that outlines the evolution of initial ideas into concrete objectives and goals,
alongside a summary of data collection and preprocessing activities, elucidating the refinement
of research objectives over time. The LSTM method discussed aligns with that applied in a
clinical study involving 15 patients, detailed in Chapter 5, with a summary of study activities,

locations, and participating NHS organizations provided in Table 4.6 for reference.
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Figure 4.1 Block diagram for training and validating the DL model.
4.2  Collection and Preprocessing

This section delineates the types of data acquired for this research project, serving as the
foundation for answering research questions and achieving stated objectives. The study's
methodology primarily entails collecting data from secondary sources such as books, articles,
journals, and online references. It outlines the key components employed in constructing the
system, including details about the sleep datasets for model training/testing and experimental

outcomes achieved using the bidirectional LSTM model. While the model had an existing
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foundation, minor adjustments were implemented for enhanced performance. The primary data
source was the Apnoea-ECG Database, sourced from various sleep studies (Goldberger et al.,
2000; Penzel et al., 2000). The subsequent sections delve deeper into specific processing steps
and data, offering a comprehensive insight into the study's methodology. This enables readers to
understand the study's approach in detail.

4.2.1 RR Interval Data and Dataset Details

An RR interval is characterized as the duration between two successive R peaks, as depicted in
Figure 2.11. These R peaks, in turn, signify the maximum amplitude within a given QRS
complex. The QRS complex is defined as the deflections in an ECG tracing that indicate the
ventricular activity of the heart. In this research, we employed a dataset comprising 35 records,
each identified by labels like a01 through a20, b01 through b05, and cO1 through c10. In this
naming convention, the structure is clear: a letter signifies a specific category, while a numeric
identifier distinguishes individual instances within that category. For example, "a01" represents
an instance in class A, with the identifier 01, while "b02" indicates an instance in class B, with
the identifier 02.

It's important to note that "a01" and "b02" serve as patient IDs. Therefore, in compliance with
medical regulations, patient data must undergo anonymization processes. This ensures that
sensitive patient information remains confidential and protected, adhering to strict privacy
standards within the healthcare industry. This systematic approach aids in organizing and
referencing data points efficiently during analysis and model training. Recording lengths
slightly varied from just under 7 hours to 8 hours. The subjects, both men and women aged 27
to 63, had weights spanning 53 kg to 135 kg, corresponding to BMI values of 20.3 to 42.1.
Table 4.1 offers signal details for both 10-fold cross-validation and hold-out validation. For
model training, the 35 annotated ECG recordings of apnoea signals were categorized into two
sets: a 10-fold data set and a hold-out data set. The latter included five records (all, al5, al7,
b01, and c07), while the remaining records were part of the 10-fold data set. Figure 4.2

exemplifies RR intervals within the first 2000 seconds of a01.

Table 4.1 Displays beat counts and signal names for both 10-fold cross-validation and hold-out

validation data from the Physionet Apnea-ECG Database.

10-fold cross-validation Hold-out-validation
No. beats=935462 No. beats=169959
Name Beats Name Beats Name Beats Name Beats
a0l 29639 al2 33829 b05 26937 all 32953

a02 34931 al3 39723 c01 27643 als 33948
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10-fold cross-validation
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Additionally, Figure 4.3 displays the Power Spectral Density (PSD) of RAW RR interval data
showcased in Figure 4.2. These visuals and information comprehensively acquaint readers with

the dataset, aiding in understanding its distinct characteristics for training and validation

purposes.
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Figure 4.2 RAW RR interval data from record Figure 4.3 PSD of the RAW RR interval
a0l. data.

4.2.2 Pre-Processing Steps

During this phase, the necessary data underwent processing to extract essential features, which
were then input into the training model. Preprocessing RR interval signals for the 10-fold and
hold-out data sets involved a two-step procedure. First, low-pass and high-pass filtering
techniques were applied. RR interval signals underwent high-pass filtering through detrending,
eliminating low-frequency components and noise, thereby enhancing signal clarity and quality.
The second step involved windowing, segmenting RR interval data into fixed-length windows.
The following sections elaborate on and visually represent the steps involved in processing the
datasets.
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4.2.2.1 Detrending and Low-Pass Filtering

In this study, we employed a specialized filter introduced by Fisher et al., (2012), to process the
RR interval signal. This filter utilizes a third-order Gaussian process of the Ornstein-Uhlenbeck
type, operating directly on the RR interval data. The filter's application aims to augment signal
quality by reducing noise and unwanted variations. Figure 4.4 visually presents the filtered
rendition of the raw RR interval signal from Figure 4.2. The filtered signal, a result of the
(Fisher et al., 2012) filter, showcases enhanced smoothness and diminished noise in comparison
to the raw signal.

0.4 y . .

NN ’

_;_‘ 02 ~ 1

é 0 = H * 3 R.2 n.— ": ;
= T, WA P TR FOL AR § 2

g 0 ";7;%)\ SRR T o

< feERRNR T B UM

RIS ‘ it % { " 3

’ |

-0.2 .

0 200 400 600 800 1000

Time |s
Figure 4.4 Detrended and low pass filtered RR interval data.

4.2.2.2 Windowing and Class Labelling

To segment the data for the classification algorithm, we implemented a sliding window
approach with a window size of 100 RR intervals. The choice of a window size of 100 RR
intervals was made to effectively segment the data for the classification algorithm. The window
moves incrementally by one RR interval at a time. Essentially, this windowing technique
constructs individual data blocks comprising 100 RR intervals for each beat in the database.
This strategy enhances temporal resolution, ensuring an ample amount of data for effective
training and testing of the DL algorithm. Class labels for windows were determined using a set
threshold. Windows were categorized as apnoea (positive) if a minimum of 25 RR intervals
within the window were identified as apnoea. Conversely, windows with fewer than 25 apnoea-
identified RR intervals were labelled as non-apnoea (negative). Apnoea/non-apnoea annotations

for individual RR intervals were sourced from the Apnoea-ECG Database.

4.2.3 10-Fold Cross-Validation

To ensure a robust evaluation of the DL model's performance, the study adopted a 10-fold
cross-validation method. This choice aimed to minimize the impact of sample selection on
overall results and provide a more comprehensive assessment of the model's efficacy by
dividing the dataset into ten subsets for iterative training and testing. The labelled data was

divided into ten folds, as depicted in Table 4.1. Among these, one-fold, Part 0, was designated
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for network testing, while the remaining nine parts were used for training. This process iterated
across all ten parts, enabling each part to function as a testing set once to evaluate the
performance of the model. By adopting this strategy, every data point was involved in both

training and testing sets, ensuring a more exhaustive evaluation.

Table 4.2 Summary of studies on algorithmic SA detection based on RR interval signals from
records in the apnoea-ECG database.

Author Classifier Validation method No. features Acc.in % Sen.in % Spe.in %
Mendez et al., 2007 K-NN Leave-One-Out 52 85.7 81.4 88.4
Surrel et al., 2018 SVM 10-fold 88 88.4 73.3 87.6
Bsoul et al., 2011 SVM Variable-folds 111 88.49 96.77 83.62
Song et al., 2016 SVM+LR 10-fold 32 86.2 80.0 89.9
Hassan, 2016 Adaboost 10-fold 18 87.33 81.99 90.72
Janbakhshi & Shamsollahi 2018 Assemble  Cross-validation 85 90.90 89.60 91.80
De Chazal et al., 2003 LD/QD Many-fold 52 925 91.4 93.1
Z.Dongetal., 2018 Threshold Single fold 6 90.10 88.29 90.50
Residual 10-fold 94.39 93.04 94.95
Wang et al., 2019 0
network Hold-out 80.60 - -
Proposed 10-fold 99.80 99.85 99.73
LSTM 0
method Hold-out 81.30 59.90 91.75

The data configuration for the 10-fold cross-validation is depicted on the left side of Figure
4.5’s flowchart. The right side of the flowchart showcases fold processing based on epochs. The
model fitting strategy encompassed 40 epochs in total. During each epoch, the LSTM network
underwent training on training data from each fold. Subsequently, the trained model was
evaluated using corresponding testing data to gauge its performance. The primary metric for
evaluating the model was the accuracy of the LSTM network's predictions. Upon completing all
folds and assessing the LSTM network's performance for each, the "Select best model™” block
identified the optimum model based on prediction quality. This selection process involved

considering accuracy to determine the K best models.
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model for fold k, similarly acc is the best accuracy for fold k.
4.2.3.1 Architecture and Bidirectional Model

Figure 4.6, illustrates the functional layout of the LSTM method, offering insights into the
LSTM cell's inner mechanisms and the RNN loop's unrolling. The LSTM cell employs
mathematical functions like the hyperbolic tangent function Tanh(...) and sigmoid activation

function o(...) for computations.
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Figure 4.6 Structure of the LSTM memory cell.

The LSTM structure includes key components like the cell state, representing long-term
memory, and input and hidden states. Gates, including forget, input, and output gates, regulate

information flow. These gates perform specific functions: the input gate determines which data
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from the current input should be stored in the memory cell, highlighted in blue. The forget gate
determines which data from the previous cell state should be retained or discarded, highlighted
in orange, and the output gate determines which data from the memory cell should be passed to
the next hidden state, highlighted in green.

In the testing phase, the trained LSTM model classifies a 100 RR interval block to determine
SA presence. The model employs learned weights and biases from the training phase for this
classification. The utilized architecture, as presented in Table 4.3 features a bidirectional LSTM
model (Graves & Schmidhuber, 2005). In this architecture, the RR input sequence undergoes
forward processing using one LSTM model (i.e. samples Xo, ...., Xa) and backward processing
using another LSTM model (i.e. samples X, ...... , Xo). The performance evaluation methods for
the LSTM model will be discussed in the next section, shedding light on how accuracy and

effectiveness were gauged.

Table 4.3 Bidirectional LSTM architecture.

Layer Type Output shape Number of parameters
1 Input 100, 1 0
2a LSTM (forward) 200, 400 161600
2b LSTM (backward) 200, 400 161600
3 Global 1D max pooling 400 0
4 Fully connected Rectified Linear Unit (ReLU) 50 20050
5 Dropout 50 0
6 Fully connected (Sigmoid) 1 51

The bidirectional LSTM model adopted in this study facilitates the capture of temporal
dependencies in both preceding and subsequent timesteps, augmenting the model's contextual
understanding, as illustrates in Figure 4.7. In the network, the outputs of the forward and
backward LSTM models are combined through concatenation, forming a consolidated
representation of the input data. This concatenated output is then subjected to one-dimensional
global max pooling, providing a concise representation. To address overfitting and enhance
generalization, recurrent dropout with a probability of 0.1 is applied to both LSTM cell inputs
and hidden states. Additionally, standard dropout with the same probability is implemented
between the final fully connected layer and the output layer. These dropout techniques serve as
regularization mechanisms, preventing the model from relying too heavily on specific features
or memorizing the training data (Semeniuta et al., 2016). Placing dropout after every hidden
layer might excessively constrain the network’s learning capacity, leading to diminished

performance or slow convergence. It's typically more effective to carefully select specific layers
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or portions of the network where dropout is applied, based on the complexity of the problem

and the available data.
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Figure 4.7 Bidirectional LSTM architecture used for SA classification.

In establishing connectivity between the "one" and "another" LSTM model, it is inferred that
two distinct LSTM networks have employed one dedicated to processing the input sequence in
the forward direction and the other in the backward direction. These bidirectional LSTMs
collectively operate to capture information from both temporal directions, enhancing the
model's ability to comprehend sequential dependencies. The decision to omit dropout layers
following each hidden layer is posited as a strategic measure to mitigate excessive
regularization. The deliberate exclusion of dropout layers at each intermediate stage aims to
circumvent potential information loss, especially in the context of deep neural networks, where
such layers could impede the model's capacity to discern intricate patterns and representations
from the dataset. Consequently, the adopted methodology, involving judicious application of
dropout after the LSTM cells and preceding the output layer, is deemed instrumental in striking

an optimal balance between regularization and efficacious learning.
4.2.3.2 Training Strategy and Optimization

During model training, an Adam optimizer with a learning rate of 1e-3 is employed. The choice

of the Adam optimizer with a learning rate of 1e-3 is justified for its adaptive optimization
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capabilities. The Adam optimizer adjusts learning rates individually for each parameter,
ensuring efficient updates during model training. This adaptability is particularly beneficial for
handling varying gradients and achieving convergence effectively. The selected learning rate of
1e-3 strikes a balance between the need for accuracy in parameter updates and preventing
convergence issues. It allows for a moderate adjustment at each iteration, avoiding overshooting
or slow convergence. In terms of the batch size, 1024 is chosen to optimize graphics processing
unit (GPU) memory utilization and training speed. While larger batch sizes can potentially
expedite training, they may also demand more memory resources. The chosen batch size
represents a practical compromise, ensuring efficient use of available resources without
compromising training performance (Kingma & Ba, 2015). The models are developed and
implemented using the Keras and TensorFlow frameworks. Keras offers a high-level API for
network construction and training, while TensorFlow acts as the underlying computational

framework, efficiently executing on GPUs and other hardware devices (Abadi et al., 2016).

4.2.4 Hold-out Testing and Optimization
In the validation phase, the optimal models from each fold are assessed using the hold-out data.
This evaluation comprises consolidating predictions from each model, with their weights
determined by their relative prediction accuracy. The weight factor for each model is calculated
by multiplying its accuracy (accg) with the total number of model accuracies (accAcc). This
multiplication captures the collective accuracy of all models and establishes the weight of each
model in the aggregation process.

k-1

accAcc = Z accy 4.1

k=0
Equation 4.1 calculates the cumulative accuracy across all folds, with K denoting the total
number of folds. The best model parameters garnered from these folds are utilized to compute
the inference value. The weighted prediction outcome is derived by dividing the model's

accuracy (acc) by the sum of all accuracies (accAcc).

k-1
) predict(Hold out data, modely) X acc,
inference = 4.2

accAcc
k=0
The function predict(data, model) employs the LSTM algorithm to make estimations for
specific data using the model parameters. During hold-out validation testing, the inference
outcomes are juxtaposed with the labels of the data blocks. The subsequent section delves into a

discussion of these comparison results.
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425 Performance Evaluation

In the evaluation of performance measures, this study employs both the confusion matrix and
the ROC curve. The confusion matrix, also known as an error matrix, provides a tabular
representation commonly used to assess the performance of a classification model when tested
against a dataset with known true values. Simultaneously, the ROC Curve serves as a graphical
representation that effectively summarizes the classifier's performance across a range of
thresholds. This curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR), on the y-axis and x-axis, respectively, while considering different
thresholds for class assignment. It is noteworthy that the ROC curve is a widely recognized
methodology for evaluating the diagnostic accuracy of tests in modern medicine. Its utility
extends to demonstrating how effectively a diagnostic model can distinguish between the
presence and absence of a disease, making it particularly adept at handling datasets with
imbalances in class distribution.

This section showcases the outcomes of the proposed SA detection method, encompassing the
findings from both hold-out and 10-fold cross-validation tests. Each test is accompanied by a
confusion matrix that illustrates the counts of correctly identified normal RR intervals (TN),
wrongly identified apnoea intervals (FP), wrongly identified normal intervals (FN), and
accurately identified apnoea intervals (TP). These matrices offer a comprehensive overview of
the classifier's performance. The classifiers' performance metrics are evaluated through
accuracy, sensitivity, and specificity. Accuracy gauges the classifier's capacity to accurately
differentiate between apnoea and normal events. It is calculated by dividing the number of
correct predictions by the total number of predictions. To align the outcomes with true labels, a
threshold of 0.5 determined by ROC analysis is employed. The evaluation of the proposed
classification model involved an assessment of their performance. Table 4.3 provides a

summary of the model parameters. The structure of the confusion matrix is as follows:

e True Negative (TN): Count of correctly identified normal intervals.
o False Positive (FP): Count of incorrectly identified apnoea intervals.
o False Negative (FN): Count of incorrectly identified normal intervals.

e True Positive (TP): Count of correctly identified apnoea intervals.

TN FP 4.3

€= |FN TP

Typically, C is used to represent this confusion matrix to assess the performance of a model in
terms of its true and false classifications. The assessment of performance involved measuring

the following metrics to evaluate and analyse the effectiveness of the system:

Accuracy = (TP + TN)/(TP + TN + FP + FN) 4.4
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Sensitivity = TP/(TP + FN) 4.5

Specificity = TN/(TN + FP) 4.6

In summary, the proposed SA detection method underwent evaluation using sensitivity and
specificity metrics across various threshold levels. Sensitivity, representing the TPR, and
specificity, representing the FPR, were computed to gauge the classifier's performance. The
threshold value plays a crucial role in distinguishing between positive and negative outcomes.

4.2.6 Qutcome Visualization

To analyse the outcomes comprehensively, we plotted the TPR against the FPR using a ROC
curve. The visualization of the confusion matrix derived from the 10-fold cross-validation, as
detailed in Section 4.2.3, is illustrated in Figure 4.8. The close agreement between the predicted
and actual labels is evident, with a minimal number of false classifications observed. The
chosen operating point maximizes the separation between the ROC curve and the dashed red
line (Luck). This operating point corresponds to a threshold of 0.5, which is pivotal in
determining the entries of the confusion matrix. Therefore, the closer the ROC curve is to the
upper left corner, the higher the overall accuracy of the test. With an Area Under Curve (AUC)
of 1.00, the results are nearly perfect, indicating that the 1856 misclassifications reported in the
confusion matrix hold little statistical significance. Figure 4.9 provides a visual representation
of this result.
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validation. validation test.

The depicted results in these figures were obtained by applying the model to validation sets and
combining outcomes from all 10 folds. Table 4.4 displays the average performance across all 10
folds.
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Table 4.4 The overall performance results of the LSTM model across the 10-fold cross-

validation.
TN FP FN TP Accuracy Sensitivity Specificity AUC
551488 1041 518 379148 99.80% 99.85% 99.73% 1.00

The outcomes of the hold-out validation approach are depicted in Figure 4.10 and Figure 4.11.
Figure 4.10 showcases the accuracy of the test set plotted against the number of epochs, while
Figure 4.11 visualizes the model's loss as it varies with the number of epochs. These graphs
illustrate the LSTM algorithm's consistent and stable performance across folds, with minimal

observable variance within the shaded regions.
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After identifying the top 10 LSTM models via 10-fold cross-validation, a hold-out validation
procedure was executed, following the methodology outlined in Section 4.2.4. The resulting
confusion matrix for the hold-out validation is presented in Figure 4.12, and the classification
performance was assessed using the provided metrics. This figure illustrates the evaluation of
the SA model for binary classifications. Data points represent the number of heartbeats detected
for each class. The diagonal indicates the correctly identified TN’s and TP’s. However, the
cross-diagonal refers to the FP’s and FN’s. The performance values obtained from the hold-out
validation are shown in the last row of Figure 4.12. Additionally, Figure 4.13 presents the

corresponding ROC curve, providing further insights into the classifier's performance.
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The outcomes reveal that the suggested LSTM classifier achieves an overall accuracy of 81.30%
on a set of entirely new subjects, correctly identifying 59.90% of normal heart rate HR
sequences and accurately classifying 91.75% of HR sequences indicating signs of SA. The

outcomes from this holdout test set are presented in Table 4.5.

Table 4.5 The overall performance results of the LSTM model across the Hold-Out cross-

validation.
TN FP FN TP Accuracy Sensitivity Specificity AUC
104434 22313 9385 33332 81.30% 91.75% 59.90% 0.8532

In the ROC curve plot, the DL classifier attains an AUC of 0.85%. This indicates that the
classifier effectively distinguishes between the presence and absence of SA episodes. The
classifier's threshold values range between 0 and 1, where 0 represents TN values and 1.0
corresponds to TP. A ROC curve approaching 1 signifies a higher overall diagnostic accuracy,
emphasizing the trade-off between TPR and FPR.

43  Setup and Validation of Sleep Apnoea Detection: Methodological
Framework

This section outlined the clinical study conducted in collaboration with Sheffield Children's
NHS Foundation Trust involved various methodological steps outlined in Table 4.6. These
included recruiting patients, obtaining consent, setting up patient accounts on the Patient Status
Engine (PSE) for data handling, providing PSG equipment and Lifetouch sensors from Isansys,
conducting PSG tests, capturing heart rate using Lifetouch sensors, conducting participant
interviews, and performing two-stage data analysis. The study's validation phase compared

analysis outcomes, ensuring the accuracy and reliability of the methodology in detecting SA.
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Table 4.6 Participating NHS organisation information.

Collaborating NHS Organization Location
Sheffield Children's NHS Foundation Trust Sheffield Children’s NHS Foundation Trust
Study Activity

1. Recruiting patients

2. Obtaining consent from patients

3. Setting up an account for each participant on the PSE from Isansys, used for data handling
4. Providing patients with PSG equipment and Lifetouch sensors from Isansys

5. Using Lifetouch sensors to capture heart rate

6. Conducting the PSG test

7. Conducting interviews with participants using a questionnaire

8. Two-stage data analysis: Stage-1 involves analysing PSG measurements by an experienced cardiologist. In
Stage-2, heart rate recordings are analysed using DL systems developed by researchers from Sheffield

Hallam University

9. Validation phase: Comparing analysis outcomes

Figure 4.14, shows a timeline of the proposed validation study of the SA monitoring service.

The timeline unfolded as follows:
1- Sign up. Patients registered at the sleep centre or sleep clinic.

2- Sensor placement. An Isansys Lifetouch sensor was connected to the subjects’ body as

depicted in Figure 5.1.

3- Physiological signal acquisition. The embedded Lifetouch sensor constantly measured the
heart rate while the subject slept in the sleep lab. The signal was communicated via low power
Bluetooth to a tablet computer at the bedside. That tablet computer relayed the data to a cloud

application known as the patient status engine.

In addition to the Isansys measurement setup, the patient also wore the ‘normal’ PSG

measurement harness. This allowed us to measure both PSG and heart rate signals.

4- Sensor returns. After wearing the Lifetouch and PSG sensors for one night, the sensors were

returned to a technical staff member.

5- Data upload. The PSG data was handled like for a normal sleep study. The data from the

Isansys sensor was checked.
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6- Al based SA detection. The heart rate data was fed to a DL algorithm which analysed the

signal. The result of this analysis was an estimated SA probability over time.

7- Data analysis. An experienced human expert analysed the PSG recordings. The analysis
results indicated time and duration of SA. These results were treated as the ground truth when it
came to validating the SA detection algorithm. The validation was done by comparing the

results from the human expert with the machine results.
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4.4 Patient Gateway

The Isansys Lifetouch system incorporates the Patient Gateway and the Isansys app to ensure
efficient and secure access to the recorded data. Acting as a bridge between the Lifetouch sensor
and electronic medical records, the Patient Gateway facilitates seamless integration and data
exchange. This integration enables the incorporation of collected data into the patient's medical
records, contributing to comprehensive healthcare management. For data access, the Lifetouch
sensor pairs with an Android tablet via the Isansys app. This pairing process involves scanning a
QR code on the sensor, establishing a secure Bluetooth connection. The tablet then wirelessly
receives the sensor's data, which can be viewed through the Patient Gateway interface. This
user-friendly approach enables healthcare professionals to conveniently access and analyse RR

interval signals and other vital signs data.

Figure 4.15 visually represents the comprehensive PSE setup for continuous monitoring,
emphasizing the connection process between the Lifetouch sensor, Patient Gateway, and the
Android tablet. This visualization highlights the seamless data flow and underscores the secure
transmission within the Isansys Lifetouch system. The integration of the Patient Gateway and
Isansys app empowers healthcare professionals with real-time vital signs data. This capability
enables close patient monitoring, informed decision-making, and rapid response to any changes
in condition. The collaborative system optimizes patient care efficiency, contributing to

improved diagnosis, treatment, and overall patient outcomes.
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Chapter 4 Methodology
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Chapter 5 Detection of Obstructive Sleep Apnoea in Clinical Settings

Chapter 5 serves as a proof of concept for a novel method to detect OSA by integrating DL and
IoT technologies. Conducted at Sheffield Children's Hospital NHS Foundation Trust between
October 2022 and February 2023. The chapter summarizes the study's objectives, challenges in
pediatric OSA diagnosis, materials and methods, pricing details, research design, participant
recruitment, screening, statistical analysis, patient and public involvement, ethical

considerations, study procedures, and safety assessments.

5.1  Overview of the clinical study

Between October 2022 and February 2023, a proof of principle study was conducted at
Sheffield Children's Hospital NHS Foundation Trust to explore the feasibility of detecting OSA

using wearable technology and DL. The study aimed to achieve three key objectives:

1. Patient and Public Involvement and Engagement (PPIE): Collect feedback from patients
to gain insights into their experiences and perspectives.
2. Wearable sensor usability: Assess the usability of the wearable sensor used for data
collection.
3. Accuracy evaluation: Evaluate the OSA detection accuracy of the developed DL
algorithm by comparing its predictions with expert evaluations.
We developed a DL algorithm for OSA detection in RR interval signals. To evaluate its
performance, we conducted a clinical study with 15 OSA patients. Simultaneously, patients
underwent standard PSG monitoring, serving as a benchmark. This parallel approach ensured a

robust evaluation of the DL algorithm's accuracy in OSA detection.

52  The Problem

Pediatric OSA, impacting 5% of children with airway obstruction and premature infants with
central OSA, requires investigation into its prevalence, risk factors, and health effects. Current
diagnostics like PSG pose challenges due to cost and reliance on specialized centres (Orr et al.,
2017; Stokowski, 2005). There's a need for a user-friendly, accurate, and affordable home-based
technology to detect apnoea events, addressing high demand and long wait times. Our research
aims to enhance early detection, empower healthcare providers, and improve management of

pediatric OSA to reduce negative outcomes.
5.3  Study Aims and Objectives

This study explores integrating the Isansys Lifetouch sensor with a DL algorithm to manage
pediatric OSA. It aims to assess the usability and accuracy of this technology compared to the
gold-standard PSG for detecting OSA symptoms in 15 pediatric patients. The main goal is to

develop a DL algorithm that uses the Isansys Lifetouch sensor to measure RR intervals for
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automated pediatric OSA detection. Data collected from the sensor is transmitted to a cloud
server for real-time DL analysis to achieve efficient OSA diagnosis. The algorithm's accuracy,
sensitivity, and specificity were validated against PSG through a clinical trial at Sheffield
Children's Hospital NHS Foundation Trust. Additionally, the study evaluated the comfort and
acceptability of the Lifetouch sensor among participants, with parental feedback assessing
attachment ease and sensor acceptability for at-home monitoring. Clinical supervision by
healthcare experts ensured accurate data collection and successful study implementation.

5.4  Materials and Methods

This section provides a comprehensive overview of the investigation procedures, including data
collection, analysis, and study design. It aims to provide a detailed explanation of the practical
components involved in the study. The following subsections will outline the key aspects of the

research methodology.

5.4.1 Lifetouch Sensor

The Isansys Lifetouch sensor, customized for our pediatric OSA study, is a validated biosensor
with extensive patient data in acute care settings. Developed collaboratively, it emphasizes ease
of use, reliability, and integration into nursing workflows. Available in various sizes for
newborns, infants, and children, this real-time monitoring device ensures uninterrupted
monitoring during daily activities. Its continuous monitoring capability enables extensive data
collection, providing crucial insights for OSA detection. Equipped with advanced signal
processing, it enables real-time analysis, reducing the need for extensive post-processing. The
sensor's accuracy in acquiring and analysing RR interval signals makes it valuable for
investigating pediatric OSA. Its wireless design and wearability ensure comfort for pediatric
patients. The experimental setup, illustrated in Figure 5.1, depicts a child with the Lifetouch

sensor and signals on a tablet screen.

Figure 5.1 The Lifetouch sensor is used in conjunction with a tablet that runs the PSE

software.!t

H https://www.isansys.com/en/connectivity.
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5.4.2 Pricing Details for Lifetouch Sensor Equipment and Services

The pricing specifics for the Lifetouch sensor equipment are outlined in Table 5.1, reflecting the
standard pricing offered by the manufacturer. The Lifetouch service is priced at around £25 per
day per patient. It's noteworthy that this cost covers not only the sensor itself but also includes
the utilization of the PSE Gateway and the Lifeguard Server. This comprehensive package
encompasses server infrastructure, security provisions, and connectivity, all calculated on a per

patient per day basis.

Table 5.1 Lifetouch equipment cost.

Item Sizes Unit cost Maximum duration of use
Medium (175 x 47) £25

Isansys Lifetouch Small (140 x 47) £25 3to 5 days
Neonate (70 x 57) £25

5.4.3 Research Design and Data Collection

The study was conducted at the sleep house of Sheffield Children's NHS Foundation Trust in
Sheffield, UK. This facility specializes in diagnosing sleep disorders and provides an ideal
environment for collecting and analysing data for pediatric OSA detection using the lIsansys
Lifetouch sensor and the developed DL algorithm. The sleep house is fully equipped with
advanced tools and resources necessary for conducting comprehensive sleep studies and
monitoring various physiological parameters during sleep. A team of highly skilled healthcare
professionals, including consultants, physiologists, technicians, nurses, research officers, project
managers, and students, all with specialized training in sleep medicine and vast experience

working with children, operate within the sleep house.

5.4.4 Sampling

Patients referred to the sleep house at Sheffield Children's Hospital NHS Foundation Trust for
suspected OSA were invited to participate in the study. Selection criteria were established in
Section 5.5.4 to ensure participants met specific age and suspected OSA requirements. The
study aimed to enrol 15 to 20 participants, with 15 meeting the criteria and providing informed
consent. Participant recruitment was determined by feasibility and eligible patient availability

during the study period.
5.4.5 Participant Recruitment

At Sheffield Children's Hospital, a trained team engaged parents or guardians using Good
Clinical Practice (GCP) principles for participant recruitment. They provided comprehensive
information and consent forms, allowing ample time for review and questions. Consent was
obtained through online meetings or phone calls, ensuring swift issue resolution. Written
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consent, with assent from children when applicable, was prioritized to ensure understanding of
the study's goals and processes. The process adhered to ethical guidelines, with transparency
and collaboration encouraged through scheduled meetings. Utilizing the latest approved consent
form Appendix 5 ensured accuracy, with signatures and dates documenting consent for
transparency and accountability.

5,5  Participant Screening

The trial, including the six-month follow-up and exit, successfully concluded by March 2023,
meeting the study timeline. Sleep onset and end times from PSG reports were used for data
analysis, excluding non-sleep periods to align with study objectives. Of the 15 participants
following the screening protocol, the average recording time was 7.0 hours, representing the
duration of sleep monitoring and data collection per participant. Figure 5.2 visually summarizes
participant flow, illustrating numbers at key study stages: screening, enrolment, follow-up, and

exit, offering a concise overview of participant progression.

Assessed for eligibility
n=15

Excluded n=0
Not meeting inclusion
criteria n=0
Declined to participate n=0
Unable to use Unable to use
LifeTouch=0 PSG=0

Analysed n=15

Excluded from
analysis n=0

Figure 5.2 Trial screening, enrolment

5.5.1 Subject Characteristics

The study encompassed 15 eligible OSA patients, with a mix of 5 females and 10 males. The
participants represented various ethnicities including White-British, Mixed White and black
Caribbean, and Black African or Black British. Their ages ranged from 6 months to 16 years,
with 50% aged over 5 years. Table 5.2 concisely summarizes patient characteristics, offering an

overview of participants' gender, ethnicity, and age distribution.

64



Table 5.2 Participant information

Ethnicity Time in bed
Research ID QR Code Gender Age Weight Total Sleep (per hour in bed)
White British Black -Africa  Starttime End time
LT001 B1208 F 510  Unknown White British - 20.16 06.57 6.57
LT002 B1423 M 2.6 Unknown Unknown - 20.10 07.55 7.55
LT003 B1247 M 9.8 Unknown Unknown - 20.01 07.32 7.32
LT004 Bl424 M 2.7 Unknown Unknown - 19.59 06.32 8.39
LTO005 B1425 M 2.5 Unknown White British - 19.20 06.47 9.19
LT006 B1381 M 11.11  Unknown Unknown - 20.02 05.53 6.56
LT007 B5687 F 111 Unknown Mixed White and black Caribbean - 20.33 06.40 4.57
LT008 B1380 M 3.9 Unknown Black African or Black British - 20.31 05.32 5.37
LT009 B1427 M 2.1 Unknown White British - 19.25 06.55 8.52
LT010 B1445 M 2.7 Unknown Unknown - 19.56 04.53 4.04
LTO11 B1419 F 3.8 Unknown Any other mixed background - 20.59 05.39 6.14
LT012 B1422 F 135  Unknown White British - 21.01 06.48 7.22
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Ethnicity Time in bed
Research ID QR Code Gender Age Weight Total Sleep (per hour in bed)
White British Black -Africa  Starttime End time
LT013 B1451 M 86  Unknown White British - 20.19 06.50 9.27
LTO14 B1454 F 14 Unknown Any other mixed background - 19.09 06.49 9.31
LT015 B1426 M 91  Unknown White British - 20.08 06.15 8.16
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5.5.2 Statistical Analysis

Following the completion of the sleep study, a qualified clinical physiologist analysed recorded
signals using established clinical methods aligned with the AASM's guidelines for diagnosing
OSA. The analysis included assessing occurrences of central and obstructive apnoeas,
calculating the AHI, and determining the longest central apnoea episode duration, shedding
light on the severity and characteristics of OSA episodes. Simultaneously, an Al-based OSA
detection algorithm processed heart rate data from the Isansys Lifetouch sensor, generating a
diagnostic outcome based on heart rate patterns. Unaware of the clinical team's results, the
research team used this analysis to estimate the probability of OSA over time for each

participant.

5.5.3 Patient and Public Involvement and Engagement for Pediatric Obstructive Sleep
Apnoea Monitoring

The thesis incorporates a PPIE initiative focusing on real-time pediatric OSA detection and
monitoring. This initiative gathered parental perspectives on the necessity and desirability of
such a monitoring device for children under the care of the Respiratory team at Sheffield
Children's Hospital. Interviews were conducted via telephone with eight parents representing
children aged 1 to 13 years from various regions. Each participating parent received a £20 gift
voucher. The interview prompt sheet is available in Appendix 7. Parental insights emphasized
the importance of continuous monitoring for accurate OSA diagnosis and expressed enthusiasm
for remote data access, potentially eliminating overnight stays at sleep facilities. Parents valued
features such as lightweight comfort, ease of use, and inconspicuous design, while also

expressing concerns about potential data overload and the need for robust data security.

5.5.4 Participant Eligibility Criteria
Table 5.3 Outline who can join the study, considering factors like age, language proficiency,

and medical conditions, while excluding certain situations, such as allergies.

Table 5.3 Inclusion and exclusion criteria applied in this study.

Inclusion Criteria Exclusion Criteria

. - e Individuals with communication challenges or non-
e Patients referred to a sleep clinic due to

suspected OSA English-speaking parents/legal guardians/carers

«  Age range of 6 months to 16 years e  Known allergy to dressings with adhesives

e  Children anticipated to experience anxiety due to an

e  Proficient in understanding spoken and
additional sensor

written English
e  Clinically deemed too unwell to participate by clinical

staff

e  Capable of providing informed consent
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Inclusion Criteria Exclusion Criteria

e Presence of clinical issues, such as skin conditions, in

the device placement area

e |lliterate or unable to speak English and provide

informed consent

5.,5.5 System Specifications

The Lifetouch device, customized for this study, prioritizes lightweight and comfortable
wearability, particularly during sleep. It integrates a tablet as the Patient Gateway for
monitoring, enhancing factors like battery life and portability. Bluetooth technology enables
seamless communication, eliminating restrictive cables. Weighing less than 20 grams, it ensures
minimal discomfort or sleep disruption, aiming for a user-friendly solution for sleep studies and
OSA detection.

5.,5.6 Trial Management

The trial at Sheffield Children's Hospital NHS Foundation Trust involved a collaboration
between Sheffield Hallam University and the hospital. Dr Oliver Faust and Dr Ningrong Lei
from Sheffield Hallam University served as co-investigators, while Professor Heather Elphick
led the trial as the chief investigator. Statistical analysis at the sleep house was supervised by Dr
Ruth Kingshott, working alongside Professor Heather Elphick. This diverse team of researchers,
clinicians, and statisticians aimed to advance understanding and management of pediatric OSA,

ultimately aiming to improve patient outcomes through collaborative efforts.

5.5.7 Safety Assessments

The study at Sheffield Children's NHS Foundation Trust adhered to monitoring Standard
Operating Procedures (SOPs) established by the Directorate of Research & Innovation. These
SOPs ensure regulatory compliance and ethical guidelines are met. Regular monitoring and
audits by the Sponsor, Health Research Authority (HRA), and Research Ethics Committee
(REC) ensure the study's rigorous and ethical conduct, proper documentation, and adherence to

approved protocols.

5.6  Ethical and Privacy Consideration
Upholding ethical standards was central to this study. Informed consent was obtained from all
participants, and data handling followed strict privacy protocols to safeguard sensitive health

information.
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5.6.1 Ethical Approval

The research strategy was collaboratively developed by the researcher and their supervisor.
Ethical review resulted in approval from the HRA and Health and Care Research Wales
(HCRW) on January 6, 2022 (approval reference number: 21/SC/0366). HRA and HCRW
approval indicates ethical acceptability, considering participant rights, safety, and well-being.
Ethical considerations encompass participant recruitment, informed consent, data
confidentiality, and potential risks and benefits. Appendix 2 contains the approved ethical
documentation, detailing the protocols to be followed throughout the study.

5.6.2 Informed Consent

Trained study team members, who had prior experience and knowledge in GCP, obtained
informed consent from participants. An invitation letter provided potential participants with
comprehensive information about the study's objectives, procedures, and risks. It emphasized
voluntary participation and the right to withdraw without consequences. Contact details for the
study team were included for clarification. The invitation letter ensured participants were well-
informed and empowered them to make informed decisions. Appendix 1 contained the
invitation letter for further information on the study's details and informed consent.

5.6.3 Justification of Resources

The Lifetouch sensors utilized in this study were provided free of charge by Isansys, enabling
their incorporation into the research project without incurring extra expenses. Sheffield Hallam
University supplied all other essential resources for the study, ensuring efficient and effective

research conduct.

5.7  Patient Information Sheets

Patients participating in the study received informational sheets in person or via post. These
sheets included parent information and age-specific materials tailored to different age groups:
under 5, 6-10 years, and 11-16 years. The research team assessed each child and parent to
determine if obtaining the child's assent was appropriate. Participants were given sufficient time
to review the information without time constraints. Study details were thoroughly explained to
ensure clear comprehension of the purpose and procedures, with patients encouraged to seek
clarification or ask questions by contacting the research team. This approach aimed to ensure
that both participants and parents had all the essential information needed to make an informed

decision about participating in the study.
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5.8  Study Procedures
The study adhered to rigorous protocols, encompassing participant recruitment, data collection,
and analysis. Ethical considerations were paramount in ensuring a secure and confidential

research environment.

5.8.1 Interview with Health Care Professionals

Participants were informed that their involvement in this study was entirely optional, allowing
them to withdraw at any point, even during the interview or when faced with uncomfortable
questions, without needing to provide a specific reason. The study recognized and respected

potential concerns or discomfort.

5.8.2  Questionnaire Content

The study questionnaire consisted of two pages, each for different participants. The first page
targeted children, aiming to capture their experience and comfort during the study, with parental
assistance if needed. The second page contained questions for parents, providing insights into
their perspective on their child's experience. Participants also answered three questions related
to the Lifetouch sensor to assess comfort and overall experience, using a five-point attitude
scale to rate their agreement with statements. Detailed information about the questionnaire's

content is available in Appendix 4, outlining the specific questions and response options.

5.8.3 Parent and Child Questionnaire

Participants, including both the child and their parent if applicable, received a questionnaire to
gather perspectives on the Lifetouch sensor's acceptability, ease of use, and suitability for home
use. Seven questionnaires covered various aspects of the study, ensuring comprehension with
simple language and a font size of 14 points for readability. Appendix 4, provides detailed

information about the questionnaire, including specific questions and response options.

5.8.4 Medical History

Participants' medical histories were meticulously reviewed to create thorough records of their
medical conditions and surgical procedures. These records encompassed data from diverse
sources, including sleep studies, apnoea monitors, sleep and breathing histories, and other
pertinent medical records. For further details regarding the specific data sources and their
utilization in the study, please consult Appendix 9. This appendix offers additional insights into

the data collection process and the various types of medical records that informed the analysis.

5.8.5 Clinical Sleep Study Set-Up Procedure

Families of participants aged 6 months to 16 years were contacted and invited to join the study.

Upon receiving consent (and approval for legally adult patients), a cardiologist gathered the
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patients' medical history through a clinical examination. Subsequently, patients underwent a
clinical sleep study at the hospital using standard equipment known as SOMNOscreen plus,
which includes various monitoring components. Each patient was assigned a unique ID for
efficient organization, with a checklist available in Table 5.2, to aid in tracking and management
throughout the study.

5.8.6  Research Study Set-Up Procedure

The research procedure involves positioning a tablet beside the patient's bed and attaching the
Lifetouch sensor to the child's chest. In cases involving post-pubescent female patients,
assistance may be required due to breast tissue. The researcher ensures successful acquisition of
physiological signals before leaving the room. Clinical staff monitor the child closely
throughout the night for signs of illness or discomfort, with the option to remove the Lifetouch
sensor if necessary. If the sensor is misplaced or removed and cannot be reattached, the child's
participation in the study will be terminated. In the morning, all clinical sensors, including the
Lifetouch sensor, are removed, and families are interviewed for feedback on their experience.
Data, including heart rate measurements and PSG recordings, are uploaded and analysed by
technical staff. Heart rate data undergo processing using a DL algorithm to estimate OSA
probability over time, while PSG recordings are evaluated by a qualified professional for further
diagnosis.

5.8.7 Conducting the Study at Sheffield Children’s Hospital NHS Foundation Trust

On the first day of the study at Sheffield Children's Hospital, patients arrive at the designated
time for an allergy test to ensure safety. Parents or guardians are briefed on the consent form,
addressing any queries before signing to participate. Isansys equipment, including the Lifetouch
sensor, is set up with clear usage instructions prioritizing comfort. Throughout the night, the
study team monitors patients closely, addressing any concerns promptly. On the second day,
equipment is collected, and parents or guardians complete a questionnaire about their child's
sleep patterns, with the child also filling out a questionnaire if applicable. Before departure, a
sign-out session clarifies any remaining questions, reinforcing understanding of the study
procedures. Data collected is analysed and shared with healthcare providers for diagnosis and

treatment decisions. For a detailed overview of study activities and locations, refer to Table 5.4.

Table 5.4 Visit schedule.

Dayl
Time (pm) Event
18.00 Patient arrival

18.30 Allergy test
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Dayl

Time (pm) Event

18.35 Explain the consent form

18.45 Setting up the Isansys equipment

19.00 Set up for Nocturnal Polysomnogram
Day?2

Time (am) Event

07.00 Take away the medical equipment

07.30 Sign out the Parent and child questionnaire

59  Results and discussion

In the realm of global healthcare, OSA stands out as a significant concern, often slipping under
the radar due to inherent diagnostic complexities. This thesis boldly ventures into the domain of
real-time detection methods, introducing a cutting-edge OSA detection system fortified by
advanced technologies such as Al and the 10T. In addition to our study, conducted at Sheffield
Children's Hospital NHS Foundation Trust, it's worth noting that patients were concurrently
monitored and diagnosed using standard methods. Our research involved a thorough evaluation
of a DL algorithm's effectiveness on 15 patients with a history of OSA. The primary aim was to
assess its accuracy in comparison to PSG monitoring, a widely recognized standard in sleep
disorder diagnostics. Prior to commencement, rigorous enrolment procedures were
implemented, encompassing the dissemination of comprehensive study materials and the
procurement of informed consent from parents, orchestrated under the guidance of the chief
investigator. Additional study details are provided in Appendix 1, offering a deeper

understanding of our methodology and approach.

5.9.1 Patient and Clinician Feedback

The PPIE initiative provided a rich source of insights into the perceptions of both patients and
clinicians regarding real-time OSA detection. Participants expressed a strong acceptance of the
technology's potential to monitor OSA in home environments, highlighting its convenience and
comfort. The positive feedback regarding the ease of wearing the sensor underscores its user-
friendly design, which is crucial for ensuring patient compliance and long-term usage.
Moreover, the unanimous desire for continuous monitoring reflects a growing awareness of the
importance of proactive healthcare management, indicating a shift towards personalized and

preventive healthcare approaches. This feedback from stakeholders emphasizes the need for
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patient-centered technologies and underscores the potential impact of wearable sensor

technology on improving healthcare outcomes.

5.9.2 Challenges in Pediatric OSA Detection and Model Adaptation

Despite initial optimism surrounding the DL algorithm trained on adult data, its performance in
detecting OSA in children fell short of expectations. This critical finding underscores the
necessity for tailored models specifically designed for pediatric populations. While our system
did not detect two cases of OSA that were diagnosed by sleep physicians, the study uncovered
promising aspects regarding patient acceptance of Lifetouch wearables and the potential of DL
algorithms for OSA detection. However, the limited identification of OSA cases among the 15
patients emphasizes the urgent need for continuous refinement and advancement of detection
methods to bridge existing diagnostic gaps. The study's exploration of limitations associated
with OSA detection using HRV-based models shed light on significant challenges. The
utilization of a window size of 100 HRV by the LSTM model proved insufficient for capturing
the relatively short duration of apnoea/hypopnea episodes observed in the clinical study.
Additionally, the distinct characteristics of pediatric apnoea/hypopnea events compared to those
in adults underscored variations in the definition and presentation of OSA in pediatric

populations.

These insights underscore critical considerations for future research endeavors. Leveraging the
full ECG signal instead of HRV may offer greater efficacy in detecting OSA, particularly in
pediatric populations. Furthermore, the failure of the LSTM model to detect OSA highlights the
necessity for tailored models trained specifically on pediatric data. While the study encountered
challenges, it provides valuable insights into utilizing DL algorithms for OSA detection and the
acceptance of wearable technologies among patients. However, the limited identification of
OSA cases underscores the ongoing need for refinement and improvement of detection

methods, emphasizing the complexity of accurately diagnosing SA.

The methodology employed in the study involved meticulous data collection and analysis
procedures, integrating advanced technology such as the Isansys Lifetouch sensor for capturing
physiological data during sleep and enabling real-time DL analysis of RR interval signals.
Additionally, the study integrated a PPIE initiative, which provided valuable parental
perspectives on the necessity and desirability of real-time obstructive OSA monitoring devices
for children. Participants emphasized the importance of continuous monitoring for accurate
diagnosis and highlighted the potential benefits of remote monitoring in alleviating stress and

anxiety for both children and parents.
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Furthermore, the economic implications of integrating the Lifetouch sensor technology into
clinical practice were carefully considered. Transparent pricing details outlined in Table 5.1
facilitated a comprehensive understanding of the economic impact associated with this
integration. Each patient's utilization of the Lifetouch service was priced at approximately £25
per day, covering the sensor, the PSE Gateway, and the Lifeguard Server. This transparent
pricing model ensured seamless integration of server infrastructure, security, and connectivity
for remote patient monitoring. Moreover, the availability of Lifetouch equipment in varied
sizes, all priced at £25 per unit, accommodated diverse patient needs and usage durations,
ranging from 3 to 5 days. This pricing strategy prioritized accessibility and affordability while
upholding quality and functionality standards, enabling stakeholders to make informed
decisions regarding healthcare resource allocation.

In addition to evaluating the accuracy of the DL algorithm, the study assessed the usability and
comfort of the wearable sensor. Overall, the findings suggest that DL algorithms integrated with
wearable sensor technology hold promise for improving the diagnosis and management of
pediatric OSA. However, further research and refinement of these methods are warranted to
enhance their accuracy and effectiveness in clinical practice. Furthermore, the study explored
the broader implications of DL algorithms and wearable sensor technology beyond diagnostic
accuracy. By providing continuous, real-time monitoring in home environments, these
technologies offer a more accessible and convenient alternative to traditional diagnostic
methods like PSG. Moreover, the integration of lIoT-based solutions enables remote monitoring

and data analysis, reducing the burden on healthcare facilities and improving patient outcomes.

The collaborative effort between academic researchers and healthcare professionals ensured the
successful implementation of the study, from participant recruitment to data analysis. Key
personnel played essential roles in overseeing the study's execution and analysis, contributing to
its reliability and validity. Future research could enhance accuracy by incorporating additional
physiological parameters, and ongoing efforts are needed to refine and expand automated OSA
detection systems. Overall, the study's findings serve as a foundation for enhancing the accuracy
and practicality of automated OSA detection systems in pediatric settings. Future research and
implementation hold promise for advancements in accuracy and applicability, paving the way

for improved diagnosis and management of pediatric.
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Chapter 6 Conclusion

In this thesis, we conducted a comprehensive exploration into the detection and diagnosis of SA,
recognizing its substantial global health impact affecting millions worldwide. By investigating SA's
health implications, such as cardiovascular issues and daytime fatigue, we underscored the critical
need for improved diagnostic methods. Through an in-depth examination of SA and its diagnostic
challenges, we scrutinized the role of Al in healthcare, particularly its application in SA diagnosis.
Motivated by the pressing demand for more accessible and precise diagnostic approaches, we
identified the research problem and established clear aims and objectives to address this imperative.
By formulating pertinent research questions, we guided our investigation towards meaningful insights,
aiming to significantly contribute to the field by offering innovative approaches to tackle the

diagnostic complexities of SA and thereby improve patient outcomes and healthcare practices.

Our research focuses on leveraging cutting-edge computing and Al technologies to enhance SA
detection, motivated by the limitations of traditional diagnostic approaches like PSG. We propose
CAD systems that integrate 10T and advanced Al to improve accuracy and accessibility. Through
innovative techniques such as real-time detection for OSA and the development of high-performance
detection systems, we address the shortcomings of conventional methods. While our clinical study
involving 15 patients revealed lower-than-anticipated identification rates, it highlighted the potential
of these methods to provide quick, reliable, and standardized analyses.

By evaluating loT-based sensors, designing advanced data analytics techniques, and conducting
comprehensive validation studies, our research significantly contributes to advancing SA diagnosis.
The integration of 10T and Al technologies, particularly focusing on the Lifetouch sensor, promises to
enhance diagnostic accuracy and management, aiming to transform diagnostic practices in sleep
medicine. Collaboration between machine algorithms and human experts ensures safety, reliability,
and efficiency in the clinical process, with ongoing research and optimization promising to further

improve outcomes for individuals affected by SA worldwide.

Moreover, our study employed advanced techniques, particularly a LSTM network, for accurate SA
detection, showcasing promising results with robust validation and optimization strategies, manuscript
titled "Accurate detection of SA with long short-term memory network based on RR interval signals™
authored by Faust, et al., (2021). We outlined a proposed method for detecting SA using RR interval
signals, a key component in assessing HRV. This approach involves preprocessing the signal, filtering
it, and segmenting it into blocks for classification using an LSTM network. The collaborative effort
between machine algorithms and human expertise enhances the reliability and efficiency of SA
diagnosis and treatment monitoring, promising continued advancements in sleep medicine and

improved outcomes for patients affected by SA.
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6.1 Research Limitations

While this thesis endeavours to provide innovative solutions for the detection and diagnosis of SA,

there are several limitations that warrant acknowledgment.

Firstly, the sample size used in the clinical study, consisting of 15 patients with a history of OSA, may
not fully represent the diverse spectrum of SA cases. A larger and more varied sample size would
enhance the generalizability of the findings and provide a more robust assessment of the proposed
technology model's efficacy. Secondly, although the Lifetouch sensor was evaluated as a promising
tool for SA detection, its performance may vary in different populations and clinical settings. Further
validation studies across different demographic groups and under varied environmental conditions are
necessary to ascertain its reliability and effectiveness. Moreover, the proposed method for SA
detection using RR interval signals and the LSTM network is based on specific assumptions and
parameters. Variations in signal quality, patient characteristics, and other factors may impact the

performance of the algorithm, necessitating continuous refinement and optimization.

Additionally, while the collaborative approach between machine algorithms and human experts holds
promise for enhancing the reliability and efficiency of SA diagnosis, it also poses challenges in terms
of implementation and integration into clinical practice. Addressing these challenges requires careful
consideration of workflow dynamics, resource allocation, and training requirements. Furthermore, the
focus on leveraging cutting-edge computing and Al technologies may inadvertently exclude certain
populations with limited access to or familiarity with these advancements. Ensuring equitable access
to diagnostic tools and interventions remains a crucial consideration in addressing the global burden
of SA. Lastly, despite the efforts to streamline the clinical process and improve decision support, it's
essential to recognize that SA diagnosis and treatment monitoring are multifaceted processes
influenced by various factors beyond technological interventions. Factors such as patient compliance,
socioeconomic status, and healthcare infrastructure play significant roles and should not be

overlooked.

In summary, while this thesis represents a significant advancement in the field of sleep medicine, it is
important to acknowledge these limitations and recognize the ongoing need for further research,
validation, and refinement to realize the full potential of the proposed technologies and methodologies

in addressing the complexities of SA detection and management.
6.2 Future Research

The future research will focus on advancing the field of SA detection and diagnosis by exploring
innovative methodologies to overcome current limitations and deepen our understanding of this

pressing global health challenge.
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The initial phase of the research will concentrate on investigating the potential utility of full ECG
signals for SA detection. Recognizing the shortcomings of relying solely on RR interval signals, the
study aims to assess the feasibility of integrating complete ECG waveforms to capture additional
physiological data. This approach holds promise for enhancing the accuracy of SA diagnosis by
providing a more holistic insight into cardiac activity during sleep. Another pivotal aspect of the
research will involve characterizing paediatric SA patterns and refining diagnostic criteria tailored
specifically to this demographic. Acknowledging the notable differences between paediatric and adult
SA, particularly in terms of event duration and diagnostic thresholds, the study will meticulously
scrutinize paediatric SA patterns. By fine-tuning diagnostic criteria, the research seeks to better
accommodate the unique characteristics of paediatric SA, thereby improving diagnostic accuracy and

enhancing patient care within this population.

Methodologically, the research will entail the collection and analysis of extensive datasets comprising
both adult and paediatric SA cases. Leveraging advanced signal processing techniques and machine
learning algorithms, the study aims to extract relevant features from these datasets to accurately
classify SA events. Additionally, a comprehensive literature review and meta-analysis will be
conducted to identify gaps and inconsistencies in existing research on paediatric SA and diagnostic
criteria. By synthesizing findings from various studies, the research aims to offer comprehensive
insights into paediatric SA patterns and the diagnostic challenges encountered in clinical practice.

The subsequent phase of the research will involve the evaluation of full ECG signals for SA detection,
presenting findings on both the potential advantages and obstacles associated with this approach.
Comparative analyses with established RR interval-based methods will be conducted to assess the
efficacy of full ECG signals in enhancing diagnostic precision. Furthermore, the results of the
literature review and meta-analysis will be discussed, shedding light on the unique features of

paediatric SA and emphasizing the necessity for tailored diagnostic criteria.

In conclusion, this future research thesis aims to make a significant contribution to the refinement of
SA detection and diagnosis methodologies. By exploring the potential of full ECG signals and
recalibrating diagnostic criteria for paediatric SA, the study endeavours to overcome existing
challenges and facilitate the implementation of more precise and effective strategies for managing SA
across diverse patient populations. Through meticulous data analysis and comprehensive literature
review, the research seeks to advance our understanding of SA and ultimately enhance patient

outcomes in clinical practice.
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Appendices

In this appendix section, additional information and supplementary material related to the main
content of the document is provided. This includes detailed tables, figures, and graphs, as well as
supporting documents such as informed consent forms, survey questionnaires, and other relevant

materials.

Appendix 1 Parent/Legal Guardian Information Sheet

Sheffield Children’s

Information Sheet

. - Trial Consent Form and

PARTICIPANT INFORMATION SHEET
FOR CHILDREN/YOUNG PEOPLE AGED 11 TO 15

Study title: Study to evaluate wireless sensors (Lifetouch) for identification of
Paediatric Sleep Apnoea

We are asking if you would join in a research project to find the answer to the
question “can the Lifetouch sensor diagnose sleep apnoea as well as the standard
Polysomnography?”. Before you decide if you want to join in, it's important to
understand why the research is being done and what it will involve for you. So
please read this leaflet carefully. Talk to your family, friends, doctor or nurse if you
want to.

Part 1 — to give you first thoughts about the project

1. Why are we doing this research?

We want to try and find out if a new wearable device, called Lifetouch works just as
well as the equipment that we use at the moment for sleep studies, called
Polysomnography. If the research finds that Lifetouch is just as good as
Polysomnography, then in the future, children might be able to have their sleep
studies done using the Lifetouch which would be more comfortable and could be
done at home.
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2. What is the device that is being tested?
The Lifetouch sensor is a smart-patch that sticks onto your chest. It will remain there
monitoring your breathing whilst you sleep.

3. Why have | been invited to take part?
You have been chosen because you may have sleep apnoea and you will be having
a Polysomnography.

4, Do | have to take part?

No! It is up to you. We will ask you if you would like to take part and then ask if you
would sign a form (this is called and “assent form”). We will give you a copy of this
information sheet and your signed form to keep. You are free to stop taking part at

Participant Information Sheet Age 11-15

The Lifetouch Study

Version 1.0, Date 16/3/21

Corresponding protocol version 1.0 and date 1673721
IRAS ID

©® Sheffield Children's NHS Foundation Trust S C H 3 4 1 O

TEMPLATE.R8D.37 (5) - INFORMATION SHEET 11-15.docx
Updated by Wendy Swann 06.04.16

sheffield Children’s Iz &3

- Trial Consent Form and

36703 Information Sheet

any time during the research without giving a reason. If you decide to stop, this will
not affect the care you receive.
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5. What will happen to me if | take part?

If you agree for your child to take part in this study, you will wear a small sticker on
your chest that will monitor your breathing signals overnight. This will be in addition
to the equipment for the Polysomnography that your doctor has asked for.

The Lifetouch sensor will be selected to fit you; it comes in various sizes. It will
attach to your chest as shown in the photo below. Your parent or carer will be asked
to stick it onto you, or you can do that yourself if you prefer. This is so that we can
check whether it would be possible to use it at home in the future.

Your doctor will decide whether you have sleep apnoea based on the
Polysomnography readings and the research doctors will work out what the
diagnosis is from the Lifetouch sensor. Afterwards they will compare the results, to
see whether the Lifetouch sensor got it right.

The research only lasts for the one night that you will be in the sleep unit. You do not
need to come back to the hospital or have any other tests done.

Below is a picture of a child wearing the Lifetouch sensor, with the signals shown on
a tablet.
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6. What will | be asked to do?
You will not be asked for anything different other than the normal sleep test. When

you wake up from your sleep test, the nurse or researcher will ask you a few
questions about how comfortable the Lifetouch sensor was.

(£ What are the possible side effects of the device?
There should be no side effects from wearing the Lifetouch sensor overnight. The

sensor sticks to your chest and the feeling that you will have after putting it on will be
very similar to the feeling of putting on a plaster.

Also, as with any plaster, when you remove it, there might be some redness or very
mild irritation of the skin, which for some people can cause slight discomfort for a
short period of time.

8. What are the possible benefits of taking part?
We cannot promise the study will help you but the information we get might help

diagnose and treat children and young people with Sleep Apnoea with better
diagnosis tools and faster treatment in the future.

115



0, Contact for further information

Parficipant Information Sheet Age 11-15%

The Lifetouch Study

Version 1.0, Date 16/321

Comesponding protocol version 1.0 and date 167321

IRAS 1D *
& Sheftheld Children s NHS Foundation Trust S C I I 3 4 1 c

TEMPLATE R&D 37 (5) - INFORMATION SHEET 11-15.docx
Updated by Wendy Swann 060416

sheffield Children’s ["/253

E Trial Consent Form and

BT03 Information Sheet

If you would like to know maore about research in general, the Clinical Research
Facility at this hospital has an Information for families section on its website
www.sheffieldchildrens.nhs.ukiresearch-and-innovation.htm or you could contact the
hospital Clinical Research Facility:

Dominic Nash

R&D Manager

Sheffield Children's NHS Foundation Trust
Tel: 0114 3053478

If you would like to know more specific infoermation about this research project,
please contact the project co-ordinator:

Professor Heather Elphick

Designation: Consultant Paediatrician in Sleep & Respiratory Medicine
HospitallDepartment: Dept of Sleep and Respiratory Medicine
Sheffield Children's NHS Foundation Trust

Tel: 0114 271 7400

Thank you for reading so far - if you are still interested, please go to Part 2:
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Part 2 - more detail — information you need to know if you want to take part.

10. What happens when the research project stops?
If you withdraw from the study, we will destroy all your signals if you wish.

11. What if there is a problem or something goes wrong?
Tell us if there is a problem and we will try and sort it out straight

away. You and your parent or carer can either contact Professor
Elphick or the hospital complaints co-ordinator:

Julie Mather
Patient Advice & Liaison Co-ordinator
Sheffield Children's NHS Foundation Trust

Tel: 0114 271 7594

12.  Will anyone else know I'm doing this?
We will keep your information in confidence. This means we will only tell those who

have a need or right to know. Any information that leaves the hospital will have your
name and address removed.

13. Who is organising the research?
This study is organised by Sheffield Children’s Hospital and Sheffield Hallam

University.

14. Who has reviewed the study?
All research in the NHS is looked at by an independent group of people, called a

Research Ethics Committes, to protect your interests. This study has been reviewed
and given a favourable opinion by <name of> Research Ethics Committes.

It has also been checked by the Research Department at this hospital.

Thank you for reading this — please ask any questions if you need to.

Parficipant Infoemation Sheet Age 11.15
h o St

g prodocod version 1.0 and dale 167321
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Ymchwil lechyd m
a Gofal Cymru

Health and Care Health Research
Research Wales Authority

Professor Heather Elphick

Consultant in Respiratory and Sleep Medicine Hciua:: af:\/’;‘f“ﬁ':::::zt
Sheffield Children's NHS Foundation Trust : T
Sheffield Children's Hospital

Western Bank

S10 2THN/A
06 January 2022
Dear Professor Elphick
HRA and Health and Care
Research Wales (HCRW)
Approval Letter
Study title: Feasibility study to evaluate wireless sensors
(Lifetouch) for simplified identification of Paediatric
Sleep Apnoea based on RR intervals
IRAS project ID: 299944
Protocol humber: N/A
REC reference: 21/SC/0366
Sponsor Sheffield Hallam University

| am pleased to confirm that HRA and Health and Care Research Wales (HCRW) Approval
has been given for the above referenced study, on the basis described in the application form,
protocol, supporting documentation and any clarifications received. You should not expect to
receive anything further relating to this application.

Please now work with participating NHS organisations to confirm capacity and capability, in
line with the instructions provided in the “Information to support study set up” section towards
the end of this letter.

How should | work with participating NHS/HSC organisations in Northern Ireland and
Scotland?

HRA and HCRW Approval does not apply to NHS/HSC organisations within Northern Ireland
and Scotland.

If you indicated in your IRAS form that you do have participating organisations in either of
these devolved administrations, the final document set and the study wide governance report
(including this letter) have been sent to the coordinating centre of each participating nation.
The relevant national coordinating function/s will contact you as appropriate.
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Please see IRAS Help for information on working with NHS/HSC organisations in Northern
Ireland and Scotland.

How should | work with participating non-NHS organisations?
HRA and HCRW Approval does not apply to non-NHS organisations. You should work with
your non-NHS organisations to obtain local agreement in accordance with their procedures.

What are my notification responsibilities during the study?

The standard conditions document “After Ethical Review — gquidance for sponsors and
investigators”, issued with your REC favourable opinion, gives detailed guidance on reporting
expectations for studies, including:

e Registration of research

¢ Notifying amendments

¢ Notifying the end of the study
The HRA website also provides guidance on these topics, and is updated in the light of
changes in reporting expectations or procedures.

Who should | contact for further information?
Please do not hesitate to contact me for assistance with this application. My contact details
are below.

Your IRAS project ID is 299944. Please quote this on all correspondence.
Yours sincerely,
Nabeela Gaulton (nee Igbal)

Approvals Specialist

Email: approvals@hra.nhs.uk

Copy to: Dr Keith Fildes, Sheffield Hallam University
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List of Documents

The final document set assessed and approved by HRA and HCRW Approval is listed below.

Document Version Date
Contract/Study Agreement template [MNCA] 2.2 01 January 2021
Evidence of Sponsor insurance or indemnity (non NHS Sponsors 20 September 2021
only) [Insurance general certificate]

IRAS Application Form [IRAS_Form_14102021] 14 October 2021
IRAS Checklist XML [Checklist_26112021] 26 November 2021
IRAS Checklist XML [Checklist_04012022] 04 January 2022
Non-validated questionnaire [Questionnaire] 2 04 January 2022

-

Organisation Information Document [299944 Organisation 15 December 2021

Information Document]

Other [Response to ethics committee] 1.0 26 November 2021
Participant consent form [Consent] 2 26 November 2021
Participant consent form [Assent] 2 26 November 2021
Participant information sheet (PIS) [PIS 0-5] 2 26 November 2021
Participant information sheet (PIS) [PIS 6-10] 2 26 November 2021
Participant information sheet (PIS) [PIS 11-15] 2 26 November 2021
Participant information sheet (PIS) [PIS Parent] 2 26 November 2021
Research protocol or project proposal [The Lifetouch Study] 1.0 16 March 2021
Schedule of Events or SOECAT [Schedule of events] 1.1 15 September 2021
Summary CV for Chief Investigator (Cl) [Research CV] 14 September 2021
Summary CV for student [RB CV] 14 July 2021
Summary CV for supervisor (student research) [OF CV] 19 July 2021
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Information to support study set up

IRAS projectID | 209944

The below provides all parties with information to support the arranging and confirming of capacity and capability with participating NHS
organisations in England and Wales. This is intended to be an accurate reflection of the study at the time of issue of this letter.

Types of Expectations related to | Agreement to be | Funding Oversight HR Good Practice Resource
participating confirmation of used arrangements expectations Pack expectations

NHS capacity and capability

organisation

There is only Research activities An Organisation No application for | Pl would be No Honorary Research

one participating | should not commence at | |nformation external funding expected. Contracts, Letters of Access or

NHS
organisation
therefore there is
only one site
type.

participating NHS
organisations in England
or Wales prior to their
formal confirmation of
capacity and capability
to deliver the study.

Document has
been submitted
and the sponsor is
intending to use a
separate site
agreement.

The agreement is
unmodified.

will be made.

pre-engagement checks are
expected for local staff
employed by the participating
NHS organisations. Where
arrangements are not already in
place, network staff (or similar)
undertaking any of the research
activities listed in the IRAS form
(except for administration of
questionnaires or surveys),
would be expected to obtain an
honorary research contract from
one NHS organisation (if
university employed), followed
by Letters of Access for
subsequent organisations. This
would be on the basis of a
Research Passport (if university
employed) or an NHS to NHS
confirmation of pre-engagement

checks letter (if NHS employed).
These should confirm enhanced
DBS checks, including
appropriate barred list checks,
and occupational health
clearance. For research team
members only administering
questionnaires or surveys, a
Letter of Access based on
standard DBS checks and
occupational health clearance
would be appropriate.

Other information to aid study set-up and delivery

This details any other information that may be helpful to sponsors and participating NHS organisations in England and Wales in study set-up.

The applicant has indicated that they do not intend to apply for inclusion on the NIHR CRN Portfolio.
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Appendix 3 Authorization Letter of Access for Researcher

Sheffield Children’s [\253

NHS Foundation Trust

children’s clinical research facility
innovative & pioneering treatments for children

D Floor StephensonWing

Sheffield Children’s NHS Foundation Trust

Western Bank, Sheffield S10 2TH

28" January 2022
Dear Ragab Barika

Letter of access for research:
SCH-2617: Feasibility study to evaluate wireless sensors (Lifetouch) for
simplified identification of Paediatric Sleep Apnoea based on RR intervals

In accepting this letter, each participating organisation confirms your right of access
to conduct research through their organisation for the purpose and on the terms and
conditions set out below. This right of access commences on the 28" January 2022

- and ends on 30™ August 2024 unless terminated earlier in accordance with the
clauses below.

You have a right of access to conduct such research as confirmed in writing in the
letter of permission for research from Sheffield Children's NHS Foundation Trust.
Please note that you cannot start the research until the Principal Investigator for the
research project has received a letter from us giving confirmation from the individual
organisation(s) of their agreement to conduct the research.

The information supplied about your role in research at the organisation(s) has been
reviewed and you do not require an honorary research contract with the
organisation(s). We are satisfied that such pre-engagement checks as we consider
necessary have been carried out. Evidence of checks should be available on request
to the organisation(s). ' : R STE

You are considered to be a legal visitor to the organisations premises. You are not
entitled to any form of payment or access to other benefits provided by the
organisation(s) or this organisation to employees and this letter does not give rise to
any other relationship between you and the organisation(s), in particular that of an
employee.

While undertaking research through the organisation(s) you will remain accountable
to your substantive employer but you are required to follow the reasonable
instructions of the organisation(s) or those instructions given on their behalf in
relation to the terms of this right of access.

Where any third party claim is made, whether or not legal proceedings are issued,
arising out of or in connection with your right of access, you are required to co-
operate fully with any investigation by the organisation(s) in connection with any such
claim and to give all such assistance as may reasonably be required regarding the
conduct of any legal proceedings.

You must act in accordance with the organisations policies and procedures, which
are available to you upon request, and the Research Governance Framework.

Version 2.4 March 2019

Research in the NHS: HR Good Praclice Resource Pack Page 1 of 3
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You are required to co-operate with the organisation(s) in discharging its/their duties
under the Health and Safety at Work etc Act 1974 and other health and safety
_legislation and to take reasonable care for the health and safety of yourself and
others while on the organisations premises. You must observe the same standards of
care and propriety in dealing with patients, staff, visitors, equipment and premises as
is expected of any other contract holder and you must act appropriately, responsibly
and professionally at all times.

If you have a physical or mental health condition or disability which may affect your
research role and which might require special adjustments to your role, if you have
not already done so, you must notify your employer and each organisation prior to
commencing your research role at that organisation,

You are required to ensure that all information regarding patients or staff remains
secure and strictly confidential at all times. You must ensure that you understand and
comply with the requirements of the NHS Confidentiality Code of Practice and the
Data Protection Act 2018. Furthermore you should be aware that under the Act,
unauthorised disclosure of information is an offence and such disclosures may lead
to prosecution. -

You should ensure that, where you are issued with an identity or security card, a
bleep number, email or library account, keys or protective clothing, these are
returned upon termination of this arrangement. Please also ensure that while on the
organisations premises you wear your |D badge at all times, or are able to prove your
identity if challenged. Please note that the organisation(s) do not accept responsibility
for damage to or loss of personal property.
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This organisation may revoke this letter and any organisation(s) may terminate your
right to attend at any time either by giving seven days' written notice to you or
immediately without any notice if you are in breach of any of the terms or conditions
described in this letter or if you commit any act that we reasonably consider to
amount to serious misconduct or to be disruptive and/or prejudicial to the interests
and/or business of the-organisation(s) or if you are convicted of any criminal offence.
You must not undertake regulated activity if you are barred from such work. If you are -
barred from working with adults or children this letter of access is immediately
terminated. Your employer will immediately withdraw you from undertaking this or

any other regulated activity and you MUST stop undertaking any regulated activity
immediately.

Your substantive employer is responsible for your conduct during this research
project and may in the circumstances described above instigate disciplinary action
against you.

No organisation will indemnify you against any liability incurred as a result of any
breach of confidentiality or breach of the Data Protection Act 2018. Any breach of the

Data Protection Act 2018 may result in legal action against you and/or your
substantive employer.

If your current role or involvement in research changes, or any of the information
provided in your Research Passport changes, you must inform your employer

through their normal procedures. You must also inform your nominated manager in
- Sheffield Children’s NHS Foundation Trust and the R&D office in this organisation.

Version 2.4 March 2019
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Yours sincerely

Gl bty

Dr Gillian Gatenby
Associate Director Research and Innovation

cc: HR department of the substantive employer
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Appendices
Appendix 4 Questionnaire Leaflets

Parent and child questionnaire

For the child to answer (with the parent if needed)

1. Did the Lifesensor feel comfortable when it was on your chest? (Draw a mark on the line)

(Very comfortable) (Not comfortable at all)

2. Did it hurt when the Lifesensor was taken off your chest?

(Didn’t hurt at all) (Hurt a lot)

3. Did you like the Lifesensor better than the other sleep equipment?

(Much better) (Much worse)

The Lifetouch Study
Parent and child questionnaire
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Parent and child questionnaire

For the parent to answer

1. How comfortable did your child seem wearing the Lifesensor?
On a scale of 1 to 10 (I being not at all comfortable 10 being extremely comfortable)

1 2 3 4 5 & 7 8 9 10

2. How easy was the Lifesensor to apply to your child’s chest?
On a scale af 1= 10 (1 being very difficult and 10 being very easy)

| 2 3 4 5 & 7 8 9 10

3. Ifthe research shows that the Lifesensor can accurately diagnose sleep apnoea would you
prefer this method to the existing diagnostic method if your child had to have another sleep
study in the future?

On a scale af 1 - 10 (1 being wouldn 't prefer and 10 being would prefer)

1 2 3 4 5 G 7 8 9 10

4. Please write below any specific comments, good or bad feedback about the Lifesensor
system

Thank you very much for vour time completing this questionnaire

The Litetouch Study
Parent and child questionnaire
Fralocal aumber: 1.0
Viersion date: 16321

127



Appendix 5 Parent Consent Form

Sheffield Children's 151

. E Trial Consent Form and MHS Foundation Trust .

26703 Information Sheet

Participant study number:
PARENT CONSENT FORM

Title of project: Feasibility study to evaluate wireless sensors (Lifetouch) for

simplified identification of Paediatric Sleep Apnoea based on RR intervals

Mame of researcher: Professor Heather Elphick Please initial box

1. 1 confirm that | have read and understand the information sheet dated
N (version X) for the above study. | have had the opportunity to
consider the information, ask questions and have had these answered
satisfactorily.

2. lunderstand that my child’s participation is voluntary and that | am free to
withdraw my child at any time, without giving any reason, without my medical
care or legal rights being affected.

3. lunderstand that relevant sections of any of my child's medical notes and
data collected during the study, may be looked at by researchers and
those involved in the running and supervision of the study from Sheffield
Children’s NHS Foundation Trust or from regulatory authorities, where it
is relevant to my taking part in research. | give permission for these
individuals to have access to my records.

4. |understand that the signals obtained with the different systems used in
this project might be used in the future for further research. These signals
will not contain any personal information.

5. lagree to my child taking part in the above study.

The Lifetouch Study
Parent! Guardian Consant fomn

Version 1.0
*SCH3410
Corresponding profocol verslon 1.0 and date 168/3721

IRAS D

0 Sheffeld Children's NHS Foundation Trust

COMSENT FORM PARENT W
. Updated by Wendy Swann 06.04.16 .
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sheffield Children's 253

. E Trial Consent Form and NHS Foundation Trust .

ABTO5 Information Sheet
Mame of Parent/ Guardian Signature Date
Mame of Child Relationship to Child
Mame of Person taking consent Signature Date

When completed: 1 for participant; 1 (original) for researcher site file; 1 to be kept with
hospital naotes

The Lifetouch Study
Parant! Guardian Congeant o

ersion 1.0
o *SCH3410
Cormesgonding protocol version 1.0 and date 168/3/21

IRAS ID

£ Sheffield Children's NHE Foundation Trust

COMSENT FORM PARENT W1
. Updated by Wendy Swann 06.04.16 .
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Appendix 6 Assent Form for Children & Young People

sheffield Childrens &3

. E Trial Consent Form and WHS Foundation Trust .

4B703 Information Sheet

ASSENT FORM FOR CHILDREN & YOUNG PEOPLE
(To be completed by the child/young person and their parent/carer)

Title of project: Feasibility study to evaluate wireless sensors (Lifetouch) for simplified
identification of Paediatric 5leep Apnoea based on RR intervals

Participant study number:

Child (or if unable, parent on their behalf)/young person to circle all they agree with:

Has somebody else explained this project to you? Yes [/ No
Do you understand what this project is about? Yes [/ No
Have you asked all the questions you wanted? Yes [ No
Hawve you had your questions answered in a way you understand? Yes [ No
Do you understand it's OK to stop taking part at any time? Yes [ No
Are you happy to take part? Yes [ No

If any answers are ‘'ng’ or you don't want to take part, don’t sign your name!

If you do want to take part, you can write your name below

Your name Date

The person who explained this project to you needs to sign too:

The Litatouch Study
Assent fonm

‘ersion 1.0, Date 16/321 *
Cormesponding profocol verslon 1.0 and date 1673721 S' H 3 4 1 0
IRAS 1D

£ Shaffield Children’s NHS Foundstion Trust
ASSENT FORM W1
. Updated by Weandy Swann 05.04.16 .
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sheffield Children's 25

. E Trial Consent Form and HHS Foundation Trust .

46703 Information Sheet

Marme of Researcher Signature Date
Thank you for your help.

1 for participant; 1 for researcher site file; 1 to be kept with hospital notes

The Lifetouch Study
Aggant onm

Version 1.0, Date 16321 *
Caorresponding prolocol verskon 1.0 and date 16/3/21 S' H 3 4 1 O
IRAS ID

£ Sneffield Children's NHE Foundation Trust
ASSENT FORM V1
. Updated by Wendy Swann 05.04.16 .
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Appendix 7 A Copy of the Phone Interview Prompt Sheet for PPIE Activity

What SA detection products or services do you know? What functions or features do you like
or dislike, and why?

Do you think a real-time SA monitoring and detection service is useful? What benefits and
shortcomings can you predict?

What features would you like to have as part of the device or service?

How long should the battery last?

Would you like educational materials provided with the device or service?

Do you have any privacy or other ethical concerns with storing and processing your
electrocardiogram (ECG) signals?
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Appendices

Appendix 8 Journal Author Rights
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Appendix 9 Patient Checklist

sheffield Children’s [\ &

MHS Foundation Trust

Shefficld Childeris
NHS Fourdation Tnss™

SLEEP UNIT ATTENDANCE BOOKLET

SECTION 1 : PATIENT INFORMATION

Date & Time Room Consultant

Admitting staff member

Person accompanying child:
Full Name:

Relationship to child:

Contact Details:

School / Nursery details:

Like to be known as:

GP Details: Other community / health professionals details:

Alerts (medical/safeguarding) staff to compiete):

SECTION 2 : CLINICAL ASSESSMENT

Height (cm) | Weight (kg) Allergies [tapes, medicines, food)

Moving & Handling Assessment Hoist Are they up to date with
High / Medium / Low Yes [/ No immunisations? Yes [/ No
Are they fit and well for them? Current medication : Name / Dose f Frequency

Have they been in contact with any infectious
illnesses in the past two weeks?

Do they have any special feeding requirements

Sleep Admission Document Version 2 13-05-2020
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SECTION 3 : MEDICAL HISTORY

Any relevant comorbidities (e.g. epilepsy, asthma,
developmental delay)

Any previous relevant surgery or investigations (e.g.
home oximetry, adenotonsillectomy)

Emergency care plan? Y/N

SECTION 4 : SLEEP AND BREATHING HISTORY

Snores Yes/NofOcc | Difficulty Settling Yes/MNo/Occ
Apnoeas or pauses in breathing Yes/NofOcc | Restless overnight Yes/MNo/Occ
Coughing Yes/NofOcc | Restless legs; pains in legs Yes/MNo/Occ
Mouth Breathing Yes/NofOcc | Frequent awakenings Yes/MNo/Occ
Morning Headaches Yes/NofOcc | Sleep walking or sleep talking Yes/MNo/Occ
Usual bedtime Excessively sleepy in the daytime Yes/MNo/Occ
Usual wake up time Difficulty concentrating in the daytime Yes/MNo/Occ

Other sleep related information (bottle feeds overnight, sleep behaviours to look out for, dummy etc)

SECTION 5 : APNOEA MOMITOR RECORD (please complete if the patient has an apnoea monitor)

Apnoea Monitor Alarm set at [ 10 seconds or [ 20 seconds

How often does the apnoea monitor alarm go off?

n Every night D A few times a week |:| Once a week
[0 A few times a month [Jevery few months ot at all

SECTION 6 : NIV / TRACHEOSTOMY / OXYGEN REQUIREMENT (please complete if on therapy)

CPAP cm H20 BIPAP (1) / (E) cm H30 Rate Ti (s)

Ventilator Make Mask make and size

Sleep Admission Document Version 2 13-05-2020
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Tracheostomy Size
Cuffed / Uncuffed

Oxygen Reguirement

Suction Catheter Size
Make: Bivona / Shiley / Other

Ifmin

Day / Night

MNeonate/Paediatric/Adult

Masal Prongs / Mask

SECTION 7 : SLEEP 5TUDY INFORMATION

Reason for sleep study

Sleep Study Type Special Instructions
| e.g. Full PSG e.g. off NIV

Time of set up Set up completed by

Consent to video

Yes [ No

Consent to teaching

Yes / No

Please tick which sensors were attached

[0 nasal pressure

D Oronasal thermistor

[JRespiratory Bands

|:| Body Position

u Oximetry

DECG

D Transcutaneous CO2

D Snore sensor

[0 Leg EMG

D Chin EMG

s

0 koG

SECTION 8 : OXYGEN INITIATION GUIDLINES

Sp02 Standard Limits Heart Rate Sp02 Limits if different Heart Rate limits if
standard limits different

Upper Limit 100% 180 bpm

Lower Limit B5% 60 bpm

SECTION 9 : STAFF COMPLETING DOCUMENT

Date Name

lob Title

Sleep Admission Document Version 2 18-05-2020
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. : 1 Sheffield Children’'s NHS
Sheffield Children's [i5] ot
46703 NHS Foundation Trust Westem Bank,

Sheffield
S102TH

Consent to Clinical Videography and Sound Recording

Affix patient label or complete

SCH Hospital Number.................... Department:

UG ) SR e it
Forename...............c.ccceeveceveinnnn. Video Recorded by:
BOB. s S RS

Sex.......... PostCode.... ... Date of Video Recording:
NHS Nomber........ocosiisinnziminai:

| hereby confirm that | give consent for video and sound recordings (the ‘material’) to be
made of me/the above named child. | confirm that the purpose for which the matenal would
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Appendix 10 Additional Information on SA Detection Studies.

Table 6.1 Details of the 113 selected studies on SA detection in the home environment.

. . . . Number of .
Authors Signal Detection Method  Online/Offline o Detection Performance
Participants
Saletu et al., 2018 PSG Sleep physicians Online 265 -
Massie et al., 2018 PSG Sleep physicians Online 101 -
Rosen et al., 2018 - Home sleep apnoea test Online - -
Sensitivity = 78%
. Specificity = 23%
S.S.Ngetal, 2019 PSG Sleep physicians 316 . o
Negative predictive value
= 67% positive = 35%
Sensitivity = 85%
Specificity = 87%%
Gu et al., 2020 SpO2 Sleep physicians Online 50 Positive and negative
predictive value = 0.88%
and 0.83%
] Home respiratory o )
Chiner et al., 2020 Sleep physicians Online 121 Accuracy = 93%
polygraphy HRP
Gutiérrez-Tobal et al., Machine learning AB- .
SpO2 Offline 230 Accuracy = 78.7%
2019 LDA
Zancanella et al., 2022 PSG EmblettaX100 system Offline 40 -
Manoni et al., 2020 PSG MORFEA Online - -
Home sleep apnoea
Kole, 2020 . - >800 -
testing
Sensitivity = 0.46,
Specificity = 0.95%
R. Stretch et al., 2019 PSG Sleep physicians Online 613 Positive predictive value
= 0.81% negative
predictive value = 0.80%
] ] Sensitivity = 76%,
Castillo-Escario et al., . . o
PSG MATLAB Offline 13 Positive Predictive Value
2019a
=82%
Hunasikatti, 2019 PSG Sleep physicians Online 206 -
o ) Sensitivity = 79%
Romero et al., 2022 PSG Sleep physicians Online 103 o
Specificity = 80%
Massie et al., 2022 PSG WatchPAT Offline 20 -
Kristiansen et al., 2021 PSG Machine learning Online 579 Accuracy = 89%
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Number of

Authors Signal Detection Method  Online/Offline o Detection Performance
Participants
Nobuaki Tanaka et al.,
- W-PAT - 776 -
2021
Colelli et al., 2021 HSAT Sleep physicians Online 119 -
) o ) Sensitivity = 100%
Ikizoglu et al., 2019  PSG and HPG Sleep physicians Online 19 o
Specificity = 83%
Aielo et al., 2019 PG Sleep physicians Online 300 Accuracy = 95%
) ECG, SCG, and o )
Zavanelli et al., 2021 PPG Sleep physicians Online - Accuracy = 95%
Colaco et al., 2018 PSG Sleep physicians Online 43,780 -
(Ekiz et al., 2020) PSG Sleep physicians Online 43,780 -
Embla® Embletta®
Maggio et al., 2021 PSG GOLD portable sleep Online 45 Accuracy = 93%
system
Steffenetal., 2021  PSG and HST Sleep physicians Online 131 -
. Sensitivity = 70%
Orretal., 2018 PSG and HST MATLAB Offline 27 o
Specificity = 71%
Gutiérrez-Tobal et al., Least-squares boosting )
SpO2 . Offline 8762 Accuracy = 87.2%
2021 algorithm
(Fietze et al., 2022) polygraphy (PG) Sleep physicians Online 505 -
Sensitivity = 85%
Specificity = 0.48%
] ) BresoDx® portable )
Fitzpatrick et al., 2020 PSG manitor Offline 233 Positive and negative
predictive values were,
0.81% and 0.54%
Ferrer-Lluis et al., ] ] . )
Pulse oximetry Apnealink™ Air Offline - -
2019
. . Sensitivity = 78%
Huysmans et al., 2021 PSG Total Sleep Time (TST) Offline 183 o
Specificity = 89%
Positive Airway
(Joymangul et al., )
Pressure (PAP) Python Online 668 -
2020)
therapy
Accuracy = 86%
Mtyficzak et al., 2020 PSG Audio sensor Online 30 Sensitivity = 96%,

Specificity = 76%
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PSG and PAT o )
Van Pee et al., 2022 Sleep physicians Online 167 -
HSAT
Castillo-Escario et al., o )
audio signals MATLAB Offline 3 Accuracy = 95.9%
2019b
Epworth sleepiness
scale, STOP-BANG .
Navarro-Martinez et . . . . Sensitivity = 80%
pulse oximetry  questionnaire, and C- Online 117 o
al., 2021 . . Specificity = 92%
reactive protein
screening
) ] ) ) Sensitivity = 82%
Patel et al., 2018 PSG ApneaLink Air devices Online 106 L
Specificity = 92%
Magalang et al., 2019  Nasal pressure Fifteen HSAT Offline - -
Mufioz-Ferrer et al., . )
PSG Sleepwise (SW) Online 38 Accuracy = 84%
2020
Light et al., 2018 EEG and PSG Sleep physicians Online 207 Accuracy = 95%
0Oceja et al., 2021 PSG HRP Online 320 -
Di Pumpo et al., 2022 - WatchPAT - - -
Hoshide et al., 2022 PSG CPAP therapy Online 105 Accuracy = 86.9%
Hui et al., 2018 PSG Respiratory polygraphy Online - Accuracy = 95%
Goldstein et al., 2018 PSG Sleep physicians 196 Accuracy = 84%
(Jensen et al., 2022) PSG NightOwI™ Offline 150 Accuracy = 95%
Body movement,
. respiratory rate,
Simonds, 2022 piratory Withings Sleep _ Sensitivity = 88%
heart rate, Online 67,278 o
) Analyzer Specificity = 88%
snoring, and
breathing pauses
) ) Accuracy = 82.9%
Rajhbeharrysingh et ) ] ) o
L 2019 PSG Machine learning Online 14 Sensitivity = 88.9%,
al.,
Specificity = 76.5%
F. L. Facco et al., 2019 PSG Sleep physicians Online 43 80.0%
Sensitivity = 97.2%
Kristiansen et al., 2021  PSG and PG Sleep physicians Online 34 Positive prediction value
=94.2%.
C.Lietal, 2021 PSG Sleep physicians Online 43,780 -
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Sensitivity = 87%

Massie et al., 2022 PSG MATLAB Offline 261 Specificity = 89%
Hart et al., 2021 PSG CPAP Offline 18 -

da Rosa et al., 2021 PSG Sleep physicians Online 94 Accuracy = 80.7%

Ashley et al., 2019 PSG HRP Online 430 Accuracy = 95%

Accuracy = 86.96%

Mosquera-Lopez et al., . . . o
PSG Machine learning Offline 14 Sensitivity = 81.82%

2018 o
Specificity = 91.67%.
Lipatov et al., 2019 PSG HSAT devices Offline 141 -
Silvaet al., 2021 PSG SPSS software Offline 427 -
. . . Sensitivity = 75%,
Bonnesen et al., 2018 Audio Portable device Online 23
Accuracy = 60%
Green et al., 2022 PSG Online video technician Online 100 -
Equivital™ EQ02 .
Ben Azouz et al., 2018 PSG ] ) Online 32 -
LifeMonitor
Respiration .
Honda et al., 2022 . wearable sensor Offline - -
activity
Ghandeharioun, 2021 ECG and SpO: Sleep physicians Online 155 Accuracy = 85%
Labarca et al., 2018 PG HSAT an Embletta® Online 198 -
) Sensitivity = 85%
Lee etal., 2021 PSG HSAT Offline 154 o
Specificity = 95%
Huysmans et al., 2020 ECG and RIP CNN Online 81 Kappa score = 0.48
] Respiratory )
Barriuso et al., 2020 HRP Online 301 -
polygraphy
Mashagi et al., 2018 PSG HSAT, RYGB and LSG Online 10 Accuracy = 94%
Takao et al., 2019 Audio Autoencoder Offline 5 Accuracy = 94.7%
o Apnea Link Plus and .
Borsini et al., 2021 PG Al Online 3854 Accuracy = 90%
ir
Gu, W., & Leung, . .
PPG pulse oximeter Online 23 Accuracy = 97%
2018
. . Sensitivity = 96.4%
Mieno et al., 2020 PSG PulSleep LS-140 Offline 58 o
Specificity = 100%
Arguelles et al., 2019 PSG HSAT Online 88 Accuracy = 98%
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k-nearest neighbors ) Sensitivity = 0.43%
R. Stretch et al., 2019 PSG ] Offline 415 o
algorithm Specificity = 0.96%
) Sensitivity = 98%
Iqubal & Lam, 2020 PSG HSAT Online 88 o
Specificity = 76%
N Tanaka et al., 2020 PSG WP device Offline 774 -
Kay et al., 2021 PSG HSAT Online 1 -
nox-T3 sleep monitor )
Bollu et al., 2020 PSG Online 178 -
and Nomad HSAT
Yeh et al., 2020 PSG Sleep physicians Offline - -

Sterner et al., 2020 - WatchPAT - - -
lakoubova et al., 2020 PSG Sleep physicians Online 900 -
Arguelles et al., 2018 PSG Sleep physicians Online 60 Accuracy = 90%
Gamaldo et al., 2018 PSG HSAT Online 147 -
Alakuijala et al., 2019 PG Sleep physicians Online 1055 -

He et al., 2020 PSG WatchPAT Online 295 -
Sensitivity = 95.8%
Pinheiro et al., 2020 PSG HST Online 1013
Specificity = 94.3%
Anderer et al., 2020 PSG Deep Learning Online 472 Accuracy = 95%.
Zeineddine et al., 2020 PSG HSAT Online 33 -
F. Facco et al., 2018 PSG HST Online 34 Accuracy = 90.5%
Zhongming et al., 2021 PSG HSAT Online 31 -
Carey et al., 2020 PSG WPHST Online 62 -
Aydin Guclu et al., )
PSG APAP Online 43 -
2020

Homan et al., 2021 SpO2 HSAT Online 558 Accuracy = 90%
Rudock, R. et al., 2019 PSG HSAT Online - -
Bliznuks et al., 2022 SpO:2 CPAP Online 16 -
THOMAS et al., 2021 PSG HSAT Online 297 -

Kazaglis, 2018 Audio Noxturnal T3 device Offline 2 -
Arguelles et al,, 2019 PSG HSAT Online 11 Accuracy = 95%
Fynn et al., 2020 PSG sleep physicians Online 246 -
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ring-type pulse

Wenbo et al., 2019 PSG ] Online 32 Accuracy = 95.0%
oximeter
Gutiérrez-Tobal et al., ) Sensitivity = 83.8%
SpO2 SAHS Online 200 o
2018 Specificity = 85.5%
R. J. Stretch et al., .
PSG NN approach Offline 1329 79%
2020
Johnson et al., 2018 - HSAT - - -
Sever et al., 2018 PSG Sleep physicians Online 1 -
Martinot et al., 2020 PSG Machine learning Online 192 Accuracy = 84%
Haaland et al., 2018 PSG Apnealink Online 1021 -
Do et al., 2022 PSG HSAT Online 505 -
Stanchina et al., 2020 PSG APAP Online 238 -
Perriol et al., 2018 PSG CPAP Offline 66 -
Krause-Sorio et al., . .
HR and SpO2  Telephone screening Offline 5 -
2021
Mahmood et al., 2018 PSG HST Offline 454 -
] ) Sensitivity = 97.1%
Robinson et al., 2018 PSG HSAT Offline 961 o
Specificity = 100%
Ferreira, 2019 PSG CPAP Online 191 -
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Abstract: Sleep Apnoea (SA) is a common chronic illness that affects nearly 1 billion people around
the world, and the number of patients is rising. SA causes a wide range of psychological and
physiological ailments that have detrimental effects on a patient’s wellbeing. The high prevalence
and negative health effects make SA a public health problem. Whilst the current gold standard
diagnostic procedure, polysomnography (PSG), is reliable, it is resource-expensive and can have
a negative impact on sleep quality, as well as the environment. With this study, we focus on the
environmental impact that arises from resource utilisation during SA detection, and we propose
remote monitoring (RM) as a potential solution that can improve the resource efficiency and reduce
travel. By reusing infrastructure technology, such as mobile communication, cloud computing, and
artificial intelligence (AI), RM establishes SA detection and diagnosis support services in the home
environment. However, there are considerable barriers to a widespread adoption of this technology.
To gain a better understanding of the available technology and its associated strength, as well as
weaknesses, we reviewed scientific papers that used various strategies for RM-based SA detection.
Our review focused on 113 studies that were conducted between 2018 and 2022 and that were listed
in Google Scholar. We found that just over 50% of the proposed RM systems incorporated real time
signal processing and around 20% of the studies did not report on this important aspect. From an
environmental perspective, this is a significant shortcoming, because 30% of the studies were based
on measurement devices that must travel whenever the internal buffer is full. The environmental
impact of that travel might constitute an additional need for changing from offline to online SA
detection in the home environment.

Keywords: sleep apnoea; artificial intelligence; polysomnography; remote monitoring; computer-
aided diagnosis

1. Introduction

Healthy sleep is necessary for children and adults [1]. Sleep is a vital physiological
activity that accounts for around one-third of a person’s life [2]. A good night’s sleep can
help people to be more productive at work and have a more positive attitude in life [3].
Sleep deprivation can lead to cardiovascular disease (CVD), including stroke and coronary
heart disease, endocrine problems, amnesia, and inattention, all of which have a negative
impact on regular working and living conditions [4]. This was confirmed by systematic
reviews and meta-analyses that linked these problems to shorter sleep durations [5]. A
report from the World Congress of Cardiology and Cardiovascular Health in 2016 stated
that CVDs are the leading cause of death worldwide, with an estimated total of >17 million
fatalities [5]. The detrimental effects of sleep disorders on both mental and cardiovascular
health make sleep disorder detection a public health priority.

Sleep apnoea (SA) is one of the most common sleep disorders that deteriorates mental
and cardiovascular health. It affects nearly 1 billion people around the world [6], and it
is difficult to be diagnosed [7,8]. At least 20% of all adults in developed countries suffer
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from some form of SA [9]. The disorder is characterised by periods of shallow breathing
(hypopneas) or no breathing at all (apnoea) [1,7,10]. In comparison to the general popula-
tion, patients with untreated SA have a higher mortality rate [8]. The disease is associated
with several comorbidities [10,11]. It has a variety of symptoms that might interfere with
everyday activities [10], can lead to high blood pressure [12], CVD [8,11], type 2 diabetes
mellitus (DM), and stroke [1,12,13]. The prevalence and severity of its symptoms make
SA a public health problem. There are three main types of SA events, namely central
sleep apnoea (CSA), obstructive sleep apnoea (OSA), and mixed sleep apnoea (MSA) [10].
The most frequent type of SA is OSA, which is caused by an obstruction of the airway
during sleep [14-16]. CSA is caused by the brain failing to provide the proper signals to
the muscles that govern breathing during sleep [17]. MSA (also known as complex sleep
apnoea syndrome) is a combination of OSA and CSA [18]. It is estimated that 80-90%
of SA cases are undiagnosed [19]. Therefore, cost-efficient, and sustainable diagnostic
pathways are essential for addressing this public health problem. SA diagnosis is based
on the Apnoea-Hypopnea Index (AHI), which measures the number of apnoea and/or
hypopnea occurrences during one hour of sleep [20,21], as well as clinical criteria such as
the daytime sleepiness caused by apnoea-related sleep disturbances. Recently, it has been
argued that the AHI is vulnerable to clinical fluctuation and that an alternate metric to
determine the OSA severity is needed. The morphology and length of apnoeas are not
taken into consideration by the AHI, which is a significant disadvantage. Although the
AHI system of severity grading is far from perfect, it has survived because of software
that makes computing the AHI easier [22,23]. Overnight monitoring in a sleep lab is a
common part of an evaluation. A polysomnography (PSG), often known as a sleep study,
is a multi-part examination that measures and records particular physical actions while the
patient is sleeping. A skilled sleep specialist analyses the recordings to determine if SA or
other sleep disorders are present [24]. However, this approach is resource-intensive because
the facility must be built and maintained. Furthermore, patients and sleep physicians must
travel to the facility. This travel, together with the efforts of building and maintaining
the facility, have a significant environmental impact. That means the current pathways
for a SA diagnosis contribute to pollution, contamination, and destruction of the natural
environment. Many attempts have been made in recent years to find an alternative device
or approach that avoids the limitations of PSG [25]. Replacing central sleep labs with
services based on a distributed infrastructure might reduce the environmental impact of
SA diagnosis. These services could be established through remote monitoring (RM) tech-
nologies that incorporate mobile communication, cloud servers, and artificial intelligence
(AI) [26,27]. Initially, SA detection and diagnosis support services based on RM technology
were driven by cost pressure and patient comfort [28,29]. Widespread RM deployment
and the associated SA diagnosis support systems will assist users in making appropriate
and timely therapeutic decisions [30]. This will enhance the clinical outcomes [31], early
and real-time SA detection, cost efficiency through fewer hospitalisations, and waiting
list reductions [32,33]. It is expected that RM for SA detection will grow significantly in
the next decade [34,35]. Given these wide-ranging changes, it is important to consider the
environmental impact in RM-based SA detection.

SA detection in the home environment is an emerging technology. We hypothesise that
adequate technology choices can lead to positive environmental impacts for the large-scale
deployment of patient-led data acquisition. In this review paper, we argue that RM-based
SA detection services have a lower environmental impact when compared with the standard
sleep disorder detection methods. This advantage comes from reduced travel, for both
patients and healthcare specialists, as well as resource sharing. To be specific, a shared
communication and processing infrastructure allows us to establish SA detection services
that can complement and, in some cases, replace sleep studies in the sleep lab. Having
established the general benefits of SA detection services, we have turned our attention to
specific systems that enable functionality of the service by reviewing 113 papers on that
topic. The reviewed systems used a wide range of signals and methods for SA detection

145



Processes 2022,10,1739

30f27

in the home environment. As a result, these systems had varying levels of practicality.
With respect to the environmental impact that arises from deploying specific RM-based SA
detection systems, the most important property was whether the measurement evaluation
was done online or offline. In general, offline systems require more effort to initiate and
maintain the measurements. Moreover, offline measurement durations are limited by
device-specific properties such as the available memory within the sensor. Online systems
do not have this restriction. Furthermore, it is more difficult to establish resource sharing
with offline systems compared to online systems. In this review, we established that just
over 50% of the RM-based SA detection systems used online processing, and around 20%
did not report that important property. That means at least 30% of the studies do not
minimise their environmental impact. Another important finding of this review is the fact
that environmental concerns did not feature in the reviewed articles. All the research work
was driven by medical needs. Understanding, and indeed promoting, the environmental
benefits of resource sharing and less travel through RM-based SA detection in the home
environment might lead to more research funding being made available to create practical
problem solutions. To the best of our knowledge, this is the first work that has established
the environmental benefits of SA detection in the home environment.

The remainder of this manuscript is organised as follows. Section 2 provides some
background on the methods used to detect SA in the home environment. Section 3 describes
our article search methodology, while Sections 4 and 5 give our discussion and findings,
respectively. Section 6 concludes the manuscript.

2. Background

Sleep is characterised by the suspension of consciousness or, during Rapid Eye Move-
ment (REM) sleep, altered consciousness [36]. Unfortunately, there is no direct measurement
of consciousness. This makes sleep disorder detection difficult. Therefore, a wide range
of physiological signals is captured during a sleep study [37]. Usually, such a sleep study
takes the form of a PSG. A PSG is recorded for at least one night, and the manual data
analysis for each night can take up to 4 h. RM-based SA detection services are expected to
acquire data over several nights—some systems have no restrictions on the amount of data
they can acquire. Therefore, the manual analysis of data delivered by RM systems would
be too demanding for human experts. Hence, an integral part for all SA detection services
should be automated data analysis based on Al models. In the remainder of this section,
we discuss the individual topics in detail.

2.1. Physiological Signals Used for Sleep Apnoea Detection

Physiological signals reveal how processes, within the human body, unfold over time.
Such signals can provide objective evidence for transient disorders where symptoms are
not always present. The American Academy of Sleep Medicine (AASM) has recommended
the use of both a nasal cannula and a thermistor for the scoring of apnoeas and hypopneas
since 2007 [38]. Hence, physiological signals are used for SA detection. As an alternative to
the PSG, for the diagnosis of SA, signals can be observed on an oxygen saturation (SpO,)
recording alone if analysed by an experienced physician. The Heart Rate Variability (HRV)
and an Electrocardiogram (ECG) can also indicate a suspicion of SA.

2.1.1. Electrocardiogram (ECG)

An ECG is used to diagnose a variety of cardiovascular disorders, including coronary
heart disease and cardiac arrhythmias. ECG signals are recordings of the electrical activity
of the human heart over time [16]. Several research studies have found that ECGs from
different people have some similarities, indicating that using only ECG sensors can achieve
a good SA detection accuracy. However, due to the low sensitivity and specificity, this
measure is not used alone in clinical practice but is observed alongside measurements
such as respiratory airflow and SpO; [9,39]. In the absence of heart diseases, ECG signals
are highly structured, and individual signal components can be identified through visual
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inspection. The ECG trace is made up of several waves that are labelled P, QRS, and T.
Each wave corresponds to a different physiological event during the cardiac cycle [7]. The
breathing rate is linked to the heart rhythm via the autonomous nervous system [40]. It
was observed that, when breathing stops, the heart rhythm slows down [41]. As the time
with no breathing increases, the subject becomes tense, and the heart rhythm speeds up
again. Morphological variations in the ECG signals reflect these changes. Hence, these
signals can be used as an objective measure to detect SA [42].

2.1.2. Heart Rate (HR)

A HR signal is composed from consecutive beat-to-beat intervals of the human
heart [43,44]. As such, the HR is the most widely measured physiological signal [45,46]. The
beat-to-beat intervals are usually extracted from either an ECG or photoplethysmogram
(PPG) signals [47]. HRV is a physiological parameter that measures the variations in the
time interval between consecutive heartbeats in milliseconds. It is regularly measured to
provide objective evidence that supports a CVD diagnosis, since it is linked to heart health.
High HRYV values are often connected with a healthy cardiac condition, and so, a lower
death probability can be established. SA episodes change the heart rhythm, and these
changes will be reported by the HRV directly. It is possible to detect these changes and
thereby establish an objective measure for SA. However, gender and age of the patient may
have an impact on the HRV [48]. An important environmental benefit of HR measurements
arises from the fact that the human heart beats around once every second. The resulting
data rate is approximately one sample a second. The very low data rate makes communica-
tion resource reuse straightforward. Furthermore, the low data rate implies that the energy
requirement for a signal analysis is also low.

2.1.3. Oxygen Saturation of the Blood (SpO,)

Single biological markers, like SpO,, have been employed in several studies to detect
SA [49,50]. The AASM Task Force has included blood oxygen saturation as one of the
measurements that characterises SA and hypopnea episodes [50]. The amount of oxygen
that is saturated in haemoglobin is referred to as SpO, [43]. A healthy person’s oxygen
saturation level is usually between 95 and 100% [51]. Oxygen levels of 90-95% are still
considered safe for healthy subjects, but dangerous for patients with chronic lung diseases.
SpO; values can be categorised as flows: normal and healthy arterial level (SpO; within
95-100%), mild hypoxemia (SpO, within 91-94%), hypoxic (arterial level of SpO; is within
85-94%), and severely hypoxic (arterial level of SpO, below 85%). It is reported that oxygen
levels below 90% are dangerous and that oxygen levels below 80% are harmful to vital
organs [43,52]. Most studies use SpO; and ECG signals because of their link to apnoeic
events. Research has shown that the HR and systolic blood pressure rise in response to
apnoeic episodes [53]. Burgos et al. used SpO, measurements to detect SA [50].

2.1.4. Polysomnography (PSG)

SA is generally diagnosed and treated in sleep laboratories using PSG, which is
associated with significant waiting times for patients and high costs [54,55]. To conduct a
sleep study, patients must spend at least one night in the sleep lab with several electrodes
attached to their body [56]. These electrodes might disturb a patient’s sleep, resulting in
measurement data variations [37]. Since it must be performed in a sleep lab with physicians,
the diagnosis results may be influenced by the lab environment, as well as the intrusive
and inconvenient measurement sensors attached to the patient’s body [9]. Many patients
have trouble sleeping in such an environment. Due to the presence of numerous leads and
monitors, some patients report feeling constrained during in-laboratory PSGs, resulting in
them spending more time in the supine position than they would during a typical night at
home [7,57,58]. A PSG requires gathering 12 separate signals with a minimum of 22 lead
wires linked to the patient’s body, making a signal analysis difficult and causing discomfort
to the patient [38]. Intrusiveness and restricted availability make PSGs unsuitable for
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screening purposes [51]. There is a lack of facilities and a lack of sleep specialists, resulting
in extremely long waiting periods for patients [59]. Furthermore, manually analysing and
scoring sleep using PSG traces is a time-consuming task [52]. It can take 2—4 h to score all
data acquired during a full night’s sleep [5].

2.2. Automated Apnoea Detection

Al models can extract objective information from physiological measurements for
automated SA detection. These decision support models become essential in long-term
monitoring because a manual analysis is impractical for the acquired data volume. For
example, an advanced RM-based SA detection service might acquire ECG signals while the
patient is sleeping. These signals are communicated in real time to a central cloud server,
where they are available for analysis. Such a measurement setup poses no restriction on the
amount of data collected, i.e., it is possible to record the ECG every night. A manual analysis
would demand that a sleep physician read 6-8 h of ECG every day to monitor one patient.
Furthermore, SA detection services in the home environment are scalable, and therefore, a
manual analysis would be required for several patients. Hence, automated decision support
is essential for any meaningful SA detection service in a home environment. To address that
need, scientists created a wide range of Al based SA detection models. These models were
based on technologies such as: ECG-Derived Respiration (EDR) [60], Classification and
Regression Tree (CART) [61], Statistical Classifier (SC) [62], Convolutional Neural Network
(CNN) [63-66], Recurrent Neural Network (RNN) [67], K-nearest Neighbour (KNN) [68],
and Support Vector Machine (SVM) [69].

Our background research shows that the tools and techniques are available to establish
RM services for SA detection. In the next section, we review systems that establish these
services in the home environment. With respect to the discussion of these systems, we are es-
pecially interested in the properties that allow us to determine their environmental impact.

3. Sleep Apnoea Detection in the Home Environment

In this section, we outline our approach to review SA detection systems for the home
environment. We conducted a comprehensive search across Google Scholar to find all
research articles on the topic of automated SA detection in the home environment that
were published between 2018 and 2022. We chose this period, because there was a lot of
forward-thinking work on Al during that time. The database was queried using predefined
Boolean search terms. Table 1 shows that the single search term “apnea home” returned
179 results. These articles were filtered according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) technique [70]. Figure 1 shows the
PRISMA flow diagram, which documents the article filtering and refinement process.
During the filtering, we eliminated duplicate entries, review articles, conference papers,
non-English publications, and manuscripts without ACC results. Overall, the filtering
process eliminated 65 papers, and we were left with 113 original research publications.

Table 1. Boolean search strings.

AND (Full-Text and
Metadata)

“Apnea home” “Apnea home” Google Scholar 179

Title Database No. of Studies
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Google Scholar:
Total: 179

Duplicates: 2
(Removed)

Number of unique
Records: 177

Notin English: 1
Conference Paper: 1

Review \ paper: 4
Master research: 1

S Total: 7
Number of reports (Removed)
assessed for
eligibility: 170
Number of reports
excluded:
:‘> Did not provide
model accuracy
Results: 57
(Removed)
Number of studies
included in review:
113

Figure 1. Flow chart of the PRISMA model for article selection.
4. Results

The 113 articles on SA detection systems in the home environment were analysed in
terms of the signal used, detection method, data handling, number of participants, and
detection performances. The signals used for SA detection have a significant impact on
the environmental footprint. Different physiological signals have different requirements
in terms of the measurement setup, communication bandwidth, storage capacity, and
processing capabilities. As such, knowing the signal will indicate the resources needed
to establish an SA detection service for the home environment. Evaluating the detection
method together with the number of participants allows us to reason out the technology
readiness level. Table Al in Appendix A provides an analysis result summary.

Table A1 details the detection method used and the SA detection performance for each
of the 113 studies under review. The best detection performance, in terms of ACC score,
was reached by a few of the investigations. However, these results were based on “apnea
home” investigations, hence the findings may not reflect a widespread trend. We excluded
duplicate items, review articles, non-English publications, Master’s dissertations, and
works irrelevant to our criteria. Furthermore, during this investigation, we discovered other
papers that were relevant to our criteria, although these articles only had an abstract. In this
case, we had to remove these articles from our work. As seen in Table A1, several signals
have been employed in a range of different studies. Each signal has different purposes.
The signals that were used in this article are PSG, SpO2 home respiratory polygraphy
(HRP), home polygraphy (HPG), ECG, seismocardiography (SCG), PPG, polygraphy (PG),
respiratory inductance plethysmography (RIP), audio, and HR. Figure 2 shows the signals
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used by the 113 evaluated studies. Table A1l in Appendix A provides further details on
these SA detection studies. Figure 3 shows the approaches used in this work to detect SA.
The numbers in the pie charts represent the amount of research articles that reported each
method. The pie chart in Figure 2 reveals that PSG signals are the most-studied method
among the examined publications, with 78 total research articles using this method. There
were eight studies using HR signals and three studies using ECG. SpO2 was only utilised
in one study. Twenty-three research articles employed other signals, as shown in the pie
chart in Figure 3. Machine learning and deep learning were utilised four times each, as
seen in Figure 3. Sleep physicians were the most reported to detect SA in a total of 30
studies; 75 studies used other methods. Figure 4 depicts the data management approaches,
which included 35 online studies, 30 offline research, and 48 unreported studies. Figure 5;
Figure 6 show the number of participants and the accuracy distribution. It can be observed
that 101 people participated in this study, with 12 not participating. Furthermore, Figure 6
depicts the specifics of 60 studies that reported their accuracy and 53 studies that did not
report their accuracy.

m PSG

= HR

= ECG

u SpO2
u Others

Figure 2. PGS, HR, ECG, SpO2, and others are the signals used to detect SA.

Machine Learning
# Deep Learning
® Sleep physicians

m Others

Figure 3. SA detection method.
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u Online
= Offline

= Not reported

Figure 4. Data handling method.

® Number of participants

= Not reported

Figure 5. Number of participants reported.

® Detection performance

= Not reported

Figure 6. SA detection performance stated.
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5. Discussion

The environmental impact of specific actions has become a major societal concern,
affecting both business and organisational competitiveness. This has sparked an interest
in objective research on this topic, which is based on collecting and analysing data. The
term “environmental impact” refers to a change in a situation’s outcome. The result of an
action or event that affects the social, environmental, or economic well-being is referred
to as an outcome [71]. The environmental impact of an activity is significant, and it
demands immediate attention to mitigate the negative consequences on global health. The
reduced use of equipment may be the most appropriate and effective strategy to minimise
an environmental impact. Healthcare is a resource intensive activity and therefore it is
important to discuss the environmental impact.

In this study we focused on the environmental impact of SA detection. It has been well
established that SA is a significant health and economic issue, particularly in developed
countries [72]. As such, SA is the most prevalent sleep condition for which diagnostic
testing is performed at sleep labs. This testing takes the form of a PSG, which requires a
comprehensive monitoring system to record a range of physiological signals during sleep.
The PSG results could take a few weeks to arrive [73]. This type of investigation is very
resource-intensive because a certified sleep technologist must set up and monitor the data
acquisition equipment for the duration of the measurement, which is usually a whole
night. Subsequently, the data must be analysed by a sleep physician, which takes up to
four hours. This results in a resource shortage, which causes longer travel distances for
patients [74]. From an environmental perspective, this travel is a significant drawback
of the PSG. Another detrimental effect on the environment comes from the fact that a
dedicated sleep lab needs to be built and subsequently maintained.

RM may be the most effective strategy to limit travel outside of the home environment
and lower the risk of diseases like SA. Apart from reducing travel, RM-based SA detection
services for the home environment can benefit healthcare providers through automating
the SA detection process. The possibility of reducing healthcare costs is one of the most
compelling reasons for introducing RM, followed by the desire to improve healthcare
access. The savings from RM are not consistently reported in the research literature.
Jiménez-Marrero et al. [75] put forward that RM-based SA detection offers significant cost
savings. In contrast, Lew et al. [76] found only minor cost savings when they studies
admission expenses. To be specific, for some patient categories, the cost only decreased
from USD 10,835 to USD 10,678. These findings led to the conclusion that cost savings
were a modest EUR 188 per person per year [77]. Other studies found that RM-based SA
detection services have the same or even higher costs [29]. Many economic assessments
of RM reflect only direct healthcare costs and do not include the overall programme costs
like equipment amortisation or service costs. Other factors may also have an impact on the
results. For example, RM-based hypertension and congestive heart failure detection is less
expensive than the distant monitoring of respiratory illnesses [29].

In recent times, RM and inconspicuous sensors, cloud computing, and enhanced inter-
net connectivity have all improved the technology for monitoring, aiding, and enhancing
human health. For instance, the Internet of Things (IoT) paradigm’s presence and quick
growth has had an impact on how individuals track their health [78]. Moreover, most
of today’s wearable devices can track the HR and physical activity. More appliances are
equipped with an internet connection, and RM is becoming more prevalent. Unobtrusive
sensor data can provide a more thorough picture of the health and lifestyle habits of care
recipients. As a result, technology has a direct impact on the ability of elderly and disabled
individuals to detect their health at home and live more independent lives [79]. From the en-
vironmental perspective, the pervasive use of RM technology is a step in the right direction,
because it allows us to administer more care with the same or marginally increased resource
requirements [80]. A SA detection service in the home environment might become one
of many servicers offered by a healthcare platform. The core modules of such a platform
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facilitate data acquisition, communication, and storage. Specific modules will customise
the platform to offer unique services, such as SA or atrial fibrillation detection [26].

During our review, we looked at the AI models that can be used for a computer-
aided SA diagnosis. In a second phase, we looked at RM systems for SA detection in the
home environment. For Al models, the overarching trend was that the research output
focused on automated SA detection is growing, as shown in Figure 1. That means it is an
active field, and we can expect a continuous improvement of the materials and methods
for Al-based SA detection. Coupled with the RM techniques, this is certainly beneficial
for the environment. However, we came across another trend when reviewing Al-based
SA detection, namely the emergence of deep learning. The environmental impact of this
trend is not clear. The computational complexity of deep learning models is significantly
higher when compared to classical machine learning [81]. Therefore, it takes more energy
to design the model. However, the trade-off here is to replace manual design work, in
the form of feature engineering for classical machine learning, with automated feature
extraction, which happens when we train deep learning algorithms. It seems unlikely that
the increased energy requirement for designing deep learning models will be a serious
barrier for this technology, especially when we consider the alternative being human labour
that is focused on feature engineering.

The review on SA detection in the home environment revealed that most systems rely
on PSG measurements to gain objective information. From an environmental perspective,
this is not ideal, because PSG signal measurements require a complex measurement setup,
which is resource intensive. For example, it might be necessary that a sleep technician or a
nurse travel to the home environment of the patient to establish the measurement setup.
Compared to the measurement setup of a PSG, individual signals, such as HR, ECG, and
SpO2, are more straightforward. HR signal acquisition requires the least measurement
setup, which might enable patient-led data acquisition. For example, a patient attaches
the sensor and ensures that the data is relayed to a cloud server that runs a deep learning
model for automated SA detection. Such a service would have very little environmental
impact because both communication infrastructure and cloud server facilities are shared,
which causes minimal additional energy expenditure. During service deployment, only
the sensor constitutes additional hardware that needs to be produced and maintained.
Even the sensor hardware could be shared amongst multiple services. This sensor sharing
idea is based on the fact that HRV is a good predictor of human health. Hence, HR
measurements can be used to detect and monitor a wide range of diseases, including, but
not limited to, heart arrythmias, diabetes, and epilepsy [70]. The resource sharing could be
facilitated by a healthcare platform that offers SA detection as one of many services. From an
environmental perspective, both infrastructure and sensor reuse are strong arguments that
the benefits of the platform approach outweigh the additional burden on the environment.

According to Rosenberg et al. [82], the utilisation of technology, such as RM, in the
home environment for the support and care of people with SA is crucial. They reflect
the costs that burden citizens with SA, as well as the anxiety that comes with the long
waiting times for sleep lab-based diagnoses. According to the research, RM is the most
desirable feature for SA detection in the home environment. The implementation of such
technology has the potential to improve patient care while also reducing the demand for
both resources and medical services. This might reduce the financial strain on healthcare
systems. Moreover, the environmental benefits of using RM in SA detection are becoming
more widely recognised. It is an unattended instrument that does not require the presence
of a laboratory attendant. Individuals can use the monitor at home if they follow the
technician’s recommendations. Although the sensitivity of SA detection services in the
home environment is currently lower than that of PSG, it saves time and money for patients
while also providing convenience and comfort.

Looking beyond the current economic costs and system capability reveals future trends
that might offer opportunities for businesses and healthcare providers. Smartphones and
tablets are equipped with an increasing number of sensors that collect a large amount of
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personal data in various formats and for various purposes [83]. For a manual analysis,
this constitutes a problem because of the limited availability of sufficiently qualified hu-
man labour. However, technology improvements are not limited to the communication
infrastructure; it is also projected that AI models for data analysis will continue to improve.
Understanding of the algorithms and the availability of a cost-efficient parallel processing
infrastructure are the two main drivers for that progress. Hence, as our ability grows to
measure physiological signals in the home environment, the progress in Al technology
will ensure that the data can be utilised. One use of such data is SA diagnosis support.
Technology improvements are general trends that lead to gradual changes. As a result, we
predict that there will be a broad acceptance of using more and more data-driven healthcare.
It is likely that ethical issues are addressable with technological solutions, such as data
encryption to address privacy concerns. Considering the environmental impact of actions
like establishing a service platform for patient RM might open an independent line of
argument to justify future decisions. To be specific, the environmental impact should be
considered alongside ethical concerns, technological feasibility, and economic costs.

5.1. Limitations

There are certain limitations to this paper. First, it is possible that the literature search
missed some important papers. Second, not all facets of SA disorders were covered. Third,
several of the topics covered lacked high-quality data. Fourth, there was a lack of low
cost and readily available RM-based SA detection services that could be used in the home
environment. Fifth, patient RM requires internet access, which may not be available in
some areas.

During the review, we learned that the environmental impact is hard to quantify,
because there are a vast number of factors, even when environmental pollution is considered
on its own. Therefore, the best support we have for promoting RM-based SA detection
services is that increasing the use of this technology would benefit public health with a
moderate environmental impact. Some readers might be dissatisfied with this statement
because it appears vague. The statement becomes more concrete when we consider the
alternative, which would be to build and maintain more sleep labs. Clearly, more sleep labs
would have detrimental effects on the environment.

5.2. Future Work

SA is a life-threatening condition that affects people all around the world. The rapid
rise in the number of SA sufferers each year is putting governments under a lot of finan-
cial strain. Several SA treatments have been proposed to alleviate or cure the condition.
However, there is a scarcity of research comparing these treatments. As a result, a compre-
hensive guideline for selecting an appropriate treatment for people with various degrees
of SA is required. Future research should incorporate the following to create a thorough
evidence-based comparison to advise patients and doctors:

With the expanding use of RM around the world and the growing number of people
who use it, RM is becoming increasingly important in terms of enhancing patient care,
safety, and comfort. For the patients and the healthcare team, RM is an essential technology
based on shared resources. Resource sharing and computational decision support result in
the fact that upscaling the technology use has a low environmental impact. Therefore, in
the future, we should see widespread deployment of this technology.

To reduce sensor waste, it is critical for companies to develop alternative instruments
that can be used by patients at home and that can be useful for reducing the workload of
both medical staff and patients coping with disease to reduce environmental waste. RM is
one tool that can help in this situation.

To enhance healthcare, there is a focus on individuals who suffer from chronic diseases
such as SA. Improved decision support algorithms and an appropriate healthcare network
can aid the patient with their illness, and the algorithms could also help the doctor to
predict, diagnose, and treat a problem. Algorithms could explain and anticipate how
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patients interact with their healthcare providers to make health decisions. In addition,
algorithms are critical for detecting risk changes on a continuous basis. Al models could
choose a sequence of self-performed actions for the patient to manage that risk, such as to
increase physical activity or improve the adherence to a prescribed medication regime [84].

6. Conclusions

SA is a major health and economic problem, especially in developed countries. There-
fore, physical problem solutions that address or indeed attempt to address SA detection
have an impact on the environment. To establish the environmental benefits of RM-based
SA detection, we studied the enabling technologies, and we reviewed systems that detect
SA in the home environment. During these activities, we learned that physiological signals
and their analysis play a central role in SA detection. The most dynamic enabling technol-
ogy is Al-based SA detection. We found that the research in this field is expanding with
the emergence of novel deep learning approaches. However, this continued interest and,
indeed, the associated research outputs have not percolated through to practical systems
for SA detection in the home environment. Only 8 out of 113 studies used Al techniques
for SA detection. Hence, there is room for improvement, especially when we consider the
second important review finding, namely the apparent lack of online decision support.

SA detection and diagnosis support services based on RM technology constitute
progress. In this paper, we argue that this progress can be achieved without a significant
environmental impact. To be specific, these services can be established by reusing existing
infrastructure. However, we also recognise that sleep labs will continue to play a vital role
in the future for diagnosing sleep disorders that are not yet detectable through remote
monitoring and for research purposes. Hence, RM will allow us to diagnose more SA
earlier, and this will improve the outcomes for patients with the same or marginally more
resources. SA detection and diagnosis support services can be established by reusing the
available infrastructure. From an environmental perspective, the infrastructure is already
built, and there is no, or at least a significantly reduced, need to construct new dedicated
sleep labs. Another important advantage is the geographical and temporal decoupling
of patient and physician. This decoupling is not only convenient for all parties involved,
but it also reduces the administrative efforts required to synchronise and manage patients
and healthcare professionals. Geographical decoupling leads to less mandatory traveling,
which is an environmental advantage of RM-based SA detection and diagnosis support
services when compared with traditional sleep studies.
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Abbreviations

The following abbreviations are used in this manuscript:

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
AASM American Academy of Sleep Medicine

AHI Apnoea-hypopnea index

Al Artificial Intelligence

CART Classification and Regression Tree
CNN Convolutional Neural Network
CSA Central sleep apnoea
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CVD Cardiovascular Disease
ECG Electrocardiogram

EDR ECG derived respiration
GDP Gross Domestic Product
HPG Home polygraphy

HR Heart Rate

HRP Home Respiratory Polygraphy
HRV Heart Rate Variability

IoT Internet of Things

IT Information Technology
KNN K-Nearest Neighbour
MSA Mixed sleep apnoea

OSA Obstructive sleep apnoea
PG Polygraphy

PPG Photoplethysmogram
PSG Polysomnography

RIP Respiratory inductance plethysmography
RM Remote Monitoring

RNN Recurrent Neural Network
SA Sleep Apnoea

sC Statistical Classifier

SCG Seismocardiography

SVM Support Vector Machine
Appendix A

Table Al. Details of the 113 selected studies on SA detection in the home environment.

Authors Signal Detection Method ~ Online/Offline Il,\l ut'n].)et of Detection Performance
articipants
Salety F;;a]l" Ag PSG Sleep physicians Online 265 -
Massie et al., o7z :
2018 [86] PSG Sleep physicians Online 101 -
Rosen et al., 2018 B Home sleep o ) }
[87] apnoea test ool
Sensitivity = 78%
Ng et al.,, 2019 s Specificity = 23% Negative
(8] PSG Sleep physicians 316 predictive
value = 67% positive = 35%
Sensitivity = 85%
Specificity = 87%%
Gu et[:f)‘], 2020 SpO2 Sleep physicians Online 50 Positive and negative
predictive value = 0.88%
and 0.83%
Chiner et al., Home respiratory - . 50
2020 [90] polygraphy HRP Sleep physicians Online 121 Accuracy =93%
Gutiérrez- ; ;
Machine learning ;
Tobal e[t)?]l., 2019 SpO3 AB-LDA Offline 230 Accuracy = 78.7%
Zancanella etal., EmblettaX100 :
2022 [92] PG system Ol 0 B
Manoni et al., 5
2020 [93] PSG MORFEA Online - -
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Table Al. Cont.

Authors Signal Detection Method ~ Online/Offline Nux.nl.Jer of Detection Performance
Participants
Kole 2020 [94] Home sleep ] 5 ]

apnoea testing

Sensitivity = 0.46,
Specificity = 0.95%

R. Stretch et al., PSG Sleep physicians Online 613 Positive predictive

01919 value = 0.81% negative
predictive value = 0.80%
Castillo- . s

Escario et al., PSG MATLAB Offline 13 i il el
2019b [96] =82%
Hzlg;agsisglt o PSG Sleep physicians Online 206 -

Romero etal., - ; Sensitivity = 79%
2022 [98] PSG Sleep physicians Online 103 Specificity = 80%
Massie, Van

B PSG WatchPAT Offline 2 2

[99]
Kristiansen,

Nikolaidis, et al., PSG Machine learning Online 579 Accuracy = 89%

2021 [12]
Nobuaki

Tanaka et al., - W-PAT - 776 -
2021 [100]

(2:3;1: ﬁtojl]" HSAT Sleep physicians Online 119 -

Ikizoglu et al., .. . Sensitivity = 100%
2019 [102] PSG and HPG Sleep physicians Online 19 Specificity = 83%
‘;(1;11;) ﬁtogl]" PG Sleep physicians Online 300 Accuracy = 95%

Zavanelli et al., ECG, SCG, and .. . R oz,
2021 [104] PPG Sleep physicians Online Accuracy = 95%

C:;)Oligone [;__?]l" PSG Sleep physicians Online 43,780 -

Ekﬁgg ]a]., PSG Sleep physicians Online 43,780 -

Migsioetal Embla® Embletta®
20ng1 [107] % PSG GOLD portable Online 45 Accuracy = 93%

sleep system

S;%féir}f 8;]1" PSG and HST Sleep physicians Online 131 -

Orretal., 2018 : Sensitivity = 70%

[109] PSG and HST MATLAB Offline 27 Specificity = 71%
& yhesres; Least-squares
"l;%l;l [eltlz(\)l] ’ SpO, boosting ;}gorithm Offline 8762 Accuracy = 87.2%
Flze(;ZZ; [e%a]l., polygraphy (PG) Sleep physicians Online 505 -
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Table Al. Cont.

Authors Signal Detection Method ~ Online/Offline Nux.nl.Jer of Detection Performance
Participants
Sensitivity = 85%
: ; Specificity = 0.48%
® pecificity
Fitzpatrick etal., PSG BresoDx 'portable Offline 233 Positive and negative
2020 [111] monitor e
predictive values were,
0.81% and 0.54%
Ferrer-
Lluis etal., Pulse oximetry Apnealink™ Air Offline - -
2019 [112]
Huysmansetal., Total Sleep Time . Sensitivity = 78%
2021 [113] P56 (TST) Gl 183 Specificity = 89%
Positive Airway
J oymangul etal, Pressure (PAP) Python Online 668 -
2020 [114]
therapy
Miynczak et al., Accuracy = 86%
2020 PSG Audio sensor Online 30 Sensitivity = 96%,
[115] Specificity = 76%
Van Pee et al.,
2022 FoG and BAT Sleep physicians Online 167 -
HSAT
[116]
Castillo-
Escario et al., audio signals MATLAB Offline 3 Accuracy =95.9%
2019a[117]
Epworth
NEaio- sleepiness scale,
Martinez et al., pulse oximetry STQP-BANG Online 117 SenS{t{V}ty =800
questionnaire, and Specificity = 92%
2021 [118] : .
C-reactive protein
screening
Patel et al., ; : st
2018 PSG ApneaL.mk Air Online 106 Sensnitl'v'lty =82%
devices Specificity = 92%
[119]
Magalang et al., ; : R }
2019 [120] Nasal pressure Fifteen HSAT Offline
Muioz-
Ferrer etal,, PSG Sleepwise (SW) Online 38 Accuracy = 84%
2020 [121]
Lightetal,,
2018 EEG and PSG Sleep physicians Online 207 Accuracy = 95%
[122]
Ocejaetal.,
2021 PSG HRP Online 320 -
[123]
Di
Pumpo et al,, - WatchPAT - - -
2021 [124]
Hosl[lige;]e bl PSG CPAP therapy Online 105 Accuracy = 86.9%
Huietal., 2018 Respiratory : AR
[126] PSG polygraphy Online - Accuracy = 95%
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Authors Signal Detection Method  Online/Offline Nux.nl.Jer of Detection Performance
Participants
Goldstein et al.,
2018 PSG Sleep physicians 196 Accuracy = 84%
[127]
Jensen et al.,
2022 PSG NightOw]™ Offline 150 Accuracy = 95%
[128]
Body movement,
. respiratory rate, —_— s 800
Sunc;rlxczi:]ZOZZ heart rate, snoring, Wlﬁ‘r:ig;zselreep Online 67,278 geprelzl:fllz:g - ggo//:
and breathing
pauses
Rajhbeharrysingh Accuracy = 82.9%
etal., 2019 PSG Machine learning Online 14 Sensitivity = 88.9%,
[130] Specificity = 76.5%
Facco et al.,
2019 PSG Sleep physicians Online 43 80.0%
[131]
Kristiansen Sensitivity = 97.2%
etal., 2021 PSG and PG Sleep physicians Online 34 Positive prediction
[132] value = 94.2%.
. et[;\ ;;]2 021 PSG Sleep physicians Online 43,780 -
Massie et al., . Sensitivity = 87%
2022 [134] e e Offline 261 Specificity = 89%
Haseral 201 PSG CPAP Offline 18 -
[135]
daRosaetal, PSG Sleep physicians Online 94 Accuracy = 80.7%
2021 [136]
Ashley Suniega
etal., 2019 PSG HRP Online 430 Accuracy = 95%
[137]
Mosquera- Accuracy = 86.96%
Lopez et al., PSG Machine learning Offline 14 Sensitivity = 81.82%
2018 [138] Specificity = 91.67%.
Lipatov et al., : :
2019 [139] PSG HSAT devices Offline 141 -
Silva et al., .
2021 [140] PSG SPSS software Offline 427 -
Bonnesen et al., : : ; Sensitivity = 75%,
2018 [141] Audio Portable device Online 23 Aty ~60%
Green et al., Online video .
2022 [142] Ese technician Snlige 100 -
Ben Azouz s s
etal, 2018 PSG Bl o2 Online 2 :
LifeMonitor
[143]
Honda etal., Respiration ;
2022 [144] activity wearable sensor Offline - -
Chza(;;ileﬁa;;)un ECG and SpO, Sleep physicians Online 155 Accuracy = 85%
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Table Al. Cont.

Authors Signal Detection Method  Online/Offline Nm.nl.)er of Detection Performance
& Participants
Labarcaetal., HSAT an :
2018 [146] 5 Embletta® Suline 18 ;
Leeetal., 2021 2 Sensitivity = 85%
[147] e Raat Otflme 1 Specificity = 95%
Huysmans et al., .
37020 [148] ECG and RIP CNN Online 81 Kappa score = 0.48
Barriuso etal., Respiratory Onli B
2020 [149] polygraphy HEP Re =01
Mashagqi et al., HSAT, RYGB and 2 G
2018 [150] PSG LSG Online 10 Accuracy = 9%4%
ek [elt;e;l]., 2012 Audio Autoencoder Offline 5 Accuracy = 94.7%
Borsini et al., Apnea Link Plus : GG
2021 [152] PG vl A Online 3854 Accuracy = 90%
Gu,;(ﬁ;}?l;;]u g PPG pulse oximeter Online 23 Accuracy = 97%
Mieno etal., 2020 : Sensitivity = 96.4%
[154] PSG PulSleep LS-140 Offline 58 Specificity = 100%
Arguelles et al., . i
2019 [155] PSG HSAT Online 88 Accuracy = 98%
k-nearest A
Stretch et al., 2 1 Sensitivity = 0.43%
2019 [156] PG :125}::}?;? Onlimie 4l Specificity = 0.96%
Iqubal & Lam ’ Sensitivity = 98%
2020 [157] PSG HSAT OnHEE 88 Specificity = 76%
Tanaka et al., . .
2020 [158] PSG WP device Offline 774 -
Rayetal 2021 PSG HSAT Online 1 -
[159]
nox-T3 sleep
Bl [elt:(}] 2020 PSG monitor and Online 178 .
Nomad HSAT
teh e[tlzlli 202 PSG Sleep physicians Offline - -
Sterner et al.,
2020 [162] - WatchPAT - - -
Takoubova et al., g n
2020 [163] PSG Sleep physicians Online 900 -
Arguelles et al., i i IR
2018 [164] PSG Sleep physicians Online 60 Accuracy = 90%
Gamaldo etal., i
2018 [165] PSG HSAT Online 147 -
Journal et al., sy " R
2019 [166] PG Sleep physicians Online 1055
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Authors Signal Detection Method ~ Online/Offline Nm.nl.)er of Detection Performance
Participants
He, Mendez, and
Atwood 2020 PSG WatchPAT Online 295 -
[167]
Pinheiro et al., < Sensitivity = 95.8%

2020 [168] FsG H5T Online 013 Specificity = 94.3%

Arz\gzeée[rlz;?l., PSG Deep Learning Online 472 Accuracy = 95%.
Zeineddine et al., .

2020 [170] PSG HSAT Online 33 -

F. Facco etal,, A 5

2018 [171] PSG HST Online 34 Accuracy = 90.5%

Zh"%gz';“[';%;]t B PSG HSAT Online 31 -

Carey[i;il]" 2020 PSG WPHST Online 62 i

Aydmﬁ;ji" 2020 PSG APAP Online 3 -
Homan etal., " -

2021 [175] SpO, HSAT Online 558 Accuracy = 90%
Rudock et al., .

2019 [176] PSG HSAT Online - -
Bliznuks et al., .

2022 [177] SpO, CPAP Online 16 -
T};‘(’]‘;a[sl‘;;?"' PSG HSAT Online 297 -
Kazaglis 2018 . Noxturnal T3 ’

[179] Audio Aerion Offline 2 -
A’gz‘(‘)‘ig"’[;ﬁ al, PSG HSAT Online 11 Accuracy = 95%
Eynn [elt;olj' izl PSG dlsep physicians Onliie 246 ;
Wenbo et al., ring-type pulse A _

2019 [181] PSG it Online 32 Accuracy =95.0%
Gutiérrez-Tobal : Sensitivity = 83.8%
etal,, 2018 [182] 5p0; SAHS Online 200 Specificity = 85.5%

5‘2‘52*3}‘[1";;1 PSG NN approach Offline 1329 79%
Johnson et al., R R ) R

2018 [184] el

seyer [eltga_j]" 218 PSG Sleep physicians Online 1 2
Mzgzlgcf: g(t)]al e PSG Machine learning Online 192 Accuracy = 84%
Hazgllag‘ﬁ g;]al PSG Apnealink Online 1021 :
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Table Al. Cont.

Authors Signal Detection Method ~ Online/Offline II:I m.nl.)er of Detection Performance
articipants
Do, 202 PSG HSAT Online 505 :
[188]
Stanchina et al., >
2020 [189] PSG APAP Online 238 -
Perriol et al., ;
2018 [190] PSG CPAP Offline 66 -
Krause-Sorio et al., Telephone e
2021 [191] Hitand SpOs screezning Qfthne » l
Mahmood etal., 3
2018 [192] PSG HST Offline 454 -
Robinson et al., e Sensitivity = 97.1%
2018 [193] PSG HEal Otiime 26l Specifici?; =100%
ReiEEa e PSG CPAP Online 191 .
[194]
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1. Introduction

Sleep is a fundamental human activity which is characterized
by reduced or suspended consciousness. Hence, the ability to
avoid or correct disturbances, such as sleep disordered breath-
ing, is reduced [1]. Sleep apnea is a common cause for sleep-
disordered breathing. In the middle-aged workforce about 2% of
women and 4% of men were apnea patients in 1993 [2]. In 2003,
about 4% of the US population had sleep apnea [3]. The worldwide
prevalence was estimated to be 6% in 2008 [4]. It is predicted that
this upward trend will continue. Without diagnosis and adequate
treatment patients might be exposed to an increased risk of
cardiovascular diseases [5], such as stroke and hypertension [6,7].
Apnea might also disturb recreational activities and by doing so
cause mental suffering and in some cases clinical depression [8].
Apnea is also linked to narcolepsy, insomnia, and obesity [9].
Studies show that patients with apnea have a higher chance
of being involved in a road traffic accident [10]. The disease
is also a risk factor for complications during operations under
anesthesia [11]. Finally, patients with untreated apnea have a
significantly higher mortality risk when compared to a control
group with the same age, sex and Body Mass Index (BMI) [4].

Current diagnostic methods depend on Polysomnography
(PSG). The measurements include ECG, Electroencephalogram
(EEG), Electrooculogram (EOG), Electromyogram (EMG), respi-
ratory effort, airflow and oxygen saturation (Sa0,) [12-14]. To
capture these signals, the patient must sleep with intrusive mea-
surement equipment in a clinical environment [15,16]. The pro-
cess requires supervision by medical specialists. The PSG process
makes apnea diagnosis expensive and inconvenient. To improve
this situation new methods are required which are less intrusive
and more cost effective, but equally accurate. Mobile technol-
ogy and advanced physiological signal measurement methods
might be able to address the intrusiveness and cost issues. One
promising measurement technology is single lead ECG for sig-
nal acquisition and mobile soft processing for beat-to-beat (RR)
interval extraction. As such, that measurement setup has a signif-
icantly lower complexity when compared with PSG. Furthermore,
itis notably cheaper to communicate and process the resulting RR
interval signals, when compared with the multitude of physiolog-
ical signals measured during PSG. However, major issues remain
with the diagnosis support quality provided by these systems.
One critical component to ensure diagnosis support quality are
the algorithms which extract the relevant information or provide
decision support.

With this study we investigate the diagnosis support quality
of deep learning algorithms for sleep apnea. To achieve that, we
created a test setup which takes in RR interval signals and returns
a decision on whether or not specific signal segments show signs
of sleep apnea. The processing structure contains a pre-processing
and a classification step. In the pre-processing step, the signal
was band-pass filtered with an Ornstein-Uhlenbeck third-order
Gaussian process. Subsequently, the filtered signal is partitioned
with a sliding window. The resulting signal blocks were passed
on to an LSTM network which classifies them into either ap-
nea or non-apnea. The setup was designed with a benchmark
dataset from the MIT-BIH Polysomnographic Database. With 10-
fold cross-validation, we established an accuracy of 99.80%, a
sensitivity of 99.85%, and a specificity of 99.73% for the proposed
system. By itself, this result is significant, because it indicates that
good diagnostic support is possible even with a less complex data
acquisition setup. Apart from these results we also want to report
a significant design achievement. We found that low- and high-
pass filtering the RR interval signal improved the classification
accuracy by over 20%. Filtering, as part of the pre-processing for
RR interval signals, might help to improve the detection quality
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for a wide range of CAD systems, because it allows the deep
learning algorithms to focus on the Heart Rate Variability (HRV).

To support these claims, we outline our design of an apnea
detection algorithm. The next section introduces the medical
background of sleep apnea. Section 3 details the methods used
to construct the test setup. Thereafter, we present the results
achieved while testing the proposed diagnosis support system.
In the Discussion section, we relate our work to other studies
done on similar topics. Having this extended scope allows us to
show how the RR interval filtering might help to improve the
classification accuracy for other detection tasks. The conclusion
summarizes the work and puts forward the highlights of the
study.

2. Background

During apnea the patient ceases to breath for 10 s or more.
Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA)
are the two main causes for the pauses in breathing. The pauses
usually occur during rapid eye movement sleep. An OSA event
occurs when the airway is blocked completely. The blockage
might be due to fatty tissue, musculus geniohyoideus, or mus-
culus genioglossus. In contrast, a CSA event is characterized by a
lack of respiratory effort, i.e. there is a problem with respiration
control [ 17]. OSA is diagnosed more often than CSA [18]. There are
several therapies for sleep apnea, such as Positive Airway Pres-
sure (PAP) and Palato Pharyngo Plasty (PPP) [15,19]. In general,
these therapies are more effective when sleep apnea is detected
early [16,20].

In current clinical practice, polysomnograms, which result
from PSG sleep studies, are used to evaluate an index score.
The score value determines the apnea severity [21,22]. An im-
portant component of these index scores is the airflow signal
and blood oxygen content [23,24]. However, measuring these
signals is intrusive and inconvenient for the patient. To reduce
the inconvenience, apnea detection methods were developed
using respiratory and single-lead ECG signals [20,25]. In response,
PhysioNet held a competition called CinC Challenge 2000 [26,27],
which provided ECG data with minute-by-minute labeling [28,
29]. After the challenge, the training dataset, with 35 recordings,
was made publicly available by PhysioNet. Over the years, the
dataset was used to design apnea detection algorithms and it
is now considered a benchmark that can be used to compare
individual method performances.

Digital biomarkers fail to capture all sleep apnea induced
morphological changes [30,31], because transient abnormalities
appear randomly, and long-term abnormalities are difficult to
quantify [32]. Deep neural networks can refine the information
even further and provide medical decision support which can
help to diagnose sleep apnea [33-38]. The research provided
precedents of employing Convolutional Neural Network (CNN) to
detect disease using ECG signals. In apnea detection tasks, directly
feeding original ECC signals to deep neural networks is adopted
by some researchers [39-41], but the high ECC data rate limits
the network depth. As such, the RR interval signal is derived from
the ECC extracting the beat-to-beat record of RR-intervals and is,
as a time series, irregularly sampled. Studies show that there is
a physiologic link between the breathing rate and the beat-to-
beat variations of the human heart [42-44]. Hence, it is possible
to detect sleep disordered breathing based on RR interval signals.
The next section describes the methods we have used to detect
apnea induced sleep disordered breathing based on RR interval
signals.
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3. Methods

This section describes the methods used to create the sleep
apnea detection system. This is done by describing the data and
the methods which process the data to refine and ultimately
extract diagnostically relevant information. The block diagram,
shown in Fig. 1, provides an overview of the system that was used
to train and validate the deep learning model. The processing
steps are represented by blocks, and the arrows between the
blocks represent the data flow. The following sections introduce
both processing steps and data in more detail.

3.1. RR interval data

The deep learning model was trained and validated with data
from the Apnea-ECG Database [26,27]. The dataset consisted of
35 records (a01 through a20, b01 through b05, and c01 through
¢10). The individual recordings vary in length from slightly less
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Table 1
Number of beats and signal name for 10-fold cross-validation and hold-out-
validation data from the Physionet Apnea-ECG Database.
10-fold cross-validation
No. beats=935462

Hold-out-validation
No. beats=169959

Name Beats Name Beats Name Beats Name  Beats
a01 29639 al2 33829 b05 26937 all 32953
a02 34931 al3 39723 01 27643 al5 33948
a03 33966 al4 28212 c02 32137 al7 36131
a04 30902 al6 34948 03 23758  bO1 35081
a05 28740 al8 29970 c04 28089  c07 31846
a06 27199 al19 38738  c05 27957
a07 37462  a20 34246  c06 28062
a08 41102 b02 34877 <08 30360
a09 31318  b03 28918  c09 31179
alo 32263 b04 24379 10 23978

than 7 h to nearly 10 h. Each record consists of an ECG signal
of varying length, and corresponding R beat labels that were
generated with automated QRS detection. The shortest signals
are just below 7 h in length and the longest one is almost 10 h.
The subjects of these recordings are men and women between 27
and 63 years of age, with weights between 53 and 135 kg (BMI
between 20.3 and 42.1). Crucially for this work, the records also
contain apnea annotations established by human experts based
on simultaneously recorded signals such as respiration, that were
recorded as part of a PSG. Table 1 provides details about the
signals for both 10-fold cross- and hold out-validation. We have
partitioned that dataset into Hold-out data and 10-fold data for
the two validation methods outlined in Sections 3.3 and 3.4. The
Hold-out data contains five records (all, a15, a17, b01, c07). The
10-fold data contains the remaining records. Fig. 2 shows the RR
intervals that occur during the first 1000 s of record a01. Note,
there is a significant DC bias in the signal. That bias is quantified
in the frequency domain as a power level of 192.5 s Hz™'. Fig. 3
shows the Power Spectral Density (PSD) of the RAW RR interval
data shown in Fig. 2.

3.2. Pre-processing

The pre-processing of the RR interval signals for both 10-fold
data and Hold-out data was done with a two-step process. The
first step is low and high pass filtering. For RR interval signals,
high pass filtering is referred to as detrending. The second pre-
processing step is windowing, which partitions the data for the
classification algorithm.

3.2.1. Detrending and low-pass filtering

From a time series perspective, RR interval signals are nonuni-
formly sampled. Therefore, conventional signal conditioning us-
ing Infinite Impulse Response (IIR) and Finite Impulse Response
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(FIR) filters cannot be applied directly. It is necessary to resample
the signals such that the resulting samples are at equidistant
time intervals, typically at 0.25 s. However, such interpolative
resampling introduces noise into the signal, which compromises
information quality [45,46]. Filter methods which act directly
on irregularly sampled signals can help to prevent the negative
effects of resampling.

For our study we have used the detrending and low-pass filter
proposed by Fisher et al. [47]. The filter combination is based
on an Ornstein-Uhlenbeck third-order Gaussian process which
acts on the RR interval signal directly. Fig. 4 shows the filtered
version of the unprocessed signal provided in Fig. 2. The DC bias
is significantly reduced. This visual observation is confirmed in
the PSD plot shown in Fig. 5. The effects of the detrending filter
can be observed as the absence of low frequency components up
to 0.02 Hz of the normalized frequency. In terms of visual inter-
pretation, removing the DC bias helps to focus on the variability
of the RR intervals. In the spectrum plot of the RAW signal, the
frequency content caused by that variability was overshadowed
by the large DC components. Removing that component allowed
us to re-scale the y-axis on the PSD plot which essentially means
to zoom in on the spectrum component which hold relevant
information for apnea classification.

3.2.2. Windowing

To partition the data for the classification algorithm, we have
used a sliding window of 100 RR intervals on the data. The
window slides with one RR interval at a time. In other words,
the windowing method creates one data block of 100 RR intervals
for each beat from the database. This creates a good temporal
resolution, and it generates sufficient data to train and test the
deep learning algorithm. A window was labeled apnea (positive)
if at least 25 RR intervals were labeled apnea. All other windows
were labeled non-apnea (negative). The labels for the individual
RR intervals came from the Apnea-ECG Database.
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3.3. 10-fold cross-validation

10-fold cross-validation aims to mitigate the effects of choos-
ing test samples from an available dataset. Kohavi et al. recom-
mend 10-fold cross-validation for model selection [48]. Hence,
this performance measure is relevant for comparing classification
models; see Table 3 in Section 5. The basic idea is to partition the
labeled data into 10 parts. Each of the cross-validation partitions
contained mixed data from the cross-validation dataset (as shown
in Table 1). This follows common practice within the machine
learning and bioinformatics community for tuning models [49-
52]. Once the data is split, the parts are used to generate 10 folds
with training and test data. For fold 0, part 0 is used to test and
the remaining 9 parts are used to train the network. Similarly, for
fold 1, part 1 is used to test and the remaining 9 parts are used
to train the network, etc. The left part in the flowchart, shown in
Fig. 6, depicts the data arrangement for 10-fold cross-validation.

The model fitting process is structured into 40 epochs. Within
each epoch the LSTM network is trained and tested. The training
step will result in a model, i.e. a set of weights. The LSTM network
testing step establishes the prediction quality of the model. Based
on the prediction quality, the 'Select best model’ block decides
which model is the best for a particular fold. Once all the epochs
are processed, the data from the next fold is loaded. The algorithm
returns once all the folds are processed and the K best models,
together with their accuracy (acc), are established. The right part
in the flow chart depicts the epoch-based fold processing.

3.3.1. Long short-term memory network

Fig. 7 shows a functional diagram of the LSTM algorithm. The
upper part of the diagram indicates the Recurrent Neural Network
(RNN) loop unrolling, which results in individual LSTM cells. The
hidden state vector h, € R" and the cell state vector ¢; € R"
are passed from one cell to the next. The cells consume the
input vector X, at different time instances t. Each cell A has LSTM
functionality, as indicated in the lower part of the figure.

Each cell incorporates the three gates to establish the LSTM
functionality [53]. The forget gate regulates the information con-
tent stored within the cell and thereby it plays a vital role in
modeling the way humans remember and forget [54]. It is imple-
mented as the first multiplier from the left, highlighted in orange.
The input gate is implemented as the second multiplier from the
left, highlighted in blue. The output gate is implemented as the
third multiplier from the left, highlighted in green.

The weights and biases are established during the training
phase and they constitute the LSTM model. During the testing
phase, the model is used to classify an input sequence X,. In our
case, the model establishes if there are signs of sleep apnea in a
block of 100 RR intervals. The methods used for testing the LSTM
model are introduced in the next section.

Table 2 shows the model architecture used in this paper. The
model used here is a bidirectional LSTM model [55] - where
the RR input sequence is passed simultaneously forward through
one LSTM model (i.e. samples X, ..., X,) and backward through
another LSTM model (i.e. samples x,, ..., Xo). This allows the
bidirectional LSTM model to consider time dependencies in both
the past and future of a timestep. The outputs of the two LSTMs
are then concatenated together and global max pooling (in one
dimension) is applied. In these experiments we used both recur-
rent dropout [56] (with a probability of 0.1) applied to the inputs
and hidden states of the LSTM cells and standard dropout [57]
(again with a probability of 0.1) applied between the final fully
connected layer and the output. These serve to improve the
generalization of the model and reduce over-fitting. The model
was trained using the Adam optimizer [58] with a learning rate
of 1e-3, a batch size of 1024 (providing a good trade-off between
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Table 2
Bidirectional LSTM architecture.
Layer Type Output shape Number of parameters
1 Input 100, 1 0
2a LSTM (forward) 200, 400 161600
2b LSTM (backward) 200, 400 161600
3 Global 1D max pooling 400 0
4 Fully connected Rectified Linear Unit (ReLU) 50 20050
5 Dropout 50 0
6 Fully connected (Sigmoid) 1 51
Start
v
1
¥
Select mn(le/k‘
best .
model ﬂ»
Fold9

10-fold data

1 | means go-to 1

Ella i

Fig. 6. Flow chart for 10-fold cross-validation, where model; indicates the best LSTM model for fold k, similarly accy is the best accuracy for fold k.

available Graphics Processing Unit (CPU) memory and speed of
training), and training performance was evaluated using the bi-
nary cross-entropy loss function. The same batch size was used
in one of our previous models for LSTM based atrial fibrillation
detection in RR interval signals [59]. Models were implemented
using the Keras and Tensorflow frameworks [60,61].

3.4. Hold-out testing

The unseen/generalization performance is tested using the
held-out dataset (as performed in [52]). During validation we
test the best models from each fold with the Hold-out data. This
is done by accumulating the weighted prediction results. The
weight factor reflects the relative prediction accuracy of the spe-
cific model. It is established by dividing the model accuracy (accy)
by the sum of all model accuracies (accAcc). Eq. (1) defines the
accumulated accuracy over all folds.

K-1
accAcc = Zacck

k=0
where K is the number of all folds. The inference value is estab-
lished by using the best model parameters from the K folds. The
prediction result is weight adjusted with the established model
accuracy (accy) divided by the accumulated accuracies (accAcc).

K—-1

inference = Z

k=0

where predict(data, model) used the LSTM algorithm to estimate
for a specific data based on the model parameter.

For hold-out validation testing, the inference results are com-
pared with the data block labels. The comparison results are
discussed in the next section.

M

predict(Hold-out data, model) x acc
accAcc

@)

4. Results

This section provides the hold-out and 10-fold cross-validation
results for the proposed sleep apnea detection method. We report
a confusion matrix for each of these tests. These matrices detail
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Fig. 7. Overview of the deep learning algorithm. Depicted as RNN loop unrolling
and LSTM cell. In the LSTM cell, o(...) is the sigmoid activation function and
Tanh(...) is the hyperbolic tangent function.

the number of RR intervals correctly identified as normal (TN),
the number of RR intervals falsely identified as apnea (FP), the
number of RR intervals falsely identified as normal (FN), and
the number of RR intervals correctly identified as apnea (TP). As
such, the LSTM network testing algorithm returns a vector with
elements in the range of 0 to 1. In order to compare these results
with the true labels, we have used a threshold of 0.5, which
was established through Receiver Operating Characteristic (ROC)
analysis; see Section 4.1. The confusion matrix has the following
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With these base results, we calculate the following performance
measures:

TP +1TN
Accuraqy = ————,
TP + TN +FP +FN
Tl
itivity = —— 4
Sensitivity TPEN (4)
N
Specificity = —.
Peclicly = TN P

In a final step we evaluate sensitivity and specificity at differ-
ent threshold levels to establish the true positive rate and false
positive rate, respectively. The threshold determines the level
below which a result is interpreted as negative, and all other
results are interpreted as positive. These results are depicted in
a ROC curve which plots the true positive rate over the false
positive rate.

4.1. 10-fold cross-validation

Fig. 8 shows the confusion matrix for the 10-fold cross-
validation, described in Section 3.3. The predicted labels corre-
spond very well with the true labels; this is indicated by the
low number of false classifications. The selected operating point
maximizes the perpendicular distance between the dashed red
line (Luck) the ROC curve. That operating point translates into a
threshold of 0.5 which is used to establish the confusion matrix
entries. The Area Under Curve (AUC) of 1.00 indicates a perfect
result. This outcome indicates that the 1856 misclassifications,
reported in the confusion matrix, were not statistically relevant
(see Fig. 9).

Fig. 10 shows the accuracy of the models for the test set
against the number of epochs. Fig. 11 shows the loss of the
model against the number of epochs. These plots show the results
obtained with the hold-out validation method outlined in Sec-
tion 3.4. The performance of the LSTM algorithm is similar across
the folds, hence the variance is small. Therefore, the shaded area
in the graphs, which indicate the variance, is very small, which
makes it barely visible.
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4.2. Hold-out validation

Once the 10 best LSTM models were established during 10-fold
cross-validation, we were in a position to conduct the hold-
out validation, as described in Section 3.1. The confusion matrix
for the hold-out validation is shown in Fig. 12. Based on these
measures, the classification performance was established. The last
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Fig. 13. ROC for Hold-Out validation.

row in Table 3 provides the hold-out performance values. Fig. 13
shows the corresponding ROC curve.

5. Discussion

In this study we show that it is possible to detect sleep
apnea through RR interval analysis. The following list details the
advantages of the proposed method:

e Low measurement complexity — this translates into low
energy requirements, which is beneficial for wireless sensor
applications. Furthermore, the measurement can be done in
the patient environment, potentially even by the patient.
Low data rate — It makes RR interval signals energy efficient
to communicate, store, and process. In many cases, this
energy efficiency translates into cost efficiency.

Low complexity of the algorithm chain — to classify the RR
interval section we use only a two-step process. There is no
feature engineering which complicates and in some cases
even dilutes the information extraction.

Real-time processing — RR intervals can be measured, com-
municated, and processed such that the results are available
for efficient diagnostic support, and treatment monitoring
can be guaranteed.
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This work is based on the assumption that variations in the
beat-to-beat interval of the human heart holds information that
can help to detect sleep apnea [62]. As a corollary, we assume
that all components of the RR signal which do not hold in-
formation about the beat variations are irrelevant. With these
ground rules in place, we set about investigating appropriate
pre-processing methods. Initially, we focused our efforts on de-
tecting and correcting outliers in RR interval data and adjusting
the method used for labeling data RR interval blocks. However,
with these pre-processing methods, the classification accuracy re-
mained below 80%. Furthermore, the graph which documents the
training progress showed a split between training- and valuation-
accuracy, which indicates that the network could not extract
decision relevant information from the RR interval signal. Only
after the band-pass filter, described in Section 3.2.1, initial model
fitting tests showed that the valuation accuracy jumped to over
99% and there was no split between the training and valuation
performance of the network. As such, detrending the RR interval
signals removes a narrow frequency band around DC from the
signal. This band does not carry information about the beat-
to-beat variability. Hence, the irrelevance reduction does not
impact on the beat-to-beat variability as it turns out the oppo-
site effect was observed: detrending improved the classification
accuracy significantly. We have selected LSTM as classification
algorithm, because previous studies showed that LSTM performed
well on time series data. Several researchers have compared the
performance of Gated Recurrent Units (GRU) and LSTM model
architectures on a range of natural language processing and se-
quence modeling tasks with no overall winner emerging [63-65].
Generally, GRU models seem to perform better when datasets are
small, with LSTM models exhibiting greater expressive power in
capturing long term dependencies in larger datasets.

Our study was based on data from the well known Phy-
sioNet Apnea-ECG Database. That enabled us to compare our
results with the classification results that are available from other
research projects. Table 3 summarizes the outcome of these re-
search projects. Some classical studies were focused on the design
of digital biomarkers, which extract in specific properties from
the available signals. For example, Varon et al. used orthogonal
subspace projections to extracted 7 digital biomarkers from an
ECG-Derived Respiration (EDR) signal [66]. Mendez et al. com-
bined an autoregressive model with a K-Nearest Neighbor (K-NN)
classifier to achieve a classification accuracy of above 85% [67].
An extreme learning machine was used by Tripathy to classify
digital biomarkers, extracted with intrinsic band functions, from
both EDR and HRV signals [68]. Song et al. extracted 11 digital
biomarkers hidden in the ECG [49]. The resulting values were fed
into a Markov model to refine the information further. Janbakhshi
and Shamsollahi extracted digital biomarkers from ECG to derive
EDR [69]. Other studies used adaptive boosting (AdaBoost) [50]
and even threshold methods [70] for apnea detection. Apart from
focusing on detection algorithms, researchers also investigated
the practicality of such systems by using data from wearable
sensors [51] and by analyzing the real-time properties of the
information extraction algorithms [71]. Both studies used Support
Vector Machine (SVM) for classification.

Wang et al. [52] used five records (al1, a15, a17, b01, c07) as
Hold-out data. These are the same five records we used for hold-
out validation. Thus, the results achieved are strictly comparable.
Table 3 shows the hold-out performance measures for both stud-
ies. The hold-out performance of our study is 0.7% better than the
results from Wang et al. However, the main point is that both
studies could not confirm the 10-fold cross-validation results
with equally good hold-out results. This and other limitations will
be discussed in the next section.
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Table 3

Summary of studies on algorithmic sleep apnea detection based RR interval signals from records in the Apnea-ECG Database.
Author Classifier Validation method No. features Acc.in % Sen. in % Spe. in %
Mendez et al. [67] K-NN Leave-One-Out 52 857 814 88.4
Surrel et al. [51] SVM 10-fold 88 884 733 87.6
Bsoul et al. [71] SVM Variable-folds m 8849 96.77 83.62
Song et al. [49] SVM+LR 10-fold 32 86.2 80.0 89.9
Hassan [50] Adaboost 10-fold 18 87.33 81.99 90.72
Janbakhshi et al. [69] Assemble Cross-validation 85 90.90 89.60 91.80
Chazal et al. [72] LD/QD Many-fold 52 92.5 914 93.1
Dong et al. [70] Threshold Single-fold 6 90.10 88.29 90.50
Wang et al. [52] Residual 10-fold 0 94.39 93.04 94.95

network Hold-out 80.60 - -

Proposed LSTM 10-fold 0 99.80 99.85 99.73
method Hold-out 81.30 59.90 91.75

5.1. Limitations

The main limitation of this work comes about from the low
hold validation accuracy of 81.30%. We suspect that the number
of training cases was insufficient to extract knowledge concerning
sleep apnea changes in the RR interval signal. Therefore, more
varied data is needed to improve the knowledge extracted during
training and establish robust hold-out testing. Concerning the
data used for this study, there is also a shortcoming in terms
of instrumentation. The RR intervals were extracted from ECG
signals via automated QRS detection. Changing the instrumenta-
tion setup might alter the QRS detection algorithm as well. These
different QRS detection algorithms can show variations in the RR
interval signal produced from the same ECG signal.

Our study is also limited by the rectangular window we use
to create data blocks with 100 RR intervals. The window function
alters the PSD of the RR interval sequence. The blocks of 100
RR interval blocks might not contain sufficient data to capture
all relevant information present in the nonlinear signal charac-
teristics. Hence, the LSTM algorithm might not receive all of the
available information. However, the 10-fold cross-validation and
the training progress, indicated by the graphs shown in Figs. 10
and 11, indicate the 100 beats were sufficient to answer the apnea
non-apnea question with a high degree of accuracy.

5.2. Future work

The 10-fold cross-validation results show that the proposed
deep learning model is robust for the datasets it was trained on.
However, the hold-out performance needs to be improved in the
future. This should be done by training and testing the model
with more varied data. Apart from improving the model, there
is also scope to extend the role of the deep learning system from
detection to prediction. Recent work by Hu et al. indicates that
RR interval based sleep apnea detection might be possible [73].

Hypopnea is defined as abnormally slow or shallow breath-
ing [74]. The airways are partially blocked, in contrast for apnea
in which the airways are fully blocked. Hence, hypopnea can be
considered a milder form of breathing disorder, which makes
it harder to detect. However, hypopnea might lead to apnea,
and therefore hypopnea detection can help to initiate treatment
which prevents patients from developing sleep apnea [1]. There-
fore, in the future we plan to train and test our deep learning
model with hypopnea data in order to detect this breathing
disorder as well in RR interval signals.

6. Conclusion
In this paper we proposed a processing architecture for sleep

apnea detection in RR interval signals. In a pre-processing step
we filtered the RR interval signal and partitioned it with a sliding
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window. The resulting RR interval blocks were fed into an LSTM
network for classification. Filtering the signal helped the deep
learning system to focus on the information contained in the HRV.
As a consequence, the LSTM algorithm could extract relevant
knowledge from the signal to achieve a 10-fold cross-validation
accuracy of 99.80%. The variance between the folds was low. The
hold-out accuracy was 81.30%.

Having accurate and robust processing methods for RR interval
based sleep apnea detection is prerequisite for cost-effective CAD
systems. These systems could be used for the initial diagnosis
and during treatment monitoring. In such a CAD setting, the
deep learning results constitute an independent second opinion
on the data. In the clinical workflow, a human expert should
validate the machine decision through an independent review
of the evidence, i.e. the measured signal, information from the
patient record, and personal interaction with the patient. Having
these two independent opinions during diagnosis and treatment
monitoring can help to improve safety, reliability, and quality of
the decisions. Safety comes from the human interpretation of the
algorithm results. The human expert has to decide whether or not
the machine results make sense and act accordingly. This allows
machine algorithms and human experts to work symbiotically
on the sleep apnea detection problem. The machine algorithms
provide real-time monitoring of patient data without risk of inter-
and intra-observer variability. Furthermore, computer-based sys-
tems do not suffer from fatigue, and the results are reproducible.
The decision model can be updated, which will improve the
decision support over time. The human expert then becomes
involved only if apnea is detected. That will improve reliability
and efficiency of the clinical process, because both machine algo-
rithms and human experts will work according to their strength.
Diligent machine work is then supervised with human creativity
and intuition. Hence, accurate detection of sleep apnea with an
LSTM network based on RR interval signals has the potential to
become a key component for delivering appropriate diagnostic
support and convenient uninterrupted treatment monitoring.
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the metabolizable energy, maturing the neuronal connections, as
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well as consolidating learning and memory. However, when the
life rhythm quickens and lifestyle changes, sleepiness and sleep
structure disorders threaten people’s routine activities and public
safety [1]. Apart from these direct, or immediate risk factors, trau-
matic childhood experiences may also increase the risk for a num-
ber of sleep disorders in adulthood [2]. Demographics show that
up to 24% of the adult population have regular sleep problems [3].
In a more focused study, Ohayon and Smirne found that 27.6% of
the Italian population had sleep disorder symptoms [4]. The ‘Sleep
Heart Health Study’ established that, across the world, patients
experiencing difficulty initiating or maintaining sleep or daytime
sleepiness have a reduced Health-Related Quality of Life (HRQoL)
[5,6]. The impact of sleep problems on health and HRQoL trans-
lates into economic consequences [7,8]. Wickwire et al. estimate
that the global aggregate cost for sleep disorders exceeds $100 bil-
lion USD per year [9]. Ozminkowski et al. found that, within a
six month period, the average direct and indirect costs for adults
with sleep disorders were about $1,000 greater than for patients
without sleep problems [10]. Several scientific studies provide evi-
dence that there is a strong link between fatigue and occupational
safety [11]. Léger demonstrated that sleep problems are statisti-
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cally linked to poorer medical status and worse socio-professional
indicators [12]. A French study found that employees with sleep
problems missed twice as many workdays during a year when
compared to normal sleepers [12]. Sleep studies help to establish
the diagnosis of pathologies, such as circadian rhythm disorders,
epilepsy, sleep apnea, insomnia and hypersomnia [13,14]. Insom-
nia is the most common sleep problem in industrialized countries
[15,16]. For example, the prevalence of insomnia is 23% in Japan
and 56% in the United States). Around 50% of insomnia patients did
not seek medical attention [17]. Hence, a large number of patients
suffer without treatment. To maintain public health and produc-
tivity it is of great importance to monitor sleep and analyze sleep
stages.

On an abstract level, there are two main sleep stages, Non-
REM (NREM) and Rapid Eye Movement (REM). REM sleep oc-
curs 5-30 min at 90 min intervals. During REM sleep the neu-
ronal activity is higher than during NREM sleep. During NREM
sleep, metabolic rate, sympathetic activity, blood pressure, and
Heart Rate (HR) decrease while parasympathetic activity increases.
Sleep experts follow well-established guidelines for sleep scoring
based on guidelines from standardization bodies [18,19]. Nowadays,
overnight Polysomnography (PSG) is the ‘gold standard’ for sleep
stage evaluation [20]. It is a multi-parametric measurement appa-
ratus that records a wide range of physiological signals in paral-
lel, such as Electroencephalogram (EEG), Electrocardiogram (ECG),
Electrooculogram (EOG), Electromyogram (EMG), blood oxygena-
tion, airflow, and respiratory effort. In the majority of cases, the
PSG data is captured in the controlled environment of a sleep labo-
ratory. During pre-processing, the data is divided into 30 s epochs,
and every epoch is categorized as either wakefulness, REM sleep or
one of four states (S1, .., $4) during NREM sleep [21-23]. In 2012,
the American Academy of Sleep Medicine (AASM) published guide-
lines where the NREM stages S3 and S4 were combined to one
stage (S3) [19], also known as Slow Wave Sleep (SWS) [24]. The
guidelines for sleep staging, from Rechtschaffen & Kales, suggest
the use of two EEG channels?, two EOG electrodes and one EMG
electrode [18]. Despite the efforts to standardize sleep staging, am-
biguities still exist. One such ambiguity comes from the fact that
the sleep stage definitions leave some space for individual inter-
pretation [25]. Hence, expert based sleep staging is subject to bias
and may therefore be unreliable [24]. For example, Danker et al.
examined inter-operator variability of human expert scorers and
found an interrater agreement of only 76.8% [26]. Another prob-
lem is that the physiological mechanisms, which shape the phys-
iological signals recorded during sleep, are not well understood
[6]. It is understood that sleep patterns change significantly with
age, but what causes these changes is less clear [27]. The lack of
well-established causality between physiological processes and the
observed signals makes the data interpretation complex. Further-
more, understanding physiological processes is an active research
area, hence new and refined relationships have to be learned all
the time. Human experts can extract the required information from
medical data and make a diagnosis. However, computational meth-
ods can be used as assistive devices to detect subtle differences
in imagery, speed up the analysis process, and reduce cost. These
systems can provide a wide range of results, starting from event
labelling®, over feature extraction, up to the level of suggesting a
diagnosis [28]. Despite progress made in the development of diag-
nostic support systems, fundamental questions still remain, such as
‘Which physiological signals contain sufficient information to sup-

2 The AASM manual suggests three EEG channels while keeping all other signals
the same.

* For example, events.

y and body

port a particular diagnosis?’ and ‘How can we ensure the safety of
the diagnosis?’

In this review, we establish that there is a wide range of physi-
ological signals which contain sleep stage related information. This
information can be used to support diagnosis, treatment monitor-
ing and drug efficacy tests. However, before we can harvest these
benefits, it is necessary to measure the signals and extract the in-
formation. The fact that we found a wide range of signal process-
ing methods indicates that there is no standard method for infor-
mation extraction, and indeed it is unclear which signals provide
sufficient information for diagnosis. To address this uncertainty, we
reviewed information extraction mechanisms for different physi-
ological signals, to provide an indication of the information that
is actually contained in the data. With respect to this focus, we
recognized that automated sleep stage scoring is likely to play a
leading role in future work. Computer machinery can assist to re-
duce inter- and intra-observer variability. Supplementing manual
analysis with computerized assistance has the potential to provide
cost savings. Furthermore, computer based systems can increase
the quality of the extracted information including the utilization
of decision support systems to assist in signal interpretation. We
have discovered a large body of research on automated sleep stage
scoring. This research tends to follow a traditional design method-
ology of feature extraction, and in some cases automated decision
making. The feature extraction step must be carefully considered,
because it reduces the information available for decision making,
and its design process can be error prone. We recognize that au-
tomatic sleep stage classification is a starting point for sleep stage
scoring. However, its diagnostic quality is usually insufficient in a
practical setting, so that the sleep stage recognition technique ulti-
mately requires manual inspection of the polysomnograms by ex-
pert human scorers. To improve outcome, we propose a general
sleep stage scoring systems design based on deep learning and In-
ternet of Health Things (I0HT) technology, described in more detail
herein.

2. Review

This section presents a review of relevant scientific literature
on automated sleep stage scoring. We have structured the review
such that the results can be used to support our position on com-
puter assisted sleep stage scoring and to justify our vision for fu-
ture sleep scoring systems. To be specific, we have structured the
review in accordance with the physiological signals that underpin
sleep stage scoring. An initial analysis of the available literature
showed that EEG, ECG, and EOG data were most often used in au-
tomated sleep stage scoring systems. The next three sections pro-
vide the review results for sleep scoring systems based on these
signals. Individual physiological signals can represent only one as-
pect of sleep stages. Measuring multiple signals provides the ben-
efit of redundant information as well as possibly providing ad-
ditional uncorrelated information. Hence, a number of scientific
studies have investigated automated sleep stage scoring based on
multiple signals. Section 2.4 provides the review results for these
systems.

2.1. Electroencephalogram

The EEG is a recording of electrical activity of the brain. EEG
patterns show different characteristics during sleep stages. These
features have been used for development of numerous sleep stage
classification systems [29-32]. A wide variety of signal processing
techniques have been used to extract sleep- related information
from EEG signals including: time-domain features [33-36], spectral
features [37-39], time-frequency features [35,40,41] and non-linear
features [42,43]. To provide adequate decision support for medical
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practitioners, several classification methods have been utilised in
the reviewed sleep classification studies including: K-means [33],
Support Vector Machine (SVM) [41], Ensemble Classification, such
as Random Forest [44], Bootstrap Aggregating [45] and Artificial
Neural Network (ANN) [46].

Hassan and Bhuiyan decomposed EEG signals and developed a
sleep classification system using the Ensemble Empirical Mode de-
composition technique and the RUSBoost classifier with an aver-
age accuracy of 88.1% for a six class problem [47]. The accuracy
is increased to 90.4% for the six class problem using a tunable-Q
factor wavelet transform technique together with Random forest
classifier [40]. Diykh, Li and Wen decomposed time domain fea-
tures of EEG signals and employed and identified six sleep stages
using the K-means algorithm with 95.9% accuracy [33]. Bajaj and
Pachori [48] used time-frequency features of EEG signals and a
multiclass least square SVM classifier to solve a six class problem.
The classification accuracy was 88.5%. Hsu et al. proposed a system
to classify sleep stages using EEG signal energy features and re-
current neural classifier, resulting in 87.2% accuracy [49]. Seifpour
et al. [34] proposed a novel approach for multi-class sleep stage
classification by using the symbolic analysis concepts to develop
a new time domain feature termed Statistical SBLE. They achieved
90.6% and 97.9% accuracy for six-stage and two-stage classification
respectively. Principal component analysis [50] and Deep Learning
methods [51-53] have also been employed to construct an EEG-
based sleep staging system with reasonable accuracy. Table 1 pro-
vides a summary of the review results. The table columns are Au-
thor, Data, Feature extraction method, Classification method, and
Classification results. The columns of the subsequent three tables
have the same content. This allows us to contrast and compare au-
tomated sleep stage scoring systems that were based on different
physiological signals.

2.2. Electrocardiogram

ECG signals are recordings of the electrical activity of the hu-
man heart. In the absence of heart diseases, ECG signals are
highly structured and individual signal components can be iden-
tified through visual inspection [58]. Individual sleep stages mani-
fest themselves in subtle changes in the ECG signal. Yiicelbas et al.,
Xiao et al, and Kesper et al. proposed that sleep staging with ECG
is less complex, but equally accurate, when compared to PSG anal-
ysis [59-61]. Redmond et al. provide further support for the va-
lidity of ECG based sleep staging by comparing it with EEG based
sleep staging [62,63]. Fell et al. made the case for nonlinear analy-
sis of ECG signals for sleep staging [64,65].

Sleep stages are associated with activities of the Autonomic
Nervous System (ANS) [66]. To be specific, during REM sleep, the
lung tidal volume decreases, and the respiratory rate exhibits a fre-
quent and irregular pattern compared with that in NREM sleep
[67]. Therefore, the characteristics of the related physiological in-
formation, such as the respiratory rate and HR vary according to
the sleep stages. In a clinical setting, the HR is established by
measuring successive beat to beat (RR) intervals from ECG signals
[68,69]. Heart Rate Variability (HRV) provides one or multiple mea-
sures that help to establish the regularity of HR signals [70,71].
These measures provide meaningful information for clinical inter-
vention [72,73], because they reflect the ANS condition [74-76].
During REM sleep, the HR and its variability are increased due to
fluctuations between sympathetic and parasympathetic activities
[77,78]. Various HRV parameters, calculated with time-, frequency-
domain, and nonlinear analyses, revealed significant differences
between NREM and REM sleep [79,80]. Trinder et al. analyzed the
autonomic activity during sleep with HRV measures [81]. de Zam-
botti et al. documented the effects of alcohol on sleep by analysing
the cardiac autonomic function [82]. Penzel et al. used detrended
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fluctuation and spectral analysis for sleep stage information extrac-
tion [79]. Respiratory sinus arrhythmia, a periodic variation in the
HR according to the respiratory cycle, also exhibits different pat-
terns for REM versus NREM sleep [19]. Liu et al. compared HR and
pulse rate variability [83]. They found that pulse rate variability
contained similar information as HRV. That is of practical impor-
tance, because pulse rate is easier to measure than HR. Virtanen
et al. analyzed sleep stage changes in postmenopausal women [84].
Crasset et al. and Faust et al. established that HRV changes with
age and gender [85,86]. Mendez et al. proposed a real-time De-
cision Support System (DSS) for sleep stage scoring based on HR
signals [87]. Table 2 provides a summary of the review results on
automated sleep scoring systems based on ECG signals. That table
includes work on HR, because for all relevant studies the HR signal
was extracted from ECG signals with appropriate algorithms.

2.3. Electrooculography and respiratory effort

EOG results from the continuous measurement of the corneo-
retinal standing potential which can be used to track eye move-
ments. Hence, this signal provides important information for REM
stage detection. According to the AASM rules [19], the EOG elec-
trodes are positioned 1 cm lateral to the left and right outer canthi.
That placement is straight forward, indeed it can be undertaken by
patients [88]. The user led signal acquisition is an important factor
for long term monitoring and continuous sleep stage assessment.
From this perspective, the work by Virkkala et al. [89] is impor-
tant, because they demonstrated that EOG signals contain informa-
tion about NREM sleep stages. Rahman et al. could significantly im-
prove the classification accuracy of EOG based sleep scoring [90].

Respiratory information has been widely used to assess human
nocturnal sleep objectively [91-93]. Long et al. used respiratory ef-
fort amplitude to establish an automated sleep stage classification
system [94]. To improve the classification accuracy, they performed
subject specific feature normalization. Such subject specific inter-
ventions are an important topic when it comes to long term sleep
health monitoring, because of age-related changes to physiological
parameters. Table 3 summarizes the review results for sleep stud-
ies based on both EOG and respiratory effort.

2.4. Combination of signals

The combination of multiple physiological signals provides re-
dundant information. That is important for human scorers, because
a particular bit of information might be overlooked in one sig-
nal, but that same information might be detected in another sig-
nal. Therefore, PSG incorporates a wide range of physiological sig-
nals. As such, it is the standard method to diagnose sleep disor-
ders [95]. Typically, PSG recordings include the EEG, EOG, EMG and
ECG. In many cases, these signals are recorded during the entire
night [23,96]. With PSG, sleep stage is manually scored on each
30 s epoch throughout the night by trained sleep experts, forming
a sleep hypnogram [22].

EEG signals in combination with other physiological signals,
such as ECG, EOG and EMG have also been used to design auto-
matic sleep stage scoring systems [97,98]. Kishi et al. found that
the mechanism which governs NREM sleep stage transitions is also
important for the REM sleep rhythm [99].

RS.T. Leung, studied the effects of OSA on the sleep stages by
observing autonomic functions through multiple physiological sig-
nals [100]. Tracik and Ebersbach studied the sleep attack pattern
of a Parkinson patient [101]. They found a very fast transition from
stable wakefulness to S2 without passing through S1. Kushida et al.
compared subject reports with sleep patterns extracted from PSG
measurements [102]. They could not detect significant differences
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Table 1
A summary of the review results for selected research work that used a EEG signals to support sleep stage scoring.

Author

Data

Feature extraction method

Classification method

Classification results

Mousavi et al., 2019 [53]

Michielli et al., 2019 [52]

Sharma et al., 2018 [29]

Seifpour et al., 2018 [34]

Chriskos et al., 2018 [54]

Memar and Faradji 2018
[44]

Hassan and Subasi, 2017
[45]

Pillay et al., 2018 [35]

Supratak et al., 2017 [51]

da Silveira et al., 2017 [39]

Hassan and Bhuiyan, 2016
[40]
Hassan and Bhuiyan, 2017
[47]

Bajaj and Pachori, 2013 [48]

Diykh et al,, 2016 [33]

Dimitriadis et al., 2018 [38]

Cié et al., 2013 [41]

Shi et al,, 2015 [32]

Vural and Yildiz, 2010 [50]

Koley and Dey, 2012 [55]

Sen et al., 2014 [56]

Hsu et al., 2013 [49]

Acharya et al., 2005 [57]

The benchmark Sleep-European
Data Format (EDF) dataset

The benchmark Sleep-EDF
dataset
The benchmark Sleep-EDF
dataset

The benchmark Sleep-EDF
dataset

23 healthy male adults
between the ages of 23 and 45
(mean: 29 =+ 6 years).

Sleep-EDF database (Pz-Oz
channel), St. Vincent's
University Hospital and
University College Dublin
(UCDDB), the Expanded
Sleep-EDF database (XSEDFDB)
Sleep-EDF database -DREAMS

16 preterm and term born
newborns of 27-41 weeks
gestational age (their age at
birth)

Montreal Archive of Sleep
Studies, Sleep-EDF database

Sleep-EDF (Pz-Oz channel)
Sleep-EDF database
Sleep-EDF database

Sleep-EDF database

Sleep-EDF database, Sleep
Spindles database
Sleep-EDF database

Twenty healthy Croatian babies
aged 3 months

25 adult subjects; Sleep Apnea
Dataset provided by St.
Vincent's Uni-versity Hospital
and University College Dublin.
International Database
PhysioNet Sleep Records

28 subjects aged between 35
and 56 suspected to have sleep
apnea

25 individuals aged 50 =10
years; Data set provided by
provided by St. Vincent's
University Hospital and
University College Dublin
Sleep-EDF (Fpz_Cz channel)

Sleep-EDF database

time and frequency-domain as
well as sequence to sequence
features

55 time and frequency-domain
features

Three-band time-frequency
localized wavelet filter bank
followed by log-energy,
signal-fractal-dimensions, and
signal-sample-entropy

Novel time domain feature
named Statistical Behaviour of
Local Extrema

Two novel methods
offunctional connectivity
estimation: Synchronization
Likelihood and Relative Wavelet
Entropy

Nested 5-fold cross validation,
subject cross-validation

Tunable-Q wavelet transform

Multiple features from the
time- and frequency-domain

a deep learning model, named
DeepSleepNets on raw
single-channel data

Discrete Fourier Transform
(DFT)

Tunable-Q factor wavelet
transform

Ensemble Empirical Mode
Decom- position
time-frequency image based on
the Wigner-Ville distribution
(WVD)

The time domain features and
structural graph similarity
Wavelet decomposition and
cross-frequency coupling
techniques

intrinsic mode functions
decomposition and generalised
zero-crossing methods

A two-stage multi-view
learning algorithm based on a
Jjoint collaborative
representation

Principle component analysis of
time domain and frequency
domain

SVM based recursive feature
elimination technique

Hybrid approach

Energy feature extraction using
FIR bandpass filters
Nonlinear measures

Deep learning

Deep learning

SVM

Multi class SVM

SVM [Highest accuracy],
K-nearest parameters, Neural
network

Random Forest

Bootstrap aggregating (Bagging)

Hidden Markov Models
(HMMs), Gaussian Mixture
Models (GMMs)

No classifier

Random Forest
Random forest

Random under sampling
boosting (RUSBoost)
multiclass least squares
sup-port SVM.

The K-means clustering
algorithm
multi-class Naive Bayes
classifier

SVM

K-means clustering

no classifier

Binary SVMs were combined
with a one-against-all strategy.

Random Forest

Elman recurrent neural
classifier

Feature statistics through
Analysis Of Variance (ANOVA)
test

84.26% accuracy for a
two class problem

83.6% accuracy for a
two class problem

Up to 98.3% accuracy
for a two class problem

Up to 97.9% accuracy

Accuracy: 92.93%

Accuracy: 95.31% for
nested 5-fold and
86.64% for subject
cross-validation

Accuracy: 92.43% for
6-classes from the
Sleep-EDF database
HMM: mean kappa:
0.62 (£0.16) GMM:
mean kappa: 0.55
(£0.15).

Sleep EDF: Kappa: 0.76
MASS: Kappa: 0.80

Accuracy for 6-state
sleep stages: 90.5%
Accuracy: 90.38%, for
6-classes

Accuracy of up to 98%

Accuracy: 88.47

Accuracy: 95.93% for
Sleep-EDF dataset
Accuracy: 94.4%

Accuracy: 90%

Accuracy: 81.10%

411,337, 92.6, 764,
96.4, 79.7% success
rates for 6-classes
Accuracy: 85%

Accuracy: 98.02%

Accuracy: 87.2%
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Table 2

A summary of the review results for selected research work that used a ECG signals to support sleep stage scoring.

Author

Data

Feature extraction method

Classification method

Classification results

Yiicelbas et al., 2018
[59]

Fell et al,, 2015 [64]

Fell et al,, 2015 [65]

Yoon et al., 2017 [78]

Liu et al, 2017 [83]

Kesper et al., 2012 [60]
Virtanen et al., 2007
[84]

Xiao et al,, 2013 [61]

Redmond and
Heneghan, 2006 [62]

Redmond et al., 2007
[63]

Mendez et al., 2010
187]

Penzel et al., 2003 [79]
Crasset et al., 2001 [85]

Trinder et al., 2001 [81]

de Zambotti et al., 2015
182]

Sleep laboratory of Necmettin
Erbakan University database
and PhyisioNet

Data from 12 healthy male

Data from 12 healthy male

Twenty-one healthy subjects
(male: 12, female: 9) and 30
subjects (male: 25, female: 5)
with Obstructive Sleep Apnea
(OSA) recorded at Seoul
National University Hospital
Seventy-five sleep apnea
patients. Data recorded as
Shandong Province of
Traditional Chinese Medicine
Hospital

Apnea-ECG and SIESTA
Database

71 healthy postmenopausal
women

Public database Sleep and
Stroke Volume Data Bank

37 subjects

31 male subjects

24 subjects

64 patients with symptoms of
excessive daytime sleepiness
and arterial hypertension

26 subjects, 18 normal, 4 with
heart transplants

14 healthy subjects

17 healthy subjects

Morphological methods

Embedding dimension
estimation

Correlation Dimension (CD),
Kolmogorov entropy, and
Lyapunov exponent

HR Statistical parameters,
Spectral power, variability
measurements

HR, Time domain statistical
parameters, Spectral power,
nonlinear measurements

HR, Spectral power evaluated
by ANOVA

HR, linear, geometric and
nonlinear

HR, linear statistics, spectral
power, nonlinear

ECG derived respiration and HR
statistics. EEG sleep staging for
comparison

ECG derived respiration and HR
statistics.

HR statistics Spectral power.

HR statistics, spectral power

HR Statistical analysis

HR spectral power, blood
pressure

Statistical analysis of labeled
data to find sleep stage
transitions

Random Forest, Wake,
Non-REM, REM (WNR)

Threshold, REM
duration

Statistical analysis

threshold
Statistical analysis
WNR, random forest

Evaluation of HR
parameters during
different sleep stages
WNR, Linear
Discriminant Analysis
(LDA) and a quadratic
LDA.

REM-NREM, HMM.

Wake, light-,
deep-sleep REM.
ANOVA

ANOVA

Statistical analysis

Not reported

Up to 87.11% accuracy

Accuracy: 87.54%

Not reported

Accuracy: 57.8%
Not reported
Accuracy: 88.67%

Not reported

up to 76.1%

Accuracy: 79.3%

Not reported

Not reported
Not reported

Not reported

Table 3

A summary of the review results for selected research work that used a Electrooculography and respiratory effort to support sleep stage scoring.

Author

Signals and data

Feature extraction method

Classification method

Classification results

Long et al., 2014 [94]

Liang et al., 2015 [88]

Virkkala et al., 2007
[89]
Rahman et al., 2018
[90]

Respiratory effort from 48
healthy subjects participating
in the SIESTA project

EOG from 16 healthy
experimental subjects

EOG from 265 subjects

EOG Physionet DB

Respiratory amplitude,
statistics, spectral power,

amplitude and volume analysis

Spectral analysis
Spectral analysis

Statistics of Discrete Wavelet
Transform (DWT) coefficients

Subject specific
quadratic LDA, WNR

LDA for wake, REM, S1,
S2, SWS classification
Thresholds for REM S1,
S2 and SWS

6 classes problem
approached with SVM,
RUSboost and random
forest

Accuracy: 79%

Sensitivity: 82.6%.

Epoch agreement:
72.9%.

Accuracy of up to 91.7%
with SVM

between the subjective case reports and the objective sleep stag-
ing. Montgomery-Downs et al. studied developmental changes of
the sleep patterns in children [103]. Long et al. used actigraphy and
respiratory effort to determine sleep and wake states [104]. In their
study, they emphasized the nonlinear concept of dynamic warping
to improve the classification results. Kirjavainen et al. fused infor-
mation from both respiratory and body movement signals to de-
termine sleep stages and wakefulness in infants and young adults
[105]. The movement signals came from a novel sensor enhanced
bed, which could measure body movements unobtrusively. Tripa-
thy et al. [106] and Yildirim et al. [107] used a deep learning sys-
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tem to fuse information from multiple signals. Such an approach
might provide better robustness in case of noisy and intermittent
data. Table 4 summarizes our review findings for automated sleep
stage scoring based upon a combination of signals.

3. Discussion

Information can be defined as a measure of what we can learn
from a given amount of data [112]. Hence, the idea of extracting in-
formation from physiological signals is vital to sleep stage scoring.
With this information centric view, the research question can be
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Table 4

A summary of the review results for selected research work that used a combination of physiological signals to support sleep stage scoring.
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Yildirim et al., 2011 [107]

sleep-edf and sleep-edfx

Convolutional neural network

Up to 97.62%

Author

Tripathy et al., 2018 [106]

Kishi et al., 2011 [99]

Takatani et al., 2018 [108]

Fonseca et al., 2015 [109]

Helland et al., 2015 [6]

Kesek et al., 2009 [110]

Estévez et al., 2002 [111]

Willemen et al,, 2014 [3]

Long et al., 2014 [104]

Kirjavainen et al., 2018 [105]

R.S.T. Leung, 2015 [100]

Signals and data
MIT-BIH polysomnographic
database

Full PSG 11 healthy subjects

74 newborns and 16 adults

Data from 48 subjects

EEG, ECG and respiratory
signals from the SIESTA
database

EEG, ECG and respiratory
signals from 230 habitual
snorersand 170 other subjects
(all female)

11 healthy infants

36 healthy subjects

Actigraphy and respiratory
effort, 115 healthy adults

22 infants or young children

17 healthy subjects

Feature extraction method
From RR: recurrence
quantification analysis and
dispersion entropy. From ECG:
variance and the dispersion
entropy of frequency bands
Statistical analysis

EEG spectral power, HR
absolute high frequency
component.

ECG: Spectral power, variability
measurements, and network
analysis. PSG: Time | frequency,
and network analysis

HR: statistics. PSG: Time |
frequency, and network
analysis

HR: statistics and Spectral
power. PSG: manual scoring

EEG sleep spindle detection
EOG REM detection and EMG
muscle tone

HR statistics and spectral
power, Breathing Rate (BR)
statistics, and movement
statistics

Statistical analysis of dynamic
wrapping of body movement

Statistical analysis of body
movements
Statistical analysis of labeled

Classification method
Deep neural network

State machine model for
waking, REM sleep, S1, S2, and
S3

Statistical analysis, REM and
NREM sleep

LDA, Wake, NREM and REM

LDA, Wake, REM and REM

Classification results
95.71% accuracy for REM vs.
NREM

Not reported

Accuracy: 80%

Accuracy: 80%

Not d

E ion of HR p.
during different sleep stages

Threshold WNR

SVM WNR

LDA, binary problem for
comparing features to a PSG
study

Comparison with PSG, WNR

Not reported

P

Not reported

81%

accuracy 95.7%

Not reported

Not reported

data to find sleep stage

transitions
Tracik and Ebersbach, 2001
[101]
Kushida et al., 2001 [102]

Full PSG One subject with
Parkinson's disease

Full PSG 100 patients with
sleep disorders

542 healthy children in the age
range from 3.2-8.6 years

and REM

sleep states
Montgomery-Downs et al.,

2006 [103] and REM

Visual scoring of W, S1, S2, S3,
Visual scoring of wake and

Visual scoring of W, S1, S2, S3,

Visual scoring Not reported

Threshold Accuracy: 77%

Visual scoring Not reported

stated as: ‘How much information is needed for sleep state scoring
and which signals provide that information?’ In the absence of a
standardized test for automated sleep stage scoring systems, this
question is not readily answered, because each published study
investigates a specific aspect and presents novel findings. These
findings are based on a particular algorithm setup which is used
to process data from specific databases. To shed some light on
these questions, we have structured the review in terms of indi-
vidual physiological signals. Based on this structure, we were able
to establish that most of the reviewed work was concerned with
EEG data. That focus is justified, because sleep and sleep stages is
caused by significant changes in the brain activity [42]. Apart from
EEG, all physiological signals measure symptoms of sleep stages.
That makes it difficult to detect individual NREM stages. Hence,
there are fewer studies which focus on these secondary signals.
ECG is likely to be the most prominent secondary signal. It picks
up sleep related changes in the ANS. EOG is an important signal for
REM phase classification. However, NREM stages are rather com-
plex to classify based on the EOG. Fig. 1 depicts the number of
studies which use a particular physiological signal. Apart from the
amount of studies, another important fact is that the physiological
data for all of the reviewed studies originated from clinical stud-
ies. There is as of yet no work on long term sleep stage monitoring,
which would inevitably require the home recording of signals. PSG

studies are carried out in dedicated sleep labs, where patients are
kept overnight. In the sleep lab, the cost for the individual mea-
surement is low, compared to the overall cost of running the facil-
ity. Hence, it makes sense to measure as many physiological signals
as possible during patient study. To be specific, multiple measure-
ments add redundancy that improves the quality of the diagnosis,
especially for human scorers. However, the need for redundancy
implies that these systems have to address a problem which may
be random in nature. Indeed it is difficult, if not impossible, to pre-
dict when a human expert will make an error. As a consequence,
a prerequisite for reducing the degree of redundancy, and there-
fore the amount of resources required for a diagnosis, is to make
the process which leads to a diagnosis more reliable. In the next
section we outline a generic design of an automated sleep stage
scoring system which addresses these shortcomings.

3.1. Future work

This review suggests that use of an automated DSS is one way
to establish a reliable diagnosis. Trust in the DSS system should
be established with traceability [113,114], i.e. the decision process
should be transparent and repeatable. Another important aspect
is continuous learning. Just like a human practitioner, a DSS must
also learn all the time. Furthermore, there is a need for less intru-
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EOG
and
respiratory effort
ECG 4
15
Signal combination
14

Fig. 1. Treemap representation of the number of studies that used a particular
physiological signal. The area of the individual rectangles is proportional to the
amount of studies.

sive signal measurement systems, whereby to ensure patient com-
fort can be improved. In some cases long term monitoring is com-
promised by patients who fail to wear the sensor equipment, be-
cause wearing equipment was uncomfortable. Another important
requirement for long term monitoring is real-time analysis [115],
since real-time results provide an opportunity to control the ther-
apeutic process.

To address these needs and establish the requirements, we ap-
proach the problem from a signal perspective. Recording a physio-
logical signal over multiple sleep cycles implies that the measure-
ment is done in the normal patient environment. EEG signals are
impracticable, because the measurement setup must be done by
an expert and it is difficult if not impossible for a patient to wear
the recording system during the day. EOG is impractical for similar
reasons, despite the fact that there are sensor masks that can be
applied by patients. The masks, used to measure airflow and respi-
ratory effort, are inconvenient to wear. Long term ECG monitoring
is already a standard procedure which could be used to measure
multiple sleep cycles. Even more convenient for the patient are
HR measurements, because they involve only one sensor attached
to a breast strap. That convenience comes from the fact that HR
signals can be measured by detecting and encoding the time be-
tween two consecutive peaks (R-waves). The R-wave amplitude is
rather large, usually in the rage of millivolts, when compared to
the remainder of the signal. In contrast, the ECG requires constant
recording® with a resolution of microvolts. Therefore, the data rate
of the HR is much lower®> when compared to ECG. The lower data
rate implies that consumer technology can be used to communi-
cate the HR data. With this technology an unobtrusive sleep stage
monitoring, based on the IoHT, can be established [116]. The lit-
erature review in Section 2 shows that 5 studies linked HRV with
sleep stages. Hence, HR signals contain the required information,
i.e. they can be used for sleep staging.

Fig. 2 shows an overview block diagram which captures these
requirements. The data is shown flowing from the sensors to a
cloud server via mobile technology. From there a deep learning
system queries the measured signal in the form of data blocks.
These data blocks can be used for automated sleep stage scoring

4 The usual sampling frequency is 256 Hz.
5 256 times when we compare the ECG signal with a HR signal of 60 beats per
minute.
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and for learning. The analysis results are disseminated via social
networks and other communication apps. This dissemination ap-
proach allows us to reach patient, caregivers, and medical staff
in a discriminant way. The medical doctor in charge can obtain
the raw data independently and review (trace) the decision pro-
cess of the deep learning system. As such, sensor, mobile device,
and cloud storage implement the IoHT. The deep learning system
supports the medical practitioner in the process of finding a diag-
nosis. That diagnosis is disseminated to via the IoHT such that it
reaches the correct patient. In this design approach, deep learning
takes center stage, because that method considers all of the avail-
able information content during both the training and the infer-
ence phases [117]. That is an advantage over the traditional ma-
chine learning algorithms found in most of the reviewed sleep
scoring systems [118]. To be specific, traditional machine learning
requires feature extraction to condense the data into a low dimen-
sional feature vector®, because the decision making algorithms fail
to handle high dimensional data. In essence, the feature extraction
step is an exercise in information reduction. Hence, traditional ma-
chine learning methods never consider all of the available informa-
tion. Operating on reduced information makes them underperform
for unknown data. As a consequence, test result quality, as pub-
lished in the scientific literature, is difficult if not impossible to
achieve in a practical setting. In contrast, deep leamning has the
potential to excel in such blindfold validation tasks [119]. Hence,
deep learning is more suitable for practical applications, such as
long term sleep stage monitoring. The decision making algorithm
is presented with all of the data containing all the available infor-
mation. Conceptually, deep learning moves away from information
reduction towards knowledge extraction. However, deep learning is
computationally complex [119]. Thus, the data must travel to the
processing, i.e. physiological data must travel to a data center. De-
pending on the physiological signal, this might create problems for
the communication and storage infrastructure. Hence, we propose
HR signals for automated sleep stage scoring. They have the lowest
data-rate of all signals taken into consideration.

3.2. Limitations

Traditionally, HR is extracted from ECG signals by detecting the
heartbeat (R wave) and subsequently calculating the beat-to-beat
(RR) interval [120]. However, the instrumentation effort for mea-
suring HR directly is significantly lower when compared with ECG
measurements. In other words, we do not consider the most effi-
cient signal measurement method for scientific studies. That effi-
ciency comes from the fact that the R wave is a readily detected
signal deflection. Sensors, which measure the HR directly are effi-
cient, because R wave detection requires less instrumentation ef-
fort than ECG measurements. However, this presents a problem,
because the heartbeat detection process is not well documented
and is oftentimes proprietary to the company which manufactures
the sensors. Therefore, it is difficult to establish that direct HR
measurements will yield the same beat-to-beat interval sequence
as HR extracted from ECG, especially for the subtle signal alter-
ations which are indicative of sleep stage changes. However, none
of the reviewed studies is based upon data from HR sensors. All of
the relevant research was done by extracting the beat to beat in-
terval from ECG signals. The signals were measured with medical
equipment according to measurement standards [121]. Even with
standardization, the measurement setup and indeed measurement
errors influence the resulting signal [122]. The problem increases
if the signal acquisition does not follow medical standards. There
is no evidence that direct HR measurements have the same in-

S Typically, less than 10 dimensions.
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Legend:
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------- Data queried by the medical practitioner

PPG Heart
rate sensor

Fig. 2. HR based sleep stage diagnosis support system.

formation content as HR extracted from ECG signals. For example,
modern breast strap based HR sensors detect the R wave in hard-
ware’. Such a means of detection tends to be less complex when
compared to software algorithms that extract the R peaks from
ECG [123]. That complexity is required to improve the peak de-
tection quality. Pulse Pressure Variation (PPV) measures HR based
on blood flow measurements. It is difficult to establish the mea-
surement quality needed for HRV analysis, because the human cir-
culation system acts as a filter for the heartbeat which pumps
the blood. As a consequence, decision making systems that were
trained with HR extracted from the ECG might have reduced ac-
curacy when they are used to analyze directly measured HR. Sleep
studies are needed which either produce labeled HR signals that
are directly measured for the patient or recordings of both ECG
and direct HR.

Through the review process, we found that the sleep-EDF
database [124] on Physionet [125] has thus far been used in 10
studies. That database contains EEG, EOG, EMG, and respiration
signals as well as body temperature. The data provides an excellent
opportunity to advance sleep stage technology through cooperation
and competition. A common dataset makes the sleep scoring re-
sults comparable. Unfortunately, there is no ECG database which
has a similar prominence. The ‘Sleep HR and SV Data Bank™® is
also a publicly accessible database, but it has thus far been used in
only one study. Granting public access to these databases is a step
towards open science that leads to improved technology that can
benefit a large number of individuals. However, both data amount
and diversity of current databases are insufficient to create univer-
sal sleep scoring systems. A sustained effort is needed for remedy.

4. Conclusion

Physiological signals contain sleep stage related information.
The task of a DSS is to extract and present this information to a
human practitioner. Hence, physiological signals and their informa-
tion content take center stage in sleep stage scoring. The emphasis
on physiological signals is also justified by the fact that instrumen-

7 Web page (last accessed 16.09.2018): https:/jwww.edn.com/design/analog/
4442954/1/What-a-circuit-designer- needs-for- a- robust--wearable- health-sensor
-system-design.

& Web page (last accessed 04/09/2018): http://www.prikmu.lt/datbank/archiv.
php.

tation effort, data rate, and cost differ greatly between the individ-
ual signals. In our review, we have found that all investigated phys-
iological signals contain sleep stage related information. From this
perspective, the current approach of measuring EEG, EOG, EMG
and ECG in one PSG sitting makes sense - a maximal amount of
information is obtained in a short period of time. However, some
of this information is redundant, i.e. the ECG merely confirms in-
formation already extracted from an EEG signal. Redundancy how-
ever, is assistive in making a system reliable. For example, a human
practitioner might miss a sleep stage transition in an EEG signal
due to fatigue, but that expert might spot the transition in the ECG
signal. However, that redundancy comes at the cost of expert labor
and expensive equipment. The cost and the sheer inconvenience
for the patient make recordings longer than one night impractical,
even though longer recordings might reveal additional sleep dis-
orders and therefore provide a fuller picture of the patient’s sleep
health. Patient led signal acquisition and DSS support can help to
establish long-term unobtrusive sleep monitoring.

DSS can address issues of inter- and intra-observer variability,
because an algorithm produces the same output from a given in-
put regardless of space and time. Furthermore, these systems re-
duce the need for interpreting multiple signals, because they are
immune to fatigue related signal misinterpretations. The need for
redundancy can be addressed by observing the physiological sig-
nals during multiple sleep cycles. This has the added benefit that
more sleep abnormalities can be detected. Furthermore, DSS sys-
tems can be made aware of the latest research findings via soft-
ware and hardware updates, which is convenient and cost effective
and can be helpful in tandem with training of human experts.

As part of our future work, we propose to combine Al and IoHT
technology to create a HR based sleep scoring system. Using HR
ensures patient comfort as well as a lower and therefore more
manageable data rate. The signals are stored in a cloud server for
traceability and continuous learning. The automated decision sup-
port is established with a deep learning system which takes ac-
count of all of the available data during the decision making pro-
cess. We believe that any such a system will benefit patients in
part by establishing a real-time sleep monitoring system, which
provides constant feedback and emergency messages.
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Introduction

Sleep is a basic human function which covers approximately one-third of the human lifespan (Yan et al., 2021; Acharya et al., 2011).
Adequate night sleep is essential for mental and physical health of a person (Faust et al., 2016), and prolonged sleep deprivation has been
related to neurobehavioral dysfunction (Yassin et al., 2020). Eldele et al. (2021) show that, humans who get a good night's sleep have
superior health and brain capabilities. Fiorillo et al. (2019) established that a significant fraction of the world's population suffers from
major sleep disorders which require medical intervention. Several studies have discovered a significant prevalence of sleep-related
problems, such as insufficient sleep and trouble falling asleep. In the general population, sleep disorders are common, affecting 22%—65%
of people (Yassin et al., 2020). Loh et al. (2020) found that sleep difficulties affect 16.6% of the adult population, or around 150 million
people, and they predict that this number will rise to 260 million people by 2030. According to the American Sleep Association (ASA),
50-70 million persons in the United States suffer from sleep disturbances (Princy, 2021). Insomnia symptoms affect approximately 33%
of the world's population (Gurrala et al., 2021). In addition, more than 100,000 car-accidents happen in the United States each year due
to drivers falling asleep, according to the National Highway Traffic Safety Administration (NHTSA). Sleep-related difficulties cause 20%
of traffic accidents in the United Kingdom and one out of every four incidents in Germany (Santaji and Desai, 2020). The high
prevalence indicates that there is a need for technical problem solutions which address sleep related health issues. However, before we can
think about technology, we must also understand how the disease affects the economy.

Due to their prevalence and disease specific symptoms, sleep disorders have an economic impact (Imtiaz, 2021). Sleep disorders
require costly treatments, they lower productivity, and if not effectively treated, disease related symptoms pose public safety risks, like
increasing the chances of having traffic accidents. Furthermore, they impact also on a range of other sectors that require attentiveness and
fast judgment (Perslev et al., 2021). According to Dietz-Terjung et al. (2021), the estimated monetary burden of undiagnosed sleep
problems in the United States was $149.6 billion in 2016. They predicted that diagnosing and treating every American adult with sleep
problems would cost an additional $49.5 billion. In a focused study, Lin et al. (2021) found that sleep problems and delayed sleep time
affect about half of all older persons. They established that in the United States, the total healthcare expenses for older persons were 47%—
51% greater because of delayed sleep. The medical need, together with the economic impact, should shape our approach to screening,
detection, diagnosis, and treatment monitoring of sleep disorders.

Currently, many people with sleep disorders go undiagnosed and untreated due to a lack of public awareness and restricted access to
sleep care experts (Watson and Fernandez, 2021). The polysomnography “sleep stage scoring” method is one of the most widely utilized
methodologies in sleep medicine and research. This method has been around for a long time and is still regarded necessary for
understanding sleep architecture. One of the most important steps for diagnosis and treatment of sleep-related problems is the
classification of sleep stages. Traditional methods employ qualified human sleep scorers who use a manual scoring procedure to produce
repeatable analysis results. This is a time-consuming and taxing procedure. Furthermore, even with strict adherence to standardized
procedures intra-and inter-observer variability exists which limits the scoring quality. Researchers have been working for years to develop
more efficient, reliable, and accurate categorization algorithms. Computer-assisted sleep stage classification systems are increasingly

considered crucial for both diagnosing and monitoring sleep-related disorders. These syst have been fully applied to the

problem of sleep scoring over the years. Despite these accomplis} ts, fund tal questions still exist, such as:

*  How do we incorporate automated sleep stage scoring into clinical workflows?

*  How do we avoid bias during training and testing of automated decision support systems?
*  How do we make more data publicly available which characterizes sleep accurately?
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disorder might be present. A sleep disorder diagnosis should rely on objective measurements. Most objective sleep stage detection
methods are based on physiological measurements which require a specialized facility, usually in the form of a sleep lab. The cost of sleep
labs implies that these facilities can only be used for the most severe cases. Hence, sleep lab-based diagnosis can do little to reduce the
overall cost to society. Furthermore, sleep-lab measurements are taken for only one night under special conditions. This might not
represent normal sleep behavior. We adopt the position that current sleep stage scoring methods fail to address the medical need, because
their cost is not justified by the economic benefits. Prolonged physiological measurement in the patient environment might be one way to
align our methods for screening, detection, diagnosis, and itoring of sleep disorders. Automated sleep stage scoring takes center stage
during this paradigm shift, because only automated analysis and diagnosis support guarantees low levels of intra- and inter-observer
variability as well as low cost, with the potential to scale up and meet current healthcare needs.

In this article, we provide an expert review of automated sleep stage scoring. We introduce methods and materials before the review of
original work on automated sleep stage scoring is presented. That might benefit the reader, because having an overview of the mechanics
for automated sleep stage scoring can help to appreciate and even understand well established scientific work on that topic. An
understanding of current research is prerequisite to formulate relevant research questions and identify adequate research gaps. Addressing
these research gaps might lead to studies which increase the knowledge of automated sleep stage scoring. The discussion section of this

article puts the review work into context with the wider research field of artificial intelligence in medicine. During the discussion we also
highlight limitations and give pointers for future work. This article concludes with a summary and our review findings.

Background

The method of obtaining sleep cycle information from electrophysiological signals is known as sleep staging or sleep scoring. This operation is
currently done by hand, although efforts to automate it are well underway. In this section, we provide the necessary background on sleep and sleep
stage scoring to form a foundation for und ding the ization approaches. The two most prevalent standards for defining sleep stages are
described. The “gold standard” approach for sleep monitoring and sleep stage scoring, polysomnography (PSG), is also described. Following that,
we will go through how PSG technologies are used to diagnose sleep disorders.

Sleep staging is an essential approach for diagnosing many sleep related illnesses and disorders (Satapathy and Loganath 2021).
Automated sleep stage scoring systems have been developed to aid sleep scoring in human and animal models since the late 1960s
(Grieger et al., 2021). Sleep stage scoring is an elementary step during PSG analysis (Krauss et al., 2021). Until now, sleep stage scoring
has been based on a wide range of physiological signals, such as electroencephalogram (EEG), electromyography (EMG),
electrooculography (EOG). During the staging process, these signals are separated into 30 s intervals, called sleep epochs. Each epoch is
manually classified by sleep specialists (Sokolovsky et al., 2020) and labeled as wake, light sleep, intermediate sleep, deep sleep, and
Rapid Eye Movement (REM) sleep (Perslev et al., 2021). These labels follow the recommendations from the American Academy of
Sleep Medicine (AASM) (Yan et al., 2021).

According to a system proposed by Rechtschaffen (R) and Kales (K) in 1968, sleep was split into five stages (Hussain et al., 2021). R&K was
the first standard which defined commonly agreed rules for sleep stage scoring (Malafeev et al., 2018). R&K provides guidelines to break down
sleep cycles into five separate stages: non-rapid eye movement (NREM) which can be further classified as sleep stages 1, 2, 3, and 4, and REM
stage. Since the 2012 revision of the standard, published by the AASM, stages S3 and S4 should be represented as a single Slow Wave Sleep
(SWS) class (Chriskos et al, 2021; Michalek-Zrabkowska et al., 2021; Yildirim et al., 2019). A normal sleeper transits between these sleep
stages during night sleep. Meta analysis shows that S2 is the most prevalent sleep stage (Malik et al, 2018). The NREM sleep stage takes up
75%—80% of total sleep time, while the REM sleep stage takes up 20%—25% (Sharma et al., 2021).

Review

In this part, we provide an overview of automated sleep stage scoring. Conceptionally, we have structured this section in terms of the
individual processing steps that lead to automated sleep stage scoring. Any work on this topic starts by identifying a suitable data source.
Once the data source is established, a pre-p ing step is needed to prepare the data for decision support methods. Broadly speaking,
these decision support methods incorporate either traditional machine learning or deep learning (DL) algorithms. These algorithms yield a
classification result for a given data segment. For the problem at hand, the classification result will be a sleep stage. That result can be

used to support the physician led sleep stage scoring process.

Signal data

During sleep, humans' transition through sleep stages and for sleep stage analysis we are interested in measurements which can document
these transitions. Cost and practical obstacles render imaging methods unsuitable for sleep staging. Physiological signals are the logical
choice for sleep stage scoring because they can document physiological changes over long periods of time.

During PSG, physiological data is collected from subjects while they are sleeping. A collection of signals is recorded, including EEG,
ECG, EOG, and EMG (Satapathy and Loganathan, 2021). Automated sleep stage scoring is predominantly based on EEG and EOG
measurements. Therefore, we provide more detail for these signals in the subsequent secti The di ion on signal data concludes

with a short review of benchmark datasets.
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Electroencephalograms (EEG)
EEG is a technique that measures and records the electrical activity of the brain. During sleep stage scoring, EEG signal records are
employed. These signals are indicative of brain activity. The nature of EEG signals is very irregular, nonlinear, and nonstationary
(Acharya et al., 2015). As a result, EEG signals are appropriate for evaluating sleep disorders (Faust et al.,, 2019). Because of its
simplicity single-lead EEG has recently become popular for sleep monitoring (Acharya et al., 2005). At least three EEG channels are
employed in PSG for sleep staging to collect signals from various regions on the scalp. These electrodes are connected to a machine that
records the electrical impulses via wires. The data are printed or presented on a computer screen, and they are used to diagnose epilepsy,
sleep disorders, and brain tumors, among other conditions. Delta, theta, alpha, and beta wave bands can be used to structure brain waves
which are a morphological feature in EEG signals (Grieger et al., 2021). According to the AASM standard, relative signal levels in
different frequency bands provide objective information about different sleep stages. For example, alpha waves have a frequency band of
8 Hz-13 Hz, amplitudes of 2 mV-10 mV, and a sinusoidal shape. It can be seen in people who are awake but have closed their eyes and
are physically and mentally relaxing. Delta waves occur in settings of very low brain activity, such as profound sleep and general
anesthesia, and have a frequency band of 0.5 Hz—4 Hz with amplitudes of 20 mV—400 mV (Acharya et al., 2015; Grieger et al., 2021).
Once picked up by the electrodes, the signals are fed into a front-end electronic system comprised of amplifiers, filters, and other data
gathering hardware before being digitized. EEG signals can be used for assessing brain health as well as diagnosing various sleep and
neurological problems. Each 30 s epoch is carefully examined by sleep specialists before being classified into one of five stages (four
sleep stages and wake state) (Eldele et al., 2021). Measurement complexity and human EEG analysis makes sleep scoring expensive,
time-consuming, and error prone (Santaji and Desai, 2020). Furthermore, EEG recordings might suffer from interference caused by other
physiological measurements that were acquired as part of a PSG (Santaji and Desai, 2020). When compared to ECG, EMG, and EOG
signals, EEG signals contain more significant and noticeable information. However, it is difficult to use because of limitations caused by
electrode displacement and noise (Imtiaz, 2021).

Electrooculograms (EOG)

An EOG is a signal produced by eye movements and recorded with electrodes positioned near the eyes. The EOG electrodes are placed 1
cm lateral to the left and right outer canthi, according to AASM guidelines. That placement is straightforward, and patients can do it
themselves (Faust et al., 2019). EOG signals can be used to identify wake and REM stage, because there are substantial eye movements
throughout these stages. Generally, sleep depth is correlated with eye movements—the movement slows down during deeper sleep
(Imtiaz, 2021).

Benchmark datasets

The Sleep-EDF and EDFx databases include EEG, EOG, and chin EMG signals, as well as event markers. They are available online from
the PhysioNet website [https://physionet.org/content/sleep-edfx/1.0.0/]. The EEG signal records are collected from the Fpz-Cz and Pz-Oz
channels with a 100 Hz collection frequency, resulting in a data sample length of 3000 for a signal epoch of 30 s. Furthermore, the sleep
records originate from two sorts of subjects: those who are in good physical health and those who have modest sleep disorders (Jain and
Ganesan, 2021).

EDF database

Physionet's Sleep-EDF database contains sleep data from eight participants, four of whom are healthy and four of whom have slight
trouble falling asleep. Horizontal EOG, Fpz-Cz, and Pz-Oz EEG chamnels captured at 100 Hz make up these recordings. Experts have
scored each 30 s epoch in accordance with R&K.

EDFx database
The Sleep-EDF database has been expanded and is now available on Physionet. This is an expanded version of the Sleep-EDF database,
featuring 197 PSG sleep recordings, 153 from healthy participants and 44 from patients who have slight difficulties sleeping.

Pre-processing

Pre-processing is used to prepare raw measurement results for the classification step. Down sampling, band-pass filtering, and windowing
are some of the common procedures in data pre-processing (Roy et al., 2019). During our review of scientific studies on automated sleep
stage scoring, we discovered that each study used different pre-processing methods.

Apart from these signal conditioning methods, artifact reduction (to eliminate or lessen the effects of artifacts on physiological signals)
and segmentation are two of the most prevalent procedures in the pre-processing step (Seifpour et al., 2018).

After the pre-processing step, the data is ready for machine classification for medical decision support. The next section reviews
common methods that provide the required functionality.

Medical decision support through artificial intelligence

The measured physiological signals must be analyzed to extract diagnostically relevant information. Artificial intelligence is an attempt to
automate this analysis step. The idea is that an artificial intelligence algorithm takes a pre-processed signal segment and generates a sleep

stage result. However, prior to realizing this ization, it is y to train and test the algorithm. The training and testing process
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implies that labeled data was available. For most practical design challenges this is the case, i.ec., it is possible to incorporate one or
multiple benchmark databases during the design. While training and testing artificial intelligence for sleep stage scoring is not
controversial, firm guidance on what algorithms to use for medical decision support is more complex. To start, there are two types of
artificial intelligence algorithms that can be used for sleep stage scoring, namely traditional machine classification and DL. Each method
has advantages and drawbacks. As such, the selected method will generate the classification results and it will also impact on validity as
well as transferability of these results. To reflect on these far-reaching implications, we dedicate the remainder of this section to a review
of machine classification and DL for sleep stage scoring.

Machine classification

In recent years, several machine learning techniques have been proposed to categorize sleep stages. One of the benefits of employing
machine learning for sleep is the high accuracy, which is especially useful for recognizing disorders and sleep stages. Many researchers
have used traditional machine learning algorithms to categorize sleep stages. Table 1 lists some of the machine learning approaches that
are often used for sleep stage classification (Santaji and Desai, 2020).

Common to the design of all automated sleep stage scoring systems are data and pre-processing steps. Unique to machine
classification are feature engineering and statistical analysis for feature selection (Eldele et al., 2021). These two steps prepare the data for
machine classification. As such, they are necessary because traditional machine classification algorithms cannot handle high dimensional
data. Fig. 1 depicts the entire procedure with a block diagram. The next sections introduce feature engineering, feature selection, and
classification in more detail.

Feature engineering

After the dataset is cleaned through pre-processing, raw data must be transformed into meaningful features that represent the information
carried by the signal. Various algorithms for extracting useful information from sleep data have been developed. Furthermore, for
identifying significant information, more complicated techniques have combined EOG and EMG signals with EEG. These techniques can
be divided into four groups: temporal features, spectral features, time-frequency features, and nonlinear features (Seifpour et al., 2018).

Feature selection

Specific sleep stage characteristics or features have been extracted from the epochs as described in the preceding section. The retrieved
features are chosen such that they mirror the visual staging guidelines stated in the AASM sleep manual, at least to the extent that an
automated system can identify specific traits.

Classification
The process of classifying data into meaningful groups is known as classification. The initial step in the classification process is to find
features or qualities that will allow the different categories of data to be distinguished (Fiorillo et al., 2019).

Several research groups have developed approaches to automate the sleep staging and apnea’hypopnea event detection processes
(Motamedi-Fakhr et al., 2014). Until recently, only small data sets were available for algorithm training, see Table 1 for data
requirements per specific algorithm, thus, the analysis methods relied on standard machine leaming techniques like K-Nearest Neighbors
(kNN) (Mendez et al., 2010), Support Vector Machine (SVM) (Kalaivani, 2020), and linear discriminant analysis (LDA) (Ravelo-garcia
et al., 2015). In addition, K-means, decision tree (DT), random forest and hidden Markov models (HMM) are some of the more common
techniques in this category (Elgart et al., 2021).

Santaji and Desai (2020) suggested an efficient technique for sleep stage classification based on EEG signal analysis utilizing
machine leaming algorithms with 10 s epochs. Using band-pass filters, EEG data are filtered and divided into frequency sub-bands. With

Table 1 Machine leaming approaches that are often used for sleep stage classification

Techniques Technique variations
Statistical LDA, SVM, hidden Markov model, Bayesian
Instance KNN
Decision tree DT
Ensemble Ada-boost, random forest
Clustering K-means clustering
Data —»  Preprocesing |—» Feature engineering > f:m ﬁ sﬁcde :::‘c)::; — Classification

Fig.1 Generic block diagram for machine learning based sleep staging.
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different testing dataset percentages, statistical features were retrieved and extracted using DT, SVM, and random forest methods. The
method, suggested by Santaji and Desai (2020), was compared to methodologies used by other researchers as indicated in Table 2.

Table 2 provides a comparison between systems that used machine learning methods for automated sleep stage scoring.

Santaji and Desai (2020) categorize sleep stages during that work, they found that RF outperforms both SVM and DT algorithms in terms of
classification accuracy. As demonstrated in Table 2, the proposed method is pared to methodologies used by other researchers.

Table 3 compares the results from a study by Loh et al. (2021) to those of other sleep stage classification studies. This study
employed 6075 EEG signal samples, which was less than other studies that used the sleep-EDF database. It should be noted, however, that
research using the Sleep-EDF and Sleep-EDFX databases achieved classification accuracies of 92%-95%, but the classification accuracy
in this study was achieved for a 3-class problem, i.., three sleep phases were identified. The classification accuracy was reported as
90.46%. This could be because the EEG signals employed in this study had a sample frequency of 512 Hz, which was five times greater
than the other investigations (100 Hz). Another factor could be the quantity of samples utilized; this study used 6075 samples, but other
studies used 14,963-127,512 samples.

Deep learning

DL is a branch of machine learning which is characterized by one or more hidden layers in the artificial neural network structure (Roy et
al., 2019). In general, DL can provide a solution for most machine learning problems. DL is a crucial step in comprehending physiological
information (Faust et al., 2018). Perslev et al. (2021) have used Convolutional Neural Networks (CNNs) for this task. Recently, DL has
been used in a variety of fields, demonstrating its superiority over traditional machine learning. This encouraged researchers to use DL
techniques to classify sleep stages automatically (Eldele et al., 2021). DL algorithms leam optimal characteristics from data. This has
improved scoring accuracies for the classic sleep stages of Wake, REM, and Non-REM in recent years. During data analysis, it has been
realized that transitional stages, such as pre-REM which occurs between Non-REM and REM, may provide additional insight into the
physiology of sleep, and are currently being thoroughly researched (Grieger et al., 2021). DL tools were used in approximately 75% of
research on automated sleep stage classification (Loh et al., 2020).

Deep neural networks can handle high dimensional data. Hence, there is no need for feature extraction and feature selection during the
design process. The pre-processed data is directly fed to the classification algorithm for training and testing the network. Fig. 2 shows a
block diagram which depicts the methods needed for DL based sleep staging.

For automatic sleep stage scoring, a variety of classifiers have been utilized, including CNN, deep neural networks (DNNs), and even
numerous combinations of them, such as CNN + RNN or DNN + RNN. Most of the experiments used CNN and RNN to process raw PSG
data. Other approaches, that have demonstrated promising results, include using precomputed spectrograms (spectral representations
expressing the frequency content of signals across time) in combination with CNN and RNN.

Table 2 Comparison of the proposed method with existing sleep classification techniques.

Authors Techniques employed Numl?er of stages Signal, size Accuracy
classified (%)
Xi etal. (2013) HNN 3-NREM =3 EEG 10 subjects 80.64
Obayya (2014) Fuzzy clustering 4-NREM/wake/ EEG 12 subjects Cairo sleep 92.27
REM=6 database
Zhu et al. (2014) SVM 4-NREM/wake/ EEG 8 subjects sleep EDF database 875
REM=6
Liang et al. (2012) SVM 2-NREM/wake/ EEG-MIT-BIH database 96.2
REM=4
Ebrahimi et al. (2008) NN-packet coefficient 3-NREM/wake/ EEG 7 subjects sleep EDF database 93.0
REM=5
Aboalayon et al. (2015) DT,SVM,NN,NB,KNN 3-NREM/wake/ EEG 20 subjects sleep EDF 97.30
REM=5 database
Santaji and Desai RF-SVM-DT 02-NREM/REM = 1 EEG 125 subjects sleep EDF 97.80
(2020) database

Table 3 Summary of the author's findings from automated sleep stage classification research using three classes (W, NREM, and REM).

Authors Sampling frequency Datasets Approach No. of samples ~ Accuracy (%)
Zhu et al. (2014) 100 Hz Sleep-EDF HVG + SVM 14,963 92.60
Sharma et al. (2018) 100 Hz Sleep-EDF Wavelet filter + SVM 15,139 93.50
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Data o Pre processing > Classification

Fig. 2 Generic block diagram for deep leaming-based sleep staging.

Convolutional neural networks (CNN)

CNNs are modeled on the human visual perception system. Convolutional layers, pooling layers, and fully connected layers are the three
functional components that make up CNNs. Each layer applies a function to the data vectors it receives as iput, this will change the
output data which is passed on to the following layer (Sokolovsky et al., 2020). There has been a lot of research into using CNN to
classify sleep stages over the last few decades. Furthermore, CNNs are statistical learning models that are versions of neural networks
(NNs) that have been effectively applied to image recognition tasks, attaining current state-of-the-art results in picture categorization
(Sokolovsky et al., 2020). Some scientists have utilized CNN to identify human ailments. Although the CNN architecture has worked
admirably in the classification sector, several scientists have tweaked it to distribute classification jobs more evenly (Yang et al., 2018).
Although a small group has lately begun to use CNN for EEG categorization, there are still significant research gaps (Cintas et al., 2017).

Long short-term memory (LSTM)

One of the drawbacks of CNNs is that they are not aware of the temporal unfolding of signals. In other words, CNNs lack memory.
During training the weights are updated, but once the training process is completed the network becomes static. This is not ideal for time
series analysis, because the signal morphology in the future and indeed in the past might be relevant to classify a current signal segment.
LSTM network is the most frequent type of RNN (Faust et al., 2018). LSTM algorithms aim to solve this problem by mcorporating
memory cells. As such they have been extensively used to analyze time series data. Natural language processing, speech recognition, and
handwriting recognition are just a few of the applications where it has been applied. Information can cycle via a loop between neighboring
time-steps thanks to the links between LSTM units (Oh et al., 2018; Fu et al., 2021). The memory cell in an LSTM algorithm is made up
of five parts: a memory cell (a new variable computed for each timestep), a candidate value for replacing the memory cell at each
timestep, and three gates (update gate, forget gate, and output gate) (Faust et al., 2018). During the training process, the memory cell is
useful for remembering certain values for a long time. The three gates can only take values between 0 and 1, and during the training
process, a weight matrix and a bias term will be adjusted for each of them. The forget gate allows to choose which information should be
discarded (Michielli et al., 2019).

Recurrent neural network (RNN)

RNN architecture is a full-featured deep learning classification algorithm that works well with sequential data. In natural language
processing and speech recognition, RNNs are currently the most advanced approaches. Language data can be thought of as sequences,
such as words (letter sequences), sentences (word sequences), and documents (document sequences) (sequence of sentences). RNNs are a
type of artificial neural network that has the advantage of being able to simulate time series with long-range structural dependencies.
RNNs work on the principle of adding a time delay unit and a feedback connection so that information from prior states can be used in
later states (Michielli et al., 2019).

Table 4 shows the sleep database utilized in prior research for automated sleep stage classification using DL methods. The following
is a summary of the DL methods and accuracy acquired from the respective sleep databases: Table 4: Sleep-EDF (expanded Sleep-EDF)
(Table 5). Tables 4 and 5 show that all automated sleep stage classification studies followed the AASM guidelines and categorized sleep
into five stages. Table 4 shows the subset of PSG recordings that were utilized to train DL models for automatic sleep stage classification.

Table 5 shows an overview of the findings obtained using the same CNN model for various combinations. The two-class (C = 2)
dataset employing single-channel EEG signals with the sleep-EDF dataset had the highest identification rate of 98.33%. When the EEG
and EOG signals were combined, the best results were achieved for the remaining classes. For the dataset containing six classes, a
recognition performance of 91.00% was attained. The sleep-EDFx database yielded the highest accuracy for each class when single-
channel EEG data was used. In this database, the greatest identification rate for the six-class stages was 89.43%.

Yildirim et al. (2019) also include a comparison of other studies on the classification of sleep stages using sleep-EDFx data. Yildirim
et al. (2019) used 127,512 samples of sleep-stage signals from the sleep-EDFx dataset in this investigation. They achieved accuracies for
two to six sleep classes of 97.62%, 94.34%, 92.33%, 90.98%, and 89.54%, respectively, utilizing single-channel EEG + EOG data. The
accuracy rates achieved with EEG + EOG signals were slightly higher than those obtained with single-channel EEG and single-channel
EOG signals.

Tables 3 and 6 compare the results from Loh et al. (2021) to those of other sleep stage classification studies. This study employed
6075 EEG signal samples, which was less than other studies that used the sleep-EDF database.

Discussion

This section delves into the strategies that are used for automatic sleep stage scoring. Limitations and further work are also discussed in
this section.
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Table 4 Summary of d sleep stage c: ization algorithms in the sleep-EDF dataset using DL and PSG recordings.
Tools/programmin; Accuracy
Authors Signals Samples Approach prog S s
languages (%)
Zhu et al. (2020) EEG 15,188 Attention CNN S 93.7
Qureshi et al. (2019) EEG 41,900 CNN = 92:5
Yildirim et al. (2019) EEG 15,188 1D-CNN Keras 90.8
Hsu et al. (2013) EEG 2880 Elman RNN = 87.2
Michielli et al. (2019) EEG 10,280 RNN-LSTM MATLAB 86.7
Wei et al. (2018) EEG - CNN = 845
Seo et al. (2020) EEG 42,308 CRNN TensorFlow 84.9
Zhang et al. (2020) EEG - CNN PyTorch 83.6
Supratak et al. (2017) EEG 41,950 CNN-BIiLSTM = 82.0
Phan et al. (2019) EEG = Multi-task = 819
CNN
Tripathy and Rajendra Acharya EEG + HRV 7500 Autoencoder MATLAB 137
(2018)
Biswal et al. (2018) PSG 10,000 RCNN PyTorch 87.5
Xu et al. (2020) PSG - DNN = 86.1
Zhang and Wu (2018) EEG = CUCNN MATLAB 87.2
Table 5 Summary results of the research on the classification of sleep stages using sleep-EDFx and EDF dataset.
Number of
Author i Samples Approach  Accuracy (%)
channel(s)/signals
Sleep classes (C)
c=2 c=3 c=4 G=S5 c=0
Yildirim et al. 1 EEG 127,512 1D- 97.85 94.23 9224 90.48 89.43
(2019) CNN
1 EEG 127,512 1D- 97.13 9335 90.19 88.75 87.08
CNN
1EEG+1EOG 127,512 1D- 97.62 94.34 9233 90.98 89.54
CNN
suth Nimber of Samples  Approach A %
Author p: ' y. acy
uthor channel(s)/signals mples (pproach ccuracy (%)
Sleep classes (C)
c=2 c=3 c=4 c=5 Cc=0
Yildirim et al 1EEG 15,188 1D- 98.33 94.20 9139 90.82 89.51
2019) CNN
1EEG 15,188 1D- 98.06 93.76 9188 89.77 88.28
CNN
1EEG+1EOG 15,188 1D- 98.06 94.64 9236 91.22 91.00
CNN
Table 6 Summary of the author's findings from automated sleep stage classification research using three classes (W, NREM, and REM).
Authors Sampling frequency Datasets Approach No. of samples Accuracy (%)
Yildirim et al. (2019) 100 Hz Sleep-EDF 1D-CNN 15,188 9420
Loh et al. (2021) 512 Hz CAPSLPDB 1D-CNN 6075 90.46

Sleep stage scoring is an essential approach for diagnosing sleep related illnesses and disorders. That sparks a significant demand for
automatization which can help by providing accurate diagnosis and disease management support.
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Much research has been published that use machine learning and DL approaches to _classify sleep stages using two common sleep
databases: Sleep-EDF and Sleep-EDFx. Tables 2 and 6 show a comparison between a method proposed by Santaji and Desai (2020)
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with existing sleep classification techniques. Santaji and Desai (2020) categorized sleep stages. During their work, they found that RF
outperforms SVM and DT algorithms in terms of accuracy. Table 2 indicates that the proposed method is compared to methodologies
used by other researchers. It should be mentioned, however, that research employing the Sleep-EDF and Sleep-EDFx databases achieved
classification accuracy of 92%-95%, whereas Yildirim et al. (2019) reached a classification accuracy of 90.46% for 3-class sleep phases
classification as shown in Table 6. This could be because Yildirim et al. (2019) employed EEG signals with the high sampling frequency
of 512 Hz, which is five times greater than the other research (100 Hz). Another factor could be the quantity of samples utilized; this study
used 6075 samples, but other studies used 14,963-127,512 samples.

Limitations

Most studies employed data from only one sleep database to train and test the model, comparing different models and identifying the best
performing strategy is difficult. Furthermore, we found that other PSG recordings, such as EOG, EMG, or ECG signals, have not been
used in any investigations. Studies that employed PSG recordings did not perform as well as those that solely used EEG signals. As a
result, the use of these PSG recordings in real-world applications for automatic sleep stage classification is limited.

Another limitation arises from data driven performance assessment. All studies we reviewed employed some form of data driven
performance assessment, usually these were based on accuracy calculations. However, this implies that the classification method was
tested with data from the same sample space. For example, the classification method was assessed with data from the same benchmark
database that was used for training. This is a problem especially for automated sleep stage scoring because the limited amount of patient
specific data might not be sufficient to represent the cohort of all potential patients. What we can hope for is that the classification
algorithms have extracted transferable knowledge that is useful even for completely unknown data. However, none of the reviewed
studies has tested that assumption.

Transferability of extracted knowledge is a problem for traditional machine leaming algorithms. This problem is rooted in the fact that
these algorithms can only process low dimensional input vectors. In effect, feature engineering cond high di ional signal vectors
into low dimensional feature vectors which are used to train and test traditional classification algorithms. It is inevitable that information

is lost during this operation. That statement holds true even if we use best practice feature selection methods, because the feature selection
is driven by statistical methods rather than classification. As discussed in Feature engineering section, feature engineering aims to extract
relevant information from pre-pr d signal segments. A situation might arise where two feature extraction methods measure the same
information, and that information is quite relevant for sleep stage scoring. Hence, including both features into a feature vector used for
training and testing the classification algorithm constitutes a missed opportunity to include a different information measure. Missed
opportunities such as that constitute a fundamental restriction when it comes to extract transferable knowledge.

DL algorithms are an attempt to address this problem through classification driven feature selection. As such, feature extraction is
hidden in the DL algorithm which takes a high dimensional signal segment as input. Having feature extraction functionality within the

algorithm allows us to steer the feature selection based on classification results. This avoids the problems introduced by statistical feature
selection. We can be sure that all extractable information is used for classification. Therefore, DL algorithms tend to extract more
transferable knowledge and if this is the case they perform better, when compared to traditional machine learning algorithms, for
completely unknown data. However, classification driven feature selection requires large amounts of data—usually more than the amount
of data which is available from benchmark databases. A potential solution is to use multiple benchmark datab Another solution might

be to consider data augmentation techniques.

Future work

Future research efforts should focus on establishing a standalone system that is tailored to the home environment, which would necessitate
the development of a hardware component to complement the software. Significant progress has already been made in this area, as
evidenced by various scholarly articles (Gaiduk et al., 2020a,b). We also intended to develop a system that can distinguish sleep stages
and can be used in the house without incurring excessive financial or manpower expenditures. We will investigate using DL to
automatically classify sleep stages and the prospect of putting automated sleep analysis software on portable or wearable devices.
Furthermore, the system should be easy to use, which led to the selection of signals that may be gathered without being intrusive. This
type of device might be widely used to give medical practitioners essential information, allowing for early detection of sleep issues and, as
a result, increasing the population's sleep quality.

Conclusion

This review accumulates evidence and identifies future research trends that will clarify the tools and methodology used for automatic
sleep staging.

Sleep is an essential part of human and animal species' lives. There is an increasing number of people suffering from sleep disorders
around the world. In sleep labs, physiological signals such as EEG, EMG, ECG, and EOG are utilized to diagnose and treat sleep
problems, among other things. Visual assessment by a sleep specialist is the most common method for sleep stage classification. This is an
extremely time-consuming and difficult task. This approach can be aided by automatic sleep stage classification. Non-REM and REM
sleep stages are classified into two categories. Non-REM sleep is separated into three stages: NREM1, NREM2, and NREM3. In this
article, we present data using single-channel EEG to automatically score sleep stages. We also introduced and compared two DL-based
approaches for automated sleep stage assessment using single channel EEG. Limitations arise from data-driven performance evaluation.
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All the studies we looked at used some sort of data-driven performance evaluation, which was mainly based on accuracy calculations.
This does, however, imply that the classification approach was validated using data from the same sample space. This is an issue for
automated sleep stage scoring, because the limited amount of patient-specific data may not be enough to represent the entire cohort of
potential patients.

In the future, research efforts will be employed on automated sleep stage scoring in the home environment. This might necessitate the
development of measurement equipment for patient led data acquisition. The development of such automated systems could replace
clinical PSG recordings. Hence, there is the potential to diagnose and treat significantly more sleep disorders. This might benefit patients,
healthcare providers, and society at large.
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