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Abstract: Convolutional neural network (CNN) models were devised and evaluated to classify in-
frared thermal (IRT) images of pediatric wrist fractures. The images were recorded from 19 partici-
pants with a wrist fracture and 21 without a fracture (sprain). The injury diagnosis was by X-ray 
radiography. For each participant, 299 IRT images of their wrists were recorded. These generated 
11,960 images (40 participants × 299 images). For each image, the wrist region of interest (ROI) was 
selected and fast Fourier transformed (FFT) to obtain a magnitude frequency spectrum. The spec-
trum was resized to 100 × 100 pixels from its center as this region represented the main frequency 
components. Image augmentations of rotation, translation and shearing were applied to the 11,960 
magnitude frequency spectra to assist with the CNN generalization during training. The CNN had 
34 layers associated with convolution, batch normalization, rectified linear unit, maximum pooling 
and SoftMax and classification. The ratio of images for the training and test was 70:30, respectively. 
The effects of augmentation and dropout on CNN performance were explored. Wrist fracture iden-
tification sensitivity and accuracy of 88% and 76%, respectively, were achieved. The CNN model 
was able to identify wrist fractures; however, a larger sample size would improve accuracy. 

Keywords: convolutional neural network; deep learning; medical infrared imaging and  
classification; bone fracture identification 
 

1. Introduction 
Children may sustain wrist fractures from a range of injury mechanisms. They are 

more at risk of harm from X-ray radiation than adults [1]. Around 50% of X-ray radio-
graphs obtained to diagnose wrist fractures do not show a fracture. In addition, serial X-
rays are often obtained to identify healing fractures where they are not visible initially. 
Therefore, a harmless, easy-to-use and cost-effective means of identifying wrist fractures 
at the index presentation could reduce the number of unnecessary X-rays. 

Interests in the medical diagnostic and monitoring applications of infrared (IR) ther-
mal (IRT) imaging have grown in recent years, as infrared sensors and image processing 
techniques have improved significantly. A modern IRT camera produces images by accu-
rately measuring the heat emanating from objects in the form of IR [2]. A feature of IRT 
imaging is its noncontact nature, allowing measurements without disturbance to the in-
dividual or risk of contamination [3]. IRT imaging has proved effective in biological ap-
plications [3] and the identification of pediatric bone fractures [1,4]. An analysis of IRT 
images demonstrated a statistically significant temperature difference between the frac-
tured wrists and their contralateral (uninjured) wrists caused by the changes in the blood 
flow at the injury site [1]. The purpose of this study was to develop a deep learning (DL) 
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CNN to differentiate between wrists with a fracture and wrists without a fracture, i.e., 
wrists with a sprain. 

1.1. Deep Learning 
Deep Learning (DL) can identify the distinguishing features of images for their dif-

ferentiation by using multiple layers of non-linear transformations called hidden layers. 
DL performs its feature extraction operation in an automated manner compared with pre-
processing methods such as principal component analysis that perform dimensionality 
reduction [5]. It learns by simulating the neurons in the human brain to process substantial 
volumes of data [6]. There have been extensive developments in deep learning in recent 
years with applications such as computer vision, natural language processing and speech 
recognition [7]. DL has emerged from the conventional artificial neural network concept, 
but it can considerably outperform earlier models by accurately analyzing large complex 
information. DL approaches can be classified by the manner in which they learn as being 
supervised, unsupervised or partially supervised [8]. They can also be classified by the 
type of network as being recursive neural networks, recurrent neural networks, and con-
volutional neural networks (CNNs) [8]. DL algorithms have been used increasingly for 
classification tasks that include image recognition. This is due to the non-linear complex-
ities that some image classifications can pose and the multilayered adaptivity of DL to 
handle these types of classifications. The initial layers are unsupervised in nature, allow-
ing the DL architecture to learn the image features, with the final layers being more su-
pervised to help with the classification process [9]. 

Feature extraction has traditionally been dependent on prior knowledge of the mod-
eler with the use of statistical techniques [10]. However, these require judgment of the 
suitability and effectiveness of differentiating features [9]. 

1.2. Convolutional Neural Network and Data Augmentation 
The convolutional neural network (CNN, Figure 1) is a type of DL for image pro-

cessing that avoids manual feature extraction [11]. 

 
Figure 1. A typical convolutional neural network. 

Using the ImageNet datasets, which are widely used in industry and academia, 
CNNs have achieved a remarkable capability for both image classification and pattern 
recognition tasks. The working principle is usually the same and is composed of convolu-
tion layers applied at the input of a supervised DL network that updates its weights of 
feature maps, learnt from the previous layer, based on their relationships in space to 
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reduce the numbers of parameters needed to train the model [6,12,13]. This is then fol-
lowed by fully connected layers and the output layer, which could be either classification 
(SoftMax layer), recognition or clustering. 

There are several variants of CNN models commonly referred to as transfer learning 
(TL) models. These include ImageNet, LeNet, Inception, VGGNet and ResNet [10]. These 
models have been trained on a very large number of high-resolution images from the in-
ternet known as the ImageNet with millions of trainable parameters, with their weights 
and biases frozen. The input and classification layers can be adjusted to train other types 
of healthcare-related images such as those from computerized tomography scans, IR ther-
mography and magnetic resonance imaging. 

A challenge encountered in applying DL techniques to medical applications is small 
datasets, a problem known as the data challenge [14]. A method to deal with it is called 
data augmentation [15]. Data augmentation could allow DL models to improve their data 
classification performance by artificially generating a greater diversity of training exam-
ples [15–17]. Therefore, augmentation techniques are transformation operations that mod-
ify a sample (e.g., an image) in such a way that it can still be semantically described by the 
original identity of the sample category or type [18]. Data augmentation has been applied 
as part of Raman spectroscopy skin cancer tissue classification [19], natural language pro-
cessing [20], time series classification with neural networks [21], text classification [22], 
material microscopic image segmentation [23] and image classification [24]. The were also 
studies outlining the effectiveness of generative adversarial networks [25,26] in medical 
image augmentation [27–30]. 

A further challenge when using medical data for machine learning diagnostic pur-
poses may be a significant imbalance in the number of samples (example cases) from dif-
ferent categories. This imbalance may bias the analysis and thus affect the accuracy of the 
results. A study reported a means to deal with this imbalance by using Euclidean distance 
between samples of the same category to reduce the associated imbalance [31]. 

The contributions of this study include the following: 
• A CNN model devised to identify wrist fractures from IRT images. The ability of the 

CNN was leveraged to automatically extract features based on the convolution layers 
as previous methods used manual feature extraction methods. 

• A proposed CNN model that was tailor-made for the specific input IRT image char-
acteristics. 

• An exploration of the effectiveness of image augmentation when developing DL 
models for IRT image classification was performed. 

• The performance of CNN in identifying wrist fractures was compared with an earlier 
study that used a multilayer perceptron neural network, indicating improved accu-
racy for the CNN. 

2. Related Studies 
In this section, studies utilizing infrared thermal imaging for medical diagnosis are 

initially described and then applications of machine learning to classify infrared thermal 
images are provided. 

2.1. Infrared Thermal Imaging for Medical Diagnosis 
Several studies have used IRT imaging to diagnose or monitor medical conditions. In 

a diagnostic pilot study [1], IRT imaging was used to differentiate between wrist fractures 
and sprains (no fracture) in children. The temperature of the injured wrist, represented by 
the relevant region of interest (ROI), was compared with the temperature of the contrala-
teral uninjured wrist acting as its control. Statistical techniques were used to analyze the 
temperature difference. The study indicated that there was a significant temperature dif-
ference, with higher values recorded in the fractured wrists than in the sprained wrists. 
Infrared thermal imaging has been studied to identify fractured thoracic vertebrae in 
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children aged 5–18 years (number: 11) with osteogenesis imperfecta (OI) [4]. OI is a genetic 
disorder causing bones to become more fragile and thus more prone to fractures. IRT im-
aging provided a cost-effective and quick (as compared with magnetic resonance imaging 
or computerized tomography) method of detecting thoracic vertebrae. A summary of 
other related studies using IRT imaging for medical diagnosis is provided in Table 1. 

Table 1. Summary of related studies utilizing IRT imaging for medical diagnosis. 

Study Diagnosis Number of Subjects Region of Interest Detected Temperature Difference (°C) 
[32] Bone neoplasia 40 Limb 0.53 to 0.67 
[33] Fracture 19 Forearm 0.8 to 2 
[34] Repetitive strain injuries 33 Wrist and hand Joints 0.65 
[35] Fracture/sprain 133 Various 0.26 to 0.47 
[31] Toddler’s fracture 39 Tibia 1.1 

 

2.2. Machine Learning and Deep Learning Techniques 
Machine learning classification techniques can provide means of computer-aided 

medical diagnosis [36,37]. A multilayer perceptron (MLP) artificial neural network (ANN) 
model for wrist fracture classification using IRT images of 40 subjects was developed [38]. 
The features used for training the MLP were extracted manually, which comprised the 
pixel values of the IRT images extracted from the wrist ROI. A discrimination accuracy of 
77% was obtained. In another study, a custom deep learning neural network (DNN) algo-
rithm was developed to classify obesity using thermal images of the abdomen, forearm, 
and shank region as the ROI [36]. They recruited 50 obese and 50 healthy patients. Their 
CNN-based method provided an accuracy of 92%. In another study, different artificial 
intelligence (AI) techniques were compared to classify IRT images of 39 patients with di-
abetic foot ulcers [39]. The images were processed for classification by three decision sup-
port machine learning algorithms, namely ANN, support vector machine (SVM) and k-
nearest neighbors (k-NNs). Their comparisons of these techniques indicated that the k-
NNs of five neighbors provided the best classification of the disease with an accuracy of 
81.25%. Multiple CNN models were examined to differentiate cancerous blood cells from 
normal blood cells and the best results were obtained through a majority voting scheme 
[40]. Studies employed DL as part of detecting COVID-19 [41,42]. CNN models were de-
vised to classify IRT images of fatty liver [43]. They used three types of datasets based on 
specified exclusion criteria. Their best approach provided a classification accuracy of 94%. 
A CNN-based transfer learning algorithm called ResNet50 was used to classify thermal 
images of pneumonia from COVID-19 from 101 patients, providing an accuracy of 91% 
[44]. Their training and test images were randomly selected from a pool of data which 
consisted of several images from the same patient. A cross-validation technique was used 
to evaluate the model. 

Other related studies that used computer-aided screening for various medical condi-
tions included predicting hemodynamic shock [45], diagnosis of cardiovascular disease 
[46], diagnosis of diabetes [47] and radiological applications [48]. A summary of further 
related studies is provided in Table 2. 

Table 2. Summary of infrared thermal imaging-based machine learning methods for medical diag-
nosis. 

Study Number of Subjects Diagnosis ML/AI Algorithm Accuracy (%) 
[49] 283 Diabetic eye disease SVM 86 
[50] 11 Lip lesions SVM/KNN 63–100 
[51] 67 Breast cancer Various 73–92 
[52] 82 Pressure injury CNN 95 
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3. Materials and Methods 
The method used in this study comprised data collection and data pre-processing 

which included fast Fourier transformation (FFT) of the IRT images, image resizing and 
augmentation. These were followed by classification based on a CNN-based DNN. The 
operations are outlined in Figure 2. 

 
Figure 2. Operations to identify wrist fracture. 

3.1. Participants’ Recruitment and Data Recording 
IRT images from 40 participants were used for this study. They comprised 21 con-

firmed patients without a fracture and 19 patients with a fracture, confirmed by X-ray 
radiography. For both injured and uninjured wrists, 299 images were recorded (frame rate 
= 30 frames per second). Further details of the recruitment and recording can be found in 
[1,38]. The study was conducted in accordance with the Declaration of Helsinki, and ap-
proved by the National Health Service Research Ethics Committee (United Kingdom, 
identification number: 253,940, approval date: 7 March 2019). Informed consent was ob-
tained from all participants included in the study. 

3.2. Image Pre-Processing 
As there can be variations in skin temperature across participants, the mean temper-

ature of the uninjured wrist region of interest (ROI) was subtracted from each pixel value 
of the injured wrist ROI. The resulting ROIs for the injured wrists were fast Fourier trans-
formed (FFT). Since the wrist ROI varied in dimension across the participants, the FFT 
process provided a means to resize the images by selecting a section from its center with 
a size of 100 × 100 pixels and thus ensuring they all had identical dimensions. This section 
had the main frequency components. An IR image participant’s hands with a fracture of 
the left wrist is shown in Figure 3a. The fractured left wrist appears brighter in comparison 
with the uninjured right wrist, indicating an increase in IR thermal emission. An IR image 
of a participant’s hand with a sprained left wrist is provided in Figure 3b. The temperature 



Healthcare 2024, 12, 994 6 of 16 
 

 

differences between the injured and uninjured wrist require image processing analyses to 
interpret their significance. 

The ROIs for the injured left wrists are shown by the blue dotted lines on the respec-
tive images. A similar ROI was selected from the uninjured wrist. Typical magnitude fre-
quency spectra of the ROI for fractured and sprained wrists are shown in Figure 4a and 
Figure 4b, respectively. 

  
(a) (b) 

Figure 3. Infrared image of a participants’ hands: (a) fracture of left wrist; (b) sprained left wrist. 
The region of interest is shown by the blue dotted line. 

 
(a) 
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(b) 

Figure 4. Magnitude frequency spectra of a typical region of interest for (a) fractured wrist ROI and 
(b) sprained wrist ROI. 

The transformed and resized images were then converted into the portable network 
graphic (PNG) format for CNN input compatibility in preparation for the next stage. 

Image Augmentation 
Geometric transformation methods of rotation, translation, and shearing were per-

formed on the fast-Fourier-transformed and resized ROI sections (images) of the injured 
wrists. This was to introduce further variabilities in the images to enhance CNN general-
ization during training [53]. Each image was randomly subjected to a single transfor-
mation scheme. For those images that were subjected to rotation transformation, the 
amount of the rotation was randomly selected to be between −90° and 90°. A lower value 
of rotation was not as effective for classification. For the images that were translated, the 
amount of translation was randomly selected to be between −3 pixels and +3 pixels along 
the horizontal and vertical axes. The translation allowed the input images to have varia-
tions in space and avoid positional bias during training. Finally, for the images that were 
subjected to shearing transformation, the amount of shearing was randomly selected to 
be between a shear factor of −2 and 2, both horizontally and vertically. Shearing affected 
the shape of the input images by slanting or tilting them in the specified direction. The 
values chosen for the translation and shearing were kept quite small as the input data had 
minimal variations from the point of recording. 

3.3. CNN-Based Deep Learning 
The computer used to perform the processing operations was an Apple MacBook, 

with an 8-core CPU, 10-core GPU, 16-core neural engine, 100 GB/s memory bandwidth, 
and maximum CPU clock rate of 3.49 GHz. The CNN training took 104 min and 41 s. 

The CNN-based deep neural network was based on the architecture described in Sec-
tion 1.2. The structure of the CNN-based deep learning neural network architecture is 
shown in Figure 5. The layers with learnable parameters used in the CNN-based DNN 
architecture for the classification of the images representing fracture and non-fracture are 
provided in Table 3. The hyperparameters used for fine tuning the model are provided in 
Table 4. 
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Figure 5. CNN-based deep neural network used in the study. 

Table 3. Layer names and their learnable parameters. 

Layer Name Parameters 
2D convolutional (Conv_1 (2D)) 80 
Batch normalization (Batchnorm_1 (2D)) 16 
2D Convolutional (Conv_2 (2D)) 1168 
Batch Normalization (Batchnorm_2 (2D)) 32 
2D Convolutional (Conv_3 (2D)) 4640 
Batch Normalization (Batchnorm_3 (2D)) 64 
2D Convolutional (Conv_4 (2D)) 18,496 
Batch Normalization (Batchnorm_4 (2D)) 128 
2D Convolutional (Conv_5 (2D)) 73,856 
Batch normalization (Batchnorm_5 (2D)) 256 
2D Convolutional (Conv_6 (2D)) 295,168 
Batch Normalization (Batchnorm_6 (2D)) 512 
2D Convolutional (Conv_7 (2D)) 1,180,160 
Batch normalization (Batchnorm_7 (2D)) 1024 
2D Convolutional (Conv_8 (2D)) 1,180,160 
Batch normalizations (Batchnorm_8 (2D)) 1024 
Fully Connected (FC) 1026 

Table 4. Hyperparameters for CNN-based deep neural network. 

Hyperparameters Measures 
Optimizer Adam 
Activation function ReLU 
Learning rate 0.005 
Batch size 170 
Maximum epoch 250 (no early stopping) 
Maximum iteration 12,250 
Loss function Cross-Entropy 

The CNN-based deep neural network consisted of 34 layers in total and 3.9 million 
learnable parameters, i.e., weights and biases. It comprised a similar combination of con-
volutional, batch normalization, rectified linear unit (ReLU) or rectifier activation function 
(this introduced non-linearity to the deep learning model) and maximum pooling layers, 
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respectively (they helped in the extraction of relevant features from the input images 
while simultaneously reducing the data dimension). 

The CNN-based deep neural network had 8 convolutional layers. The first layer of 
convolution comprised 8 filters, with a filter size of 3, connected to the input layer. The 
‘convolution2dlayer’ from the Matlab© DL toolbox (Version 2023b) [54] was used to create 
the CNN model. It defined the filter, referred to as the kernel or mask. It used an array of 
defined weights applied to the neighboring pixels of the input image while the convolu-
tion process was being performed. During the convolution, the filters were arranged at 
each position of the image input around the pixels centered in the position. There was an 
element-wise multiplication of the neighboring pixels of the input image and the results 
of the multiplication were then summed to generate the filter output. This was then slid 
through the entirety of the image with the convolution process at each position of the 
window. The output image, also known as the feature map, had the same dimension as 
the input image. Its values were determined by the convolution operation. 

As the layers deepened, the number of convolutional filters increased by 2(n+2), where 
n is the CNN convolution layer number, until it reached 512 filters, which was the maxi-
mum number of filters that could be achieved based on the size of the input image, as the 
choice of the convolutional filters must be less than the input image size. As the layer 
number increased, it enhanced the ability of the CNN model to distinguish features of the 
images [55]. 

A batch normalization layer followed each convolutional layer. The batch normali-
zation layer sped up the CNN convergence by normalizing the values of the calculated 
weights and biases from the previous convolution layer to have a mean value close to zero 
and a standard deviation close to 1 before passing to the next layer of the CNN. 

A rectified linear unit (ReLU) activation layer followed each batch normalization 
layer. The choice of the ReLU activation function was based on the non-linear classification 
task that was required of the input images. Each ReLU layer ensured that neurons with 
negative values remained inactive, allowing neurons with positive values to be activated 
for the next convolution layer. This helped the CNN model to learn only the main image 
features, thereby reducing overfitting by the model during its training [56]. 

The final convolution layer was connected to a fully connected (FC) layer of pro-
cessing neurons with two outputs representing the injury types, i.e., fracture and non-
fracture. The output vectors from the FC layer comprised positive and negative values. 

The next layer was the SoftMax layer that converted the output from the FC layer into 
normalized class probabilities [57]. The classification layer generated the classification of 
each image based on the probability of injury being a fracture or a non-fracture (sprain) 
from the SoftMax layer. 

The CNN model was trained on 250 epochs (each epoch was 49 iterations) without 
early stopping, where the final model metrics were calculated based on the average vali-
dation metrics throughout the specified number of epochs. The training process was ex-
amined for early stopping at 60 epochs (corresponding to 2940 iterations) where there was 
a global minimum in terms of the training error. As, at that point, the differentiation ac-
curacy was not sufficiently high, the training was allowed to continue for 250 epochs. 
Thereafter, there was no further improvement in the CNN classification accuracy. 

Figures 6 and 7, respectively, show the training and loss (i.e., error) performances of 
the CNN model with the validation dataset. The blue graph in Figure 6 represents the 
training of the model, with the black graph representing the model’s validations using the 
validation data with validation performed after 250 epochs. The red graph in Figure 6 
shows the training loss and the black graph shows the validation error. 
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Figure 6. The CNN model training with validation data. The blue graph represents the model’s 
training, and the black graph represents the validation using the validation dataset with validation 
carried out after 250 epochs. 

 
Figure 7. The CNN model loss with validation data. The red graph represents the model training 
loss (or error) and the black graph represents the validation error using the validation dataset with 
validation carried out after 250 epochs. 

3.4. Evaluation Metrics 
The efficacy of the proposed CNN-based DL neural network was assessed using the 

confusion matrix, which provided classification accuracy, sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV). These metrics were obtained 
from the model’s classification of true negatives (TNs), true positives (TPs), false positives 
(FPs) and false negatives (FNs). The receiver operating characteristic (ROC) was also used 
to evaluate the model, providing the area under curve (AUC) for clinical use. 

4. Results 
Two variants of the CNN-based DNN architectures were investigated. The first vari-

ant performed classification with image augmentation without a dropout layer, and the 
second variant did not include augmentation but had a dropout layer. 
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When training a DL model on small datasets, there is a tendency for overfitting to 
occur due to the large number of layers used in the network. To deal with this effect, tech-
niques such as augmentation [58] and regularizations (dropout) [59] have been reported. 
In the first experiment, the images were randomly rotated, translated, and sheared as de-
scribed in the Materials and Methods section. For the second experiment, a dropout layer 
was added to the to the last convolution layer, just after the maximum (max) pooling layer 
and before the fully connected (FC) layer. A value of 0.2 was selected for the dropout layer, 
meaning that 20% of the nodes were dropped with every update in weight during train-
ing. A larger value of dropout would have negatively affected the performance of the 
model as more nodes would have been dropped. 

Binary classifications were provided for fractures and non-fractures (sprains) and 
presented for both experiments. The dataset comprised 11,960 (i.e., 40 participants × 299 
images) fast-Fourier-transformed IRT images of 40 participants, 21 without a fracture 
(sprain) and 19 with a fracture. The dataset was split into 70% of the images for training 
(13 participants with a fracture and 15 participants without a fracture, totaling 8372 im-
ages) and 30% of the images for validation (6 fractures and 6 non-fractured, totaling 3588 
images). The number of images for training and validation is summarized in Table 5. 

Table 5. Number of images used for CNN training and validation. 

Injury Training Validation 
Fracture 3887 1794 
Sprain 4485 1794 

4.1. CNN-Based Deep Neural Network with Augmentation and without Dropout 
The CNN-based deep neural network model (Figure 5) was configured based on the 

hyperparameters provided in Table 4. This model was constructed using the Matlab© DL 
toolbox [54]. To indicate the effectiveness of the model, the average values of sensitivity, 
specificity, NPV, PPV and accuracy are provided in Table 6 and the confusion matrix is 
provided in Figure 8. The receiver operating characteristic curve (ROC) [60] is shown in 
Figure 9 with the model operating points for fracture and non-fracture. The CNN-based 
deep neural network model achieved an area under the ROC curve (AUC) of 0.82. 

 
Figure 8. Confusion matrix for CNN-based deep neural network for wrist fracture versus sprain. 
The squares contain the number of images for validation dataset, total: 3588 images. 
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Figure 9. Receiver operating characteristic curve for CNN-based deep neural network. 

Table 6. Evaluation metrics for CNN-based deep neural network with augmentation and without 
dropout. 

Injury Type Sensitivity (%) Specificity (%) NPV (%) PPV (%) Accuracy (%) 
Fracture versus sprain 88.3 68.3 80.4 72.5 75.8 

4.2. Results for CNN-Based Deep Neural Network without Augmentation and with Dropout 
In this part of the study, the same hyperparameters in Table 4 and the architecture in 

Figure 5 were used, but without image augmentation. To compensate for overfitting, a 
dropout layer (0.2) was introduced, as discussed earlier. The sensitivity, specificity, NPV, 
PPV and accuracy are provided in Table 7. 

Table 7. Evaluation metrics for CNN-based deep neural network without augmentation and with-
out dropout. 

Injury Sensitivity (%) Specificity (%) NPV (%) PPV (%) Accuracy (%) 
Fracture versus sprain 50 66.7 60.0 57.1 58.3 

5. Discussion 
The purpose of this study was to develop an IRT image classification model utilizing 

a CNN-based deep neural network, in contrast to the wrist fracture identification in [38] 
where feature extraction for the multilayer perceptron artificial neural network was per-
formed prior to the neural network classification. From the confusion matrix in Figure 8, 
the model produced an overall accuracy of 76% for the classification of the IRT images 
between wrist fracture and non-fracture (sprain) when image augmentation was applied 
without dropout. This provided improved accuracy compared to when a dropout layer 
was introduced without augmentation. The model also showed an NPV of 80% and a PPV 
of 73%. Therefore, the classification of images associated with the non-fractured wrists 
was 80% correct. 

The ROC curve presented in Figure 9 indicated the model’s operating point of 0.82 
which provided a better measure of classification considering a larger number of non-
fractured images in the dataset. The ROC area under the curve (AUC) was used to further 
highlight the ability of the model in differentiating the injury types. It provided a 
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benchmark for clinical diagnosis regardless of the number of classes. Acceptable values 
for the AUC ROC are between 0.8 and 1 [60]. 

When the model was used without augmentation and with a dropout value of 0.2, 
the model produced a specificity of 68% and a sensitivity of 50%. These values were much 
lower compared to the first experiment. This can be attributed to the nature of the IRT 
images used in the CNN architecture. 

In a follow-up work, other computer vision techniques such as vision transformers 
[61] will be considered to improve the classification of IRT images. The effectiveness of 
other image augmentation techniques and generative models like variational autoencod-
ers [62] and generative adversarial networks [63,64] will also be evaluated to identify wrist 
fracture IRT images. The original images had small variations, and dropping out played 
a significant role in the model accuracy as pattern recognition became harder. The inclu-
sion of the image augmentation technique increased the variability of the IRT dataset, as-
sisting CNN generalization during its training. 

The main limitation of this study was the inclusion of a small sample size of recruited 
participants. The augmentation process was adapted to increase the training and valida-
tion datasets, as otherwise, given the number of CNN layers, overfitting would have oc-
curred during training. An issue that was carefully considered during both CNN training 
and validation was the manner in which the augmented images were used as part of the 
training and validation datasets. There were 299 augmented images from each participant. 
It was ensured that the augmented images from a single participant were not split between 
the training and validation datasets. If the augmented images from a single participant 
were split between the training and validation datasets, the validation accuracy could 
have unduly increased as the CNN had already “seen” the related images from the same 
participant during its training phase. 

This study carried out a successful development and evaluation of CNN models to 
interpret augmented IR thermal images for differentiating between wrist fractures and 
wrist sprains in pediatric patients. 

6. Conclusions 
This study developed a CNN-based deep neural network architecture to differentiate 

fractured and non-fractured wrists using infrared thermal (IRT) images of 40 participants 
(11,960 images). The IRT images were fast Fourier transformed to aid their representation 
and resized in preparation for the CNN model. Augmentation was performed to improve 
the generalization of the model during training, thereby reducing overfitting by the 
model. The model performance was examined in two scenarios. With image augmenta-
tion and no dropout, the model achieved accuracy, sensitivity, specificity, NPV and PPV 
values of 76%, 88%,68%, 80% and 73%, respectively. An ROC-AUC of 0.82 was also ob-
tained. For the second scenario, where regularization of the model was performed by in-
cluding a dropout (0.2) layer for the CNN-based deep neural network architecture, the 
values of the evaluation metrices decreased. This study was successful in using artificial 
intelligence-assisted IRT images to identify wrist fractures. 
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