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ABSTRACT

Dynamical system models typically involve numerous input parameters whose “effects” and or-
thogonality need to be quantified through sensitivity analysis, to identify inputs contributing the
greatest uncertainty. Whilst prior art has compared total-order estimators’ role in recovering “true”
effects, assessing their ability to recover robust parameter orthogonality for use in identifiability
metrics has not been investigated. In this paper, we perform: (i) an assessment using a different
class of numerical models representing the cardiovascular system, (ii) a wider evaluation of sampling
methodologies and their interactions with estimators, (iii) an investigation of the consequences of
permuting estimators and sampling methodologies on input parameter orthogonality, (iv) a study
of sample convergence through resampling, and (v) an assessment of whether positive outcomes
are sustained when model input dimensionality increases. Our results indicate that Jansen or Janon
estimators display efficient convergence with minimum uncertainty when coupled with Sobol and the
lattice rule sampling methods, making them prime choices for calculating parameter orthogonality
and influence. This study reveals that global sensitivity analysis is convergence driven. Unconverged
indices are subject to error and therefore the true influence or orthogonality of the input parameters
are not recovered. This investigation importantly clarifies the interactions of the estimator and the
sampling methodology by reducing the associated ambiguities, defining novel practices for modelling
in the life sciences.
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Sampling And Total Order Estimator Effects

Research Highlights
• We conduct a heuristic investigation utilising 2 physiologically intuitive, highly nonlinear and

stiff, lumped parameter models.
• The Janon and Jansen estimators emerge as optimal choices for calculating parameter orthogo-

nality, as they are insensitive to sampling methodologies and measurement types.
• The Janon and Jansen estimators prove to have the most efficient convergence rates in calculating

total order indices.
• The convergence rate of an estimator appears to be decisive in its ability to truthfully and

uniformly recover true indices and orthogonality.
• Our methods provide putative best practice for practical identifiability investigations.

Keywords Sensitivity Analysis · Sobol’s Indices · Total Order Estimators · Modelling practices · Practical identifiability

Author Summary

In order to gain a new insight into biological systems one often uses a mathematical model to predict possible responses
from the system of interest. One vital step when using such models is knowledge of the uncertainty associated with a
model response given a change in the inputs provided to the model. Utilising two non-linear and stiff cardiovascular
models as test cases we investigate the effects of different choices made when quantifying the uncertainty in a
mathematical model. Leveraging efficient solving of the mathematical model we are able to show that in order to
truly quantify the effects of inputs on a set of outputs one must ensure converged estimates of the inputs influence.
Without this, identifying inputs of a model become uncertain, or clinically, non patient specific. Our detailed study
provides a workflow and advice for mathematical models of biological systems thus ensuring a true interpretation of the
uncertainty associated with model inputs.

1 Introduction

Parameter identifiability addresses the question of whether, and to what degree it is possible to uniquely estimate
input parameters (inputs) for a given dynamical system with a set of measured (or synthetic) outputs. This problem is
typically decomposed into practical identifiability, which incorporates practical estimation issues associated with real
data (such as noise and bias), and structural identifiability, which considers only model structure. The latter investigation
is deemed ideal and effectively assumes that all data are known at every time point and are free of bias and noise [1].
Practical identifiability accounts for the role of noise and sampling frequency inter alia in hindering the ability uniquely
to estimate inputs. These issues notwithstanding, the study of unique parameter estimation is very important to the
complex models increasingly used in life sciences, which encompass pharmacology, epidemiology and cardiovascular
applications [2, 3, 4]. Assuming one can identify inputs representative of the data, we arrive at model personalisation- a
process of effectively calibrating a life science model using data available from an individual subject or patient. Within
a clinical setting, this might involve calibrating a cardiovascular model to (patho)physiological metrics. Robust and
reliable model personaisation is a key component for the development of digital twins for healthcare applications [5].

Unique model parameters are normally obtained by solving an inverse problem. One seeks the extrema of a cost
function, typically the L2 norm of some weighted difference between measured, often very noisy and self-inconsistent
target experimental data and a corresponding model prediction. A model cost function interacts with a hyper-surface
in the model’s input parameter space and personalisation amounts to an attempt to locate the global minimum of the
cost function. It is appropriate to emphasise, here, that input parameter space is multi-dimensional (with a dimension
equalling the number of input parameters) and that the gradient of the cost function hyper-surface typically varies
rapidly in some parameter directions (axes), but very slowly in others. Hence, a sufficient consideration of a model’s
input parameter hyper-surface is central to understanding which parameters can be recovered uniquely.

Various methods exist to calculate model identifiability (see e.g [6]); our approach is based on the method of Li et al.
[7], which calculates the identifiability index of the ith model input Ii as follows:

Ii = Ei · di, (1)

where di is the ith input’s orthogonality relative to a pre-selected, existing set of input parameters (which one is seeking
to expand) and Ei is an ith input’s effect. Here, the index Ii measures the likelihood of a unique recovery of the
ith model input. In our method, both effect and orthgonality of an input are calculated from the sensitivity matrix,
generated with respect to model outputs [7, 8, 9, 10]. Clearly, the identifiability index depends on both the effect and
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Sampling And Total Order Estimator Effects

the orthogonality which can be disclosed by sensitivity analysis. This prompts an investigation to find the most reliable
and most robust method for calculation.

Sensitivity analysis studies how a change in a model’s specific output can be attributed to different sources of uncertainty
in its (likely) many inputs [11]. Two types of sensitivity analysis exist: (i) Local sensitivity analysis (LSA), which
examines the sensitivity of the model inputs at one specific model operating point in the input parameters’ space; (ii)
Global sensitivity analysis (GSA), which determines sensitivities at multiple points throughout input space, before
finding a statistic measure [12]. Variance-based indices are commonly recognised as the pre-eminent statistic of GSA,
due to their model-independent nature, and their ability to account for interactions between model inputs and the ease
of interpretation [13, 14]. For studies on practical identifiability of inputs, the metrics on the total order sensitivity
matrix are calculated following Eq. (1), which evaluates the overall contribution of an input and its interaction with
other inputs to a specific output whilst considering orthogonality. We defer further detailed discussion to Section 2.3.

Calculations of inputs’ effects and orthogonality are an important area of research for model personalisation. Here we
ask three universal and interrelated questions:

(i) What is the most reliable estimator for the underlying sensitivity indices to be computed on?
(ii) What is the optimal sampling methodology, in relation to (i) above, for which one explores the complex input

parameter space?
(iii) How do the choices of estimator and sampling methodology impact the index convergence?

Previous work [15, 16, 17] mostly concentrates on efficient and accurate computation of the total order matrix and the
evaluation of different estimators’ abilities to reveal the “true” effects of inputs, given their interactions. Recently, Puy
et al. [18] reported their examination of several total order estimators - essentially a sensitivity analysis of a sensitivity
analysis [19]. These authors varied the sampling method, between Monte Carlo and quasi-Monte Carlo, their analytic
(note) test model, the dimensionality of input parameter hyperspace, the distribution of input parameters, and the
number of model runs. The work provides a comprehensive and systematic assessment of the properties of different
estimators.

We structure the paper as follows: Section 2 introduces the sampling methodologies and the total order estimators used
for our investigation, as well as the nonlinear systems they are applied to; Section 3 presents our findings and section
4 declares and discusses best practice to offset interactions between sampling methodologies, estimators and model
dimensionality when considering the orthogonality of inputs.

2 Methods

2.1 Backgound

Within the field of parameter identifiability, it is accepted [20] that there is interaction between the methodology of
sampling from the model’s input parameter hyperspace and the estimators used to extract values of, e.g. Sobol indices
[16]. It follows that other sensitivity derived metrics, such as the parameter orthogonality [7], are also affected by
this same interaction. In this work, therefore, we extend the consideration of both sensitivity and orthogonality in
tandem. We choose to undertake this assessment based upon a very important class of cardio-vascular models, which
are notoriously stiff and non-linear, in contradistinction to the simple, traditional models usually used for such purposes
[19, 21, 18], which possess analytic solutions. Because there is no analytical solution to the models considered in this
work, the reference (or true) values of the sensitivity and orthogonality indices must therefore be determined using high
levels of (re)sampling, based upon accepted processes of resampling and bootstrapping [21].

Our dynamical system has the form:
d

dt
X(t; θ) = f (X(t; θ); θ) , Y (t; θ) = h(X(t; θ)), (2)

where Y (t; θ) represents the dynamic outputs described by the measurement functions, h, which depend on the state
variables X(t; θ). The state variables are parameterised by the inputs θ but (for our application, at least) h does not
directly depend upon θ. f represents a set of square integrable functions which, together with inputs, θ, determine
X(t; θ), the solution of equations (2). Accordingly, f(X(t; θ); θ)), now viewed as a function of θ, is a suitable surrogate
to determine the sensitivity of model inputs on outputs, through X(t; θ). For inputs which range over a bounded
region, we consider a functional I[f ](t), formed from the integral of f over the n dimensional hypercube In, where n
represents the dimensionality of the input parameter space:

I[f ](t) =

∫
In

f(X(t; θ), θ)dθ. (3)
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The effect of sampling inputs can be assessed with reference to this integral, by viewing the sampling process as an
effective quadrature in which the sampled inputs define the abscissae. The quality of the sampling can then be measured
by the quality of the quadrature. The important question of how its accuracy is determined in conjunction with the
sampling of the hypercubic region of input parameter space is central to a robust and reliable sensitivity analysis.

2.2 Sampling Methodologies

In this section, we declare and briefly describe the input parameter space sampling methodologies that will be assessed
in this work. We concern ourselves with two popular Monte Carlo (MC) sampling methodologies: Uniform (U) and
Latin Hypercube (LH), and three Quasi-Monte Carlo (QMC) sampling methods: Golden Ratio (GR), Lattice Rule (LR)
and Sobol Sequence (SS).

2.2.1 Monte-Carlo Sampling Methods

Uniform sampling

The simplest sampling approach from literature is uniform sampling [22]. Input parameters θ are regarded
as uniformly distributed random variables, within the hypercube In such that:

I[f ](t) = E[f(X(t; θ)] ≈
∑N

i f(X, θi)

N
, (4)

where θi = (θi1, ..., θ
i
n, i = 1, ..., N) is a sequence of independent random points in In of length N . This is deemed a

crude approximation with poor convergence rates [23].

Latin hypercube sampling

The efficiency of MC methods is determined by the properties of the random samples. A priority for re-
searchers is to develop strategies which ensure points are placed more uniformly, within In. One response is to use LH
[24], which is a very common methodology in life sciences [25, 26, 27, 28]. Its main objective is to reduce the variance
associated with evaluating Eq. (3). One decomposes the space of inputs into N -dimensional squares, to ensure the
space is sampled as uniformly as possible. Let {ϵij}, for j = 1, ..., n, be independent random permutations of samples
i = 1, ..., N , each uniformly distributed over all N ! possible permutations. One then sets

θij =
ϵij + U i

j − 1

N
, j = 1, ..., n, i = 1, ..., N, (5)

where U i
j are independently randomly sampled points on the [0,1] interval. It can be seen intuitively how only one

sample point of the input parameters falls between i−1
N and 1

N for each dimension j = 1, ..., n. Here, we use the
‘standard’ version of LH, but see [29] for other variations.

2.2.2 Quasi Monte-Carlo Sampling Methods

An improvement on the Monte-Carlo sampling methodologies is the low discrepancy sampling (LDS) methods, coupled
with the QMC algorithm, as shown in [30, 31]. Discrepancy is a measure of the deviation of sampled points from the
uniform distribution [32]. Consider a number of points NR from a sequence {θi}, for i = 1, .., N , in an n-dimensional
rectangle R centred upon an origin 0, whose sides are parallel to the coordinate axis, which is a subset of In : R ⊂ In,
where R is attached with a measure. A sequence has low discrepancy if the proportion of points in the sequence falling
into an arbitrary set R is close to the measure of R. LDS satisfies the upper bound condition [33]:

DN ≤ k(n)
[ln(N)]2

N
, (6)

where DN is the sample discrepancy and k(n) is a particular constant depending on the sequence and size of input
paraeter space. LDS is designed to place sample points as uniformly as possible mathematically, within a hypercube,
instead of the statistical approach adopted in LH. The QMC approximation of the integral in Eq. (3) has identical form
to Eq. (4).

I[f ] =

∑N
i f(X, θi,q)

N
, (7)

except in this framework, θi,q is a matrix which has been generated from an LDS and the points are distributed
uniformly in the hypercube In. As a consequence, the sample points generated on In have a deterministic nature.
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Golden ratio sampling

Golden ratio sampling is an LDS sampler in which sample points are based on the fractional part of succes-
sive integer multiples of the golden ratio. First introduced by Schretter and Kobbelt [34], using a simple incremental
permutation of a generated golden ratio sequence, they demonstrated equal coverage of a two-dimensional space. The
generating sequence is expressed as:

θj = (θj−1 + α) (Mod 1). (8)
The constant α that gives the lowest possible discrepancy is α = 1

ϕ , where ϕ is the golden ratio [35]. j is the counter
for each parameter sampled. In this work and specifically in Section 3, we will test GR sampling for systems with input
parameter dimensions much higher than two.

Rank-1 lattice rule sampling

Another LDS is the rank-1 lattice rule, where an n-dimensional rank-1 lattice Π is a set of points that con-
tains no limit points and satisfies [36]:

θ′ ∈ Π =⇒ θ + θ′ ∈ Π and θ − θ′ ∈ Π, ∀θ. (9)

A general lattice is constructed by a generating matrix G ∈ Rn×n:

Π = {GV |V ∈ Zn}, (10)

where V is any integer unimodular integer vector. A generator matrix is not unique to a lattice Π, i.e., Π can be obtained
from different generator matrices. A rank-1 lattice is a special case of the general lattice, which has a simple operation
for point set construction, instead of directly using Eq. (10). A rank-1 lattice point set can be constructed as

θi :=
〈 iz
n

〉
, i = 0, ..., n− 1, (11)

where z ∈ Z is the generating vector and the inner product denotes the operation of taking the fractional part of the
input number elementwise. Compared with the general lattice rule, the construction form of the rank-1 lattice already
ensures the constructed points are inside the unit cube without the need for any further checks.

Sobol sequence sampling

Our final sampling methodology is the well-known Sobol LDS [37]. The Sobol sequence is widely consid-
ered as the optimal sequence for exploration of an input parameter space [27, 38, 39, 40]. The construction of the Sobol
sequence uses linear recurrence relations over the finite field F. Let the binary expansion of the non-negative integer R
be given by R = R12

0 +R22
1 + ...+Rn2

n−1, where n is the dimension of the input parameter hypercube. Then the
jth element of the nth dimension of the Sobol sequence, θnj can be generated by:

θj = R1µ1 ⊗ ....⊗Rnµn, (12)

where µi
j is a binary fraction called the ith direction number in the jth dimension. These direction numbers are

generated by the following q-term recurrence relation:

µn
i = a1µ

n
i−1 ⊗ a2µ

2
i−2 ⊗ ...⊗ aqµ

j
i−q+1 ⊗ µn

i−q ⊗
µi
i−q

2q
. (13)

We have i > q, and ai comes from the coefficients of a degree-q primitive polynomial over F. Put simply, the Sobol LDS
aims to achieve three requirements: (1) Best uniformity as n → ∞; (2) Good distribution even with small parameter
sizes; (3) A very fast computational algorithm.

2.3 Sensitivity Analysis and Orthogonality

Given a model of the form in Eq. (2) with Y (a continuous or discrete output), a variance based first order or total order
effect can be calculated for a generic input factor θi. θci denotes the complementary set, i.e., all other model inputs
excluding θi. The first order sensitivity index can be written as:

Si = Varθi(Eθc
i
(Y |θi)), (14)

where E is the expectation operator. The inner expectation operator functions such that the mean of Y is taken over all
possible values of θci while keeping θi fixed. The outer variance is taken over all possible values of θi. Then utilising
the known identity [41]:

Varθi(Eθc
i
(Y |θi)) + Eθi(Varθc

i
(Y |θi)) = Var(Y ), (15)
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where Varθi(Eθc
i
(Y |θi)) measures the first order (additive) effects of θi on the model outputs. Another popular variance

measure (and the concentration of this work) is total order estimators, first introduced by Homma [42]:

ST,i = Eθc
i
(Varθi(Y |θci )) = Var(Y )− Varθc

i
(Eθi(Y |θci )). (16)

Here ST,i measures the total effect, i.e., first and higher order effects (multiplicative interactions) of input parameter θi.
One can consider this by recognising that Varθc

i
(Eθi(Y |θci )) is the first order effect of θci , so Var(Y )−Varθc

i
(Eθi(Y |θci ))

must give the contribution of all terms in the variance decomposition which do include the input θi.

The equations can be derived through a Hoeffding-Sobol decomposition, and utilising the fact that each term is assumed
to be square integrable. The detailed derivation can be found in [43, 44].

Sobol indices converge slowly in general and estimators are used to accelerate the process [11, 13]. Here, we benchmark
five sampling methodologies against four commonly chosen total order estimators: Homma and Saltelli [42], Sobol
[45], Jansen [46] and Janon et al. [47]. While this list is far from exhaustive, it represents a selection of total order
estimators which have been practically used within the field and are not costly to execute computationally.

Table 1: Formulae to compute ST,i, where f0 and Var represent the mean and variance of the outputs respectively, as
defined in Eqs. (17) and (18).

Authors Estimator ST,n

Homma & Saltelli [42] Var(Y )−
∑N

i=1 f(A)f(Ai
B)

N + f2
0

Sobol [45]
∑N

i=1 f(A)[f(A)−f(Ai
B)]

N

Jansen [46]
∑N

i=1[f(A)−f(Ai
B)]2

2N

Janon et al.[47] Var(Y )−
∑N

i=1 f(A)f(Ai
B)

N − f2
0

For the Homma & Saltelli, Sobol and Janson estimators, their mean and variance take the following form:

f0 =

∑N
i=1 f(A)

N
, Var(Y ) =

∑N
i=1[f(A)− f0]

2

N − 1
, (17)

and for the Janon estimator:

f0 =

∑N
i=1[f(A) + f(Ai

B)]

2N
, Var(Y ) =

∑N
i=1[f(A)2 − f(Ai

B)
2]

2N
− f2

0 . (18)

In order to utilise the above formulae, we propose two independent sampling matrices are generated - A and B, with
elements aij and bij , for i = 1, ..., N, j = 1, ..., n (where N is the number of samples and n is the total number of
input parameters). We can now introduce a matrix Ai

B or Bi
A where all the rows are from A or B, except the i-th row

which is extracted from B or A. These matrices are then used to compute the sensitivity indices which will be discussed
below. While one can use either combination of the A and B matrices, within this work we use the couple A,Ai

B due
to its proven efficiency in calculating sensitivity indices [16].

As will be defined in the next section, we will calculate total order indices for both continuous and discrete measurements.
For continuous measurements, calculating the total order index produces waveform data which demonstrate the
sensitivity of each input parameter over the cardiac cycle. In order to quantify the effects continuous measurements have
on the calculation of total order, we must average this sensitivity waveform. Rather than averaging across a time range
(which process regions of low variance equally to those of high variance), we seek to expose differential sensitivities by
examining variance-weighted averages:

TAST,i =

∑
k ST,i(Y

c(tk))Var(Y c(tk))∑
k Var(Y c(tk))

, (19)

where TAST,i is the time averaged total order effect of an input parameter i and Y c(tk) represents the approximated
continuous measurement at time step k.

We use the measure dij to measure orthogonality between input parameters θi and θj :

dij = sin

[
cos−1

(
ST
T,j · ST,i

||ST,j ||||ST,i||

)]
, i, j = 1, .., n, dij ∈ [0, 1], (20)
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where ST
T,j represents the transposed total order sensitivity matrix. Calculating this returns a n× n matrix where each

element dij ∈ [0, 1]. dij = 0 represents total dependence between input parameters and dij = 1 represents complete
independence. We then are able to rank input parameters by calculating the mean of input parameters’ orthogonality
and ranking them such that the input parameter with the highest orthogonality is in position 1 and the input parameter
with the lowest orthogonality is in position n, where n is the input space dimension.

2.4 Models and Data

Systemic Aortic SinusSystemic Arteries

CsasRsasLsasCsatRsatLsat

Arterioles

Rsar

Capillaries

Rscp

Systemic Veins

CsvnRsvn

Left LeftMitral Aortic

Ela ElvRmv Zao

ValveVentricleValveAtrium

LeftMitral Aortic
ValveVentricleValve

Csa Rs CsvElv ZaoRmv

Systemic 
 Artery

Systemic 
Resistance

Systemic 
Veins

A

B

Figure 1: The two electrical analougue models utilised in this work. (A) is a nine parameter representation of the
systemic circulation originally presented by Bjordalsbakke et al. [48]. (B) is a twenty parameter representation of the
systemic circulation originally presented by Shi et al. [49].

We examine two models, which are representative of the heart and systemic circulation, of varying dimensionality in
order to assess their potential effects on total order estimators. The first model is a three-compartment system-level,
differential algebraic equations (DAE) based, electrical analogue cardiovascular (CV) model after Bjordalsbakke et.
al. [48] which we will refer to as the 1-chamber model (see Figure 1A). Our second model is a five-compartment
model, introduced by Shi et al. [49], which we shall denote the 2-chamber model (see Figure 1B). All model
simulation code is avilable at https://github.com/H-Sax/Orthgonality-SA. The latter model is of the same
form as Bjordalsbakke’s, however, the input parameter space dimensionality has increased from nine to twenty, due to
the addition of an atrium and other compartments.

Each compartment state is specified by its dynamic pressure P (t) (mmHg), an inlet flow Q(t) (mL/s) and a volume
V (t) (mL):

Xi(t) = (Vi(t), Pi(t), Qi(t))
T
, i ∈ {lv, sa, sv}, j ∈ {lv, la, sas, sat, sar, scp, svn}, (21)

where for the 1 chamber model lv, sa, sv mean the left ventricle, systemic artery and systemic veins respectively.
For the 2 chamber model lv, la, sas, sat, sar, scp, svn represent the left ventricle, left atrium, systemic aortic sinus,
systemic artery, systemic arterioles, systemic capillary and systemic vein. Formally, t is the continuous variable time.
For a full model description along with model parameters, see appendix A.

As we focus on the computation of total order indices, along with varying model dimensionality, we will also vary the
type of data provided to the model between continuous and discrete. For the simple nine parameter model defined in
Figure 1A, we utilise:

Y c(t) = (Plv, Psa, Vlv)
T , Y d(tk) = (Mean(Plv),Max(Psa),Max(Vlv))

T , (22)

where tk represents the discrete time point where the measurement is taken, Y c and Y d represent the continuous and
discrete measurement vector. For the twenty dimensional model in Figure 1B we utilise similar measurements:

Y c(t) = (Plv, Psat, Vlv)
T , Y d(tk) = (Mean(Plv),Max(Psat),Max(Vlv))

T . (23)

We follow the advice of Saltelli et al. [16] that the first and total order indices require k computations:

k = N(p+ 2), (24)
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STEP 1

Create your
dynamical

system. With a
parameter

dimension n.

STEP 2 STEP 3 STEP 4

MODEL CREATION

 Generate
sample matrices
A,B of size (N,n).
Using QMC or
MC methods. 

SAMPLE CREATION

Solve your model
N(n+2) times.

Using table 1 to
calculate S1 & ST. 

GLOBAL SENSITIVITY
ANALYSIS

Check indices
convergence
and calculate
orthogonality
using equation

20. 

MODEL ANALYSIS

Sensitivity Indices Workflow
S T E P  B Y  S T E P

RESAMPLE WITH
REPLACEMENT

Bootstrapping B
times following

[21]. Generates a
variance for

each sensitivity
index.

Figure 2: Workflow to compute sensitivity indices within Julia. Full code utilising these steps can be found at
https://github.com/H-Sax/Orthgonality-SA.

where p is the dimensionality of the input parameter space, N is the number of samples taken from the input parameter
space and k is the total number of model evaluations needed in order to compute the indices. It is well accepted within
the literature, that utilising the low discrepancy Sobol sequence combined with the Jansen Estimator is considered best
practice for calculation of total order indices [16, 18].

Given the high non-linearity and stiffness associated with these lumped parameter models, we first perform an assessment
of convergence and uncertainty in the calculation of the total order indices. We consider the indices converged once
there is no more change in the rank of the input parameters and the error associated with the indices is less than 5%.
Once the indices have converged with the Jansen estimator and Sobol sampling methodology, we fix this sample size,
N , for all other estimators and sampling methodologies. For the 9-parameter, 1-chamber model shown in Figure 1A, we
investigate the convergence by varying N ∈ [2000, 40000]. For the 20-parameter, 2-chamber model shown in Figure
1B, we vary N ∈ [10000, 30000]. The uncertainty associated with the indices is calculated using re-sampling with
replacement, where we set the number of bootstraps to B = 1000, as found in the literature [21, 50]. Once convergence
has been achieved for the discrete measurements, we use this sample size N for the continuous outputs to ensure the
time averaged indices derived are not subject to excessive uncertainty.

All computations are performed using Julia [51] and reproducible code is available at https://github.com/H-Sax/
Orthgonality-SA. Figure 2 details the workflow needed to generate the sensitivity indices in Julia. Step 1 involves
defining the ODEs of the system of interest. Model A is defined employing the package DifferentialEquations.jl [52]
and Model B is implemented using our acausal modelling library CirculatorySystemModels.jl [53]. Step 2 generates
the sample points needed to perform GSA. QuasiMonteCarlo.jl is a Julia package which provides the needed sampling
algorithms. Step 3 uses GlobalSensitivity.jl [54] which is a Julia implementation of the Sobol indices with varying
estimators and bootstrapping methodology. Then to analyse the sensitivity indices, we utilise self written functions.

Specifically, simulations were solved using Vern7 algorithm [55], with relative and absolute tolerances set to 10−8. We
saved the model solution at 200 points between cycles 15 and 16, a steady solution being reached after 5 cycles and
used Makie.jl to visualise results [56].

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.25.582013doi: bioRxiv preprint 

https://github.com/H-Sax/Orthgonality-SA
https://github.com/H-Sax/Orthgonality-SA
https://github.com/H-Sax/Orthgonality-SA
https://doi.org/10.1101/2024.02.25.582013
http://creativecommons.org/licenses/by/4.0/


Sampling And Total Order Estimator Effects

3 Results

In this section, we present: (i) the convergence of total order indices with respect to both discrete and continuous output
measurements; (ii) our investigation outcomes of varying the four estimators with the five sampling methodologies
defined in Section 2.2. First, the convergence results will be illustrated in Section 3.1. Then in the next two subsections,
total order Sobol indices and orthogonality of input parameters for the 1-chamber, 9-parameter model (Figure 1A)
and the 2-chamber, 20-parameter model (Figure 1B) are shown. Between each subsection, we examine what effect
the different choices of estimator and sampling methodology has on the orthogonality of input parameters. Within
each of the subsections, we make the distinction between the effects of continuous and discrete measurements. We
present results for input parameters which are deemed to have high clinical significance (i.e., bio-markers), for example,
low arterial compliance Csa may indicate a stiffening of the vessel. Each subsection displays convergence of a single
parameter for brevity.2. Physiologically realistic time series solutions generated from the model can be found in
appendix A, figure 12.

3.1 Convergence and Uncertainty

Figure 3 shows the convergence and the uncertainty of the minimal ventricular elastance Emin for the 1-chamber and
2-chamber models. We calculate the Sobol indices using the Jansen estimator and Sobol sampling, which are considered
to be best practice [18, 46]. Henceforth, they are regarded as our benchmark and the sample size returned from this
initial investigation is used for evaluations on all other estimators and sampling methods. Increasing the sample size
and re-sampling with replacement allow us to evaluate the sample size at which the Sobol indices have converged with
minimum uncertainty. This is displayed as a band around the index of interest and represents a 95% confidence interval
of the index estimate.

For the 1-chamber model, 10, 000 samples (110, 000 model evaluations) ensured convergence when computed against
the discrete measurements defined in Eq. (22). Figure 3A shows that evaluating the Sobol indices at a higher sample
size would provide minimal improvement and at 10, 000 samples the indices are subject to negligible error. Figure 3B
shows that the continuous indices have minimal error during the cardiac cycle so when we compute the time averaged
indices no excessive error will be present. Using the 10, 000 sample size, we computed the continuous Sobol indices
against the measurements defined in Eq. (22). For the 2-chamber model, 20, 000 samples (660, 000 model evaluations)
were adequate as seen in Figure 3C. The continuous measurements of the 2-chamber model, seen in Figure 3D, show
that the indices were not subject to error for 20, 000 samples. Figure 3C appears to indicate that fewer samples may
be adequate for the 2-chamber model. However, the adopted sample size ensured all input parameters displayed a
consistent rank with less than 5% error.

3.2 1-chamber Model

The uncertainty associated with the computation of Sobol total order indices on the 1-chamber model, with N = 10, 000
samples, is presented in Figure 4. Only the results for arterial compliance Csa are displayed in this figure. The 95%
confidence intervals for the Homma and Sobol estimators are considerably wider than that of the Jansen and Janon
estimators. The Homma estimator consistently produced estimates of the sensitivity indices which are different to that
of the other available estimators. The Jansen and Janon estimators are identical in their computations of the sensitivity
indices and confidence intervals, invariant of the sampling methodology used. When the Homma and Sobol estimators
are used, the latin hypercube and uniform sampling methods produce larger confidence intervals compared to the
quasi-monte carlo sampling methods.

When calculating total order indices on the 1-chamber model with continuous measurements (the histograms for the
orthogonality distributions of input parameters are presented in Figure 5), we notice that the orthogonality spreads for
the Jansen and Janon estimators are identical for the golden ratio and Latin hypercube sampling methodologies. The
Jansen estimator coupled with lattice rule sampling also shares this orthogonality distribution. The Janon estimator,
with Lattice Rule and Sobol sampling, and the Jansen estimator with Sobol sampling, exhibit minor variations from
the previous orthogonality distributions generated by Janon and Jansen estimators, however, are identical between
themselves. The orthogonality distributions returned from the Homma and Sobol estimators exhibit large variations for
each sampling methodology, although the Sobol estimator with the Sobol sampling returns an orthogonality distribution
similar to that seen by the Jansen and Janon estimators. These results are mirrored in Table 2 where the input parameters
are ranked based on their orthogonality scores in the parameter space. We see the orthogonality results obtained for the
Jansen and Janon estimators are invariant to sampling methodologies. In contrast, the rankings for Sobol and Homma
estimators vary amongst different sampling methodologies. The Sobol estimator when coupled with Sobol sampling,

2All other data is available at https://github.com/H-Sax/Orthgonality-SA

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.25.582013doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.582013
http://creativecommons.org/licenses/by/4.0/
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Figure 3: Convergence and uncertainty of indices associated with the minimum ventricular elastance Emin.
Figure A displays the convergence and uncertainty of the Sobol indices ST calculated on discrete measurements for
the 1-chamber model against increasing sample size. Here, the vertical line signifies the chosen sample size for the
1-chamber model at N = 10, 000. Figure B presents the continuous Sobol indices with uncertainty bounds, calculated
at a sample size N = 10, 000, on continuous measurements over a single cardiac cycle, for the 1-chamber model.
Figure C displays the convergence and uncertainty of ST calculated on discrete measurements for the 2-chamber model
against increasing sample size. Again, the vertical line signifies the chosen sample size for this model, at N = 20, 000.
Figure D shows the continuous Sobol indices with uncertainty bounds for N = 20, 000, on continuous measurements
over a single cardiac cycle, for the 2-chamber model. The measurements shown in blue, yellow and green denote the left
ventricular pressure, the systemic arterial pressure and the left ventricular volume, respectively. In the discrete settings
(i.e., A and C), the measurements are the mean left ventricular pressure, the maximum systemic arterial pressure and
the maximum left ventricular volume.
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returns a parameter ranking almost identical to that of the Jansen and Janon estimators, a result consistent with the one
observed in Figure 5.

In Table 3, stratification by estimator type and examination of the range of an input parameter across all sampling
methodologies reveal, as inferred from Table 2, that the Jansen and Janon estimators exhibit no variation for the
whole input parameter set, given any sampling methodology. This indicates that the Jansen and Janon estimators are
the optimal choices for this model. The Homma and Sobol estimators exhibit variations of 1.33 and 1.67 upon the
input parameter set, respectively. These variations mean that using Homma and Sobol estimators will return differing
orthogonality rankings when different sampling methodologies are used. When stratifying by sampling types, Table 4
reveals that Sobol and Lattice Rule samplings exhibit the smallest mean variations of the input set across all estimator
types. It is important to note that these variations are a consequence of the Sobol and Homma estimators which both
exhibited different orthogonality rankings for input parameters. These results indicate that given a less than optimal
estimator, the Sobol or Lattice rule sampling methodology may produce a ranking which can be considered closer to
the ground “truth”. Interestingly, we notice that the commonly used Latin Hypercube sampling methodology in life
sciences exhibits the largest variation of an input set of parameters.

Figure 4: Total order Sobol indices ST of the arterial compliance Csa for the 1-chamber model with continuous
measurements. Panels A - T show ST of Csa, for 3 continuous measurements - left ventricular pressure, systemic
arterial pressure and the left ventricular volume (represented in blue, yellow and green curves, respectively), over a single
cardiac cycle with differing estimators and sampling methodologies. Measurements are evaluated with N = 10, 000
samples, using B = 1000 bootstrapped samples to evaluate the uncertainty of the estimate. The bands represent 95%
confidence intervals associated with specific indices displayed as solid curves.
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Figure 5: Orthogonality distributions of input parameters for the 1-chamber model with continuous measure-
ments - Histograms A-T show the distribution of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of 1 represents total independence of input
parameters, whereas 0 represents total dependence. Each individual diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between
plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original
sensitivity vectors.

Figure 6 displays the convergence and uncertainty associated with the computation of the total order indices of the
mitral value resistance Rmv for the 1-chamber model against the discrete measurements. In all cases, as the sample
sizes are increased, the accuracy of the estimations and uncertainty associated with the indices improve. The Jansen
and Janon estimators provide the most efficient convergences and smallest errors when calculating the indices. A
sample size of N = 10, 000 is taken for the discrete measurements, because the columns for the Jansen and Janon
estimators (Panels K - T) illustrate that any additional samples would return minimal improvements in terms of accurate
calculation of the indices. The Homma and Sobol estimators (Panels A - J) display considerably larger errors than that
of the Jansen and Janon estimators. When the upper limit sample size of k = 40, 000 is reached, the Homma and Sobol
estimators appear to have converged with reduced errors when combined with the Sobol, Lattice Rule and Golden
sampling methods, although the errors are still much larger than those exhibited by the Jansen and Janon estimators.
The uniform and Latin hypercube sampling methods present the largest errors when combined with the Sobol estimator.

When calculating total order indices on the 1-chamber model with discrete measurements, the histograms presented
in Figure 7 show that the orthogonality spreads for the Jansen and Janon estimators for all sampling methodologies,
except the Janon estimator and the Latin Hypercube sampling pairing, are identical. We notice, the orthogonality
distributions returned from the Homma estimator exhibit large variations for each sampling methodology, as seen
with continuous measurements shown in Figure 5. The Sobol estimator column (Panels F - J) in Figure 7 displays
orthogonality spreads which are somewhat similar to that of Jansen and Janon, however are still quite variant amongst
sampling methodologies. These results are reflected in Table 5 where the Jansen and Janon estimators are shown
to invariant to sampling methodologies, whilst the rankings of parameter orthogonality for the Sobol and Homma
estimators vary amongst different sampling methodologies.

In Table 6, stratifying by estimator type and examining the range an input parameter exhibits across all sampling
methodologies reveals that the Jansen and Janon estimators exhibit no variation for any input parameter set, given any
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Table 2: Input parameter ranking for the 1-chamber model with continuous measurements - Here, input parameters
are ranked based on the averaged orthogonality score returned from the calculated total order sensitivity matrix. In
addition, the ranking is stratified by both sampling and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

H
om

m
a

SS 5 4 9 3 2 8 7 6 1
LR 5 4 9 3 2 8 6 7 1
GR 5 4 9 3 1 8 5 6 2
U 7 4 9 3 1 8 5 6 2

LH 6 4 8 1 3 9 5 7 2

So
bo

l

SS 4 3 8 5 1 7 9 6 2
LR 4 3 9 6 1 8 7 5 2
GR 4 3 8 7 1 6 9 5 2
U 5 3 8 4 1 9 7 6 2

LH 5 4 6 3 1 8 9 7 2

Ja
ns

en

SS 4 3 7 5 1 8 9 6 2
LR 4 3 7 5 1 8 9 6 2
GR 4 3 7 5 1 8 9 6 2
U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

Ja
no

n

SS 4 3 7 5 1 8 9 6 2
LR 4 3 7 5 1 8 9 6 2
GR 4 3 7 5 1 8 9 6 2
U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

Table 3: The ranges of input parameters across 5 sampling types for a specific estimator for the 1-chamber model with
continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin
Mean variation
of input set

Range Homma 2 0 1 2 2 1 2 1 1 1.33

Range Sobol 1 1 3 4 0 2 2 2 0 1.67

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0

Table 4: The ranges of input parameters across 4 estimator types for a specific sampling method for the 1-chamber
model with continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax
Mean variation
of input set

Range SS 1 1 2 2 1 1 2 0 1 1.22

Range LR 1 1 2 2 1 1 2 0 1 1.22

Range GR 1 1 2 4 0 2 3 2 0 1.67

Range U 3 1 1 2 0 2 4 0 0 1.44

Range LH 2 1 2 4 2 2 4 1 0 2.00
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sampling methodology, once again implying they are the optimum choice. The Homma and Sobol estimators exhibit
variations of 5.11 to 2.22, respectively, upon the input parameter set. The variations for the discrete measurements
are much greater than the variations seen with continuous measurements. When stratifying by sampling type, Table
7 shows the Sobol sampling method exhibits the smallest mean variation of an input set across all estimator types.
As above, due to only the Sobol and Homma estimator exhibiting largely varying parameter rankings, stratifying by
sampling methodology places more emphasis on the apparent less robust estimators. From this result, it does appear
the Sobol sampling method may improve the robustness associated with a parameter orthogonality ranking. One
notable observation as seen in Table 2 and Table 5 is that while the robustness of the Jansen and Janon estimator can be
observed in both tables, the ranking associated with the orthogonality of input parameters changes quite dramatically
(for example, Emin, Rmv , Zao and Rs), highlighting how the change in data type may have consequences in parameter
interpretation when conducting a sensitivity analysis.

Figure 6: Total order Sobol indices ST of the mitral valve resistance Rmv for the 1-chamber model with discrete
measurements. Panels A - T show ST of Rmv , for 3 discrete measurements: mean left ventricular pressure, maximum
systemic arterial pressure and maximum left ventricular volume (represented in blue, yellow and green, respectively),
evaluated at increasing sample sizes (N ∈ [2000, 40000] using B = 1000 bootstrapped samples), with differing
estimators and sampling methodologies. The bands represent 95% confidence intervals associated with specific indices
displayed as solid curves. The red solid vertical lines represent the point (N = 10, 000) at which the sample size is
taken.

Overall, for the 1-chamber model with 9 input parameters, we have seen consistent themes of the Jansen and Janon
estimators being most robust and most reliable which appear attributable to the excellent convergence exhibited by

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.25.582013doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.582013
http://creativecommons.org/licenses/by/4.0/


Sampling And Total Order Estimator Effects

Table 5: Input parameter ranking for the 1-chamber model with discrete measurements - Again, input parameters
are ranked based on the averaged orthogonality score returned from the calculated total order sensitivity matrix. The
ranking is also stratified by both sampling and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

H
om

m
a

SS 3 1 4 2 5 9 8 6 7
LR 3 1 4 2 6 7 9 8 5
GR 2 4 6 1 7 5 8 9 3
U 5 2 8 6 7 3 9 4 1

LH 3 4 5 6 1 8 2 7 9

So
bo

l

SS 3 2 4 1 5 8 7 6 9
LR 6 2 4 1 3 9 7 5 8
GR 3 2 5 1 6 7 8 4 9
U 1 3 5 2 4 8 7 6 9

LH 7 1 4 2 3 6 8 5 9

Ja
ns

en

SS 5 2 3 1 4 9 7 6 8
LR 5 2 3 1 4 9 7 6 8
GR 5 2 3 1 4 9 7 6 8
U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

Ja
no

n

SS 5 2 3 1 4 9 7 6 8
LR 5 2 3 1 4 9 7 6 8
GR 5 2 3 1 4 9 7 6 8
U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

Table 6: The range of parameter ranking across 5 sampling types for a specific estimator for the 1-chamber model with
discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin
Mean Variation
of input set

Range Homma 3 3 4 4 6 6 7 5 8 5.11

Range Sobol 6 2 2/2024 1 1 3 3 1 2 1 2.22

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0

Table 7: The ranges of input parameters across 4 estimator types for a specific sampling method for the single ventricle
model with discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax
Mean variation
of input set

Range SS 2 1 1 1 1 1 1 0 1 1.11

Range LR 3 1 1 1 3 2 2 3 3 2.11

Range GR 3 2 3 0 3 4 1 5 6 3.00

Range U 4 1 3 5 3 6 2 2 8 3.56

Range LH 4 3 2 5 3 3 6 2 1 3.22
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Figure 7: Orthogonality distributions of input parameters for the 1-chamber model with discrete measurements -
Histograms A-T show the distribution of orthogonality returned from examinations of the sensitivity vectors, calculated
from continuous measurements. Here, an orthogonality score of 1 represents total independence of input parameters,
whereas 0 represents total dependence. Each individual diagram denotes a specific combination of sampling methodol-
ogy and estimator type. The frequency of each histogram is normalised such that it is comparable between plots, i.e.,
the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original sensitivity
vectors.

these estimators. Sobol and Homma estimators exhibit very variable parameter rankings across different sampling
methodologies which are in line with the poor convergence of these estimators. The Sobol sampling method appears to
reduce the level of uncertainty associated with an input parameter’s orthogonality ranking, as shown in Tables 4 and 7
Interestingly, continuous measurements appear to reduce the level of variation associated with parameter orthogonality
ranking when compared to discrete measurements.

3.3 2-chamber Model

In this section, we present the results of our uncertainty study on the 20 parameters, 2-chamber model. First, the
uncertainty associated with the computation of Sobol total order indices, for this more complex model, with N = 20, 000
samples, is presented in Figure 8. Only the results for the left ventricular maximum elastance Emaxlv

are displayed here.
The Jansen and Janon estimators display identical index and confidence interval calculations, apart from when combined
with the lattice rule sampling methodology, the plots show slightly larger confidence intervals for the left ventricular
volume comparing to the other cases. The Homma and Sobol estimators again display much larger confidence interval
estimates compared to the Jansen and Janon estimators. The errors associated with the Sobol sampling methodology
when the Homma and Sobol estimator are used, are much smaller compared to the Latin hypercube and uniform
sampling methodologies, hence demonstrating the impact sampling methodology can have on the estimations of
sensitivity indices.

Next, we calculate total order indices on the 20 dimensional 2-chamber model with continuous measurements. From
the histograms presented in Figure 9, the orthogonality spreads for the Jansen and Janon estimators are nearly identical
for all sampling methodologies, excluding the uniform sampling, which shares the same orthogonality spread between
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the two estimators. With the Homma estimator, the spreads of orthogonality appear more consistent amongst the
sampling techniques associated with itself, comparing against the test cases on the 1-chamber model, however, they are
largely different from what returned from the Jansen and Janon estimators. The Sobol estimator generated results which
appear closer to the orthogonality distributions of the Jansen and Janon estimators, whilst they are not identical, the
orthogonality distributions between different sampling methodologies are more consistent than the ones exhibited by
the Homma estimator. Examining Table 8, the rankings of input parameters are more consistent for the Jansen and
Janon estimators, although there are slight discrepancies, as seen on the simple 1-chamber model.

In Table 9, stratifying by estimator type and examining the range an input parameter exhibits across all sampling
methodologies reveal that the Jansen and Janon estimators exhibit minimal variations to sampling methodologies - 1.3
and 1.45, respectively. The Homma and Sobol estimators exhibit variations of 8.2 and 7.35 respectively upon the input
parameter set. When stratifying by sampling type, Table 10 shows the Sobol sampling method exhibits the smallest
mean variation of an input set across all estimator types of 7.2. This is still a large variation due to all estimator types
being considered and therefore the range accounts for some of the spurious values generated by the Homma and Sobol
estimators.

Figure 8: Total order Sobol indices ST of the maximal left ventricular elastance Emaxlv
for the 2-chamber model

with continuous measurements. Panels A - T show ST of Emaxlv
, for 3 continuous measurements - left ventricular

pressure, systemic arterial pressure and the left ventricular volume (represented in blue, yellow and green curves,
respectively), over a single cardiac cycle with differing estimators and sampling methodologies. Measurements are
evaluated with N = 20, 000 samples, using B = 1000 bootstrapped samples to evaluate the uncertainty of the estimate.
The bands represent 95% confidence intervals associated with specific indices displayed as solid curves.
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Table 8: Input parameter ranking for the 2-chamber model with continuous measurements - Here, input parameters
are ranked based on the averaged orthogonality score returned from the calculated total order sensitivity matrix. In
addition, the ranking is stratified by both sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH
Eminlv

3 8 8 2 2 12 8 13 9 11 5 5 5 6 5 5 5 6 6 5
Emaxlv

7 11 15 1 1 2 3 3 5 5 1 1 1 1 1 1 1 1 1 1
τeslv 1 4 6 6 8 8 5 8 8 8 3 3 3 4 3 3 3 3 4 3
τeplv

2 5 7 7 9 9 4 6 6 9 2 2 2 2 2 2 2 2 2 2
Eminla

8 10 1 12 11 13 14 7 2 14 7 7 7 7 7 7 7 7 7 7
Emaxla

9 9 2 11 12 16 17 18 14 15 18 18 18 19 18 18 18 18 19 18
τesla 19 16 16 18 19 19 19 15 20 13 8 8 8 16 9 8 8 8 16 13
τepla

13 1 11 13 17 15 15 20 18 20 16 16 17 17 16 16 16 17 17 15
Zao 10 2 13 14 13 11 10 12 7 10 4 4 4 3 4 4 4 4 3 4
Rmv 17 15 12 3 5 18 16 17 10 18 17 17 16 15 17 17 17 16 15 17
Csas 16 17 18 20 20 7 6 4 17 16 9 9 9 8 8 9 9 9 8 8
Rsas 18 18 19 16 16 14 7 14 4 12 6 6 6 5 6 6 6 5 5 6
Lsas 14 20 17 17 15 1 2 2 1 1 15 15 15 14 15 15 15 15 14 16
Csat 6 3 3 4 4 6 11 9 12 7 10 10 10 9 10 10 10 10 9 9
Rsat 12 12 14 15 18 3 9 5 19 6 13 11 12 11 13 13 11 12 10 10
Lsat 15 19 20 19 14 10 1 1 3 2 14 14 14 13 14 14 14 14 13 14
Rsar 5 6 4 9 6 5 12 11 16 3 12 13 13 12 12 12 13 13 12 12
Rscp 4 7 5 10 7 4 13 10 15 4 11 12 11 10 11 11 12 11 11 12
Rsvn 20 14 9 5 10 20 18 16 11 19 19 19 19 18 19 19 19 19 18 19
Csvn 11 13 10 8 3 17 20 19 13 17 20 20 20 20 20 20 20 20 20 20

Table 9: The ranges of input parameters across 5 sampling types for a specific estimator for the 2-chamber model with
continuous measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv
6 5 1 1

Emaxlv
14 3 0 0

τeslv 7 3 1 1
τeplv

7 5 0 0
Eminla

11 12 0 0
Emaxla

10 4 1 1
τesla 3 7 8 8
τepla

16 5 1 2
Zao 12 5 1 1
Rmv 14 8 2 2
Csas 4 13 1 1
Rsas 3 7 1 1
Lsas 6 1 1 2
Csat 3 6 1 1
Rsat 6 16 2 3
Lsat 6 9 1 1
Rsar 5 11 1 2
Rscp 6 11 2 1
Rsvn 15 9 1 1
Csvn 10 7 0 0

Mean Variation
Of Input Set 8.2 7.35 1.3 1.45
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Figure 9: Orthogonality distributions of input parameters for the 2-chamber model with continuous measure-
ments - Histograms A-T show the distribution of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of 1 represents total independence of input
parameters, whereas 0 represents total dependence. Each individual diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between
plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original
sensitivity vectors.

Figure 10 displays the convergence and uncertainty associated with the computation of the total order indices of
the venous compliance Csvn, for the 2-chamber model, against the discrete measurements. We see in all cases that
as the sample size is increased, the estimate and uncertainty associated with the indices improve. Similar as the
continuous measurement case for Emaxlv

shown in Fig 8, the Jansen and Janon estimators provide the most efficient
convergence and the smallest error when calculating the indices. A sample size of N = 20, 000 is taken for the discrete
measurements, as seen in the Jansen and Janon columns (Panels K - T), any additional sampling would return minimal
improvements in terms of accurate calculation of the indices. The Homma and Sobol estimators display errors which are
considerably larger than that of Jansen and Janon estimators. We see when the upper limit sample size of N = 30, 000
is reached, the Homma and Sobol estimator errors are still large. This results demonstrates that for this complex model,
less efficient estimators (such as Homma and Sobol) and a less accurate sampling method (such as Latin hypercube)
display large confidence intervals and struggle to return converged index values.

From the histograms presented in Figure 11, the orthogonality spreads exhibit similar trends to that of the continuous
measurements, shown in Figure 9. We note that the histograms are identical for the Jansen and Janon except when the
Uniform sampling method is used (which exhibits slight variations from the other histograms). With the Homma and
Sobol estimators, although there appears to be low level consistency amongst their orthogonality distributions, they are
very different to the ones produced by the Jansen and Janon estimators. Examining Table 11, the rankings of input
parameters are consistent for the Jansen and Janon estimators apart from the Uniform column which often returns a
parameter ranking differing to the other sampling types.

In Table 12, stratifying by estimator type and examining the range a input parameter exhibits across all sampling
methodologies reveals that the Jansen and Janon estimators exhibit minimal variation to sampling methodologies - 0.9
and 1.0, respectively. This is an improvement on the continuous measurements as the Jansen estimator returns less than
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Table 10: The ranges of input parameters across 4 estimator types for a specific sampling method for the 2-chamber
model with continuous measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv
9 3 7 7 9

Emaxlv
6 10 14 4 4

τeslv 7 2 5 4 5
τeplv

7 3 5 5 7
Eminla

6 7 6 10 7
Emaxla

9 9 16 9 6
τesla 11 11 8 4 10
τepla

3 15 4 5 5
Zao 7 8 8 11 9
Rmv 1 2 5 12 13
Csas 9 11 14 12 12
Rsas 12 12 14 11 10
Lsas 14 18 15 16 15
Csat 4 8 7 8 6
Rsat 10 3 9 9 12
Lsat 5 18 13 16 12
Rsar 7 7 9 7 9
Rscp 7 4 7 5 8
Rsvn 1 5 10 13 9
Csvn 9 7 10 12 17

Mean Variation
Of Input Set 7.2 8.15 9.3 10.65 9.75

1 parameter range variation. The Homma and Sobol estimators produce variations of 10.9 and 5.55 respectively upon
the input parameter set. When stratifying by sampling type, Table 13 shows the Lattice Rule sampling method exhibits
the smallest mean variation of an input set across all estimator types of 5.75. This is still a large variation but is less
than the variation exhibited by the continuous measurements.

Overall, for the more complex 2-chamber model with 20 input parameters, the Jansen and Janon estimators are
consistently the most robust and reliable estimators. When using continuous measurements, neither returns an input
parameter set mean variation greater than 1. When using discrete measurements, they return a mean variation less
than or equal to 1 (see Tables 9 and 12). This, as in the 1-chamber case, could be attributable to the efficient rate of
convergence displayed by the Jansen and Janon estimator. The Sobol and Homma estimators exhibit very different
parameter rankings across different sampling methodologies with variations of up to 10.9. These large variations are in
line with the poor convergence associated with these estimators. The Sobol and Lattice Rule sampling method appears
to reduce the level of uncertainty associated with an input parameter’s orthogonality ranking (see Tables 10 and 13 ),
despite spurious parameter rankings from the Homma and Sobol estimators leading to large parameter variation when
stratified by sampling methodologies.

4 Discussion

Utilising two cardiovascular system models, the main aim of our investigation is to test the robustness of the calculation
of the input parameter orthogonality, while varying total order estimator types and sampling methodologies, across
differing input parameter dimensionalities and types of data on which the total order indices were calculated. The results
presented in Section 3 display overwhelming robustness for the Jansen and Janon estimators when calculating total order
indices when compared to other options. For the 1-chamber, 9-parameter model, we observed that these two estimators
gave nearly invariant outcomes to both the sampling methodology and the data type. When the dimensionality of
the model parameters is increased to 20, we noted that the Jansen and Janon estimators exhibited small variations on
the input parameter orthogonality rankings. For the Jansen estimator with discrete measurements, it returned a mean
variation of less than 1. We observed that the Homma and Sobol estimators regularly returned mean variations for input
parameter sets greater than 1, which is particularly amplified when the model dimensionality is increased.
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Figure 10: Total order Sobol indices ST of the mitral valve resistance Csvn for the 2-chamber model with discrete
measurements. Panels A - T show ST of Csvn, for 3 discrete measurements: mean left ventricular pressure, maximum
systemic arterial pressure and maximum left ventricular volume (represented in blue, yellow and green, respectively),
evaluated at increasing sample sizes (N ∈ [10000, 30000] using B = 1000 bootstrapped samples), with differing
estimators and sampling methodologies. The bands represent 95% confidence intervals associated with specific indices
displayed as solid curves. The red solid vertical lines represent the point (N = 20, 000) at which the sample size is
taken.
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Table 11: Input parameter ranking for the 2-chamber model with discrete measurements - Here, input parameters
are ranked based on the averaged orthogonality score returned from the calculated total order sensitivity matrix. In
addition, the ranking is stratified by both sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH
Eminlv

17 18 14 1 3 7 6 6 9 6 5 5 5 5 5 5 5 5 5 5
Emaxlv

18 14 9 3 7 19 18 19 20 20 20 20 20 19 20 20 20 20 19 20
τeslv 4 5 4 10 11 8 7 8 6 5 4 4 4 4 4 4 4 4 4 4
τeplv

1 1 1 2 8 4 4 7 7 4 3 3 3 3 3 3 3 3 3 3
Eminla

19 19 8 14 12 14 14 14 1 16 16 16 16 18 16 16 16 16 18 16
Emaxla

20 20 6 9 9 15 13 16 15 9 17 17 17 16 17 17 17 17 16 17
τesla 9 12 17 19 17 16 19 18 17 15 12 12 12 12 12 12 12 12 12 12
τepla

15 17 7 12 15 17 17 17 18 7 15 15 15 17 15 15 15 15 17 15
Zao 14 6 12 20 13 3 2 5 4 2 1 1 1 1 1 1 1 1 1 1
Rmv 13 15 10 4 5 18 15 15 16 17 14 14 14 15 14 14 14 14 15 14
Csas 11 7 16 15 16 12 16 11 2 18 7 7 7 7 7 7 7 7 7 7
Rsas 7 10 19 18 20 6 3 4 5 3 2 2 2 2 2 2 2 2 2 2
Lsas 8 8 18 17 19 1 1 1 3 1 18 18 18 14 18 18 18 18 14 18
Csat 5 4 5 11 6 5 5 3 12 12 6 6 6 6 6 6 6 6 6 6
Rsat 10 11 15 13 14 11 11 2 8 8 10 11 9 9 10 10 11 9 9 10
Lsat 6 9 20 16 18 2 10 12 13 13 8 8 8 8 8 8 8 8 8 8
Rsar 3 2 2 8 4 9 8 9 11 11 9 9 10 11 11 9 9 10 11 11
Rscp 2 3 3 7 2 10 9 10 10 10 11 10 11 10 9 11 10 11 10 9
Rsvn 16 16 13 6 1 13 12 13 14 14 13 13 13 13 13 13 13 13 13 13
Csvn 12 13 11 5 10 20 20 20 19 19 19 19 19 20 19 19 19 19 20 19

Table 12: The ranges of input parameters across 5 sampling types for a specific estimator for the systemic circulation
model with discrete measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv
17 3 0 0

Emaxlv
15 2 1 1

τeslv 7 3 0 0
τeplv

6 3 0 2
Eminla

11 15 2 1
Emaxla

14 7 1 0
τesla 10 4 0 2
τepla

10 11 2 2
Zao 14 3 0 0
Rmv 11 3 1 1
Csas 9 16 0 0
Rsas 13 3 0 0
Lsas 11 2 4 4
Csat 7 9 0 0
Rsat 5 9 2 2
Lsat 14 11 0 0
Rsar 6 3 2 2
Rscp 5 1 2 2
Rsvn 15 2 0 0
Csvn 7 1 1 1

Mean Variation
Of Input Set 10.9 5.55 0.9 1.0
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Figure 11: Orthogonality distributions of input parameters for the 2-chamber model with discrete measure-
ments - Histograms A-T show the distribution of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of 1 represents total independence of input
parameters, whereas 0 represents total dependence. Each individual diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between
plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original
sensitivity vectors.

Given our aim is to assess the use-ability of estimators and sampling methodologies for practical identifiability studies,
these results indicate that if the used estimator and sampling methodology are not robust, the calculated optimal
parameter set is unreliable. The usage of unrobust estimators and sampling methods can therefore produce misleading
conclusions with practical consequences, especially in investigations applied to life sciences. Interestingly, we
witnessed that the variations attached to the Sobol and Lattice Rule sampling methods were the lowest across all model
dimensionalities and data types. Our results also reinforce the findings reported in [14, 57] that the commonly used
Latin Hypercube method is less than optimal in exploring the input parameter space, especially at high dimensionalites.

The Jansen and Janon robustness at calculating total order indices can be attributed to the Jansen estimator never
allowing negative values in the numerator (see estimator definitions in Table 1), where as the Janon estimator is the only
estimator which has been proven to be both asymptotically normally distributed and asymptotically efficient meaning as
the sample size increases the estimation error associated with calculating the indices is negligible [47]. They are both
highly optimised estimators with very little room for improvement [46, 47]. The allowance of negative indices in both
the Sobol and Homma estimators is an explanation for the poor performance in the calculations of these indices.

With the highly optimised Jansen and Janon estimators, it is evident that they consistently exhibit the most efficient
convergence and produce the smallest uncertainties when calculating total order indices. This phenomenon matches the
consistent orthogonality observed among input parameters across various sampling techniques when coupled with the
Jansen and Janon estimator. Conversely, the Homma and Sobol estimators tend to yield significantly larger uncertainties
when sample sizes are held constant among estimators, thus explaining the lack of consistent orthogonality rankings for
the input parameters. Increasing the sample size seems to ameliorate the uncertainties associated with the Homma and
Sobol estimators, particularly when employing the Sobol, lattice rule, and Golden sampling methods. This observation
underscores the resilience of low-discrepancy sequences, demonstrating their effectiveness even in conjunction with

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.25.582013doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.582013
http://creativecommons.org/licenses/by/4.0/


Sampling And Total Order Estimator Effects

Table 13: The ranges of input parameters across 4 estimator types for a specific sampling method for the 2-chamber
model with discrete measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv
12 13 9 8 3

Emaxlv
2 6 11 17 13

τeslv 5 3 4 6 7
τeplv

3 3 6 5 5
Eminla

5 5 8 17 4
Emaxla

5 7 11 7 8
τesla 7 7 6 7 5
τepla

2 2 10 6 8
Zao 13 5 11 19 12
Rmv 5 1 5 12 12
Csas 5 9 9 13 11
Rsas 5 8 17 16 18
Lsas 17 17 17 14 18
Csat 1 2 3 6 6
Rsat 1 0 13 5 6
Lsat 6 2 12 8 10
Rsar 6 7 8 3 7
Rscp 9 7 8 3 7
Rsvn 3 4 0 7 13
Csvn 8 7 9 15 9

Mean Variation
Of Input Set 6 5.75 9.35 9.7 9.15

a sub-optimal estimator. While the work of Puy et al. [18] did not delve into extensive convergence or uncertainty
quantification, it is plausible to infer that the Jansen and Janon estimators, with their superior convergence rates and
lower uncertainty, played a pivotal role in their conclusion that these estimators are the most efficient at capturing the
true effects of input parameters.

Our investigation has been confined to two highly non-linear stiff differential algebraic equation systems with the
understanding that they represent a high level of complexity, therefore good modelling guidelines obtained here would
be readily applicable to simpler, more linear models which are associated with a less variable input parameter space.
Thus, obtaining sensitivity estimates for linear models is considerably less expensive than what has been conducted here.
Convergence and uncertainty quantification have historically been left out of sensitivity analysis studies, despite being
highlighted as vital, if the results of studies were then to influence policy /societal /clinical decisions [14, 58]. In this
study, we have highlighted the impact that convergence has on a total order estimator, alongside this, we have also shown
the impact of the level of sampling taken, on the calculation of total order estimators. It appears intuitively sensible that
the higher density of sampling leads to better resolution of the input parameter space, hence our sensitivity analysis
gives a better indication about which input parameters are truly influential. Current literature states that N > 500 but
this recommendation is based on physical systems which are mostly linear. The work conducted and results shown in
this study highlight that for a highly non-linear system, one should investigate N > 5000. More importantly, it is clear
that no two systems are the same, so for one to ensure adequate resolution of an input parameter space, convergence
and uncertainty quantification through bootstrapping must be an essential step in any modeller’s workflow, given the
aim is to perform accurate and robust parameter identification studies.

Although not exhaustive, the list of estimators investigated in this paper does represent what are readily available,
practically usable and computationally feasible. Puy et al. [18] also recommended the estimator introduced by
Azzini et al. [59], which appeared to produce similar results to the Jansen estimator. The Azzini estimator requires
k = 2N(p+ 1) model evaluations, compared to N(p+ 2) evaluations needed by the estimators investigated in this
work. The 2-chamber model would require k = 1, 320, 000 model evaluations for Azzini estimator. For models with
higher parameter dimensions, this would be computationally infeasible. With the increasing prospect of digital twins
in healthcare, more complex and detailed models which accurately represent the true physiological processes are
generated. However, the bottleneck which prevents the progression of these models to clinically applicable situations
is the computational cost associated with a detailed sensitivity analysis. This does not refer to the calculation of the
indices, but the process of solving the dynamical system. Therefore, while new estimators may prove to be accurate, the
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focus must be on efficient resolution of complex dynamical systems and the efficiency of the estimators for low sample
numbers, in order to ensure a thorough sensitivity analysis.

All the estimators used in this work are available in the global sensitivity packages such as SALib, GlobalSensitivity.jl,
SenSobol and sbiosobol [60, 54, 61]. It is reassuring to see that the default estimator used to calculate the total
order index, in the available packages, is the Jansen estimator. Given the conclusion drawn from Puy et al. [18] and
the findings from this work, researchers could straightforwardly use the above packages when performing practical
identifiability studies and would obtain a reliable optimal set of input parameters which best describes the experimental
data available to them.

Another area of research is the calculation of total order sensitivity indices where one assumes dependency between
input parameters. This is partially investigated by Puy et al. [61] in implementing the method of Glen et al. [62]. This
method requires a prescription of linear dependencies between parameters, however, these are often not known in
realistic life science models. As a result, Puy et. al. demonstrated the inaccuracy associated with this method when
calculating the true effects. There have been various methods deriving variance based sensitivity indices with dependent
inputs [63, 64, 65], however, similar as the method of Glen et al. [62], they require knowledge of the dependencies that
exist within the model and therefore the computational power needed to simulate these indices is often much larger than
the standard Sobol indices. On top of this, there is no accepted method for how to calculate these dependent indices
which should be of interest for future work. Therefore, the need to understand how input parameter orthogonality
is affected by varying estimators and sampling methodologies is of significant importance, in order for total order
sensitivity indices to be utilised in identifiability studies.

While we have conducted this work through the lens of utilising the method of Li et. al. [7] (see Eq. (1)) for practical
identifiability studies, it is also applicable to other methods. Another approach of identifying input parameters is the
structured correlations method [66], where one seeks to identify correlations between parameters and to calculate ranks
(based on which parameters can be identified uniquely if they are not strongly correlated with other parameters). This
approach utilises the total order sensitivity matrix to calculate these correlations. Therefore, the need for reliable and
robust sensitivity matrices is vital to whichever method is implemented.

The work of Puy et al. [18] is conclusive in its findings of the Jansen and Janon estimators being the most reliable
in finding the “truth” input parameter effects. Our work complements these conclusions in that we find the Jansen
and Janon are the most reliable in the calculation of input parameter orthogonality, which appears to be motivated by
input parameter convergence. Puy et al. [18] also reported that any choice made on the model have a non-negligible
effect. While we agree with these conclusions for the most part, we are able to identify that similar to the model
dimensionality, it appears choices we make, such as the sampling methodology and type of data used, have more
impactful consequences. The lower variation associated with input parameter sets, when low discrepancy sequences are
used, implies their effectiveness in returning robust and reliable input parameter sets. It appears that there is no clear
advantage of using either continuous or discrete measurements when choosing how to calculate the total order indices.

5 Conclusion

Our study delved into the intricacies of varying sampling methodologies and variance-based total order estimators,
aiming to establish best practices for practical identifiability studies. We conducted our investigation using two highly
non-linear and stiff 0D models of the human cardiovascular system as our test cases: (i) a 1-chamber, 9-parameter
model and (ii) a 2-chamber, 20-parameter model, both based on differential algebraic equations. Through a thorough
empirical assessment of total order estimators and sampling methodologies, we gained valuable insights into their
strengths and weaknesses, shedding light on the orthogonality of the input parameters within the models. This analysis
complements prior work that focused on the estimators’ ability to uncover the “true” effects of a model, enriching our
comprehension of their practical identification.

Our findings strongly advocate for the Jansen and Janon estimators as robust choices across different sampling
methodologies, measurement data variations, and model dimensions. These two estimators emerge as preferred
tools for calculating total order indices and, consequently, for identifying the optimal set of input parameters. Their
efficient convergence and the consequential reduction in index uncertainty make them the optimal choice for this task.
Furthermore, we recommend the use of low-discrepancy quasi-random Sobol and Lattice Rule sampling schemes as
optimal sampling methodologies to complement Jansen and Janon estimators.

In essence, our work establishes a robust framework of good modelling practice for practical identifiability studies,
considering both the influence of input parameters and their orthogonality. By incorporating these best practices into
modeling studies, researchers can consistently and reliably identify the optimal input parameters for dynamical systems.
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Table 14: Input parameters for the 1 chamber model. Each input parameter’s unit is stated alongside a chosen initial
value for the 9 parameter, 1-chamber model. τ is the cardiac cycle length and is fixed such that τ = 1s. The ventricular
shift parameter Eshift = 0 s as no atrium is present in this model.

Parameter θ (units) Description Initial Value

Emax

[
mmHg

ml

]
Maximal ventricular contractility 1.5

Emin

[
mmHg

ml

]
Minimal ventricular contractility 0.03

τes (s) End systolic time 0.3τ
τep (s) End pulse time 0.45τ

Zao

[
mmHg s

ml

]
Aortic valve resistance 0.033

Rmv

[
mmHg s

ml

]
Mitral valve resistance 0.006

Rs

[
mmHg s

ml

]
Systemic resistance 1.11

Csa

[
ml

mmHg

]
Systemic compliance 1.13

Csv

[
ml

mmHg

]
Venous compliance 11.0

This approach not only enhances the quality and accuracy of parameter identification, but also paves the way for more
informed decision-making in various scientific and practical domains.

A Model Solutions and Parameters

In generic form, the equations relating to the passive compartmental state variables all take the form:

dVs,i

dt
= Qi −Qi+1,

dPi

dt
=

1

Ci
(Qi −Qi+1), Qi =

Pi − Pi+1

Ri
,

dQi

dt
=

1

Li
(Pi − Pi+1). (25)

Above, the subscripts (i− 1), i, (i+ 1) represent the proximal, present and distal system compartments, respectively.
Vs,i(mL) denotes the circulating (stressed) volume [67]. Ci (mL/mmHg), Ri (mmHgs/mL) and Li (mmHg s2/mL)
denote compartmental compliance, the Ohmic resistance and compartmental inertia between compartments i and (i+1).
See Figure 1 and Tables 14, 15.

Figure 1 is a schematic representation for both the simple and advanced model. Note: (i) in Figure 1A, we use a C-R-C
Windkessel [68] to represent the 2-chamber where as in Figure 1B, we use a C-R-L Windkessel to represent the aortic
sinus and the systemic artery; (ii) no inertance appears in Figure 1A and there is no representation of the left atrium;
(iii) all compartments in both models are passive, having fixed compliances; (iv) flow in and out of the active left atrium
in Figure 1B is controlled by the systemic veins and the mitral valve. For both models, in Figures 1A and 1B, flow in
and out of the active left ventricle is controlled by the mitral and aortic valves respectively. The valves are modelled as
diodes, with Ohmic resistance under forward bias and infinite resistance under reverse bias:

Qi =

{
Pi−Pi+1

Rval
, Pi > Pi+1,

0 Pi ≤ Pi+1,
(26)

where Rval represents the resistance across the respective valve.

Let us consider the active model compartment. The dynamics of the left ventricle or left atrium are described by a
time-varying compliance C(t), or reciprocal elastance, E(t) (mmHg/mL) which determines the change in pressure for
a given change in the volume [67]:

E(t) =
P (t)

V (t)− V0
=

P (t)

Vs(t)
, (27)

where V0 & Vs(t) represent the unstressed and stressed volumes, respectively, in the left ventrical or left atrium.

E(t) may be described in analytical form as follows: [49]
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Table 15: Input parameters for the 2 chambers model. Each input parameter’s unit is stated alongside a chosen
initial value for the 20 parameter, 2-chamber model. τ is the cardiac cycle length and is fixed such that τ = 1s. The
ventricular shift parameter Eshift = 0.92 s as an atrium is present in this advanced 20 parameters model.

Parameter θ (Units) Description Initial Value

Eminlv

[
mmHg

ml

]
Minimal Ventricular Contractility 0.1

Emaxlv

[
mmHg

ml

]
Maximal Ventricular Contractility 2.5

τeslv (s) Ventricular Contraction 0.3
τeplv

(s) Ventricular Relaxation 0.45
Eminla

[
mmHg

ml

]
Minimal Atrium Contractility 0.15

Emaxla

[
mmHg

ml

]
Maximal Atrium Contractility 0.25

τesla (s) Atrium Contraction 0.045τ
τepla

(s) Atrium Relaxation 0.09τ
Zao

[
mmHg s

ml

]
Aortic Valve Resistance 0.033

Rmv

[
mmHg s

ml

]
Mitral Valve Resistance 0.06

Csas

[
ml

mmHg

]
Sinus Compliance 0.08

Rsas

[
mmHg s

ml

]
Sinus Resistance 0.06

Lsas

[
mmHg s

ml

]
Sinus Inertia 6.2 · 10−5

Csat

[
ml

mmHg

]
Arterial Compliance 1.6

Rsat

[
mmHg s

ml

]
Arterial Resistance 0.05

Lsat

[
mmHg s2

ml

]
Arterial Inertia 0.0017

Rsar

[
mmHg s

ml

]
Arteriole Resistance 0.5

Rscp

[
mmHg s

ml

]
Capillary Resistance 0.52

Rsvn

[
mmHg s

ml

]
Venous Resistance 0.075

Csvn

[
ml

mmHg

]
Venous Compliance 20.5

E(t) = (Emax − Emin) · e(t) + Emin,

e(t) =


1
2 (1− cos( πt

τes
)), 0 ≤ t < τes,

1
2 (1 + cos(π(t−τes)

τep−τes
)), τes ≤ t < τep,

0, τep ≤ t < τ,

(28)

where e(t; τes, τep) is the activation function for both the ventricle and the atrium and is parameterised by the end
systolic and end pulse timing parameters τes and τep respectively.

The elastance function is defined over one cardiac cycle, i.e., time t̄ ∈ [0, τ ] with τ (the length of the cardiac cycle)
fixed in this work to τ = 1 s. The contractility, Emax, and the compliance, Emin, both control the elastance extrema of
the left ventricular and the left atrium. There is a discontinuity in E(t) at t = τ when the next cycle starts.

Model A is implemented directly as a system of ODEs, Model B is implemented using an acausal modelling framework
which will simplify the implementation of model variations. The acausal modelling library is published as a Julia
package, CirculatorySystemModels.jl [53].

Software & Data Availability

The analysis is performed with the programming language Julia [51]. All the analysis performed and example cases are
freely available at https://github.com/H-Sax/Orthgonality-SA.
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Figure 12: Time Series solutions for the 1 and 2 chamber cardiovascular models investigated in this work. The solutions
shown are the ones which are utilised in the investigation.

The acausal modelling library for Circulatory System Models is available at https://github.com/TS-CUBED/
CirculatorySystemModels.jl and as a Julia package.
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