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ABSTRACT Many real-world problems can be modelled in the form of complex networks. Social
networks such as research collaboration networks and facebook, biological neural networks such as human
brains, biomedical networks such as drug-target interactions and protein-protein interactions, technological
networks such as telephone networks, transportation networks and power grids are a few examples of
complex networks. Any complex system with entities and interactions existing between the entities can
be modelled as a graph mathematically, with nodes representing entities and edges reflecting interactions.
In numerous real-world circumstances, interactions are not confined to pair of entities. Majority of these
intricate systems inherently possess hypergraph structures, characterized by interactions that extend beyond
pairwise connections. Existing studies often transform complex interactions at a higher level into pairwise
interactions and subsequently analyze them. This conversion frequently leads to both the loss of information
and the inability to reconstruct the original hypergraph from the transformed network with pairwise
interactions. One of the most essential tasks that can be performed on these graphs is Link Prediction
(LP), which is the task of predicting future edges (links) in a graph. LP in graphs is well investigated. This
article presents a novel methodology for predicting links in hypergraphs. Unlike conventional approaches
that transform hypergraphs into graphs with pairwise interactions, the proposed method directly leverages
the inherent structure of hypergraphs in predicting future interaction between a pair of nodes. This is
motivated by the fact that hypergraphs enable the depiction of intricate higher-order relationships through
hyperlinks, enhancing their representation. Their capacity to capture complex structural patterns improves
predictive capabilities. Node neighborhoods within hypergraphs offer a comprehensive framework for LP,
where hyperlinks simplify interactions between nodes across cliques. We propose a novel method of Link
Prediction in Hypergraphs (LPH) to predict interactions within hypergraphs, maintaining their original
structure without conversion to graphs, thus preserving information integrity. The proposed approach LPH
extends local similarity measures like Common Neighbors, Jaccard Coefficient, Adamic Adar, and Resource
Allocation, along with a global measure, Katz index, to hypergraphs. LPH’s effectiveness is assessed on six
benchmark hyper-networks, employing evaluationmetrics such as Area under ROC curve, Precision, and F1-
score. The proposed measures of LP on hypergraphs resulted in an average enhancement of 10% in terms
of Area under ROC curve compared to contemporary as well as conventional measures. Additionally, there
is an average improvement of 70% in precision and around 50% in F1-score. This methodology presents
a promising avenue for predicting pairwise interactions within hypergraphs while retaining their inherent
structural complexity as well as information integrity.

INDEX TERMS Link prediction, complex hyper-networks, hypergraphs.
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FIGURE 1. Coauthorship hyper-network denoting interactions among
group of authors.

I. INTRODUCTION
Many real-world complex systems containing entities that
interact can be modeled as complex networks [1], [2]. Graphs
and hypergraphs serve as modelling frameworks for complex
networks, each with its own strengths and limitations [3].
Both models contain nodes depicting real-world entities.
They vary in the representation of edges. Edges in graphs
represent pairwise interactions between two entities.Whereas
edges in hypergraphs called as hyperedges can link multiple
nodes simultaneously, allowing for interactions involving
more than two entities. We use ‘‘graphs’’ and ‘‘networks’’ as
well as ‘‘hypergraphs’’ and ‘‘hyper-networks’’ interchange-
ably in this paper. A few examples of complex networks and
complex hyper-networks are given in Table.1.

Hyper-networks provide a more expressive representation
for situations involving higher-order relationships among
entities [4]. Hypergraphs can become computationally inten-
sive, especially as the size of hyperedges increases, requiring
careful consideration for scalability. The simplicity of graph
representation typically leads to computationally efficient
and scalable algorithms for certain types of analytical tasks.
Therefore, graphs are more popular representation of com-
plex systems. It is a common practice to transform the hyper-
graphs into graphs to perform any task on them. For instance,
consider a network representing co-author relations between
authors. Nodes of such graphs denote authors and an edge
forms between nodes exist if authors co-author a research
article. Consider the scenario where Paper 1 is authored by
authors A, B and C together, Paper 2 is authored by authors
C and D and Paper 3 is authored by authors D and E. This
information can bemodeled naturally as hypergraph as shown
in Fig.1. The transformed network with pairwise interactions
is shown in Fig.2. The collaboration network shown in Fig.2
only depicts the collaboration between pairs of authors, losing
the collaboration information of a group of authors on a single
publication. Thus, a collaboration situation described above
can be more meaningfully represented as a hypergraph rather
than graph. This clearly demonstrates that hypergraphs offer a
more meaningful way to model scenarios that involve higher-
order relationships among entities compared to graphs.

Link prediction (LP) is one of a fundamental problem
focusing on the estimation of the probability of a future
interaction between two entities [5]. Some of the potential
applications of LP are given below.

• Collaborative networks: LP algorithms, are used to
predict future collaborations between authors, as well as
to recommend collaboration between authors.

FIGURE 2. Coauthorship network representing pair-wise interaction
between authors.

• Drug-target interactions: Studies on the impacts of pos-
sible drug interactions require large samples, extensive
time and high cost. The interactions between drugs to
predict poly-pharmacy interaction can be predicted in
complex drug-target hyper-networks and most probable
ones can be experimented to save cost and time.

• Transportation domain: Applications of LP in trans-
portation domain involves:
– Route Planning: Predict future connections to

optimize route planning for vehicles.
– Infrastructure Planning: Anticipate future con-

nections to inform infrastructure planning and
development, such as the construction of new roads
or transportation hubs.

– Traffic Management: Predict links to improve
trafficmanagement strategies, including congestion
mitigation and adaptive traffic signal control.

– Emergency Response: Predict links to improve
emergency response strategies, such as rerouting
traffic during accidents or natural disasters.

• Biological Networks: LP methods are utilized for
predicting interaction between proteins in a protein-
protein interaction networks.

• Social Networks: Facebook uses LP algorithms to
recommend friends to users.

• E-Commerce: LP algorithms can be used by
E-commerce websites to recommend products to users.

LP in graphs is well explored in the literature. Thus
far, hypergraphs have been transformed into graphs and LP
measures have been employed on the transformed graph.
Converting hypergraphs to graphs provides a practical means
for leveraging existing graph-based tools and algorithms.
However, this may lead to significant loss of information.
LP using hypergraphs offers a number of advantages.
Hypergraphs enable the depiction of intricate higher-order
connections through hyperlinks, making them more signif-
icant models. Their capacity to comprehend and analyse
complex structural patterns enhances their forecasting abil-
ities. The studies conducted by [6] and [7] demonstrated
the effectiveness of employing graph cliques for LP in a
graph. However, the process of finding cliques in graphs
is computationally complex. The hyperlinks in hypergraphs
are analogous to cliques in graphs. Therefore, Hypergraphs
provide a more efficient and powerful platform for LP due
to their inherent structural features. Hence, this study focuses
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TABLE 1. Various complex networks.

TABLE 2. Notations used in research work.

on investigating the efficacy of directly predicting links from
hypergraphs, without the need to convert them into graphs. .
This motivation leads to the following research questions:

1) Could LP in hypergraphs directly yield more advan-
tages than converting the current hypergraph model
into a graph format for predicting pair-wise links?

2) What are the modifications to existing LP measures to
make them adaptable to hypergraphs?

The following are the contributions made in this work:
1) A novel methodology termed Link Prediction in

Hypergraphs (LPH) is proposed to predict pairwise
interactions in hypergraphs, without transforming
hypergraphs into graphs. This preserves the original
hypergraph structure without information loss.

2) The local similarity measures of Common Neighbors,
Jaccard Coefficient, Adamic Adar, Resource Alloca-
tion and a global similarity measure of Katz index are
extended to hypergraphs.

3) The proposed approach of LPH is evaluated on six
benchmark hyper-networks using Area under ROC
curve, Precision, and F1-score.

Table. 2 describes the notation used in this work.

TABLE 3. Edge function in graph and hyper-networks.

The structure of this document is as follows. Section II
gives mathematical definitions pertaining to networks, hyper-
networks, and the LP problem. Section III specifically
examines the literary works related to the topic of LP
in networks and hyper-networks. Section IV provides a
comprehensive explanation of the proposed approach, while
The results are analyzed and discussed in detail in Section V.
Section VI concludes the work. Section VII derives the
abbreviations used in this paper.

II. PROBLEM DEFINITION
This section provides the mathematical notations utilized in
this work.

A. DEFINITIONS
Definition 1 (Complex Network): Graph G = (V ,E) is

used to describe a complex network. V = {v1, v2, .., vn}
represents a collection of n nodes, and E = {e1, e2, .., em}

represents a set of m edges.
Definition 2 (Complex Hyper-Network): A complex

hyper-network is represented as a hyper-network H =

(V ,E). V = {v1, v2, .., vn} collection of n nodes, and
E = {E1,E2, ..,Em} collection of m hyperedges, where each
hyperedge Ei ∈ (2V − φ).

Both these networks can be represented using matrices.
Adjacency-Matrix is the well known matrix representation
for a graph, as the interactions are pair-wise, where as
hyper-network is denoted by incidence matrix because of
interactions among group of nodes. These two matrices are
given below.
Definition 3 (Adjacency-Matrix): The Adjacency-Matrix

A(G), of a graph G = (V ,E) is square matrix where entries
apq indicate edge counts involving nodes vp and vq. The
diagonal elements of A(G) are consistently zero. This matrix
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construction can be achieved by:

Apq =

{
1 : if (vp, vq) ∈ E
0 : otherwise

(1)

The adjacency matrix of Fig.2 is given below:

A B C D E


A 0 1 1 0 0
B 1 0 1 0 0
C 1 1 0 1 0
D 0 0 1 0 1
E 0 0 0 1 0

Definition 4 (Incidence-Matrix): In incidence matrix I ,
is of size m × n. The vertices are represented by the n rows,
and the hyperedges by the m columns. I can be constructed
as follows:

Ips =

{
1 : if node p is part of hyperedge s
0 : otherwise

(2)

The incidence matrix of Fig.1 is given below:

e1 e2 e3


A 1 0 0
B 1 0 0
C 1 1 0
D 0 1 1
E 0 0 1

Note that, a graph is a specific type of hypergraph where
each of its edges has a cardinality of 2. Adjacency-Matrix
can be built from the corresponding incidence matrix using
the equation.

A = IWIT − Dv (3)

The diagonal elements of the matrixDv, which represents the
nodes’ degrees, IT , the transpose of the incidence matrix and
W is the diagonal hyperedges size.

B. LINK PREDICTION PROBLEM
Complex hyper-networks evolve as nodes, and edges (links)
are added/removed over time. Hence, forecast future-links
or identify any missing-links in a network is vital for its
evolution. LP in hyper-networks is the problem of predicting
future hyperlinks.
Definition 5 (Link Prediction in Hyper-Networks (LPH)):

Given a hyper-network H = (V ,E), V representing set
of vertices, and E denoting set of hyperlinks, the problem
of LPH is to predict hyperlinks which are not existing
in H, but predicted to appear in future. Fig.3 illustrates
the problem where the size of hyperlinks is restricted to
be 2.

Commonly used technique is to transform a hypergraph
to a graph using Eq.3, then make predictions about future
interactions in the transformed graph. This prediction is
restricted to the prediction of interactions between pair of

FIGURE 3. An illustration for link prediction in hypergraphs.

FIGURE 4. An example for LP problem in graphs.

nodes. Notably, our approach LPH aims to forecast the
emergence of the hyperedges e2 and e3, delineated by
dashed lines, directly without transforming the hypergraph
into graph.

Consider Fig.3. There are 7 nodes denoted by A,B,C,D,

E,F, and G, and 4 hyperedges labeled as e0, e1, e4,
and e5. Hyperedges e0 and e1 involve more than two
nodes, specifically including E,F,G and C,D,E,F, nodes
respectively. Hyperedges e4 and e5 consist of pairwise nodes,
namely A,B and B,E .
The objective of the LPH problem is to predict hyperlinks

that are currently absent but anticipated to emerge in the
future. In Fig. 3, we aim to know whether the nodes A and
D as well as A and C interacts in
Definition 6 (LP (LP)): The LP issue for graphs was

defined by Liben-Nowell and Kleinberg [8] in the following
way: Given a Graph, G(V ,E), with set of nodes V and
set of edges E representing network during time interval t ,
LP requires creating a list of edges not present in G[t0],
but is expected to appear in the network G[t1] where
t0 < t1.
Fig.4 illustrates the problem for LP in graphs. The network

at time t0 includes 5 nodes and 7 edges. By time t1, two
edges have been introduced between nodes A,B and C,D.
LP forecasts the netwrok’s future edges, specifically at
time tn.
The problem of LP is challenging in both cases because

of enormous magnitude of the candidate node pairs between
which the interaction is to be predicted.When predicting links
in hypergraphs, the size of the candidate set for LPH is 2V−E .
A few researchers restrict the hyperlink size to be upto some
number k and limit the problem as k − regular [9]. In this

VOLUME 12, 2024 51211



Y. V. Nandini et al.: Extending Graph-Based LP Techniques

work, we fix k to be 2. While considering LP in graphs,
the possible edges are |V |(|V | − 1) where as the existing
edges (E) are very few. Therefore, the candidate node pairs
for predicting possibility of future link is |V |(|V | − 1)− |E|,
which is very large in number. There are several advantages
of predicting pair-wise links in hypergraphs rather than in
the transformed graph. Hence, this study proposes using
hypergraphs directly for the task of LP, bypassing the need
for their transformation into conventional graphs.

III. LITERATURE
Nodes are entities within a complex network that possess
characteristics such as keywords, research interests, and
demographic information in coauthorship networks, personal
and professional information in Facebook and LinkedIn
networks, respectively. The properties of a nodes are denoted
as a vector, and the similarity between the nodes can be
calculated using a distance measure like Euclidean or cosine.
Such measures present two challenges. The first is that the
qualities vary depending on the domain, other is privacy.
Domain-dependent measurements are not applicable to all
types of networks, privacy concerns sometimes prevent
node properties from being made public. As a result, other
measurement is based on structural similarity of nodes within
a graph gained popularity. LP in graphs is well explored in the
literature. Section III-A briefly explains the popular measures
for LP in graphs. However, there are limited works on LP
in Hypergraphs, which are specified in Section III-B. The
existing literary works for LP in graphs and hypergraphs are
summarized in Fig.5.

A. LP IN GRAPHS
LPmeasures use heuristics to compute and award a particular
score to a non-adjacent node pairs. The nodes with the
highest score are the most likely to join together in the
future. Based on the computation of LP score, these measures
are classified into similarity-based measures, probabilistic-
based measures, dimensionality-based measures and other
measures.

1) SIMILARITY-BASED MEASURES
These metrics use the graph’s structural characteristics to
calculate the score between two nodes. Those methods which
depend on immediate neighborhood of the nodes are called as
local similarity measures. There is another class of similarity
measures, which consider entire graph topology to compute
score. These are called as global similarity measures. Quasi
local measures exploit these two measures by exploiting the
strengths of both [10].

• Local similarity measures: Common-Neighbors
(CN), Jaccard-Coefficient (JC), Adamic-Adar (AA),
Resource-Allocation (RA), Preferential-Attachment
(PA), are a few popular measures in this category.
Common-Neighbors : When two nodes share a signif-
icant number of common neighbors, the possibility of

forming a link increases [11]. The equation for common
neighbors between two non-adjacent nodes p and q
abbreviated as CNp,q is as follows:

CNp,q = |N (p) ∩ N (q)| (4)

where the set of nodes p and q’s neighbors is represented
by N (p) and N (q), respectively.
Jaccard-Coefficient: The Jaccard-Coefficient is the
normalizedCommon-Neighbor. The Jaccard-Coefficient
is calculated by dividing the total number of different
neighbors that either node has, by the number of
neighbors that both nodes share [12].

JCp,q =
|N (p) ∩ N (q)|
|N (p) ∪ N (q)|

(5)

where N (p),N (q) are neighborhood sets of nodes p,q.
The Jaccard Coefficient is favored over CommonNeigh-
bors when considering differences in node degrees and
ensures that the similarity measure is not biased towards
nodes with higher degrees. Jaccard Coefficient’s robust-
ness to change in network size and density compared
to Common Neighbors, handles sparsity effectively.
The Jaccard Coefficient’s normalized measure ranging
between 0 and 1, representing the overlap between
nodes’ neighborhoods intuitively.
Adamic-Adar :By giving the less-connected neighbor a
higher weight, this index outlines how the basic counting
of common neighbors might be improved, and is defined
as [13]:

AAp,q =

∑
r∈N (p)∩N (q)

1
log|k(r)|

(6)

where k(r) is the degree of node r .
Resource-Allocation : In order to evaluate their sim-
ilarity, let us assume that node p delivers resources
to q equally across their common nodes [14]. The
similarity between nodes rises with the volume of
resources transmitted between them. Mathematically,
can be represented as :

RAp,q =

∑
r∈N (p)∩N (q)

1
k(r)

(7)

the degree of node r is denoted by k(r).
Preferential-Attachment : The degrees of nodes p and
q together can be multiplied, which finds the richness of
two nodes [15].

PAp,q = |N (p)| ∗ |N (q)| (8)

where the set of nodes p and q’s neighbors is represented
by N (p) and N (q), respectively. PA needs the degree of
nodes and does not consider common neighbors.
Beyond the ones listed, the literature contains plenty of
additional local similarity measurements.

• Global similarity measures: Global similarity mea-
sures are mainly focused on shortest-paths and random
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FIGURE 5. Exploring predictive models for graphs and hypergraphs: a literature for link prediction.

walks in the graph. As the paths and walks can easily
computed based on the Adjacency-Matrix (A) of a
graph, many of the global measures use A in their
computation. Katz-Index (KZ) given below is the most
popular measure in this category, which is computed
based on paths in the graph.
Katz-Index : Katz-Index aggregates weighted sum
across all shortest paths between p and q by penalizing
longer paths with a damping factor 0 < β < 1 [16]. The
equation is derived as:

KZp,q =

∞∑
l=1

β l |paths<l>p,q | =

∞∑
l=1

β l(Al)p,q (9)

where paths<l>p,q , set of total l length paths between p and
q, β the damping factor which gives more weights to
shortest paths, A is a graph’s Adjacency-Matrix, β < 1

λ
,

wherein λ represents the highest eigenvalue of matrix A.
Random Walk With Restart (RWR) [17], Average
Commute Time (ACT) [18] and Sim Rank [19] are the
popular random walk based measures. All these use
variations of number of steps taken to reach from one
node to the other in a random walk.
Local and global measures have their advantages and
limitations. There is another category of quasi local,
which use the advantages of both the categories. Local
Random Walk(LRW), LRW assesses the similarity
between node pairs by focusing on limited step random-
walks [18]. Superposed RandomWalk (SRW) is another
quasi local measure that assigns highest score to the
nearest nodes. While using a local random walk [18].

Local Path Measure(LPM) is path-based quasi local
measure that computes the similarity scores between
node pairs using paths of length two and three [12].

2) PROBABILISTIC-BASED MEASURES
These measures compute the scores between a pair of nodes,
depending on the statistical probabilities of the nodes. More
information is typically needed for probabilistic models, such
as node or edge attributes, along with structural informa-
tion to compute the statistics. Local Probabilistic Measure
(LPM) produces three types of features, and are derived
from several information sources: topological, semantic,
and co-occurrence probability characteristics. Probabilistic
Relational Measure (PRM) provides both node and link
attributes [20]. The next measure, Probabilistic Entity
Relationship Measure (PERM) uses directed arcs to define
relation between attributes. Hierarchical Structure Measure
(HSM), where most of the networks are hierarchically
structured, in which nodes split into groups and subgroups,
and the subgroup information is used to predict links. The
next one is Stochastic Block Measure (SBM), it uses tensor
interactions to provide a stochastic framework for entity
connections.

3) DIMENSIONALITY-BASED MEASURES
These metrics calculate the score between two nodes using
a function F, that operates directly on an Adjacency-
Matrix or a graph’s Laplacian matrix [20]. Popularly
using dimensionality measures are Embedding-based, Matrix
Factorization-based measures.
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a: EMBEDDING-BASED MEASURE
It is a dimensionality reduction measure, it maps higher D
dimensional nodes to lower d dimensional nodes in the graph
by preserving node neighborhood structure.

Embp,q ≈ ZTp Zq (10)

where the d-dimensional embedding of the node p is denoted
by Zp, and embedding-matrix, Z ∈ Rd×|V |, where each
column representing embedding vector of particular node,
Embp,q is a function which computes pairwise similarity
scores generated from embedding.

b: MATRIX FACTORIZATION-BASED MEASURES
Matrix factorization is used in lots of LP papers since last
decade [21]. Mostly, researchers extracted latent-features
and using these feature nodes in supervised/unsupervised
LP. Adding more nodes, links, or attribute data can
help the prediction results even more. Some authors
used both, non-negative-matrix-factorization, singular-value-
decomposition [22]. The matrix X = (x1, x2.., xn), that has
columns with n data vectors. Now generalizing the matrix to:

X ≈ FGT (11)

where X ∈ Rp×n, F ∈ Rp×k . Hence F called as basis
matrix, and coefficient matrix is denoted by G, whereas
k represents the dimension of latent space (k < n).
Few popular matrix factorization techniques are listed here,
Singular-Value-Decomposition (SVD) [23], Non-Negative-
Matrix-Factorization (NMF) [24], Semi-NMF [25].
There are so many other approaches for LP such

as machine learning-based measures, Clustering-based
measures and Information Theory-based measures, which
can be found in [21].

B. LINK PREDICTION IN HYPERGRAPHS
We review hyperlink prediction techniques from [26].
These techniques are classified into similarity-based [27],
probability-based [28], matrix optimization-based meth-
ods [29] for hyperlink prediction.

1) SIMILARITY-BASED METHODS IN HYPERLINK
PREDICTION
In Similarity-based methods in hyperlink prediction, rather
than pairwise connections between nodes as in graphs,
hyperedges are used to represent relationships involvingmore
than two nodes in hypergraphs. These measures compute
the score among the nodes based on structural attributes
of hyperedges and also considers the nodes they connect.
Some few popular measures are Common-Neighbors, Katz,
Hyperlink Prediction using Resource Allocation.

• Common-Neighbors in hyperlink prediction: A
node’s degree in a hypergraph indicates how many
hyperedges are connected to it, and the number of
neighbors is the total number of nodes that a particular

node shares at least one hyperedge with. The CN in
hyperlink prediction is defined as:

CNr =
2

cs (cs − 1)

∑
p,q∈s

CNp,q (12)

where cs is the cardinality of the hyperedge s.
Similar to CN, KI may be extended to hyperlinks by
substituting the hypergraph adjacency matrix for the
graph adjacency matrix A. A = IWIT −Dv is a common
definition for a hypergraph’s adjacency matrix.

• Hyperlink Prediction using Resource Allocation:
Based on the ideas of the resource allocation pro-
cess, hyperlink prediction using resource allocation,
or HPRA, is a newly developed direct hyperlink
prediction technique. HPRA uses the direct link and
common neighbors between two nodes to calculate
the hypergraph resource allocation (HRA) index. HRA
between two nodes:

HRAp,q = SCp,q +

∑
r∈N (p)∩N (q)

SCpr × SCrq
k(r)

(13)

where SCp,q =
∑

s∋p,q
1

cs−1 , k(r) is the degree of node
r, the set of nodes p and q’s neighbors is represented by
N (p) and N (q), respectively.

2) PROBABILITY-BASED METHODS IN HYPERLINK
PREDICTION
These measures consider the structural characteristics of the
hypergraph, much like graphs do. With hypergraphs, on the
other hand, the analysis goes beyond pairwise connections
to take relationships represented by hyperedges into account.
Three probability-based techniques for hyperlink prediction
are examined by the author.

• Node2Vec: Node2Vec follows random-walk technique
which investigates neighborhoods using both depth-first
and breadth-first sampling strategies [30]. Node2Vec for
hyperlink prediction is computed as [9]:

SN2V = sigmoid

 1
cs

∑
vp,vq∈s,p̸=q

xTi xj

 (14)

that produces probabilistic measures that counts the
average correlation between pair of nodes in hyperlink s.
The final existence confidence of hyperlink s is indicated
by score SN2V .

• Bayesian Set: Using probability, the Bayesian Set (BS)
method retrieves objects from a cluster.While retrieving,
only few items are retrieved from cluster and the
problem is handled as a Bayesian inference issue [31].
This approach uses a model based understanding of
clusters to provide a score to each item based on, how
likely it is, that the item will be found in a cluster which
includes the items with queries. Let D represent a set of
data elements, and let Dc be a collection of queries such
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that Dc ⊂ D. Once Dc has been seen, the items score
p ∈ D that belongs to Dc, that can be defined as:

SBS =
pb(p,Dc)

pb(p), pb(Dc)
(15)

In numerator, the probability for p,Dc is generated from
same method with same attributes, while denominator is
the probability that p, Dc generated from same method
with different attributes, where D and Dc are known
hyperlink sets.

• Hyperlink Prediction Using Latent Social Features
(HPLSF): The first machine learning technique created
for hyperlink prediction is HPLSF [32]. When produc-
ing latent node characteristics, HPLSF eliminates all
higher-order topological attributes and solely takes into
account the pairwise distances between nodes.

3) MATRIX OPTIMIZATION-BASED METHODS IN HYPERLINK
PREDICTION
Numerous matrix optimization-based hyperlink prediction
techniques are being studied by researchers. Spectral
Hypergraph Clustering (SHC), Matrix Boost (MB), and
Coordinated Matrix Minimization (CMM) are a few popular
techniques in this. The incidence, adjacency, or Laplacian
matrices/tensors of hypergraphs are essentially used in
these techniques to frame matrix optimization problems for
hyperlink prediction.

• Spectral Hypergraph Clustering: SHC aims to learn a
partition in which, the links among several nodes within
the same group are dense, whereas the links between two
groups are sparse [29]. Given a Hypergraph H, where n
defines nodes and the SHC model is defined as:

min
f

||f − y||2F + µf TLf (16)

let f ∈ Rn is characterized as function of classification,
y ∈ Rn is the vector with label that contains values
of 0, 0.5, 1, µ > 0 is the parameter which regularizes
the function and the hypergraph’s normalized Laplacian
matrix is denoted by L.

L = Z − D−
1
2HDvC−1HTD−

1
2 ∈ Rn×n (17)

where Z ∈ Rn×n is the identity-matrix, Dv ∈ Rn×n is the
diagonal matrix of hyperlink weights.

• Matrix Boost: Matrix Boost (MB) uses an iterative
completion-matching optimization, to execute inference
concurrently in the incidence and adjacency spaces [33].
Considering an incomplete n-node hypergraph H,
denoted by A = HHT

∈ Rn×n, as the adjacency-matrix
of H.

• CoordinatedMatrix Minimization: As an alternative,
CMM uses least square matching and non-negative
matrix factorization in the adjacency space to identify
which subset of candidate hyperlinks might be most
suited to fill the needed hypergraph [27]. Like MB,

indicate A = HHT
∈ Rn×n,U ∈ Rn×m̃ as an adjacency-

matrix of H, candidate hyperlinks incidence-matrix,
correspondingly. Let Q ∈ Rn×k a non-negative matrix,
the latent factor matrix, and assumed that the adjacency-
matrix of the complete hypergraph is factorized by

A+ U3UT
≈ QQT (18)

where 3 ∈ Rm̃×m̃ is a potential hyperlink candidate
diagonal indicator matrix.

Many existing works in the hypergraph literature focus on
predicting hyperlinks rather than pair-wise links. However,
there are very limited works focus on pair-wise LP in
hypergraphs. Kumar et al. [28] proposed HPRA extends the
LP measure of resource allocation to hyperlink prediction
without generating candidate hyperlinks set. HPRA is a
local-similarity-based measure based on the principle of
the resource allocation. Along with recovering missing
hyperedges, author demonstrates that HPRA predicts future
hyperedges in a wide range of hypergraphs. On experimen-
tation, HPRA gives best performance compared to existing
ones. Wang et al. define random walk notion on hypergraphs
and use it for hyperlink prediction [34]. Chitra et al.
extended PageRank algorithm for hyperlink prediction and
applied it to disease-gene hyper-network [35]. Zhang et al.
introduced the Coordinated-Matrix-Minimization (CMM)
algorithm [27]. This algorithm utilizes alternating non-
negative-matrix-factorization and least-square-matching to
deduce potential-hyperlinks within the node adjacency-space
of the hyper-network. Wang et al. use drug combination data
and created a model called Hypergraph-Random-Walk-With-
Restart model to predict effective drug combinations [34].
A survey on hyper LP can be found at [26]. Nasiri
et al. presents the Multiplex Local Random Walk (MLRW),
an extension of the local random walk for LP in multiplex
networks. Author utilized information from inter-layer and
intra-layer interactions to develop a biased randomwalk [36].
The work such as [36] discusses LP in multi-relational
networks, but in the hypergraph scenario, multi-relational
networks become so tedious. Berahmand et al. devised a
comprehensive deep semi-supervised community detection
(DSSC) approach for complex networks. This method incor-
porates a semi-autoencoder (SEAE) along with a specified
pair-wise constraint matrix derived from point-wise mutual
information (PMI) within the representation layer [37].
LP based on Community structure of the network provide
more prediction quality in some cases. Work of [37] discuss
this scenario. However, community detection algorithms in
hypergraph are not much available in the literature, and
our focus is on link predictions for hypergraphs. Shang
et al. examine the consensus dynamics across temporal
hypergraphs, which include non-linear modulating functions,
topology varying over time, and random perturbations [38].
This work discusses temporal hypergraphs, but our focus
is on paiwise interactions in hypergraphs. Shang et al. [39]
investigates a three-body consensus model incorporating
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higher-order network interactions and social homophily prin-
ciples which focus on neighbors decissions. Shang et al. [40]
examines consensus formation in directed hypergraphs,
extending standard graph structures to incorporate neighbor-
dependent synergy in social dynamics, by using petri net
method. In this work, our focus is only on undirected and
unweighted hypergraphs. Exploring directed and weighted
versions will be our future work.

IV. PROPOSED APPROACH
A. MOTIVATION
LPH has the following advantages:

1) Due to the provision of modeling the presence of
intricate higher-order relationships in the form of
hyperlinks, hypergraphs are more meaningful models.

2) The inclusion of higher-order relationships and the
ability to capture richer structural patterns can con-
tribute to enhanced predictive power in hypergraphs.

3) The concept of node neighborhood in hypergraphs
provides a comprehensive framework for the task of
predicting the link. For example, a hyperlink in a
hypergraph can be viewed as a clique in a graph. It is
straightforward to predict the interaction between two
nodes, each belonging to separate cliqueswith common
nodes in two cliques, in a hypergraph. The works such
as [6] and [7] are greatly benefited by this cliques in
the prediction tasks. In graphs, identification of clique
itself is NP-complete.

Hence, instead of transforming hypergraphs into graphs,
this study proposes predicting pair-wise links directly from
hypergraphs. The broad approach is depicted in Fig.6.
Two approaches were employed for predicting links in
hypergraphs. Initially, the hypergraph was divided into train
and test sets, and the train set was converted into a pairwise
graph. LP measures were then applied and evaluated against
the hypergraph test set. Alternatively, the task focused on
directly predicting size=2 hyperlinks from the hypergraph
train set, followed by evaluation against the test set.

We choose measures such as CN, JC, AA, RA, and KZ
to be extended to hyperlink prediction scenario because
these serve as straightforward methods for computing scores
between non-existing links, without considering any attribute
information. We aim to utilize these widely recognized
similarity measures as a starting point for our research,
with plans to expand our investigation to include additional
measures in the future.

B. LINK PREDICTION IN HYPERGRAPHS
The hypergraph is initially partitioned into a train graph
and a test graph. We propose to extend the LP mea-
sures of Common-Neighbors (CN), Jaccard-Coefficient (JC),
Adamic-Adar (AA), Resource-Allocation (RA) and Katz
Index (KZ) to predict links directly from the hypergraph.
We name these extended measures as LPHRA, LPHCN,
LPHJC, LPHAA, and LPHKZ. Algorithm.1 gives a concise

FIGURE 6. Novel approach: direct prediction of pairwise links from
hypergraphs without graph transformation.

overview of the comprehensive methodology for the pro-
posed LPH.

Similarity-based methods for LP in graphs (Fig.5) calcu-
late similarity scores based on graph topology for each non-
adjacent node pair p and q, scores are sorted, and it assumed
that the pairing with the highest scores would form future
links. Few popular similarity-scores are common-neighbors,
jaccard-coefficient, adamic-adar, resource-allocation, and so
on. We extend these graphs similarity based LP measures to
hypergraphs as follows.

1) LINK PREDICTION IN HYPERGRAPHS USING COMMON
NEIGHBORS (LPHCN)
We extend the notion of common neighbors (CN ) given
in Eq.4 to hypergraphs through computing the average of
the pairwise CN indices between the nodes within each
hyperlink [26]. The LPHCN is defined as given the Eq.19.

LPHCNp,q =
2

cs1 ∗ cs2

∑
p∈s1;q∈s2;r∈s1∩s2

|r| (19)

where, s1 and s2 are hyperedges and cs is size of s.

2) LINK PREDICTION IN HYPERGRAPHS USING JACCARD
COEFFICIENT (LPHJC)
LPHJC is the normalized LPHCN . The LPHJC is calculated
by dividing the total number of different neighbors that either
nodes has, by the number of neighbors that both nodes share.

LPHJCp,q =
LPHCNp,q

|N (p) ∪ N (q)|
(20)

where LPHCNp,q is taken from Eq.19, where the set of nodes
p and q’s neighbors is represented by N (p) and N (q), which
intersects two nodes, divided by total number of common
neighbors in between two nodes.
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Algorithm 1 Link Prediction in Hyper-Networks (LPH)
Input:

• Hypergraph
• Trainset: A part of Hypergraph used to compute the
LPH measures

• Testset: Remaining part of Hypergraph used for perfor-
mance evaluation of LPH measures.

Output: E ′: List of node pairs with probable future links.
1: Get Hyperlink Degree Distribution
2: Choose size of candidate hyperlink probabilistically based

on hyperlink degree distribution. Let the size chosen be
k .

3: HL = empty list of size k // Initialize hyperlink
4: q = node with highest degree
5: HL.append(q)
6: for i = 2 to k − 1 do

//Add k-1 nodes to hyperlink
7: max_lp_score=0

// compute node q with highest LP score with the nodes
inHL using the procedures specified in section IV-B3 as
follows

8: for p in HL do
9: for r in (V − HL) do
10: lps = LP_score(p, r)
11: if lps > max_lp_score then
12: q = r
13: end if
14: end for
15: end for
16: HL.append(q)
17: end for
18: fort in Testset do
19: X = HL ∩ t
20: if |X | ≥ 2 then
21: Add the 2-size subsets from X to E ′

22: end if
23: end for
24: return E ′

3) LINK PREDICTION IN HYPERGRAPHS USING RESOURCE
ALLOCATION (LPHRA)
LPHRA predicts pair-wise links using the principles of
resource allocation. This method is inspired by the work
of [28]. Contrary to graphs, hypergraphs allow nodes p and
q to already be part of another hyperlink. Consequently,
a resource at node p can be transmitted to node q either
directly or via common neighbors. Therefore, the amount of
resource transferring between node p and q is generated by:

LPHRAp,q =

∑
p̸=q

1
cs − 1

, if p, q ∈ s

=

∑
r∈N (p)∩N (q)

1
k(r)

∗
1

cs1 − 1
∗

1
cs2 − 1

, otherwise

(21)

where s,s1 and s2 are hyperlinks; cs,cs1 and cs2 are their sizes;
r is a common neighbor of p and q; k(r) represents the node
r’s degree and p, r ∈ s1 and r, q ∈ s2, the set of nodes p and
q’s neighbors are represented by N (p) and N (q).
The first component of Eq.21, is the amount transferred

between p and q if both these nodes are a part of a hyperlink
s. In case they are not part of same hyperlink, this component
calculates to zero. Second part computes the amount of
resource transmitted via all common neighbors between the
two nodes.

4) LINK PREDICTION IN HYPERGRAPHS USING ADAMIC
ADAR (LPHAA)
In hypergraphs, Adamic-Adar measures how similar two
nodes are to each other by looking at shared hyperedges and
the common neighbors’ inverse logarithmic degree centrality.

LPHAAp,q =

∑
p∈s1;q∈s2;r∈s1∩s2

1
log(|k(r)|)

(22)

where |k(r)| represents the node r’s degree in the hypergraph.

5) LINK PREDICTION IN HYPERGRAPHS USING KATZ INDEX
(LPHKZ)
Katz Index can be extended to hypergraphs by substituting
the graph’s Adjacency-Matrix A, with the hypergraph’s
Adjacency-Matrix. The computation formula is shown in Eq.
23.

LPHKZp,q =

∞∑
l=2

β lhyperpathl(p, q) (23)

where hyperpathl(p, q) is path of length l between the nodes p
and q, defined as s1s2, . . . sl , where s1s2, . . . sl are hyperlinks
such that s1 ∩ s2 ̸= φ. β, the damping factor such that
0 ≤ β ≤ 1. In our experimentation, we set the maximum
value for path of length l as 5. This concept draws from the
idea of ‘‘six degrees of separation,’’ suggesting that in real-
world networks, most pairs of nodes are connected within a
maximum path length of six. Many prior studies also adhere
to a maximum path length of five.

We exhibit the superiority of the proposed approach
over the existing versions of all these LP measures in the
transformed graph empirically.

V. EXPERIMENTATION
A. DATASETS
We utilize the following six datasets for proving merit of the
proposed approach over graphs.

• NDC-classes-unique-hyperedges:National Drug Code
Directory (NDC) drugs dataset treats each class label
(found in NDC-classes) as a node. A hyperlink is the
collection of labels associated with a specific drug [41].

• NDC-substances-unique-hyperedges: This dataset
also emerge from the National Drug Code Directory
(NDC) drugs dataset, where every class substance (from
NDC-substances) is denoted as a node. A hyperlink
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TABLE 4. Details of the datasets used in this work.

denotes the collection of substances associated with a
specific drug [41].

• email-Eu-unique-hyperedges (Email fromEuropean-
research-institution): Each node is an email address,
and a hyperlink is formed with a group of nodes
comprising the sender and all recipients associated with
a particular email [42].

• DAWN-unique-hyperedges (Drug abuse warning
network (DAWN) drugs): In this network, nodes
represent drugs and hyperlink forms with a group of
drugs employed by a patient [41].

• tags-math-unique-hyperedges: Online question tags:
In this network, tags denote nodes and hyperlinks are
the group of tags attached with a question on an online
forum ‘‘https://math.stackexchange.com/’’.

• tags-ask-ubuntu-unique-hyperedges: Online ques-
tion tags: This network is formed from an online forum
of ‘‘https://askubuntu.com/’’. Nodes depict tags and
hyperlinks, are group of tags attached with a question
on an online forum.

Details about the datasets are provided in Table.4.
k-fold cross-validation is used in this experimentation. The

network is split up into k equal segments. Each time one part
is taken as test set and all other k-1 parts combined is taken
as train set. The proposed measures of LPHRA, LPHCN ,
LPHJC , LPHAA and LPHKZ are computed on the train set
and evaluated against test set. The average of k iterations is
reported. For comparison with existing measures, the train
set is transformed into test set and the graph versions of
the proposed measures are computed. The performance of
these measures are evaluated on the same test hypergraph for
uniformity.

We conducted our research on a computer system featuring
an Intel(R) Core(TM) i7-8700 CPU, from 11th generation
with a base clock speed of 3.20GHz, 6 cores, and 12 logical
processors. The system had 16 GB of RAM and ran on
Windows 10 Education. Our study was conducted using
python, and implemented algorithms with libraries such as
Networkx, Numpy, Pandas, Matplotlib, and Scikit-Learn.

B. EVALUATION METRICS
The performance of the suggested LP measures is commonly
assessed using the following metrics [43].

• Area Under the Receiver Operating Characteristic Curve
(AUROC)

FIGURE 7. AUROC of predicting links in graphs vs hypergraphs.

• Precision
• F1-score

The calculation for AUROC, Precison, F1-score are based
on True-Positive-Rate (TPR), True-Negative-Rate (TNR),
False-Positive-Rate (FPR), False-Negative-Rate (FNR),
which can easily computed from the confusion matrix.

where

• True-Positive (TP): The number of node pairings,
whose links are both present in the test set and predicted
by the LP measure.

• True-Negative (TN): The number of node pairings,
having a link predicted by the LP measure but link is
not existing in the test set.

• False-Positive (FP): The count of node pairings where
LP measure does not anticipate the link, but connection
is present in the test set.

• False-Negative (FN): The count of node pairs between
which the LP measure does not predict a link, and the
link doesn’t exists in the test set.

Precision and F1-score are computed using Eq. 24 and Eq.26
respectively.

Precision (PR) =
TP

TP+ FP
(24)

Recall (TPR) =
TP

TP+ FN
(25)

F1-score = 2 ⋆
Precision ⋆ Recall
Precision + Recall

(26)

Precision (Eq.24) called link accuracy, defines how many
of the positive predictions made are correct (true positives),
whereas F1-score (Eq. 26) integrates recall and precision
using a harmonic mean of two.

Area under ROC curve (AUROC) is a single point
summary to specify the performance of a measure. AUROC
has a range berween 0 and 1, 1 being the ideal value.
Performance of any measure below 0.5 is taken as below
random performance [44].
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FIGURE 8. Precision of LP measures in graphs vs hypergraphs.

FIGURE 9. F1−score of LP measures in graphs vs hypergraphs.

C. RESULTS
In this section, we discuss our findings on five proposed
LP measures in hypergraphs such as LPHRA, LPHCN ,
LPHJC , LPHAA and LPHKZ . We also compare against the
corresponding LP measures in graphs.

Table. 5 presents AUROC scores across six networks. The
bold font values highlights the top AUROC within LP graph
measures, while red font values denote the highest across all
evaluated metrics. Analysis of Table. 5 reveals AA’s superior
performance on five datasets: NDC-substances, email-Eu,
DAWN, tags-math, and tags-ask-ubuntu. CN outshone others
in the NDC-classes dataset. Among introduced LPH metrics,
LPHRA outpaced alternatives in LP for email-Eu, DAWN,
tags-math, and tags-ask-ubuntu datasets. LPHCN led in
NDC-classes, with LPHAA excelling in NDC-substances.
Hypergraph adaptations of LP methods marked a 10%
average enhancement in predictive accuracy over traditional
graph-based predictions. The Fig. 7 showcases the AUROC
for both graph and hypergraph LP metrics. Notably, the
hypergraph iteration of RA, termed LPHRA, showcases a
27% boost over its RA counterpart. Likewise, LPHCN ,

LPHJC , LPHAA, and LPHKZ have shown enhancements of
12%, 21%, 10%, and 13% respectively, when compared to
their graph-based versions.

Table 6 details the precision scores for LP metrics. Within
the NDC-classes dataset, RA leads in graph performance,
closely followed by JC . However, in the hypergraph category,
LPHRA outshines its counterparts, with its precision notably
marked in red. For the NDC-substances dataset, KZ stands
out in graph metrics, while LPHRA, highlighted in red
color font, achieves the highest precision among hypergraph
measures, underscoring its effectiveness. In the email-EU
dataset, KZ performs well in graph metrics, but LPHRA
steals the show in hypergraph analysis, its excellence
underscored in red color font. RA performs admirably in
the DAWN dataset’s graph metrics, with LPHRA leading
in hypergraph precision. In the tags-math dataset, RA tops
the graph metrics, while LPHRA distinguishes itself in the
hypergraph domain. RA maintains strong performance in
the graph metrics of the tags-ask dataset. LPHRA often
surpasses other hypergraph metrics, illustrating its capacity
to capture complex connections. The success of hypergraph-
based metrics, especially LPHRA, suggests their value for
datasets with hypergraph structures.

Fig.8 illustrates the precision of LP metrics for both graph
and hypergraph formats. LPHRA, the hypergraph adaptation
of RA, shows a remarkable 44% improvement over its graph
counterpart, RA. LPHCN notes an 8% gain over CN . LPHJC
and LPHAAmark advancements of 5% and 8%, respectively,
against their graph-based iterations. LPHKZ , on the other
hand, sees a modest 5% enhancement compared to KZ .
In terms of precision, local similarity measures within the
LPH framework excel over those based on global similarity,
indicating a superior performance of hypergraph measures.
LPH metrics have consistently surpassed their counterparts
across all evaluated hyper-networks by an average margin of
0.7, signifying a significant decrease in false positives.

Table.7 showcases F1-score outcomes for LP and LPH
metrics. Analysis reveals RA’s impressive performance
across various datasets, including NDC-substances, NDC-
classes, email-Eu, DAWN, tags-math, and tags-ask Ubuntu.
LPHRA, a proposed LPH metric, has shown superior LP
capabilities across these six datasets. LPH metrics have
proven to be significantly more effective than their graph-
based equivalents, with a notable margin of 0.5. Fig.9
illustrates the superior performance of LPH metrics com-
pared to graph-based metrics. LPH metrics excel in AUROC,
accuracy, and F1-score evaluations. These improvements
underscore the advantage of pairwise LP in hypergraphs over
traditional graph conversion methods, alongside consistent
efficacy across six distinct datasets. The superiority of LPH
measures, with a margin of 0.5 in F1-scores over their graph
counterparts, illustrates a significant leap in the precision-
recall balance. This balance is crucial for effective LP, as it
indicates a model’s ability to identify true links without
being overwhelmed by false positives. The LPH measures’
dominance suggests that they are better tuned to capture
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TABLE 5. Performance of LP measures in graph vs hypergraph in terms of AUROC.

TABLE 6. Performance of LP measures in graph vs hypergraph in terms of Precision.

TABLE 7. Performance of LP measures in graph vs hypergraph in terms of F1-score.

the multidimensional relationships inherent in hypergraphs,
which are often lost or oversimplified in graph conversions.

D. DISCUSSION
Analyzing five proposed LP strategies:LPHRA, LPHCN ,
LPHJC , LPHAA, LPHKZ -alongside their graph-based coun-
terparts sheds light on the nuanced capabilities of hypergraph
structures to model complex connections. The hypergraph
variants consistently surpass graph-based methods in preci-
sion, accuracy, and F1-scores. Echoing findings from earlier
studies on graph LP, metrics such as RA and AA excel due to
their nuanced approach to calculating similarity, factoring in
both the frequency of shared neighbors and the exclusivity
of these connections. In contrast, CN and JC metrics,
which merely tally shared neighbors without assessing
their distinctiveness, lag in performance. The hypergraph
method, particularly LPHRA, emerges as a superior predictor,
outshining both other LPH metrics and traditional graph-
based approaches. The global metric LPHKZ underperforms
in the AUROC metric, hindered by a hyperedge candidate
set size capped at two, limiting its scope and slowing its
computational pace due to the exhaustive consideration of
graph topology.

While LPHCN and LPHJC falter in precision and F1-
scores due to their constrained approach to common neigh-

bors, the broader application of LPH metrics illuminates
their strength in capturing local interactions. This quality
makes them potent for tasks like community detection
and recommendation systems. The consistent 10% AUROC
improvement with hypergraph models across various metrics
underscores the inherent advantages of hypergraph represen-
tations. Despite the promising performance of hypergraph-
based LP, challenges remain, including the need for more
targeted global measures and improved computational effi-
ciency and scalability in larger hypergraph contexts. Future
research should address these limitations to enhance the util-
ity and applicability of hypergraph-based LP methodologies.

VI. CONCLUSION
This investigation unveils a new strategy for predicting
upcoming connections between entity pairs within complex
hyper-networks. By harnessing the inherent topological
features of hyper-networks, this strategy sidesteps the con-
ventional need to convert these networks into simpler graph
forms. It innovates by adapting five similarity-based LP
metrics specifically for the nuanced environment of hyper-
networks, tested across six standard complex hyper-network
datasets. The newly developed LPH metrics have shown clear
advantages over traditional LP methods.
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In future, we intend to focus on extending more global LP
measures to hypergraphs. We aim to investigate probabilistic
approaches to gain deeper insights into the likelihood of
future connections within a hypergraph framework. Further,
the exploration of sophisticatedmachine-learning techniques,
such as graph neural networks and deep learning, is on the
agenda to boost the efficacy of LPH. The overarching aim
is to enhance both the precision and utility of LP techniques
within complex hyper-networks, thereby achieving a richer
understanding of the dynamics within real-world complex
systems. Similar to LP in graphs, our approach to LPH is
currently limited to pairwise links due to concerns regarding
time complexity. In consideration of privacy, we are only
focusing on nodes and edges, neglecting node attributes
and edge attributes, which represent certain drawbacks in
our methodology. However, we plan to expand our research
to encompass actual hyperlink prediction in the future.
At present, node and edge attributes, as well as node
centrality, are not being incorporated, but we aim to address
these aspects in our future work.

VII. ABBREVIATIONS
The abbreviations used in this paper are given in Table. 8.

TABLE 8. Abbreviations.
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