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A B S T R A C T   

After generating a large ensemble of palaeo ice sheet model runs, it is common to either rank the simulations, or 
classify each simulation as an acceptable match to observations or not. Both tasks require implicit human 
judgement, usually left to the discretion of the research authors. For instance, even numerical comparisons to 
reconstructions require human input on values for match thresholds and allowances for model-mismatch. We 
embrace the subjectivity of human judgement and calibrate an ice-sheet model by explicitly asking ~100 experts 
to identify simulations that are good enough. Expert judgement is made based on a set of features of the model 
output that is of interest (for example, margin shapes and regional ice volumes); where possible we also record 
such knowledge. By seeking the input of many experts, we obtain a community consensus that can be used to 
develop guidance to determine the quality of future simulations. This short communication describes our ex-
ercise in seeking expert classifications of simulations of the Last Glacial Maximum (LGM) North American Ice 
Sheets, discusses the lessons learnt, and suggests future analysis of the responses.   

1. Introduction 

Palaeo ice sheet modelling studies often produce large ensembles of 
simulations to properly explore the uncertain parameter space, in search 
of simulations that are a reasonable match to empirical observations and 
to better understand the potential range of ice sheet behaviour (DeConto 
and Pollard, 2016; Gregoire et al., 2016; Gandy et al., 2021). This 
ensemble approach produces many simulations which are a poor match 
to observations, and some which are a better match (Fig. 1). To deter-
mine which simulations are sufficiently accurate (be that for further 
analysis, or for feeding into another model experiment or model) sim-
ulations can be compared against empirical data constraining the size, 
shape, and behaviour of past ice sheets. However, it is a challenge to 
compare multiple simulations to the wealth of empirical data, including 
deglaciation ages (Small et al., 2017; Dalton et al., 2020), flowsets 
(Boulton and Clark, 1990; Hughes et al., 2014), margin reconstructions 
(Dalton et al., 2020; Clark et al., 2022), and relative sea level curves 
(Dyke et al., 2005; Argus and Peltier, 2010; Vacchi et al., 2018). All these 
reconstruction methods include their own uncertainties, a variety of 
sub-methods, and in some cases contested interpretation. Further 

complicating matters, guidance on quantifying acceptable 
model-mismatch for each reconstruction method is sparse, and highly 
uncertain. In a pioneering paper, Andrews (1982) proposed that ice 
sheet reconstructions would be strengthened by combining and recon-
ciling model and empirical evidence. Numerical ice sheet modelling was 
in its infancy, but despite four decades of progress, the full integration of 
model and empirical data has proved difficult to implement. 

A simple approach to model-data comparison is to compare model 
features, such as ice sheet volume and area, to data-based re-
constructions; for example, in Gregoire et al. (2016) and Gandy et al. 
(2023). It is also not certain that the smallest and largest existing re-
constructions are the actual bounds of physical plausibility, so the 
ranges need to be extended accordingly. This problem is more acute 
when comparing palaeo ice sheet simulations to a reconstructed area. 
For example, the Last Glacial Maximum (LGM) footprint of the North 
American Ice Sheets were reconstructed with only limited uncertainty 
by Dyke et al. (2002), and further refined by Dalton et al. (2020). The 
precision of this reconstruction is difficult for a freely-evolving ice sheet 
model to reproduce, so we need a judgement of where and how much 
deviation from the reconstruction is tolerable. As an extreme example, a 
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simulation that is perfectly matched to the southern margin of the LGM 
Laurentide Ice Sheet, but with a doughnut-like hole in the ice sheet, 
would be less plausible than a poorly matched southern margin with 
contiguous ice in the interior, even if the absolute error compared to the 
reconstruction was comparable. Recent reconstructions of the Eurasian 
(Hughes et al., 2016) and North American (Dalton et al., 2023) ice sheets 
include a maximum and minimum plausible extent, which partly helps 
address comparison uncertainty. In Gregoire et al. (2016) and Gandy 
et al. (2023), the error between each simulation and the reconstruction 
area was calculated, and used to rank the ensemble. An error cut-off 
between implausible and plausible simulations was decided by the 
authors. 

There are more sophisticated methods to compare models to 
empirical data. For example, reconstructed and expected relative sea 
level curves can be compared to constrain the spatial distribution of ice 
mass. This is a developed route of model-data intercomparison e.g. 
(Walcott, 1972; Peltier et al., 1978; Quinlan and Beaumont, 1982), and 
there is a wealth of data to compare to. To assist with model-data 
comparison, tools have also been developed to compare model outputs 
to palaeo ice sheet geomorphology. The Automated Proximity and 
Conformity Analysis (APCA) tool has been developed to compare map-
ped moraine positions to modelled margins (Napieralski et al., 2006; Li 
et al., 2008). This tool computes the similarity in shape of modelled ice 
margins and moraines, identifying occurrences for each moraine when 
both the proximity and conformity is below some acceptance threshold. 
The Automated Flow Direction Analysis (AFDA) tool follows a similar 

principle, computing the mismatch in flow direction between modelled 
and empirically mapped flowsets (Li et al., 2007), and the recently 
developed Likelihood of Accordant Lineations Analysis (LALA) tool uses 
a statistical methodology to consider variability in empirical mapping 
techniques (Archer et al., 2023). 

Finally, geochronology has been compared to ice sheet models using 
the Automated Timing Accordance Tool (ATAT) (Ely et al., 2019). The 
tool considers an empirical age constraint, and identifies all instances 
that an age is not conflicted by the model outputs. Unlike other tools, 
this does not require any set acceptance thresholds, instead calculating 
the percentage of ages which do not conflict with the model output. 
APCA, AFDA, and ATAT have all been used to rank ensemble members 
of palaeo ice sheet simulations (Ely et al., 2021; Gandy et al., 2021). 
However, there are some recurring shortcomings of these tools, such as 
the need to set acceptance thresholds. This returns us to the 
human-judgment element of “how good is good enough?“. 

1.1. Our approach 

Here, we explore the use of expert judgement to identify “good” 
simulations of palaeo ice sheets in a large ensemble. Expert elicitation is 
a well cited and often used method that quantifies probabilistic beliefs 
from subject matter experts (Astfalck et al., 2018; O’Hagan, 2019). 
However, rigorous expert elicitation for even the simplest quantities is 
exacting. We instead treat experts as a classifier, or data-generating 
source, and capture expert beliefs through modelling. Expert opinion 

Fig. 1. The good, the bad, and the ugly. A range of simulations of the LGM North American Ice Sheets, from Gregoire et al. (2016) and Gandy et al. (2023), including 
a potentially reasonable simulation (a), a simulation with restricted ice (b), a glaciologically or climatologically implausible simulations (c), and a simulation with 
extensive ice (d). 
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has been used within glaciology to identify slush from remote sensing 
imagery (Dell et al., 2022), to identify plausible future ice sheet pro-
jections (Bamber and Aspinall, 2013), and to map fields of subglacial 
linneations (Archer et al., 2023). We argue that this method can be 
added to the existing arsenal of tools described above. 

2. Methods 

We sought to acquire a database of categorisations, classified as 
either “good enough” or “not good enough” for an existing ensemble of 
simulations of the LGM North American Ice Sheets (the combined Lau-
rentide, Innuitian, and Cordilleran Ice Sheet complex) from Gregoire 
et al. (2016) and Gandy et al. (2023). The LGM North American Ice 
Sheets are well-constrained by empirical data (e.g. Pico et al., 2017; 
Gowan et al., 2021), and has been extensively modelled (e.g. Tarasov 
and Peltier, 2007; Gowan et al., 2016), compared to the Eurasian Ice 
Sheet or other time periods. The definition of “good enough” will vary 
between participants, depending on individual requirements for ice 
sheet simulation usage. This diversity of opinion helps us understand 
two things: first, the variability in community opinion for a simulation to 
be classified as “good enough”; and second, what the standard com-
munitywide “good enough” simulation looks like. We received enough 
responses to categorise each ensemble member multiple times, allowing 
for some indication of the response variability. Although, at first, this 
may seem a crude method of calibration, we show in the responses that 
the community recovered many known important features. 

All simulations are of the LGM ice sheet, with 567 simulations from 
Gregoire et al. (2016) which are forced with climate simulations of 21 ka 
BP using climate model output. There are also 347 simulations from 
Gandy et al. (2023), which are from coupled climate-ice sheet simula-
tions using the Glimmer ice sheet model and the FAMOUS General 
Circulation Model running with PMIP4 LGM boundary conditions and a 
statistical reconstruction of ocean conditions (Astfalck et al., 2024). 
Each simulation was displayed to the user showing the simulated ice 
sheet shape, and the total ice sheet volume in sea level equivalent for the 
whole domain. An example of how the simulations are displayed is 
shown in Fig. 2. The plots do not include any information about the 
empirical constraints, for example by showing the Dyke et al. (2002) 

margin. This is to avoid bias in the results towards any specific infor-
mation displayed on the plots. 

We use the citizen science web portal Zooniverse to host the cate-
gorisation workflow. Zooniverse has previously been used to categorise 
galaxies (e.g. Weisz et al., 2015; Lingard et al., 2021), cyclone centres 
(Knapp et al., 2016), and to annotate historical documents e.g. (Williams 
et al., 2014; Grayson, 2016; Blickhan et al., 2019). Zooniverse displays a 
random simulation plot (such as Fig. 2), and users can click if the 
simulation is “good enough” or “not good enough”. This response is 
saved, and a new randomised plot is shown. Each new plot is chosen at 
random from the full sample of 914, so can be categorised multiple 
times. We collected the majority of the data in person during conference 
poster sessions, allowing conversations which collected soft-knowledge 
from the experts on what features of the ice sheets they were explicitly 
looking at. No other user information is retained and users are not 
required to log on or provide any personal information. A user can 
continue categorising in perpetuity; there is no set number of simula-
tions to categorise. We encouraged users to spend 5–10 min categoris-
ing, which would equate to roughly 60–120 individual categorisations. 

Participation in the classification was advertised on social media and 
through the subject-related mailing list “Cryolist”, including a link to 
participate. We also advertised the project through a poster presentation 
at both EGU and INQUA 2023, where a tablet was set up for participa-
tion during the poster presentation, and a link was provided so attendees 
could contribute in their own time from their own device. Just less than 
half of all the ice sheet classifications were made during the weeks of 
EGU and INQUA. 

3. Results and discussions 

From February to August 2023, we received 3396 responses, with 
1220 during the week of EGU and 195 during the week of INQUA. The 
classifications were made across 107 sessions, suggesting the partici-
pation of ~100 people. Of the 3393 responses, 94.8% of the results were 
negative, which is consistent with most ensemble simulations being 
ruled out when they were previously assessed with more traditional 
methods in Gregoire et al. (2016) and Gandy et al. (2023). As the dis-
played simulations were selected randomly, 1 simulation was never 
categorised, and 60 only had one categorisation. Each simulation had an 
average of 3.7 responses. 

By comparing the set of positive responses to the entire set of sim-
ulations, it is possible to determine some features of classification that 
lead to positive responses. Fig. 3 shows, for each gridbox, the percentage 
of simulations with ice cover for the entire simulation set, compared to 
just the positive responses. This shows that the positive response set is 
much more extensive, on average, with ice extending down towards the 
expected southern margin (Dyke et al., 2002; Dalton et al., 2020). There 
is also no increase in Alaskan ice, despite larger simulations in the en-
sembles typically having extensive Alaskan ice cover, showing that re-
sponses favoured simulations without extensive Alaskan ice. 

3.1. Analysis of the classifications 

The collected categorisations only contain responses for ice sheet 
simulations that have been presented; without further analysis they do 
not immediately help us determine if any future simulation of the LGM 
North American Ice Sheets would be acceptable. Accordingly, we seek to 
find trends in the responses from which we can construct generalised 
rules to replicate the results of the community categorisation. As we 
have laboured, we do not recommend this to replace any of the existing 
calibration methodologies, but to be used in conjunction. 

First, we look at the results as a function of the total whole-domain 
volume and footprint area of each simulation. This is shown in the top 
plots of Fig. 4; a “good enough” response is marked by blue and “not 
good enough” by red. This whole domain approach is a simple metric, 
previously used by Gandy et al. (2023). It shows that simulations with a 

Fig. 2. An example LGM ice sheet simulation which could pass some simple 
metrics, with a reasonable ice volume and area, but a glaciologically and 
climatologically implausible southern margin. 
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higher volume and area are more likely to be categorised as “good 
enough”, with many simulations categorised this way once the volume is 
above 3 × 107km3 and the area is above 1.5 × 107km2. This region 
contains 72.1% of the positive responses and rejects 61.6% of the 
negative ones, but still is only 30% positive. This is likely the result of the 
fact that ice sheet simulations with a very similar total volume and area 
can have very different configurations and such a simple rule is unable 
to capture this sophistication. An example of an unreasonable simula-
tion which has a similar volume and area to a reasonable simulation is 
shown in Fig. 2. The variability will also reflect the inherent variability 
of the community engagement, with individual contributors having 
different approaches to identifying good simulations. Overall, this whole 
domain volume and area approach, alone, has limited ability in helping 
to identity if a simulation is likely to be favourably categorised by the 
community, but it can certainly identify when a simulation is very un-
likely to be categorised favourably. 

We asked contributors what explicit features they were looking for to 
help identify a good simulation. Two main responses were the extent of 
the southern margin by itself, and the extent of the southern margin 
without overextending onto other regions such as Alaska. The distri-
bution of good simulations of the southern margin’s volume and area is 
shown in the middle plots of Fig. 4. If we just examine simulations with a 
Southern Area above 1.5 × 104km2 and a Southern Volume above 0.5 ×
107km3, we would include 73.2% of all positive responses, and exclude 
52.2% of all negative response. This is not a significant improvement on 
using the entire ice sheet volume and area. Next, the southern volume is 
compared to the Alaskan volume in the bottom plots of Fig. 4. The extent 
of the Alaskan sector (Fig. 4e) is kept broad to test for simulations where 
a limited Alaskan ice extent is coincident with a deglaciated northern 
Cordilleran Ice Sheet. Interestingly, when examining the interplay of the 
southern margin and Alaska, three distinct behaviour patterns are 
apparent. The top left cluster has very few positive responses. The 
middle cluster simulations, where the southern ice volume is above 1 ×
107km3 and Alaskan volume is between 0.4 and 0.8 × 107km3 have a 
high chance of being categorised as “good enough”. Finally, the bottom 
cluster shows a similar pattern as in the domain-wide analysis, where 
ice-sheet volumes above 0.5 × 107km3 result in a mixed response. 

If we apply the constraint of all three metrics together we capture 
46.6% of the positive responses, and reject 69.5% of the negative ones. 

Note, this does not perfectly calibrate our model to a user categorisation, 
but rather provides some notion similar to not-ruled-out-yet space in 
history matching (Williamson et al., 2013). Our analysis of the responses 
is a relatively rudimentary first attempt at presenting these results. As 
demonstrated by looking at the interplay between the southern volume 
and the Alaskan volume, more complicated studies of model features 
could provide tighter calibration. We expect as we continue to explore 
increasingly complex metrics of ice sheet configuration, informed by 
statistical and machine learning feature selection methods, an even 
stronger classification signal will emerge. 

3.2. Considerations 

A shortcoming of this approach is that it does not directly consider 
the wealth of empirical data available on palaeo ice sheets (e.g. Dalton 
et al., 2020). This empirical data has been hard-won as part of large 
innovative projects (for example, Clark et al., 2022), and there are ex-
amples of model ensembles being robustly compared to this data. Where 
comparisons to empirical data may fail is when it is difficult to judge and 
compare the complex geometry of the ice sheets; a total volume and 
extent may be reasonable, with an implausible mass distribution, for 
example. Of course, the categorisations of contributors are made 
considering their implicit knowledge of the empirical data, synthesised 
into a general view and assessment, but this generalisation can exclude 
some nuance in the data (such as the non-synchronous maximum extent 
of the North American Ice Sheets), contain a lack of information, or 
could include personal biases. Applicability of this method to other ice 
sheets would need to consider the higher uncertainty in the empirical 
data, and potentially a resulting greater spread of “good enough” 
responses. 

The most common question we were asked at the EGU and INQUA 
poster sessions was a derivative of “am I enough of an expert to help?” 
Our approach was to encourage anyone who was interested in the 
project and the LGM North American Ice Sheets to contribute, in 
contrast to usual expert elicitation studies where the expert group is 
selected and relatively small. This open approach was motivated by the 
wish for a range of contributions, reflecting the wide range of re-
searchers who may use the output of ice sheet models. We also wanted to 
avoid acting as an arbiter of who qualifies as an expert in the field. A 

Fig. 3. The percentage of simulations with ice cover for each grid box, for all simulations (a) and all positive responses (b).  
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challenge is that there were certainly contributors who had limited 
knowledge of the LGM North American Ice Sheets. Our view is that each 
simulation was, on average, classified multiple (3.7) times, protecting 
against this issue. We also note that contributors who were highly 
engaged in the research spent much more time classifying simulations 
than contributors with a passing interest. Still, this range of expertise in 
the contributors will likely have contributed to some variability seen in 
the results in Fig. 4. 

3.3. Future developments 

The work presented in this manuscript is primarily a proof of concept 

for a much more detailed and robust statistical analysis that is being 
designed. We have three focuses for this analysis, that are expected to 
make this use of expert judgement a more powerful calibration tool. 
First, we will examine how the binary expert responses can be translated 
into the underlying belief distribution of the experts, both in the model 
space and in the parameter space. Next, we will look to feature selection 
techniques to dial in the use of this data as a classifier for future model 
results. Modern and sophisticated machine learning techniques 
increasingly have the capability to describe very sophisticated, and non- 
linear, features of model output, and we expect such techniques to work 
well in this application. Finally, we will develop theory for adaptive 
sequential design, to maximise the utility of expert response. As we have 

Fig. 4. An attempt to identify simulations likely to be categorised as “good enough” using simple volume and footprint area categorisations. The extents used to 
calculate volume and area are shown in panels a, c, and e, with the same elevation colormap as Figs. 1 and 2 b) The volume and area of the whole domain, d) The 
volume and area of the southern margin, f) The volume of the southern margin and the Alaskan sector. Red points categorised as “not good enough”, blue points 
categorised as “good enough”. The domains used to compute volume and footprint area are shown in red on the corresponding maps. 
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mentioned, 94.8% of responses were negative, and so only ~ 1/20th of 
the experts’ decisions were used to positively classify an ice sheet. 
Rather than naively randomly sampling simulations, we can use adap-
tive sequential design methods to inform what models we present to the 
experts to maximise the information gain for a fixed number of re-
sponses. Additional surveys could also be completed with a non- 
specialist audience to help determine the level of expertise required, 
and the required survey size. 

4. Conclusions 

This study presents an innovative approach to evaluating palaeo ice 
sheet simulations, employing expert judgement through a citizen sci-
ence framework to assess the quality of numerous model runs of the 
LGM North American Ice Sheets. Whilst traditional methods of model- 
data comparison often rely on subjective thresholds of a small number 
of research authors, here we compile the subjective decision of many 
experts. Our exploration of the experts’ responses yielded valuable in-
sights into perceptions on what requires a simulation to be “good 
enough”. Our findings reveal the complexity in pinpointing a definitive 
metric for simulation quality. While certain characteristics such as total 
ice sheet volume and regional ice configurations offer predictive po-
tential, the variability in assessments underscores the limitations of 
simple metrics in predicting community-consensus on model quality. 
We have offered some avenues for future work that will lead to better 
predictive power of a model classifier and better utilise expert resources. 
Future work could address the incorporation of empirical data and 
refine the elicitation process, aiming to establish a more nuanced, 
comprehensive methodology for assessing ice sheet simulations in 
palaeo-climate studies. 
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