
SQL/PL-SQL Booklet

DOMDOUZIS, Konstantinos <http://orcid.org/0000-0003-3679-3527>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/33258/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DOMDOUZIS, Konstantinos (2020). SQL/PL-SQL Booklet. Figshare.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

SQL/PL-SQL Booklet

Dr Konstantinos Domdouzis

Department of Computing

Sheffield Hallam University

Structured-Query Language (SQL)

• Management of data included in the Tables of a RDBMS

• Why is it called Structured?

• It is an ANSI and ISO standard for RDBMSs, and virtually
all RDBMSs use it.

• SQL is largely ‘declarative’ (you say what you want, not
how to do it)

Structured-Query Language (SQL)
• Data Definition Language (DDL):

 statements are used to define the database structure or schema

• Data Manipulation Language (DML):

 statements are used for managing data within schema objects.

• Data Control Language (DCL):

 statements that provide or withdraw data access rights.

• Transaction Control (TCL):

 statements are used to manage the changes made by DML statements.

Structured-Query Language (SQL)

CLAUSE UPDATE Customers

CLAUSE SET ContactName='Alfred'

 EXPRESSION

CLAUSE WHERE CustomerName='John';

SQL

STATEMENT

PREDICATE

SQL Syntax
• SQL Statements

 CREATE TABLE

 SELECT

 DROP TABLE

 CREATE INDEX

 DROP INDEX

 DESC

 TRUNCATE TABLE

 ALTER TABLE

 ALTER TABLE (RENAME)

 INSERT INTO

 UPDATE

 DELETE

 CREATE DATABASE

 DROP DATABASE

 USE

 COMMIT

 ROLLBACK

SQL Syntax

• SQL Reserved Words

 WHERE

 DISTINCT

 AND/OR

 IN

 BETWEEN

 LIKE

 ORDER BY

 GROUP BY

 COUNT

 HAVING

Exact Numeric Data Types

DATA TYPE FROM TO

bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

int -2,147,483,648 2,147,483,647

smallint -32,768 32,767

tinyint 0 255

bit 0 1

decimal -10^38 +1 10^38 -1

numeric -10^38 +1 10^38 -1

money -922,337,203,685,477.5808 +922,337,203,685,477.5807

smallmoney -214,748.3648 +214,748.3647

Approximate Numeric Data Types

DATA TYPE FROM TO

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

Date and Time Data Types

DATA TYPE FROM TO

datetime Jan 1, 1753 Dec 31, 9999

smalldatetime Jan 1, 1900 Jun 6, 2079

date Stores a date like June 30, 1991

time Stores a time of day like 12:30 P.M.

Character Strings Data Types

DATA TYPE FROM TO

char char Maximum length of 8,000 characters.(Fixed length non-

Unicode characters)

varchar varchar Maximum of 8,000 characters.(Variable-length non-

Unicode data).

varchar(max) varchar(max) Maximum length of 231characters, Variable-length non-

Unicode data (SQL Server 2005 only).

text text Variable-length non-Unicode data with a maximum

length of 2,147,483,647 characters.

Unicode Character Strings Data Type

DATA TYPE Description

nchar Maximum length of 4,000 characters.(Fixed length Unicode)

nvarchar Maximum length of 4,000 characters.(Variable length Unicode)

nvarchar(max) Maximum length of 231characters (SQL Server 2005 only).(Variable

length Unicode)

ntext Maximum length of 1,073,741,823 characters. (Variable length Unicode

)

Binary Data Type

DATA TYPE Description

binary Maximum length of 8,000 bytes(Fixed-length binary data)

varbinary Maximum length of 8,000 bytes.(Variable length binary data)

varbinary(max) Maximum length of 231 bytes (SQL Server 2005 only). (Variable

length Binary data)

image Maximum length of 2,147,483,647 bytes. (Variable length Binary

Data)

Miscellaneous Data Types

DATA TYPE Description

sql_variant Stores values of various SQL Server-supported data types, except text,

ntext, and timestamp.

timestamp Stores a database-wide unique number that gets updated every time a row

gets updated

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML data. You can store xml instances in a column or a variable

(SQL Server 2005 only).

cursor Reference to a cursor object

table Stores a result set for later processing

Naming Rules

Apply to tables, views and columns. Table and View names must
be unique within a database. Column names must be unique within
a table.

• Must start with a letter.

• May be between 1 and 30 characters long.

• May contain alphabetic and numeric characters A to Z, a to z, 0 to 9.

• They are NOT case sensitive.

• Cannot be a reserved word.

• May contain underscores.

CREATE Table

The basic form of the CREATE statement is:

CREATE TABLE tablename
 (column_name datatype ,
 column_name datatype ,

 column_name datatype
) ;

Example

CREATE TABLE ACC

 (AccNo Number(7) ,

 Balance Number(7,2) ,

 Branch Varchar2(15) ,

 Opened Date,

 Bonus Number(7,2)

) ;

INSERT

The basic form of the INSERT statement is:

INSERT INTO tablename VALUES (....,,, ...);

INSERT INTO ACC VALUES
(1494315, 0.50, 'Tinsley', '01-SEP-2003', 1.00);

- note that values for all columns are specified.

But also,

INSERT INTO ACC (AccNo, Balance, Branch, Opened)
VALUES (1245890, 234.50, 'BROOMHILL‘,'12-Nov-03');

- here values are given only for the specified columns.

One insert statement is required for each row to be inserted!

UPDATE

The basic form of the UPDATE statement is:

UPDATE tablename

SET column_name = newvalue;
 - but this would update every row !

A better form is

UPDATE tablename

SET column_name = newvalue

WHERE column_name = testvalue;
 - this will only update rows

 which satisfy the WHERE clause

DELETE

• Deleting Data from Tables

 The basic form of the DELETE statement is:

DELETE FROM tablename;
- but this would delete every row !

 A better form is:
DELETE FROM tablename
WHERE column_name = testvalue;
 - this will only update rows

 which satisfy the WHERE clause

DELETE

• Deleting entire Table

 The basic form of the DROP statement is:

 DROP TABLE tablename ;

 DROP TABLE ACC ;

This destroys the structure and the data !

SELECT COUNT(columnname) FROM

tablename;

• The COUNT(columnname) function returns the number of

values (NULL values will not be counted) of the specified

column

SELECT COUNT(*) FROM tablename;

• The function returns the number of records in a table

• What happens to the NULL values?

• The function counts the NULL values.

SELECT COUNT(DISTINCT columnname)

FROM tablename;

• The function returns unique, non-NULL values from the

column <column_name>

SELECT COUNT(DISTINCT columnname1),

COUNT(DISTINCT columnname2) FROM

tablename;

• The function returns unique, non-NULL values from both

columns

SELECT count(*) FROM multiple tables

Example:

SELECT(

 SELECT COUNT(*)

 FROM employees

) AS Total_Employees,

 (SELECT COUNT(*)

 FROM departments

) AS No_Of_Departments

FROM dual

SELECT MAX(columnname) FROM

tablename;
• The MAX() function returns the largest value of the selected

column.

• The function takes only one argument.

SELECT MIN(columnname) FROM tablename;

• The MIN() function returns the smallest value of the selected
column.

• The function takes only one argument.

Behaviour of NULL values with MAX() and

MIN()

• When a column contains only NULL values, MAX() and
MIN() will output NULL.

• If a column includes NULL and non-NULL numerical values,
NULLs are ignored.

• If a column includes NULL and characters, NULLs are
ignored, while characters are compared based on their
hexadecimal value.

SELECT AVG(columnname) FROM tablename

• The AVG() returns the average value of attributes included

in the selected column

• The function does not accept more than one arguments

• The function does not count NULL values

SELECT SUM(columnname) FROM

tablename;

• The SUM() function returns the total sum of a numeric

column.

• The function does not accept more than one arguments

• The function does not count NULL values

GROUP BY Clause

• The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set by
one or more columns.

 SELECT column_name, aggregate_function(column_name)

 FROM table_name

 GROUP BY column_name;

• The function works also with multiple columns as long as they are the same as those specified in the
SELECT Clause.

 eg. select ename, job, sum(sal) from emp

 group by ename, job;

HAVING Clause

• The HAVING clause was added to SQL because the WHERE clause could
not be used with aggregate functions.

 SELECT column_name, aggregate_function(column_name)

 FROM table_name

 WHERE column_name operator value

 GROUP BY column_name

 HAVING aggregate_function(column_name) operator value;

Primary Keys

• A primary key is a field(column) in a table which uniquely

identifies each record (row) in a database table

• A primary key column cannot have NULL values

• A database table can only have ONE and ONLY ONE

Primary Key

Compound Keys

• A COMPOUND Key is a key that includes two or more

domains

STUDENT

StudentID

MODULE

ModuleID

ModuleLocation

STUDENTMODULEENROLLMENT

StudentID*

 ModuleID *

ModuleLocation

How to create Primary Keys

• Let's say I want to create a table that will include data about football players.
How do I do it?

 CREATE TABLE FOOTBALLPLAYERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 PRIMARY KEY (ID)

);

Or we can create the Primary Key like this

 CREATE TABLE FOOTBALLPLAYERS(

 ID INT NOT NULL PRIMARY KEY,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

);

How to create Compound Primary Keys

• Let's create the football players table with a compound primary key this time

 CREATE TABLE FOOTBALLPLAYERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 PRIMARY KEY (ID, NAME)

);

Foreign Key

• A key to link two tables together

• A Foreign Key is a column or a combination of columns

whose values match a Primary Key in a different table.

DEFINITION OF CONSTRAINTS

RDBMS Data Integrity

• Entity Integrity: No duplicate rows in a table!!

• Domain Integrity: Valid entries are entered in a given column by
restricting the type, the format, or the range of values.

• Referential integrity: Rows cannot be deleted especially when
they are used by other records.

• User-Defined Integrity: Enforces some specific business rules
that do not fall into entity, domain or referential integrity.

What is a Constraint ?
In general terms:

– a constraint is a control that limits or restricts actions or behaviour.

In database terms a CONSTRAINT is:

– a rule which limits the values that can be stored in a table column

– implemented by code stored in the database

– specified as part of the CREATE TABLE statement

– added / removed later with the ALTER TABLE statement

– better if given a meaningful name

– checked and applied whenever an INSERT, UPDATE or DELETE statement is run against that

table.

Database Constraints are used to implement three different types of check designed to preserve the

integrity of the data.

Entity integrity – Referential integrity – Domain integrity

Constraints

• Constraints are rules

• The limit the type of data that go into a table

• Ensure data accuracy and reliability

• Two types of constraints: Column-level, Table-level

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

Entity Integrity
Every entity must have a unique identifier. Each table corresponds to an entity, so each

table must also have a unique identifier.

 It can be a single column, - which must have a unique

 value and which cannot be NULL.

Or it can be a combination of columns, - which must

 have a unique combination of non-NULL values

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

Entity Integrity

We know that these columns are the unique identifiers, but the DBMS doesn’t know that, .

. yet.

We need to declare the unique identifier columns(s) as the PRIMARY KEY of the table.

Then the DBMS will create an integrity check on the column(s) as a PRIMARY KEY

CONSTRAINT.

For a PRIMARY KEY the check will enforce a rule that

the column values must be UNIQUE and NOT NULL.

PK

PK PK

CUSTACC has only one PK (the combination of RefNo+AccNo) Not two !

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

Referential Integrity

The relational model relies on being able to relate tables by using columns* common to

each table.

In the bank account tables:

RefNo is common to CUST and CUSTACC

AccNo is common to ACC and CUSTACCr

which allows us to relate Customers to their Accounts,

. . . provided that none of the values are missing or wrong

* It’s the data in the columns which matters, not the column names.

PK

PK PK

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

PK

PK PK

Referential Integrity

We know that the RefNo in CUSTACC refers to the PRIMARY KEY of another table

(CUST), but the DBMS doesn’t, . . yet.

We need to declare the referring column(s) as a FOREIGN KEY and say which table and

column it REFERENCES.

 CUST (RefNo) in this case

 ACC (AccNo) in this case

Then the DBMS will create an integrity check on the column(s) as a FOREIGN KEY

CONSTRAINT.

For a FOREIGN KEY the rule is that if the column value is not NULL, then a matching row

MUST EXIST in the other table

FKFK

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

Domain Integrity

Is concerned with ensuring that column values conform to ‘business rules’.

Various types of constraint are available for columns:

NOT NULL - prevents a column value of NULL

UNIQUE - checks that the column value is unique for this

 column in the table

CHECK <condition>

- checks that column values satisfy the condition

DEFAULT <value>

- sets a default value if it is not specified in an INSERT

PK

PK PK
FKFK

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

PK

PK PK

Domain Integrity

In the accounting system we might decide to:

default the account opening date to ‘Today’

Opened DATE DEFAULT SYSDATE

apply a check on the bonus

Bonus NUMBER(7,2) CHECK(Bonus <500.00)

make the customer name not nullable

Name VARCHAR2(25) NOT NULL

FKFK

CUST

RefNo Name Address Area

A123 J Doe 1 High Street Sheffield

A124 J Smith 2 West Street Sheffield

B127 R Best 4 East Row Rotherham

B128 J Best 4 East Row Rotherham

C371 R Done 23 Middle Avenue Barnsley

CUSTACC ACC

RefNo AccNo AccNo Balance Branch Opened Bonus

A123 1245890 1245890 234.50 Broomhill 12 Nov 2003 100.00

A123 1494315 1494315 0.50 Tinsley 15 Dec 1999 0.00

B127 5418490 5418490 1789.40 Broomhill 06 May 1988

B128 5418490

PK

PK PK

Domain Integrity

We don’t need to apply NOT NULL and UNIQUE constraints to the unique

identifier columns (RefNo, RefNo+AccNo, AccNo)

 . . . the PRIMARY KEY constraint does that.

FKFK

CREATION OF CONSTRAINTS

Examples of Constraints

PRIMARY Key: Uniquely identified each rows/records in a database table.

FOREIGN Key: Uniquely identified a rows/records in any another database table.

NOT NULL Constraint: Ensures that a column cannot have NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.

INDEX: Used to create and retrieve data from the database very quickly.

The PRIMARY KEY Constraint

In order to allow naming of a Primary Key constraint and to

define the primary key in multiple columns, we use the

following syntax:

CREATE TABLE Persons

(

P_Id int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

)

The FOREIGN KEY Constraint
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderName

1 Shirt

2 Jacket

3 Dress

Orders Table

The FOREIGN KEY Constraint

CREATE TABLE Orders

(

O_Id int NOT NULL PRIMARY KEY,

OrderNo int NOT NULL,

FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)

)

The FOREIGN KEY Constraint
Now the tables are connected to each other:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNam

e

P_ID

1 Shirt 2

2 Jacket 1

3 Dress 3

Orders Table

The FOREIGN KEY Constraint

In order to allow naming of a FOREIGN KEY Constraint and to

define a FOREIGN KEY Constraint on multiple columns, we

use the following syntax:

CREATE TABLE Orders

(

O_Id int NOT NULL,

OrderNo int NOT NULL,

P_Id int,

PRIMARY KEY (O_Id),

CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

)

The NOT NULL Constraint

Example - Notice the NOT NULL Constraint next to the AGE

Column

CREATE TABLE FootballPlayers(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 PRIMARY KEY (ID)

);

The NOT NULL Constraint

The NOT NULL Constraint can also be applied to an attribute

of VARCHAR Data Type

Example

CREATE TABLE FootballPlayers

(Customer_ID integer NOT NULL,

Last_Name varchar (30) NOT NULL,

First_Name varchar(30));

The DEFAULT Constraint

The DEFAULT Constraint provides a default value to a column

when an INSERT INTO statement does not provide a specific

value.

Example

CREATE TABLE FootballPlayers(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) DEFAULT '153 Arundel Street',

 SALARY DECIMAL (18, 2) DEFAULT 5000.00,

 PRIMARY KEY (ID)

);

The UNIQUE Constraint

The UNIQUE Constraint prevents two records from having

identical values at a specific column.

Example

 CREATE TABLE FootballPlayers(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL UNIQUE,

 ADDRESS CHAR (25) ,

 PRIMARY KEY (ID)

);

The UNIQUE Constraint

To allow naming of a UNIQUE Constraint and for defining a

UNIQUE Constraint to multiple columns, we use the following

syntax:

CREATE TABLE Persons

(

P_Id int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)

)

The CHECK Constraint

The CHECK Constraint prevents two records from having

identical values at a specific column.

Example

 CREATE TABLE FootballPlayers(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL CHECK (AGE >= 18),

 ADDRESS CHAR (25) ,

 PRIMARY KEY (ID)

);

The CHECK Constraint

In order to allow naming of a CHECK constraint and in order

to use it in multiple columns, we use the following syntax:

CREATE TABLE Persons

(

P_Id int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Address varchar(255),

CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sheffield')

)

The INDEX Constraint

•The INDEX Constraint is used to retrieve data from the

database very quickly.

•Indexes can be created by using a single or a group of

columns in a table.

•Indexes are good for large databases.

So what exactly is an Index?

•An index is similar to a book index

•Instead of checking the full book (full scan) for a specific

value, we refer immediately to the index.

•So an index is a data structure that stores the values for a

specific column of a table.

So what exactly is an Index?

•An index is similar to a book index

•Instead of checking the full book (full scan) for a specific

value, we refer immediately to the index.

•So an index is a data structure that stores the values for a

specific column of a table.

How to create an Index?

CREATE INDEX index_name

ON table_name (column_name)

CREATE INDEX index_name

ON table_name (column_name1, column_name2)

THE SQL ALTER

SQL ALTER TABLE

It is used to add, delete or modify columns in an existing table

It is used to add or drop various constraints on an existing

table

Add a column using ALTER

ALTER TABLE table_name ADD column_name datatype;

Add multiple columns using ALTER

ALTER TABLE table_name ADD column_name1 datatype,

column_name2 datatype,

column_name3 datatype;

Drop a column using ALTER

ALTER TABLE table_name DROP COLUMN column_name;

Change the data type of a column using
ALTER

ALTER TABLE table_name MODIFY COLUMN column_name

datatype;

ALTER & CONSTRAINTS

Add a NOT NULL Constraint to a column

using ALTER

ALTER TABLE table_name MODIFY column_name datatype

NOT NULL;

Add a UNIQUE Constraint using ALTER

ALTER TABLE table_name

ADD CONSTRAINT ConstraintName UNIQUE(column1,

column2...);

Add a CHECK Constraint using ALTER

ALTER TABLE table_name

ADD CONSTRAINT ConstraintName

CHECK (CONDITION);

Add a PRIMARY KEY Constraint using
ALTER

ALTER TABLE table_name

ADD CONSTRAINT PrimaryKeyName PRIMARY KEY

(column1, column2...);

Drop a Constraint using ALTER

ALTER TABLE table_name

DROP CONSTRAINT ConstraintName;

Drop a PRIMARY KEY Constraint using
ALTER

ALTER TABLE table_name

DROP CONSTRAINT PrimaryKeyName;

Foreign Key Constraints & ALTER
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderName

1 Shirt

2 Jacket

3 Dress

Orders Table

Foreign Key Constraints & ALTER

When a table has been created and we want to create a Foreign

Key constraint on one of its columns, we use the following SQL

statement:

ALTER TABLE Orders

ADD FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

However, before we use the above SQL statement, we must have created the column P_ID already in the

Orders Table. The above statement references the column to the Primary Key of Persons. Furthermore, the

above statement creates the constraint to the Orders Table. We need to insert the values for the P_Id column

in the Orders Table using the INSERT INTO Statement.

Foreign Key Constraints & ALTER
Now the tables are connected to each other:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 1

3 Dress 3

Orders Table

Foreign Key Constraints & ALTER

In order to name a Foreign Key constraint or in order to define a

Foreign Key constraint to multiple columns, we use the following

SQL statements:

ALTER TABLE Orders

ADD CONSTRAINT fk_PerOrders

FOREIGN KEY (P_Id)

REFERENCES Persons(P_Id)

Drop Foreign Key Constraints using ALTER

ALTER TABLE Orders

DROP CONSTRAINT fk_PerOrders

The above SQL statement used for a constraint which has a

specific name that we gave. What if our constraint is nameless?

In the case of Oracle PL/SQL, the software assigns

automatically a name to the Primary & Foreign Key constraints.

JOINS

Definition of JOINS

The SQL Joins clause is used to combine records from two or

more tables in a database.

A JOIN is a means for combining fields from two tables by

using values common to each.

Types of SQL JOIN

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

SELF JOIN

CARTESIAN JOIN

SQL INNER JOIN

SQL INNER JOIN Syntax

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name=table2.column_name;

Example of SQL INNER JOIN
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 1

3 Dress 3

Orders Table

Example of SQL INNER JOIN

SELECT Persons.FirstName, Orders.OrderName

FROM Persons

INNER JOIN Orders

ON Persons.P_ID=Orders.P_ID

Example of SQL INNER JOIN

FirstName OrderNo

Benson Shirt

Davis Jacket

Hodgson Dress

The result of the INNER JOIN is the following:

Example of SQL INNER JOIN
What if I had the following two tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 1

3 Dress 2

Orders Table

(I changed the value of P_ID to 2 instead of 3 in row with

O_ID=3)

Example of SQL INNER JOIN

SELECT Persons.FirstName, Orders.OrderName

FROM Persons

INNER JOIN Orders

ON Persons.P_ID=Orders.P_ID

Example of SQL INNER JOIN

FirstName OrderNo

Benson Shirt

Davis Jacket

Benson Dress

Now the result of the INNER JOIN is the following:

SQL LEFT JOIN

The LEFT JOIN keyword returns all rows from the left table

(table1), with the matching rows in the right table (table2). The

result is NULL in the right side when there is no match.

SQL LEFT JOIN

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name=table2.column_name;

Example of SQL LEFT JOIN
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 2

3 Dress 3

Orders Table

Example of SQL LEFT JOIN

SELECT Persons.P_ID, Persons.FirstName,

Persons.LastName, Orders.OrderName

FROM Persons

LEFT JOIN Orders

ON Persons.P_ID=Orders.P_ID

Example of SQL LEFT JOIN

The result of the LEFT JOIN is the following:

P_ID FirstName LastName OrderNam

e

1 John Davis NULL

2 Nick Benson Shirt

2 Nick Benson Jacket

3 Louise Hodgson Dress

SQL RIGHT JOIN

The SQL RIGHT JOIN returns all rows from the right table (table 2),

even if there are no matches in the left table (table 1).

This means that if the ON clause matches 0 (zero) records in left

table, the join will still return a row in the result, but with NULL in each

column from left table.

SQL RIGHT JOIN

SELECT table1.column1, table2.column2...

FROM table1

RIGHT JOIN table2

ON table1.common_field = table2.common_field;

Example of SQL RIGHT JOIN
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 2

3 Dress 3

Orders Table

Example of SQL RIGHT JOIN

SELECT Persons.P_ID, Persons.FirstName,

Persons.LastName, Orders.OrderName

FROM Persons

RIGHT JOIN Orders

ON Persons.P_ID=Orders.P_ID

Example of SQL RIGHT JOIN

The result of the RIGHT JOIN is the following:

P_ID FirstName LastName OrderNam

e

2 Nick Benson Shirt

2 Nick Benson Jacket

3 Louise Hodgson Dress

SQL FULL JOIN

The SQL FULL JOIN combines the results of both left and right

outer joins.

The joined table will contain all records from both tables, and fill

in NULLs for missing matches on either side.

Example of SQL FULL JOIN
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 2

3 Dress 3

Orders Table

Example of SQL FULL JOIN

SELECT Persons.P_ID, Persons.FirstName,

Persons.LastName, Orders.OrderName

FROM Persons

FULL JOIN Orders

ON Persons.P_ID=Orders.P_ID

Example of SQL FULL JOIN

The result of the FULL JOIN is the following:

P_ID FirstName LastName OrderNam

e

1 John Davis NULL

2 Nick Benson Shirt

2 Nick Benson Jacket

3 Louise Hodgson Dress

SQL SELF JOIN

The SQL SELF JOIN is used to join a table to itself as if the

table were two tables, temporarily renaming at least one table

in the SQL statement.

SELECT a.column_name, b.column_name...

FROM table1 a, table1 b

WHERE a.common_field = b.common_field;

Example of SQL SELF JOIN

Imagine we have the following table:

P_ID FirstNa

me

LastNa

me

Salary

1 John Davis 4500

2 Nick Benson 6000

3 Louise Hodgson 2000

Persons Table

Example of SQL SELF JOIN

SELECT a.FirstName, a.LastName, a.Salary, b.Salary

FROM Persons a, Persons b

WHERE a.Salary < b.Salary;

Example of SQL SELF JOIN

FirstNam

e

LastNam

e

Salary Salary

Louise Hodgson 2000 4500

Louise Hodgson 2000 6000

John Davis 4500 6000

Example of SQL SELF JOIN

SELECT a.FirstName, a.LastName, a.Salary, b.Salary

FROM Persons a, Persons b

WHERE a.Salary = b.Salary;

Example of SQL SELF JOIN

FirstNam

e

LastNam

e

Salary Salary

Louise Hodgson 2000 2000

John Davis 4500 4500

Nick Benson 6000 6000

Example of SQL SELF JOIN

SELECT a.FirstName, a.LastName, a.Salary, b.Salary

FROM Persons a, Persons b

WHERE a.Salary > b.Salary;

Example of SQL SELF JOIN

FirstNam

e

LastNam

e

Salary Salary

Nick Benson 6000 4500

Nick Benson 6000 2000

John Davis 4500 2000

SQL CARTESIAN JOIN

The CARTESIAN JOIN or CROSS JOIN returns the Cartesian

product of the sets of records from the two or more joined

tables.

SELECT table1.column1, table2.column2...

FROM table1, table2

Example of SQL CARTESIAN JOIN
Imagine we have the following tables:

P_ID FirstName LastName

1 John Davis

2 Nick Benson

3 Louise Hodgson

Persons Table

O_ID OrderNa

me

P_ID

1 Shirt 2

2 Jacket 2

3 Dress 3

Orders Table

Example of SQL CARTESIAN JOIN

SELECT Persons.P_ID, Persons.LastName,

Persons.FirstName, Orders.OrderName

from Persons, Orders;

Example of SQL CARTESIAN JOIN

P_ID FirstName LastName OrderName

3 Louise Hodgson Shirt

3 Louise Hodgson Jacket

3 Louise Hodgson Dress

1 John Davis Shirt

1 John Davis Jacket

1 John Davis Dress

2 Nick Benson Shirt

2 Nick Benson Jacket

2 Nick Benson Dress

Introduction to PL/SQL

Advanced Data Management

PL/SQL

• P(rocedural) L(anguage)/SQL

• A combination of SQL along with the procedural features of

programming languages.

• It was developed by Oracle Corporation in the early 90s to enhance the

capabilities of SQL.

Advanced Data Management

PL/SQL

• PL/SQL is a completely portable, high-performance transaction-
processing language.

• PL/SQL provides an OS independent programming environment.

• PL/SQL can also directly be called from the command-line SQL*Plus
interface.

• Direct call can also be made from external programming language calls
to database.

Advanced Data Management

PL/SQL
Architecture

Advanced Data Management

PL/SQL Advantages

• PL/SQL allows sending an entire block of statements to the

database at one time.

• Provision of access to predefined SQL packages.

• Provision of support for Developing Web Applications and

Server Pages.

Advanced Data Management

PL/SQL Advantages

• Provides the ability to add middle tier business logic to client/server
applications

• Provides Portability

• Improves performance of multi-query transactions

• Provides error handling

Advanced Data Management

PL/SQL Program Structure

• PL/SQL is a block-structured language, meaning that PL/SQL programs are divided and
written in logical blocks of code.

• Each block consists of three sub-parts:

1. Declarations: This section starts with the keyword DECLARE. It is an optional section and
defines all variables, cursors, subprograms, and other elements to be used in the program.

2. Executable Commands: This section is enclosed between the keywords BEGIN and END
and it is a mandatory section. It consists of the executable PL/SQL statements of the program.
It should have at least one executable line of code

3. Exception Handling: This section starts with the keyword EXCEPTION. This section is again
optional and contains exception(s) that handle errors in the program.

Advanced Data Management

PL/SQL Program Structure
DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

The 'Hello World' Example:

DECLARE

 message varchar2(20):= 'Hello, World!';

BEGIN

 dbms_output.put_line(message);

END;
Advanced Data Management

PL/SQL Program Declarations Section

• The declarations section is the first section of the PL/SQL block.

• It contains definitions of PL/SQL identifiers such as variables,
constants, cursors and so on.

• Example

DECLARE

 v_first_name VARCHAR2(35) ;

 v_last_name VARCHAR2(35) ;

 v_counter NUMBER := 0 ;

Advanced Data Management

PL/SQL Program Executable Section

• This section contains executable statements that allow you to manipulate the variables
that have been declared in the declaration section.

 BEGIN

 SELECT first_name, last_name

 INTO v_first_name, v_last_name

 FROM student

 WHERE student_id = 123 ;

 DBMS_OUTPUT.PUT_LINE

 (‘Student name :’ || v_first_name || ‘ ’ || v_last_name);

 END;

Advanced Data Management

PL/SQL Program Exception Handling Section

• This section contains statements that are executed when a runtime
error occurs within a block.

• Runtime errors occur while the program is running and cannot
be detected by the PL/SQL compiler.

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE

 (‘ There is no student with student id 123 ’);

 END;

Advanced Data Management

Fundamentals
of PL/SQL

Advanced Data Management

Fundamentals of PL/SQL

Comments

Single and Multi-line block comments

The single-line comment is initiated with two hyphens (--), which cannot be

separated by a space or any other characters.

Multiline comments start with a slash-asterisk (/*) and end with an asterisk-

slash (*/).

Advanced Data Management

PL/SQL Variables

variable_name datatype = initial_value

variable_name is a valid identifier in PL/SQL, datatype must be a valid PL/SQL data type.

When you provide a size, scale or precision limit with the data type, it is called a

constrained declaration.

Constrained declarations require less memory than unconstrained declarations.

Example:

sales number(10, 2);

Advanced Data Management

PL/SQL Variables

• Whenever you declare a variable, PL/SQL assigns it a default value of NULL.

• If you want to initialize a variable with a value other than the NULL value, you
can do so during the declaration, using either of the following:

• The DEFAULT keyword

• The assignment operator

Example

counter binary_integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day';

Advanced Data Management

Scope of Variables PL/SQL

• PL/SQL allows the nesting of Blocks

• There are two types of variable scope:

1. Local variables - variables declared in an inner block and not accessible to

 outer blocks

2. Global variables - variables declared in the outermost block or a package

Advanced Data Management

Scope of Variables PL/SQL
DECLARE

 -- Global variables

 num1 number := 95;

 num2 number := 85;

BEGIN

 dbms_output.put_line('Outer Variable num1: ' || num1);

 dbms_output.put_line('Outer Variable num2: ' || num2);

 DECLARE

 -- Local variables

 num1 number := 195;

 num2 number := 185;

 BEGIN

 dbms_output.put_line('Inner Variable num1: ' || num1);

 dbms_output.put_line('Inner Variable num2: ' || num2);

 END;

END;

Advanced Data Management

PL/SQL Constants

• A constant holds a value that once declared, does not change in the program.

• A constant declaration specifies its name, data type, and value.

• A constant is declared using the CONSTANT keyword. It requires an initial value

and does not allow that value to be changed.

• Example: salary_increase CONSTANT number (3) := 10;

Advanced Data Management

PL/SQL Records

Advanced Data Management

PL/SQL Records

• A PL/SQL record is a data structure that can hold data items of different kinds.

• Records consist of different fields, similar to a row of a database table.

• A record can be visualized as a row of data. It can contain all the contents of a row.

Advanced Data Management

PL/SQL Records

The General Syntax to define a composite datatype is:

TYPE record_type_name IS RECORD

(first_col_name column_datatype,

second_col_name column_datatype, ...);

record_type_name – it is the name of the record you want to define.

first_col_name, second_col_name, etc.,- it is the names the fields/columns

within the record.

column_datatype defines the scalar datatype of the fields.

Advanced Data Management

PL/SQL Records

PL/SQL can handle the following types of records:

-Table-based

-Cursor-based records

-User-defined records

In this lecture, we will see the Table-based and User-defined
records.

Advanced Data Management

Table-based Records
The %ROWTYPE attribute enables a programmer to create table-based records

Example:

DECLARE

 customer_rec customers%rowtype;

BEGIN

 SELECT * into customer_rec

 FROM customers

 WHERE id = 5;

 dbms_output.put_line('Customer ID: ' || customer_rec.id);

 dbms_output.put_line('Customer Name: ' || customer_rec.name);

 dbms_output.put_line('Customer Address: ' || customer_rec.address);

 dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

END;

Advanced Data Management

User-defined Records

PL/SQL provides a user-defined record type that allows you to define different record

structures

Example

DECLARE

TYPE books IS RECORD

(title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number

);

Advanced Data Management

PL/SQL Control Statements

Advanced Data Management

PL/SQL Control Statements

Conditional selection statements (IF, CASE), which run different statements for different data

values.

Loop statements (LOOP, FOR LOOP, WHILE LOOP), which run the same statements with a

series of different data values.

The EXIT statement transfers control to the end of a loop. The CONTINUE statement exits the

current iteration of a loop and transfers control to the next iteration. Both EXIT and CONTINUE have

an optional WHEN clause, where you can specify a condition.

Sequential control statements (GOTO, NULL) , which are not crucial to PL/SQL programming.

Advanced Data Management

PL/SQL Conditional Selection Statements

The IF statement either runs or skips a sequence of one or more statements, depending on a
condition. The IF statement has these forms:

IF THEN

IF THEN ELSE

IF THEN ELSIF

The CASE statement chooses from a sequence of conditions, and runs the
corresponding statement.

The CASE statement has these forms:

-Simple, which evaluates a single expression and compares it to several potential

 values.

-Searched, which evaluates multiple conditions and chooses the first one that is true.

Advanced Data Management

IF condition THEN

 statements

END IF;

--

IF condition THEN

 statements

ELSE

 else_statements

END IF;

--

IF condition_1 THEN

 statements_1

ELSIF condition_2 THEN

 statements_2

[ELSIF condition_3 THEN

 statements_3

]...

[ELSE

 else_statements

]

END IF;
Advanced Data Management

CASE Statement

CASE selector

WHEN selector_value_1 THEN statements_1

WHEN selector_value_2 THEN statements_2

...

WHEN selector_value_n THEN statements_n

[ELSE

 else_statements]

END CASE;]

Advanced Data Management

CASE Statement

DECLARE

 grade CHAR(1);

BEGIN

 grade := 'B';

 CASE grade

 WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');

 WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');

 WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');

 WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');

 WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');

 ELSE DBMS_OUTPUT.PUT_LINE('No such grade’);

 END CASE;

END;

Advanced Data Management

PL/SQL Loops

Advanced Data Management

Loops

Basic LOOP Statement

FOR LOOP Statement

WHILE LOOP Statement

EXIT Statement

EXIT WHEN Statement

CONTINUE Statement

CONTINUE WHEN Statement

Advanced Data Management

Basic LOOP Statement

DECLARE

 x NUMBER := 0;

BEGIN

 LOOP

 DBMS_OUTPUT.PUT_LINE ('Inside loop: x = ' || TO_CHAR(x));

 x := x + 1;

 IF x > 3 THEN

 EXIT;

 END IF;

 END LOOP;

 -- After EXIT, control resumes here

 DBMS_OUTPUT.PUT_LINE(' After loop: x = ' || TO_CHAR(x));

END;

Advanced Data Management

Basic LOOP Statement

DECLARE

 x NUMBER := 0;

BEGIN

 LOOP

 DBMS_OUTPUT.PUT_LINE('Inside loop: x = ' || TO_CHAR(x));

 x := x + 1; -- prevents infinite loop

 EXIT WHEN x > 3;

 END LOOP;

 -- After EXIT statement, control resumes here

 DBMS_OUTPUT.PUT_LINE('After loop: x = ' || TO_CHAR(x));

END;

Advanced Data Management

Basic LOOP Statement

DECLARE

 x NUMBER := 0;

BEGIN

 LOOP -- After CONTINUE statement, control resumes here

 DBMS_OUTPUT.PUT_LINE ('Inside loop: x = ' || TO_CHAR(x));

 x := x + 1;

 IF x < 3 THEN

 CONTINUE;

 END IF;

 DBMS_OUTPUT.PUT_LINE

 ('Inside loop, after CONTINUE: x = ' || TO_CHAR(x));

 EXIT WHEN x = 5;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE (' After loop: x = ' || TO_CHAR(x));

END;

Advanced Data Management

Basic LOOP Statement

DECLARE

 x NUMBER := 0;

BEGIN

 LOOP -- After CONTINUE statement, control resumes here

 DBMS_OUTPUT.PUT_LINE ('Inside loop: x = ' || TO_CHAR(x));

 x := x + 1;

 CONTINUE WHEN x < 3;

 DBMS_OUTPUT.PUT_LINE

 ('Inside loop, after CONTINUE: x = ' || TO_CHAR(x));

 EXIT WHEN x = 5;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE (' After loop: x = ' || TO_CHAR(x));

END;

Advanced Data Management

FOR Loop

BEGIN

DBMS_OUTPUT.PUT_LINE ('lower_bound < upper_bound');

 FOR i IN 1..3 LOOP

 DBMS_OUTPUT.PUT_LINE (i);

 END LOOP;

Advanced Data Management

WHILE Loop

WHILE monthly_value <= 4000

LOOP

 monthly_value := daily_value * 31;

END LOOP;

Advanced Data Management

Some questions...

• What is a Procedure?

• What is a Function?

Two similar but different things

Advanced Data Management

Modularization

• The process by which you break up large blocks of code into smaller pieces (modules) that

can be called by other modules.

• With modularization, your code becomes:

 - More reusable

 - More manageable

 - More readable

 - More reliable

Advanced Data Management

Modularization

Procedure

Function

Database trigger

Package

Advanced Data Management

Procedures

• A procedure is a sequence of program instructions that perform a specific task,

packaged as a unit.

• Procedures may be defined within programs, or separately in libraries that can be used by

multiple programs.

• In different programming languages, a procedure may be called a subroutine, a function,

a routine, a method, or a callable unit.

Advanced Data Management

Procedures
Example from PASCAL

procedure name(argument(s): type1, argument(s): type 2, ...);

 < local declarations >

begin

 < procedure body >

end;

A procedure definition in Pascal consists of a header, local declarations and a body of
the procedure. A procedure will also have following three parts:

1. Declarative Part

2. Executable Part

3. Exception-handling

Advanced Data Management

Stored Procedures

• A stored procedure is a subroutine available to applications that access a relational

database management system (RDBMS). Such procedures are stored in the database

data dictionary.

• A stored procedure is also termed proc, storp, sproc, StoPro, StoredProc, StoreProc, sp,

or SP.

• A stored procedure is a PL/SQL block that Oracle stores in the database and can be called

by name from an application.

• In Oracle, procedures and stored procedures are the same thing.

Advanced Data Management

Advantages of Stored Procedures

• Performance

• Productivity and Ease of Use

• Scalability

• Maintainability

• Interoperability

• Security

• Replication

Advanced Data Management

Stored Procedures Creation

A procedure can be created at:

Schema Level

Inside a package

Inside a PL/SQL block

• A schema level procedure is a standalone procedure. It is created with the CREATE

PROCEDURE statement. It is stored in the database and can be deleted with the DROP

PROCEDURE statement.

• A procedure created inside a package is a packaged procedure. It is stored in the database

and can be deleted only when the package is deleted with the DROP PACKAGE statement.

Advanced Data Management

Stored Procedure Creation at Schema Level

CREATE OR REPLACE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{ IS | AS }

BEGIN

procedure_body

[EXCEPTION

 exception_section]

END procedure_name;

Example

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

Advanced Data Management

Stored Procedure Creation inside a Package
CREATE OR REPLACE PACKAGE BODY emp_mgmt AS

 tot_emps NUMBER;

 tot_depts NUMBER;

PROCEDURE hire

 (last_name VARCHAR2, job_id VARCHAR2,

 manager_id NUMBER, salary NUMBER,

 commission_pct NUMBER, department_id NUMBER)

 RETURN NUMBER IS new_empno NUMBER;

BEGIN

 SELECT employees_seq.NEXTVAL

 INTO new_empno

 FROM DUAL;

 INSERT INTO employees

 VALUES (new_empno, 'First', 'Last','first.example@example.com',

 '(415)555-0100','18-JUN-02','IT_PROG',90000000,00,

 100,110);

 tot_emps := tot_emps + 1;

 RETURN(new_empno);

END;

END emp_mgmt; Advanced Data Management

Stored Procedure Creation

procedure-name specifies the name of the procedure.

[OR REPLACE] option allows modifying an existing procedure.

The optional parameter list contains name, mode and types of the parameters. IN

represents that value will be passed from outside and OUT represents that this

parameter will be used to return a value outside of the procedure.

procedure-body contains the executable part.

Advanced Data Management

Stored Procedures Execution & Deletion

1. Using the EXECUTE keyword

2. Calling the name of the procedure from a PL/SQL block

The procedure 'greetings' can be called with the EXECUTE keyword:

EXECUTE greetings;

The procedure can also be called from another PL/SQL block:

BEGIN

 greetings;

END;

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a procedure is:

DROP PROCEDURE procedure-name;

Advanced Data Management

General Format of PL/SQL Procedure:

Advanced Data Management

The portion of the procedure definition

that comes before the AS/IS keyword is

called the procedure header or signature.

The header provides all the information a

programmer needs to call that

procedure.

The body of the procedure is the code

required to implement that procedure; it

consists of the declaration, execution,

and exception sections of the procedure.

You can append the name of the

procedure directly after the END keyword

when you

complete your procedure.

Passing Parameters

We can pass parameters to procedures in three ways.

1) IN-parameters

2) OUT-parameters

3) IN OUT-parameters

Advanced Data Management

Stored Procedures & Oracle Developer

• In the Connections navigation hierarchy, right-click Procedures.

• Select New Procedure.

Advanced Data Management

Stored Procedures & Oracle Developer

• In the New Procedure window, set the following parameters:

-Ensure that you define a name for the Schema.

-Ensure that you set a name for the stored procedure.

In the Parameters tab, click the Add Column icon ('plus' sign) and specify the first parameter of the procedure.

Advanced Data Management

Functions

• A function is a named PL/SQL Block which is similar to a procedure. The major difference
between a procedure and a function is, a function must always return a value, but a
procedure may not return a value.

• The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype {IS | AS}

BEGIN

 < function_body >

END [function_name];

Advanced Data Management

Functions

• function-name specifies the name of the function.

• [OR REPLACE] option allows modifying an existing function.

• The optional parameter list contains name, mode and types of the parameters. IN

represents that value will be passed from outside and OUT represents that this parameter

will be used to return a value outside of the procedure.

• The function must contain a return statement.

• RETURN clause specifies that data type you are going to return from the function.

• function-body contains the executable part.

Advanced Data Management

Examples
CREATE OR REPLACE FUNCTION minimum(v1 number, v2 number)

RETURN number IS

BEGIN

 IF v1 < v2 THEN

 RETURN v1;

 ELSE

 RETURN v2;

 END IF;

END;

--

CREATE FUNCTION get_bal(acc_no IN NUMBER)

RETURN NUMBER IS acc_bal NUMBER(11,2);

 BEGIN

 SELECT balance

 INTO acc_bal

 FROM accounts

 WHERE account_id = acc_no;

 RETURN (acc_bal);

 END;
Advanced Data Management

Function with OUT parameter
CREATE OR REPLACE FUNCTION out_func (outparm OUT VARCHAR2)

RETURN VARCHAR2 IS

BEGIN

 outparm := 'out param';

 RETURN 'return param';

END out_func;

--

set serveroutput on

--

DECLARE

 retval VARCHAR2(20);

 outval VARCHAR2(20);

 BEGIN

 retval := out_func(outval);

 dbms_output.put_line(outval);

 dbms_output.put_line(retval);

END; Advanced Data Management

Function with IN OUT parameter
CREATE OR REPLACE FUNCTION inout_func (outparm IN OUT VARCHAR2)

RETURN VARCHAR2 IS

BEGIN

 outparm := 'Coming out';

 RETURN 'return param';

END inout_func;

set serveroutput on

--

DECLARE

 retval VARCHAR2(20);

 ioval VARCHAR2(20) := 'Going in';

BEGIN

 dbms_output.put_line('In: ' || ioval);

 retval := inout_func(ioval);

 dbms_output.put_line('Out: ' || ioval);

 dbms_output.put_line('Return: ' || retval);

END;
Advanced Data Management

The RETURN Clause
• Return a string from a standalone function

FUNCTION favorite_nickname (

name_in IN VARCHAR2)

RETURN VARCHAR2

IS

BEGIN

...

END;

• Return a number (age of a pet) from an object type member function

TYPE pet_t IS OBJECT (

tag_no INTEGER,

NAME VARCHAR2 (60),

breed VARCHAR2(100),

dob DATE,

MEMBER FUNCTION age RETURN NUMBER

)
Advanced Data Management

The RETURN Clause

• Return a record with the same structure as the books table

PACKAGE book_info

IS

 FUNCTION onerow (isbn_in IN books.isbn%TYPE)

 RETURN books%ROWTYPE;

...

• Return a cursor variable with the specified REF CURSOR type (based on a record type)

PACKAGE book_info

IS

 TYPE overdue_rt IS RECORD (

 isbn books.isbn%TYPE,

 days_overdue PLS_INTEGER);

 TYPE overdue_rct IS REF CURSOR RETURN overdue_rt;

 FUNCTION overdue_info (username_in IN lib_users.username%TYPE)

 RETURN overdue_rct;
...

Advanced Data Management

The RETURN Clause

The RETURN statement is generally associated with a function because it is

required to RETURN a value from a function.

Interestingly, PL/SQL also allows you to use a RETURN statement in a

procedure. The procedure version of the RETURN does not take an expression;

it therefore cannot pass a value back to the calling program unit. The RETURN

simply halts execution of the procedure and returns control to the calling code.

AVOID USING RETURN WITH PROCEDURES AS IT LEADS TO UNSTRUCTURED

(SPAGHETTI) CODE!!!

Advanced Data Management

General Format of PL/SQL Function

Advanced Data Management

The portion of the function definition that comes before the

IS keyword is called the function header or signature.

The header provides all the information a programmer

needs to call that function.

The body of the function is the code required to

implement the function. It consists of the declaration,

execution, and exception sections of the function.

Everything after the IS keyword in the function makes up

that function’s body.

A function must have at least one RETURN statement in its

execution section. When a RETURN statement is

processed, the function terminates

immediately and returns control to the calling PL/SQL

block. The RETURN clause in the header of the function

is different from the RETURN statement

in the execution section of the body.

Association
of Actual with

Formal
Parameters

formal parameter (the name of the parameter)

actual parameter (the value of the parameter)

PL/SQL offers two ways to make the association:

Positional notation

Associates the actual parameter implicitly (by position)
with the formal parameter

Named notation

Associates the actual parameter explicitly with the formal
parameter, using the formal parameter’s name and the
=> symbol

The general syntax for named notation is:

formal_parameter_name => argument_value

Calling a Function

A function can be executed in the following ways.

1) Since a function returns a value, we can assign it to a variable

employee_name := employer_details_func;

If ‘employee_name’ is of datatype varchar we can store the name of the employee by assigning the return

type of the function to it.

2) As a part of a SELECT statement

SELECT employer_details_func FROM dual;

3) In PL/SQL Statements

dbms_output.put_line(employer_details_func);

This line displays the value returned by the function.

Advanced Data Management

Calling a Function

4) Assign the default value of a variable with a function call

DECLARE

v_nickname VARCHAR2(100) := favorite_nickname ('Steven');

5) Call a user-defined PL/SQL function from within a query

DECLARE

l_name employees.last_name%TYPE;

BEGIN

SELECT last_name INTO l_name

FROM employees

WHERE employee_id = hr_info_pkg.employee_of_the_month ('FEBRUARY');

Advanced Data Management

Functions and Oracle SQL Developer
• To get started, right click on Functions in the connection explorer and choose New Function

from the drop down menu. Doing so should display the Create PL/SQL Function window.

Advanced Data Management

Functions vs. Stored Procedures

• A Function must return a value but in a Stored Procedure this is optional

• Functions can be called from a Procedure whereas Procedures cannot be called from a Function

• Procedures cannot be utilized in a SELECT statement whereas a Function can be embedded in a

SELECT statement

• Exception can be handled by the try-catch block in a Procedure whereas the try-catch block

cannot be used in a Function

• Procedures allow SELECT as well as DML(INSERT/UPDATE/DELETE) statements in it whereas

functions allow only SELECT statement in them

Advanced Data Management

Packages

• PL/SQL packages are schema objects that group logically related

PL/SQL types, variables and subprograms.

• A package is compiled and stored in the database

• A package has two mandatory parts:

• Package specification

• Package body or definition

Advanced Data Management

Why do we use Packages?

• Modularity

• Easier Application Design

• Information Hiding

• Better Performance

Advanced Data Management

Package Specification

• The specification is the interface to the package. It just DECLARES the types, variables,

constants, exceptions, cursors, and subprograms that can be referenced from outside

the package. In other words, it contains all information about the content of the package, but

excludes the code for the subprograms.

Advanced Data Management

Package Body

• The package body has the codes for various methods declared in the package specification

and other private declarations, which are hidden from code outside the package.

• The CREATE PACKAGE BODY Statement is used for creating the package body.

Package Specification
The following code snippet shows a package specification having a single procedure. You can

have many global variables defined and multiple procedures or functions inside a package.

CREATE PACKAGE cust_sal AS

 PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

Advanced Data Management

Package Body

The following code snippet shows the package body declaration for the cust_sal package created above. We

assume that we already have CUSTOMERS table created in our database.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line('Salary: '|| c_sal);

 END find_sal;

END cust_sal;

Using the Package Elements
The package elements (variables, procedures or functions) are accessed with the following

syntax: package_name.element_name;

Advanced Data Management

Example

Suppose we have the following table:

SQL> Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 3000.00 |

| 2 | Khilan | 25 | Delhi | 3000.00 |

| 3 | kaushik | 23 | Kota | 3000.00 |

| 4 | Chaitali | 25 | Mumbai | 7500.00 |

| 5 | Hardik | 27 | Bhopal | 9500.00 |

| 6 | Komal | 22 | MP | 5500.00 |

We specify the package body:

CREATE OR REPLACE PACKAGE BODY c_package AS

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customers.name%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type)

 IS

 BEGIN

 INSERT INTO customers (id,name,age,address,salary)

 VALUES(c_id, c_name, c_age, c_addr, c_sal);

 END addCustomer;

 PROCEDURE delCustomer(c_id customers.id%type) IS

 BEGIN

 DELETE FROM customers

 WHERE id = c_id;

 END delCustomer;

 PROCEDURE listCustomer IS

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list is TABLE OF customers.name%type;

 name_list c_list := c_list();

 counter integer :=0;

 BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer(' ||counter|| ')'||name_list(counter));

 END LOOP;

 END listCustomer;

END c_package;
Advanced Data Management

USING THE PACKAGE:

DECLARE

 code customers.id%type:= 8;

BEGIN

 c_package.addcustomer(7, 'Rajnish', 25, 'Chennai',

3500);

 c_package.addcustomer(8, 'Subham', 32, 'Delhi',

7500);

 c_package.listcustomer;

 c_package.delcustomer(code);

 c_package.listcustomer;

END;

TRIGGERS

Advanced Data Management

Triggers

Advanced Data Management

– A trigger is an SQL statement (or a group of statements) that is automatically

executed by Oracle in response to any of the following (triggering) events:

 *DML statements

 *DDL statements

 *Database events, such as logon/logoff, errors, or start-up/shutdown

Triggers

Advanced Data Management

-There are different types of triggers (Row & Statement Triggers / BEFORE, AFTER,

INSTEAD OF Triggers / Triggers on System Events and User Events)

When creating a trigger, three pieces of information need to be specified:

 1. The unique trigger name

 2. The table to which the trigger refers to

 3. The action that the trigger should respond to

Triggers are created using the CREATE TRIGGER statement

Parts of a Trigger

Advanced Data Management

A trigger has three basic parts: 1. A triggering event or statement, 2. A trigger

restriction (optional), 3. A trigger action

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW (1)

WHEN (NEW.ID > 0) (2)

DECLARE

 sal_diff number;

 BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 (3)

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

 END;

Row/Statement Triggers

Advanced Data Management

-A row trigger is executed each time the table is affected by the triggering statement. For example, if an

INSERT or an UPDATE statement inserts or updates multiple rows of a table respectively, a row trigger is

fired once for each row affected by the INSERT or the UPDATE statement. If a triggering statement

affects no rows, a row trigger is not run.

-A statement trigger is executed regardless of the number of rows in the table that the triggering

statement affects. A statement trigger is fired once on behalf of the triggering statement. For example, if a

DELETE statement deletes several rows from a table, a statement-level DELETE trigger is fired only once.

Statement triggers are used to create audit records for security purposes.

BEFORE/AFTER/INSTEAD OF Triggers

Advanced Data Management

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run and in order to provoke

another event to happen.

-BEFORE and AFTER triggers fired by DML statements can be defined only on tables, and not on views.

Triggers on the base tables of a view are fired if an INSERT, UPDATE, or DELETE statement is issued

against the view.

-INSTEAD OF triggers override the standard actions of the triggering statement: an INSERT,

UPDATE, or DELETE. INSTEAD OF triggers can be defined on either tables or views.

System and User Events Triggers

Advanced Data Management

-Triggers can be applied to System and User Events.

Examples of System Events are Database start-up and shutdown and Server error message events.

User Events are User logon and logoff.

CREATE TRIGGER register_shutdown

 ON DATABASE

 SHUTDOWN

 BEGIN

 ...

 DBMS_AQ.ENQUEUE(...);

 ...

 END;

DBMS_AQ is a package used by Oracle and provides an interface to the Oracle Streams Advanced

Queuing.

Syntax of a Trigger

Advanced Data Management

– A single trigger can be associated with multiple events. If we want for example, a trigger

to be executed for both the INSERT and UPDATE operations, we can define it as AFTER

INSERT, UPDATE.

– Most triggers are AFTER triggers (they are executed after an event occurs). However,

there are other types of trigger called BEFORE, INSTEAD OF.

– Syntax of a Trigger

CREATE TRIGGER <trigger_name> on <table | view>

AFTER | BEFORE | INSTEAD OF

INSERT | UPDATE | DELETE

AS

BEGIN

<trigger_code>

END

Manipulating Triggers

Advanced Data Management

- Drop a trigger
 DROP TRIGGER <name_of_trigger>;

- Disable/Enable a trigger

 ALTER TRIGGER <name_of_trigger> DISABLE/ENABLE;

- To check whether there are triggers in our database:

 select * from USER_TRIGGERS;

- To modify an existing trigger, we use the

 ALTER TRIGGER statement

Triggers vs. Constraints

Advanced Data Management

A trigger is a program unit that can be executed based on a DML operation or a DDL operation or a

DATABASE event like logon and logoff. With triggers you specify how to handle data (in inserts,

updates etc.).

Triggers are reactive: they undo the damage. Triggers are useful for database security.

A constraint is merely a rule that control the data that can be stored/allowed in database objects like

tables and views.

Constraints are proactive: They prevent unwanted actions from happening. Constraints are useful

for data consistency.

PL/SQL CURSORS

Advanced Data Management

PL/SQL Cursors

• Oracle creates a memory area, known as context area, for processing an SQL statement

• A cursor is a pointer to this context area

• The context area includes all the information required to process a statement

• Cursors allow you to fetch and process rows returned by a SELECT statement, one row at a time.

• Two types of Cursors: Implicit and Explicit

Advanced Data Management

PL/SQL Cursors Creation

• CURSOR WITHOUT PARAMETERS (SIMPLEST)

• CURSOR WITH PARAMETERS

• CURSOR WITH RETURN CLAUSE

Advanced Data Management

Cursors without Parameters

CURSOR cursor_name

IS

 SELECT_statement;

Example

CURSOR c1

IS

 SELECT course_number

 FROM courses_tbl

 WHERE course_name = name_in;

Advanced Data Management

Cursors with Parameters

CURSOR cursor_name (parameter_list)

IS

 SELECT_statement;

Example

CURSOR c2 (subject_id_in IN varchar2)

IS

 SELECT course_number

 FROM courses_tbl

 WHERE subject_id = subject_id_in;

Advanced Data Management

Cursors with RETURN Clause

CURSOR cursor_name

RETURN field%ROWTYPE

IS

 SELECT_statement;

Example

CURSOR c3

RETURN courses_tbl%ROWTYPE

IS

 SELECT *

 FROM courses_tbl

 WHERE subject = 'Mathematics';

Advanced Data Management

Implicit Cursors

• Implicit cursors are automatically created by Oracle whenever an SQL statement is

executed and ONLY if there is no explicit cursor already created for the statement.

• Programmers cannot control the implicit cursors and the information in it.

• Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement.

• In PL/SQL, the implicit cursor can be referred as the SQL cursor.

Advanced Data Management

Implicit Cursors

• The implicit cursor attributes are %FOUND, %ISOPEN %NOTFOUND, and %ROWCOUNT

• %FOUND: Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or

more rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns

FALSE.

• %NOTFOUND: The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE,

or DELETE statement affected no rows, or a SELECT INTO statement returned no rows.

Otherwise, it returns FALSE.

• %ISOPEN: Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor

automatically after executing its associated SQL statement.

• %ROWCOUNT: Returns the number of rows affected by an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT INTO statement.

Advanced Data Management

Explicit Cursors

• Explicit cursors are programmer-defined cursors for gaining more control over the context
area. An explicit cursor should be defined in the declaration section of the PL/SQL Block.

 CURSOR cursor_name IS select_statement;

• Four Steps:

1. DECLARING the cursor for initializing in the memory

eg. CURSOR c_customers IS

 SELECT id, name, address FROM customers;

2. OPENING the cursor for allocating memory

eg. OPEN c_customers;

3. FETCHING the cursor for retrieving data

eg. FETCH c_customers INTO c_id, c_name, c_addr;

4. CLOSING the cursor to release allocated memory

eg. CLOSE c_customers;
Advanced Data Management

SET SERVEROUTPUT ON

DECLARE

--DECLARE VARIABLES

v_product_id products.product_id%TYPE;

v_name products.name%TYPE;

v_price products.price%TYPE;

--DECLARE THE CURSOR

CURSOR cv_product_cursor IS

SELECT product_id, name, price

FROM products

ORDER BY product_id;

BEGIN

--OPEN THE CURSOR

OPEN cv_product_cursor;

LOOP

Advanced Data Management

--FETCH THE ROWS FROM THE CURSOR

FETCH cv_product_cursor

INTO v_product_id, v_name, v_price;

--EXIT THE LOOP WHEN THERE ARE NO MORE ROWS

EXIT WHEN cv_product_cursor%NOTFOUND;

--USE DBMS_OUTPUT.PUT_LINE() TO DISPLAY THE VARIABLES

DBMS_OUTPUT.PUT_LINE(

'v_product_id = ' ׀׀ v_product_id ׀׀ ', v_name = ' ׀׀ v_name ׀׀ ', v_price = ' ׀׀ v_price

);

END LOOP;

--CLOSE THE CURSOR

CLOSE cv_product_cursor;

END;

Advanced Data Management

Using Cursors with FOR Loops
The syntax for the CURSOR FOR LOOP in Oracle/PLSQL is:

FOR record_index in cursor_name

LOOP

 {...statements...}

END LOOP;

Parameters or Arguments

record_index

The index of the record.

cursor_name

The name of the cursor that you wish to fetch records from.

statements

The statements of code to execute each pass through the CURSOR FOR LOOP.

Advanced Data Management

Example
BEGIN

 FOR employee_rec IN (

 SELECT *

 FROM employees

 WHERE department_id = 10)

 LOOP

 DBMS_OUTPUT.put_line (

 employee_rec.last_name);

 END LOOP;

END;

--- ------

DECLARE

 CURSOR employees_in_10_cur

 IS

 SELECT *

 FROM employees

 WHERE department_id = 10;

BEGIN

 FOR employee_rec IN employees_in_10_cur

 LOOP

 DBMS_OUTPUT.put_line (employee_rec.last_name);

 END LOOP;

END;
Advanced Data Management

Cursor within a Cursor (Nested Cursors)
CREATE OR REPLACE PROCEDURE MULTIPLE_CURSORS_PROC is

 v_owner varchar2(40);

 v_table_name varchar2(40);

 v_column_name varchar2(100);

 /* First cursor */

 CURSOR get_tables IS

 SELECT DISTINCT tbl.owner, tbl.table_name

 FROM all_tables tbl WHERE tbl.owner = 'SYSTEM';

 /* Second cursor */

 CURSOR get_columns IS

 SELECT DISTINCT col.column_name

 FROM all_tab_columns col WHERE col.owner = v_owner

 AND col.table_name = v_table_name;

Advanced Data Management

Cursor within a Cursor (Nested Cursors)

BEGIN

 -- Open first cursor

 OPEN get_tables;

 LOOP

 FETCH get_tables INTO v_owner, v_table_name;

 -- Open second cursor

 OPEN get_columns;

 LOOP

 FETCH get_columns INTO v_column_name;

 END LOOP;

 CLOSE get_columns;

 END LOOP;

 CLOSE get_tables;

EXCEPTION

 WHEN OTHERS THEN

raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);

end MULTIPLE_CURSORS_PROC;

 Advanced Data Management

PL/SQL REF-CURSORS

Advanced Data Management

Ref Cursors

• The REF CURSOR is a data type in Oracle.

• Pointer to a Cursor, not the Cursor itself.

• A REF CURSOR is not updatable. The result set represented by the REF CURSOR is

read-only. You cannot update the database by using a REF CURSOR.

• You create and return a REF CURSOR inside a PL/SQL code block.

Advanced Data Management

Ref Cursors
• A ref cursor in Oracle PL/SQL is much like an ordinary PL/SQL cursor in that it acts as a pointer to the

result set of the cursor with which it is associated.

• A ref cursor can be assigned to different result sets whereas a cursor is always associated with

the same result set.

• The real purpose of ref cursors is to be able to share cursors and result sets between the user

and the Oracle server or between different subroutines.

Advanced Data Management

Ref Cursors

• Four Steps (as in the 'normal' cursors):

 1. DECLARE THE REF CURSOR

 2. OPEN THE REF CURSOR

 3. FETCH THE REF CURSOR

 4. CLOSE THE REF CURSOR

Advanced Data Management

Ref Cursors
There are two steps required to create a cursor variable. First define a ref cursor TYPE; then declare
cursor variable(s) of that type.

Define a REF Cursor TYPE:

 TYPE ref_type_name IS REF CURSOR

 [RETURN {cursor_name%ROWTYPE

 |ref_cursor_name%ROWTYPE

 |record_name%TYPE

 |record_type_name

 |table_name%ROWTYPE}];

The RETURN clause is optional, when included it causes the cursor variable to be strongly typed.

It is a good practice to use strongly typed cursor variable types - this ensures that columns returned by
a query will match the return type of the cursor.

Cursor_variable_declaration: ref_cursor_name ref_type_name;

Advanced Data Management

Ref Cursors Categories

1. Strong Ref Cursor

Ref Cursors which has a return type is classified as Strong Ref Cursor.

Example

Declare

TYPE empcurtyp IS REF CURSOR

RETURN emp%ROWTYPE;

…..

End;

--Here empcurtyp is a Strong Ref Cursor

Advanced Data Management

Ref Cursors Categories

2. Weak Ref Cursor

Ref Cursors which has no return type is classified as Weak Ref Cursor.

Example

Declare

TYPE empcurtyp IS REF CURSOR;

…..

End;

--Here empcurtyp is a Weak Ref Cursor

Advanced Data Management

Ref Cursors Categories

3. System Ref Cursor

This is a system defined Ref Cursor. This also considered weak. System Ref Cursor

does not need to be declared explicitly.

Example

Declare

empcurtyp SYS_REFCURSOR;

…..

End;

Advanced Data Management

EXCEPTIONS

Advanced Data Management

Exceptions

• A warning or error condition is called an exception.

• Exceptions can be internally defined (by the run-time system) OR user-defined.

• Examples of internally defined exceptions include division by zero and out of

memory.

Advanced Data Management

Exceptions

• You can define exceptions of your own in the declarative part of any PL/SQL

block, subprogram, or package.

• PL/SQL supports programmers to catch such conditions using the EXCEPTION

block in the program and an appropriate action is taken against the error

condition.

Advanced Data Management

Exceptions

• To handle raised exceptions, you write separate routines called exception handlers.

• When an error occurs, an exception is raised.

• In this case, normal execution stops and control transfers to the exception-handling
part of your PL/SQL block or subprogram.

• Internal exceptions are raised implicitly (automatically) by the run-time system.

• User-defined exceptions must be raised explicitly by RAISE statements, which
can also raise predefined exceptions.

Advanced Data Management

Exceptions
DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Advanced Data Management

Example
DECLARE

 c_id customers.id%type := 8;

 c_name customers.name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

Advanced Data Management

Raising Exceptions

• Exceptions are raised by the database server automatically whenever there is any internal
database error.

• Exceptions can be raised explicitly by the programmer by using the command RAISE

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END; Advanced Data Management

User-defined Exceptions

• PL/SQL allows you to define your own exceptions according to the need of your program.

• A user-defined exception must be declared and then raised explicitly, using either a RAISE

statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

• The syntax for declaring an exception is:

 DECLARE

 my-exception EXCEPTION;

Advanced Data Management

Example
DECLARE

 c_id customers.id%type := &cc_id;

 c_name customers.name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;
Advanced Data Management

Pre-defined Exceptions

• PL/SQL provides many pre-defined exceptions, which are executed when any database rule is

violated by a program.

• Examples
NO_DATA_FOUND: It is raised when a SELECT INTO statement returns no rows

LOGIN_DENIED: It is raised when s program attempts to log on to the database with an invalid

username or password

ROWTYPE_MISMATCH: It is raised when a cursor fetches value in a variable having incompatible

data type

ZERO_DIVIDE: It is raised when an attempt is made to divide a number by zero

Advanced Data Management

End of Booklet

	Slide 1
	Slide 2: Structured-Query Language (SQL)
	Slide 3: Structured-Query Language (SQL)
	Slide 4: Structured-Query Language (SQL)
	Slide 5: SQL Syntax
	Slide 6: SQL Syntax
	Slide 7: Exact Numeric Data Types
	Slide 8: Approximate Numeric Data Types
	Slide 9: Date and Time Data Types
	Slide 10: Character Strings Data Types
	Slide 11: Unicode Character Strings Data Type
	Slide 12: Binary Data Type
	Slide 13: Miscellaneous Data Types
	Slide 14: Naming Rules
	Slide 15: CREATE Table
	Slide 16: Example
	Slide 17: INSERT
	Slide 18: UPDATE
	Slide 19: DELETE
	Slide 20: DELETE
	Slide 21: SELECT COUNT(columnname) FROM tablename;
	Slide 22: SELECT COUNT(*) FROM tablename;
	Slide 23: SELECT COUNT(DISTINCT columnname) FROM tablename;
	Slide 24: SELECT count(*) FROM multiple tables
	Slide 25: SELECT MAX(columnname) FROM tablename;
	Slide 26: Behaviour of NULL values with MAX() and MIN()
	Slide 27: SELECT AVG(columnname) FROM tablename
	Slide 28: SELECT SUM(columnname) FROM tablename;
	Slide 29: GROUP BY Clause
	Slide 30: HAVING Clause
	Slide 31: Primary Keys
	Slide 32: Compound Keys
	Slide 33: How to create Primary Keys
	Slide 34: Or we can create the Primary Key like this
	Slide 35: How to create Compound Primary Keys
	Slide 36: Foreign Key
	Slide 37: DEFINITION OF CONSTRAINTS
	Slide 38: RDBMS Data Integrity
	Slide 39: What is a Constraint ?
	Slide 40: Constraints
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: CREATION OF CONSTRAINTS
	Slide 49: Examples of Constraints
	Slide 50: The PRIMARY KEY Constraint
	Slide 51: The FOREIGN KEY Constraint
	Slide 52: The FOREIGN KEY Constraint
	Slide 53: The FOREIGN KEY Constraint
	Slide 54: The FOREIGN KEY Constraint
	Slide 55: The NOT NULL Constraint
	Slide 56: The NOT NULL Constraint
	Slide 57: The DEFAULT Constraint
	Slide 58: The UNIQUE Constraint
	Slide 59: The UNIQUE Constraint
	Slide 60: The CHECK Constraint
	Slide 61: The CHECK Constraint
	Slide 62: The INDEX Constraint
	Slide 63: So what exactly is an Index?
	Slide 64: So what exactly is an Index?
	Slide 65: How to create an Index?
	Slide 66: THE SQL ALTER
	Slide 67: SQL ALTER TABLE
	Slide 68: Add a column using ALTER
	Slide 69: Drop a column using ALTER
	Slide 70: ALTER & CONSTRAINTS
	Slide 71: Add a NOT NULL Constraint to a column using ALTER
	Slide 72: Add a CHECK Constraint using ALTER
	Slide 73: Drop a Constraint using ALTER
	Slide 74: Foreign Key Constraints & ALTER
	Slide 75: Foreign Key Constraints & ALTER
	Slide 76: Foreign Key Constraints & ALTER
	Slide 77: Foreign Key Constraints & ALTER
	Slide 78: Drop Foreign Key Constraints using ALTER
	Slide 79: JOINS
	Slide 80: Definition of JOINS
	Slide 81: Types of SQL JOIN
	Slide 82: SQL INNER JOIN
	Slide 83: SQL INNER JOIN Syntax
	Slide 84: Example of SQL INNER JOIN
	Slide 85: Example of SQL INNER JOIN
	Slide 86: Example of SQL INNER JOIN
	Slide 87: Example of SQL INNER JOIN
	Slide 88: Example of SQL INNER JOIN
	Slide 89: Example of SQL INNER JOIN
	Slide 90: SQL LEFT JOIN
	Slide 91: SQL LEFT JOIN
	Slide 92: Example of SQL LEFT JOIN
	Slide 93: Example of SQL LEFT JOIN
	Slide 94: Example of SQL LEFT JOIN
	Slide 95: SQL RIGHT JOIN
	Slide 96: SQL RIGHT JOIN
	Slide 97: Example of SQL RIGHT JOIN
	Slide 98: Example of SQL RIGHT JOIN
	Slide 99: Example of SQL RIGHT JOIN
	Slide 100: SQL FULL JOIN
	Slide 101: Example of SQL FULL JOIN
	Slide 102: Example of SQL FULL JOIN
	Slide 103: Example of SQL FULL JOIN
	Slide 104: SQL SELF JOIN
	Slide 105: Example of SQL SELF JOIN
	Slide 106: Example of SQL SELF JOIN
	Slide 107: Example of SQL SELF JOIN
	Slide 108: Example of SQL SELF JOIN
	Slide 109: Example of SQL SELF JOIN
	Slide 110: Example of SQL SELF JOIN
	Slide 111: Example of SQL SELF JOIN
	Slide 112: SQL CARTESIAN JOIN
	Slide 113: Example of SQL CARTESIAN JOIN
	Slide 114: Example of SQL CARTESIAN JOIN
	Slide 115: Example of SQL CARTESIAN JOIN
	Slide 116: Introduction to PL/SQL
	Slide 117: PL/SQL
	Slide 118: PL/SQL
	Slide 119: PL/SQL Architecture
	Slide 120: PL/SQL Advantages
	Slide 121: PL/SQL Advantages
	Slide 122: PL/SQL Program Structure
	Slide 123: PL/SQL Program Structure
	Slide 124: PL/SQL Program Declarations Section
	Slide 125: PL/SQL Program Executable Section
	Slide 126: PL/SQL Program Exception Handling Section
	Slide 127: Fundamentals of PL/SQL
	Slide 128: Fundamentals of PL/SQL
	Slide 129: PL/SQL Variables
	Slide 130: PL/SQL Variables
	Slide 131: Scope of Variables PL/SQL
	Slide 132: Scope of Variables PL/SQL
	Slide 133: PL/SQL Constants
	Slide 134: PL/SQL Records
	Slide 135: PL/SQL Records
	Slide 136: PL/SQL Records
	Slide 137: PL/SQL Records
	Slide 138: Table-based Records
	Slide 139: User-defined Records
	Slide 140: PL/SQL Control Statements
	Slide 141: PL/SQL Control Statements
	Slide 142: PL/SQL Conditional Selection Statements
	Slide 143
	Slide 144: CASE Statement
	Slide 145: CASE Statement
	Slide 146: PL/SQL Loops
	Slide 147: Loops
	Slide 148: Basic LOOP Statement
	Slide 149: Basic LOOP Statement
	Slide 150: Basic LOOP Statement
	Slide 151: Basic LOOP Statement
	Slide 152: FOR Loop
	Slide 153: WHILE Loop
	Slide 154: Some questions...
	Slide 155: Modularization
	Slide 156: Modularization
	Slide 157: Procedures
	Slide 158: Procedures
	Slide 159: Stored Procedures
	Slide 160: Advantages of Stored Procedures
	Slide 161: Stored Procedures Creation
	Slide 162: Stored Procedure Creation at Schema Level
	Slide 163: Stored Procedure Creation inside a Package
	Slide 164: Stored Procedure Creation
	Slide 165: Stored Procedures Execution & Deletion
	Slide 166: General Format of PL/SQL Procedure:
	Slide 167: Passing Parameters
	Slide 168: Stored Procedures & Oracle Developer
	Slide 169: Stored Procedures & Oracle Developer
	Slide 170: Functions
	Slide 171: Functions
	Slide 172: Examples
	Slide 173: Function with OUT parameter
	Slide 174: Function with IN OUT parameter
	Slide 175: The RETURN Clause
	Slide 176: The RETURN Clause
	Slide 177: The RETURN Clause
	Slide 178: General Format of PL/SQL Function
	Slide 179: Association of Actual with Formal Parameters
	Slide 180: Calling a Function
	Slide 181: Calling a Function
	Slide 182: Functions and Oracle SQL Developer
	Slide 183: Functions vs. Stored Procedures
	Slide 184: Packages
	Slide 185: Why do we use Packages?
	Slide 186: Package Specification
	Slide 187: Package Specification
	Slide 188: Using the Package Elements
	Slide 189
	Slide 190: TRIGGERS
	Slide 191: Triggers
	Slide 192: Triggers
	Slide 193: Parts of a Trigger
	Slide 194: Row/Statement Triggers
	Slide 195: BEFORE/AFTER/INSTEAD OF Triggers
	Slide 196: System and User Events Triggers
	Slide 197: Syntax of a Trigger
	Slide 198: Manipulating Triggers
	Slide 199: Triggers vs. Constraints
	Slide 200: PL/SQL CURSORS
	Slide 201: PL/SQL Cursors
	Slide 202: PL/SQL Cursors Creation
	Slide 203: Cursors without Parameters
	Slide 204: Cursors with Parameters
	Slide 205: Cursors with RETURN Clause
	Slide 206: Implicit Cursors
	Slide 207: Implicit Cursors
	Slide 208: Explicit Cursors
	Slide 209
	Slide 210
	Slide 211: Using Cursors with FOR Loops
	Slide 212: Example
	Slide 213: Cursor within a Cursor (Nested Cursors)
	Slide 214: Cursor within a Cursor (Nested Cursors)
	Slide 215: PL/SQL REF-CURSORS
	Slide 216: Ref Cursors
	Slide 217: Ref Cursors
	Slide 218: Ref Cursors
	Slide 219: Ref Cursors
	Slide 220: Ref Cursors Categories
	Slide 221: Ref Cursors Categories
	Slide 222: Ref Cursors Categories
	Slide 223: EXCEPTIONS
	Slide 224: Exceptions
	Slide 225: Exceptions
	Slide 226: Exceptions
	Slide 227: Exceptions
	Slide 228: Example
	Slide 229: Raising Exceptions
	Slide 230: User-defined Exceptions
	Slide 231: Example
	Slide 232: Pre-defined Exceptions
	Slide 233: End of Booklet

