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ABSTRACT Many real-world problems can be modelled in the form of complex networks. Social
networks such as research collaboration networks and facebook, biological neural networks such as human
brains, biomedical networks such as drug-target interactions and protein-protein interactions, technological
networks such as telephone networks, transportation networks and power grids are a few examples of
complex networks. Any complex system with entities and interactions existing between the entities can
be modelled as a graph mathematically, with nodes representing entities and edges reflecting interactions.
In numerous real-world circumstances, interactions are not confined to pair of entities. Majority of these
intricate systems inherently possess hypergraph structures, characterized by interactions that extend beyond
pairwise connections. Existing studies often transform complex interactions at a higher level into pairwise
interactions and subsequently analyze them. This conversion frequently leads to both the loss of information
and the inability to reconstruct the original hypergraph from the transformed network with pairwise
interactions. One of the most essential tasks that can be performed on these graphs is Link Prediction
(LP), which is the task of predicting future edges(links) in a graph. LP in graphs is well investigated. This
article presents a novel methodology for predicting links in hypergraphs. Unlike conventional approaches
that transform hypergraphs into graphs with pairwise interactions, the proposed method directly leverages
the inherent structure of hypergraphs in predicting future interaction between a pair of nodes. This is
motivated by the fact that hypergraphs enable the depiction of intricate higher-order relationships through
hyperlinks, enhancing their representation. Their capacity to capture complex structural patterns improves
predictive capabilities. Node neighborhoods within hypergraphs offer a comprehensive framework for LP,
where hyperlinks simplify interactions between nodes across cliques. We propose a novel method of Link
Prediction in Hypergraphs (LPH) to predict interactions within hypergraphs, maintaining their original
structure without conversion to graphs, thus preserving information integrity. The proposed approach LPH
extends local similarity measures like Common Neighbors, Jaccard Coefficient, Adamic Adar, and Resource
Allocation, along with a global measure, Katz index, to hypergraphs. LPH’s effectiveness is assessed on six
benchmark hyper-networks, employing evaluation metrics such as Area under ROC curve, Precision, and
F1-score. The proposed measures of LP on hypergraphs resulted in an average enhancement of 10% in terms
of Area under ROC curve compared to contemporary as well as conventional measures. Additionally, there
is an average improvement of 70% in precision and around 50% in F1-score. This methodology presents
a promising avenue for predicting pairwise interactions within hypergraphs while retaining their inherent
structural complexity as well as information integrity.

INDEX TERMS
Link prediction; Complex hyper-networks; Hypergraphs
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I. INTRODUCTION

MAny real-world complex systems containing entities
that interact can be modeled as complex networks [1],

[2]. Graphs and hypergraphs serve as modelling frameworks
for complex networks, each with its own strengths and
limitations [3]. Both models contain nodes depicting real-
world entities. They vary in the representation of edges.
Edges in graphs represent pairwise interactions between two
entities. Whereas edges in hypergraphs called as hyperedges
can link multiple nodes simultaneously, allowing for interac-
tions involving more than two entities. We use "graphs" and
"networks" as well as "hypergraphs" and "hyper-networks"
interchangeably in this paper. A few examples of complex
networks and complex hyper-networks are given in Table.1.

Hyper-networks provide a more expressive representation
for situations involving higher-order relationships among
entities [4]. Hypergraphs can become computationally inten-
sive, especially as the size of hyperedges increases, requir-
ing careful consideration for scalability. The simplicity of
graph representation typically leads to computationally ef-
ficient and scalable algorithms for certain types of analytical
tasks. Therefore, graphs are more popular representation of
complex systems. It is a common practice to transform the
hypergraphs into graphs to perform any task on them. For
instance, consider a network representing co-author relations
between authors. Nodes of such graphs denote authors and
an edge forms between nodes exist if authors co-author a
research article. Consider the scenario where Paper 1 is
authored by authors A, B and C together, Paper 2 is authored
by authors C and D and Paper 3 is authored by authors D and
E. This information can be modeled naturally as hypergraph
as shown in Fig.1. The transformed network with pairwise
interactions is shown in Fig.2. The collaboration network
shown in Fig.2 only depicts the collaboration between pairs
of authors, losing the collaboration information of a group of
authors on a single publication. Thus, a collaboration situa-
tion described above can be more meaningfully represented
as a hypergraph rather than graph. This clearly demonstrates
that hypergraphs offer a more meaningful way to model sce-
narios that involve higher-order relationships among entities
compared to graphs.

FIGURE 1: Coauthorship hyper-network denoting interac-
tions among group of authors

Link prediction (LP) is one of a fundamental problem
focusing on the estimation of the probability of a future

FIGURE 2: Coauthorship network representing pair-wise
interaction between authors

interaction between two entities [5]. Some of the potential
applications of LP are given below.

• Collaborative networks: LP algorithms, are used to pre-
dict future collaborations between authors, as well as to
recommend collaboration between authors.

• Drug-target interactions: Studies on the impacts of pos-
sible drug interactions require large samples, extensive
time and high cost. The interactions between drugs to
predict poly-pharmacy interaction can be predicted in
complex drug-target hyper-networks and most probable
ones can be experimented to save cost and time.

• Transportation domain: Applications of LP in trans-
portation domain involves:

– Route Planning: Predict future connections to opti-
mize route planning for vehicles.

– Infrastructure Planning: Anticipate future connec-
tions to inform infrastructure planning and devel-
opment, such as the construction of new roads or
transportation hubs.

– Traffic Management: Predict links to improve traf-
fic management strategies, including congestion
mitigation and adaptive traffic signal control.

– Emergency Response: Predict links to improve
emergency response strategies, such as rerouting
traffic during accidents or natural disasters.

• Biological Networks: LP methods are utilized for pre-
dicting interaction between proteins in a protein-protein
interaction networks.

• Social Networks: Facebook uses LP algorithms to rec-
ommend friends to users.

• E-Commerce: LP algorithms can be used by E-
commerce websites to recommend products to users.

LP in graphs is well explored in the literature. Thus far,
hypergraphs have been transformed into graphs and LP mea-
sures have been employed on the transformed graph. Con-
verting hypergraphs to graphs provides a practical means for
leveraging existing graph-based tools and algorithms. How-
ever, this may lead to significant loss of information. LP using
hypergraphs offers a number of advantages. Hypergraphs
enable the depiction of intricate higher-order connections
through hyperlinks, making them more significant models.
Their capacity to comprehend and analyse complex struc-
tural patterns enhances their forecasting abilities. The studies
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TABLE 1: Various complex networks

Network Nodes Edges Hyperedges
Social Networks Individuals Social connections, friendship etc, between two

individuals
Group interactions among individuals

World Wide Web Web pages Hyperlinks between web pages Group of web pages having similar content
Biological Networks Molecular

entities(genes,
proteins, metabolites)

Interaction between two proteins, Regulatory re-
lationships between two genes, Metabolic reac-
tions

Multi-way relationships present among genes
and proteins etc.

Transportation
Networks

Locations Road/transportation connecting two locations Transportation routes connecting many locations

Internet Routers, servers, or
individual devices

Physical or logical connections between network
elements

Hyperedges connecting multiple nodes

Citation Networks Articles Citations between two papers Group of articles citing a single source
Collaboration
Networks

Authors Co-authorship relationships between two authors Group of authors of an article

Epidemiological Net-
works

Individuals Contacts between individuals Interaction among group of individuals

Food-web Species Predator and Prey Group of species that compete for common prey
E-commerce Users Transactions between two users Coordinated actions of more than two users, such

as a buyer, seller and broker

conducted by [6] and [7] demonstrated the effectiveness
of employing graph cliques for LP in a graph. However,
the process of finding cliques in graphs is computationally
complex. The hyperlinks in hypergraphs are analogous to
cliques in graphs. Therefore, Hypergraphs provide a more
efficient and powerful platform for LP due to their inherent
structural features. Hence, this study focuses on investigating
the efficacy of directly predicting links from hypergraphs,
without the need to convert them into graphs. . This moti-
vation leads to the following research questions:

1) Could LP in hypergraphs directly yield more advan-
tages than converting the current hypergraph model
into a graph format for predicting pair-wise links?

2) What are the modifications to existing LP measures to
make them adaptable to hypergraphs?

The following are the contributions made in this work:
1) A novel methodology termed Link Prediction in Hy-

pergraphs (LPH) is proposed to predict pairwise in-
teractions in hypergraphs, without transforming hyper-
graphs into graphs. This preserves the original hyper-
graph structure without information loss.

2) The local similarity measures of Common Neighbors,
Jaccard Coefficient, Adamic Adar, Resource Alloca-
tion and a global similarity measure of Katz index are
extended to hypergraphs.

3) The proposed approach of LPH is evaluated on six
benchmark hyper-networks using Area under ROC
curve, Precision, and F1-score.

Table. 2 describes the notation used in this work.
The structure of this document is as follows. Section II

gives mathematical definitions pertaining to networks, hyper-
networks, and the LP problem. Section III specifically exam-
ines the literary works related to the topic of LP in networks
and hyper-networks. Section IV provides a comprehensive
explanation of the proposed approach, while The results are
analyzed and discussed in detail in Section V. Section VI
concludes the work. Section VII derives the abbreviations
used in this paper.

TABLE 2: Notations used in research work

Notation Description
G Graph
H Hypergraph
V Node set
E Edge/Hyperedge set
p,q,r Nodes in network
N(p) Neighbors of node p
A Adjacency-Matrix of G
I Incidence-Matrix of H
k(r) Degree of node r
Dv Diagonal element
W Diagonal hyperedge size
n Number of n nodes
m Number of m hyperedges
δ(s) Degree of hyperedge s
cs Cardinality of the hyperedge s

II. PROBLEM DEFINITION
This section provides the mathematical notations utilized in
this work.

A. DEFINITIONS
Definition 1: Complex Network: Graph G = (V,E) is
used to describe a complex network. V = {v1, v2, .., vn}
represents a collection of n nodes, and E = {e1, e2, .., em}
represents a set of m edges.

Definition 2: Complex Hyper-network: A complex hyper-
network is represented as a hyper-network H = (V,E).
V = {v1, v2, .., vn} collection of n nodes, and E =
{E1, E2, .., Em} collection of m hyperedges, where each
hyperedge Ei ∈ (2V − ϕ).

TABLE 3: Edge function in graph and hyper-networks

Types of graph Vertex set Edge set
Graph V = {v1, v2, . . . , vn} E ⊆ V XV

Hyper-network V = {v1, v2, . . . , vn} E ∈ 2V

Both these networks can be represented using matrices.
Adjacency-Matrix is the well known matrix representation

VOLUME 4, 2016 3



for a graph, as the interactions are pair-wise, where as hyper-
network is denoted by incidence matrix because of interac-
tions among group of nodes. These two matrices are given
below.
Definition 3: Adjacency-Matrix: The Adjacency-Matrix
A(G), of a graph G = (V,E) is square matrix where entries
apq indicate edge counts involving nodes vp and vq . The
diagonal elements of A(G) are consistently zero. This matrix
construction can be achieved by:

Apq =

{
1 : if(vp, vq) ∈ E
0 : otherwise

(1)

The adjacency matrix of Fig.2 is given below:

A B C D E


A 0 1 1 0 0
B 1 0 1 0 0
C 1 1 0 1 0
D 0 0 1 0 1
E 0 0 0 1 0

Definition 4: Incidence-Matrix: In incidence matrix I , is of
size m × n. The vertices are represented by the n rows, and
the hyperedges by the m columns. I can be constructed as
follows:

Ips =

{
1 : if node p is part of hyperedge s
0 : otherwise

(2)

The incidence matrix of Fig.1 is given below:

e1 e2 e3


A 1 0 0
B 1 0 0
C 1 1 0
D 0 1 1
E 0 0 1

Note that, a graph is a specific type of hypergraph where
each of its edges has a cardinality of 2. Adjacency-Matrix
can be built from the corresponding incidence matrix using
the equation.

A = IWIT −Dv (3)

The diagonal elements of the matrix Dv , which represents
the nodes’ degrees, IT , the transpose of the incidence matrix
and W is the diagonal hyperedges size.

B. LINK PREDICTION PROBLEM
Complex hyper-networks evolve as nodes, and edges (links)
are added/removed over time. Hence, forecast future-links
or identify any missing-links in a network is vital for its
evolution. LP in hyper-networks is the problem of predicting
future hyperlinks.

Definition 5: Link Prediction in Hyper-networks (LPH):
Given a hyper-network H = (V,E), V representing set of
vertices, and E denoting set of hyperlinks, the problem of
LPH is to predict hyperlinks which are not existing in H, but

predicted to appear in future. Fig.3 illustrates the problem
where the size of hyperlinks is restricted to be 2.

Commonly used technique is to transform a hypergraph to
a graph using Eq.3, then make predictions about future inter-
actions in the transformed graph. This prediction is restricted
to the prediction of interactions between pair of nodes. No-
tably, our approach LPH aims to forecast the emergence of
the hyperedges e2 and e3, delineated by dashed lines, directly
without transforming the hypergraph into graph.

Consider Fig.3. There are 7 nodes denoted by
A,B,C,D,E, F, and G, and 4 hyperedges labeled as
e0, e1, e4, and e5. Hyperedges e0 and e1 involve more than
two nodes, specifically including E,F,G and C,D,E, F,
nodes respectively. Hyperedges e4 and e5 consist of pairwise
nodes, namely A,B and B,E.

FIGURE 3: An illustration for Link Prediction in Hyper-
graphs

The objective of the LPH problem is to predict hyperlinks
that are currently absent but anticipated to emerge in the
future. In Fig. 3, we aim to know whether the nodes A and D
as well as A and C interacts in
Definition 6: LP (LP): The LP issue for graphs was defined
by Liben-Nowell et al. [8] in the following way: Given
a Graph, G(V,E), with set of nodes V and set of edges
E representing network during time interval t, LP requires
creating a list of edges not present in G[t0], but is expected
to appear in the network G[t1] where t0 < t1.

Fig.4 illustrates the problem for LP in graphs. The network
at time t0 includes 5 nodes and 7 edges. By time t1, two
edges have been introduced between nodes A,B and C,D.
LP forecasts the netwrok’s future edges, specifically at time
tn.

The problem of LP is challenging in both cases because
of enormous magnitude of the candidate node pairs between
which the interaction is to be predicted. When predicting
links in hypergraphs, the size of the candidate set for LPH
is 2V −E. A few researchers restrict the hyperlink size to be
upto some number k and limit the problem as k − regular
[9]. In this work, we fix k to be 2. While considering LP
in graphs, the possible edges are |V |(|V | − 1) where as
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FIGURE 4: An example for LP problem in graphs

the existing edges (E) are very few. Therefore, the candi-
date node pairs for predicting possibility of future link is
|V |(|V | − 1) − |E|, which is very large in number. There
are several advantages of predicting pair-wise links in hy-
pergraphs rather than in the transformed graph. Hence, this
study proposes using hypergraphs directly for the task of LP,
bypassing the need for their transformation into conventional
graphs.

III. LITERATURE
Nodes are entities within a complex network that possess
characteristics such as keywords, research interests, and de-
mographic information in coauthorship networks, personal
and professional information in Facebook and LinkedIn net-
works, respectively. The properties of a nodes are denoted
as a vector, and the similarity between the nodes can be
calculated using a distance measure like Euclidean or cosine.
Such measures present two challenges. The first is that the
qualities vary depending on the domain, other is privacy.
Domain-dependent measurements are not applicable to all
types of networks, privacy concerns sometimes prevent node
properties from being made public. As a result, other mea-
surement is based on structural similarity of nodes within a
graph gained popularity. LP in graphs is well explored in the
literature. Section III-A briefly explains the popular measures
for LP in graphs. However, there are limited works on LP
in Hypergraphs, which are specified in Section III-B. The
existing literary works for LP in graphs and hypergraphs are
summarised in Fig.5.

A. LP IN GRAPHS
LP measures use heuristics to compute and award a particular
score to a non-adjacent node pairs. The nodes with the
highest score are the most likely to join together in the
future. Based on the computation of LP score, these measures
are classified into similarity-based measures, probabilistic-
based measures, dimensionality-based measures and other
measures.

1) Similarity-based measures
These metrics use the graph’s structural characteristics to
calculate the score between two nodes. Those methods which
depend on immediate neighborhood of the nodes are called as
local similarity measures. There is another class of similarity

measures, which consider entire graph topology to compute
score. These are called as global similarity measures. Quasi
local measures exploit these two measures by exploiting the
strengths of both [10].

• Local similarity measures: Common-Neighbors
(CN), Jaccard-Coefficient (JC) , Adamic-Adar (AA),
Resource-Allocation (RA), Preferential-Attachment
(PA), are a few popular measures in this category.
Common-Neighbors : When two nodes share a sig-
nificant number of common neighbors, the possibility
of forming a link increases [11]. The equation for
common neighbors between two non-adjacent nodes p
and q abbreviated as CNp,q is as follows:

CNp,q = |N(p) ∩N(q)| (4)

where the set of nodes p and q’s neighbors is represented
by N(p) and N(q), respectively.
Jaccard-Coefficient: The Jaccard-Coefficient is the
normalized Common-Neighbor. The Jaccard-Coefficient
is calculated by dividing the total number of different
neighbors that either node has, by the number of neigh-
bors that both nodes share [12].

JCp,q =
|N(p) ∩N(q)|
|N(p) ∪N(q)|

(5)

where N(p), N(q) are neighborhood sets of nodes p,q.
The Jaccard Coefficient is favored over Common Neigh-
bors when considering differences in node degrees and
ensures that the similarity measure is not biased towards
nodes with higher degrees. Jaccard Coefficient’s robust-
ness to change in network size and density compared to
Common Neighbors, handles sparsity effectively. The
Jaccard Coefficient’s normalized measure ranging be-
tween 0 and 1, representing the overlap between nodes’
neighborhoods intuitively.
Adamic-Adar : By giving the less-connected neighbor
a higher weight, this index outlines how the basic count-
ing of common neighbors might be improved, and is
defined as [13]:

AAp,q =
∑

r∈N(p)∩N(q)

1

log|k(r)|
(6)

where k(r) is the degree of node r.
Resource-Allocation : In order to evaluate their simi-
larity, let us assume that node p delivers resources to q
equally across their common nodes [14]. The similar-
ity between nodes rises with the volume of resources
transmitted between them. Mathematically, can be rep-
resented as :

RAp,q =
∑

r∈N(p)∩N(q)

1

k(r)
(7)

the degree of node r is denoted by k(r).
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FIGURE 5: Exploring Predictive Models for Graphs and Hypergraphs: A Literature for Link Prediction

Preferential-Attachment : The degrees of nodes p and
q together can be multiplied, which finds the richness of
two nodes [15].

PAp,q = |N(p)| ∗ |N(q)| (8)

where the set of nodes p and q’s neighbors is represented
by N (p) and N (q), respectively. PA needs the degree
of nodes and does not consider common neighbors.
Beyond the ones listed, the literature contains plenty of
additional local similarity measurements.

• Global similarity measures: Global similarity mea-
sures are mainly focused on shortest-paths and random
walks in the graph. As the paths and walks can eas-
ily computed based on the Adjacency-Matrix (A) of
a graph, many of the global measures use A in their
computation. Katz-Index (KZ) given below is the most
popular measure in this category, which is computed
based on paths in the graph.
Katz-Index : Katz-Index aggregates weighted sum
across all shortest paths between p and q by penalizing
longer paths with a damping factor 0 < β < 1 [16].
The equation is derived as:

KZp,q =

∞∑
l=1

βl|paths<l>
p,q | =

∞∑
l=1

βl(Al)p,q (9)

where paths<l>
p,q , set of total l length paths between p

and q, β the damping factor which gives more weights to
shortest paths, A is a graph’s Adjacency-Matrix, β < 1

λ ,
wherein λ represents the highest eigenvalue of matrix A.

Random Walk With Restart (RWR) [17], Average
Commute Time (ACT) [18] and Sim Rank [19] are the
popular random walk based measures. All these use
variations of number of steps taken to reach from one
node to the other in a random walk.
Local and global measures have their advantages and
limitations. There is another category of quasi local,
which use the advantages of both the categories. Local
Random Walk(LRW), LRW assesses the similarity be-
tween node pairs by focusing on limited step random-
walks [18]. Superposed Random Walk (SRW) is an-
other quasi local measure that assigns highest score to
the nearest nodes. While using a local random walk [18].
Local Path Measure(LPM) is path-based quasi local
measure that computes the similarity scores between
node pairs using paths of length two and three [12].

2) Probabilistic-based measures
These measures compute the scores between a pair of nodes,
depending on the statistical probabilities of the nodes. More
information is typically needed for probabilistic models, such
as node or edge attributes, along with structural informa-
tion to compute the statistics. Local Probabilistic Measure
(LPM) produces three types of features, and are derived
from several information sources: topological, semantic, and
co-occurrence probability characteristics. Probabilistic Rela-
tional Measure (PRM) provides both node and link attributes
[20]. The next measure, Probabilistic Entity Relationship
Measure (PERM) uses directed arcs to define relation be-
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tween attributes. Hierarchical Structure Measure (HSM),
where most of the networks are hierarchically structured,
in which nodes split into groups and subgroups, and the
subgroup information is used to predict links. The next one is
Stochastic Block Measure (SBM), it uses tensor interactions
to provide a stochastic framework for entity connections.

3) Dimensionality-based measures
These metrics calculate the score between two nodes using a
function F, that operates directly on an Adjacency-Matrix or
a graph’s Laplacian matrix [20]. Popularly using dimension-
ality measures are Embedding-based, Matrix Factorization-
based measures.

Embedding-based measure: It is a dimensionality re-
duction measure, it maps higher D dimensional nodes to
lower d dimensional nodes in the graph by preserving node
neighborhood structure.

Embp,q ≈ ZT
p Zq (10)

where the d-dimensional embedding of the node p is denoted
by Zp, and embedding-matrix, Z ∈ Rd×|V |, where each
column representing embedding vector of particular node,
Embp,q is a function which computes pairwise similarity
scores generated from embedding.

Matrix Factorization-based measures: Matrix factoriza-
tion is used in lots of LP papers since last decade [21].
Mostly, researchers extracted latent-features and using these
feature nodes in supervised/unsupervised LP. Adding more
nodes, links, or attribute data can help the prediction results
even more. Some authors used both, non-negative-matrix-
factorization, singular-value-decomposition [22]. The matrix
X = (x1, x2.., xn), that has columns with n data vectors.
Now generalizing the matrix to:

X ≈ FGT (11)

where X ∈ Rp×n, F ∈ Rp×k. Hence F called as basis
matrix, and coefficient matrix is denoted by G, whereas k
represents the dimension of latent space (k < n). Few pop-
ular matrix factorization techniques are listed here, Singular-
Value-Decomposition (SVD) [23], Non-Negative-Matrix-
Factorization (NMF) [24], Semi-NMF [25].

There are so many other approaches for LP such as ma-
chine learning-based measures, Clustering-based measures
and Information Theory-based measures, which can be found
in [21].

B. LINK PREDICTION IN HYPERGRAPHS
We review hyperlink prediction techniques from [26].
These techniques are classified into similarity-based [27],
probability-based [28], matrix optimization-based methods
[29] for hyperlink prediction.

1) Similarity-based methods in hyperlink prediction
In Similarity-based methods in hyperlink prediction, rather
than pairwise connections between nodes as in graphs, hy-
peredges are used to represent relationships involving more

than two nodes in hypergraphs. These measures compute
the score among the nodes based on structural attributes
of hyperedges and also considers the nodes they connect.
Some few popular measures are Common-Neighbors, Katz,
Hyperlink Prediction using Resource Allocation.

• Common-Neighbors in hyperlink prediction: A
node’s degree in a hypergraph indicates how many
hyperedges are connected to it, and the number of
neighbors is the total number of nodes that a particular
node shares at least one hyperedge with. The CN in
hyperlink prediction is defined as:

CNr =
2

cs (cs − 1)

∑
p,q∈s

CNp,q (12)

where cs is the cardinality of the hyperedge s.
Similar to CN, KI may be extended to hyperlinks by
substituting the hypergraph adjacency matrix for the
graph adjacency matrix A. A = IWIT − Dv is a
common definition for a hypergraph’s adjacency matrix.

• Hyperlink Prediction using Resource Allocation:
Based on the ideas of the resource allocation pro-
cess, hyperlink prediction using resource allocation, or
HPRA, is a newly developed direct hyperlink prediction
technique. HPRA uses the direct link and common
neighbors between two nodes to calculate the hyper-
graph resource allocation (HRA) index. HRA between
two nodes:

HRAp,q = SCp,q +
∑

r∈N(p)∩N(q)

SCpr × SCrq

k(r)
(13)

where SCp,q =
∑

s∋p,q
1

cs−1 , k(r) is the degree of node
r, the set of nodes p and q’s neighbors is represented by
N(p) and N(q), respectively.

2) Probability-based methods in hyperlink prediction
These measures consider the structural characteristics of the
hypergraph, much like graphs do. With hypergraphs, on the
other hand, the analysis goes beyond pairwise connections
to take relationships represented by hyperedges into account.
Three probability-based techniques for hyperlink prediction
are examined by the author.

• Node2Vec: Node2Vec follows random-walk technique
which investigates neighborhoods using both depth-first
and breadth-first sampling strategies [30]. Node2Vec for
hyperlink prediction is computed as [9]:

SN2V = sigmoid

 1

cs

∑
vp,vq∈s,p ̸=q

xT
i xj

 (14)

that produces probabilistic measures that counts the
average correlation between pair of nodes in hyperlink
s. The final existence confidence of hyperlink s is indi-
cated by score SN2V .

• Bayesian Set: Using probability, the Bayesian Set (BS)
method retrieves objects from a cluster. While retriev-
ing, only few items are retrieved from cluster and the
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problem is handled as a Bayesian inference issue [31].
This approach uses a model based understanding of
clusters to provide a score to each item based on, how
likely it is, that the item will be found in a cluster which
includes the items with queries. Let D represent a set of
data elements, and let Dc be a collection of queries such
that Dc ⊂ D. Once Dc has been seen, the items score
p ∈ D that belongs to Dc, that can be defined as:

SBS =
pb(p,Dc)

pb(p), pb(Dc)
(15)

In numerator, the probability for p, Dc is generated from
same method with same attributes, while denominator is
the probability that p, Dc generated from same method
with different attributes, where D and Dc are known
hyperlink sets.

• Hyperlink Prediction Using Latent Social Features
(HPLSF): The first machine learning technique created
for hyperlink prediction is HPLSF [32]. When produc-
ing latent node characteristics, HPLSF eliminates all
higher-order topological attributes and solely takes into
account the pairwise distances between nodes.

3) Matrix optimization-based methods in hyperlink prediction
Numerous matrix optimization-based hyperlink prediction
techniques are being studied by researchers. Spectral Hy-
pergraph Clustering (SHC), Matrix Boost (MB), and Co-
ordinated Matrix Minimization (CMM) are a few popular
techniques in this. The incidence, adjacency, or Laplacian
matrices/tensors of hypergraphs are essentially used in these
techniques to frame matrix optimization problems for hyper-
link prediction.

• Spectral Hypergraph Clustering: SHC aims to learn a
partition in which, the links among several nodes within
the same group are dense, whereas the links between
two groups are sparse [29]. Given a Hypergraph H,
where n defines nodes and the SHC model is defined
as:

min
f

||f − y||2F + µfTLf (16)

let f ∈ Rn is characterized as function of classification,
y ∈ Rn is the vector with label that contains values
of 0, 0.5, 1, µ > 0 is the parameter which regularizes
the function and the hypergraph’s normalized Laplacian
matrix is denoted by L.

L = Z −D− 1
2HDvC

−1HTD− 1
2 ∈ Rn×n (17)

where Z ∈ Rn×n is the identity-matrix, Dv ∈ Rn×n is
the diagonal matrix of hyperlink weights.

• Matrix Boost: Matrix Boost (MB) uses an iterative
completion-matching optimization, to execute inference
concurrently in the incidence and adjacency spaces
[33]. Considering an incomplete n-node hypergraph H,
denoted by A = HHT ∈ Rn×n, as the adjacency-
matrix of H.

• Coordinated Matrix Minimization: As an alterna-
tive, CMM uses least square matching and non-negative
matrix factorization in the adjacency space to identify
which subset of candidate hyperlinks might be most
suited to fill the needed hypergraph [27]. Like MB,
indicate A = HHT ∈ Rn×n, U ∈ Rn×m̃ as an
adjacency-matrix of H, candidate hyperlinks incidence-
matrix, correspondingly. Let Q ∈ Rn×k a non-negative
matrix, the latent factor matrix, and assumed that the
adjacency-matrix of the complete hypergraph is factor-
ized by

A+ UΛUT ≈ QQT (18)

where Λ ∈ Rm̃×m̃ is a potential hyperlink candidate
diagonal indicator matrix.

Many existing works in the hypergraph literature focus
on predicting hyperlinks rather than pair-wise links. How-
ever, there are very limited works focus on pair-wise LP
in hypergraphs. Kumar et al. [28] proposed HPRA extends
the LP measure of resource allocation to hyperlink pre-
diction without generating candidate hyperlinks set. HPRA
is a local-similarity-based measure based on the principle
of the resource allocation. Along with recovering missing
hyperedges, author demonstrates that HPRA predicts future
hyperedges in a wide range of hypergraphs. On experimen-
tation, HPRA gives best performance compared to existing
ones. Wang et al. define random walk notion on hyper-
graphs and use it for hyperlink prediction [34]. Chitra et
al. extended PageRank algorithm for hyperlink prediction
and applied it to disease-gene hyper-network [35]. Zhang et
al. introduced the Coordinated-Matrix-Minimization (CMM)
algorithm [27]. This algorithm utilizes alternating non-
negative-matrix-factorization and least-square-matching to
deduce potential-hyperlinks within the node adjacency-space
of the hyper-network. Wang et al. use drug combination data
and created a model called Hypergraph-Random-Walk-With-
Restart model to predict effective drug combinations [34]. A
survey on hyper LP can be found at [26]. Nasiri et al. presents
the Multiplex Local Random Walk (MLRW), an extension of
the local random walk for LP in multiplex networks. Author
utilized information from inter-layer and intra-layer interac-
tions to develop a biased random walk [36]. The work such
as [36] discusses LP in multi-relational networks, but in the
hypergraph scenario, multi-relational networks become so te-
dious. Berahmand et al. devised a comprehensive deep semi-
supervised community detection (DSSC) approach for com-
plex networks. This method incorporates a semi-autoencoder
(SEAE) along with a specified pair-wise constraint matrix
derived from point-wise mutual information (PMI) within the
representation layer [37]. LP based on Community structure
of the network provide more prediction quality in some cases.
Work of [37] discuss this scenario. However, community
detection algorithms in hypergraph are not much available in
the literature, and our focus is on link predictions for hyper-
graphs. Shang et al. examine the consensus dynamics across
temporal hypergraphs, which include non-linear modulating

8 VOLUME 4, 2016



functions, topology varying over time, and random pertur-
bations [38]. This work discusses temporal hypergraphs,
but our focus is on paiwise interactions in hypergraphs.
Shang et al. [39] investigates a three-body consensus model
incorporating higher-order network interactions and social
homophily principles which focus on neighbors decissions.
Shang et al. [40] examines consensus formation in directed
hypergraphs, extending standard graph structures to incor-
porate neighbor-dependent synergy in social dynamics, by
using petri net method. In this work, our focus is only on
undirected and unweighted hypergraphs. Exploring directed
and weighted versions will be our future work.

IV. PROPOSED APPROACH
A. MOTIVATION
LPH has the following advantages:

1) Due to the provision of modeling the presence of
intricate higher-order relationships in the form of hy-
perlinks, hypergraphs are more meaningful models.

2) The inclusion of higher-order relationships and the
ability to capture richer structural patterns can con-
tribute to enhanced predictive power in hypergraphs.

3) The concept of node neighborhood in hypergraphs
provides a comprehensive framework for the task of
predicting the link. For example, a hyperlink in a
hypergraph can be viewed as a clique in a graph. It
is straightforward to predict the interaction between
two nodes, each belonging to separate cliques with
common nodes in two cliques, in a hypergraph. The
works such as [6] [7] are greatly benefited by this
cliques in the prediction tasks. In graphs, identification
of clique itself is NP-complete.

Hence, instead of transforming hypergraphs into graphs,
this study proposes predicting pair-wise links directly from
hypergraphs. The broad approach is depicted in Fig.6. Two
approaches were employed for predicting links in hyper-
graphs. Initially, the hypergraph was divided into train and
test sets, and the train set was converted into a pairwise graph.
LP measures were then applied and evaluated against the
hypergraph test set. Alternatively, the task focused on directly
predicting size=2 hyperlinks from the hypergraph train set,
followed by evaluation against the test set.

We choose measures such as CN, JC, AA, RA, and KZ
to be extended to hyperlink prediction scenario because
these serve as straightforward methods for computing scores
between non-existing links, without considering any attribute
information. We aim to utilize these widely recognized simi-
larity measures as a starting point for our research, with plans
to expand our investigation to include additional measures in
the future.

B. LINK PREDICTION IN HYPERGRAPHS
The hypergraph is initially partitioned into a train graph
and a test graph. We propose to extend the LP mea-
sures of Common-Neighbors (CN), Jaccard-Coefficient (JC),

FIGURE 6: Novel Approach: Direct Prediction of Pairwise
Links from Hypergraphs without Graph Transformation

Adamic-Adar (AA), Resource-Allocation (RA) and Katz In-
dex (KZ) to predict links directly from the hypergraph. We
name these extended measures as LPHRA, LPHCN, LPHJC,
LPHAA, and LPHKZ. Algorithm.1 gives a concise overview
of the comprehensive methodology for the proposed LPH.

Similarity-based methods for LP in graphs (Fig.5) calcu-
late similarity scores based on graph topology for each non-
adjacent node pair p and q, scores are sorted, and it assumed
that the pairing with the highest scores would form future
links. Few popular similarity-scores are common-neighbors,
jaccard-coefficient, adamic-adar, resource-allocation, and so
on. We extend these graphs similarity based LP measures to
hypergraphs as follows.

1) Link Prediction in Hypergraphs using Common Neighbors
(LPHCN)
We extend the notion of common neighbors (CN ) given
in Eq.4 to hypergraphs through computing the average of
the pairwise CN indices between the nodes within each
hyperlink [26]. The LPHCN is defined as given the Eq.19.

LPHCNp,q =
2

cs1 ∗ cs2

∑
p∈s1;q∈s2;r∈s1∩s2

|r| (19)

where, s1 and s2 are hyperedges and cs is size of s.

2) Link Prediction in Hypergraphs using Jaccard Coefficient
(LPHJC)
LPHJC is the normalized LPHCN . The LPHJC is calcu-
lated by dividing the total number of different neighbors that
either nodes has, by the number of neighbors that both nodes
share.

LPHJCp,q =
LPHCNp,q

|N(p) ∪N(q)|
(20)
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Algorithm 1 Link Prediction in Hyper-networks (LPH)
Input:

• Hypergraph
• Trainset: A part of Hypergraph used to compute the

LPH measures
• Testset: Remaining part of Hypergraph used for per-

formance evaluation of LPH measures.
Output: E

′
: List of node pairs with probable future links.

1: Get Hyperlink Degree Distribution
2: Choose size of candidate hyperlink probabilistically

based on hyperlink degree distribution. Let the size cho-
sen be k.

3: HL = empty list of size k // Initialize hyperlink
4: q = node with highest degree
5: HL.append(q)
6: for i = 2 to k − 1 do

// Add k-1 nodes to hyperlink
7: max_lp_score=0

// compute node q with highest LP score with the
nodes in HL using the procedures specified in section
IV-B3 as follows

8: for p in HL do
9: for r in (V −HL) do

10: lps = LP_score(p, r)
11: if lps > max_lp_score then
12: q = r
13: end if
14: end for
15: end for
16: HL.append(q)
17: end for
18: for t in Testset do
19: X = HL ∩ t
20: if |X| ≥ 2 then
21: Add the 2-size subsets from X to E

′

22: end if
23: end for
24: return E

′

where LPHCNp,q is taken from Eq.19, where the set of
nodes p and q’s neighbors is represented by N(p) and N(q),
which intersects two nodes, divided by total number of com-
mon neighbors in between two nodes.

3) Link Prediction in Hypergraphs using Resource Allocation
(LPHRA)

LPHRA predicts pair-wise links using the principles of
resource allocation. This method is inspired by the work of
[28]. Contrary to graphs, hypergraphs allow nodes p and
q to already be part of another hyperlink. Consequently, a
resource at node p can be transmitted to node q either directly
or via common neighbors. Therefore, the amount of resource

transferring between node p and q is generated by:

LPHRAp,q =
∑
p̸=q

1

cs − 1
, if p, q ∈ s

=
∑

r∈N(p)∩N(q)

1

k(r)
∗ 1

cs1 − 1
∗ 1

cs2 − 1
, otherwise

(21)

where s,s1 and s2 are hyperlinks; cs,cs1 and cs2 are their
sizes; r is a common neighbor of p and q; k(r) represents the
node r’s degree and p, r ∈ s1 and r, q ∈ s2, the set of nodes
p and q’s neighbors are represented by N(p) and N(q).

The first component of Eq.21, is the amount transferred
between p and q if both these nodes are a part of a hyperlink
s. In case they are not part of same hyperlink, this component
calculates to zero. Second part computes the amount of
resource transmitted via all common neighbors between the
two nodes.

4) Link Prediction in Hypergraphs using Adamic Adar
(LPHAA)
In hypergraphs, Adamic-Adar measures how similar two
nodes are to each other by looking at shared hyperedges and
the common neighbors’ inverse logarithmic degree centrality.

LPHAAp,q =
∑

p∈s1;q∈s2;r∈s1∩s2

1

log(|k(r)|)
(22)

where |k(r)| represents the node r’s degree in the hyper-
graph.

5) Link Prediction in Hypergraphs using Katz Index (LPHKZ)
Katz Index can be extended to hypergraphs by substitut-
ing the graph’s Adjacency-Matrix A, with the hypergraph’s
Adjacency-Matrix. The computation formula is shown in Eq.
23.

LPHKZp,q =

∞∑
l=2

βlhyperpathl(p, q) (23)

where hyperpathl(p, q) is path of length l between the
nodes p and q, defined as s1s2, . . . sl, where s1s2, . . . sl are
hyperlinks such that s1 ∩ s2 ̸= ϕ. β, the damping factor such
that 0 ≤ β ≤ 1. In our experimentation, we set the maximum
value for path of length l as 5. This concept draws from the
idea of "six degrees of separation," suggesting that in real-
world networks, most pairs of nodes are connected within a
maximum path length of six. Many prior studies also adhere
to a maximum path length of five.

We exhibit the superiority of the proposed approach over
the existing versions of all these LP measures in the trans-
formed graph empirically.

V. EXPERIMENTATION
A. DATASETS
We utilize the following six datasets for proving merit of the
proposed approach over graphs.
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• NDC-classes-unique-hyperedges: National Drug Code
Directory (NDC) drugs dataset treats each class label
(found in NDC-classes) as a node. A hyperlink is the
collection of labels associated with a specific drug [41].

• NDC-substances-unique-hyperedges: This dataset
also emerge from the National Drug Code Directory
(NDC) drugs dataset, where every class substance (from
NDC-substances) is denoted as a node. A hyperlink
denotes the collection of substances associated with a
specific drug [41].

• email-Eu-unique-hyperedges (Email from European-
research-institution): Each node is an email address,
and a hyperlink is formed with a group of nodes
comprising the sender and all recipients associated with
a particular email [42].

• DAWN-unique-hyperedges (Drug abuse warning
network (DAWN) drugs): In this network, nodes rep-
resent drugs and hyperlink forms with a group of drugs
employed by a patient [41].

• tags-math-unique-hyperedges: Online question tags:
In this network, tags denote nodes and hyperlinks are
the group of tags attached with a question on an online
forum "https://math.stackexchange.com/".

• tags-ask-ubuntu-unique-hyperedges: Online ques-
tion tags: This network is formed from an online forum
of "https://askubuntu.com/". Nodes depict tags and hy-
perlinks, are group of tags attached with a question on
an online forum.

Details about the datasets are provided in Table.4.

TABLE 4: Details of the datasets used in this work
Datasets Number of

Nodes
Number of
Hyperlinks

Number of
Pairwise
links

NDC-classes-unique-hyperedges 1161 1088 6222
NDC-substances-unique-
hyperedges

5311 9906 88268

email-Eu-unique-hyperedges 998 25027 29299
DAWN-unique-hyperedges 2558 141087 122963
tags-math-unique-hyperedges 1629 170476 91685
tags-ask-ubuntu-unique-
hyperedges

3029 147222 132703

k-fold cross-validation is used in this experimentation.
The network is split up into k equal segments. Each time
one part is taken as test set and all other k-1 parts combined
is taken as train set. The proposed measures of LPHRA,
LPHCN , LPHJC, LPHAA and LPHKZ are computed
on the train set and evaluated against test set. The average of k
iterations is reported. For comparison with existing measures,
the train set is transformed into test set and the graph versions
of the proposed measures are computed. The performance of
these measures are evaluated on the same test hypergraph for
uniformity.

We conducted our research on a computer system featuring
an Intel(R) Core(TM) i7-8700 CPU, from 11th generation
with a base clock speed of 3.20GHz, 6 cores, and 12 logical
processors. The system had 16 GB of RAM and ran on
Windows 10 Education. Our study was conducted using

python, and implemented algorithms with libraries such as
Networkx, Numpy, Pandas, Matplotlib, and Scikit-Learn.

B. EVALUATION METRICS
The performance of the suggested LP measures is commonly
assessed using the following metrics [43].

• Area Under the Receiver Operating Characteristic
Curve (AUROC)

• Precision
• F1-score
The calculation for AUROC, Precison, F1-score are based

on True-Positive-Rate (TPR), True-Negative-Rate (TNR),
False-Positive-Rate (FPR), False-Negative-Rate (FNR),
which can easily computed from the confusion matrix.

where
• True-Positive (TP): The number of node pairings,

whose links are both present in the test set and predicted
by the LP measure.

• True-Negative (TN): The number of node pairings,
having a link predicted by the LP measure but link is
not existing in the test set.

• False-Positive (FP): The count of node pairings where
LP measure does not anticipate the link, but connection
is present in the test set.

• False-Negative (FN): The count of node pairs between
which the LP measure does not predict a link, and the
link doesn’t exists in the test set.

Precision and F1-score are computed using Eq. 24 and Eq.26
respectively.

Precision (PR) =
TP

TP + FP
(24)

Recall (TPR) =
TP

TP + FN
(25)

F1-score = 2 ⋆
Precision ⋆ Recall
Precision + Recall

(26)

Precision (Eq.24) called link accuracy, defines how many
of the positive predictions made are correct (true positives),
whereas F1-score (Eq. 26) integrates recall and precision
using a harmonic mean of two.

Area under ROC curve (AUROC) is a single point sum-
mary to specify the performance of a measure. AUROC has a
range berween 0 and 1, 1 being the ideal value. Performance
of any measure below 0.5 is taken as below random perfor-
mance [44].

C. RESULTS
In this section, we discuss our findings on five proposed
LP measures in hypergraphs such as LPHRA, LPHCN ,
LPHJC, LPHAA and LPHKZ. We also compare against
the corresponding LP measures in graphs.

Table. 5 presents AUROC scores across six networks. The
bold font values highlights the top AUROC within LP graph
measures, while red font values denote the highest across all
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TABLE 5: Performance of LP measures in graph vs hypergraph in terms of AUROC

LP in graphs LP in Hypergraphs(LPH)
Datasets RA CN JC AA KZ LPHRA LPHCN LPHJC LPHAA LPHKZ
NDC-classes 0.516 0.722 0.523 0.563 0.504 0.621 0.789 0.598 0.777 0.589
NDC-substances 0.523 0.598 0.501 0.857 0.503 0.955 0.629 0.729 0.956 0.596
email-Eu 0.525 0.501 0.502 0.579 0.508 0.716 0.603 0.698 0.606 0.644
DAWN 0.537 0.502 0.501 0.632 0.512 0.852 0.608 0.767 0.781 0.609
tags-math 0.535 0.501 0.499 0.667 0.515 0.849 0.696 0.754 0.691 0.651
tags-ask-ubuntu 0.572 0.502 0.499 0.717 0.501 0.828 0.712 0.717 0.762 0.696

FIGURE 7: AUROC of predicting links in graphs vs hyper-
graphs

evaluated metrics. Analysis of Table. 5 reveals AA’s supe-
rior performance on five datasets: NDC-substances, email-
Eu, DAWN, tags-math, and tags-ask-ubuntu. CN outshone
others in the NDC-classes dataset. Among introduced LPH
metrics, LPHRA outpaced alternatives in LP for email-Eu,
DAWN, tags-math, and tags-ask-ubuntu datasets. LPHCN
led in NDC-classes, with LPHAA excelling in NDC-
substances. Hypergraph adaptations of LP methods marked
a 10% average enhancement in predictive accuracy over
traditional graph-based predictions. The Fig. 7 showcases
the AUROC for both graph and hypergraph LP metrics.
Notably, the hypergraph iteration of RA, termed LPHRA,
showcases a 27% boost over its RA counterpart. Likewise,
LPHCN , LPHJC, LPHAA, and LPHKZ have shown
enhancements of 12%, 21%, 10%, and 13% respectively,
when compared to their graph-based versions.

Table 6 details the precision scores for LP metrics. Within
the NDC-classes dataset, RA leads in graph performance,
closely followed by JC. However, in the hypergraph cate-
gory, LPHRA outshines its counterparts, with its precision
notably marked in red. For the NDC-substances dataset, KZ
stands out in graph metrics, while LPHRA, highlighted
in red color font, achieves the highest precision among

FIGURE 8: Precision of LP measures in graphs vs hyper-
graphs

hypergraph measures, underscoring its effectiveness. In the
email-EU dataset, KZ performs well in graph metrics, but
LPHRA steals the show in hypergraph analysis, its excellence
underscored in red color font. RA performs admirably in
the DAWN dataset’s graph metrics, with LPHRA leading
in hypergraph precision. In the tags-math dataset, RA tops
the graph metrics, while LPHRA distinguishes itself in the
hypergraph domain. RA maintains strong performance in
the graph metrics of the tags-ask dataset. LPHRA often
surpasses other hypergraph metrics, illustrating its capacity
to capture complex connections. The success of hypergraph-
based metrics, especially LPHRA, suggests their value for
datasets with hypergraph structures.

Fig.8 illustrates the precision of LP metrics for both graph
and hypergraph formats. LPHRA, the hypergraph adaptation
of RA, shows a remarkable 44% improvement over its graph
counterpart, RA. LPHCN notes an 8% gain over CN .
LPHJC and LPHAA mark advancements of 5% and 8%,
respectively, against their graph-based iterations. LPHKZ,
on the other hand, sees a modest 5% enhancement compared
to KZ. In terms of precision, local similarity measures
within the LPH framework excel over those based on global
similarity, indicating a superior performance of hypergraph
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TABLE 6: Performance of LP measures in graph vs hypergraph in terms of Precision

LP in graphs LP in Hypergraphs(LPH)
Datasets RA CN JC AA KZ LPHRA LPHCN LPHJC LPHAA LPHKZ
NDC-classes 0.131 0.003 0.064 0.023 0.055 0.166 0.067 0.053 0.081 0.049
NDC-substances 0.196 0.006 0.009 0.009 0.211 0.269 0.059 0.049 0.021 0.236
email-Eu 0.166 0.006 0.031 0.014 0.253 0.691 0.077 0.087 0.069 0.228
DAWN 0.281 0.005 0.028 0.013 0.235 0.896 0.131 0.097 0.152 0.066
tags-math 0.211 0.007 0.008 0.011 0.102 0.936 0.126 0.089 0.112 0.057
tags-ask-ubuntu 0.196 0.009 0.007 0.007 0.145 0.871 0.071 0.063 0.083 0.031

TABLE 7: Performance of LP measures in graph vs hypergraph in terms of F1-score

LP in graphs LP in Hypergraphs (LPH)
Datasets RA CN JC AA KZ LPHRA LPHCN LPHJC LPHAA LPHKZ
NDC-classes 0.055 0.006 0.054 0.036 0.016 0.281 0.046 0.167 0.044 0.019
NDC-substances 0.077 0.007 0.008 0.018 0.052 0.444 0.186 0.196 0.268 0.211
email-Eu 0.081 0.013 0.009 0.029 0.037 0.605 0.235 0.197 0.527 0.508
DAWN 0.119 0.011 0.016 0.025 0.046 0.641 0.227 0.257 0.546 0.518
tags-math 0.108 0.014 0.017 0.022 0.061 0.666 0.289 0.293 0.528 0.511
tags-ask-ubuntu 0.142 0.007 0.012 0.015 0.002 0.645 0.189 0.211 0.517 0.503

FIGURE 9: F1−score of LP measures in graphs vs hyper-
graphs

measures. LPH metrics have consistently surpassed their
counterparts across all evaluated hyper-networks by an av-
erage margin of 0.7, signifying a significant decrease in false
positives.

Table.7 showcases F1-score outcomes for LP and LPH
metrics. Analysis reveals RA’s impressive performance
across various datasets, including NDC-substances, NDC-
classes, email-Eu, DAWN, tags-math, and tags-ask Ubuntu.
LPHRA, a proposed LPH metric, has shown superior LP
capabilities across these six datasets. LPH metrics have
proven to be significantly more effective than their graph-
based equivalents, with a notable margin of 0.5. Fig.9 illus-
trates the superior performance of LPH metrics compared
to graph-based metrics. LPH metrics excel in AUROC, ac-

curacy, and F1-score evaluations. These improvements un-
derscore the advantage of pairwise LP in hypergraphs over
traditional graph conversion methods, alongside consistent
efficacy across six distinct datasets. The superiority of LPH
measures, with a margin of 0.5 in F1-scores over their graph
counterparts, illustrates a significant leap in the precision-
recall balance. This balance is crucial for effective LP, as
it indicates a model’s ability to identify true links without
being overwhelmed by false positives. The LPH measures’
dominance suggests that they are better tuned to capture
the multidimensional relationships inherent in hypergraphs,
which are often lost or oversimplified in graph conversions.

D. DISCUSSION

Analyzing five proposed LP strategies:LPHRA, LPHCN ,
LPHJC, LPHAA, LPHKZ—alongside their graph-
based counterparts sheds light on the nuanced capabilities
of hypergraph structures to model complex connections. The
hypergraph variants consistently surpass graph-based meth-
ods in precision, accuracy, and F1-scores. Echoing findings
from earlier studies on graph LP, metrics such as RA and
AA excel due to their nuanced approach to calculating
similarity, factoring in both the frequency of shared neigh-
bors and the exclusivity of these connections. In contrast,
CN and JC metrics, which merely tally shared neighbors
without assessing their distinctiveness, lag in performance.
The hypergraph method, particularly LPHRA, emerges as
a superior predictor, outshining both other LPH metrics
and traditional graph-based approaches. The global metric
LPHKZ underperforms in the AUROC metric, hindered
by a hyperedge candidate set size capped at two, limiting
its scope and slowing its computational pace due to the
exhaustive consideration of graph topology.

While LPHCN and LPHJC falter in precision and F1-
scores due to their constrained approach to common neigh-
bors, the broader application of LPH metrics illuminates
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their strength in capturing local interactions. This quality
makes them potent for tasks like community detection and
recommendation systems. The consistent 10% AUROC im-
provement with hypergraph models across various metrics
underscores the inherent advantages of hypergraph represen-
tations. Despite the promising performance of hypergraph-
based LP, challenges remain, including the need for more
targeted global measures and improved computational effi-
ciency and scalability in larger hypergraph contexts. Future
research should address these limitations to enhance the util-
ity and applicability of hypergraph-based LP methodologies.

VI. CONCLUSION
This investigation unveils a new strategy for predicting up-
coming connections between entity pairs within complex
hyper-networks. By harnessing the inherent topological fea-
tures of hyper-networks, this strategy sidesteps the conven-
tional need to convert these networks into simpler graph
forms. It innovates by adapting five similarity-based LP
metrics specifically for the nuanced environment of hyper-
networks, tested across six standard complex hyper-network
datasets. The newly developed LPH metrics have shown
clear advantages over traditional LP methods.

In future, we intend to focus on extending more global LP
measures to hypergraphs. We aim to investigate probabilistic
approaches to gain deeper insights into the likelihood of fu-
ture connections within a hypergraph framework. Further, the
exploration of sophisticated machine-learning techniques,
such as graph neural networks and deep learning, is on the
agenda to boost the efficacy of LPH. The overarching aim
is to enhance both the precision and utility of LP techniques
within complex hyper-networks, thereby achieving a richer
understanding of the dynamics within real-world complex
systems. Similar to LP in graphs, our approach to LPH is
currently limited to pairwise links due to concerns regarding
time complexity. In consideration of privacy, we are only
focusing on nodes and edges, neglecting node attributes and
edge attributes, which represent certain drawbacks in our
methodology. However, we plan to expand our research to en-
compass actual hyperlink prediction in the future. At present,
node and edge attributes, as well as node centrality, are not
being incorporated, but we aim to address these aspects in
our future work.

VII. ABBREVIATIONS
The abbreviations used in this paper are given in Table. 8.
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TABLE 8: Abbreviations

LP Link Prediction
LPH LP in Hyper-networks
CN Common-Neighbors
JC Jaccard-Coefficient
AA Adamic-Adar
RA Resource-Allocation
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