
Mining High Utility Time Interval Sequences Using 
MapReduce Approach: Multiple Utility Framework

SALETI, Sumalatha, TANGIRALA, Jaya Lakshmi <http://orcid.org/0000-0003-
0183-4093> and AHMAD, Mohd Wazih

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/33298/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

SALETI, Sumalatha, TANGIRALA, Jaya Lakshmi and AHMAD, Mohd Wazih (2022). 
Mining High Utility Time Interval Sequences Using MapReduce Approach: Multiple 
Utility Framework. IEEE Access, 10, 123301-123315. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Received 4 November 2022, accepted 17 November 2022, date of publication 23 November 2022,
date of current version 30 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3224217

Mining High Utility Time Interval Sequences
Using MapReduce Approach: Multiple Utility
Framework
SUMALATHA SALETI 1, T. JAYA LAKSHMI 1, (Member, IEEE), AND MOHD WAZIH AHMAD 2
1Department of Computer Science and Engineering, SRM University AP, Guntur, Amaravati 522502, India
2Department of Computer Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia

Corresponding author: Mohd Wazih Ahmad (wazih.ahmad@astu.edu.et)

ABSTRACT Mining high utility sequential patterns is observed to be a significant research in data mining.
Several methods mine the sequential patterns while taking utility values into consideration. The patterns of
this type can determine the order in which items were purchased, but not the time interval between them. The
time interval among items is important for predicting the most useful real-world circumstances, including
retail market basket data analysis, stock market fluctuations, DNA sequence analysis, and so on. There are a
very few algorithms for mining sequential patterns those consider both the utility and time interval. However,
they assume the same threshold for each item, maintaining the same unit profit. Moreover, with the rapid
growth in data, the traditional algorithms cannot handle the big data and are not scalable. To handle this
problem, we propose a distributed three phase MapReduce framework that considers multiple utilities and
suitable for handling big data. The time constraints are pushed into the algorithm instead of pre-defined
intervals. Also, the proposed upper bound minimizes the number of candidate patterns during the mining
process. The approach has been tested and the experimental results show its efficiency in terms of run time,
memory utilization, and scalability.

INDEX TERMS Datamining,MapReduce framework, multiple utility thresholds, sequential patternmining,
time interval patterns.

I. INTRODUCTION
Sequential patternmining (SPM) [1], [2], [3], [4], [5], [6], [7],
[8] is a significant research theme in datamining. The primary
goal of SPM is to identify frequent sequences that are defined
by aminimum support level that is planned by the user. In par-
ticular, a customer who purchased ‘‘Television’’ would like to
return to the store and purchase ‘‘Speakers’’. Market analysts
can use this information to develop novel marketing tactics
such as product cross-selling and advertising activities. The
standard SPM techniques employ a frequency-based frame-
work and are regarded as uninformative because they can’t
mine highly profitable sequences. As a result, high utility
sequential pattern mining (HUSPM) [9] has been offered as a
solution to this problem, it mines high utility sequences while
taking into consideration both the item’s profit and quantity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

Although previous HUSPM algorithms [9], [10], [11],
[12], [13], [14], [15] produce very profitable sequences, they
are unable to estimate the time gap between consumers’ sub-
sequent visits to the store. Therefore, high utility time interval
sequential pattern mining (HUTISP) [16] was developed to
take time periods into account. Its primary objective is to find
the patterns that have the time interval between each item.
Observe a store that offers groceries such as soaps, cereals,
books, and ice creams. Assuming these items in a database,
the goal is to determine the time interval between purchases
of specific items which are being sold. As a solution, the store
keeper may keep track of the quantity of consumed items by
time period. For instance, consider an output sequence pattern
with time intervals denoted as 〈x, 4, y, 6, z〉. It signifies that a
person who bought item x also bought item y after 4 months
and returned to the store after 6 months to purchase item z.
It mines extremely profitable sequences as well as the time
interval between them. In spite of this, it uses the single
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unique threshold for each item in the input database, implying
that every item has the same unit profit. This is unsatisfactory
because every single item in real world situations is unique
and should not be considered equally. For instance, sales of
washing machine will make more profits than sales of deter-
gent. The problem of finding sequential patterns considering
multiple utility thresholds was first addressed in [17] and later
extended to [18]. The authors [18] designed Lexicographic
sequence tree and utility array. The tree structure represents
the possible HUSPs as nodes and the extension of each node
is done using I-concatenation and S-concatenation mecha-
nisms. The former denotes the itemset extension, whereas
later denotes the sequence extension. Utility array allows to
find the utility values of each node in the tree. However, the
authors in [17] and [18] does not deal with the time intervals
which generates more significant patterns.

Due to the ever growing database sizes, many researchers
of data mining revised the conventional mining algorithms
and formulated the distributed algorithms to handle the big
data more efficiently. The most efficient big data framework
that helps in designing the distributed algorithms is MapRe-
duce [19]. In 2008, Google developed MapReduce [19] dis-
tributed programming framework. It can handle the process-
ing of big data by distributing the work into two parallel
processes, namely, Mapper and Reducer. Mapper is a process
that partitions the input data into multiple chunks and pro-
cesses them in parallel. The processed output is sent to the
reducer for further processing which leads to the final output.
The output of the parallel program is always stored inside
a distributed storage called Hadoop distributed file system
(HDFS). The work flow of MapReduce framework is given
in Fig. 1.

HUTISP [16] is a centralized algorithm that is ineffec-
tive for managing large amounts of data. In light of this,
DHUTISP [20] has been introduced, it is a distributed
MapReduce algorithm. Recently, a MapReduce algorithm,
namely, DHUTISP-MMU [21] has been proposed to handle
the issue of multiple utility of items. But, it considers the
predefined time interval set before generating the patterns.
In consideration of this, we proposeMRHUTSP-MMU in this
study. It will handle the issue of setting time constraints.

The work plan of the current paper is to:

1) Investigate HUTISP mining using multiple utility
thresholds.

2) Propose the distributed framework that deal with the
big data.

3) Provide an upper bound that maintains the down-
ward closure property which can efficiently prune the
unpromising candidates.

4) Introduce an efficient mechanism to push the time con-
straints within the algorithm instead of predefined time
intervals.

5) Provide an empirical analysis and comparison between
the distributed and non-distributed algorithms and ana-
lyze the impact of applying time constraints.

The significant contributions of the current paper include:

1) Defined a novel sequential pattern that includes utility,
time intervals and multiple utility thresholds.

2) Proposed MRHUTSP-MMU - a distributed algorithm
based onMapReduce framework that mines high utility
sequential patterns including time intervals and each
item having its own threshold.

3) Introduced Downward closure property that can be
tested on the patterns which includes multiple utility
thresholds.

4) The correctness of MRHUTSP-MMU is proved theo-
retically.

5) Compared the distributed version with the non-
distributed approach in terms of processing time, usage
of memory, and scalability.

The remaining sections include the following. Section II
provides a quick overview of the literature. The problem is
defined in Section III. In Section IV, the proposed algorithm
is described. Section V contains the experimental outcomes.
Section VI discusses the conclusions.

II. LITERATURE REVIEW
A. SEQUENTIAL PATTERN MINING AND TIME INTERVAL
MINING
Sequential pattern mining [1], [2], [3], [4], [5], [6], [7] is
applied in a variety of data mining research disciplines.
For mining sequential patterns, there are mainly two kinds
of algorithms. They are Apriori [22] and Pattern growth
approach [5]. In 1996, Agarwal and Srikant invented the GSP
algorithm. Candidate generation and frequency calculation
are the two processes of GSP. Zaki invented the SPADE
method in [4], it is grounded on the vertical mining pro-
cedure. Han developed pattern growth approaches such as
Freespan [23] and Prefixspan [5]. Garofalakis et.al., con-
ceived and implemented the SPIRIT algorithm for sequential
pattern mining using constraints in [2]. Researchers focused
on time interval pattern mining after investigating the prob-
lem of mining sequential patterns. Chen et al. [23] presented
novel algorithms for time interval mining, notably I-Apriori
and I-Prefixspan. These techniques have been extended by
Chen et al. by proposing FTI-Apriori and FTI-Prefixspan,
which use fuzzy theory to partition temporal periods [24].

B. HIGH UTILITY ITEMSET MINING WITH MULTIPLE
THRESHOLDS
The above listed algorithms are concerned with mining of
frequent sequences and time interval patterns. They consider
the occurrence of each item as binary and miss the number
of units purchased and the profit raised by each item. In view
of this, [25], [26] introduced a new framework called high
utility itemset mining (HUIM) which is an improvement
over frequent itemset mining [27], [28], [29], [30]. Consid-
ering non binary transactions, utility mining [25], [26], [31]
was introduced, and it became an essential research theme
in the data mining industry. Initially, HUIM with multiple
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FIGURE 1. MapReduce framework.

thresholds was introduced in [32]. The authors proposed two
algorithms, one is a baseline algorithm provided as an initial
solution for mining HUIs using more than one threshold.
The other is an improved version of the former that makes
use of TID-index procedure. Using this index, utility of a
candidate can be found by reading the TID-index of that
candidate instead of scanning the complete database. Further,
the above two algorithms are extended using estimated util-
ity co-occurrence structure (EUCS) and a novel algorithm,
namely, HUI -MMUTE [33] has been proposed. However,
these are Apriori-based and follows candidate generation and
level wise approach. These involve multiple database scans.
In contrast to Apriori-based algorithm, the authors proposed
HIMU and HIMUEUCP [34] algorithms. These make use of
the compact tree structure. Also,the properties introduced
in [34] assure the anti-monotonicity inorder to mine the pat-
terns from MIU-tree. However, these algorithms order the
items in a transactionwith reference to the values ofminimum
utility threshold. It means that these algorithms are sensitive
to specific ordering of items. MHUI algorithm proposed
in [35], do not consider any ordering among the items and
is superior to all the above mentioned high utility mining
algorithms with multiple thresholds. The author proposed
suffix minimum utility which is used in developing generic
pruning strategies which are independent of item ordering
based on minimum utility thresholds.

C. SEQUENTIAL PATTERN MINING INCLUDING UTILITY
AND MULTIPLE THRESHOLDS
All the above mentioned algorithms are associated to HUIM
with multiple utility thresholds and are unable to address the
HUSP issue. A framework for HUSP mining that considers
different utility threshold for each item has been introduced
in [17]. From the proposed framework, the authors intro-
duced a baseline algorithm and later it was extended by

including three pruning strategies. The pruning techniques
helps to reduce the upper bound there by the search space is
reduced. Later, the framework proposed in [17] was extended
to USPT algorithm [18]. The authors made use of compressed
utility array structure and this helps in the construction of
Lexicographic-sequential tree. To the best of our understand-
ing, these are the only algorithms that discuss the issue of
HUSP mining using multiple utility thresholds. Yet, they are
unable to mine the time intervals.

D. HIGH UTILITY SEQUENTIAL PATTERN MINING
INCLUDING TIME INTERVALS AND SINGLE THRESHOLD
Considering the time intervals, Wang et al. [16] introduced
UTMining_A algorithm that can mine high utility sequences
including the time intervals. Considering the need of process-
ing big data, a distributed approach has been proposed in [20]
which uses a single threshold for all items. The authors in [36]
proposed an efficient way of imposing the time constraints
while generating the sequential patterns with high utility. The
above-mentioned techniques in [16], [20], and [36] on the
other hand, treat each item as equally essential, considering
a single minimal utility criterion. Recently, UIPrefixSpan-
MMU [37] algorithm has been proposed which can han-
dle multiple utility threshold problem. But, the algorithm
assumes that the data fit into a single centralized system and
not suitable to handle the current era of big data. As a result,
in the current framework, we present a distributed approach
for HUTSP mining with multiple utilities.

E. DIFFERENCE FROM EARLIER WORKS
The existing works in mining HUSP using multiple utility
thresholds avoid the time frame amidst the items. Also, time
interval HUSP mining algorithms use a single threshold for
every item. Furthermore, the research in HUSP mining lacks
a distributed algorithm using MapReduce framework that
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TABLE 1. Utility dataset.

TABLE 2. Profit table.

deal with utility, time interval sequences and multiple utility
thresholds. To the best of our understanding, the current work
is the initial study on proposing a MapReduce framework
which can generate high utility sequences including time
intervals along with a different threshold on each item.

III. PROBLEM DEFINITION
To illustrate the mining process, we consider a sample quan-
titative sequence dataset as given in Table 1. Let X =

{i1, i2, . . . , im} are the allowed items in the dataset. An item-
set is dentoed as I = {i1, i2, . . . , iq}, where I ⊆ X . If | I |=
q, then I is referred to as a q-itemset . An input sequence
S is denoted as 〈(t1,1, I1), (t1,2, I2), . . . , (t1,n, In)〉, where Ii
denotes the itemset and tα,β denotes the time gap between the
purchase of two itemsets Iβ and Iα . A quantitative sequence
dataset is denoted as D = {S1, S2, S3, . . . , Sn}, where every
input sequence has its unique identifier called Sequence id.
Each item is allotted a profit value called its external utility,
E(i), and its existence in the input sequence is allotted a value
called internal utility, IU (i, Ij, Sn), here i is the item in Ij.
For instance, IU (a, I1, S1) = 3 and E(a) = 2 according to
Table 2.
Definition 1: The utility of each item i in Ij for a given

sequence Sa is defined as u(i, Ij, Sa) = IU (i, Ij, Sa) ∗ E(i).
The utility of i in Sa is the maximum utility value out of
multiple itemsets in Sa where i occurs. It is denoted as
u(i, Sa). Let us find the utility of a in S1, i.e. u(a, S1) =
max{u(a, I1, S1), u(a, I2, S1), u(a, I3, S1)} = max{3 ∗ 2, 4 ∗
2, 4 ∗ 2} = 8.
Definition 2: The utility of a pattern P = 〈(t1,1, I1),

(t1,2, I2),. . . , (t1,n, In)〉 of length n in a sequence Sa and P ⊆
Sa is denoted as u(P, Sa) and derived as follows:

u(P, Sa) = max{
∑
i∈P

u(i, Sa),∀P ∈ Sa} (1)

For example, u(〈(0, a)(1, a)〉, S1) = max{3× 2+ 4× 2, 4×
2+ 4× 2} = max{14, 16} = 16.
Definition 3: Sequence utility is equal to the sum of the

item utilities in a sequence Sa, and derived as follows:

SU (Sa) =
∑

u(i, Ij, Sa),∀i ∈ Sa (2)

TABLE 3. Multi-threshold table.

For example, SU (S1) = u(a, I1, S1) + u(a, I2, S1) +
u(b, I2, S1) + u(d, I2, S1) + u(a, I3, S1) + u(f , I3, S1) +
u(d, I4, S1) = 6+ 8+ 6+ 6+ 8+ 3+ 6 = 43.
Definition 4: Let D denote the input data located in the

Hadoop Distributed File System (HDFS). T1,T2, . . . ,Tn
denote the nonempty disjoint input partitions of D, where
D = {T1∪T2∪T3∪ · · ·∪Tn}. The input splits for the dataset
shown in Table 1 are assumed to be, T1 = {S1, S2, S3} and
T2 = {S4, S5}.
Definition 5: Local utility of a pattern P in a partition Ti is

represented as UL(P,Ti), where

UL(P,Ti) =
∑

u(P, Si),∀Si ∈ Ti ∩ P ⊆ Si (3)

For example, UL(〈(0, a)(1, e)〉,T2) = u(〈(0, a)(1, e)〉, S4) +
u(〈(0, a)(1, e)〉, S5) = 14+ 12 = 26.
Definition 6: For an input partition Ti, its utility is U (Ti),

where

U (Ti) =
∑

SU (Sa),∀Sa ∈ Ti (4)

For instance, U (T1) = SU (S1) + SU (S2) + SU (S3) = 43 +
34+ 40 = 117.
Definition 7: Global utility of a pattern P is represented as

UG(P) and derived as follows:

UG(P) =
∑

UL(P,Ti),∀Ti ∈ D. (5)

For example, UG(〈(0, b)(1, a)〉) = UL(〈(0, b)(1, a)〉,T1) +
UL(〈(0, b)(1, a)〉,T2) = 14+ 22 = 36.
Definition 8: The utility of a given dataset D is defined as

the summation of each partition utility.
To illustrate, let us find the utility of the sample dataset D,
U (D) = U (T1)+ U (T2) = 117+ 67 = 184.
Definition 9: For a pattern P = 〈(t1,1, I1), (t1,2, I2), . . . ,
(t1,n, Im)〉, the following time constraintsC1,C2,C3,C4 are

defined.
Considering the time interval between two consecutive item-
sets, C1 and C2 denote the minimum and maximum time.
Similarly, considering the first and last itemsets, C3 and
C4 denote the minimum and maximum time.
Definition 10: Multiple Minimum Utility threshold table

(MMU table) is used to construct and express utility thresh-
olds for every item, i.e. mu(ij). Table 3 shows the MMU table
for the sample dataset. mu(ij) is defined as follows [32]:

mu(ij) = max{c× E(ij),LMU} (6)

LMU is the user defined least minimum utility threshold,
E(ij) is the external utility of ij, and c is the constant to adjust
mu of item.
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Definition 11: The minimum utility threshold of a pat-
tern P is expressed as MIU (P) = min{mu(i) | i ∈ P}.
For example, MIU (〈(0, b), (1, d)〉) = min{mu(b),mu(d)} =
min{28, 40} = 28.
Definition 12: The potential minimum utility threshold of

a pattern P is denoted as PMIU (P),

PMIU (P) = min{mu(ij) | ij ∈ P ∨ ij ∈ ext(P) (7)

where, ext(P) represents the possible extensions of P
in the database. For instance, PMIU (〈(0, b), (1, d)〉) =
min{{mu(b),mu(d)} ∨ {mu(c),mu(e)}} = min{{28, 50} ∨
{50, 70}} = 28.
Definition 13: A pattern P is a local high utility sequential

time interval pattern only if the local utility of P is not less
thanMIU (P) and holds C1,C2,C3, and C4.

UL(P,Ti) ≥ MIU (P)× U (Ti) (8)

Definition 14: A pattern P is a global high utility sequen-
tial time interval pattern only if the global utility of P is not
less thanMIU (P) and holds C1,C2,C3, and C4.

UG(P) ≥ MIU (P)× U (D) (9)

Definition 15: Problem Statement: Mining the HUTISPs
considering more than one utility threshold is to extract the
possible time interval sequential patterns those satisfy the
utility threshold for a given input dataset.
Definition 16: Sequence weighted utility (SWU) of a pat-

tern P is defined as the sum of the sequence utility of each
input sequence in which P occur. It is defined as follows:

SWU (P) =
∑

SU (Si),∀Si ⊇ P (10)

Definition 17: Given a pattern P, its upper bound in a
sequence Sa is denoted as,

UB(P, Sa) = u(P, Sa)+ RU (P, Sa), if RU (P, Sa) > 0,

= 0, otherwise (11)

where RU (P, Sa) is the remaining utility of P in Sa and
it is the summation of item utilities that appear after the
last item of P in Sa. For example, RU (〈(0, a)(1, b)〉, S1) =
u(d, I2, S1)+ u(a, I3, S1)+ u(f , I3, S1)+ u(d, I4, S1) = 6+
8+3+6 = 23.UB(〈(0, a)(1, b)〉, S1) = u(〈(0, a)(1, b)〉, S1)+
RU (〈(0, a)(1, b)〉, S1) = 12+23 = 35. Multiple occurrences
of a pattern consider the maximum value as its upper bound.
Definition 18: For a pattern P, its upper bound in an input

partition Ti is,

UB(P,Ti) =
x∑

a=1

UB(P, Sa) (12)

where x is the count of sequences present in Ti in
which P appear. For example, UB(〈(0, a)(1, b)〉,T1) =
UB(〈(0, a)(1, b)〉, S1)+ UB(〈(0, a)(1, b)〉, S2)+ UB(〈(0, a)
(1, b)〉, S3) = 35+ 0+ 0 = 35.
Property 1 (Downward closure property): Given a quan-

titative sequence dataset D, and sequences A and B, where
B is a super-sequence to A, then UB(A,D) ≥ UB(B,D).

Algorithm 1 First Phase
Input:
Time interval quantitative sequence dataset
External utility table
MMU-Table
Output:
Promising item and its global utility.
functionMapper

1: Scan the input sequence and calculate LU of each item i
and SU of the sequence.

2: Emit the item i and its local utility LU along with the
sequence utility SU

3: end function
4: function Reducer
5: Let item i be the key and LU , SU be the values received

from the mapper.
6: Initialize GU ← 0, SWU ← 0
7: for each LU , SU pair do
8: GU ← GU + LU
9: SWU ← SWU + SU

10: end for
11: if SWU ≥ MIU (item) then
12: Emit the item i and global utility GU
13: end if
14: end function

Proof: According to Definitions 17, and 18, the
UB(A,D) =

∑x
a=1UB(A, Sa) and UB(B,D) =∑y

a=1UB(B, Sa), where x and y denotes the number of input
sequences in which A and B occur respectively. As A is a
sub-sequence to B, all the time x ≥ y. Therefore,UB(A,D) ≥
UB(B,D).
Definition 19: Given a sequence S = 〈(t1,1, I1),

(t1,2, I2), . . . ,(t1,n, In)〉, a sequence S ′ = 〈(t ′1,1, I
′

1),
(t ′1,2, I

′

2), . . . ,(t
′

1,m, I
′
m)〉, where m ≤ n is called its prefix iff

(1) t ′1,i = t1,i and I ′i = Ii for i ≤ m − 1 (2) t ′1,m = t1,m
and I ′m ⊆ Im. Similarly, postfix of S with respect to prefix S ′

is given as S ′′ = 〈(t ′′1,m, I
′′
m, t
′′

1,m+1, I
′′

m+1, . . . , t
′′

1,n, I
′′
n )〉 iff (1)

t ′′1,i = t1,i and I ′′i = Ii for i > m (2) t ′′1,m = t ′1,m, and I
′′
m ⊆ I ′m

(3) t1,n = t ′′1,n and In = I ′′n .
Definition 20: The projected database of a sequence S

over the database D is expressed as D |S and it is defined
as the collection of all the postfix of S in each input sequence
of D.

IV. MRHUTSP-MMU
In this section, the proposed system is outlined by listing
the details of each MapReduce phase. The major goal of
the proposed algorithm is to impose time constraints and
consider different utility thresholds while keeping the down-
ward closure property. Using the MapReduce framework,
the algorithm is designed in three phases. First of all, the
proposed algorithm finds the global utility of every item in
its first phase and finds the promising items. The detailed
approach for the first phase is stated in Algorithm 1. Inorder
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FIGURE 2. Workflow of MRHUTSP-MMU.

to generate all the output sequences, we invoke the second
phase. In other words, Algorithm 2 generates entire output
sequences that are local to each partition. We conduct the
third MapReduce phase to generate the patterns which are
global. This is detailed in Algorithm 4. The workflow of
MRHUTSP-MMU is given in Fig. 2.

A. FIRST PHASE OF MRHUTSP-MMU
The first phase of MRHUTSP-MMU is explained in Algo-
rithm 1. It includes a mapper and a reducer. Mapper takes
time interval quantitative sequence dataset, external utility
associated with every item, and MMU-Table as input. Ini-
tially, mapper scans the database and extracts the items local
utility and sequence utility of each input sequence (Line
1) (refer to Definition 1 and Definition 3). The local and
sequence utilities of item are emitted by the mapper (Line
2). This in turn will be the input to the reducer. For each item,
reducer is responsible to calculate item’s global utility and
sequence weighted utility. FromDefinition 7, global utility of
an item is the sum of its local utility (Line 8). Similarly, from
Definition 16, SWU refers to sum of all the sequence utilities
(Line 9). Finally, the items whose sequence weighted utility
satisfies the MIU threshold will be emitted as the output
(Lines 11-13). They are said to be promising items written
to the distributed cache file.

For example, consider the sequence S1, according to
Definition 1, utility of a, b, d , and f are 8, 6, 6, and
3 respectively. Similarly, from Definition 3, sequence utility
of a is 43. Hence, the mapper emits the 〈key, value〉 pairs
〈a, (8, 43)〉, 〈b, (6, 43)〉, 〈d, (6, 43)〉, and 〈f , (3, 43)〉. In the
same way, for every sequence, the output emitted by the

TABLE 4. <Key,Value> pairs emitted by first phase mapper.

TABLE 5. <Key,Value> pairs received by the first phase reducer.

mapper is given in Table 4. Now, these 〈key, value〉
pairs reach the reducer. In our example, the values
(8, 43), (4, 34), (4, 54), and (8, 13) are with respect to the key
a (refer to Table 4). The values associated with the other keys
are shown in Table 5. The value is a pair of local utility and
sequence utility. The sum of local utilities i.e. 8 + 4 + 4 +
8 = 24 is the global utility of a. Similarly, sum of sequence
utilities i.e. 43 + 34 + 54 + 13 = 144 is SWU of a. The
global utility and sequence weighted utilities for each item
are mentioned in Table 6. As described in Algorithm 1, if the
SWU of an item do not satisfy its MIU, then the item cannot
generate the high utility patterns. So, the reducer returns the
item and its global utility after satisfying the abovementioned
condition. MIU of each item is varied (refer to Table 3) in
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TABLE 6. Global utility and sequence weighted utility.

the current study and it is 45% of the database utility for
item a, 28% in case of item b, and so on. As mentioned in
Definition 8, database utility is 43+34+40+54+13 = 184.
In the current example, every item satisfies its MIU threshold
and emitted as output.

Algorithm 2 Second Phase
Input:
Time interval quantitative sequence dataset
DCp - Distributed cache file with promising items
MMU-Table
Constraints - C1,C2,C3, and C4
Output: 〈LHUTISP,LU〉- Output patterns from each
input partition and its utility
functionMapper

1: Let the promising item read from DCp be ip.
2: Let C be the candidate pattern set.
3: Let P be the output pattern.
4: Modify the input sequence by removing the unpromising

items.
5: for each ip do
6: Include P← 〈(0, ip)〉 into C .
7: if utility of P satisfies theMIU threshold then
8: Emit P and its utility
9: end if

10: InvokeMRHUTSP-MMU (D | P,C,MMU ,
C1,C2,C3,C4)

11: end for
12: end function

B. SECOND PHASE OF MRHUTSP-MMU
The input for the second phase is time interval quantitative
sequence dataset, promising items, MMU-Table and time
constraints. We should at first make sure that all the candidate
patterns may not be output patterns. Hence, we use two
structures, one represents the candidate set C and the other
represents the output pattern P (Lines 2-3 of Algorithm 2).
Initially, the unpromising items will be pruned from each
input sequence (Line 4). Now, an initial pattern P is created
which includes time 0 and promising item ip (Line 6). If the
utility of P (which is the global utility of ip) satisfies itsMIU
then P is emitted as output (Lines 7-8). Inorder to extend the
pattern P, we invoke the function MRHUTSP-MMU . This is
a recursive function that extends the pattern P by scanning the
projected database of P.

For example, the promising items received by the second
phase mapper are a, b, c, d, e, and f . Hence, the initial pat-
terns generated are (0, promising item). Global utility of a is
24 which is less than itsMIU (i.e. 45% of the database utility).
That is, (0, a) is not an output pattern. It is known that, super
pattern of a non high utility pattern may be of high utility.
Hence, we proceed to generate the super patterns of all the
initial patterns by invoking Algorithm 3.

Algorithm 3 first reads the projected database of candidate
pattern and generates all the possible 〈time, item〉 pairs. In this
process, only the pairs which satisfy the upperbound are
considered. Also, the time interval of the pair must obey the
constraints C1 and C2 (Line 1). Now, the candidate pattern is
updated by including all such pairs (Line 3). If the resulting
candidate pattern satisfies the constraintC4, then the function
is called with the new candidate pattern as its argument (Lines
4-5). Later, if it satisfies the constraintC3, we include it in the
candidate pattern set (Lines 6-8). Next, if utility of the candi-
date pattern satisfies the MIU threshold, then it is emitted as
output along with its projected database (Lines 10-12).

In the running example, considering the first partition, the
〈time, item〉 pairs generated from the projected database of
(0, a) are (1, a), (1, b), (1, d), (2, a), (2, f ), (3, d), (0, b), (1, d)
, (2, c). All such pairs generated from the initial patterns
are given in Table 7. The constraint values are C1 =

0,C2 = 3,C3 = 1,C4 = 3. The UB(〈(0, a)(1, a)〉, S1) =
u(〈(0, a)(1, a)〉) + RU (〈(0, a)(1, a)〉, S1) = 14 + 29 =
43 ≥ PMIU (〈(0, a)(1, a)〉), where PMIU (〈(0, a)(1, a)〉) =
33. Similarly, the 〈time, item〉 pairs from (0, a) satisfy-
ing the upper bound threshold are (1, b) and (1, d). The
〈time, item〉 pair from (0, b) satisfying the upper bound
threshold is (1, d). Similarly, the 〈time, item〉 pairs generated
from (0, c) are (0, f ), (1, b), and (2, d). The 〈time, item〉
pair generated from (0, e) is (1, e) and from (0, f ) is (1, b).
Now, let us consider the 〈time, item〉 pairs from (0, b).
Among them, only the pair (1, d) satisfies the upper bound
threshold. UB(〈(0, b)(1, d)〉,T1) = UB(〈(0, b)(1, d)〉, S1) +
UB(〈(0, b)(1, d)〉, S2) + UB(〈(0, b)(1, d)〉, S3) = 0 +
26 + 36 = 62 ≥ PMIU (〈(0, b)(1, d)〉, where
PMIU (〈(0, b)(1, d)〉 = 33. Now, the pattern 〈(0, b), (1, d)〉
is extended with the new 〈time, item〉 pairs, i.e. (2, c)
and (1, e). But, the UB(〈(0, b), (1, d), (2, c)〉) = 26 <

PMIU (〈(0, b), (1, d), (2, c)〉 and UB(〈(0, b), (1, d), (1, e)〉
) = 36 ≥ PMIU (〈(0, b), (1, d), (1, e)〉, where
〈(0, b), (1, d), (1, e)〉 cannot be extended further with the
〈time, item〉 pairs. Hence, the recursion ends here and
thus generated patterns from (0, b) are 〈(0, b), (1, d)〉 and
〈(0, b), (1, d), (1, e)〉 with an utility of 54 and 36 respec-
tively. The same recursive procedure is applied for the
remaining initial patterns (0, a), (0, c), (0, d), (0, e), and
(0, f ). Note that these output patterns are local to first
partition. Consider the second partition and the same pro-
cedure applies to it and the output patterns generated are
〈(0, a), (1, bd), (2, b), (3, e)〉, 〈(0, a), (1, b), (2, ab), (3, e)〉, 〈
(0, a), (1, bd), (2, ab), (3, e)〉, and 〈(0, bd), (1, ab), (2, e)〉,
their local utilities are 50, 48, 54, and 50 respectively.
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Algorithm 3MRHUTSP-MMU
functionMRHUTSP-MMU (D | P,C,MMU ,C1,C2,C3,C4)

1: Read the projected database D | P and generate all the 〈time, item〉 pairs such that each pair satisfies the constraints C1 and
C2.

2: for each 〈time, item〉 pair do
3: Update P← 〈P, (time, item〉).
4: if P satisfies the constraint C4 and UB(P) ≥ PMIU (P) then
5: InvokeMRHUTSP-MMU (D | P,C,MMU ,C1,C2,C3,C4)
6: if the pattern P holds the constraint C3 then
7: Include P in list C
8: end if
9: end if

10: if UL(P) ≥ MIU (P) then
11: Emit P and D | P
12: end if
13: end for
14: end function

TABLE 7. (Time,Item) pairs generated from the initial patterns.

Algorithm 4 Third Phase
Input:
〈P,D | P〉
MMU-Table
Output:
〈P,UG(P)〉
functionMapper

1: for each pattern Pi in P do
2: Find the local utility of pattern Pi
3: Emit Pi and UL(Pi)
4: end for

end function
function Reducer

5: By adding local utility of Pi calculate the global utility
UG(Pi).

6: if UG(Pi) ≥ MIU (Pi) then
7: Emit Pi and UG(Pi)
8: end if

end function

C. THIRD PHASE OF MRHUTSP-MMU
In the third phase, the output from second phase is received
i.e. local output patterns and their projected database. The
mapper of third phase scans the projected database of each
local pattern and finds the local utility (Line 2). The reducer
finds the sum of local utilities, which results in the global
utility (Line 5). Finally, only the patterns that satisfy the MIU
threshold are emitted as output (Lines 6-8).

In our running example, for each local pattern,
its utility in both the partitions is calculated. For
instance, the utility of 〈(0, b), (1, d)〉 from partition 1 is
54 and from partition 2 is 0. Hence, the global util-
ity of 〈(0, b), (1, d)〉 is 54 which satisfies its MIU , i.e.
UG(〈(0, b), (1, d)〉) ≥ 28% of 184. Similarly, the global
utility of 〈(0, a), (1, bd), (2, b), (3, e)〉, 〈(0, a), (1, b), (2, ab),
(3, e)〉, 〈(0, a), (1, bd), (2, ab), (3, e)〉, and 〈(0, bd), (1, ab),
(2, e)〉 are 50, 48, 54, and 50 respectively. Among
these patterns, 〈(0, a), (1, bd), (2, ab), (3, e)〉 satisfies its
MIU . Finally, the output patterns and their utilities are
〈(0, b), (1, d)〉 : 54 and 〈(0, a), (1, bd), (2, ab), (3, e)〉 : 54

D. CORRECTNESS OF MRHUTSP-MMU
Theorem 1: Given a time interval quantitative sequence

dataset, external utility of each item, time constraints and
MMU-Table, MRHUTSP-MMU will generate all possible
high utility time interval sequential patterns

Proof:Weprove the theorem by stating thatMRHUTSP-
MMU will not lose any of the pattern in every phase.

1) Prune the unpromising items in the first MapReduce
phase: According to Algorithm 1, the mapper generates
all the items and their local utility and sequence utility.
Mapper will not miss any item present in the dataset.
The reducer aggregates the local utilities to form the
global utility of item and aggregates the sequence util-
ity to form the sequence weighted utility. Reducer will
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FIGURE 3. Performance of MRHUTSP-MMU.

output the items whose SWU satisfies its MIU . Thus,
we do not miss any of the promising item.

2) Generate the candidate patterns whose length exceeds
2: In the second phase, each mapper generates entire
local high utility sequential patterns following the time
constraints. During this process, each candidate pattern
is extended to its super pattern following the Property 1.
Hence, the pattern is not extended if its upper bound
does not satisfy the PMIU threshold. From Defini-
tion 13, whenever the local utility of a pattern is less
than itsMIU , then we can prune the candidate pattern.
This pruning followed in the second phase will not lose
any of the local candidate pattern.

3) Prune the patterns whose global utility do not satisfies
its MIU : This is done in the third MapReduce phase.
According to Definition 14, if the global utility of a

pattern is less than its MIU , then it is not a high utility
sequential pattern. Therefore, the third phase will not
lose any of the output pattern.
Hence, each phase in MRHUTSP-MMU will not lose
any of the pattern whose utility satisfies the threshold.

V. RESULTS
We conducted several experiments on three real datasets
and two synthetic datasets to assess the performance of
MRHUTSP-MMU. Kosarak,1 BMSWebview2,2 MSNBC3

are the three real datasets. Kosarak consists of 990,002
sequences and it is obtained from FIMI repository. It stores

1http : //fimi.ua.ac.be/data/
2https://www.philippe-fournier-viger.com/spmf/datasets/BMS2.txt
3https://www.philippe-fournier-viger.com/spmf/datasets/MSNBC.txt
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FIGURE 4. Memory usage of MRHUTSP-MMU.

TABLE 8. Synthetic datasets.

the click-stream data of an online Hungarian news portal.
BMSWebView2 keeps track of an e-commerce website’s
click stream data. MSNBC dataset maintains the page vis-
its of 989,818 users for a period of one day. BMSWeb-
View2 and MSNBC are obtained from SPMF [38] data
mining library. Inorder to evaluate MRHUTSP-MMU on
big datasets, we generated two synthetic datasets follow-
ing the procedure described in [1] and shown in Table 8.

TABLE 9. Synthetic dataset generation parameters.

The parameters passed to the synthetic data generator are
mentioned in Table 9. However, the abovementioned datasets
do not include any internal/external utility information. So,
we used a random number generator to provide the inter-
nal/external utilities from 1 to 10. The time information is
included in the dataset based on the occurrence order of
the itemset in a transaction. We employed a Hadoop cluster
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FIGURE 5. Scalability of MRHUTSP-MMU with respect to number of sequences.

including one node as a master and eight as data nodes. Each
node has a 2.5 GHz Intel Xeon CPU with 16 GB RAM and
Hadoop 2.9.1 installed. Java is used to implement all of the
algorithms.

A. RUN TIME COMPARISON WITH RESPECT TO
CONSTRAINTS AND LEAST MINIMUM UTILITY
The constraints used in the performance assessment are C1 =

0,C2 = 2,C3 = 0, and C4 = 4 on the real datasets and C1 =

0,C2 = 5,C3 = 0, and C4 = 15 on the synthetic datasets.
MRHUTSP-MMU is compared with UIPrefixSpan-MMU in
terms of run time and the findings are shown in Fig. 3. Both
the algorithms are executed with and without constraints.
As a result, it is found that, the algorithms perform better
with time constraints. Because the time constraints induce a

smaller number of candidates to be generated, which lowers
the search space and increases the performance. Further-
more, for lower values of LMU, the run time will increase.
This is because of huge candidates for lower LMU values.
Additionally, more effort is spent during candidate evalu-
ation. It is also observed that MRHUTSP-MMU is more
efficient than UIPrefixSpan-MMU on all the five datasets.
This is because of the MapReduce Algorithm employed in
MRHUTSP-MMU which distributed the execution process
among multiple nodes in the Hadoop cluster.

On Kosarak dataset, MRHUTSP-MMU with constraints is
about 2.4, 2.8, and 5.4 times faster than MRHUTSP-MMU
without constraints, UIPrefixSPan-MMU with constraints,
and UIPrefixSPan-MMU without constraints. On BMSWeb-
View2 dataset, MRHUTSP-MMU with constraints is about
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FIGURE 6. Scalability of MRHUTSP-MMU with respect to node count.

1.4, 3.1, and 5.3 times faster than MRHUTSP-MMU
without constraints, UIPrefixSPan-MMU with constraints,
and UIPrefixSPan-MMU without constraints. On MSNBC
dataset, MRHUTSP-MMU with constraints is about 1.5,
2.7, and 4.5 times faster than MRHUTSP-MMU with-
out constraints, UIPrefixSPan-MMU with constraints, and
UIPrefixSPan-MMU without constraints On Synthetic
Dataset1, MRHUTSP-MMU with constraints is about 1.9,
3.7, and 7.3 times faster than MRHUTSP-MMU with-
out constraints, UIPrefixSPan-MMU with constraints, and
UIPrefixSPan-MMU without constraints. On Synthetic
Dataset2, MRHUTSP-MMU with constraints is about 2.1,
4.2, and 7.6 times faster than MRHUTSP-MMU with-
out constraints, UIPrefixSPan-MMU with constraints, and
UIPrefixSPan-MMU without constraints.

UIPrefixSpan-MMU requires more time because it needs
to read the database for three times, and the time for scan-
ning the database is directly proportional to the database

size.Whereas, MRHUTSP-MMU scans the database only for
two times. Also, the parallel execution of multiple map and
reduce functions leads to reduced processing time. Hence, the
distributed version MRHUTSP-MMU is more efficient than
the original UIPrefixSPan-MMU.

B. MEMORY CONSUMPTION OF THE ALGORITHMS
The memory consumed by MRHUTSP-MMU is lesser
than the other three approaches. The test reports of both
the algorithms with and without constraints has been pre-
sented in Fig. 4. It is observed that both of them con-
sume lesser memory when constraints have been applied.
This is due to the fewer candidate sequences generated by
applying the constraints. It is also noticed that the mem-
ory requirement tends to decrease with an increase in the
threshold. This is mainly due to the generation of more
number of patterns for lower values of threshold. On Kosarak
dataset, the memory consumption of MRHUTSP-MMU
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FIGURE 7. Upper bound evaluation.

with constraints is nearly 1.5, 2.8, and 4.2 times less
than MRHUTSP-MMU without constraints, UIPrefixSpan-
MMU with constraints and UIPrefixSpan-MMU with-
out constraints. On BMSWebView2 dataset, the mem-
ory consumption of MRHUTSP-MMU with constraints is
nearly 1.2, 2.3, and 2.7 times less than MRHUTSP-MMU
without constraints, UIPrefixSpan-MMU with constraints
and UIPrefixSpan-MMU without constraints. On MSNBC
dataset, the memory consumption of MRHUTSP-MMU
with constraints is nearly 1.6, 2.2, and 2.7 times less
than MRHUTSP-MMU without constraints, UIPrefixSpan-
MMU with constraints and UIPrefixSpan-MMU without
constraints.On Synthetic Dataset1, the memory consump-
tion of MRHUTSP-MMU with constraints is nearly 1.7,
3.1, and 3.6 times less than MRHUTSP-MMU with-
out constraints, UIPrefixSpan-MMU with constraints and
UIPrefixSpan-MMU without constraints. On Synthetic

Dataset2, the memory consumption of MRHUTSP-MMU
with constraints is nearly 2.3, 3.3, and 3.9 times less
than MRHUTSP-MMU without constraints, UIPrefixSpan-
MMU with constraints and UIPrefixSpan-MMU without
constraints.

C. SCALABILITY TEST
To test the scalability of MRHUTSP-MMU algorithm,
we carried out two experiments - scalability with respect
to dataset capacity, scalability with respect to node count
in the cluster. The results of former experiment are given
in Fig. 5. The number of sequences used in the experiment
on the Kosarak dataset ranged from 100,000 to the entire
dataset (990,002 sequences). The size has been changed from
200,000 to full dataset size. For BMSWebView2 dataset,
sequence count ranged from 10,000 to the full dataset size
(77,512). The dataset size has been increased by 20 thousand
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every time. For MSNBC dataset, the sequence count ranged
from 200,000 to the full dataset size (989,818). The size
is increased by 200,000 every time. The size of Synthetic
Dataset1 is varied from 200,000 to 1,000,000. The size
is increased by 200,000 for every experiment. The num-
ber of sequences considered for Synthetic Dataset2 is from
2,000,000 to 10,000,000. The size is increased by 2,000,000
each time. The least minimum utility used in the above
experiment is 0.6, 1.7, and 0.6 for Kosarak, BMSWebview2,
and MSNBC datasets, and it is 0.5 for Synthetic Dataset1
and Synthetic Dataset2. It is visible that the performance
gradually decrease with the rise in dataset size. It is also
noticed that theMRHUTSP-MMUscales well when executed
on Synthetic Dataset1 and Synthetic Dataset2 compared to
real datasets. This shows thatMRHUTSP-MMU ismore scal-
able than UIPrefixSPan-MMU especially on large datasets.
The reasons are two fold. Firstly, MRHUTSP-MMU scans
the dataset only for two times, whereas UIPrefixSpan-MMU
scans the dataset for three times. Secondly, the distributed
nature of the proposed algorithm parallelize the processing
of sequences thereby reducing the execution time.

Figure 6 demonstrates the scalability ofMRHUTSP-MMU
regarding the updation of node count. For this experiment,
the run time of MRHUTSP-MMU is noted with and with-
out constraints. The algorithms are executed using 2, 4, 6,
and 8 nodes. The centralized approaches are not used as
they exhibited more running time especially for the synthetic
datasets using 2 nodes. It is noticed that, the reduction in run
time is more when we scaled from 2 to 4 nodes compared to
4 to 6 and 6 to 8 nodes.

D. UPPER BOUND EVALUATION
Two upper boundsUB and SWU are evaluated and the results
are shown in Fig. 7. UB is a tighter than SWU and this is
evident from Definition 16 and Definition 18. A tighter upper
bound always results in less number of promising sequences
there by the candidates for evaluation are reduced. This
effects the algorithm’s run time. MRHUTSP-MMU using
UB as the upper bound executes faster compared to SWU
as the upper bound. Especially, for lower thresholds, the UB
approach outperforms the SWU .

VI. CONCLUSION
Conventional algorithms for finding sequential patterns with
high utility excludes the time factor and consider that all items
in a transaction have the same utility. The prime contribution
of the current paper is to study the problem of multiple
utilities with respect to time interval mining of sequences and
propose a distributed solution that deals with the big data.
Taking into consideration, we contributedMRHUTSP-MMU
for finding the sequential patterns which include separate
utility for each item and generates the time between each
itemset of the pattern. The experimental work was carried
out to know the efficiency of the algorithm with respect to
time constraints. Also, MRHUTSP-MMU outperforms the
non-distributed algorithms in terms of run time, memory, and

scalability. As an extension to the current work, MRHUTSP-
MMU can be more investigated to introduce most efficient
pruning strategies.
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