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Abstract 

Sleep apnoea (SA) is a hazardous condition characterized by interrupted breathing during sleep. 

This prevalent medical issue affects individuals of all ages, potentially leading to severe 

complications when untreated including, cardiovascular problems, diabetes, and daytime fatigue 

etc. Unfortunately, SA often remains undiagnosed due to the costly and inconvenient diagnostic 

procedures associated with it. It stands as a significant global health concern, impacting nearly 

one billion people worldwide, with a prevalence of 17 to 23% in women and 34 to 50% in men. 

SA is recognized as a risk factor for cardiovascular disorders (CVD) and carries substantial 

individual, societal, and economic burdens. The economic costs of SA diagnosis and treatment 

services run into billions of dollars annually. 

The reference standard for diagnosing SA is polysomnography (PSG), conducted in a laboratory 

setting by trained professionals. However, this process is time-consuming, susceptible to human 

error, and demands technical expertise for both execution and interpretation. The inconvenience 

of in-lab PSG has spurred the need for new, simplified methods. This thesis posits that 

Computer-Aided Diagnosis (CAD) systems can enhance diagnostic efficacy. To explore this 

hypothesis, the thesis introduces innovative real-time detection techniques for Obstructive Sleep 

Apnoea (OSA) and the development of a high-performance OSA detection system. This system, 

offering continuous OSA detection, addresses the practical challenges associated with 

traditional diagnostic approaches. The integration of Internet of Things (IoT) and advanced 

Artificial Intelligence (AI) technologies, with a focus on the Lifetouch sensor, represents a 

novel approach to improve the accuracy of OSA detection. This innovative strategy aims to 

overcome barriers to timely and reliable diagnosis and monitoring of sleep disorders. 

To thoroughly assess the algorithm, a clinical study enrolled 15 patients with a history of OSA. 

Simultaneously, standard PSG monitoring and diagnosis were conducted, serving as the 

benchmark for comparison. This dual approach ensured a robust evaluation of the DL 

algorithm's performance against established PSG methods, providing a comprehensive 

understanding of its capabilities in OSA detection. The trial results highlight the potential of the 

proposed technology model, showing a high level of patient acceptance and satisfaction with 

Lifetouch wearables. However, the identification of only two OSA cases among the 15 patients 

studied was lower than anticipated. These findings emphasize the need for improved detection 

methods, as addressed by the novel techniques introduced in this thesis. The results presented 

here also highlight the efficacy of the developed methods, showcasing their ability to deliver 

quick, reliable, and standardized analyses an essential step forward in overcoming the 

limitations of conventional diagnostic approaches.  
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Chapter 1 Introduction 

Chapter 1 provides an overview of the thesis. Section 1.1 introduces an overview of Sleep 

Apnoea (SA), while Section 1.2 discusses the current diagnostic challenges. role of artificial 

intelligence (AI) in healthcare is present in section 1.3. The motivation behind our research is 

presented in Section 1.4. Section 1.5 presents the research problem, followed by an outline of 

our aims and objectives in Section 1.6. Section 1.7 presents the research questions. The major 

contributions of this thesis are listed in Section 1.8, and the structure of the thesis is explained in 

Section 1.9.  

1.1 Overview 

SA is a serious sleep disorder characterized by recurrent interruptions in breathing during sleep, 

resulting in inadequate oxygenation of the body and various health problems such as 

hypertension, cardiovascular disease, stroke, and diabetes (Elmoaqet et al., 2020). SA is the 

repeated temporary closure of the upper airways during sleep Figure 1.1. SA manifests in 

obstructive (OSA) or central (CSA) forms. OSA is the predominant type, a life-threatening, 

underdiagnosed condition, characterized by symptoms such as fatigue, daytime sleepiness, 

cardiac arrhythmia, and systemic hypertension. SA can also lead to excessive daytime 

sleepiness, reduced quality of life, and increased risk of accidents and injuries (Dhruba et al., 

2021). Cognitive impairment and dementia have also been associated with SA (Michael Pearson 

and Oliver Faust, 2019), highlighting the need for early detection and treatment to prevent or 

minimize these health problems.  

1.2 Current Diagnostic Challenges 

PSG is widely acknowledged as the gold standard method for diagnosing SA1, typically 

conducted in a supervised sleep laboratory (Berry et al., 2012). However, recent advancements 

have introduced alternative contact and non-contact methods for unattended home-based OSA 

diagnosis. PSG involves a sleep study conducted in a lab, where the patient spends the night 

connected to over 15 channels that collect sleep data, expensive, and time-consuming, which 

can be inconvenient and uncomfortable. The waiting times for patients to undergo a PSG can be 

prolonged and may vary across different healthcare centres. A trained sleep technician manually 

annotates this data, utilizing various channels for different types of information, such as 

electroencephalogram (EEG) and Electrooculogram (EOG) for sleep stages, Electromyogram 

(EMG) for wake periods, arousals, or movements, Electrocardiogram (ECG) for potential 

emergencies, and airflow, oxygen desaturation, and respiratory effort signals for categorizing 

apnoea events (Almazaydeh et al., 2012; Imtiaz, 2021). Conducting these studies in home or 

 

1 https://www.nhs.uk/conditions/narcolepsy/diagnosis/ 
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unattended settings would be a more practical, cost-effective, and time-efficient approach. 

PSG's main outcome, the Apnea Hypopnea Index (AHI), is a standard measure of OSA severity, 

calculated by dividing the total apnoea and/or hypopnea events by total sleep time. The AHI 

quantifies the severity of the OSA condition based on guidelines from the American Academy 

of Sleep Medicine (AASM) (Syeda Quratulain Ali et al., 2019). 

The growing awareness of SA and its consequences has led to an increased demand for PSG 

studies at sleep laboratories. However, the existing sleep laboratory facilities are insufficient to 

meet this demand. Moreover, PSG is limited in its applicability for large-scale population 

screening, particularly in unattended or home-based settings. Consequently, there is a 

substantial need for a simplified SA screening device that is cost-effective, user-friendly, and 

reliable. The need for alternative approaches arises from the limitations of PSG, emphasizing 

the significance of developing machine learning (ML) -based methods. These approaches aim to 

provide more accessible, cost-effective, and potentially home-based solutions for SA diagnosis, 

addressing the challenges posed by PSG's resource-intensive nature.  

  

Figure 1.1 Obstructive sleep apnoea occurs when the patient's airway becomes obstructed.2 

1.3 Role of Artificial Intelligence (AI) in healthcare 

The healthcare sector grapples with significant challenges related to various diseases, elevating 

it to a critical global concern. Research and technological advancements in healthcare aim to 

enhance life quality through improved diagnostic and treatment methods, with AI standing out 

as a transformative force in the field. AI's widespread adoption is fuelled by its demonstrated 

successes, exemplified by innovations like ChatGPT, (Holzinger et al., 2023). In recent times, 

various AI techniques have been implemented to assist healthcare professionals in diagnosing, 

monitoring, and treating various human disorders. ChatGPT stands out as a widely used AI-

based chatbot that utilizes the GPT (Generative Pretrained Transformer) parser to generate 

responses resembling human interactions, based on the text input provided by the user (Cheong 

et al., 2023; Manik Sharma & Sharma, 2023) 
 

2 https://www.mayoclinic.org/ 
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ChatGPT, an advanced AI system created by OpenAI, holds significant promise in offering 

valuable assistance within the healthcare domain. Its capability to facilitate virtual consultations 

with healthcare professionals for health data analysis has the potential to bring about a 

transformative impact on the healthcare sector. The integration of ChatGPT technology in 

healthcare has the power to redefine the manner in which patients access care and receive 

support (Manik Sharma & Sharma, 2023). 

The AI introduces unprecedented potential solutions, contributing to essential sustainability 

development goals. these encompass food security, health and well-being, clean water, clean 

energy, responsible consumption and production, climate action, life below water, and the 

sustainable management of terrestrial ecosystems (Holzinger et al., 2023). AI's pervasive 

influence extends to the life sciences, incorporating ML, big data analytics, knowledge 

discovery, biomedical ontologies, natural language processing, and decision support tools. AI, 

with its ability to compute, analyse, reason, learn, and discover meaning, is evolving rapidly, 

encompassing both 'narrow AI' for focused tasks and 'broad AI' for diverse functions. The broad 

spectrum of AI applications, including language processing, image recognition, big data 

analytics, and robotics, holds the potential to revolutionize healthcare by enhancing diagnostics, 

facilitating new treatments, and extending healthcare accessibility. These technological 

advancements are not limited to healthcare, as AI applications in various sectors present 

opportunities to benefit society at large (Federspiel et al., 2023).  

1.3.1 Artificial Intelligence's Impact on Healthcare 

AI plays a pivotal role in managing critical situations (S. Ali et al., 2023) and offers reliable 

diagnostic capabilities for a wide range of diseases in healthcare organizations (S. Patil, 2022). 

It has the potential to enhance healthcare services by assessing disease risks, providing 

continuous patient care, and reducing complications associated with illnesses (Shaik et al., 

2023). The evolution of AI, incorporating narrow and broad AI applications, extends beyond 

healthcare, presenting opportunities to benefit society at large. However, it's essential to 

consider the impact of AI on human health and well-being (Dave et al., 2020).  

1.3.2 Artificial Intelligence in Healthcare Industry Transformation 

AI brings about long-term changes in the healthcare industry, aiding organizations in diagnosing 

patients and tailoring treatments with high accuracy. In radiology, AI supports physicians in 

clinical decision-making and, in certain cases, can even replace human judgment. AI's reliance 

on computers enhances efficiency, predictability, and decision-making in medical systems. The 

transformative potential of AI in healthcare underscores the ongoing evolution of technological 



Chapter 1 Introduction   

4 

 

advancements to improve diagnostics, treatments, and accessibility to healthcare services 

(Panch et al., 2019; Yousef Shaheen, 2021; Yusriadi et al., 2023). 

1.4 Research Motivation  

The motivation for this research lies in addressing the escalating global health concern of SA, 

which poses risks of severe health complications and even death if left undetected. Recognizing 

the potential of computing and AI technologies, this thesis aims to develop automated 

classification systems to aid physicians in timely SA diagnosis. This pursuit is driven by the 

need to alleviate healthcare personnel's workload and tackle the issue of underdiagnosis, 

particularly due to the limitations and costs associated with PSG. By harnessing AI 

technologies, the research seeks to offer a cost-effective alternative for SA detection, aligning 

with efforts to address the underdiagnosis problem highlighted by the World Health 

Organization. Ultimately, the goal is to enhance individuals' quality of life by enabling accurate, 

accessible SA diagnoses through innovative AI-driven approaches. 

1.5 Problem Statement  

The research addresses a critical issue in sleep medicine: the substantial limitations of PSG as 

the predominant diagnostic tool for SA, coupled with the urgent demand for alternative 

diagnostic methodologies. Despite its widespread use as the gold standard, PSG's efficacy is 

marred by exorbitant costs, lengthy examination durations, and patient discomfort, necessitating 

the exploration of more accessible and patient-centric SA diagnostic approaches. Leveraging the 

transformative potential of IoT devices and advanced AI technologies, the study endeavours to 

revolutionize SA diagnosis by delving into sophisticated algorithms and conducting 

comprehensive large-scale data analyses. Through the development of innovative solutions 

tailored to address entrenched challenges, this research aims to catalyse a paradigm shift in 

diagnostic practices within sleep medicine, ultimately fostering improved patient care and 

outcomes. 

1.6 Research Aim and Objectives 

In response to the identified shortcomings and gaps in current SA diagnosis methods, the 

primary aim of this thesis is to harness the revolutionary potential of smart technology for SA 

detection. The research centres on pioneering IoT-based solutions, comprising cutting-edge 

sensors, wearable devices, and advanced data analytics methodologies. These technological 

innovations are designed to surmount the constraints inherent in conventional diagnostic 

modalities such as PSG and elevate the precision of SA detection, thereby advancing the 

diagnosis and treatment of this pervasive sleep disorder. By harnessing the transformative 

capabilities of intelligent IoT technology, the research endeavours to make a substantial 
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contribution to the field of SA diagnosis, ultimately culminating in superior patient outcomes. 

To realize this overarching aim, the research delineates the following specific objectives: 

• To evaluate IoT-based sensors and wearable devices for accurately capturing relevant 

physiological data during sleep, with a specific focus on SA indicators.  

• To design and implement advanced data analytics techniques that enable the detection 

and monitoring of SA episodes. Additionally, the research explores the feasibility and 

effectiveness of remote monitoring solutions using smart IoT technology.  

• The study aims to conduct comprehensive validation studies, assessing the performance 

and effectiveness of the developed IoT-based SA detection system. This includes 

comparing its performance with traditional diagnostic methods such as PSG and 

evaluating its potential for real-time monitoring and long-term management of SA. 

1.7 Research Questions 

In alignment with the identified issues in current SA diagnosis methods and the overarching aim 

of exploring the potential of smart technology, the research questions in this thesis are 

strategically crafted to focus on the integration of smart IoT technology in SA detection and 

monitoring. Specifically, the study seeks to address the question: How can smart IoT technology 

revolutionize the detection of SA? By delving into this pivotal research question, the thesis aims 

to uncover the multifaceted ways in which IoT devices and connectivity can revolutionize SA 

detection and facilitate seamless remote monitoring. The study proposes the deployment of 

innovative IoT-based sensors and wearable devices capable of precisely capturing pertinent 

physiological data during sleep. Advanced data analytics techniques will be harnessed to 

meticulously analyse and interpret the amassed data. The ultimate objective is to explore the 

feasibility, accuracy, and potential advantages of integrating IoT solutions in SA detection, 

thereby propelling the field of SA diagnosis forward through the transformative capabilities of 

smart IoT technology.  

1.8 Research Contributions 

This research seeks to make significant contributions to the evolution of SA diagnosis by 

integrating IoT and AI technologies to analyse datasets obtained from patients suspected of 

having SA. The primary goal is to propose novel, automated approaches for SA diagnosis, 

leveraging the insights derived from comprehensive data analysis. A major contribution of this 

work is the integration of IoT and advanced AI technologies, with a specific focus on the 

Lifetouch sensor, to enhance SA detection. This integration aims to bridge any existing gaps 

between emerging classification techniques and the current methods for SA detection. By 

merging cutting-edge technologies, the research aspires to advance the accuracy of SA 

diagnosis, ultimately contributing to the evolution of diagnostic practices in sleep medicine. 
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1.9 Summary of Chapters  

The thesis comprises six chapters, each focusing on different aspects of the research topic. In 

addition, two manuscripts have been published as part of the thesis. The content covered in each 

chapter is summarized as follows: 

Chapter 1: This chapter is divided into nine sections that provide background information on 

SA, discuss the role of AI in healthcare, summarize the research motivation, present the 

research problem statement, describe the aims and objectives, outline the thesis question, and 

provide an overview of the thesis structure.  

Chapter 2: This chapter presents a comprehensive literature review relevant to the research. It 

covers various topics related to sleep, including sleep disorders, traditional methods for SA 

detection, risk factors, financial implications, and consequences of untreated SA. Additionally, 

it explores AI innovations in SA diagnosis, DL, computer-aided SA detection systems, and 

automated sleep stage scoring. Moreover, it identifies research gaps to provide readers with a 

clear understanding of the background and context of the study.  

Chapter 3: This chapter focuses on the manuscript titled "Environmental Benefits of Sleep 

Apnoea Detection in the Home Environment" published in Processes. It assesses the 

environmental consequences of SA detection, particularly the exploration of Remote 

Monitoring (RM) as a solution to enhance resource efficiency and minimize travel-related 

impacts. 

Chapter 4: This chapter offers an overview of the methodology, drawing insights from the 

work of Faust et al. (2021) on "Accurate detection of sleep apnea with a long short-term 

memory network based on RR interval signals". Additionally, it provides insights into the 

utilization of DL in SA detection. Moreover, the chapter summarizes data collection and 

preprocessing activities, elucidating the process through which research objectives have evolved 

over time. The LSTM method discussed in this chapter mirrors the one applied for OSA 

detection in the clinical study.  

Chapter 5: This chapter dives into how experiments were set up to detect OSA using DL 

methods in real medical settings. The researchers zero in on a specific sensor known as Isansys 

Lifetouch. Here, the chapter details the planning of the study, collected data, analyzed it, got 

approvals from regulators, and considered ethical issues. Then, it discusses the results of the 

study, pointing out important discoveries and insights gained from analyzing the data. It gives a 

thorough summary of what they found, highlighting any trends or patterns they noticed. After 

that, the chapter moves on to a critical discussion of the results. It talks about what these 

findings mean, how they fit into existing research, and suggests ideas for future studies in this 

area.  
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Chapter 6: This chapter provides a comprehensive summary of the conclusions derived from 

the preceding chapters of the thesis. It presents the key findings and insights obtained 

throughout the research, acknowledges the limitations of the current study, and identifies 

potential areas for future research and development based on the research outcomes.
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Chapter 2 Literature Review 

This chapter provides a comprehensive literature survey related to SA. Section 2.2 delves into 

sleep disorders. Section 2.3 focuses on PSG for SA evaluation, while Section 2.4 describes risk 

factors associated with SA. Section 2.5 covers the financial costs of SA, while Section 2.6 

highlights treatment approaches. Sections 2.7 to 2.11 cover, AI innovations in SA diagnosis, 

DL, computer-aided SA detection, automated sleep stage scoring, and research gap 

identifications respectively. 

2.1 Introduction 

Healthy sleep is essential for individuals of all ages as it comprises approximately one-third of a 

person's life (Yan et al., 2021). Sufficient sleep has been shown to enhance work productivity 

and overall mood (Koenker et al., 2013). Conversely, inadequate sleep can contribute to various 

health issues, including cardiovascular disease, endocrine disorders, memory impairment, and 

decreased attention span. Systematic reviews and meta-analyses have established a correlation 

between shortened sleep durations and these health problems. Given that cardiovascular disease 

is a leading global cause of mortality, the identification and detection of sleep disorders have 

become crucial public health priorities due to their detrimental effects on mental and 

cardiovascular well-being (Hongyun Dong et al., 2020). 

2.2 Sleep Disorders 

Sleep disorders have a significant impact on individuals' well-being, affecting their physical, 

cognitive, and emotional functioning. Achieving restful sleep becomes a challenge for 

individuals with sleep disorders (Heima et al., 2019; Michael Pearson and Oliver Faust, 2019). 

The International Classification of Sleep Disorders (ICSD-3) categorizes sleep disorders into 

seven groups, including insomnia, sleep-related breathing disorders, and circadian rhythm sleep-

wake disorders (Ophoff et al., 2018; Sateia, 2014). The prevalence of sleep disorders varies 

depending on the type and severity of the condition. Insomnia, for example, affects 

approximately 30% of adults, with up to 10% experiencing chronic insomnia (Urtnasan et al., 

2021). In the United States, an estimated 50 to 70 million individuals have challenging-to-

identify sleep disorders, and the adverse effects may not manifest immediately but can have 

long-lasting consequences (Ademola Bello & Alqasemi, 2021; Princy, 2021; C. Sun et al., 

2022). Sleep disorders affect approximately 23% of the U.S. population and 20% of the 

population in Finland (Loh et al., 2020).  

Other sleep disorders, such as restless leg syndrome (RLS) and narcolepsy, also impact a 

significant portion of the population. RLS, causing uncomfortable leg sensations and an urge to 

move the legs, affects approximately 5-15% of individuals. Narcolepsy, characterized by sudden 
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uncontrollable sleep episodes, affects about 1 in 2,000 people. Loh et al., (2020) found that the 

prevalence of sleep difficulties is substantial, with around 16.6% of adults, or about 150 million 

individuals, experiencing sleep difficulties. This number is projected to increase to 260 million 

by 2030. Moreover, according to the National Highway Traffic Safety Administration 

(NHTSA), sleep-related problems have significant consequences beyond individual health. 

Falling asleep while driving contributes to over 100,000 car accidents annually in the United 

States. Sleep-related problems account for 20% of traffic accidents in the United Kingdom and 

25% of incidents in Germany (Santaji & Desai, 2020).  

Sleep disorders often go undiagnosed and untreated, leading to chronic health issues and a 

decrease in overall quality of life (Watson & Fernandez, 2021). Some individuals may not 

recognize the symptoms of a sleep disorder, considering them normal. Others may avoid 

seeking medical attention due to a lack of awareness, available treatments, or the stigma 

associated with sleep disorders. Untreated sleep disorders have serious consequences for overall 

health and wellbeing. They impair cognitive performance, reduce workplace productivity, and 

increase the risk of accidents and injuries. Sleep disorders can also contribute to chronic 

conditions like diabetes, cardiovascular disease, and depression. Emotional functioning is 

significantly affected, leading to mood disturbances and reduced quality of life (Elmoaqet et al., 

2020; Heima et al., 2019). 

To address the consequences of untreated sleep disorders, it is crucial to increase awareness and 

improve access to diagnostic and treatment options. Healthcare providers play a critical role in 

identifying and treating sleep disorders by conducting thorough assessments and referring 

individuals to specialists as needed. Individuals can also take steps to improve their sleep 

hygiene by maintaining regular sleep schedules, avoiding stimulating activities before bedtime, 

and creating comfortable sleep environments. 

Treatment approaches for sleep disorders vary depending on the type and severity of the 

condition. Lifestyle modifications, such as improving sleep hygiene or making changes to diet 

and exercise, can alleviate symptoms. Medical interventions, such as the use of continuous 

positive airway pressure (CPAP) machines for SA or medications for insomnia, may be 

necessary in some cases. Behavioural therapies, such as cognitive-behavioural therapy for 

insomnia (CBT-I), have also proven to be effective (Massie et al., 2023).  Sleep disorders have a 

significant economic impact due to their prevalence and associated symptoms, affecting sectors 

reliant on alertness and decision-making abilities (Imtiaz, 2021; Perslev et al., 2021). 

Undiagnosed sleep problems in the United States resulted in an estimated economic burden of 

$149.6 billion in 2016, with an additional $49.5 billion projected for diagnosing and treating 

sleep problems in the future (Dietz-Terjung et al., 2021). Lin et al., (2021) found that the impact 

on healthcare expenses is evident, particularly among older adults who experience sleep 
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problems and delayed sleep time. These findings underscore the importance of screening, 

detecting, diagnosing, and monitoring sleep disorders. There is a need for simple and accurate 

methods of detection or classification to ensure that individuals receive the necessary 

interventions and support for better sleep health.  

2.2.1 Sleep Apnoea  

SA is a challenging disorder to diagnose due to its complex nature (Salari et al., 2022). Apnoea 

is a Greek word that has the meaning “without breathing”. Clinically, an apnoea event is defined 

as a cessation of airflow during sleep lasting 10 seconds or more, whereas a hypopnea event is 

characterized by an airflow reduction rather than a full cessation (Baillieul et al., 2022; 

JeyaJothi et al., 2022; Zarei et al., 2022). As a result, the body is unable to enter a deep sleep 

state, and blood oxygen levels decrease. Brief awakenings may occur to restore normal 

breathing (Moridian, Shoeibi, Khodatars, & Pachori, 2022; Schütz et al., 2021; Zarei et al., 

2022).  A patient’s SA severity can be expressed by their AHI, which is simply the number of 

apnoea and hypopnea events per hour of sleep (Syeda Quratulain Ali et al., 2019; Alsubie & 

BaHammam, 2017). Table 2.1 provides an illustration of the four severity groups used to 

categorize the severity of OSA.  

Table 2.1 The four severity groups of OSA. 

AHI < 5 No OSA 

5 ≤ AHI < 15 Mild OSA 

15 ≤AHI < 30 Moderate OSA 

AHI ≥ 30 Severe OSA 

SA has a significant global impact and is particularly prevalent in certain populations (Baillieul 

et al., 2022; Benjafield et al., 2019; Xia & Sawan, 2021). Children aged 2 to 8 years, especially 

pre-schoolers, are at higher risk, often due to enlarged adenotonsils (Duman & Vural, 2022). 

The elderly population is particularly susceptible to SA (Mukherjee et al., 2021). However, 

despite its prevalence, SA is often underdiagnosed and inadequately treated. The challenges in 

detecting and predicting SA contribute to rising healthcare costs (Baillieul et al., 2022).  

The cost burden of SA is substantial, with significant economic implications. In the United 

States alone, the cost of identifying and treating SA was estimated to be approximately $12.4 

billion in 2015 (Benjafield et al., 2019). Frost & Sullivan, (2016) estimated that the undiagnosed 

SA among US adults resulted in an estimated cost burden of $149.6 billion in the same year, 

considering factors such as lost productivity, increased comorbidity risks, motor vehicle 

accidents, and workplace accidents. Diagnosing and treating all adults in the US would incur an 

additional cost of $49.5 billion but result in savings of $100.1 billion. While global cost 
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estimates are limited, early recognition and treatment of SA are crucial due to its significant 

long-term consequences. 

SA is not only a respiratory disorder but also a significant risk factor for various health 

problems, including CVD, stroke, car accidents, and diabetes (Dhruba et al., 2021; Moridian, 

Shoeibi, Khodatars, & Pachori, 2022). Breathing interruptions during sleep, characteristic of 

SA, can contribute to oxygen depletion, increased nerve activity, blood pressure fluctuations, 

and changes in heart rate. This puts individuals with SA at a higher risk of developing CVD and 

other cardiovascular issues (Kristiansen et al., 2021). Heima et al., (2019); Mashrur et al., 

(2021) found that the link between SA and health problems is supported by several studies. 

Increased apnoea episodes in SA have been associated with a higher likelihood of developing 

CVD, stroke, car accidents, and potentially diabetes. However, identifying the cause of health 

problems associated with SA can be challenging due to patients' unawareness of their 

awakenings (Kristiansen et al., 2021).  Common symptoms of SA include daytime fatigue, loud 

snoring, breathing difficulties during sleep, trouble concentrating, restlessness, morning 

headaches, and dry mouth (Syeda Quratulain Ali et al., 2019; Gandhi et al., 2021; Kristiansen et 

al., 2018, 2021; Salari et al., 2022; San & Malhotra, 2021; Sweed et al., 2019) These symptoms, 

detailed Figure 2.1 can significantly impact an individual's quality of life and disturb their bed 

partner's sleep. Recognizing these signs and seeking timely diagnosis and treatment is crucial to 

mitigate potential health risks and improve overall well-being. Addressing SA and its associated 

symptoms can lead to improved sleep quality, reduced daytime tiredness, and a lowered risk of 

developing cardiovascular and other related health conditions. 

 

Figure 2.1 Different symptoms of SA.3 

 

3 BioRender (2022). Circular Diagram (Layout 10x1). https://app.biorender.com/biorender-templates/figures/all/t-

62c6407f810101923a912315-circular-diagram-layout-10x1 
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2.2.2 Prevalence of Sleep Apnoea  

SA is a common sleep disorder affecting a significant number of individuals worldwide (Faust 

et al., 2021). According to the WHO, nearly one billion people globally are affected by SA 

(Baillieul et al., 2022; Benjafield et al., 2019; Mukherjee et al., 2021; Xia & Sawan, 2021). 

However, most cases go undiagnosed, with an estimated 80% of individuals with SA remaining 

unidentified. This highlights the need for increased awareness and improved diagnostic tools to 

address this underdiagnosis (Shieu et al., 2022).  

The prevalence of SA has been increasing globally in recent years. Reported rates vary across 

regions, with Europe and North America having prevalence rates of 9-38%, and China reporting 

rates of 8.8-24.2% (Duan et al., 2022; Natsky et al., 2021; Senaratna et al., 2017). OSA, a 

subtype of SA characterized by breathing pauses due to a blocked airway during sleep, has an 

estimated 5-year incidence of 7-11% in middle-aged adults. Symptoms of SA are experienced 

by at least 4% of men and 2% of women worldwide, with approximately 34% of men and 17% 

of women in the general population affected by SA (Tietjens et al., 2019). The reasons for the 

higher prevalence of SA in men compared to women are not entirely clear, but potential 

explanations include differences in sex hormones, upper airway shape, craniofacial morphology, 

pattern of fat deposition, and variations in occupational and environmental exposures (Young et 

al., 2002).  

Evidently, the prevalence of SA varies remarkably across countries and regions, underscoring 

the urgent need for improved awareness, advanced diagnostic tools, and enhanced treatment 

accessibility. In the United States, it is estimated that 22 million individuals suffer from SA, 

with a high proportion of cases going undiagnosed (Ademola Bello & Alqasemi, 2021; Hassan 

& Haque, 2016). The prevalence rates in Europe range from 4% in Portugal to 24% in Croatia. 

In Asia, Japan has the highest prevalence, affecting an estimated 7.5 million individuals. In 

Australia, approximately 9% of adults have moderate to severe SA (Deloitte Access Economics, 

2011; Faust, Barika, et al., 2021). Despite the high prevalence of SA, improved awareness, and 

diagnostic tools, as well as increased access to treatment, are needed to address this significant 

public health issue.  

2.2.3 Physiology of Sleep Apnoea 

Section 2.2.3 delves into the Physiology of SA, a condition with various manifestations, such as 

OSA, CSA, and MSA (Bertuzzi et al., 2022; Elmoaqet et al., 2020). This section unravels the 

physiological intricacies underlying these distinct types, providing insights into the mechanisms 

and factors that characterize the different forms of SA. Understanding these physiological 

aspects is crucial for a comprehensive grasp of the condition and its diverse presentations. 
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2.2.3.1 Obstructive Sleep Apnoea  

OSA is indeed the more common type of SA, affecting a significant portion of the adult 

population. Despite the frequency of this condition and the serious consequences of leaving it 

untreated, the OSA remains largely unknown. Studies have estimated the prevalence of OSA to 

be between 3% and 7% among adults (Baillieul et al., 2022; Elmoaqet et al., 2020; Faust et al., 

2016; Foldvary-Schaefer & Waters, 2017; Natsky et al., 2021; Salari et al., 2022; Senaratna et 

al., 2017). It is more prevalent in men and individuals who are overweight or obese (Jung et al., 

2017). The global estimate for the number of OSA patients exceeds 200 million, with 425 

million experiencing moderate-to-severe OSA (Elmoaqet et al., 2020).  

In specific regions, such as Norway, OSA affects a significant portion of the population, with 

22.1% of individuals aged 30-69 experiencing the condition. The frequency of moderate-to-

severe OSA in the general population ranges from 6% to 17% (Benjafield et al., 2019; Chung, 

2021; Kapoor et al., 2022; Kristiansen et al., 2021; Mashrur et al., 2021). In the United 

Kingdom, approximately 1.5 million people are affected by OSA, and the condition is 

associated with hypertension (39%), obesity (34%), depression (19%), gastroesophageal reflux 

disease (GERD) (18%), diabetes mellitus (15%), hypercholesterolemia (10%), and asthma (4%) 

(Miller & Cappuccio, 2021). Studies conducted in different countries, such as Russia and Italy, 

have also highlighted the prevalence of OSA among the population. For example, a survey in 

Russia found a high prevalence of AHI among citizens aged 30 to 70, and investigations in Italy 

revealed a significant probability of developing OSA among children aged 6 to 12 (Khokhrina 

et al., 2020; Paduano et al., 2019; Saldías Peñafiel et al., 2020; Santilli et al., 2021).  

OSA prevalence can be even higher in specific high-risk populations. For example, patients 

undergoing major noncardiac surgery may have OSA rates as high as 68 to 70% (Chan et al., 

2019). In the context of diabetes, Feher et al., (2019) conducted a study in the United Kingdom 

to assess the prevalence of OSA among individuals with type 1 or type 2 diabetes in a primary 

care setting. The study found an overall OSA prevalence of 0.7% in the examined population. 

Among individuals with type 2 diabetes, the prevalence was 0.5% in those with normal weight 

and 9.6% in the obese category. For type 1 diabetes patients, the prevalence was lower at 0.3% 

for those with normal weight and 4.3% for the obese category. The study revealed that among 

all the groups examined, obese adults with type 2 diabetes had the highest rate of OSA (9.6%). 

When comparing the genders, a higher proportion of men than women in the overweight and 

obese categories were found to have OSA. This difference was particularly notable in the obese 

category, with a prevalence of 6.5% for men and 2.6% for women. A similar pattern was 

observed for individuals with type 1 diabetes ((Feher et al., 2019),  Figure 2.2 (a) and (b))s, 

reproduced from (Feher et al., 2019).  
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Figure 2.2 OSA prevalence in 1 275 461 adults with (a) Type 2 diabetes and (b) Type 1 diabetes 

in the UK, according to BMI category and gender.   

OSA not only has significant negative health impacts on individuals but also carries substantial 

economic consequences globally Deloitte Access Economics, (2011). In Australia, OSA is the 

primary contributor to sleep disorder-related expenses, with total health system costs reaching 

$408.5 million and indirect financial costs totalling $2.6 billion. In the United States, the 

economic burden of OSA is estimated to be $149.6 billion annually, encompassing both direct 

and indirect costs (Khor et al., 2023).  

The costs associated with OSA include expenses related to its diagnosis and treatment, as well 

as the impact on productivity, absenteeism, and increased healthcare utilization. Diagnosis often 

involves a sleep study, which can be costly and may not always be covered by insurance. 

Treatment options for OSA include CPAP therapy, oral appliances, and surgery. CPAP therapy 

is the most common and effective treatment, but it can also be expensive and may not be fully 

covered by insurance. Oral appliances and surgery are alternative options, but their effectiveness 

may vary compared to CPAP therapy. It is worth noting that the treatment approach for patients 

with OSA can vary depending on their symptoms and the country of residence (Benjafield et al., 

2019), In general, a diagnosis of OSA is typically made if a patient exhibits symptoms, some of 

its symptoms and consequences are fatigue, daytime sleepiness, cardiac arrhythmia, and 

systemic hypertension (Massie et al., 2023; Sateia, 2014)  

2.2.3.2 Central Sleep Apnoea 

In contrast, CSA is a sleep disorder characterized by disruptions in breathing due to the lack of 

respiratory effort by the individual (Massie et al., 2023). Unlike OSA, which is caused by 

airway obstruction, CSA occurs when the brain fails to send proper signals to the respiratory 

muscles, resulting in temporary pauses in breathing (Ademola Bello & Alqasemi, 2021; Schütz 

et al., 2021). Compared to OSA, CSA is a less well-known condition and has a genetic 

component (Culebras, 2021). Whereas the symptoms of CSA are often similar to those of OSA, 

the choice of therapy depends on the type of SA. In cases where CSA is secondary to another 

medical condition, addressing the primary condition may help alleviate the symptoms. For 
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example, improving heart function in patients with heart failure can lead to the resolution of 

CSA. In cases of idiopathic CSA, positive airway pressure (PAP) therapy, such as CPAP or 

bilevel positive airway pressure (BiPAP), can be used to assist with breathing during sleep. 

Supplemental oxygen therapy may also be beneficial in certain cases (Massie et al., 2023). 

Hence, in order for clinicians to make optimal therapeutic decisions, it is crucial to distinguish 

between CSA and OSA in patients with SA. 

2.2.3.3 Mixed Sleep Apnoea 

MSA is a complex sleep disorder that combines features of both OSA and CSA. It is 

characterized by symptoms similar to both OSA and CSA, such as snoring, daytime sleepiness, 

and disrupted sleep patterns (Bernardini et al., 2021; Pavsic et al., 2021). MSA can be caused by 

various underlying medical conditions, including congestive heart failure, obesity, and chronic 

obstructive pulmonary disease (COPD). The treatment of MSA primarily focuses on addressing 

the underlying medical condition that leads to the sleep disorder. By managing and treating the 

underlying condition, the symptoms of MSA can be alleviated. In addition to addressing the 

underlying cause, PAP therapy may also be employed as a treatment option. PAP therapy 

includes methods such as CPAP, BiPAP or adaptive servo-ventilation (ASV) to assist with 

breathing during sleep.  

2.3 Polysomnography for Sleep Apnoea Evaluation 

This study underscores the pivotal role of PSG as a cornerstone in diagnosing sleep disorders. 

PSG offers a comprehensive evaluation of sleep, empowering researchers, and clinicians with 

accurate diagnostic capabilities. This work centres on appraising the reliability of PSG in 

identifying sleep disorders, delving into its merits and constraints as a research tool, and probing 

its implications for clinical management. Furthermore, the study addresses the emergence of 

portable home-based PSG devices, spotlighting their user-friendly convenience and accessibility 

for sleep monitoring. As an invaluable diagnostic instrument, PSG stands as an essential asset 

for sleep medicine practitioners in the clinical management of sleep disorders. For instance, 

diagnosing SA hinges on multiple criteria encompassing symptoms, obstructive respiratory 

events, and physiological metrics (Feng et al., 2021; Loh et al., 2020; Sateia, 2014). Typically 

implemented using electrodes or sensors, PSG necessitates the patient to be wired, as depicted 

in Figure 2.3, possibly presenting an inconvenience. 
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Figure 2.3 A typical PSG setup.4 

Per the AASM manual, diagnosing SA via PSG involves a substantial decrease of 90% or more 

in the amplitude of the oronasal thermal sensor signal (Choi et al., 2018). PSG offers an all-

encompassing assessment of sleep's physiological and behavioural dimensions, as asserted by 

Mathias et al., (2018). Nevertheless, the accuracy of PSG in diagnosing sleep disorders can 

vary, as illuminated by Stuginski-Barbosa et al., (2017). Their research highlighted PSG's 

reliability in diagnosing conditions like OSA and periodic limb movements (PLMS), yet its 

accuracy in identifying narcolepsy, insomnia, and other parasomnias is comparatively lower. 

The accuracy of PSG diagnoses is influenced by factors including sleep specialists' expertise, 

data quality, and interpretation. Further exploration is necessary to refine our comprehension of 

PSG's accuracy across diverse sleep disorders. 

PSG plays a vital role in diagnosing a spectrum of sleep disorders, encompassing conditions like 

OSA, insomnia, and RLS. Beyond its diagnostic prowess, PSG enables the exploration of sleep 

stages such as REM and NREM and stands as a linchpin in unravelling the physiological and 

pathological underpinnings of sleep. Research driven by PSG has delved into the ramifications 

of sleep deprivation and fragmentation, spotlighting their impacts on cognitive function, mood, 

and immune responses. Additionally, studies have unveiled the roles of sleep-in memory 

consolidation and restorative processes. While PSG is a robust diagnostic tool for sleep-related 

disorders, it does exhibit limitations. Cost emerges as a significant hurdle, as PSG involves 

pricy equipment, skilled technicians, and meticulous interpretation (Chen et al., 2015; Faust et 

al., 2019). Expenses vary substantially, spanning from several thousand dollars to even higher 

 

4 BioRender (2022). Icon Pack - Patient. https://app.biorender.com/biorender-templates/figures/all/t-63481d37f6cd3a17c56d1193-

icon-pack-patient 
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figures, contingent upon the study's demands and location. This financial barrier can impede 

access, particularly for uninsured or financially constrained patients. 

For instance, Cagle et al., (2023) documented PSG costs ranging from $2581 to $2874, and  

Mihaera, (2004), reported average costs of around $1100 and $900 in New Zealand. In the 

USA, annual PSG costs per patient can range from $4,000 to $6,000 (Harvard Medical School, 

2010). ECG stands as a prevalent alternative due to its cost-effectiveness, convenience, and non-

invasiveness (Mukherjee et al., 2021; C. Sun et al., 2022; Tan et al., 2018). An additional 

limitation lies in the inconvenience and discomfort associated with overnight stays in sleep 

laboratories. The unfamiliar setting, electrodes, and sensors can disrupt natural sleep patterns, 

affecting sleep quality (Barika et al., 2022; Rahul K. Pathinarupothi et al., 2017). The need for 

multiple wire attachments and channel montages adds further discomfort (Syeda Quratulain Ali 

et al., 2019; Bsoul et al., 2011; Kalaivani, 2020; Zarei et al., 2022; Zarei & Asl, 2019). 

Home-based PSG devices emerge as a convenient alternative, offering the flexibility of 

conducting sleep studies at home. Despite their benefits, they might not match in-lab PSG's 

accuracy  due to simpler equipment and less comprehensive sensors. Data interpretation 

requires sleep medicine expertise to ensure accurate diagnosis and treatment decisions. Despite 

these limitations, home-based PSG devices revolutionize sleep disorder diagnosis and 

management, expanding accessibility and enabling longitudinal monitoring. They shape the 

landscape of sleep medicine, enhancing research and providing personalized care for individuals 

with sleep disorders. 

2.4 Risk Factors for Sleep Apnoea 

According to the study conducted by (Sin et al., 1999), the risk factors for OSA and CSA 

exhibit variations, particularly between genders. The research highlights that atrial fibrillation is 

a risk factor for CSA but not OSA, whereas hypocapnia increases CSA risk in both men and 

women. Additionally, the study reveals that for men, the most substantial OSA risk factor is an 

increase in BMI, while for women, advancing age is the primary risk factor. Intriguingly, 

increasing age is not a risk factor for OSA in men, and BMI increase is not a risk factor for OSA 

in women. SA as a sleep disorder, disrupts sleep, leading to fatigue and heightened risks of 

health issues like stroke, hypertension, decreased productivity, and heart attack. It is also 

associated with an elevated risk of accidents, including motor vehicle accidents, which entail 

significant financial ramifications. SA development is influenced by various factors, including 

age, gender, weight, smoking, alcohol use, certain medications, and medical conditions like 

heart disease, hypertension, and diabetes (Duan et al., 2022; Y. Li et al., 2020; Salzano et al., 

2021). The combination of these factors creates a hazardous situation, as the individual may 

struggle to restore their oxygen levels and faces a risk of suffocation during sleep. Family 

history of SA and anatomical features such as a narrow airway or large tongue also contribute 
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(Xiu et al., 2020). Age, gender, and weight stand as significant risk factors for SA (Bachrach et 

al., 2021; Young et al., 2002), with age over 40 and being male heightening susceptibility 

(Alonderis et al., 2020) as highlighted in Figure 2.4. 

 

Figure 2.4 The main risk factors for SA5. 

Overweight individuals face increased risks due to airway pressure, making breathing more 

difficult (Jaiswal et al., 2017). Obesity is a prominent SA risk factor and a global health concern 

(Bachrach et al., 2021). Weight significantly contributes to SA development, with obesity 

prevalence steadily rising worldwide. Obesity-related risk factors include a large neck 

circumference, airway restriction, hypertension, diabetes, and smoking (Baker et al., 2020; Park 

et al., 2021).  

The global count of obese adults continues to escalate, with predictions indicating this trend's 

continuation. Even minor weight reduction substantially alleviates SA severity (Agha & Agha, 

2017). In England, obesity prevalence was 28% among women and 33% among men in 2010, 

and up to 27% of the population was obese in 2015. Projections based on current trends 

anticipate that by 2050, 60% of males and 50% of females will be obese, as supported by Figure 

2.5 and Figure 2.6. Notably, even modest weight loss can significantly ameliorate SA severity.  

 

5 Lugano, G. (2022). Risk Factors for Sleep Apnea. https://app.biorender.com/biorender-

templates/figures/all/t-63a25cb326f5d6a8ffd76703-risk-factors-for-stroke 
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Figure 2.5 Obesity prevalence estimates for 

men in 2007 and 2050 (Agha & Agha, 2017).  

Figure 2.6 Obesity prevalence estimates for 

women in 2007 and 2050 (Agha & Agha, 

2017).  

2.5 Sleep Apnoea Financial Costs 

Assessing the financial impact of SA on healthcare systems involves a comprehensive 

evaluation of both direct and indirect costs. Direct costs encompass expenses related to the 

diagnosis, treatment, and management of SA, such as medical consultations, sleep studies, and 

specialized equipment like CPAP machines. These costs can vary based on healthcare provider 

charges, insurance coverage, and the severity of the condition. Indirect costs, on the other hand, 

reflect the economic consequences of SA on productivity and quality of life. These include 

factors like accidents, property damage, legal proceedings, and even loss of life, which 

contribute significantly to the overall economic burden. Quantifying the economic parameters of 

SA, including cost-effectiveness and cost-benefit ratios, can be complex due to the challenge of 

assessing the value of healthy individuals compared to those affected by SA. Nevertheless, 

studies have endeavoured to analyse the economic ramifications of SA and have underscored 

the substantial financial strain it places on individuals and healthcare systems (Baillieul et al., 

2022).  

On a broader scale, the impact of SA on healthcare systems is substantial. The increasing global 

prevalence of SA translates to escalating healthcare expenses as a growing number of 

individuals necessitate diagnosis, treatment, and ongoing management. Empirical data has 

revealed staggering figures for the annual costs linked to SA. For instance, in the United States 

alone, a staggering $65 billion is expended each year on health services for the diagnosis and 

treatment of SA. The collective indirect costs of sleep disorders, encompassing SA, hover 

between $50 to $100 billion annually. These figures paint a vivid picture of SA's pronounced 

economic repercussions on both individuals and society as a whole (Abad & Guilleminault, 

2022; Ademola Bello & Alqasemi, 2021; Natsky et al., 2021; Senaratna et al., 2017).  A study 

conducted by Hossain & Shapiro, (2002) delved into societal costs associated with sleep 

disorders, including medical services and medication. The analysis estimated that in 1995, sleep 
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disorders incurred a societal cost of $2 billion in France and $13.9 billion in the USA. Hospital 

visits related to sleep disorders amounted to $700 million annually in each country, with over-

the-counter sleep aids constituting an additional annual cost of $84 million. 

2.6 Treatment of Sleep Apnoea 

SA, a sleep disorder with potential consequences if left untreated, can be effectively managed 

through various treatment options. Figure 2.7 provides an overview of different strategies for 

treating SA, including CPAP therapy and surgical interventions aimed at addressing anatomical 

obstructions. This section will delve into the primary types of treatment used to alleviate SA 

symptoms and improve overall sleep quality.  

 

Figure 2.7 Types of SA treatment.6 

2.6.1 Continuous Positive Airway Pressure 

The primary and widely accepted treatment for preventing the collapse of the pharyngeal airway 

in both children and adults for SA is nasal CPAP (C. Li et al., 2021; National Institute for 

Health and Care Excellence, 2021). Despite substantial individual variability in response to 

CPAP therapy duration, research indicates that utilizing CPAP for four or more hours enhances 

cognitive functioning, subjective sleepiness, and overall quality of life (Tolson et al., 2023). 

CPAP functions as a pneumatic splint, effectively stabilizing the upper airway, and proves 

successful with proper adherence. However, achieving consistent adherence poses a 

considerable challenge, influenced by socio-demographic factors, psychosocial characteristics, 

disease severity, and treatment-related side effects. Despite enhancements in machine 

technology and interventions to improve compliance, CPAP non-adherence rates persistently 

range between 30% and 40% (Brennan & Kirby, 2023). CPAP involves a mask worn during 

 

6 BioRender (2022). Semicircular Diagram (Layout). https://app.biorender.com/biorender-templates/figures/all/t-

61f9812fa30d5d009e189901-semicircular-diagram-layout. 

https://app.biorender.com/biorender-templates/figures/all/t-61f9812fa30d5d009e189901-semicircular-diagram-layout
https://app.biorender.com/biorender-templates/figures/all/t-61f9812fa30d5d009e189901-semicircular-diagram-layout
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sleep, covering the nose or mouth (M.K. et al., 2020), linked to a machine that delivers 

pressurized air to prevent airway collapse Figure 2.8.  

 

Figure 2.8  Continuous positive airway pressure setup.7 

However, a notable limitation lies in suboptimal adherence to CPAP therapy, with an estimated 

50% of patients failing to meet the recommended usage duration of four hours per night. 

(Broström et al., 2010; Tolson et al., 2023). Additionally, the noise generated by the CPAP 

machine can disrupt both the patient and their sleeping partner (Broström et al., 2010). 

Outcomes are mixed (Brill et al., 2018), necessitating further research. Consistent nightly CPAP 

use at home is optimal, although not always practical. Regular check-ups are advised to assess 

adherence, address side effects, and replace components (S. P. Patil et al., 2019). Diagnosis and 

CPAP wait times vary globally, as illustrated in Table 2.2 (Flemons et al., 2004).  

 

7 BioRender (2022). Icon Pack - Patient. https://app.biorender.com/biorender-templates/figures/all/t-63481d37f6cd3a17c56d1193-

icon-pack-patient 
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Table 2.2 Waiting time for diagnosis and treatment with CPAP in five countries in 2001. 

Country Population Waiting Time 

United Kingdom 58,800,000 7–60 

Belgium 10,000,000 2 

Australia 18,970,000 3–16 

United States 280,000,000 2–10 

Canada 31,400,000 4–36 

2.6.2 Bilevel Positive Airway Pressure 

In recent years, the use of BiPAP ventilators have demonstrated notable benefits, including 

enhanced clinical effectiveness, reduced rates of invasive ventilation with endotracheal 

intubation during acute exacerbations, and shorter hospitalization durations for patients with 

associated pneumonia and stable-phase acute exacerbations (C. Zhang & Liu, 2023). However, 

research on the impact of BiPAP on mental disorders in COPD patients with comorbid anxiety 

and depression remains limited. Illustrated in Figure 2.9, BiPAP shares similarities with CPAP, 

utilizing a mask connected to a machine delivering pressurized air to the airways. Unlike CPAP, 

BiPAP provides two distinct levels of air pressure for inhalation and exhalation, offering 

particular advantages to patients who struggle with exhalation against a constant pressure (Abad 

& Guilleminault, 2022). 

 

Figure 2.9 BiPAP setup.8 

2.6.3 Oral Appliances 

Oral appliances are specifically designed devices that are worn in the mouth during sleep with 

the aim of keeping the airway open. They are commonly recommended for individuals with 

 

8 https://userfiles.steadyhealth.com/images/ic/bipap.jpg 
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mild to moderate SA and can be an alternative option for patients who find it challenging to 

tolerate the pressure of CPAP therapy (Abad & Guilleminault, 2022; Aurora et al., 2010). 

2.6.4 Surgery 

Surgery is sometimes considered as a treatment option for individuals with severe SA who have 

not experienced improvement with other methods. There are different surgical procedures 

available, including Uvulopalatopharyngoplasty (UPPP) and Maxillomandibular advancement 

(MMA). UPPP involves the removal of excess tissue from the throat, while MMA involves 

moving the jaw forward to widen the airway (Aurora et al., 2010). These surgical interventions 

aim to address the anatomical factors contributing to SA and can be considered in select cases 

after a thorough evaluation by a healthcare professional. 

2.6.5 Lifestyle Changes 

Implementing lifestyle changes can be an effective strategy in managing SA symptoms. Weight 

loss, avoiding alcohol and sedatives before bedtime, and adopting a side-sleeping position 

instead of sleeping on the back are all recommended approaches to reduce the severity of SA 

(Duan et al., 2022; Y. Li et al., 2020). Studies have demonstrated that a 10% reduction in weight 

can lead to a significant improvement in the AHI, with a corresponding 26% reduction in its 

severity (C. Li et al., 2021). These lifestyle modifications, when combined with appropriate 

medical treatment and guidance, can contribute to better management of SA. 

2.7 Artificial Intelligence Innovations in Sleep Apnoea Diagnosis 

The evolution of technology, particularly in AI, offers a transformative potential for the field of 

sleep medicine. AI has the capability to efficiently process and analyse extensive volumes of 

digital health data originating from various inpatient and outpatient sources. This enables the 

creation of predictive diagnostic and treatment models. AI tools excel in tasks such as data 

cleansing, disease classification, and detection of specific disease patterns tasks that surpass the 

capacity of human biological intelligence. With each patient generating more than 80 megabytes 

of clinical data annually, a figure that continues to rise, the manual review of patient data during 

limited clinical sessions is increasingly challenging. This surge in data underscores the necessity 

for advanced technological interventions in diagnosing and managing sleep disorders (Alattar & 

Govind, 2024).  

The AI, which includes various techniques, has emerged as a transformative force in the 

detection and diagnosis of SA. Algorithms, when applied to diverse datasets including clinical 

records, PSG data, and even wearable device recordings, enable the identification of patterns 

indicative of SA. These algorithms can analyse vast amounts of information to recognize subtle 

variations in breathing patterns, sleep stages, and physiological parameters associated with sleep 
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disorders. Moreover, advanced algorithms, with their ability to automatically extract intricate 

features from raw data, have shown promise in enhancing the accuracy and efficiency of SA 

detection. By training on large datasets, these models can learn complex representations of 

sleep-related signals, enabling more precise identification of apneic events and aiding in the 

differentiation between obstructive, central, and mixed forms of SA (Alattar & Govind, 2024; 

Moridian, et al., 2022). 

The integration of AI techniques into SA detection systems has revolutionized diagnostic 

approaches by offering non-invasive, cost-effective, and scalable solutions. These technologies 

facilitate the development of intelligent tools capable of continuous monitoring and real-time 

analysis of sleep-related parameters, empowering healthcare professionals to identify 

individuals at risk of SA earlier and intervene promptly. Furthermore, the automation of SA 

detection processes through AI-driven algorithms streamlines diagnostic workflows, reduces the 

burden on healthcare providers, and enhances patient access to timely and accurate sleep 

disorder assessments. As research in this domain continues to advance, the synergy between AI 

and sleep medicine holds tremendous potential to improve the early detection, management, and 

treatment outcomes of SA worldwide (Alattar & Govind, 2024; Moridian, et al., 2022). 

2.8 Deep Learning  

DL is a type of ML that uses large datasets to train a neural network with multiple hidden layers 

(Faust et al., 2018; Lih et al., 2020; S. Patil, 2022). According to Esteva et al., (2019), it plays a 

vital role in understanding physiological data and improving the performance of medical 

systems (Faust et al., 2018). The concealed layers don't directly generate functions to map data 

for classification. Instead, they furnish valuable information for categorizing a data set into a 

cluster and extract features and aspects from the input space. DL holds immense potential in 

healthcare and medicine, particularly due to the growing volume of data generated by medical 

devices and digital record systems (Esteva et al., 2019). Its application in developing accurate 

SA detection systems has been a critical area of research in healthcare (Mukherjee et al., 2021). 

Researchers have utilized ML and DL techniques to detect apnoea, achieving high accuracy 

(Cen et al., 2018). For instance, Chang et al., (2020) proposed a 1-D Convolutional Neural 

Networks (CNN) architecture for OSA detection, achieving an overall accuracy of 87.9%. 

Mashrur et al., (2021) developed a Scalogram-based CNN for detecting OSA using PhysioNet 

Apnea ECG signals (Penzel et al., 2000), achieving an accuracy of 94.30%.   With the need to 

record patient data accurately for medical procedures such as SA detection and diagnosis, DL 

significantly enhances the capabilities of advanced technical aspects. Healthcare professionals 

and doctors can benefit from learning DL processes with the assistance of AI technology, 

enabling them to improve their performance while delivering critical treatments to patients 

(Holzinger et al., 2023). 
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2.9 Computer Aided Sleep Apnoea Detection System 

Computer-aided sleep apnoea detection system (CASADS) uses computer tools to analyse 

physiological signals like heart rate and breathing patterns during sleep. ML and DL are often 

used to identify patterns suggesting SA from large datasets. CASAD is a promising tool for 

diagnosing and managing sleep disorders by offering objective measurements to guide 

treatment. However, more research is needed to confirm the accuracy, reliability, accessibility, 

and affordability of these techniques for both patients and healthcare providers (Mousavi et al., 

2019).  According to Moridian, et al., (2022), the CASADS, which integrates ML and DL 

approaches for automated SA diagnosis. This research aims to offer valuable support to 

specialists by enhancing the accuracy of SA detection through ML and DL techniques. By 

harnessing advanced algorithms rooted in ML and DL, the study aims to empower clinicians to 

identify and diagnose SA more effectively. This collaborative integration of AI methodologies 

not only streamlines the diagnostic process but also contributes to refining treatment strategies 

for patients with sleep disorders. 

2.9.1 Sleep Apnoea Detection with Machine Learning, Incorporating Deep Learning 

The use of modern technology, such as CAD, can assist in the identification of SA, resulting in 

faster and more cost-effective diagnosis. Some ML techniques have shown high accuracy in 

diagnosing SA, but issues such as complexity, memory inefficiency, and the need for human 

intervention need to be addressed (Syeda Quratulain Ali et al., 2019). Bozkurt et al., (2020) 

conducted a study using ECG data from ten patients with OSA and ten healthy controls to 

classify the presence of OSA. They utilized HRV and a digital filter to extract the QRS 

component at various frequencies and employed the k-Nearest Neighbors (k-NN) algorithm for 

classification. The study reported a classification accuracy of 82.11% and 85.12% when three 

and thirteen features were used, respectively. Erdenebayar et al., (2019a) used data from 86 

patients, with 69 used for training and 17 for testing, and employed a residual neural network 

(RNN) algorithm. The study reported the highest accuracy of 99% using this DL approach, 

indicating its usefulness for automatically detecting SA. F. Chung et al., (2012) improved 

accuracy to 93.7% for an AHI of 30, despite primarily including surgical patients in their 

sample. The use of statistical techniques enabled them to achieve diagnostic ability that was 

most similar to the ML approach. Khandoker et al., (2009) identified 24 variables from the 

examination of two forms of SA in 83 people using SVM on 125 sets of ECG data. The 

technique showed a 92.85% accuracy for leave-one-out cross-validation (LOOCV). 

Recent studies have focused on utilizing DL methods for the identification and classification of 

apnoeic events. Long Short-Term Memory (LSTM) networks have demonstrated high accuracy 

in diagnosing SA, achieving 99% accuracy according to studies by (Faust et al., 2021; Tan et 

al., 2018). Pathinarupothi et al., (2017) diagnosed SA using a single-sensor approach and 
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LSTM-RNN with specific network configurations. CNN are effective techniques commonly 

used in signal processing, image analysis, and computer vision applications (Zarei et al., 2022). 

Choi et al., (2018) employed CNNs and PSG signals to develop an automatic apnoea detection 

method. Erdenebayar et al., (2019a) utilized CNN and RNN-based structures to detect apnoeic 

events using ECG signals. Dey & Chaudhuri, (2018) developed a supervised apnoea detection 

method based on the CNN architecture and ECG signal.  

Various classifiers, including Random Forest (RF), SVM, K-Nearest Neighbors (KNN), 

Adaboost, Linear Regression (LR), the Hidden Markov Model (HMM), Deep Neural Network 

(DNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to identify 

segments of OSA (Sarah Qasim Ali & Hossen, 2018; K. Li et al., 2018; Usha Kumari et al., 

2020). Al-Ratrout & Hossen, (2018) achieved 100% accuracy in classifying SA by combining 

SVM with fivefold wavelet decomposition and dbl filters. Tagluk et al., (2010) introduced a 

new approach for Sleep Apnoea Syndrome (SAS) classification, combining wavelet transforms 

and an Artificial Neural Networks (ANNs). Their method involved training the network with 

different momentum coefficients. Utilizing multi-resolution wavelet transforms, they divided 

abdominal respiration signals into spectral components, serving as inputs for the neural 

network. Configured with three outputs, the network classified patients' SAS conditions. Figure 

2.10 reproduced from (Tagluk et al., 2010) illustrates their methodology. 

 

Figure 2.10 Structure of the proposed classification method.  

DL-based algorithms have been employed for the categorization of SA by researchers such as 

(Leino et al., 2021; Mostafa et al., 2017; Rahul Krishnan Pathinarupothi et al., 2017; Yildirim et 

al., 2019). Cheng et al., (2017) utilized a Recurrent Neural Network (RNN) model with 97.8% 

accuracy for SA identification. The accuracy of DL algorithms for identifying SA is 

summarized in Table 2.3. The presented table underscores diverse studies employing distinct 

classifiers and databases in SA detection, underscoring fluctuations in detection performance. 
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Prominent gaps involve enhancing specificity in specific models, tackling issues related to 

respiratory signal detection, and investigating innovative approaches to augment overall 

accuracy and resilience in real-world contexts. Ng et al., (2008) achieved a sensitivity of 70.29-

86.25% by using thoracic and abdominal signals as input features for SA detection. Qin et al., 

(2021) investigated the relationship between OSA and HRV and found that HRV decreases with 

the severity of apnoea disease. 

Table 2.3 DL networks. 

 

2.9.2 Signals for Sleep Apnoea Detection 

The detection of SA relies on the analysis of various physiological signals, including EEG, 

EOG, EMG, ECG, HR, and SpO2. These signals are essential in the diagnosis and management 

of SA and can be non-invasively monitored during sleep using a diverse array of sensors and 

devices. In the following subsections, detailed information regarding these physiological signals 

will be presented, shedding light on their significance and relevance in SA detection and 

treatment. 

2.9.2.1 Electrocardiogram  

This passage explores the utilization of ECG signals in the detection of SA. While ECGs are 

commonly used to assess CVD, they can also be employed to evaluate SA and other sleep 

disorders (Behar et al., 2021). ECG signals capture the electrical activity of the heart and are 

typically recorded by placing bioelectrodes on the body's surface. ECG data extraction entails 

analysing signals from electrodes on the skin to interpret heart rate, rhythm, and intervals, 

utilizing algorithms for in-depth insights into cardiac activity, crucial for diagnostic and 

Authors Classifiers Database Signals 

Detection Performance 

Acc%   Sen%  Spec% 

J. Zhang et al., 2021 CNN-LSTM Apnea-ECG ECG 99.80  96.94 98.97 

Wu et al., 2021 1D-CNN EEG and EOG EEG, EOG 97.62  94.34 92.33 

Faust, et al., 2021 LSTM Apnea-ECG ECG 99.80  99.85 99.73 

Acharya et al., 2011 CNN MIT-BIH arrhythmia ECG 92.50  98.09 93.13 

Morales et al., 2017 DBN Apnea-ECG ECG 97.64  78.75 95.89 

Acharya et al., 2011 

RNN 

LSTM 

GRU 

Nocturnal ECG ECG 

85.4  

98 

99 

97 

98 

99 

87 

98 

99 

Song et al., 2016 CNN-LSTM Apnea-ECG ECG 96.1  96.1 96.2 

Pinho et al., 2019 Bi-LSTM 
PSG and respiration 

signals 

respiratory 

signals 
- 90.3  83.7 
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monitoring applications in healthcare. However, it's important to note that ECG signals can vary 

among individuals based on factors such as physical activity and stress levels (Dhruba et al., 

2021; Faust et al., 2016).   

To detect SA, numerous research studies have utilized ECG signals in combination with other 

measurements like respiratory airflow and SpO2 due to the limited sensitivity and specificity of 

ECG alone. These studies have employed various approaches, such as decomposing ECG 

signals, extracting entropy features, and employing classifiers like support vector machines 

(SVM) (Banluesombatkul et al., 2019; Bozkurt et al., 2020). Respiratory airflow is measured 

through methods such as pneumotachography, thermal-based sensors, ultrasonic flowmeters, 

and capnography, each chosen based on factors like accuracy, patient comfort, and the 

application context in clinical diagnostics, research, or home monitoring (Ragette et al., 2010). 

For instance, Hassan & Haque, (2016) employed empirical mode decomposition (EMD) to 

decompose ECG signals into intrinsic mode functions (IMFs). Nishad et al., (2018) utilized a 

tunable-Q wavelet transform to decompose ECG signals and extracted entropy features for SA 

classification using diverse classifiers. Martín-González et al., (2017) proposed a feature 

extraction technique that classified SA using Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and Logistic Regression  (LR) using HRV information captured 

from ECG signals. Chen et al., (2015) employed an automatic ECG signal segmentation scheme 

to obtain segments of varying lengths for classification, with a SVM utilized to screen apnoeic 

segments. Additionally, Tripathy, (2018) suggests using HRV and electrocardiogram-derived 

respiration (EDR) signals for SA detection. 

In a normal ECG, distinct signal components, including the P, QRS, and T waves, can be 

visually identified. These waves correspond to specific physiological events during the cardiac 

cycle (Almazaydeh et al., 2012; Faust, Kareem, et al., 2021). Figure 2.11 provides a schematic 

representation of a normal ECG, illustrating the different waveforms and their significance (Faal 

& Almasganj, 2021). 

 

Figure 2.11 ECG signal shows P, Q, R, S, T waves, QRS complex and RR interval. 
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2.9.2.2 Electrooculogram 

The EOG signal is a bio-electric signal generated by eye movement. It is recorded by placing 

electrodes around the eyes and measures the electrical potential associated with eye movements. 

Figure 2.12 illustrates the placement of electrodes for recording EOG signals, following the 

guidelines provided by AASM (Faust et al., 2019). EOG signals have broad applications in 

clinical settings for diagnostic purposes and in research settings for studying eye movement and 

visual processing. They provide valuable insights into ocular activity and are instrumental in 

understanding various eye-related conditions and phenomena. 

 

Figure 2.12  EOG electrode is placed above the right eye, while the other electrode is placed 

above the left eye.9 

2.9.2.3 Electroencephalogram      

The EEG is a measurement of the electrical activity of the brain and plays a crucial role in 

identifying different sleep stages based on their distinct patterns. Various classification systems 

have been developed to categorize sleep stages using specific features derived from EEG 

signals. Signal processing techniques, such as time-domain analysis, spectral analysis, time-

frequency analysis, and nonlinear analysis, have been employed to extract relevant sleep-related 

information from EEG signals. The advent of wearable technologies has made the acquisition of 

EEG signals more accessible, and the rich information contained within EEG signals has made 

them an indispensable tool in sleep research. Researchers rely on EEG signals to gain insights 

into sleep architecture, brain activity during sleep, and the dynamics of sleep-related disorders 

(Yildirim et al., 2019). 

 

9 https://cvgclinical.co.za/paediatric-and-adult-sleep-study-clinic/ 
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2.9.2.4 Electromyogram      

The EMG signal, also known as the myoelectric signal in biomedicine, is a type of biomedical 

signal that records the electrical currents produced by muscles during contraction. It provides 

valuable insights into neuromuscular processes. Muscle activity, whether it involves contraction 

or relaxation, is controlled by the nervous system. Consequently, the EMG signal is a complex 

indicator that is regulated by the nervous system and influenced by the anatomical and 

physiological characteristics of the muscles. By analysing the EMG signal, researchers can gain 

a deeper understanding of muscle function, motor control, and the coordination of muscle 

activity. The EMG signal has various applications in clinical and research settings, including the 

study of muscle disorders, movement analysis, and the assessment of muscle performance and 

fatigue (Merletti et al., 2009; Reaz et al., 2006).  

2.9.2.5 Heart Rate  

HR, or heart rate, is a physiological signal that reflects the number of heartbeats per unit of time, 

typically measured in beats per minute (bpm) (Obi, 2022; Wójcikowski & Pankiewicz, 2020). 

The normal range for adults usually falls between 60 to 100 bpm, although it can vary 

depending on factors such as age, gender, and level of physical activity (Dhruba et al., 2021). 

Abnormal increases in HR can indicate sleeping disorders or SA, which can also influence HR. 

Conversely, a lack of oxygen in the body can lead to a lower HR (Dhruba et al., 2021).  

HR signals consist of consecutive beat-to-beat intervals, which can be extracted from either an 

ECG or a photoplethysmogram (PPG) signal (Loh et al., 2022). HRV, or heart rate variability, is 

a significant physiological parameter that quantifies the variations in time intervals between 

consecutive heartbeats. It is closely associated with heart health and often evaluated in the 

diagnosis of cardiovascular diseases (Achten & Jeukendrup, 2003; Olmedo-Aguirre et al., 

2022). Higher HRV values indicate a healthier cardiac condition and a lower risk of death. SA 

episodes can affect heart rhythm, and HRV can objectively detect these changes. However, it is 

important to consider the influence of age and gender on HRV (Faust, O., Yi, L.M. and Hua, 

L.M., 2013).  

2.9.2.6 Oxygen Saturation 

Several studies have utilized single biological markers, such as SpO2, for SA detection (Burgos 

et al., 2010; Ramachandran & Karuppiah, 2020). The AASM Task Force has included blood 

SpO2 as a measurement to characterize SA and hypopnea episodes (Burgos et al., 2010). In 

healthy individuals, SpO2 levels typically range between 95% and 100%, indicating well-

saturated haemoglobin with oxygen (Moshtaghi-kashanian et al., 2021; Olmedo-Aguirre et al., 

2022). However, SA patients often exhibit lower SpO2 values, around 90% (Dhruba et al., 

2021). Stone et al., (2016) discovered that SA patients with SpO2 levels below 90% for more 

than 10% of their sleep had nearly twice the risk of stroke compared to those without such 
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saturation declines. SpO2 values are categorized as normal and healthy, mild hypoxemia, 

hypoxic, and severely hypoxic, with oxygen levels below 90% considered dangerous and levels 

below 80% harmful to vital organs (Elfasakhany et al., 2021; Olmedo-Aguirre et al., 2022). 

Many studies combine SpO2 and ECG signals to detect apnoeic events, as research has shown 

that HR and systolic blood pressure rise in response to these episodes (Erdenebayar et al., 

2019b). Burgos et al., (2010) utilized SpO2 measurements in their SA detection study. 

2.9.2.7 The RR interval  

The RR interval, referred to as the interbeat interval, signifies the time between consecutive R-

waves during a heartbeat as depicted in Figure 2.11. These R-waves are identified as the highest 

peaks of specific QRS complexes. QRS complexes correspond to the waveform deflections seen 

in an ECG trace, representing the ventricular activity of the heart. (Shaffer & Ginsberg, 2017). It 

is a measure of HRV, which is influenced by the dynamic balance between parasympathetic and 

sympathetic activity in the autonomic nervous system (Shaffer & Ginsberg, 2017). The healthy 

heart exhibits complex and non-linear variability, allowing it to adapt to changing environments 

(Shaffer & Ginsberg, 2017). Almazaydeh et al., (2012) describe the process of generating an RR 

interval time series for each ECG beat. 

rr (i) = r (i + 1) –  r (i),     i =1 1,2, …, n 2.1   

In this equation, r(i) represents the time of occurrence of the i-th heartbeat, and rr(i) represents 

the time interval between the i-th and (i+1)-th heartbeat, which is commonly referred to as the 

RR interval. 

2.10 Automated Sleep Stage Scoring  

Sleep staging is an essential for diagnosing sleep-related illnesses (Satapathy & Loganathan, 

2021). Automated sleep stage scoring aids human and animal sleep analysis since the late 1960s 

(Grieger et al., 2021). PSG analysis relies on physiological signals like EEG, EOG, ECG, EMG, 

SpO2, airflow, and respiratory effort, divided into 30-second sleep epochs manually classified 

by sleep specialists (Krauss et al., 2021; Sokolovsky et al., 2020). These epochs are labeled as 

wake, light sleep, intermediate sleep, deep sleep, or Rapid Eye Movement (REM) sleep, 

following AASM recommendations (Yan et al., 2021).    

In 1968, Rechtschaffen (R) and Kales (K) proposed a five-stage sleep system, defining standard 

rules for sleep stage scoring (Hussain et al., 2021; Malafeev et al., 2018). R&K divides sleep 

cycles into Non-Rapid Eye Movement (NREM) stages 1, 2, 3, 4, and REM. AASM's 2012 

revision merged stages S3 and S4 into a single Slow Wave Sleep (SWS) class (Chriskos et al., 

2021; Michalek-Zrabkowska et al., 2021; Perslev et al., 2021; Yildirim et al., 2019). A typical 

sleeper transitions between these stages during the night, with S2 being the most common 

(Malik et al., 2018). NREM sleep occupies 75%–80% of total sleep time, while REM sleep 

accounts for 20%–25% (Manish Sharma et al., 2021). ML methods have emerged to categorize 
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sleep stages with high accuracy, particularly useful for detecting disorders and sleep stages 

(Santaji & Desai, 2020). Table 2.4 outlines some commonly used ML approaches for sleep 

stage classification. 

Table 2.4 ML approaches that are often used for sleep stage classification. 

Category Techniques Technique variations 

Supervised Learning Classification LDA, SVM, hidden Markov model, Bayesian 

Supervised Learning Classification KNN 

Supervised Learning Classification Decision tree (DT) 

Supervised Learning Ensemble Ada-boost, random forest 

unsupervised Learning Clustering K-means clustering 

Supervised Learning Regression Techniques specific to regression tasks 

2.10.1 Deep Learning Approaches for Automated Sleep Staging  

DL can outperform traditional ML in various domains due to its capacity to automatically 

extract intricate features from raw data, handle large and complex datasets, and model intricate 

relationships, allowing for more accurate and nuanced predictions. The hierarchical 

representation learning in DL architectures enables the automatic discovery of hierarchical 

features, contributing to superior performance across diverse and intricate tasks. These features 

has motivated researchers to employ DL techniques for automatic sleep stage classification 

(Eldele et al., 2021). Sleep staging entails the categorization of sleep into various stages and has 

been addressed through classifiers like CNNs, DNNs, and combinations such as CNN+RNN or 

DNN+RNN (Faust et al., 2019). Many studies have focused on processing raw PSG data using 

CNNs and RNNs. Alternatively, successful approaches have utilized precomputed spectrograms 

along with CNNs and RNNs, capturing the frequency content of signals over time. Between 

2010 and 2020, it is worth noting that approximately 75% of research on automated sleep stage 

classification has employed DL methodologies (Loh et al., 2020).  

2.10.1.1  Convolutional Neural Networks  

CNNs are ML models inspired by the human visual system. They consist of convolutional, 

pooling, and fully connected layers that perform a series of operations on input data 

(Sokolovsky et al., 2020). CNNs have been widely employed for sleep stage classification, 

leveraging their success in image recognition tasks (Sokolovsky et al., 2020).  

Yulita et al., (2018) achieved an 84% accuracy in automatic sleep stage classification by 

employing a fast-convolutional method for feature extraction. Dong et al., (2018) utilized 

LSTM to classify sleep stages from EEG signals, achieving an accuracy of 78.94% to 83.60%.  
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Zhao et al., (2022) utilized the 1D CNN-LSTM method to automatically classify sleep stages 

using various physiological signals. They achieved an accuracy of 93.47% when using the Fpz-

Cz channel EEG signal and 94.15% when combined with the EOG signal. Malik et al., (2018) 

applied a CNN classifier to a single-lead ECG signal for automatic sleep staging. They also 

investigated the effects of using a CNN on the instantaneous heart rate (IHR) series as an 

approach to quantify heart rate fluctuation. H. Sun et al., (2020) developed a set of DNNs to 

classify sleep stages using ECG and/or respiration signals, utilizing a large-scale dataset of 8682 

PSGs acquired at the Massachusetts General Hospital sleep laboratory (MGH).   

2.10.1.2  Recurrent Neural Network 

RNN, In the 1980s, the RNN was developed with an architecture consisting of input, hidden, 

and output layers. RNNs use repeating modules in a chain-like structure to serve as memory, 

retaining important information from previous steps. Unlike feedforward networks, RNNs 

include a feedback loop, allowing them to process sequences by incorporating the output from 

the prior step into the current step. This sequential processing capability makes RNNs effective 

for learning and analysing sequences, as depicted in Figure 2.13 (Abdullah et al., 2022; Le et 

al., 2019).  

 

Figure 2.13 depicts a basic RNN expanded into a complete network, featuring one input unit, 

one output unit, and one recurrent hidden unit, where Xt is the input at time step t and ht is the 

output at time step t. 

RNNs have emerged as the state-of-the-art approach for various tasks, including natural 

language processing and speech recognition. In the context of language processing, sequential 

data can be represented as sequences, such as words (sequences of letters), sentences (sequences 

of words), and documents (sequences of sentences) (Michielli et al., 2019).  Suited for 

modelling time series data with long-term dependencies, RNNs, as a subset of ANNs, 

incorporate time delay units and feedback connections. Particularly useful in automatic sleep 

stage classification, RNNs extensively use DL models trained with subsets of PSG recordings, 

comprehensive tests capturing various physiological signals during sleep. 

Table 2.5 provides an overview of some of the PSG recordings used in previous studies for 

training DL models in the context of automatic sleep stage classification.   
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Table 2.5 Summarizes the DL algorithms used for automated sleep stage classification in the 

Sleep-EDF dataset, utilizing PSG recordings. 

 

2.10.1.3  Long Short-Term Memory 

The LSTM, a specialized type of RNN developed by Hochreiter, gained popularity for its 

unique architecture addressing long-term dependency issues (Nifa et al., 2023). Widely used in 

sleep stage classification for handling variable-length sequences, LSTM dominates sleep staging 

studies (Ebrahimi & Alizadeh, 2022; Faust et al., 2018). Studies exploring LSTM's impact on 

sleep staging depth find a single hidden layer often sufficient for high accuracy in various 

applications. (Radha et al., 2018; Y. Wei et al., 2019; Yulita et al., 2017).  

LSTM algorithms, widely applied in analysing time series data, find utility in domains like 

natural language processing, speech recognition, and handwriting recognition (Fu et al., 2021; 

Oh et al., 2018). Their architecture, with gates controlling information flow, enables long-term 

memory retention. The LSTM structure includes key components like the cell state, 

representing long-term memory, and input and hidden states. Gates, including forget, input, and 

output gates, regulate information flow (Nifa et al., 2023; Urtnasan et al., 2020).  For more 

information about the LSTM, please Kindly consult Chapter 4 in 4.2.3.1  for detailed insights.  

Author Signals Samples Approach 
Tools/Programming 

Languages 

Accuracy 

(%) 

Zhu et al., 2020 EEG 15,188 attention CNN − 93.7 

Qureshi et al., 2019 EEG 41,900 CNN − 92.5 

Yildirim et al., 2019 EEG 15,188 1D-CNN Keras 90.8 

Hsu et al., 2013 EEG 2880 Elman RNN − 87.2 

Michielli et al., 2019 EEG 10,280 RNN-LSTM MATLAB 86.7 

L. Wei et al., 2018 EEG − CNN − 84.5 

Seo et al., 2020 EEG 42,308 CRNN TensorFlow 84.9 

X. Zhang et al., 2020 EEG − CNN PyTorch 83.6 

Supratak et al., 2017 EEG 41,950 CNN-BiLSTM − 82.0 

Phan et al., 2019 EEG − 
Multi-task 

CNN 
− 81.9 

Tripathy et al., 2018 
EEG  

HRV 
7500 Autoencoder MATLAB 73.7 

Biswal et al., 2018 PSG 10,000 RCNN PyTorch 87.5 

Xu et al., 2020 PSG  − DNN − 86.1 

J. Zhang & Wu, 2018 EEG − CUCNN MATLAB 87.2 
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2.11 Research Gap  

The current landscape of SA diagnosis faces formidable challenges attributed to invasive, time-

consuming, and costly conventional methods, primarily the PSG conducted in sleep 

laboratories. PSG's limitations, including inconvenience and discomfort, underscore the need for 

alternative, non-invasive, and cost-effective diagnostic tools. This research identifies a critical 

research gap and positions the convergence of IoT and AI technologies as a promising avenue to 

address this challenge and reshape SA diagnostics. IoT devices such as wearables, smart beds, 

and smartphones have demonstrated their capability to collect diverse sleep-related data, 

encompassing heart rate, respiratory patterns, and snoring sounds. Simultaneously, AI 

algorithms, spanning ML and DL, exhibit potential in constructing predictive models for 

accurate SA detection. However, despite these advancements, a research gap persists in 

optimizing the integration of IoT and AI for optimal SA detection. 

The identified gap prompts further exploration into the intricacies of IoT-AI integration, 

specifically focusing on defining effective sensor setups, refining data preprocessing methods, 

and selecting AI algorithms that ensure reliable SA detection. To address this gap 

comprehensively, clinical trials become imperative, serving to validate system performance, 

scalability, and usability in real-world scenarios. Moreover, the thesis emphasizes the necessity 

for investigating individual variations and comorbidities to enhance diagnostic accuracy. 

Recognizing the potential of real-time feedback and interventions within IoT-AI systems 

emerges as a critical area for improvement in SA treatment and management. This research 

endeavour aims to bridge these identified gaps, laying a robust foundation for the development 

of advanced SA diagnostic tools. The ultimate goal is to propel sleep medicine forward, offering 

enhanced diagnostic accuracy and, consequently, improving patient outcomes in the realm of 

sleep disorders.
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Chapter 3 Environmental Benefits of Sleep Apnoea Detection in the 

Home Environment 

The content in this chapter is based on a manuscript titled "Environmental Benefits of Sleep 

Apnoea Detection in the Home Environment" by Barika et al., (2022). The manuscript's primary 

objective is to evaluate the environmental consequences associated with the detection of SA, 

specifically focusing on the potential of Remote Monitoring (RM) as a solution.  

This research discusses the environmental impact of SA detection methods and proposes RM as 

a solution. The document highlights the detrimental effects of SA on mental and cardiovascular 

health and the need for its detection as a public health priority. Currently, PSG, the gold 

standard diagnostic procedure, is resource-intensive and negatively affects sleep quality and the 

environment. The document suggests that RM using mobile communication, cloud computing, 

and AI could establish SA detection and diagnosis support services in the home environment, 

leading to improved clinical outcomes and reduced environmental impact. However, the 

adoption of RM technology faces barriers. The document reviews 113 scientific studies and 

finds that over half of the proposed RM-based SA detection systems use real-time signal 

processing, while 30% rely on measurement devices that require travel when the internal buffer 

is full. The establishment of SA detection services through RM technology could reduce travel, 

resource sharing, and environmental impact. 

3.1 Introduction 

SA  is a prevalent sleep disorder affecting nearly one billion people globally (Corrigan et al., 

2020). In developed countries, at least 20% of adults are estimated to suffer from SA  

(Banluesombatkul et al., 2019). SA is associated with various comorbidities, including high 

blood pressure (Kristiansen et al., 2021), CVD (Sweed et al., 2019), type 2 diabetes mellitus, 

and stroke (DM) (Gurrala et al., 2021; Kristiansen et al., 2021; San & Malhotra, 2021). While 

SA diagnosis currently relies on the AHI and clinical criteria, this approach has limitations. 

Overnight monitoring in a sleep lab is resource-intensive and contributes to environmental 

degradation. To address these challenges, RM technology, which integrates mobile 

communication, cloud servers, and artificial intelligence, has emerged as a promising and 

sustainable alternative for SA diagnosis. The widespread adoption of RM for SA detection is 

expected to improve clinical outcomes by enabling early and real-time SA detection, reducing 

hospitalizations, and decreasing waiting lists. However, it is crucial to consider the 

environmental impact associated with RM-based SA detection. 

This work examines the potential environmental benefits of utilizing RM based SA detection 

services in the home environment. The authors argue that RM-based SA detection services can 

offer lower environmental impact compared to traditional methods of detecting sleep disorders. 
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This is primarily due to reduced travel for both patients and healthcare specialists, as well as the 

ability to share resources. The authors conducted a comprehensive review of 113 papers on SA 

detection systems and found that the key factor influencing the environmental impact of a 

system is whether the measurement evaluation is conducted online or offline. They discovered 

that over 50% of the reviewed RM-based SA detection systems employed online processing, 

while approximately 20% did not report this feature, indicating that at least 30% of the studies 

did not prioritize minimizing their environmental impact. The authors also observed that 

environmental considerations were rarely addressed in the reviewed articles, emphasizing the 

importance of promoting the environmental benefits of RM-based SA detection in the home 

environment. 

3.2 Background 

Sleep is characterized by a temporary suspension or altered state of consciousness, particularly 

during the REM sleep stage (Loh et al., 2020). However, direct measurement of consciousness 

is challenging, which poses difficulties in detecting sleep disorders. To overcome this, a wide 

range of physiological signals are typically recorded during a sleep study (Faust et al., 2019). 

These studies, often in the form of PSG, involve recording sleep-related data for at least one 

night, and manual analysis of the data can take up to 4 hours per night. With the emergence of 

RM-based SA detection services that can collect data over multiple nights without limitations, 

manual analysis by human experts becomes impractical and demanding. Therefore, an essential 

aspect of all SA detection services should include automated data analysis based on AI models.

  

3.3 Sleep Apnoea Detection in the Home Environment  

In this section, we describe the evaluation process used to assess technologies for detecting SA 

in the home environment. To identify relevant research articles, we conducted a comprehensive 

search using Google Scholar, focusing on articles published between 2018 and 2022. This time 

frame was chosen to capture the latest advancements in AI, which is crucial in the context of SA 

detection. Using predefined Boolean search terms, we queried the database, specifically 

targeting the keyword "apnea home." The initial search yielded 179 matches, as indicated in 

Table 3.1. To ensure the selection of high-quality studies, we applied the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) method, following the approach 

outlined by Faust et al., (2022). The PRISMA flow diagram, presented in Figure 3.1, illustrates 

the process of filtering and selecting articles. During the screening process, we excluded 

duplicate entries, review articles, conference papers, non-English publications, and submissions 

lacking appropriate findings related to automated SA detection. Through this rigorous selection 

process, a total of 65 papers were excluded, resulting in a final selection of 113 unique research 

publications for further analysis. 
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Table 3.1 Boolean search strings. 

Title AND (Full-Text and Metadata) Database No. of Studies 

“Apnea home” “Apnea home” Google Scholar 179 

 

Google Scholar:
Total: 179

Number of unique 
Records: 177

Number of reports 
assessed for 

eligibility: 170

Number of studies 
included in review: 

113

Id
e

n
ti

fi
ca

ti
o

n
S

cr
ee

n
in

g
In

cl
u

d
ed

Not in English: 1
Conference Paper: 1

Review \ paper: 4
Master research: 1

Total: 7
(Removed)

Duplicates: 2
(Removed)

Number of reports 
excluded:

Did not provide 
model accuracy

Results: 57
(Removed)

 

Figure 3.1 Flow chart of the PRISMA model for article selection. 

3.4 Results  

The article examines 113 studies on SA detection systems in the home setting and provides 

information on the signals used, detection methods employed, data handling, participant count, 

and detection performance. The choice of physiological signal used for SA detection 

significantly impacts the environmental footprint of the system, considering factors such as 

setup requirements, communication bandwidth, storage capacity, and processing power. 

Analysing the detection mechanism and participant count can help determine the technology 

readiness level of these systems. 

Table 6.1 presents a summary of the SA detection performance and detection methods used in 

the 113 studies analysed. While some studies achieved high detection performance as measured 

by the ACC score, it is important to note that these findings were specific to the "apnea home" 
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examination and may not represent a general pattern across all studies. Duplicate items, review 

articles, non-English publications, master's theses, and works unrelated to the criteria were 

excluded from the analysis. Additionally, some papers meeting the criteria were identified 

through their abstracts during the search process. The analysis reveals the variety of signals 

employed in the research, each serving a unique purpose. The signals used in the SA detection 

studies include PSG, SpO2, home respiratory polygraphy (HRP), home polygraphy (HPG), 

ECG, seismocardiography (SCG), PPG, polygraphy (PG), respiratory inductance 

plethysmography (RIP), audio, and HR. Figure 3.2 provides a visual representation of the 

signals used across the 113 analysed studies. For additional details on these SA detection 

studies, Table 6.1 in Appendix 10 can be referred to. Figure 3.3 shows the SA detection 

methods used in the research, with the percentages in the pie charts indicating the number of 

studies that reported each technique. 

 

Figure 3.2 PGS, HR, ECG, SpO2, and others are the signals used to detect SA. 

Among the 113 research articles analysed, PSG signals were the most explored method, with 78 

articles utilizing this signal. ECG signals were used in only three studies, while HR signals were 

used in eight studies. SpO2 was employed in just one study. Figure 3.2 presents a pie chart 

illustrating the distribution of signal usage in the research articles. In terms of additional signals, 

23 research articles utilized signals other than PSG, ECG, HR, and SpO2. ML and DL 

techniques were each applied in four studies. Among the 113 studies, sleep doctors were most 

frequently reported as the method for identifying SA, with 75 studies employing this approach. 

Figure 3.3 showcases a pie chart displaying the utilization of various SA detection methods. 

Regarding data management strategies, 48 studies did not report their data handling method, 

while 30 studies conducted their analysis offline, and 35 studies conducted it online. Figure 3.4 

provides an overview of the data management strategies used in the studies.  

78

1
3

8

23
PSG

HR

ECG

SpO2 

Others



Chapter 3 Environmental Benefits of Sleep Apnoea Detection in the Home Environment   

40 

 

 

Figure 3.3 SA detection method. 

 

Figure 3.4 Data handling method. 

Figure 3.5 presents the number of participants involved in the research, with a total of 101 

participants, including 12 who opted out. Figure 3.6 depicts the distribution of accuracy 

reported in the studies. It also highlights the characteristics of 53 studies that did not report their 

accuracy and 60 studies that did report their accuracy.  

 

Figure 3.5 Number of participants reported. 

 

Figure 3.6 SA detection performance stated. 

3.5 Discussion   

This study focuses on the environmental impact of SA detection and highlights the challenges 

associated with traditional diagnostic testing conducted in sleep labs. The setup and supervision 

of data collection in sleep labs require significant resources, including the presence of a 

professional sleep technologist throughout the night. Furthermore, the analysis of collected data 

by a sleep physician can be time-consuming, leading to delays in obtaining results. The need for 

patients to travel to sleep labs also contributes to environmental drawbacks, such as increased 

carbon emissions and resource scarcity. 

RM offers a promising solution to minimize travel and improve access to healthcare services. 

By employing RM for SA detection within the confines of one's home, automated detection 

becomes possible, thereby alleviating the requirement for physical travel while concurrently 

offering real-time monitoring. Advancements in technology, such as covert sensors, cloud 

computing, and increased internet connectivity, have greatly enhanced the monitoring and 
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management of human health (Dimitrievski et al., 2021). The IoT paradigm has revolutionized 

healthcare monitoring, with wearable technologies capable of tracking physical activity and 

heart rate. The widespread adoption of RM technology and increased internet connectivity 

further contribute to the expansion of RM in healthcare. 

During our review, we examined the application of AI models in computer-aided SA diagnosis, 

as well as the use of RM systems for SA detection in home settings. Figure 3.1 provides an 

overview of the research output in AI models, indicating a growing focus on automated SA 

detection. This suggests an active field with ongoing advancements in tools and techniques for 

AI-based SA detection. The integration of RM methods further enhances the positive 

environmental impact. However, we also observed a significant development in DL for SA 

detection, which introduces uncertainty regarding its environmental impact. DL models 

typically have higher computational complexity compared to traditional ML models, raising 

concerns about their environmental footprint (Faust et al., 2018). 

Our analysis of SA detection in the home setting revealed that PSG measurements are the 

primary source of objective data in most systems. However, this approach is not 

environmentally ideal due to the complex equipment and resources required for PSG signal 

measurements. For instance, the setup of measuring equipment often necessitates a nurse or 

sleep technologist to travel to the patient's home. In contrast, individual signals such as HR, 

ECG, and SpO2 are simpler to measure and require less setup than a complete PSG 

measurement. Among these individual signals, HR signal acquisition requires the least amount 

of setup, making it conducive to patient-led data acquisition. In this scenario, patients can install 

the sensor and ensure that the data is transmitted to a cloud server. The cloud server utilizes a 

DL model to automatically detect SA. Such a service would have minimal environmental 

impact since the communication infrastructure and cloud server facilities are shared and require 

very little additional energy. Considering environmental impact alongside moral considerations, 

technological feasibility, and financial expenses is crucial when evaluating SA detection 

systems. 

3.6 Conclusions  

The prevalence of SA is a significant economic and health concern, particularly in developed 

countries. To assess the environmental benefits of RM-based SA detection, the authors 

conducted a study examining SA detection systems in the home environment and evaluating the 

supporting technologies. The study emphasized the importance of physiological signals and 

their analysis in SA detection, with AI-based methods emerging as a promising technology. 

However, only a small number of studies 8 out of 113 utilized AI methods for SA identification, 

indicating the need for further advancement in this area. 
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The study highlighted the progress in SA detection and diagnosis assistance services using RM 

technology, which can be implemented without causing significant harm to the environment by 

leveraging existing infrastructure. While recognizing the important role of sleep labs in research 

and diagnosis of sleep disorders, the authors argued that RM enables early detection of SA with 

comparable or slightly increased resource utilization. As a result, the need for constructing new 

specialized sleep labs from an environmental perspective is reduced, as the existing 

infrastructure can be utilized, or the requirements significantly minimized. In summary, the 

integration of RM-based SA detection offers the potential for improved patient outcomes while 

minimizing the environmental impact associated with building new sleep labs.
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Chapter 4 Methodology 

4.1 Introduction and Background Integration 

The methodology chapter draws heavily from Faust et al.,'s (2021) manuscript on "Accurate 

detection of SA with long short-term memory network based on RR interval signals," 

implementing a similar approach in a clinical study. It details the use of advanced techniques, 

notably the LSTM network, for precise detection of SA, emphasizing meticulous data 

collection, preprocessing, and validation phases to demonstrate reliability and effectiveness. The 

clinical study mirrors Faust et al.'s methodology, employing bidirectional LSTM models and 

comprehensive performance evaluation metrics like Receiver Operating Characteristic (ROC) 

analysis to achieve promising SA detection results. Illustrated in Figure 4.1 is a customized 

system configuration, showcasing each processing step as a block with arrows indicating data 

flow. Additionally, the chapter addresses identified weaknesses and gaps, presenting a clear 

methodology that outlines the evolution of initial ideas into concrete objectives and goals, 

alongside a summary of data collection and preprocessing activities, elucidating the refinement 

of research objectives over time. The LSTM method discussed aligns with that applied in a 

clinical study involving 15 patients, detailed in Chapter 5, with a summary of study activities, 

locations, and participating NHS organizations provided in Table 4.6 for reference.   

 

Figure 4.1 Block diagram for training and validating the DL model. 

4.2 Collection and Preprocessing 

This section delineates the types of data acquired for this research project, serving as the 

foundation for answering research questions and achieving stated objectives. The study's 

methodology primarily entails collecting data from secondary sources such as books, articles, 

journals, and online references. It outlines the key components employed in constructing the 

system, including details about the sleep datasets for model training/testing and experimental 

outcomes achieved using the bidirectional LSTM model. While the model had an existing 
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foundation, minor adjustments were implemented for enhanced performance. The primary data 

source was the Apnoea-ECG Database, sourced from various sleep studies (Goldberger et al., 

2000; Penzel et al., 2000).  The subsequent sections delve deeper into specific processing steps 

and data, offering a comprehensive insight into the study's methodology. This enables readers to 

understand the study's approach in detail. 

4.2.1 RR Interval Data and Dataset Details  

An RR interval is characterized as the duration between two successive R peaks, as depicted in 

Figure 2.11. These R peaks, in turn, signify the maximum amplitude within a given QRS 

complex. The QRS complex is defined as the deflections in an ECG tracing that indicate the 

ventricular activity of the heart. In this research, we employed a dataset comprising 35 records, 

each identified by labels like a01 through a20, b01 through b05, and c01 through c10. In this 

naming convention, the structure is clear: a letter signifies a specific category, while a numeric 

identifier distinguishes individual instances within that category. For example, "a01" represents 

an instance in class A, with the identifier 01, while "b02" indicates an instance in class B, with 

the identifier 02. 

It's important to note that "a01" and "b02" serve as patient IDs. Therefore, in compliance with 

medical regulations, patient data must undergo anonymization processes. This ensures that 

sensitive patient information remains confidential and protected, adhering to strict privacy 

standards within the healthcare industry. This systematic approach aids in organizing and 

referencing data points efficiently during analysis and model training. Recording lengths 

slightly varied from just under 7 hours to 8 hours. The subjects, both men and women aged 27 

to 63, had weights spanning 53 kg to 135 kg, corresponding to BMI values of 20.3 to 42.1. 

Table 4.1 offers signal details for both 10-fold cross-validation and hold-out validation. For 

model training, the 35 annotated ECG recordings of apnoea signals were categorized into two 

sets: a 10-fold data set and a hold-out data set. The latter included five records (a11, a15, a17, 

b01, and c07), while the remaining records were part of the 10-fold data set. Figure 4.2 

exemplifies RR intervals within the first 1000 seconds of a01.  

Table 4.1 Displays beat counts and signal names for both 10-fold cross-validation and hold-out 

validation data from the Physionet Apnea-ECG Database. 

10-fold cross-validation 

No. beats=935462 

Hold-out-validation 

No. beats=169959 

Name Beats Name Beats Name Beats Name Beats 

a01 29639 a12 33829 b05 26937 a11 32953 

a02 34931 a13 39723 c01 27643 a15 33948 



Chapter 4 Methodology  

45 

 

Additionally, Figure 4.3 displays the Power Spectral Density (PSD) of RAW RR interval data 

showcased in Figure 4.2. These visuals and information comprehensively acquaint readers with 

the dataset, aiding in understanding its distinct characteristics for training and validation 

purposes.  

  

Figure 4.2 RAW RR interval data from record 

a01. 

Figure 4.3 PSD of the RAW RR interval 

data. 

4.2.2 Pre-Processing Steps  

During this phase, the necessary data underwent processing to extract essential features, which 

were then input into the training model. Preprocessing RR interval signals for the 10-fold and 

hold-out data sets involved a two-step procedure. First, low-pass and high-pass filtering 

techniques were applied. RR interval signals underwent high-pass filtering through detrending, 

eliminating low-frequency components and noise, thereby enhancing signal clarity and quality. 

The second step involved windowing, segmenting RR interval data into fixed-length windows. 

The following sections elaborate on and visually represent the steps involved in processing the 

datasets.  

10-fold cross-validation 

No. beats=935462 

Hold-out-validation 

No. beats=169959 

a03 33966 a14 28212 c02 32137 a17 36131 

a04 30902 a16 34948 c03 23758 b01 35081 

a05 28740 a18 29970 c04 28089 c07 31846 

a06 27199 a19 38738 c05 27957  

 

 

 

a07 37462 a20 34246 c06 28062 

a08 41102 b02 34877 c08 30360 

a09 31318 b03 28918 c09 31179 

a10 32263 b04 24379 c10 23978 
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4.2.2.1 Detrending and Low-Pass Filtering 

In this study, we employed a specialized filter introduced by Fisher et al., (2012), to process the 

RR interval signal. This filter utilizes a third-order Gaussian process of the Ornstein-Uhlenbeck 

type, operating directly on the RR interval data. The filter's application aims to augment signal 

quality by reducing noise and unwanted variations. Figure 4.4 visually presents the filtered 

rendition of the raw RR interval signal from Figure 4.2. The filtered signal, a result of the 

(Fisher et al., 2012) filter, showcases enhanced smoothness and diminished noise in comparison 

to the raw signal. 

 

Figure 4.4 Detrended and low pass filtered RR interval data. 

4.2.2.2 Windowing and Class Labelling  

To segment the data for the classification algorithm, we implemented a sliding window 

approach with a window size of 100 RR intervals. The choice of a window size of 100 RR 

intervals was made to effectively segment the data for the classification algorithm. The window 

moves incrementally by one RR interval at a time. Essentially, this windowing technique 

constructs individual data blocks comprising 100 RR intervals for each beat in the database. 

This strategy enhances temporal resolution, ensuring an ample amount of data for effective 

training and testing of the DL algorithm. Class labels for windows were determined using a set 

threshold. Windows were categorized as apnoea (positive) if a minimum of 25 RR intervals 

within the window were identified as apnoea. Conversely, windows with fewer than 25 apnoea-

identified RR intervals were labelled as non-apnoea (negative). Apnoea/non-apnoea annotations 

for individual RR intervals were sourced from the Apnoea-ECG Database. 

4.2.3 10-Fold Cross-Validation  

To ensure a robust evaluation of the DL model's performance, the study adopted a 10-fold 

cross-validation method. This choice aimed to minimize the impact of sample selection on 

overall results and provide a more comprehensive assessment of the model's efficacy by 

dividing the dataset into ten subsets for iterative training and testing. The labelled data was 

divided into ten folds, as depicted in Table 4.1. Among these, one-fold, Part 0, was designated 
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for network testing, while the remaining nine parts were used for training. This process iterated 

across all ten parts, enabling each part to function as a testing set once to evaluate the 

performance of the model. By adopting this strategy, every data point was involved in both 

training and testing sets, ensuring a more exhaustive evaluation. 

Table 4.2 Summary of studies on algorithmic SA detection based on RR interval signals from 

records in the apnoea-ECG database. 

 

The data configuration for the 10-fold cross-validation is depicted on the left side of Figure 

4.5’s flowchart. The right side of the flowchart showcases fold processing based on epochs. The 

model fitting strategy encompassed 40 epochs in total. During each epoch, the LSTM network 

underwent training on training data from each fold. Subsequently, the trained model was 

evaluated using corresponding testing data to gauge its performance. The primary metric for 

evaluating the model was the accuracy of the LSTM network's predictions. Upon completing all 

folds and assessing the LSTM network's performance for each, the "Select best model" block 

identified the optimum model based on prediction quality. This selection process involved 

considering accuracy to determine the K best models. 

Author Classifier Validation method No. features Acc. in % Sen. in % Spe. in % 

Mendez et al., 2007 K-NN Leave-One-Out 52 85.7 81.4 88.4 

Surrel et al., 2018 SVM 10-fold 88 88.4 73.3 87.6 

Bsoul et al., 2011 SVM Variable-folds 111 88.49 96.77 83.62 

Song et al., 2016 SVM+LR 10-fold 32 86.2 80.0 89.9 

Hassan, 2016 Adaboost 10-fold 18 87.33 81.99 90.72 

Janbakhshi & Shamsollahi 2018 Assemble Cross-validation 85 90.90 89.60 91.80 

De Chazal et al., 2003 LD/QD Many-fold 52 92.5 91.4 93.1 

Z. Dong et al., 2018 Threshold Single fold 6 90.10 88.29 90.50 

Wang et al., 2019 

Residual 

network 

10-fold 

Hold-out 

0 

94.39 93.04 94.95 

80.60 – – 

Proposed 

method 

LSTM 

10-fold 

Hold-out 

0 

99.80 

81.30 

99.85 

59.90 

99.73 

91.75 
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Figure 4.5 Flow chart for 10-fold cross-validation, where modelk  indicates the best LSTM 

model for fold k, similarly acck  is the best accuracy for fold k. 

4.2.3.1 Architecture and Bidirectional Model 

Figure 4.6, illustrates the functional layout of the LSTM method, offering insights into the 

LSTM cell's inner mechanisms and the RNN loop's unrolling. The LSTM cell employs 

mathematical functions like the hyperbolic tangent function Tanh(...) and sigmoid activation 

function σ(...) for computations.  

 

Figure 4.6  Structure of the LSTM memory cell. 

The LSTM structure includes key components like the cell state, representing long-term 

memory, and input and hidden states. Gates, including forget, input, and output gates, regulate 

information flow. These gates perform specific functions: the input gate determines which data 
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from the current input should be stored in the memory cell, highlighted in blue. The forget gate 

determines which data from the previous cell state should be retained or discarded, highlighted 

in orange, and the output gate determines which data from the memory cell should be passed to 

the next hidden state,  highlighted in green. 

In the testing phase, the trained LSTM model classifies a 100 RR interval block to determine 

SA presence. The model employs learned weights and biases from the training phase for this 

classification. The utilized architecture, as presented in Table 4.3 features a bidirectional LSTM 

model (Graves & Schmidhuber, 2005). In this architecture, the RR input sequence undergoes 

forward processing using one LSTM model (i.e. samples x0, ...., xn) and backward processing 

using another LSTM model (i.e. samples xn, ......, x0). The performance evaluation methods for 

the LSTM model will be discussed in the next section, shedding light on how accuracy and 

effectiveness were gauged.  

Table 4.3 Bidirectional LSTM architecture. 

Layer Type Output shape Number of parameters 

1 Input 100, 1 0 

2a LSTM (forward) 200, 400 161600 

2b LSTM (backward) 200, 400 161600 

3 Global 1D max pooling 400 0 

4 Fully connected Rectified Linear Unit (ReLU) 50 20050 

5 Dropout 50 0 

6 Fully connected (Sigmoid) 1 51 

The bidirectional LSTM model adopted in this study facilitates the capture of temporal 

dependencies in both preceding and subsequent timesteps, augmenting the model's contextual 

understanding, as illustrates in Figure 4.7. In the network, the outputs of the forward and 

backward LSTM models are combined through concatenation, forming a consolidated 

representation of the input data. This concatenated output is then subjected to one-dimensional 

global max pooling, providing a concise representation. To address overfitting and enhance 

generalization, recurrent dropout with a probability of 0.1 is applied to both LSTM cell inputs 

and hidden states. Additionally, standard dropout with the same probability is implemented 

between the final fully connected layer and the output layer. These dropout techniques serve as 

regularization mechanisms, preventing the model from relying too heavily on specific features 

or memorizing the training data (Semeniuta et al., 2016). Placing dropout after every hidden 

layer might excessively constrain the network's learning capacity, leading to diminished 

performance or slow convergence. It's typically more effective to carefully select specific layers 
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or portions of the network where dropout is applied, based on the complexity of the problem 

and the available data. 

 

Figure 4.7  Bidirectional LSTM architecture used for SA classification. 

In establishing connectivity between the "one" and "another" LSTM model, it is inferred that 

two distinct LSTM networks have employed one dedicated to processing the input sequence in 

the forward direction and the other in the backward direction. These bidirectional LSTMs 

collectively operate to capture information from both temporal directions, enhancing the 

model's ability to comprehend sequential dependencies. The decision to omit dropout layers 

following each hidden layer is posited as a strategic measure to mitigate excessive 

regularization. The deliberate exclusion of dropout layers at each intermediate stage aims to 

circumvent potential information loss, especially in the context of deep neural networks, where 

such layers could impede the model's capacity to discern intricate patterns and representations 

from the dataset. Consequently, the adopted methodology, involving judicious application of 

dropout after the LSTM cells and preceding the output layer, is deemed instrumental in striking 

an optimal balance between regularization and efficacious learning. 

4.2.3.2 Training Strategy and Optimization 

During model training, an Adam optimizer with a learning rate of 1e-3 is employed. The choice 

of the Adam optimizer with a learning rate of 1e-3 is justified for its adaptive optimization 
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capabilities. The Adam optimizer adjusts learning rates individually for each parameter, 

ensuring efficient updates during model training. This adaptability is particularly beneficial for 

handling varying gradients and achieving convergence effectively. The selected learning rate of 

1e-3 strikes a balance between the need for accuracy  in parameter updates and preventing 

convergence issues. It allows for a moderate adjustment at each iteration, avoiding overshooting 

or slow convergence. In terms of the batch size, 1024 is chosen to optimize graphics processing 

unit (GPU) memory utilization and training speed. While larger batch sizes can potentially 

expedite training, they may also demand more memory resources. The chosen batch size 

represents a practical compromise, ensuring efficient use of available resources without 

compromising training performance (Kingma & Ba, 2015). The models are developed and 

implemented using the Keras and TensorFlow frameworks. Keras offers a high-level API for 

network construction and training, while TensorFlow acts as the underlying computational 

framework, efficiently executing on GPUs and other hardware devices (Abadi et al., 2016).  

4.2.4 Hold-out Testing and Optimization  

In the validation phase, the optimal models from each fold are assessed using the hold-out data. 

This evaluation comprises consolidating predictions from each model, with their weights 

determined by their relative prediction accuracy. The weight factor for each model is calculated 

by multiplying its accuracy (acck) with the total number of model accuracies (accAcc). This 

multiplication captures the collective accuracy of all models and establishes the weight of each 

model in the aggregation process. 

𝑎𝑐𝑐𝐴𝑐𝑐 = ∑ 𝑎𝑐𝑐k

𝑘−1

𝑘=0

 4.1 

Equation 4.1 calculates the cumulative accuracy across all folds, with K denoting the total 

number of folds. The best model parameters garnered from these folds are utilized to compute 

the inference value. The weighted prediction outcome is derived by dividing the model's 

accuracy (acck) by the sum of all accuracies (accAcc). 

𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ∑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐻𝑜𝑙𝑑 𝑜𝑢𝑡 𝑑𝑎𝑡𝑎, 𝑚𝑜𝑑𝑒𝑙k) × 𝑎𝑐𝑐k

𝑎𝑐𝑐𝐴𝑐𝑐

𝑘−1

𝑘=0

 4.2 

The function predict(data, model) employs the LSTM algorithm to make estimations for 

specific data using the model parameters. During hold-out validation testing, the inference 

outcomes are juxtaposed with the labels of the data blocks. The subsequent section delves into a 

discussion of these comparison results. 
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4.2.5 Performance Evaluation 

In the evaluation of performance measures, this study employs both the confusion matrix and 

the ROC curve. The confusion matrix, also known as an error matrix, provides a tabular 

representation commonly used to assess the performance of a classification model when tested 

against a dataset with known true values. Simultaneously, the ROC Curve serves as a graphical 

representation that effectively summarizes the classifier's performance across a range of 

thresholds. This curve is created by plotting the true positive rate (TPR) against the false 

positive rate (FPR), on the y-axis and x-axis, respectively, while considering different 

thresholds for class assignment. It is noteworthy that the ROC curve is a widely recognized 

methodology for evaluating the diagnostic accuracy of tests in modern medicine. Its utility 

extends to demonstrating how effectively a diagnostic model can distinguish between the 

presence and absence of a disease, making it particularly adept at handling datasets with 

imbalances in class distribution.  

This section showcases the outcomes of the proposed SA detection method, encompassing the 

findings from both hold-out and 10-fold cross-validation tests. Each test is accompanied by a 

confusion matrix that illustrates the counts of correctly identified normal RR intervals (TN), 

wrongly identified apnoea intervals (FP), wrongly identified normal intervals (FN), and 

accurately identified apnoea intervals (TP). These matrices offer a comprehensive overview of 

the classifier's performance. The classifiers' performance metrics are evaluated through 

accuracy, sensitivity, and specificity. Accuracy gauges the classifier's capacity to accurately 

differentiate between apnoea and normal events. It is calculated by dividing the number of 

correct predictions by the total number of predictions. To align the outcomes with true labels, a 

threshold of 0.5 determined by ROC analysis is employed. The evaluation of the proposed 

classification model involved an assessment of their performance. Table 4.3 provides a 

summary of the model parameters. The structure of the confusion matrix is as follows: 

• True Negative (TN): Count of correctly identified normal intervals. 

• False Positive (FP): Count of incorrectly identified apnoea intervals. 

• False Negative (FN): Count of incorrectly identified normal intervals. 

• True Positive (TP): Count of correctly identified apnoea intervals.                    

                                                                C = |
𝑇𝑁  𝐹𝑃
𝐹𝑁  𝑇𝑃

|    4.3   

Typically, C is used to represent this confusion matrix to assess the performance of a model in 

terms of its true and false classifications. The assessment of performance involved measuring 

the following metrics to evaluate and analyse the effectiveness of the system: 

Accuracy = (TP + TN)/(TP + TN + FP + FN) 4.4   
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                                    Sensitivity = TP/(TP + FN) 4.5 

                                    Specificity = TN/(TN + FP) 4.6 

In summary, the proposed SA detection method underwent evaluation using sensitivity and 

specificity metrics across various threshold levels. Sensitivity, representing the TPR, and 

specificity, representing the FPR, were computed to gauge the classifier's performance. The 

threshold value plays a crucial role in distinguishing between positive and negative outcomes. 

4.2.6 Outcome Visualization 

To analyse the outcomes comprehensively, we plotted the TPR against the FPR using a ROC 

curve. The visualization of the confusion matrix derived from the 10-fold cross-validation, as 

detailed in Section 4.2.3, is illustrated in Figure 4.8. The close agreement between the predicted 

and actual labels is evident, with a minimal number of false classifications observed. The 

chosen operating point maximizes the separation between the ROC curve and the dashed red 

line (Luck). This operating point corresponds to a threshold of 0.5, which is pivotal in 

determining the entries of the confusion matrix. Therefore, the closer the ROC curve is to the 

upper left corner, the higher the overall accuracy of the test. With an Area Under Curve (AUC) 

of 1.00, the results are nearly perfect, indicating that the 1856 misclassifications reported in the 

confusion matrix hold little statistical significance. Figure 4.9 provides a visual representation 

of this result. 

 

Figure 4.8 Confusion matrix for 10-fold cross-

validation. 

 

Figure 4.9  ROC for the 10-fold cross-

validation test. 

The depicted results in these figures were obtained by applying the model to validation sets and 

combining outcomes from all 10 folds. Table 4.4 displays the average performance across all 10 

folds. 
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Table 4.4 The overall performance results of the LSTM model across the 10-fold cross-

validation. 

TN FP FN TP Accuracy Sensitivity Specificity AUC 

551488 1041 518 379148 99.80% 99.85% 99.73% 1.00 

The outcomes of the hold-out validation approach are depicted in Figure 4.10 and Figure 4.11. 

Figure 4.10 showcases the accuracy of the test set plotted against the number of epochs, while 

Figure 4.11 visualizes the model's loss as it varies with the number of epochs. These graphs 

illustrate the LSTM algorithm's consistent and stable performance across folds, with minimal 

observable variance within the shaded regions.  

 

Figure 4.10  Shows mean accuracy over 40 

training epochs (solid red line) for 10 folds, 

with shaded area indicating variance. 

Figure 4.11 Illustrates mean validation loss 

over 40 epochs, with the solid red line 

denoting the average and shaded area 

indicating variance. 

After identifying the top 10 LSTM models via 10-fold cross-validation, a hold-out validation 

procedure was executed, following the methodology outlined in Section 4.2.4. The resulting 

confusion matrix for the hold-out validation is presented in Figure 4.12, and the classification 

performance was assessed using the provided metrics. This figure illustrates the evaluation of 

the SA model for binary classifications. Data points represent the number of heartbeats detected 

for each class. The diagonal indicates the correctly identified TN’s and TP’s. However, the 

cross-diagonal refers to the FP’s and FN’s. The performance values obtained from the hold-out 

validation are shown in the last row of Figure 4.12. Additionally, Figure 4.13 presents the 

corresponding ROC curve, providing further insights into the classifier's performance. 
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Figure 4.12 Hold-out confusion matrix. Figure 4.13 ROC for Hold-Out validation. 

The outcomes reveal that the suggested LSTM classifier achieves an overall accuracy of 81.30% 

on a set of entirely new subjects, correctly identifying  59.90% of normal heart rate HR 

sequences and accurately classifying 91.75% of HR sequences indicating signs of SA. The 

outcomes from this holdout test set are presented in Table 4.5. 

Table 4.5 The overall performance results of the LSTM model across the Hold-Out cross-

validation. 

TN FP FN TP Accuracy Sensitivity Specificity AUC 

104434 22313 9385 33332 81.30% 91.75% 59.90% 0.8532 

In the ROC curve plot, the DL classifier attains an AUC of 0.85%. This indicates that the 

classifier effectively distinguishes between the presence and absence of SA episodes. The 

classifier's threshold values range between 0 and 1, where 0 represents TN values and 1.0 

corresponds to TP. A ROC curve approaching 1 signifies a higher overall diagnostic accuracy, 

emphasizing the trade-off between TPR and FPR.  

4.3 Setup and Validation of Sleep Apnoea Detection: Methodological 

Framework 

This section outlined the clinical study conducted in collaboration with Sheffield Children's 

NHS Foundation Trust involved various methodological steps outlined in Table 4.6. These 

included recruiting patients, obtaining consent, setting up patient accounts on the Patient Status 

Engine (PSE) for data handling, providing PSG equipment and Lifetouch sensors from Isansys, 

conducting PSG tests, capturing heart rate using Lifetouch sensors, conducting participant 

interviews, and performing two-stage data analysis. The study's validation phase compared 

analysis outcomes, ensuring the accuracy and reliability of the methodology in detecting SA. 
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Table 4.6 Participating NHS organisation information. 

Collaborating NHS Organization Location 

Sheffield Children's NHS Foundation Trust Sheffield Children’s NHS Foundation Trust 

Study Activity 

1. Recruiting patients 

2. Obtaining consent from patients 

3. Setting up an account for each participant on the PSE from Isansys, used for data handling 

4. Providing patients with PSG equipment and Lifetouch sensors from Isansys 

5. Using Lifetouch sensors to capture heart rate 

6. Conducting the PSG test 

7. Conducting interviews with participants using a questionnaire 

8. Two-stage data analysis: Stage-1 involves analysing PSG measurements by an experienced cardiologist. In 

Stage-2, heart rate recordings are analysed using DL systems developed by researchers from Sheffield 

Hallam University 

9. Validation phase: Comparing analysis outcomes 

 

Figure 4.14, shows a timeline of the proposed validation study of the SA monitoring service. 

The timeline unfolded as follows: 

1-  Sign up. Patients registered at the sleep centre or sleep clinic. 

2- Sensor placement. An Isansys Lifetouch sensor was connected to the subjects’ body as 

depicted in Figure 5.1.  

3- Physiological signal acquisition. The embedded Lifetouch sensor constantly measured the 

heart rate while the subject slept in the sleep lab. The signal was communicated via low power 

Bluetooth to a tablet computer at the bedside. That tablet computer relayed the data to a cloud 

application known as the patient status engine.  

In addition to the Isansys measurement setup, the patient also wore the `normal’ PSG 

measurement harness. This allowed us to measure both PSG and heart rate signals.   

4- Sensor returns. After wearing the Lifetouch and PSG sensors for one night, the sensors were 

returned to a technical staff member.  

5- Data upload. The PSG data was handled like for a normal sleep study. The data from the 

Isansys sensor was checked.  
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6- AI based SA detection. The heart rate data was fed to a DL algorithm which analysed the 

signal. The result of this analysis was an estimated SA probability over time.  

7- Data analysis. An experienced human expert analysed the PSG recordings. The analysis 

results indicated time and duration of SA. These results were treated as the ground truth when it 

came to validating the SA detection algorithm. The validation was done by comparing the 

results from the human expert with the machine results. 
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Figure 4.14 A timeline for SA monitoring service validation.
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4.4 Patient Gateway  

The Isansys Lifetouch system incorporates the Patient Gateway and the Isansys app to ensure 

efficient and secure access to the recorded data. Acting as a bridge between the Lifetouch sensor 

and electronic medical records, the Patient Gateway facilitates seamless integration and data 

exchange. This integration enables the incorporation of collected data into the patient's medical 

records, contributing to comprehensive healthcare management. For data access, the Lifetouch 

sensor pairs with an Android tablet via the Isansys app. This pairing process involves scanning a 

QR code on the sensor, establishing a secure Bluetooth connection. The tablet then wirelessly 

receives the sensor's data, which can be viewed through the Patient Gateway interface. This 

user-friendly approach enables healthcare professionals to conveniently access and analyse RR 

interval signals and other vital signs data. 

Figure 4.15 visually represents the comprehensive PSE setup for continuous monitoring, 

emphasizing the connection process between the Lifetouch sensor, Patient Gateway, and the 

Android tablet. This visualization highlights the seamless data flow and underscores the secure 

transmission within the Isansys Lifetouch system. The integration of the Patient Gateway and 

Isansys app empowers healthcare professionals with real-time vital signs data. This capability 

enables close patient monitoring, informed decision-making, and rapid response to any changes 

in condition. The collaborative system optimizes patient care efficiency, contributing to 

improved diagnosis, treatment, and overall patient outcomes.
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Figure 4.15 Patient gateway.10

 

10 https://www.isansys.com/en/Patient-Status-Engine 



Chapter 5 Detection of Obstructive Sleep Apnoea in Clinical Settings 

61 

 

Chapter 5 Detection of Obstructive Sleep Apnoea in Clinical Settings 

Chapter 5 serves as a proof of concept for a novel method to detect OSA by integrating DL and 

IoT technologies. Conducted at Sheffield Children's Hospital NHS Foundation Trust between 

October 2022 and February 2023. The chapter summarizes the study's objectives, challenges in 

pediatric OSA diagnosis, materials and methods, pricing details, research design, participant 

recruitment, screening, statistical analysis, patient and public involvement, ethical 

considerations, study procedures, and safety assessments. 

5.1 Overview of the clinical study 

Between October 2022 and February 2023, a proof of principle study was conducted at 

Sheffield Children's Hospital NHS Foundation Trust to explore the feasibility of detecting OSA 

using wearable technology and DL. The study aimed to achieve three key objectives: 

1. Patient and Public Involvement and Engagement (PPIE): Collect feedback from patients 

to gain insights into their experiences and perspectives. 

2. Wearable sensor usability: Assess the usability of the wearable sensor used for data 

collection. 

3. Accuracy evaluation: Evaluate the OSA detection accuracy of the developed DL 

algorithm by comparing its predictions with expert evaluations. 

We developed a DL algorithm for OSA detection in RR interval signals. To evaluate its 

performance, we conducted a clinical study with 15 OSA patients. Simultaneously, patients 

underwent standard PSG monitoring, serving as a benchmark. This parallel approach ensured a 

robust evaluation of the DL algorithm's accuracy in OSA detection. 

5.2 The Problem  

Pediatric OSA, impacting 5% of children with airway obstruction and premature infants with 

central OSA, requires investigation into its prevalence, risk factors, and health effects. Current 

diagnostics like PSG pose challenges due to cost and reliance on specialized centres (Orr et al., 

2017; Stokowski, 2005). There's a need for a user-friendly, accurate, and affordable home-based 

technology to detect apnoea events, addressing high demand and long wait times. Our research 

aims to enhance early detection, empower healthcare providers, and improve management of 

pediatric OSA to reduce negative outcomes. 

5.3 Study Aims and Objectives 

This study explores integrating the Isansys Lifetouch sensor with a DL algorithm to manage 

pediatric OSA. It aims to assess the usability and accuracy of this technology compared to the 

gold-standard PSG for detecting OSA symptoms in 15 pediatric patients. The main goal is to 

develop a DL algorithm that uses the Isansys Lifetouch sensor to measure RR intervals for 
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automated pediatric OSA detection. Data collected from the sensor is transmitted to a cloud 

server for real-time DL analysis to achieve efficient OSA diagnosis. The algorithm's accuracy, 

sensitivity, and specificity were validated against PSG through a clinical trial at Sheffield 

Children's Hospital NHS Foundation Trust. Additionally, the study evaluated the comfort and 

acceptability of the Lifetouch sensor among participants, with parental feedback assessing 

attachment ease and sensor acceptability for at-home monitoring. Clinical supervision by 

healthcare experts ensured accurate data collection and successful study implementation. 

5.4 Materials and Methods 

This section provides a comprehensive overview of the investigation procedures, including data 

collection, analysis, and study design. It aims to provide a detailed explanation of the practical 

components involved in the study. The following subsections will outline the key aspects of the 

research methodology. 

5.4.1 Lifetouch Sensor 

The Isansys Lifetouch sensor, customized for our pediatric OSA study, is a validated biosensor 

with extensive patient data in acute care settings. Developed collaboratively, it emphasizes ease 

of use, reliability, and integration into nursing workflows. Available in various sizes for 

newborns, infants, and children, this real-time monitoring device ensures uninterrupted 

monitoring during daily activities. Its continuous monitoring capability enables extensive data 

collection, providing crucial insights for OSA detection. Equipped with advanced signal 

processing, it enables real-time analysis, reducing the need for extensive post-processing. The 

sensor's accuracy in acquiring and analysing RR interval signals makes it valuable for 

investigating pediatric OSA. Its wireless design and wearability ensure comfort for pediatric 

patients. The experimental setup, illustrated in Figure 5.1, depicts a child with the Lifetouch 

sensor and signals on a tablet screen. 

 

Figure 5.1 The Lifetouch sensor is used in conjunction with a tablet that runs the PSE 

software.11 

 

11 https://www.isansys.com/en/connectivity. 
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5.4.2 Pricing Details for Lifetouch Sensor Equipment and Services 

The pricing specifics for the Lifetouch sensor equipment are outlined in Table 5.1, reflecting the 

standard pricing offered by the manufacturer. The Lifetouch service is priced at around £25 per 

day per patient. It's noteworthy that this cost covers not only the sensor itself but also includes 

the utilization of the PSE Gateway and the Lifeguard Server. This comprehensive package 

encompasses server infrastructure, security provisions, and connectivity, all calculated on a per 

patient per day basis. 

Table 5.1 Lifetouch equipment cost. 

Item Sizes Unit cost Maximum duration of use 

Isansys Lifetouch 

Medium (175 x 47) £25 

3 to 5 days Small     (140 x 47) £25 

Neonate (70 x 57) £25 

5.4.3 Research Design and Data Collection 

The study was conducted at the sleep house of Sheffield Children's NHS Foundation Trust in 

Sheffield, UK. This facility specializes in diagnosing sleep disorders and provides an ideal 

environment for collecting and analysing data for pediatric OSA detection using the Isansys 

Lifetouch sensor and the developed DL algorithm. The sleep house is fully equipped with 

advanced tools and resources necessary for conducting comprehensive sleep studies and 

monitoring various physiological parameters during sleep. A team of highly skilled healthcare 

professionals, including consultants, physiologists, technicians, nurses, research officers, project 

managers, and students, all with specialized training in sleep medicine and vast experience 

working with children, operate within the sleep house. 

5.4.4 Sampling 

Patients referred to the sleep house at Sheffield Children's Hospital NHS Foundation Trust for 

suspected OSA were invited to participate in the study. Selection criteria were established in 

Section 5.5.4 to ensure participants met specific age and suspected OSA requirements. The 

study aimed to enrol 15 to 20 participants, with 15 meeting the criteria and providing informed 

consent. Participant recruitment was determined by feasibility and eligible patient availability 

during the study period. 

5.4.5 Participant Recruitment   

At Sheffield Children's Hospital, a trained team engaged parents or guardians using Good 

Clinical Practice (GCP) principles for participant recruitment. They provided comprehensive 

information and consent forms, allowing ample time for review and questions. Consent was 

obtained through online meetings or phone calls, ensuring swift issue resolution. Written 
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consent, with assent from children when applicable, was prioritized to ensure understanding of 

the study's goals and processes. The process adhered to ethical guidelines, with transparency 

and collaboration encouraged through scheduled meetings. Utilizing the latest approved consent 

form Appendix 5 ensured accuracy, with signatures and dates documenting consent for 

transparency and accountability. 

5.5 Participant Screening 

The trial, including the six-month follow-up and exit, successfully concluded by March 2023, 

meeting the study timeline. Sleep onset and end times from PSG reports were used for data 

analysis, excluding non-sleep periods to align with study objectives. Of the 15 participants 

following the screening protocol, the average recording time was 7.0 hours, representing the 

duration of sleep monitoring and data collection per participant. Figure 5.2 visually summarizes 

participant flow, illustrating numbers at key study stages: screening, enrolment, follow-up, and 

exit, offering a concise overview of participant progression. 

 

Figure 5.2 Trial screening, enrolment 

5.5.1 Subject Characteristics 

The study encompassed 15 eligible OSA patients, with a mix of 5 females and 10 males. The 

participants represented various ethnicities including White-British, Mixed White and black 

Caribbean, and Black African or Black British. Their ages ranged from 6 months to 16 years, 

with 50% aged over 5 years. Table 5.2 concisely summarizes patient characteristics, offering an 

overview of participants' gender, ethnicity, and age distribution.
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Table 5.2 Participant information 

Research ID QR Code Gender Age Weight 

Ethnicity Time in bed 

Total Sleep (per hour in bed) 

White British Black -Africa Start time End time 

LT001 B1208 F 5.10 Unknown White British - 20.16 06.57 6.57 

LT002 B1423 M 2.6 Unknown Unknown - 20.10 07.55 7.55 

LT003 B1247 M 9.8 Unknown Unknown - 20.01   07.32 7.32 

LT004 B1424 M 2.7 Unknown Unknown - 19.59  06.32 8.39 

LT005 B1425 M 2.5 Unknown White British - 19.20  06.47 9.19 

LT006 B1381 M 11.11 Unknown Unknown - 20.02  05.53 6.56 

LT007 B5687 F 1.11 Unknown Mixed White and black Caribbean - 20.33  06.40 4.57 

LT008 B1380 M 3.9 Unknown Black African or Black British - 20.31  05.32 5.37 

LT009 B1427 M 2.1 Unknown White British - 19.25  06.55 8.52 

LT010 B1445 M 2.7 Unknown Unknown - 19.56  04.53 4.04 

LT011 B1419 F 3.8 Unknown Any other mixed background - 20.59  05.39 6.14 

LT012 B1422 F 13.5 Unknown White British - 21.01  06.48 7.22 
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Research ID QR Code Gender Age Weight 

Ethnicity Time in bed 

Total Sleep (per hour in bed) 

White British Black -Africa Start time End time 

LT013 B1451 M 8.6 Unknown White British - 20.19  06.50 9.27 

LT014 B1454 F 1.4 Unknown Any other mixed background - 19.09 06.49 9.31 

LT015 B1426 M 9.1 Unknown White British - 20.08 06.15 8.16  
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5.5.2 Statistical Analysis 

Following the completion of the sleep study, a qualified clinical physiologist analysed recorded 

signals using established clinical methods aligned with the AASM's guidelines for diagnosing 

OSA. The analysis included assessing occurrences of central and obstructive apnoeas, 

calculating the AHI, and determining the longest central apnoea episode duration, shedding 

light on the severity and characteristics of OSA episodes. Simultaneously, an AI-based OSA 

detection algorithm processed heart rate data from the Isansys Lifetouch sensor, generating a 

diagnostic outcome based on heart rate patterns. Unaware of the clinical team's results, the 

research team used this analysis to estimate the probability of OSA over time for each 

participant.  

5.5.3 Patient and Public Involvement and Engagement for Pediatric Obstructive Sleep 

Apnoea Monitoring 

The thesis incorporates a PPIE initiative focusing on real-time pediatric OSA detection and 

monitoring. This initiative gathered parental perspectives on the necessity and desirability of 

such a monitoring device for children under the care of the Respiratory team at Sheffield 

Children's Hospital. Interviews were conducted via telephone with eight parents representing 

children aged 1 to 13 years from various regions. Each participating parent received a £20 gift 

voucher. The interview prompt sheet is available in Appendix 7. Parental insights emphasized 

the importance of continuous monitoring for accurate OSA diagnosis and expressed enthusiasm 

for remote data access, potentially eliminating overnight stays at sleep facilities. Parents valued 

features such as lightweight comfort, ease of use, and inconspicuous design, while also 

expressing concerns about potential data overload and the need for robust data security.  

5.5.4 Participant Eligibility Criteria 

Table 5.3 Outline who can join the study, considering factors like age, language proficiency, 

and medical conditions, while excluding certain situations, such as allergies. 

Table 5.3 Inclusion and exclusion criteria applied in this study. 

Inclusion Criteria Exclusion Criteria 

• Patients referred to a sleep clinic due to 

suspected OSA 

• Individuals with communication challenges or non-

English-speaking parents/legal guardians/carers 

• Age range of 6 months to 16 years 
• Known allergy to dressings with adhesives 

• Proficient in understanding spoken and 

written English 

• Children anticipated to experience anxiety due to an 

additional sensor 

• Capable of providing informed consent 
• Clinically deemed too unwell to participate by clinical 

staff 
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5.5.5 System Specifications 

The Lifetouch device, customized for this study, prioritizes lightweight and comfortable 

wearability, particularly during sleep. It integrates a tablet as the Patient Gateway for 

monitoring, enhancing factors like battery life and portability. Bluetooth technology enables 

seamless communication, eliminating restrictive cables. Weighing less than 20 grams, it ensures 

minimal discomfort or sleep disruption, aiming for a user-friendly solution for sleep studies and 

OSA detection. 

5.5.6 Trial Management 

The trial at Sheffield Children's Hospital NHS Foundation Trust involved a collaboration 

between Sheffield Hallam University and the hospital. Dr Oliver Faust and Dr Ningrong Lei 

from Sheffield Hallam University served as co-investigators, while Professor Heather Elphick 

led the trial as the chief investigator. Statistical analysis at the sleep house was supervised by Dr 

Ruth Kingshott, working alongside Professor Heather Elphick. This diverse team of researchers, 

clinicians, and statisticians aimed to advance understanding and management of pediatric OSA, 

ultimately aiming to improve patient outcomes through collaborative efforts. 

5.5.7 Safety Assessments 

The study at Sheffield Children's NHS Foundation Trust adhered to monitoring Standard 

Operating Procedures (SOPs) established by the Directorate of Research & Innovation. These 

SOPs ensure regulatory compliance and ethical guidelines are met. Regular monitoring and 

audits by the Sponsor, Health Research Authority (HRA), and Research Ethics Committee 

(REC) ensure the study's rigorous and ethical conduct, proper documentation, and adherence to 

approved protocols. 

5.6 Ethical and Privacy Consideration 

Upholding ethical standards was central to this study. Informed consent was obtained from all 

participants, and data handling followed strict privacy protocols to safeguard sensitive health 

information. 

Inclusion Criteria Exclusion Criteria 

 • Presence of clinical issues, such as skin conditions, in 

the device placement area 

 • Illiterate or unable to speak English and provide 

informed consent 
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5.6.1 Ethical Approval 

The research strategy was collaboratively developed by the researcher and their supervisor. 

Ethical review resulted in approval from the HRA and Health and Care Research Wales 

(HCRW) on January 6, 2022 (approval reference number: 21/SC/0366). HRA and HCRW 

approval indicates ethical acceptability, considering participant rights, safety, and well-being. 

Ethical considerations encompass participant recruitment, informed consent, data 

confidentiality, and potential risks and benefits. Appendix 2 contains the approved ethical 

documentation, detailing the protocols to be followed throughout the study.  

5.6.2 Informed Consent 

Trained study team members, who had prior experience and knowledge in GCP, obtained 

informed consent from participants. An invitation letter provided potential participants with 

comprehensive information about the study's objectives, procedures, and risks. It emphasized 

voluntary participation and the right to withdraw without consequences. Contact details for the 

study team were included for clarification. The invitation letter ensured participants were well-

informed and empowered them to make informed decisions. Appendix 1 contained the 

invitation letter for further information on the study's details and informed consent. 

5.6.3 Justification of Resources 

The Lifetouch sensors utilized in this study were provided free of charge by Isansys, enabling 

their incorporation into the research project without incurring extra expenses. Sheffield Hallam 

University supplied all other essential resources for the study, ensuring efficient and effective 

research conduct. 

5.7 Patient Information Sheets 

Patients participating in the study received informational sheets in person or via post. These 

sheets included parent information and age-specific materials tailored to different age groups: 

under 5, 6-10 years, and 11-16 years. The research team assessed each child and parent to 

determine if obtaining the child's assent was appropriate. Participants were given sufficient time 

to review the information without time constraints. Study details were thoroughly explained to 

ensure clear comprehension of the purpose and procedures, with patients encouraged to seek 

clarification or ask questions by contacting the research team. This approach aimed to ensure 

that both participants and parents had all the essential information needed to make an informed 

decision about participating in the study. 



Chapter 5 Detection of Obstructive Sleep Apnoea in Clinical Settings 

70 

 

5.8 Study Procedures  

The study adhered to rigorous protocols, encompassing participant recruitment, data collection, 

and analysis. Ethical considerations were paramount in ensuring a secure and confidential 

research environment. 

5.8.1 Interview with Health Care Professionals 

Participants were informed that their involvement in this study was entirely optional, allowing 

them to withdraw at any point, even during the interview or when faced with uncomfortable 

questions, without needing to provide a specific reason. The study recognized and respected 

potential concerns or discomfort. 

5.8.2 Questionnaire Content 

The study questionnaire consisted of two pages, each for different participants. The first page 

targeted children, aiming to capture their experience and comfort during the study, with parental 

assistance if needed. The second page contained questions for parents, providing insights into 

their perspective on their child's experience. Participants also answered three questions related 

to the Lifetouch sensor to assess comfort and overall experience, using a five-point attitude 

scale to rate their agreement with statements. Detailed information about the questionnaire's 

content is available in Appendix 4, outlining the specific questions and response options. 

5.8.3 Parent and Child Questionnaire 

Participants, including both the child and their parent if applicable, received a questionnaire to 

gather perspectives on the Lifetouch sensor's acceptability, ease of use, and suitability for home 

use. Seven questionnaires covered various aspects of the study, ensuring comprehension with 

simple language and a font size of 14 points for readability. Appendix 4, provides detailed 

information about the questionnaire, including specific questions and response options. 

5.8.4 Medical History 

Participants' medical histories were meticulously reviewed to create thorough records of their 

medical conditions and surgical procedures. These records encompassed data from diverse 

sources, including sleep studies, apnoea monitors, sleep and breathing histories, and other 

pertinent medical records. For further details regarding the specific data sources and their 

utilization in the study, please consult Appendix 9. This appendix offers additional insights into 

the data collection process and the various types of medical records that informed the analysis. 

5.8.5 Clinical Sleep Study Set-Up Procedure 

Families of participants aged 6 months to 16 years were contacted and invited to join the study. 

Upon receiving consent (and approval for legally adult patients), a cardiologist gathered the 
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patients' medical history through a clinical examination. Subsequently, patients underwent a 

clinical sleep study at the hospital using standard equipment known as SOMNOscreen plus, 

which includes various monitoring components. Each patient was assigned a unique ID for 

efficient organization, with a checklist available in Table 5.2, to aid in tracking and management 

throughout the study. 

5.8.6 Research Study Set-Up Procedure 

The research procedure involves positioning a tablet beside the patient's bed and attaching the 

Lifetouch sensor to the child's chest. In cases involving post-pubescent female patients, 

assistance may be required due to breast tissue. The researcher ensures successful acquisition of 

physiological signals before leaving the room. Clinical staff monitor the child closely 

throughout the night for signs of illness or discomfort, with the option to remove the Lifetouch 

sensor if necessary. If the sensor is misplaced or removed and cannot be reattached, the child's 

participation in the study will be terminated. In the morning, all clinical sensors, including the 

Lifetouch sensor, are removed, and families are interviewed for feedback on their experience. 

Data, including heart rate measurements and PSG recordings, are uploaded and analysed by 

technical staff. Heart rate data undergo processing using a DL algorithm to estimate OSA 

probability over time, while PSG recordings are evaluated by a qualified professional for further 

diagnosis. 

5.8.7 Conducting the Study at Sheffield Children’s Hospital NHS Foundation Trust 

On the first day of the study at Sheffield Children's Hospital, patients arrive at the designated 

time for an allergy test to ensure safety. Parents or guardians are briefed on the consent form, 

addressing any queries before signing to participate. Isansys equipment, including the Lifetouch 

sensor, is set up with clear usage instructions prioritizing comfort. Throughout the night, the 

study team monitors patients closely, addressing any concerns promptly. On the second day, 

equipment is collected, and parents or guardians complete a questionnaire about their child's 

sleep patterns, with the child also filling out a questionnaire if applicable. Before departure, a 

sign-out session clarifies any remaining questions, reinforcing understanding of the study 

procedures. Data collected is analysed and shared with healthcare providers for diagnosis and 

treatment decisions. For a detailed overview of study activities and locations, refer to Table 5.4. 

Table 5.4 Visit schedule. 

Day1 

Time (pm) Event 

18.00 Patient arrival 

18.30 Allergy test 
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Day1 

Time (pm) Event 

18.35 Explain the consent form 

18.45 Setting up the Isansys equipment 

19.00 Set up for Nocturnal Polysomnogram 

Day2 

Time (am) Event 

07.00 Take away the medical equipment 

07.30 Sign out the Parent and child questionnaire 

 

5.9 Results and discussion  

In the realm of global healthcare, OSA stands out as a significant concern, often slipping under 

the radar due to inherent diagnostic complexities. This thesis boldly ventures into the domain of 

real-time detection methods, introducing a cutting-edge OSA detection system fortified by 

advanced technologies such as AI and the IoT. In addition to our study, conducted at Sheffield 

Children's Hospital NHS Foundation Trust, it's worth noting that patients were concurrently 

monitored and diagnosed using standard methods. Our research involved a thorough evaluation 

of a DL algorithm's effectiveness on 15 patients with a history of OSA. The primary aim was to 

assess its accuracy in comparison to PSG monitoring, a widely recognized standard in sleep 

disorder diagnostics. Prior to commencement, rigorous enrolment procedures were 

implemented, encompassing the dissemination of comprehensive study materials and the 

procurement of informed consent from parents, orchestrated under the guidance of the chief 

investigator. Additional study details are provided in Appendix 1, offering a deeper 

understanding of our methodology and approach. 

5.9.1  Patient and Clinician Feedback 

The PPIE initiative provided a rich source of insights into the perceptions of both patients and 

clinicians regarding real-time OSA detection. Participants expressed a strong acceptance of the 

technology's potential to monitor OSA in home environments, highlighting its convenience and 

comfort. The positive feedback regarding the ease of wearing the sensor underscores its user-

friendly design, which is crucial for ensuring patient compliance and long-term usage. 

Moreover, the unanimous desire for continuous monitoring reflects a growing awareness of the 

importance of proactive healthcare management, indicating a shift towards personalized and 

preventive healthcare approaches. This feedback from stakeholders emphasizes the need for 
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patient-centered technologies and underscores the potential impact of wearable sensor 

technology on improving healthcare outcomes. 

5.9.2 Challenges in Pediatric OSA Detection and Model Adaptation 

Despite initial optimism surrounding the DL algorithm trained on adult data, its performance in 

detecting OSA in children fell short of expectations. This critical finding underscores the 

necessity for tailored models specifically designed for pediatric populations. While our system 

did not detect two cases of OSA that were diagnosed by sleep physicians, the study uncovered 

promising aspects regarding patient acceptance of Lifetouch wearables and the potential of DL 

algorithms for OSA detection. However, the limited identification of OSA cases among the 15 

patients emphasizes the urgent need for continuous refinement and advancement of detection 

methods to bridge existing diagnostic gaps. The study's exploration of limitations associated 

with OSA detection using HRV-based models shed light on significant challenges. The 

utilization of a window size of 100 HRV by the LSTM model proved insufficient for capturing 

the relatively short duration of apnoea/hypopnea episodes observed in the clinical study. 

Additionally, the distinct characteristics of pediatric apnoea/hypopnea events compared to those 

in adults underscored variations in the definition and presentation of OSA in pediatric 

populations. 

These insights underscore critical considerations for future research endeavors. Leveraging the 

full ECG signal instead of HRV may offer greater efficacy in detecting OSA, particularly in 

pediatric populations. Furthermore, the failure of the LSTM model to detect OSA highlights the 

necessity for tailored models trained specifically on pediatric data. While the study encountered 

challenges, it provides valuable insights into utilizing DL algorithms for OSA detection and the 

acceptance of wearable technologies among patients. However, the limited identification of 

OSA cases underscores the ongoing need for refinement and improvement of detection 

methods, emphasizing the complexity of accurately diagnosing SA. 

The methodology employed in the study involved meticulous data collection and analysis 

procedures, integrating advanced technology such as the Isansys Lifetouch sensor for capturing 

physiological data during sleep and enabling real-time DL analysis of RR interval signals. 

Additionally, the study integrated a PPIE initiative, which provided valuable parental 

perspectives on the necessity and desirability of real-time obstructive OSA monitoring devices 

for children. Participants emphasized the importance of continuous monitoring for accurate 

diagnosis and highlighted the potential benefits of remote monitoring in alleviating stress and 

anxiety for both children and parents. 
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Furthermore, the economic implications of integrating the Lifetouch sensor technology into 

clinical practice were carefully considered. Transparent pricing details outlined in Table 5.1 

facilitated a comprehensive understanding of the economic impact associated with this 

integration. Each patient's utilization of the Lifetouch service was priced at approximately £25 

per day, covering the sensor, the PSE Gateway, and the Lifeguard Server. This transparent 

pricing model ensured seamless integration of server infrastructure, security, and connectivity 

for remote patient monitoring. Moreover, the availability of Lifetouch equipment in varied 

sizes, all priced at £25 per unit, accommodated diverse patient needs and usage durations, 

ranging from 3 to 5 days. This pricing strategy prioritized accessibility and affordability while 

upholding quality and functionality standards, enabling stakeholders to make informed 

decisions regarding healthcare resource allocation. 

In addition to evaluating the accuracy of the DL algorithm, the study assessed the usability and 

comfort of the wearable sensor. Overall, the findings suggest that DL algorithms integrated with 

wearable sensor technology hold promise for improving the diagnosis and management of 

pediatric OSA. However, further research and refinement of these methods are warranted to 

enhance their accuracy and effectiveness in clinical practice. Furthermore, the study explored 

the broader implications of DL algorithms and wearable sensor technology beyond diagnostic 

accuracy. By providing continuous, real-time monitoring in home environments, these 

technologies offer a more accessible and convenient alternative to traditional diagnostic 

methods like PSG. Moreover, the integration of IoT-based solutions enables remote monitoring 

and data analysis, reducing the burden on healthcare facilities and improving patient outcomes. 

The collaborative effort between academic researchers and healthcare professionals ensured the 

successful implementation of the study, from participant recruitment to data analysis. Key 

personnel played essential roles in overseeing the study's execution and analysis, contributing to 

its reliability and validity. Future research could enhance accuracy by incorporating additional 

physiological parameters, and ongoing efforts are needed to refine and expand automated OSA 

detection systems. Overall, the study's findings serve as a foundation for enhancing the accuracy 

and practicality of automated OSA detection systems in pediatric settings. Future research and 

implementation hold promise for advancements in accuracy and applicability, paving the way 

for improved diagnosis and management of pediatric. 
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Chapter 6 Conclusion  

In this thesis, we conducted a comprehensive exploration into the detection and diagnosis of SA, 

recognizing its substantial global health impact affecting millions worldwide. By investigating SA's 

health implications, such as cardiovascular issues and daytime fatigue, we underscored the critical 

need for improved diagnostic methods. Through an in-depth examination of SA and its diagnostic 

challenges, we scrutinized the role of AI in healthcare, particularly its application in SA diagnosis. 

Motivated by the pressing demand for more accessible and precise diagnostic approaches, we 

identified the research problem and established clear aims and objectives to address this imperative. 

By formulating pertinent research questions, we guided our investigation towards meaningful insights, 

aiming to significantly contribute to the field by offering innovative approaches to tackle the 

diagnostic complexities of SA and thereby improve patient outcomes and healthcare practices. 

Our research focuses on leveraging cutting-edge computing and AI technologies to enhance SA 

detection, motivated by the limitations of traditional diagnostic approaches like PSG. We propose 

CAD systems that integrate IoT and advanced AI to improve accuracy and accessibility. Through 

innovative techniques such as real-time detection for OSA and the development of high-performance 

detection systems, we address the shortcomings of conventional methods. While our clinical study 

involving 15 patients revealed lower-than-anticipated identification rates, it highlighted the potential 

of these methods to provide quick, reliable, and standardized analyses. 

By evaluating IoT-based sensors, designing advanced data analytics techniques, and conducting 

comprehensive validation studies, our research significantly contributes to advancing SA diagnosis. 

The integration of IoT and AI technologies, particularly focusing on the Lifetouch sensor, promises to 

enhance diagnostic accuracy and management, aiming to transform diagnostic practices in sleep 

medicine. Collaboration between machine algorithms and human experts ensures safety, reliability, 

and efficiency in the clinical process, with ongoing research and optimization promising to further 

improve outcomes for individuals affected by SA worldwide. 

Moreover, our study employed advanced techniques, particularly a LSTM network, for accurate SA 

detection, showcasing promising results with robust validation and optimization strategies, manuscript 

titled "Accurate detection of SA with long short-term memory network based on RR interval signals" 

authored by Faust, et al., (2021). We outlined a proposed method for detecting SA using RR interval 

signals, a key component in assessing HRV. This approach involves preprocessing the signal, filtering 

it, and segmenting it into blocks for classification using an LSTM network. The collaborative effort 

between machine algorithms and human expertise enhances the reliability and efficiency of SA 

diagnosis and treatment monitoring, promising continued advancements in sleep medicine and 

improved outcomes for patients affected by SA. 
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6.1 Research Limitations 

While this thesis endeavours to provide innovative solutions for the detection and diagnosis of SA, 

there are several limitations that warrant acknowledgment.  

Firstly, the sample size used in the clinical study, consisting of 15 patients with a history of OSA, may 

not fully represent the diverse spectrum of SA cases. A larger and more varied sample size would 

enhance the generalizability of the findings and provide a more robust assessment of the proposed 

technology model's efficacy. Secondly, although the Lifetouch sensor was evaluated as a promising 

tool for SA detection, its performance may vary in different populations and clinical settings. Further 

validation studies across different demographic groups and under varied environmental conditions are 

necessary to ascertain its reliability and effectiveness. Moreover, the proposed method for SA 

detection using RR interval signals and the LSTM network is based on specific assumptions and 

parameters. Variations in signal quality, patient characteristics, and other factors may impact the 

performance of the algorithm, necessitating continuous refinement and optimization. 

Additionally, while the collaborative approach between machine algorithms and human experts holds 

promise for enhancing the reliability and efficiency of SA diagnosis, it also poses challenges in terms 

of implementation and integration into clinical practice. Addressing these challenges requires careful 

consideration of workflow dynamics, resource allocation, and training requirements. Furthermore, the 

focus on leveraging cutting-edge computing and AI technologies may inadvertently exclude certain 

populations with limited access to or familiarity with these advancements. Ensuring equitable access 

to diagnostic tools and interventions remains a crucial consideration in addressing the global burden 

of SA. Lastly, despite the efforts to streamline the clinical process and improve decision support, it's 

essential to recognize that SA diagnosis and treatment monitoring are multifaceted processes 

influenced by various factors beyond technological interventions. Factors such as patient compliance, 

socioeconomic status, and healthcare infrastructure play significant roles and should not be 

overlooked. 

In summary, while this thesis represents a significant advancement in the field of sleep medicine, it is 

important to acknowledge these limitations and recognize the ongoing need for further research, 

validation, and refinement to realize the full potential of the proposed technologies and methodologies 

in addressing the complexities of SA detection and management. 

6.2 Future Research 

The future research will focus on advancing the field of SA detection and diagnosis by exploring 

innovative methodologies to overcome current limitations and deepen our understanding of this 

pressing global health challenge.  
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The initial phase of the research will concentrate on investigating the potential utility of full ECG 

signals for SA detection. Recognizing the shortcomings of relying solely on RR interval signals, the 

study aims to assess the feasibility of integrating complete ECG waveforms to capture additional 

physiological data. This approach holds promise for enhancing the accuracy of SA diagnosis by 

providing a more holistic insight into cardiac activity during sleep. Another pivotal aspect of the 

research will involve characterizing paediatric SA patterns and refining diagnostic criteria tailored 

specifically to this demographic. Acknowledging the notable differences between paediatric and adult 

SA, particularly in terms of event duration and diagnostic thresholds, the study will meticulously 

scrutinize paediatric SA patterns. By fine-tuning diagnostic criteria, the research seeks to better 

accommodate the unique characteristics of paediatric SA, thereby improving diagnostic accuracy and 

enhancing patient care within this population. 

Methodologically, the research will entail the collection and analysis of extensive datasets comprising 

both adult and paediatric SA cases. Leveraging advanced signal processing techniques and machine 

learning algorithms, the study aims to extract relevant features from these datasets to accurately 

classify SA events. Additionally, a comprehensive literature review and meta-analysis will be 

conducted to identify gaps and inconsistencies in existing research on paediatric SA and diagnostic 

criteria. By synthesizing findings from various studies, the research aims to offer comprehensive 

insights into paediatric SA patterns and the diagnostic challenges encountered in clinical practice. 

The subsequent phase of the research will involve the evaluation of full ECG signals for SA detection, 

presenting findings on both the potential advantages and obstacles associated with this approach. 

Comparative analyses with established RR interval-based methods will be conducted to assess the 

efficacy of full ECG signals in enhancing diagnostic precision. Furthermore, the results of the 

literature review and meta-analysis will be discussed, shedding light on the unique features of 

paediatric SA and emphasizing the necessity for tailored diagnostic criteria. 

In conclusion, this future research thesis aims to make a significant contribution to the refinement of 

SA detection and diagnosis methodologies. By exploring the potential of full ECG signals and 

recalibrating diagnostic criteria for paediatric SA, the study endeavours to overcome existing 

challenges and facilitate the implementation of more precise and effective strategies for managing SA 

across diverse patient populations. Through meticulous data analysis and comprehensive literature 

review, the research seeks to advance our understanding of SA and ultimately enhance patient 

outcomes in clinical practice. 
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Appendices 

In this appendix section, additional information and supplementary material related to the main 

content of the document is provided. This includes detailed tables, figures, and graphs, as well as 

supporting documents such as informed consent forms, survey questionnaires, and other relevant 

materials. 

Appendix 1 Parent/Legal Guardian Information Sheet 

 



Appendices 

113 

 

 



Appendices 

114 

 

 



Appendices 

115 

 

 



Appendices 

116 

 

 



Appendices 

117 
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Appendix 4 Questionnaire Leaflets 
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Appendix 5 Parent Consent Form 
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Appendix 6 Assent Form for Children & Young People 
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Appendix 7 A Copy of the Phone Interview Prompt Sheet for PPIE Activity 

- What SA detection products or services do you know? What functions or features do you like 

or dislike, and why? 

 

- Do you think a real-time SA monitoring and detection service is useful? What benefits and 

shortcomings can you predict? 

 

- What features would you like to have as part of the device or service? 

 

- How long should the battery last? 

 

- Would you like educational materials provided with the device or service? 

 

- Do you have any privacy or other ethical concerns with storing and processing your 

electrocardiogram (ECG) signals? 
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Appendix 8 Journal Author Rights  
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Appendix 9 Patient Checklist 
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Appendix 10 Additional Information on SA Detection Studies. 

Table 6.1 Details of the 113 selected studies on SA detection in the home environment. 

Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

Saletu et al., 2018 PSG Sleep physicians Online 265 - 

Massie et al., 2018 PSG Sleep physicians Online 101 - 

Rosen et al., 2018 - Home sleep apnoea test Online - - 

S. S. Ng et al., 2019 PSG Sleep physicians  316 

Sensitivity = 78% 

Specificity = 23% 

Negative predictive value 

= 67% positive = 35% 

Gu et al., 2020 SpO2 Sleep physicians Online 50 

Sensitivity = 85% 

Specificity = 87%% 

Positive and negative 

predictive value = 0.88% 

and 0.83% 

Chiner et al., 2020 
Home respiratory 

polygraphy HRP 
Sleep physicians Online 121 Accuracy = 93% 

Gutiérrez-Tobal et al., 

2019 
SpO2 

Machine learning AB-

LDA 
Offline 230 Accuracy = 78.7% 

Zancanella et al., 2022 PSG EmblettaX100 system Offline 40 - 

Manoni et al., 2020 PSG MORFEA Online - - 

Kole, 2020  
Home sleep apnoea 

testing 
- >800 - 

R. Stretch et al., 2019 PSG Sleep physicians Online 613 

Sensitivity = 0.46, 

Specificity = 0.95% 

Positive predictive value 

= 0.81% negative 

predictive value = 0.80% 

Castillo-Escario et al., 

2019a 
PSG MATLAB Offline 13 

Sensitivity = 76%, 

Positive Predictive Value 

= 82% 

Hunasikatti, 2019 PSG Sleep physicians Online 206 - 

Romero et al., 2022 PSG Sleep physicians Online 103 
Sensitivity = 79% 

Specificity = 80% 

Massie et al., 2022 PSG WatchPAT Offline 20 - 

Kristiansen et al., 2021 PSG Machine learning Online 579 Accuracy = 89% 
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Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

Nobuaki Tanaka et al., 

2021 
- W-PAT - 776 - 

Colelli et al., 2021 HSAT Sleep physicians Online 119 - 

Ikizoglu et al., 2019 PSG and HPG Sleep physicians Online 19 
Sensitivity = 100% 

Specificity = 83% 

Aielo et al., 2019 PG Sleep physicians Online 300 Accuracy = 95% 

Zavanelli et al., 2021 
ECG, SCG, and 

PPG 
Sleep physicians Online - Accuracy = 95% 

Colaco et al., 2018 PSG Sleep physicians Online 43,780 - 

(Ekiz et al., 2020) PSG Sleep physicians Online 43,780 - 

Maggio et al., 2021 PSG 

Embla® Embletta® 

GOLD portable sleep 

system 

Online 45 Accuracy = 93% 

Steffen et al., 2021 PSG and HST Sleep physicians Online 131 - 

Orr et al., 2018 PSG and HST MATLAB Offline 27 
Sensitivity = 70% 

Specificity = 71% 

Gutiérrez-Tobal et al., 

2021 
SpO2 

Least-squares boosting 

algorithm 
Offline 8762 Accuracy = 87.2% 

(Fietze et al., 2022) polygraphy (PG) Sleep physicians Online 505 - 

Fitzpatrick et al., 2020 PSG 
BresoDx® portable 

monitor 
Offline 233 

Sensitivity = 85% 

Specificity = 0.48% 

Positive and negative 

predictive values were, 

0.81% and 0.54% 

Ferrer-Lluis et al., 

2019 
Pulse oximetry Apnealink™ Air Offline - - 

Huysmans et al., 2021 PSG Total Sleep Time (TST) Offline 183 
Sensitivity = 78% 

Specificity = 89% 

(Joymangul et al., 

2020) 

Positive Airway 

Pressure (PAP) 

therapy 

Python Online 668 - 

Młyńczak et al., 2020 PSG Audio sensor Online 30 

Accuracy = 86% 

Sensitivity = 96%, 

Specificity = 76% 
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Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

Van Pee et al., 2022 
PSG and PAT 

HSAT 
Sleep physicians Online 167 - 

Castillo-Escario et al., 

2019b 
audio signals MATLAB Offline 3 Accuracy = 95.9% 

Navarro-Martínez et 

al., 2021 
pulse oximetry 

Epworth sleepiness 

scale, STOP-BANG 

questionnaire, and C-

reactive protein 

screening 

Online 117 
Sensitivity = 80% 

Specificity = 92% 

Patel et al., 2018 PSG ApneaLink Air devices Online 106 
Sensitivity = 82% 

Specificity = 92% 

Magalang et al., 2019 Nasal pressure Fifteen HSAT Offline - - 

Muñoz-Ferrer et al., 

2020 
PSG Sleepwise (SW) Online 38 Accuracy = 84% 

Light et al., 2018 EEG and PSG Sleep physicians Online 207 Accuracy = 95% 

0Oceja et al., 2021 PSG HRP Online 320 - 

Di Pumpo et al., 2022 - WatchPAT - - - 

Hoshide et al., 2022 PSG CPAP therapy Online 105 Accuracy = 86.9% 

Hui et al., 2018 PSG Respiratory polygraphy Online - Accuracy = 95% 

Goldstein et al., 2018 PSG Sleep physicians  196 Accuracy = 84% 

(Jensen et al., 2022) PSG NightOwl™ Offline 150 Accuracy = 95% 

Simonds, 2022 

 

Body movement, 

respiratory rate, 

heart rate, 

snoring, and 

breathing pauses 

Withings Sleep 

Analyzer 
Online 67,278 

Sensitivity = 88% 

Specificity = 88% 

Rajhbeharrysingh et 

al., 2019 
PSG Machine learning Online 14 

Accuracy = 82.9% 

Sensitivity = 88.9%, 

Specificity = 76.5% 

F. L. Facco et al., 2019 PSG Sleep physicians Online 43 80.0% 

Kristiansen et al., 2021 PSG and PG Sleep physicians Online 34 

Sensitivity = 97.2% 

Positive prediction value 

= 94.2%. 

C. Li et al., 2021 PSG Sleep physicians Online 43,780 - 
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Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

Massie et al., 2022 PSG MATLAB Offline 261 
Sensitivity = 87% 

Specificity = 89% 

Hart et al., 2021 PSG CPAP Offline 18 - 

da Rosa et al., 2021 PSG Sleep physicians Online 94 Accuracy = 80.7% 

Ashley et al., 2019 PSG HRP Online 430 Accuracy = 95% 

Mosquera-Lopez et al., 

2018 
PSG Machine learning Offline 14 

Accuracy = 86.96% 

Sensitivity = 81.82% 

Specificity = 91.67%. 

Lipatov et al., 2019 PSG HSAT devices Offline 141 - 

Silva et al., 2021 PSG SPSS software Offline 427 - 

Bonnesen et al., 2018 Audio Portable device Online 23 
Sensitivity = 75%, 

Accuracy = 60% 

Green et al., 2022 PSG Online video technician Online 100 - 

Ben Azouz et al., 2018 PSG 
Equivital™ EQ02 

LifeMonitor 
Online 32 - 

Honda et al., 2022 
Respiration 

activity 
wearable sensor Offline - - 

Ghandeharioun, 2021 ECG and SpO2 Sleep physicians Online 155 Accuracy = 85% 

Labarca et al., 2018 PG HSAT an Embletta® Online 198 - 

Lee et al., 2021 PSG HSAT Offline 154 
Sensitivity = 85% 

Specificity = 95% 

Huysmans et al., 2020 ECG and RIP CNN Online 81 Kappa score = 0.48 

Barriuso et al., 2020 
Respiratory 

polygraphy 
HRP Online 301 - 

Mashaqi et al., 2018 PSG HSAT, RYGB and LSG Online 10 Accuracy = 94% 

Takao et al., 2019 Audio Autoencoder Offline 5 Accuracy = 94.7% 

Borsini et al., 2021 PG 
Apnea Link Plus and 

Air 
Online 3854 Accuracy = 90% 

Gu, W., & Leung, 

2018 
PPG pulse oximeter Online 23 Accuracy = 97% 

Mieno et al., 2020 PSG PulSleep LS-140 Offline 58 
Sensitivity = 96.4% 

Specificity = 100% 

Arguelles et al., 2019 PSG HSAT Online 88 Accuracy = 98% 
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Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

R. Stretch et al., 2019 PSG 
k-nearest neighbors 

algorithm 
Offline 415 

Sensitivity = 0.43% 

Specificity = 0.96% 

Iqubal & Lam, 2020 PSG HSAT Online 88 
Sensitivity = 98% 

Specificity = 76% 

N Tanaka et al., 2020 PSG WP device Offline 774 - 

Kay et al., 2021 PSG HSAT Online 1 - 

Bollu et al., 2020 PSG 
nox-T3 sleep monitor 

and Nomad HSAT 
Online 178 - 

Yeh et al., 2020 PSG Sleep physicians Offline - - 

Sterner et al., 2020 - WatchPAT - - - 

Iakoubova et al., 2020 PSG Sleep physicians Online 900 - 

Arguelles et al., 2018 PSG Sleep physicians Online 60 Accuracy = 90% 

Gamaldo et al., 2018 PSG HSAT Online 147 - 

Alakuijala et al., 2019 PG Sleep physicians Online 1055 - 

He et al., 2020 PSG WatchPAT Online 295 - 

Pinheiro et al., 2020 PSG HST Online 1013 

Sensitivity = 95.8% 

Specificity = 94.3% 

Anderer et al., 2020 PSG Deep Learning Online 472 Accuracy = 95%. 

Zeineddine et al., 2020 PSG HSAT Online 33 - 

F. Facco et al., 2018 PSG HST Online 34 Accuracy = 90.5% 

Zhongming et al., 2021 PSG HSAT Online 31 - 

Carey et al., 2020 PSG WPHST Online 62 - 

Aydin Guclu et al., 

2020 
PSG APAP Online 43 - 

Homan et al., 2021 SpO2 HSAT Online 558 Accuracy = 90% 

Rudock, R. et al., 2019 PSG HSAT Online - - 

Bliznuks et al., 2022 SpO2 CPAP Online 16 - 

THOMAS et al., 2021 PSG HSAT Online 297 - 

Kazaglis, 2018 Audio Noxturnal T3 device Offline 2 - 

Arguelles et al,, 2019 PSG HSAT Online 11 Accuracy = 95% 

Fynn et al., 2020 PSG sleep physicians Online 246 - 
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Authors Signal Detection Method Online/Offline 
Number of 

Participants 
Detection Performance 

Wenbo et al., 2019 PSG 
ring-type pulse 

oximeter 
Online 32 Accuracy = 95.0% 

Gutiérrez-Tobal et al., 

2018 
SpO2 SAHS Online 200 

Sensitivity = 83.8% 

Specificity = 85.5% 

R. J. Stretch et al., 

2020 
PSG NN approach Offline 1329 79% 

Johnson et al., 2018 - HSAT - - - 

Sever et al., 2018 PSG Sleep physicians Online 1 - 

Martinot et al., 2020 PSG Machine learning Online 192 Accuracy = 84% 

Haaland et al., 2018 PSG Apnealink Online 1021 - 

Do et al., 2022 PSG HSAT Online 505 - 

Stanchina et al., 2020 PSG APAP Online 238 - 

Perriol et al., 2018 PSG CPAP Offline 66 - 

Krause-Sorio et al., 

2021 
HR and SpO2 Telephone screening Offline 5 - 

Mahmood et al., 2018 PSG HST Offline 454 - 

Robinson et al., 2018 PSG HSAT Offline 961 
Sensitivity = 97.1% 

Specificity = 100% 

Ferreira, 2019 PSG CPAP Online 191 - 
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Appendix 11 Environmental Benefits of Sleep Apnoea Detection in the Home Environment 
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Appendix 12 Accurate Detection of Sleep Apnea with Long Short-Term Memory Network Based on 

RR Interval Signals. 
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Appendix 13 A Review of Automated Sleep Stage Scoring Based on Physiological Signals for the 

New Millennia. 
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Appendix 14 A Review of Automated Sleep Stage Scoring 
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