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Article 

Enhancements of Wave Power Absorption with 
Arrays and a Vertical Breakwater 

Fuat Kara 

Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK; fuat.kara@shu.ac.uk 

Abstract: The capability of in-house transient wave-multibody computational tool of ITU-WAVE are extended 

to predict the wave power absorption with Wave Energy Converters (WECs) arrays placed in front of a vertical 

breakwater. The analyses of hydrodynamic exciting and radiation forces are approximated solving boundary 

integral equation at each time interval. The reflection of incoming waves due to a vertical wall is predicted with 

method of images. The constructive or destructive performance of WECs arrays with different array 

configurations is measured with mean interaction factor. The behaviour of the exciting and radiation 

hydrodynamic forces of each WEC due to a vertical wall effect shows considerable differences than those of 

WECs arrays without a vertical wall influence. When the wave power absorption with WECs arrays with and 

without a vertical wall effect are compared, it is shown with numerical experiences that WECs placed in front 

of a vertical wall have much greater effects on wave power absorption. This can be attribute to the 

hydrodynamic interaction, standing waves, and nearly trapped waves in the gap between a vertical wall and 

WECs arrays. The analytical and other numerical results are used to for the validation of the numerical results 

of the present ITU-WAVE computational tool for exciting and radiation forces, and mean interaction factor of 

WECs arrays which show satisfactory agreements. 

Keywords: mean interaction factor; absorbed wave power; multibody interaction; WECs arrays; 

method of images 

 

1. Introduction  

The performances of isolated WECs for wave power absorption can be improved using different 

array configurations of rectangular, square, or linear forms. In addition, single or multimode of 

motions (e.g., surge, heave, pitch), separation distance between WECs (Kara 2016a), heading angles 

(e.g., head seas, beam seas), Power-Take-Off systems or control strategies (e.g., discrete, or 

continuous) (Kara 2010) plays significant role on the performances of WECs arrays. Wave power 

absorptions could also significantly be improved replacing isolated device with WECs arrays (Kara 

2016a). The array configuration results in increasing absorbed wave power due to wave interaction 

and standing waves between a vertical wall and WECs. Wave power could be exploited either 

nearshore or offshore environments. The efficiency of WECs arrays and absorbed wave power could 

be further improved replacing WECs arrays in front of the marine structures (e.g., a vertical wall) 

(Kara 2022a, 2021, Chatjigeorgiou 2019) or integrating them with breakwaters. The overall cost WECs 

arrays in the offshore environment increases considerably due to the cost of the maintenance, 

installations, and operations. However, the overall cost could be decreased significantly by sharing 

it with existence marine structure and replacing WECs arrays in front of a breakwater or integrating 

them (Mustapa et.al. 2017) with, such as, a vertical wall.      

When wave power absorption of WECs arrays is compared that of isolated WEC, the 

experimental (Ning et.al. 2016) and numerical (Kara 2016a, Zhao et.al. 2019) analyses show that WECs 

arrays are superior to isolated WEC. The nearly trapped waves and hydrodynamic interaction in the 

gap is the reason for the considerably improved wave power absorption with WECs array 

configurations. The competitiveness of WECs arrays can be further improved and enhanced by 

exploiting the optimum hydrodynamic interaction in the gap of array system. A vertical wall effect 

on the efficiency and behavior of WECs arrays due to the wave interaction in the gap between WECs 

arrays and between a vertical wall and WECs are investigated numerically and experimentally (Kara 
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2022a,2021, Loukogeorgaki et.al. 2020). The effects of a vertical wall for maximum absorbed wave 

power are strongly influenced with the separation distance between a vertical wall and WECs arrays 

as well as between WECs (Schay et.al. 2013). The integration of WECs with breakwater has significant 

influence in the behavior and performance of WECs arrays with the configurations of floating and 

stationary systems (e.g., oscillating buoys, overtopping, oscillating water columns) (Ning et.al. 2016). 

The effects of a breakwater on hydrodynamic performance and flow behaviour around WECs 

arrays could be considered with method of images in which a breakwater is used as the line of 

symmetry. This methos is used to approximate hydrodynamic coefficients in front of a vertical wall 

or in a channel (Zhao et.al. 2019, Newman 2016). A vertical wall could be considered either wall with 

infinite length (Konispoliatis et.al. 2020) or wall with finite length (Loukogeorgaki et.al. 2020). The 

perfect reflection of the incoming waves is achieved with an infinite wall length whilst the effects on 

hydrodynamic variables of WECs arrays are taken with a finite wall length assumption into account. 

The integral equation which includes method of images to approximate hydrodynamic parameters 

is obtained by three preferred and most used methods considering three-dimensional effects and 

taking the hydrodynamic interactions in the gap of WECs arrays and between a vertical wall and 

WECs arrays into account automatically. Two of them are numerical methods implying that 

geometry of WECs arrays could be arbitrary whilst third one is an analytical method. One of the 

numerical methods is Rankine panel method (Kring & Sclavounos 1995, Nakos et.al. 1993) whilst the 

other one is wave Green function with the solution of Boundary Integral Equation Method (BIEM) 

(Kara 2020, 2016a, 2016b, Chang 1977). Point absorber (Budal 1977), plane wave analysis (Ohkusu 

1972), direct matrix method (Kagemoto & Yue 1986) is the widely used analytical method which is 

used if the geometry of WECs arrays is defined analytically (e.g., vertical cylinder, sphere).    

The novel element of the effects of the breakwater on wave power absorption from ocean waves 

are not studied extensively although much attention is given to wave power absorption and 

hydrodynamic performances without breakwater effects. The effects of a breakwater or vertical wall 

increase the efficiency and absorbed wave power considerably due to strong hydrodynamic 

interactions and standing waves between WECs and breakwater. In addition, most of the papers in 

the open literature considers the predictions of the exciting force calculations whilst the analyses of 

the radiation force prediction are not studied extensively. These knowledge gaps are studied and will 

be filled in the present paper. The other novel element and contribution to the knowledge of the 

present paper is the solution and prediction of the exciting and radiation forces using transient wave 

Green function, which is not studied before, for wave power absorption with WECs arrays placed in 

front of a breakwater.     

The hydrodynamic parameters of diagonal and interaction exciting and radiation IRFs in the 

present paper are predicted by time marching of time dependent integral equation with BIEM 

method (Kara 2022b, 2016b) and method of images which consider an infinite wall length assumption 

whilst the superpositions of Impulse Response Functions (IRFs) of diffraction and Froude-Krylov are 

used for prediction of IRFs of the exciting force. The isolated WEC, linear (1x3, 1x5), square (2x2, 3x3, 

5x5), and rectangular (2x3, 2x5, 3x5, 5x3) WECs arrays with or without a breakwater effect are used 

to predict hydrodynamic parameters in heave and sway modes. The exciting force IRFs are used to 

predict the frequency dependent exciting force amplitude through Fourier transform which has link 

between the frequency and time domain variables whilst the radiation IRFs are used for the radiation 

added mass and damping coefficients. The numerical results of present three-dimensional ITU-

WAVE computational tool are then validated against other numerical and analytical results which 

show acceptable level of agreements. The superpositions of instantaneous wave power due to the 

time-dependent exciting and radiation forces are used to obtain the absorbed wave power with time 

average approximation. The transient effects on the predicted absorbed wave power in direct time 

domain analysis are avoided by considering only last half of time domain simulations which are 

achieving the steady state condition. 
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2. Materials and methods 

The numbers (1, 2, 3,…,10) in Figure 1 are used to show the location of 2x5 array system with a 

vertical wall. 𝛽 is used for heading angle whilst the separation distance between WECs arrays is 

given with 𝑑. The separation distance between 2x5 WEC arrays and a vertical wall is given with 𝑤𝑙. 
The WECs arrays with free surface intersection is given with Γ whilst 𝑆  is used for free surface. 𝑆  

is used to represent the surface at infinity.     

 

Figure 1. Positions of WECs in 2x5 arrays with a vertical wall (breakwater) and a coordinate system 

in xy-plane. 

Potential theory to solve the hydrodynamic parameters of WECs arrays with effects of a vertical 

wal in time domain is studied in the present work to approximate the velocity potential Φ(�⃗�, 𝑡) in 

time. Potential theory results in the assumptions that fluid flow is irrotational implying no fluid 

separations, and fluid is incompressible and inviscid implying no lifting effects. The velocity potential 

gradient 𝑉(�⃗�, 𝑡) = ∇Φ(�⃗�, 𝑡) is used to approximate the flow velocity 𝑉(�⃗�, 𝑡) which results from the 

potential theory assumption.   

2.1. Time domain equation of motion of WECs arrays 

The simulation of the equation of motion in time domain with effect of a breakwater on WECs 

in an array system is achieved through contribution from time dependent exciting forces acting 

external forces, time dependent radiation forces acting hydrodynamic restoring forces and 

representing wave damping, damping due to PTO system acting control forces, hydrostatic restoring 

forces due to wave motion and PTO system, and inertia mass and added mass at infinity in Eq. (1) 

(Cummins 1962). The pressure disturbances around WECs arrays are created due to incoming waves 

which are represented with right-hand side convolution integral in Eq. (1). The pressure changes also 

result in the disturbances of the free surface which is represented with left-hand side convolution 

integral in Eq. (1).    

𝑀 + 𝑎 𝑥 (𝑡) + (𝑏 + 𝐵 )𝑥 (𝑡) + 𝐶 + 𝑐 + 𝐶 𝑥 (𝑡) + 𝑑𝜏𝐾 (𝑡 − 𝜏)𝑥 (𝜏) = 𝑑𝜏𝐾 (𝑡 − 𝜏)𝜁(𝜏)   (1) 

where 𝑘 = 1, 2, 3, … ,6 (surge, sway, heave, roll, pitch, yaw mode of motions respectively) on upper 

and lower boundary of summation symbol is used to present rigid behavior of each WEC. The 

number of WECs arrays is represented with 𝑖 = 1, 2, 3, … , 𝑁 . The acceleration, velocity, and 

displacement of each WEC are given 𝑥 (𝑡), 𝑥 (𝑡), and 𝑥 (𝑡) = (1, 2, 3, … , 𝑁)  respectively where 

time derivatives of the displacements are given with dots. The elements of inertia mass matrix 𝑀  

and those of restoring coefficients 𝐶  in Eq. (2) are represented with 𝑚 and 𝐶  which correspond 

to an isolated WEC’s inertia mass and restoring coefficient respectively. As each WEC in an array 

system has the same radius R, all elements of hydrostatic restoring coefficient matrix 𝐶 = 𝐶 =⋯ = 𝐶 = 𝐶  and those of inertia mass matrix 𝑚 = 𝑚 = ⋯ = 𝑚 = 𝑚 be the same.        
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𝑀 = 𝑚 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝑚 , 𝐶 = 𝐶 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝐶           (2) 

The geometry dependent, and time and frequency independent variables of infinite added mass, 

damping coefficient, and restoring coefficient in Eq. (3) are given with 𝑎 , 𝑏  and 𝑐  which are 

relate acceleration, velocity, and displacement respectively. The influence of each WEC is given with 

diagonal terms whilst the interaction of each WEC with each other is given with off-diagonal terms. 

The hydrodynamic relevant forces are presented with the time and geometry dependent IRF 𝐾 (𝑡) 

(Ogilvie 1964).      

K (t) = K ⋯ K⋮ ⋱ ⋮K ⋯ K , a = a ⋯ a⋮ ⋱ ⋮a ⋯ a  b = b ⋯ b⋮ ⋱ ⋮b ⋯ b , c = c ⋯ c⋮ ⋱ ⋮c ⋯ c      (3) 

A uni-directional impulsive incident wave elevation ζ(t) in body coordinate system at origin of Fig. 

(1) with arbitrary incident wave angle in Eq. (4) result in exciting force IRFs K (t) =(K , K , K , … , K )  on the k  body (King 1987). The exciting force IRFs K (t) are obtained by 

summation of diffraction IRFs due to reflected waves from array of each WEC and Froude-Krylov 

IRFs due to incoming incident waves. 𝐹 (𝑡) = 𝑑𝜏𝐾 (𝑡 − 𝜏)𝜁(𝜏)        (4) 

The damping 𝐵  and restoring 𝐶  matrix of PTO system in Eq. (5) are frequency dependent 

and time independent variables. The damping coefficient at resonant frequency is selected as PTO 

damping matrix elements of 𝐵 . The maximum wave power (Budal & Falnes 1976) is absorbed 

at resonance condition in which each WEC’ natural frequency in an array system equals to incident 

wave frequency. As there is no hydrostatic restoring force in sway mode for a floating system, the 

present paper assumes that the elements of PTO restoring matrix 𝐶  in sway mode have the 

same as those of heave mode. The same displacement and natural frequency are achieved with this 

assumption in heave and sway modes which also results in the direct comparison of the performance 

of each WEC in heave and sway modes with respect to maximum power absorption. 

𝐵 = 𝐵 (𝜔 ) ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝐵 (𝜔 )      𝐶 = 𝐶 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝐶           (5) 

where 𝜔  represents each isolated WEC’ natural frequency in an array system. The time domain 

simulation of equation of motion Eq. (1) (Kara 2022a,2021, 2016b, 2015) is achieved Runge-Kutta 

method with fourth order version after determining of parameters in Eq. (2) – Eq. (5). 

2.2. Mean and instantaneous wave power 

PTO system at each mode is used to convert the absorbed instantaneous wave power 𝑃 (𝑡) 

in Eq. (6) to electrical energy with WECs arrays which takes the effects of a vertical wall into account. 

The instantaneous wave power 𝑃 (𝑡) is obtained with the superposition of wave power generated 

by exciting and radiation forces.     𝑃 (𝑡) = [𝐹 (𝑡) + 𝐹 (𝑡)] ∙ 𝑥 (𝑡)                   (6) 

where the incident coming waves ζ(τ) and waves diffracted from each WEC in front of a breakwater 

result in the generation of instantaneous exciting forces 𝐹 (𝑡) in Eq. (7) whilst the oscillations and 

interactions of each WEC in Eq. (8) result in the generation of instantaneous radiation forces 𝐹 (𝑡) 

(Kara 2022a, 2021,2016a,2010).        𝐹 (𝑡) = 𝐹 (𝑡) = 𝑑𝜏𝐾 (𝑡 − 𝜏)𝜁(𝜏)       (7) 
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𝐹 (𝑡) = 𝐹 (𝑡) = 𝑎 𝑥 (𝑡) − 𝑏 𝑥 (𝑡) − 𝑐 𝑥 (𝑡) − 𝑑𝜏𝐾 (𝑡 − 𝜏)𝑥 (𝜏)   (8) 

The absorbed instantaneous exciting wave power 𝑃 (𝑡) = 𝐹 (𝑡) ∙ 𝑥 (𝑡) at any heading angles, 

which are the functions of the exciting force 𝐹 (𝑡) in Eq. (7) and the velocity 𝑥 (𝑡) of each WEC, 

are the total wave power absorbed from incident wave. The instantaneous radiation wave power 𝑃 (𝑡) = 𝐹 (𝑡) ∙ 𝑥 (𝑡) at any mode of motion in Eq. (8), which are obtained multiplying radiation 

forces 𝐹 (𝑡) with velocity 𝑥 (𝑡) of the each WEC, represent the wave power which is returned to 

sea with radiation of absorbed wave power. The time averaged over period T in Eq. (9) is used to 

obtain the mean absorbed wave power 𝑃 (𝑡) with PTO system.      𝑃 (𝑡) = 𝑑𝑡 ∙ [𝐹 (𝑡) + 𝐹 (𝑡)] ∙ 𝑥 (𝑡)      (9) 

The superposition of the mean wave power 𝑃 (𝑡) in mode k with N number of WEC in an array 

system in Eq. (10) is used to obtain the total mean wave power absorption PTk
(t).   𝑃 (𝑡) = ∑ 𝑃 (𝑡)                        (10) 

2.3. Constructive and destructive effects with mean interaction factor 

The frequency dependent mean interaction factor 𝑞 (𝜔) is used to predict the gain factor 

at any incident wave frequency and mode of motion. Mean interaction factor 𝑞 (𝜔) at arbitrary 

heading angles is the ratio of wave power absorbed by N interacting WECs to N number of isolated 

WEC. The separation distance between WECs and a breakwater, control strategies, geometry of 

WECs, incident wave angles, determine the destructive ( 𝑞 (𝜔) < 1)  or constructive (𝑞 (𝜔) > 1) effect. Mean interaction factor 𝑞 (𝜔) in Eq. (11) is given as (Thomas & Evans 

1981). 𝑞 (𝜔) = ( )× ( )               (11) 

where total WECs number in an array system is given with N. The average wave power absorbed 

with an isolated WEC is given with 𝑃 (𝜔 ) at the resonant frequency ω . P (ω) represents total 

mean absorbed wave power at mode k and wave frequency ω. The mean values of 𝑃 (𝑡) and 𝑃 (𝑡)  are used to predict 𝑃 (𝜔)  at the incoming wave frequency 𝜔  and 𝑃 (𝜔 )  at the 

resonant frequency 𝜔  respectively.      

3. Transient boundary integral equation for WECs arrays 

The transient boundary integral equation is used to solve the initial value problem with transient 

wave Green function which satisfy the condition at infinity, free surface boundary condition, and 

initial conditions automatically. This implicitly means that the surface of WECs arrays needs to be 

discretised to satisfy the body boundary condition (Wehausen and Laitone 1960). The potential theory 

and transient wave Green function G(P, Q, t − τ) with application of Green theorem over surface of 

WECs arrays in Eq. (12) are used to obtain transient boundary integral equation for the source 

strength (Kara 2000).    

⎩⎨
⎧ σ (P, t) + ∬ dS G(P, Q, t − τ)| σ (Q, t) + ⋯ + ∬ dS G(P, Q, t − τ)| σ (Q, t) = −2 ϕ(P, t)|⋮σ (P, t) + ∬ dS G(P, Q, t − τ)| σ (Q, t) + ⋯ + ∬ dS G(P, Q, t − τ)| σ (Q, t) = −2 ϕ(P, t)|         (12) 

and transient potential over each WEC in an array system is given in Eq. (13) 

⎩⎨
⎧ ϕ (P, t) = − ∬ dS G(P, Q, t − τ)| σ (Q, t) − ⋯ − ∬ dS G(P, Q, t − τ)| σ (Q, t)⋮ϕ (P, t) = − ∬ dS G(P, Q, t − τ)| σ (Q, t) − ⋯ − ∬ dS G(P, Q, t − τ)| σ (Q, t)      (13) 
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where P(x, y, z) and 𝑄(ξ, η, ζ) are used for field points and source or integration points respectively. G(P, Q, t − τ) = − δ(t − τ) + H(t − τ)G(P, Q, t − τ) represents transient wave Green function in 

which −  is used for time independent Rankine part and analytically solved and integrated over 

discretised quadrilateral elements (Hess & Smith 1964). G(P, Q, t − τ) is used for transient part due 

to oscillation of floating systems representing free surface effect. G(P, Q, t − τ) is solved analytically 

and then numerically integrated with two-dimensional 2x2 Gaussian quadrature over quadrilateral 

elements (Liapis 1986, King 1987, Kara 2000). δ(t − τ) and H(t − τ) are Dirac delta function and 

Heaviside unit step function respectively. The influence of discretised surface against each other is 

given with r = (x − ξ) + (y − η) + (z − ζ)  underneath of free surface, and image part against 

free surface is presented with r′ = (x − ξ) + (y − η) + (z + ζ) . (σ , σ , σ , … , σ ) in Eq. (12) is the 

transient source strength, and (ϕ , ϕ , ϕ , … , ϕ )  in Eq. (13) is the transient potential where the 

number of WECs in an array system is given with N.          

4. Results and discussions 

The present ITU-WAVE in-house computational tool (Kara 2023, 2022b, 2020, 2016b, 2015, 2010) 

is used for the predictions of exciting force amplitudes, radiation and exciting IRFs, damping and 

added-mass coefficients, response amplitude operator, mean interaction factor. Vertical cylinder and 

sphere WECs arrays are used to approximate the effects of a vertical wall on hydrodynamic 

performances of each WEC.       

4.1. Validation of ITU-WAVE numerical results 

4.1.1. Added mass and damping coefficients 

The in-house ITU-WAVE computational results of interaction hydrodynamic coefficients of 

added mass 𝐴  and damping 𝐵  between WEC1 and WEC 4 using vertical cylinder of 1x5 arrays 

in sway mode in Figure 2(a) and (b) are validated against analytical results of nondimensional added 

mass and damping coefficients respectively (Konispoliatis et.al. 2020). The analytical and in-house 

ITU-WAVE computational results are in satisfactory agreements as observed from Figure 2(a) and 

(b). In 𝐴 , subscript is used for mode of motion (e.g., 2 is for sway mode) whilst superscript is used 

for interaction between WECs (e.g., 14 is the interaction between WEC1 and WEC4). 

 

Figure 2. Nondimensional interaction sway radiation force coefficients between WEC1 and WEC4; (a) 𝐴 ; (b) 𝐵 . 

The interaction added mass 𝐴  and damping 𝐵  coefficients between WEC1 and WEC5 of 

truncated vertical cylinder of 1x5 arrays in sway mode are given with Figure 3(a) and (b) respectively 

in which the present numerical results of ITU-WAVE are validated against analytical results which 

shows good agreement (Konispoliatis et.al. 2020). It can be observed from Figure 2 and 3 for added 

mass and damping coefficients that when the separation distance between WECs increases, the 

amplitudes of the oscillations are getting greater at higher incident wave frequencies in Figure 3 

compared to Figure 2.  
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Figure 3. Nondimensional interaction sway radiation force coefficients between WEC1 and WEC5; (a) 𝐴 ; (b) 𝐵 . 

4.1.2. Exciting force amplitude  

In addition to validation of radiation damping and added mass coefficients with analytical 

results, ITU-WAVE numerical results of truncated vertical cylinder of square 2x2 arrays for exciting 

force amplitudes in surge mode in Figure 4(a) and (b) are also validated against the analytical results 

(Chatjigeorgiou 2019) at the heading angle 270o for WEC1 & WEC2 (𝐹 , ) and WEC3 & WEC4 (𝐹 , ) 

respectively. In 𝐹 , , subscript represents the mode of motion for exciting force (e.g., 1E is exciting 

force for surge mode) whilst superscript represents WECs (e.g., 1 is for 1st WEC and 2 is for 2nd WEC 

in the array system). The compared present numerical results of exciting force amplitude are also in 

good agreement with analytical results. 

 

Figure 4. Nondimensional amplitudes of exciting forces in surge mode; (a) 𝐹 , ; (b) 𝐹 , . 

4.1.3. Mean interaction factor 

Mean interaction factor of a vertical cylinder with hemisphere bottom of rectangular 2x5 arrays 

at heading angle 900 in heave mode is used to validate ITU-WAVE numerical results against 

analytical result (McCallum et.al. 2014) in Figure 5. The present numerical result and analytical result 

show satisfactory agreement as observed from Figure 5. The contributions of 1st row (WEC1-WEC5) 

and 2nd row (WEC6-WEC10) of rectangular 2x5 arrays in Figure 5 are presented together with overall 

mean interaction factor, which is the superposition of 1st and 2nd rows, to show the effects of each row. 

WECs in 2nd row is closer to a vertical wall as presented in Figure 1. When mean interaction factor of 

1st and 2nd rows of 2x5 rectangular arrays is compared, it can be observed in Figure 5 that 2nd row has 

much better constructive effects due to the nearly trapped waves and wave interactions in the gap of 

1st and 2nd rows. The dominant constructive effects happen around nondimensional resonant 

frequency of 0.5, however, away from natural frequency, the destructive effects start to be dominant 

around the nondimensional incident wave frequency of 0.6. When the nondimensional lower and 

upper frequency ranges are considered, the same amount of wave power which oscillates around q  = 1.0 is absorbed with isolated WEC and WECs arrays in the lower frequency range up to 
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nondimensional wave frequency of 0.4, however, at upper frequency range, more wave power is 

exploited with WECs in 2x5 rectangular array system compared to isolated WEC.    

 
Figure 5. Mean interaction factor 𝐪𝐦𝐞𝐚𝐧𝟑  of rectangle 2x5 arrays. 

4.2. Exciting and radiation force IRFs 

4.2.1. Exciting force IRFs 

The nondimensional exciting force IRFs of 5th row of sphere 5x5 arrays with radius R are 

presented in Figure 6 which shows with and without vertical wall effects. WEC22 and WEC24 as well 

as WEC21 and WEC25 are symmetric with respect to heading angle 900 and WEC23 is placed at the 

center of 5x5 array configuration. The symmetric configuration with respect to heading angle 900 of 

5th row of WECs in 5x5 array system results in the same exciting force IRFs in heave mode for WEC22 

and WEC24 as well as WEC21 and WEC25. The area under IRFs represents wave energy implying 

available wave power that could be absorbed by WECs in an array system. A vertical effect in an 

array system results in greater bandwidth and amplitudes of IRFs in Figure 6 over a range of time.  

 

Figure 6. Nondimensional heave IRF of exciting force for 5th row of 5x5 arrays with and without a 

vertical wall effect. 

The effects without and with a vertical wall on exciting force IRFs in Figure 7(a) and (b) are 

presented at the center of each row of rectangular 3x5 sphere arrays in heave mode respectively. The 

effects of a vertical breakwater on IRFs of the exciting forces bandwidth are superior to those of 

without a breakwater effect. This implies that there is more available wave energy to be absorbed 

with arrays placed in front of a vertical breakwater. It can be also observed from Figure 7(b) that WEC 

at the center of 1st row at heading angle 900 has greater bandwidth compared to WEC at the center of 

3rd row.    
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Figure 7. Nondimensional IRFs of exciting force in heave mode at the center of each row of 3x5 arrays; 

(a) without a vertical breakwater; (b) with a vertical breakwater. 

4.2.2. Radiation force IRFs 

The effects without and with a vertical wall on radiation interaction force IRFs between WEC1 

and WECs at the center of 1st row (WEC3) and 3rd row (WEC13) in Figure 8(a) and (b) respectively 

are presented for linear 3x5 sphere arrays in heave mode of motion. The amplitudes of the interaction 

heave IRFs increase over time with increasing separation distances between WECs in an array system 

in the case of effects of a vertical wall. As pointed out before, the greater amplitudes of radiation IRFs 

imply more wave energy is stored under the area of the radiation IRFs to be exploited with effects of 

a vertical wall.  

 

Figure 8. Nondimensional heave radiation interaction IRFs of 3x5 arrays; (a) without a vertical wall; 

(b) with a vertical wall. 

4.3. Response of each WEC in an array system - RAOs 

The effects of a vertical breakwater on sway and heave RAOs for sphere with linear 1x3 arrays 

at heading angle 900 are presented in  Figure 9(a) and (b) respectively. As WECs in 1x3 arrays is 

symmetric with respect to the center of the coordinates system, heave RAOs (𝑥 , ) and sway RAOs 

(𝑥 , ) of are the same.  In 𝑥 , , subscript represents mode of motion (e.g., 3 is for heave) whilst 

superscript represents positions of WECs in an array system (e.g., 1, 3 are for WEC1 and WEC3 

respectively). 
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Figure 9. Effects of a vertical wall on each WEC’s RAO for 1x3 arrays of sphere; (a) sway; (b) heave. 

RAOs of 1st and 2nd rows in heave and sway modes at incident wave angle 900 for sphere 2x3 

arrays with effects of a vertical wall are presented in Figure 10(a) and (b) for sway mode, and Figure 

10(c) and (d) for heave mode. In 2x3 arrays, 2nd row is closer to vertical wall whilst 1st row meets the 

incoming wave first at heading angle 900. RAOs in both heave and sway modes have finite resonance 

conditions over a range of the absolute wave frequencies due to the wave interactions, standing 

waves, and nearly trapped waves between WECs arrays and a vertical wall in Figure 10. As the some 

of the trapped wave energy in the gap of the array system is radiated back to sea, these resonances 

are finite in both heave and sway modes. The standing wave frequencies are the main reason for the 

stronger excitations of the wave motion in the gap of 2x3 array system. In addition, the incident waves 

could have complete transmission or reflection with a vertical wall at the frequencies of the standing 

waves and wave motion is resonant in the gap (Newman 1974, Evans 1975). The effects of standing 

waves, wave motion, and nearly trapped waves in the gap can be observed in both sway and heave 

mode 2nd row RAOs as the amplitude of 2nd row RAOs, which is closer to a vertical breakwater, in 

Figure 10(b) and (d) are greater compared to 1st row RAOs in Figure 10(a) and (c) respectively 

although it is not much greater compared to heave mode. The 1st row RAOs of WEC1 & WEC3 have 

equal amplitudes due to symmetric configurations of WECs with respect to the center of the 

coordinate system in both sway (𝑥 , ) and heave (𝑥 , ) modes in Figure 10(a) and (c) respectively 

whilst 2nd row RAOs of WEC4 & WEC6 are the same again due to the same symmetric condition in 

both sway (𝑥 , ) and heave (𝑥 , ) modes in Figure 10(b) and (d) respectively.  
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Figure 10. Effects of a vertical wall on each WEC’s RAO for 2x3 arrays of sphere; (a) 1st row sway; (b) 

2nd row sway; (c) 1st row heave; (d) 2nd row heave. 

4.4. Wave power absorption with 2x3 arrays 

Figure 11 are used to present the effect of the incident wave angle 900 on RAOs (𝑥 , 𝑥 ) in Figure 

11(a) and absorbed wave power (𝑃 , 𝑃 ) in Figure 11(b) for the isolated WEC in sway and heave 

modes. In 𝑥  and 𝑃 , subscripts represent mode of motion (e.g., 2 is used for sway mode). It is known 

that the hydrostatic restoring force coefficient in sway mode is not exist for floating systems. 

Assuming PTO restoring force coefficient of sway mode equals to that of heave mode in the present 

study. If the restoring force coefficients are the same in sway and heave modes, this implies that the 

floating system of an isolated sphere WEC will have the same displacements and its hydrodynamic 

performances can be directly compared to determine which mode of motion perform better for 

absorbed wave power. When the natural frequency of floating system of an isolated sphere WEC 

(𝜔 = 1.38 rad/s) and incident wave frequency equal each other, the floating system is in resonance 

conditions at which the maximum wave power is absorbed as it is shown in the present numerical 

study in Figure 11(b) and theoretical studies (Budal & Falnes 1976). When the performances of an 

isolated sphere WEC in sway and heave modes are compared, it can be observed from Figure 11(b) 

that sway mode shows better performance at around resonant frequency region and higher incident 

wave frequency range whilst mode of heave shows better performances in lower frequency ranges 

in which swell waves are present implying more wave power are available to be absorbed at these 

lower frequency range.   

 

Figure 11. Heave and sway modes of isolated sphere; (a) 𝑥2, 𝑥3; (b) 𝑃2, 𝑃3 

Figure 12(a) and (b) in heave and sway modes with vertical wall effect represent the absorbed 

wave power with sphere 2x3 arrays at heading angle 900. The contribution from 1st row, 2nd row and 

overall wave power absorption, which is obtained with the superposition of 1st and 2nd rows of sphere 

2x3 arrays, is also presented in saway and heave modes in Figure 12(a) and (b) respectively. The 

absorbed wave power in sway mode is given with respect to absolute incident wave frequency and 

has wider bandwidth in Figure 12(a) whilst the wave power absorption in Figure 12(b) is mostly 

concentrated around absolute wave frequency of 𝜔 = 1.2 rad/s in heave mode for 2nd row. The wave 

power in sway mode at lower incident wave frequency performs better compared to heave mode. 

Maximum wave power absorption from 1st and 2nd rows is mixed in heave mode in Figure 12(b). The 

performance of 1st row are distributed over incident wave frequencies whilst 2nd row generates more 

wave power at resonant frequency region in heave mode in Figure 12(b). The wave power absorption 

has wider absorption bandwidth with both 1st and 2nd rows in sway mode.     
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Figure 12. Effects of a vertical wall with 2x3 arrays on wave power absorption; (a) 𝑃  (b) 𝑃  

4.5. Effects of a vertical wall on mean interaction factors 

Figure 13(a) and (b) present mean interaction factors q  of 2x3 and 3x3 arrays with 

separation distance between WECs 4R for each row in heave mode at heading angle 900 discarding 

the effect of a vertical wall. The incident wave meets the 1st row first at heading angle 900. The 

constructive effects for WECs arrays are dominant with increasing row numbers as it can be observed 

in 2nd row of 2x3 arrays in Figure 13(a) and 3rd row of 3x3 arrays in Figure 13(b). When the row 

numbers are increased, whilst keeping column number the same in an array system, the destructive 

effects become more dominant at lower row numbers at higher absolute wave frequency. This can be 

observed when mean interaction factor of 1st row of 2x3 arrays in Figure 13(a) are compared with 

those of 1st row of 3x3 arrays in Figure 13(b).   

 

Figure 13. Heave mean interaction factors of each row without a vertical wall effect; (a) 2x3; (b) 3x3 

arrays. 

The effects of a vertical breakwater on mean interaction factors q  in heave mode at 

heading angle 900 in Figure 14(a) and (b) are presented for sphere 2x3 arrays and 3x3 arrays 

respectively which are the same configurations that are considered in Figure 13(a) and (b) without a 

vertical wall effect. In the case of rectangular sphere 2x3 arrays, 2nd row is closer to a vertical wall 

whilst it is 3rd row in the case of square 3x3 arrays. 1st row in Figure 14(a) and 14(b) shows mixed of 

constructive and destructive effects in a range of incident wave frequencies. However, WECs closer 

to vertical breakwater, which is 2nd row in Figure 14(a) and 3rd row in Figure 14(b), show different 

behaviors as the dominant mean interaction factors in both 2x3 and 3x3 arrays configurations are at 

around incident wave frequency of 𝜔 = 1.2 whilst they show mixed of constructive and destructive 

effects at lower and higher incident wave frequencies range. When the effects of a vertical wall on the 

amplitudes of mean interaction factors in Figure 13(a) and Figure 14(a) for 2x3 arrays as well as Figure 

13(b) and 14(b) for 3x3 arrays are compared, it can be observed that a vertical breakwater has greater 

effects on the amplitudes of mean interaction factor in Figure 14(a) and (b) over those of without 

vertical breakwater effect in Figure 13(a) and (b). This implies that more wave power is available to 

be absorbed in the case of WECs arrays with a vertical breakwater.        
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Figure 14. Effects of a vertical wall on heave mean interaction factors of each row; (a) 2x3 arrays; (b) 

3x3 arrays. 

Figure 15(a) and (b) are used to present heave mean interaction factors at heading angle 900 with 

respect to absolute wave frequencies for 1x3, 3x3, 5x3 arrays keeping column constant and increasing 

row numbers without and with the effects of a vertical wall respectively. Sphere 1x3 array shows 

significant constructive effect around absolute wave frequencies of 1.2-1.6 rad/s compared to other 

configurations in Figure 15(a) in the case of without a vertical wall effect. Mean interaction factor 

oscillates around 1 up to 1.2 rad/s implying wave power absorption with N number of interacted 

arrays and isolated N number of WEC are approximately the same. When the row numbers are 

increased keeping column number constant, there are mixed of constructive and destructive effects 

with 3x3 arrays as the constructive effect are dominant at lower incident wave frequencies which has 

more wave power to be absorbed with WECs. It can be observed that 5x3 arrays do not show 

constructive effect with respect to absolute wave frequencies after absolute wave frequency of 1.1 

rad/s in Figure 15(a) although it has considerably high constructive effects at lower wave frequencies. 

The effects of a vertical wall on all array configurations show dominant constructive effects with 

respect to absolute wave frequencies in Figure 15(b). The arrays of 1x3, 3x3 in Figure 15(b) show 

considerably higher constructive effects around 1.2 rad/s and mean interaction factor reaches up to 

between 4 and 5 whilst 5x3 array also has significant constructive effect in a range of incident wave 

frequencies. However, when the row numbers are increased, although arrays show the constructive 

effect, the magnitude of mean interaction factors are considerably reduced (e.g., 5x3 arrays) in Figure 

15(b). When mean interaction factor without and with the influence of a vertical wall in Figure 15(a) 

and (b) are compared, the constructive effects due to a vertical breakwater effect show significantly 

higher superiority over without a vertical effect with respect to absolute wave frequencies especially 

lower and mid-range of absolute wave frequencies.           

 

Figure 15. Heave mean interaction factors in a range of row numbers; (a) without a vertical wall; (b) 

with a vertical wall. 
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5. Conclusions  

The transient in-house computational tool ITU-WAVE, which has a wide range of applications 

for wave-multibody interactions of floating systems of rigid and elastic isolated or array 

configurations, are used to predict absorbed wave power with and without a vertical wall effect to 

determine the behaviors of WECs in an array system. The radiation and exciting IRFs, which are 

directly calculated in time domain with the time marching of boundary integral equation method 

and method of images, are used to approximate the absorbed wave power due to the superpositions 

of wave power from the radiation and exciting forces.      

The absorbed wave power is significantly improved and increased with effects of a vertical wall 

which enhances the absorption considerably. The enhancements of wave power absorption results 

from the wave motion, standing waves, and nearly trapped waves between WECs arrays and a 

vertical wall as well as between WECs in an array system. The numerical analyses have shown that 

the influence of a vertical wall increases the wave power absorption considerably which 

approximately 2.5 times greater than those of without vertical wall effect at around absolute wave 

frequency of 1.2 rad/s. In addition, the constructive effects are dominant at lower and mid-range of 

the incident wave frequencies.   

The numerical results of present in-house ITU-WAVE are validated against analytical and other 

numerical results for interaction and diagonal added mass, and damping coefficients with 1x5 WECs 

arrays of truncated vertical cylinder, exciting force amplitudes with 2x2 WECs arrays of truncated 

vertical cylinder, and mean interaction factor with 2x5 WECs arrays of vertical cylinder with 

hemisphere bottom. The comparison of the present numerical results of ITU-WAVE with analytical 

and other numerical results show satisfactory agreements.     
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