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Abstract
Diagnostics are critical on the path to commercial fusion reactors, since measurements and characterisation of the plasma is 
important for sustaining fusion reactions. Gamma spectroscopy is commonly used to provide information about the neutron 
energy spectrum from activation analysis, which can be used to calculate the neutron flux and fusion power. The detection 
limits for measuring nuclear dosimetry reactions used in such diagnostics are fundamentally related to Compton scattering 
events making up a background continuum in measured spectra. This background lies in the same energy region as peaks 
from low-energy gamma rays, leading to detection and characterisation limitations. This paper presents a digital machine 
learning Compton suppression algorithm (MLCSA), that uses state-of-the-art machine learning techniques to perform pulse 
shape discrimination for high purity germanium (HPGe) detectors. The MLCSA identifies key features of individual pulses 
to differentiate between those that are generated from photopeaks and Compton scatter events. Compton events are then 
rejected, reducing the low energy background. This novel suppression algorithm improves gamma spectroscopy results by 
lowering minimum detectable activity (MDA) limits and thus reducing the measurement time required to reach the desired 
detection limit. In this paper, the performance of the MLCSA is demonstrated using an HPGe detector, with a gamma spec-
trum containing americium-241 (Am-241) and cobalt-60 (Co-60). The MDA of Am-241 improved by 51% and the signal to 
background ratio improved by 49%, while the Co-60 peaks were partially preserved (reduced by 78%). The MLCSA requires 
no modelling of the specific detector and so has the potential to be detector agnostic, meaning the technique could be applied 
to a variety of detector types and applications.

Keywords Machine learning · Gamma spectroscopy · Fusion · Diagnostics

Introduction

Gamma spectroscopy is a common method used in the 
nuclear industry to identify and quantify the presence of 
radiation. High purity germanium (HPGe) detectors are 
often selected to measure low intensity or complex gamma-
ray signatures due to their excellent ∼ keV resolution and 

will be the focus of this paper. In the nuclear fusion field, 
gamma spectroscopy is used in waste characterisation, 
materials research for future fusion machines, neutron flux 
quantification via activation foils [1], and many other areas. 
The nuclear structure of radionuclides common to fusion 
research mean it is often the case that low activity nuclides 
emitting low energy � rays need to be identified in the pres-
ence of higher energy � emitters. For example, the neutron 
activation of composite materials, such as stainless steel, 
readily produces complex activation networks, resulting in 
the emission of a vast spectrum of � energies [2]. This poses 
a problem, as when higher energy photons interact within the 
detector they can Compton scatter [3, 4] out of the crystal 
and only deposit a fraction of their energy. This contributes 
to a continuum of detected energies, which extends to the 
lower energy part of the spectrum (Fig. 1). For example, in 
irradiated steel, the presence of Co-57 is indicated by a low-
energy 122 keV gamma ray, which will be masked by the 
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Compton scattering contribution of high energy Co-60 � rays 
of 1173 and 1332 keV. This elevated background increases 
the low energy minimum detectable activities (MDA), which 
negatively impacts the characterisation work.

There are some existing solutions to reduce the Comp-
ton scatter influence in gamma-ray spectra. One example 
is a Compton veto ring, where a ring of gamma spectros-
copy detectors, typically sodium iodide (NaI), surround a 
HPGe crystal. An example of such a system is shown in 
Fig. 2, located at the radiological assay and detection lab 
(RADLab), at the United Kingdom atomic energy author-
ity (UKAEA) in Oxfordshire. If a photon is detected in the 
HPGe crystal and NaI crystal within a set time window, the 
signal is rejected from the spectrum as a Compton scatter 

event. This method is effective at reducing the Compton 
continuum, but it often falsely reduces the photopeaks of 
interest [5]. A physical Compton suppression system is also 
bulky, expensive, and is not easily re-configurable for mul-
tiple detector types.

In this work, the physical Compton suppression system 
(Compton veto (CV)) used at UKAEA has been demon-
strated to reduce the Compton background on an Am-241 
(59 keV photopeak) and Co-60 spectrum by ∼  88%, however 
it reduced the Co-60 photopeaks by ∼  77% and reduced the 
Am-241 photopeak by 18% (based on Eq. 5 in Sect. 3.2.1, 
peak height reduction as a percentage for energy regions of 
interest, discussed in Sects. 3.2.1–3.2.2). These hardware 
results are included in Table 2.

An alternative technique is to use digital algorithms that 
do not rely on additional hardware like a Compton veto ring. 
Past attempts [6] have utilised a pulse rise time cut off to 
preserve low energy pulses corresponding to photoelec-
tric absorption, while removing pulses contributing to the 
Compton continuum. Low energy photons are more likely 
to undergo photoelectric absorption close to the surface of 
the detector, resulting in a long charge collection time in the 
HPGe as the electrons drift further through the crystal to 
the collection electrodes. In contrast, high energy photons 
more readily pass through the detector, and are more likely 
to Compton scatter and deposit their energy further inside 
the crystal. This results in a shorter rise time of the gener-
ated electrical pulses. Previous solutions have rejected all 
pulses below a rise time threshold [6] (therefore removing 
pulses from high energy photons) and required extensive 
modelling of the specific detector to determine the optimal 
rise time cutoff. While effective, it relies on classification 

Fig. 1  a Gamma-ray interac-
tions in a HPGe crystal: one is 
fully photoelectrically absorbed 
and produces a full energy pho-
topeak (blue/dark) and the other 
Compton scatters and contrib-
utes to the Compton continuum 
(green/light). b Example pulses 
from each interaction type. c A 
typical energy spectrum show-
ing Compton and photoelectric 
events

Fig. 2  The Mirion broad energy germanium (BEGe) detector used in 
this work, with the physical Compton suppression system surround-
ing the main HPGe crystal
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based on a single parameter, is not practical for preserving a 
broad range of energies, and is difficult to deploy to multiple 
types of detectors as the models would require modification.

Another digital technique is the use of machine learning 
algorithms for pulse shape discrimination (PSD). Examples 
of this include gamma particle tracking [7] and �-� PSD [8]. 
However, distinguishing a pulse generated by a Compton 
scattered photon from a pulse due to a photoelectric interac-
tion as a form of �-� PSD for Compton suppression on HPGe 
detectors has not been undertaken. This work presents a 
novel digital solution to Compton suppression, the machine 
learning Compton suppression algorithm (MLCSA), which 
performs Compton suppression (via �-� PSD) on pre-ampli-
fied pulses to reduce the Compton continuum, while pre-
serving higher energy photopeaks and not relying on any 
detector modelling or additional hardware. The MLCSA 
comprises a convolutional neural network (CNN) as a 
supervised, classification machine learning model. Incom-
ing pulses are processed and the CNN classifies each pulse 
as either a pulse from a photoelectric absorption (photopeak) 
or from a Compton scatter event (background). The scattered 
pulses are rejected and the output is a spectrum containing 
only pulses classified as photopeaks.

Methods

The MLCSA is an algorithm that performs Compton sup-
pression on pulses from a HPGe detector and is part of a 
process that comprises four components, as shown in Fig. 3: 
detector (data acquisition), digitiser (signal/pulse process-
ing), MLCSA (classifying), and Compton-suppressed spec-
trum (results). The methodology to these components are 
described in the following sections.

Detector and Data Collection

The HPGe detector used to gather training and live data was 
the Mirion broad energy germanium (BEGe) detector [9] 
(Fig. 2, model: BE3825, serial number: b13135). The train-
ing data are later split into training and testing data, and the 
live data refers to an unseen, ‘realistic’ data set, one which 

might be seen in a standard lab measurement of a mixed � 
source). Five calibration sources were measured using the 
BEGe detector in this work to obtain training data, pulses 
were measured from 50 keV upwards: americium-241 (Am-
241), cobalt-60 (Co-60), barium-133 (Ba-133), caesium-137 
(Cs-137), and manganese-54 (Mn-54). All sources except 
for the Mn-54 source were positioned 10 cm from the end 
cap for measuring to reduce coincidence summing effects 
[3]. The Mn-54 source was placed at 0 cm due to its lower 
activity. For collection of the training data, each source was 
placed on the detector individually. Based on the energies 
of the detected pulses, these training data were split into 
Compton and photopeak categories, and only the highest 
energy photopeak for each nuclide was used and labelled 
as photopeak, any lower energy photopeaks were removed 
from the training data. For the live data scenario, both the 
Am-241 and Co-60 sources were placed near the detector 
simultaneously (10 cm from the end cap) to create a realistic 
multi-nuclide spectrum.

Digital Pulse Processing

The pre-amplified pulses, referred to henceforth as raw 
pulses, were collected and processed by a Red Pitaya digit-
iser (STEMlab 125-14 [10]) with the trigger settings set as, 
Voltage range: (0, 20) V; Voltage trigger: ( −0.35, −0.4) V; 
trigger edge: positive; length of pulse: 200 ns.

The measured raw pulses were subsequently modified so 
that the CNN could be trained purely on the shape of the 
pulses. Raw pulses could not be used directly for training 
the CNN as the algorithm was found to use features such as 
pulse height and noise level to characterise pulses in a way 
that lead to overfitting [11]. Therefore, a pulse processing 
pipeline, shown in Fig. 4, was created to process the pulses 
for the training algorithm. This process included filtering, 

Fig. 3  Digital Compton sup-
pression flow diagram showing 
the four components, including 
the MLCSA

Fig. 4  Pulse processing pipeline 
which is described in detail in 
the main text. The greyed out 
steps are not used when apply-
ing this process to the test and 
live data set
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labelling, transformations, and regularisation techniques 
[11] to reduce overfitting.

The pipeline starts by importing raw data, and removing 
pulses that exceed a maximum voltage and those below a 
pre-determined noise level.

Then the data for each individual source are split into 
photopeak and scatter categories and labelled accordingly 
(based on their pulse heights). For the photopeak categories, 
only the highest energy photopeak pulses from each nuclide 
are labelled as photopeaks, to ensure no Compton scatter 
pulses are incorrectly labelled as photopeaks. The same 
applies to the Compton scatter pulses, where only areas of 
known Compton scatter from each nuclide are labelled as 
scatter. Pulses are then normalised to remove pulse height 
information and are randomly translated along the time axis.

The translation was undertaken due to the nature of the 
pulse collection and the leading edge discriminator trigger-
ing of the digitiser. Here, Am-241 pulses trigger earlier and 
the Co-60 pulses trigger later. Random translations along the 
time axis ensured the machine learning algorithm could not 
memorise the starting position of pulses and overfit on this 
basis. Random translation is also an example of data aug-
mentation and increases the generalisability of the model. A 
minimum and maximum bound on the x-axis was selected 
at -30 ns and 70 ns respectively, these values were chosen to 
ensure the preservation of the key part of the pulses when 
they are translated to the extreme values. Then, for each 
pulse, a random value of translation was selected and applied 
by changing the start position of the pulse by the translation 
amount.

Gaussian noise is then added so that every pulse has the 
same noise level, irrespective of its energy, and was under-
taken as it was noted that lower energy pulses had a higher 
noise level, where the pulses from higher energies were sig-
nificantly smoother. This noise is determined by the pulse 
height, and so even though the pulses were normalised in 
amplitude, the noise level contained the height information, 
which would enable the CNN to memorise and overfit by 
energy. This is a problem since the suite of radioisotopes 
available to characterise the photopeak pulses is limited and 
appears at discrete energies. Therefore, the standard devia-
tion of the noisiest pulse was evaluated, and noise was added 
randomly to all other pulses so that the standard deviation 
of all pulses was the same. It is possible that this process 
removed important information from the pulses and this is 
to be investigated in further optimisation work. The average 
noise of the fifty noisiest pulses had a standard deviation 
of 0.06, in the first 0–30 ns of the pulse. All other pulses 
were evaluated, and random noise was added throughout the 
whole pulse to generate a standard deviation of 0.06.

Finally, the number of events in the photopeak and scat-
ter categories were standardised (referred to as the trim data 
in Fig. 4) as there are generally more scatter pulses than 

there are photopeak pulses in a typical gamma measure-
ment, which could lead to the CNN having more information 
about the scatter pulses. So for training, the same number 
of photopeak pulses and scatter pulses were provided, by 
down-sampling the number of scatter pulses from the high-
est activity nuclide (Co-60). Example pulses for Am-241 and 
Co-60 photopeaks, and Co-60 Compton scatter, are shown 
in Fig. 5.

Once the complete training data set (consisting of a total 
of 188,102 pulses, from five nuclides) had been collected 
and processed through the pipeline, it was split into two sub 
sets, as is common in machine learning training: a training 
set (80%) and a testing set (20%).

The processing pipeline for live data was similar to the 
training pipeline, except for the removal of the greyed out 
steps in Fig. 4. The split & label step was removed because 
that information cannot be known for a realistic mixed � 
source. The time translation step was removed because it is 
unnecessary due to the way the CNN was trained. The trim 
data step from Fig. 4 was also not possible because the data 
originate from a mixed source hence the number of each 
type of event present is unknown.

MLCSA

Convolutional Neural Networks

The MLCSA is a supervised classification machine learning 
model, and specifically uses a convolutional neural network 
(CNN). The CNNs are a class of artificial neural networks 
and are tailored for handling structured grid-like data. They 
are typically used in fields such as object recognition, image 
classification, and image segmentation. They comprise mul-
tiple layers, including convolutional and pooling layers, and 
excel at feature extraction and pattern recognition within 
images [12]. The convolutional layers use learnable filters to 
scan and identify local features, while pooling layers reduce 

Fig. 5  Examples of the final training pulses, with a Co-60 photopeak 
pulse in blue (centre), a Co-60 Compton scatter pulse in green (left), 
and an Am-241 pulse in red (right)
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spatial dimensions, enhancing computational efficiency and 
maintaining feature robustness [11].

The CNN architecture used in this work is a basic one-
dimensional (1D) CNN [13], where there is one output value 
as the model is designed for binary classification tasks (out-
put of either 0 or 1). The layers include an input layer (size 
(200, 1)), a convolutional layer (32 filters, ReLU activation), 
a max pool layer (pool size 2), a second convolutional layer 
(64 filters, ReLu activation), a second max pool layer (pool 
size 2), a flatten layer, a fully connected layer (64 neurons, 
ReLU activation), and an output layer (1 neuron, sigmoid 
activation). The output is a probability of belonging to one 
class or the other, and then for classification tasks a thresh-
old is set (following optimisation) to determine the bounds 
of each class. The CNN model was compiled in a CPU 
computing environment and used the Adam optimiser and a 
binary cross-entropy loss function. This architecture is suit-
able for processing 1D sequences, such as time series data 
or any other 1D data [11]. The architecture was implemented 
through standard sklearn and keras Python libraries.

The CNN takes the processed pulses as an input, and 
while it is not possible to fully determine what features the 
MLCSA exploits to classify the pulses, one key feature is 
likely to be the rise time (as discussed in detail in Sect. 1 
[6]). Rise time remains a prominent feature after pulse pro-
cessing, and has been shown to be effective at differentiat-
ing pulses arising from low-energy photoelectric absorption, 
high-energy Compton scattered photons, and high-energy 
photoelectric events [6]. One potential flaw with rise time is 
that if a photon enters the detector from behind, it is likely 
to be deposited deeper in the crystal even if it is low energy, 
and so is likely to be incorrectly classified as a Compton 
scattered photon. The effects of this will be evaluated and 
discussed in Sect. 3.2.2.

Training and Testing Process

The parameters (number of hidden layers, threshold, batches, 
epochs, etc.) for the CNN in the MLCSA were selected and 
tuned using a process of random search hyper-parameter 
optimisation to find the best values for each [11]. Each set 
of parameters were evaluated by checking the effect on 
the model performance, using common methods such as a 
confusion matrix, receiver operating characteristic (ROC) 
curves, accuracy, precision, recall, and cross-validation 
(CV) score [11, 14]. These evaluation methods all com-
pare the known labels to the model predicted labels and all 
except the confusion matrix and ROC curve are recorded 
as a percentage. This process was repeated until there were 
no further improvements to the evaluation results (results 
didn’t increase in value), and at that point the CNN was con-
cluded to have reached peak performance. The final param-
eters that provided the best results (shown in Sect. 3.1), and 

therefore the ones used in the final CNN model were: layers 
as described in 2.3.1, 128 batches, 30 epochs, and a thresh-
old value of 0.5. The confusion matrix for the final model, 
corresponding to the test data, is shown in Fig. 6, where a 
perfect model would have none-zero values only on its main 
diagonal (top left to bottom right) [11].

The ROC curve for the final model is shown in Fig. 7, 
which shows the true positive rate (TPR, recall) and false 
positive rate (FPR, ratio of negative instances that are incor-
rectly classified as positive). Classifiers that give curves 
closer to the top-left corner indicate a better performance, 
and a random classifier is expected to give points lying along 
the diagonal (FPR = TPR). The area under curve (AUC) is 
another way to compare classifiers, where a perfect classifier 
will have an area of 1 and a purely random classifier will 
have an area of 0.5. The ROC curve for the CNN in this work 
shows a good classification rate, with an AUC area value 
of 0.92, which suggests the CNN is good at classification.

Once the CNN parameters were tuned, the model was 
trained using the 80% split part of the full training data set, 
which had been processed as described in the steps in Fig. 4. 
The final labelled training pulses were passed to the CNN 
model, which mapped and learnt features in the pulses based 
on their label. Then the performance of the CNN was evalu-
ated (accuracy, precision, recall, and CV score), where the 
trained model was passed only the pulses and not the labels, 
so that the predictions could be made by the CNN and then 
compared to the actual classifications. Then, the model was 
passed the pulses without labels from the 20% test set, and 
its predictions were evaluated in the same way. The model 
had never seen the pulses of the test set, and so if the perfor-
mance evaluations in classifying the two sets (training and 
testing) are similar, then the model can be seen as generalis-
able to new data and not likely to overfit.

Fig. 6  Confusion matrix for the test pulses (37,621 pulses), corre-
sponding to the optimal model parameters during training, where S is 
scatter and P is photopeak. The rows represent the true label and the 
columns represent the predicted labels
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Live Data Process

Once the CNN model was confirmed to be performing well, 
it was incorporated into the digital Compton suppression 
flow process (Fig. 3) as the MLCSA step. The processed 
pulses for a new, live data set, containing pulses from 
Am-241 and Co-60, were passed to the MLCSA, where the 
output was pulses with predicted labels of photopeaks (1) 
or scatter (0).

Spectrum

The final step in the digital Compton suppression procedure, 
shown in Fig. 3, is the production of a spectrum using the 
MLCSA’s predictions, where pulses predicted and labelled 
as photopeaks (1) were extracted and plotted as a final ‘peak 
only’ spectrum and the scatter pulses (labelled 0) were 
discarded.

Results

MLCSA Performance on the Test Data Set

The CNN model, which was trained on the 80% data set, was 
evaluated with the 20% subset of data. The evaluation results 
for the test data are shown in Table 1, which shows that the 
CNN performed strongly, with all evaluation metrics greater 
than 70%. The high CV score indicated that the model is 
generalisable and not likely to over-fit on new data.

MLCSA Performance on the Live Data Set

Once the CNN model was trained and evaluated on the small 
20% data set, it was used in the MLCSA with the live data 
set, comprising an Am-241 and Co-60 source simultane-
ously positioned 10 cm away from the detector. The data 
were collected and processed through the digital Compton 
suppression flow from Fig. 3, which included the second 
pulse processing pipeline without the greyed out processes 
from Fig. 4. The result of the MLCSA is shown in Fig. 8, 
which shows the before and after spectra.

Spectrum Evaluation Metrics

Three metrics were used to quantify and evaluate the Comp-
ton suppression performance of the MLCSA on the final 
spectrum.

The first was MDA improvement of the Am-241 photo-
peak. The MDA is a calculation of the lowest measurable 
activity for a specific set up and given measurement time, 
and was calculated using the Currie method [15, 16] as

where B is the background sum including a region of 10 keV 
either side of the photopeak (10 keV was chosen for the 
Am-241 photopeak, for other photopeaks this would differ), 
br is the branching ratio, � is efficiency, and t is count time.

The second metric was signal to background ratio (SBR). 
The signal is defined as the net area of the photopeak above 
the background level and the background is defined as the 
area below the peak [17]:

(1)MDA (Bq) =

�

2.71 + 4.65
√

B

br × � × t

�

,

(2)SBR =

(

an

bg

)

Fig. 7  ROC curve, which shows 
the TPR and FPR for the test 
data. A random classifier is 
expected to give points lying 
along the diagonal (FPR = 
TPR)

Table 1  Evaluation results of the trained CNN (trained with data 
from 5 nuclides) on the 20% test data set, all values given as a per-
centage

Accuracy Precision Recall CV score

78.7 72.5 92.4 84.5
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where

and

where an is net peak area, bg is the background area under-
neath the photopeak, af  is the full area, C is the number of 
channels in the photopeak, B1 and B2 are the numbers of 
counts at the start and end of the photopeak, respectively 
[17].

The final metric was the percentage difference between 
before and after the MLCSA was applied, including: 
decrease in MDA of the Am-241 photopeak, reduction in 
photopeak counts, reduction in max Compton counts on the 
spectrum for a range of energies, and SBR improvement of 
Am-241. These were calculated as

where b and a refer to the relevant value before and after the 
MLCSA, respectively.

(3)an =
(

af − bg
)

(4)bg =
(

C

2

)

×
(

B1 + B2

)

(5)%Diff =

(

a − b

b

)

× 100,

Spectrum Evaluation Performance

The MLCSA was able to significantly reduce the Compton 
continuum throughout the whole spectrum, with the largest 
reductions at the lower energy region (the 200 keV region 
was reduced by ∼ 90%), while almost fully preserving the 
Am-241 photopeak (the 59 keV photopeak was only reduced 
by 15%). The Co-60 photopeaks were preserved, but were 
significantly reduced in counts ( ∼ 78%). However, it should 
be noted that the lower energy (1172 keV) Co-60 photopeak 
was not provided in the training data set, and so the presence 
of the photopeak after the MLCSA suggests the CNN model 
is able to generalise to unseen photopeak pulses.

The percentage reduction in photopeaks in the before and 
after spectrum was calculated from the data shown in Fig. 8. 
The reductions for the 59 keV Am-241 photopeak, 1173 keV 
/ 1332 keV Co-60 photopeaks, and the overall counts reduc-
tion in two scatter areas, defined as a low scatter region at 
200 keV and a high scatter region at 400 keV, are shown in 
Table 2 for the MLCSA and for the physical CV system. The 
percentage difference was significant on the scatter regions 
after the MLCSA, while remaining desirably low for the low 
energy Am-241 photopeak. The Co-60 peaks were reduced 
significantly, with one possible explanation for this is likely 
to be from how the MLCSA classifies the pulses based on 
rise time. While rise time is only one possible feature used 
by the CNN in the MLCSA, it is potentially flawed as dis-
cussed in Sect. 2.3.1. However, these reductions are similar 
to the physical CV system as discussed in Sect. 1 [5] and 
are an improvement on the output of other digital methods 
[6] which completely remove the higher energy photopeaks.

The SBR was calculated on the Am-241 photopeak using 
Eqs. 2–4 for the before and after spectrum, producing values 
of 1.23 and 1.83 respectively. This produced a significant 
improvement in the SBR of the Am-24 photopeak, with a 
percent increase of 49% (calculated using Eq. 5), which indi-
cates a reduction in the Compton background at the 59 keV 
photopeak. These results are shown in Table 3.

Fig. 8  Mixed Am-241 and Co-60 spectrum before (line) and after 
(filled) the MLCSA. Top shows the full spectrum, middle is zoomed 
along the vertical axis, and bottom is zoomed along the horizontal 
axis (left shows around the Am-241 photopeak and right around the 
Co-60 photopeaks)

Table 2  Evaluation of the photopeak counts reduction, and Compton 
counts reduction (at 200 and 400  keV), as a percentage difference 
between before and after the application of the MLCSA and physical 
Compton veto (CV) system at UKAEA

Energy, keV MLCSA CV count
Count Reduction, %

Reduction, %

59 15 18
1173 79 77
1332 77 76
200 99 81
400 95 94
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The MDA of the Am-241 59 keV photopeak was calcu-
lated using Eq. 1 for the before and after MLCSA spectra, 
and the improvement was calculated using Eq. 5. The MDA 
before was 156 Bq and after was 76 Bq, this produced a 
reduction of 51% (these results are included in Table 3). 
Compared to other digital methods that achieved an MDA 
reduction of 37% [6], this is a significant improvement.

Discussion

The MLCSA reduced the Compton continuum and improved 
the SBR ratio of the low energy Am-241 photopeak in the 
presence of higher energy � emitters. The resulting spec-
trum from the MLCSA on the Am-241 and Co-60 spectrum 
show that the Compton continuum from Co-60 scatter can 
be reduced by ∼ 90% using machine learning (specifically 
a basic 1D sequential CNN), while retaining the Am-241 
and Co-60 peaks. The SBR ratio of the Am-241 peak was 
improved by 49%, and the MDA improved by 51% - this will 
lead to better detection and more accurate activity quantifica-
tion, especially in the case where the lower energy photope-
aks are present in lower quantities. This shows the potential 
for improving Compton suppression systems as this method 
is similar to the physical Compton veto ring (as shown in 
Table 2), but with improved SBR and MDA performance 
and with a digital advantage that it could be readily adapted 
to other detectors. This work also improves upon methods 
such as the rise time cut off (Sect. 1, [6]), as 20% of the high-
energy photopeak pulses are preserved with the MLCSA, 
compared to none in the rise time [6] method. The MDA 
improved by 37% in the rise time method [6], compared to 
51% with the MLCSA. One of the primary benefits of the 
machine learning approach is the potential generalisation 
across instruments and elimination of the requirement for 
additional hardware. No algorithm will be 100% effective, 
but the benefits from the MLCSA is an improvement to other 
digital methods as some higher energy photopeak pulses are 
preserved. With further development the results could pos-
sibly be improved further.

This work did not involve complex modelling of a 
detector, but instead relied on measuring a set of reference 
sources. Therefore, this could be applied to other detectors 
as the CNN model would only need re-training with pulses 
from that detector. This means the MLCSA is potentially 
detector agnostic, which could be demonstrated with further 
work and development. Other future developments of this 
algorithm could include: making the MLCSA run in live 
time, including more nuclides to the training and testing 
sets to make it more widely applicable and improve gen-
eralisability, and improving the machine learning model 
performance.

With the significant improvement to low energy nuclide 
detection in the form of Compton suppression, and with fur-
ther development (including a larger suite of radionuclides 
for training), the MLCSA has the potential to improve fusion 
diagnostics by improving the detection of key low energy 
nuclides. As an example, in foil activation experiments, 
information about the plasma can be calculated from key 
lines in the gamma spectrum following irradiation of activa-
tion foils in a fusion environment [1, 5, 18–22]. The lines of 
interest are often low energy, can be low abundance, and are 
often obscured by the Compton scattering of higher energy 
activation products. The MLCSA could be applied to such 
spectra, which would reduce the Compton continuum and 
improve the analysis and therefore could reduce the errors 
on the fusion power calculations. This also has the potential 
to impact the nuclear industry at a broader level, as gamma 
spectroscopy is a method used in radioactive waste man-
agement and disposal (fission and fusion [23]), therefore 
improved low energy nuclide detection could have a positive 
impact.
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Table 3  Evaluation of the photopeak SBR and MDA improvements 
for Am-241, values before and after provided, and a percentage 
increase between before and after the application of the MLCSA and 
the physical Compton veto (CV) system

Method Metric Before After %
Diff

MLCSA SBR 1.23 1.83 49
MDA 156 Bq 76 Bq 51

CV SBR 20.77 24.78 19
MDA 183 Bq 160 Bq 12
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otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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