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ABSTRACT
Any experiment with climate models relies on a potentially large set of spatio-temporal boundary conditions.
These can represent both the initial state of the system and/or forcings driving the model output throughout
the experiment. These boundary conditions are typically fixed using available reconstructions in climate
modeling studies; however, in reality they are highly uncertain, that uncertainty is unquantified, and the
effect on the output of the experiment can be considerable. We develop efficient quantification of these
uncertainties that combines relevant data from multiple models and observations. Starting from the coex-
changeability model, we develop a coexchangeable process model to capture multiple correlated spatio-
temporal fields of variables. We demonstrate that further exchangeability judgments over the parameters
within this representation lead to a Bayes linear analogy of a hierarchical model. We use the framework to
provide a joint reconstruction of sea-surface temperature and sea-ice concentration boundary conditions
at the last glacial maximum (23–19 kya) and use it to force an ensemble of ice-sheet simulations using the
FAMOUS-Ice coupled atmosphere and ice-sheet model. We demonstrate that existing boundary conditions
typically used in these experiments are implausible given our uncertainties and demonstrate the impact of
using more plausible boundary conditions on ice-sheet simulation. Supplementary materials for this article
are available online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Numerical experiments are vital tools to climate science. Knowl-
edge of physical processes embedded into software can simulate
events that are otherwise impossible to observe at the required
spatial and temporal resolutions. Most climate simulators use
boundary conditions to represent the non-computed physical
processes on which the simulator relies. Generally, boundary
conditions are fixed using a reference run or runs from exist-
ing multi-model ensembles (MMEs) that explicitly model the
boundary condition’s physical process. For example, to run an
ice-sheet model over the last glacial maximum (LGM) requires
climate variables such as temperature, and precipitation (Gre-
goire, Payne, and Valdes 2012) that can be obtained using the
Paleoclimate Model Intercomparison Project (PMIP) ensemble
of simulator runs (Ivanovic et al. 2016). MMEs can be biased and
do not necessarily span the uncertainty of the physical process
(Salter et al. 2022).

If modeling boundary conditions is viewed as a statistical
reconstruction problem, there is a rich literature in statistics
that attempts to combine data from multiple models and his-
torical observations to infer spatio-temporal climate proper-
ties. Rougier, Goldstein, and House (2013) present a gener-
alized framework, therein termed the coexchangeable model,
where exchangeability judgments over an MME along with an
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assumption that each model in the ensemble has the same a
priori covariance with the field they aim to represent lead to a
simple model that can be used to estimate a true unobserved
process. Second order inference via Bayes linear methods (Gold-
stein and Wooff 2007) for this model ensures scalable recon-
structions for a spatio-temporal field, and the requirement for
only prior means and variances implies an easier prior modeling
task. The coexchangeable model has seen some interest in more
recent research, such as in Sansom, Stephenson, and Bracegirdle
(2021) where it is used to model emergent constraints for future
climate projections. Alternative to the methodology of Rougier,
Goldstein, and House (2013), a line of research stemming from
Chandler (2013) proposes a similar fully probabilistic model
with individual weightings of each simulator rather than via an
assumption of exchangeability. As noted in Rougier, Goldstein,
and House (2013), the model in Chandler (2013) is a special case
of the coexchangeable model. Other statistical reconstructions
of boundary conditions exist; however, they are either derived
from simulator data alone and are limited by the span of the
ensemble (e.g., Salter et al. 2022), or are reconstructed from
large and dense datasets (e.g., Liu and Guillas 2017; Zhang and
Cressie 2020) and so are inappropriate here given the relative
data sparsity at the LGM. There are a family of post-processing
methodologies in the climate sciences, therein termed offline
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data assimilation, that adjust model output with direct obser-
vations or proxy data based on ensemble methods (e.g., Steiger
et al. 2014). We show that these methodologies, as well, may be
subsumed by the coexchangeable model. Online data assimila-
tion techniques are not possible for large climate ensembles: the
simulators are run on large supercomputers, are highly bespoke,
and very limited access to the model architectures is given
outside of the modeling groups.

Joint reconstruction of two or more physically distinct fields
may, from a theoretical perspective, appear straightforward
within hierarchical Bayesian frameworks such as those proposed
by Chandler (2013). However, scalability becomes a much bigger
challenge. This is particularly so when the fields are highly
dependent, as many in climate are. In this study we jointly
model sea-surface temperature (SST) and sea-ice concentration
(SIC) to drive a coupled atmosphere and ice-sheet model, where
the dependence between the boundary conditions is critically
important. The need for scalable inference and generality makes
a coexchangeable approach desirable; though extensions are
required to incorporate the additional assumptions of condi-
tional exchangeability between the fields. Thus, we develop a
coexchangeable process model that offers a Bayes linear analogy
to the natural Bayesian hierarchical model for the problem.
From simple and natural exchangeability judgments, we develop
efficient, scalable inference for joint reconstruction.

This article proceeds as follows. Section 2 provides back-
ground and context to the applied modeling problem. Sec-
tion 3 reviews the existing statistical literature on Bayes linear
statistics and exchangeability analysis. Section 4 extends the
coexchangeable model for coupled processes, providing a Bayes
linear analogy to the Bayesian hierarchical model for which we
then present scalable inference via geometric updating. Section 5
uses the developed methodology to reconstruct SST and SIC.
Section 6 discusses the results of using the reconstructions of
SST and SIC to simulate ice sheet-atmosphere interactions at the
LGM, and Section 7 concludes. Code and data are provided as
part of an R package downloadable from github.com/astfalckl/
exanalysis.

2. Reconstructing Boundary Conditions of SST and
SIC

Modeling and understanding paleoclimate events is crucial in
understanding potential effects of future climate change: one
way to calibrate climate and ice-sheet behavior is to simulate the
past (Kageyama et al. 2017; Harrison et al. 2015). The last major
deglaciation (∼21–7 kya) is the most natural period to study,
given the relatively rich source of observations on the climate
and ice sheets compared to the more distant past. To begin to
study deglaciation, an ice sheet needs to be grown within the
model under the steady state boundary conditions. The ice-
sheet is grown by forcing an ice-sheet model with the relatively
stable conditions of the LGM (∼23–19 kya) until convergence.
Seasonal variation is known to play a significant role in this
process (Joughin, Alley, and Holland 2012), so the boundary
conditions contain the seasonal cycles. The character of the
resulting ice sheets are sensitive to these boundary conditions
and so it is crucial to use an accurate reconstruction, realistic

uncertainty quantification and a method for perturbing the
boundary conditions under uncertainty to force the ice sheet
model.

Existing reconstructions of LGM SST and SIC are predom-
inantly derived from either paleodata syntheses or via numer-
ical simulation. Data only reconstructions include CLIMAP
(CLIMAP Project 1981), GLAMAP (Sarnthein et al. 2003),
MARGO (Kucera et al. 2005), and more recently Paul et al.
(2020). As these global reconstructions are based solely on
proxy-based paleodata, they are subject to large measurement
error, biases in polar regions, incomplete spatial coverage, and
poor temporal resolution. Coupled simulations of the LGM are
useful to ensure spatio-temporal coverage and consistency of
SST and SIC, but these can also be very different from obser-
vations in critical regions for growing ice sheets (Salter et al.
2022). PMIP is the most notable experimental body that guide
protocols for coupled ocean-atmosphere models to simulate the
LGM climate (Kageyama et al. 2017, 2021). The PMIP commu-
nity has produced MMEs for different phases of the project run
with different generations of model and slight adjustments in
inputs. It is common practice to use a PMIP simulator output
to directly force ice sheet simulations (e.g., Gregoire et al. 2016).
One study to use both paleodata and simulators is Tierney et al.
(2020) who adjust a model with observations to provide SST
reconstruction, with uncertainty, based on a single simulator.
Differences in model physics typically induce more variability
than perturbations to the parameters of a single model. There-
fore, reconstructions based on a single model may be biased
and overconfident. Our methodology allows for the first joint
reconstruction of SST and SIC that coherently combines the
PMIP models (we use iterations PMIP3 and PMIP4) with avail-
able proxy data to deliver boundary conditions with uncertainty
quantification.

We use three sources of data to inform our reconstruc-
tions: PMIP simulations, SST proxy data, and maximum sea-
ice extents. As with Rougier, Goldstein, and House (2013) and
Sansom, Stephenson, and Bracegirdle (2021), we select a sin-
gle representative simulation from each modeling group that
contributed to the PMIP3 and PMIP4 MMEs in order to make
the assumption of prior exchangeability reasonable. We use the
MARGO SST proxy data compilation where sea-bed sediment
core samples were used to infer the true LGM SST, supplemented
with some more recent data from Benz et al. (2016). Note, many
of the SST measurements are far from any icesheets but can still
useful in constraining a global climate simulation. Finally, we use
the Southern Hemisphere maximum sea-ice extent as published
in Gersonde et al. (2005); Northern Hemisphere extents are only
available for specific regions (e.g., De Vernal et al. 2005; Xiao
et al. 2015), and so we use a simple estimate of the Northern
Hemisphere sea-ice extent provided by subject matter experts.
SST proxy data and maximum sea-ice extents are shown in
Figure 2 in Section 5 alongside the specification of the statistical
model.

3. Existing Statistical Methodology

SST and SIC are dependent quantities: warmer waters will sup-
port less sea-ice and vice-versa. The physics that govern the

github.com/astfalckl/exanalysis
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relationship between SST and SIC is represented by a series
of partial differential equations, the structure and parametriza-
tions of which change across the simulators and with reality.
For example, certain simulators are predisposed to supporting
more or less sea-ice at a given SST. The dependencies between
SST and SIC are naturally modeled as an emergent property
of the model and captured within a hierarchical framework
using conditional probability statements. However, in climate
modeling, specification of the probability distributions is not
obvious and computation for large climate models is prohibitive.
An alternative view treats expectation, rather than probability,
as the primitive quantity (De Finetti 1975); probabilities are then
the expectations of indicator functions for events. This motivates
second order approaches such as Bayes linear methods (Gold-
stein and Wooff 2007), where inference concerns expectations
and variances directly rather than as a by-product of probabilis-
tic inference. Model specification thus only concerns specifying
expectation and variance, rather than the full probability distri-
butions. Rougier, Goldstein, and House (2013) show the advan-
tages of second order specification for climate modeling and
further show that based on certain judgments of exchangeability,
efficient methods for inference of MMEs may be formed. Our
application requires extending the theory of Rougier, Goldstein,
and House (2013) to exchangeable processes, that is, second
order hierarchical models. First, we review the existing method-
ology: Section 3.1 provides a short introduction to Bayes linear
theory, Section 3.2 defines second order exchangeability, and
Section 3.3 presents the coexchangeable model of Rougier, Gold-
stein, and House (2013).

3.1. Bayes Linear Theory

Under the Bayes linear paradigm, beliefs on random quanti-
ties are described via expectations and variances and are then
adjusted by data. The belief specifications define an inner prod-
uct space in which the random quantities live; the inner product
space is analogous to a probability distribution in probabilistic
Bayesian analysis. Consider random quantity, X, with observa-
tions Xi, defined on the Hilbert space X endowed with inner
product 〈X, Y〉 = E[XᵀY]. Denote by D the collection of
observed data, D = (X1, . . . , Xm), as a concatenated vector of
the observations. In general, the Xi do not necessarily have the
same length or a-priori belief specifications and can represent
multiple sources of data that inform X. The random quantity of
interest, X, may be multivariate or univariate, in which case its
inner product is simplyE[XY]. Later, X will denote the unknown
spatio-temporal field of SST, and the Xi, the observed simulator
outputs over which we will assume exchangeability. We write
the adjusted expectation in terms of X and D as ED[X], that is,
the expectation of our beliefs X adjusted by data D. Adjusted
expectation is defined as the element in the subspace D =
span[1, D] that minimizes ‖X − ED[X]‖ and has solution

ED[X] = E[X] + cov[X, D]var[D]†(D − E[D]) (1)

where var[D]† is any pseudo-inverse of var[D], most com-
monly the Moore-Penrose inverse. Equation (1) describes
the orthogonal projection of each element of our beliefs, X,
onto D. The adjusted variance, varD[X], is the outer product

E [(X − ED[X]) (X − ED[X])ᵀ] given ED[X] in (1) and is

varD[X] = var[X] − cov[X, D]var[D]†cov[D, X]. (2)

Derivations of (1) and (2) are found in secs. 12.4–12.5 of Gold-
stein and Wooff (2007).

3.2. Bayes Linear Analysis of Exchangeable Data

Exchangeability for a sequence of random quantities within
a probabilistic Bayesian analysis represents a simple a priori
symmetry judgment that implies that any finite sub-collection
of quantities within the sequence have the same distribution.
Second order exchangeability for such a sequence is an analogue
for judgments when expectation is primitive, and implies that
any finite sub-collection of quantities share the same joint inner
product space, that is prior expectation and variance. If data, D,
are second order exchangeable we may, according to the second
order representation theorem (Goldstein 1986), write

Xi = M + Ri (3)

for a common mean M and uncorrelated residuals Ri. Second
order exchangeability implies that all observed Xi are of the same
length, cov[Xi, Xi′ ] = cov[X, X′] and var[Xi] = var[X], ∀i, i′.
For second order exchangeable sequences there is predictive
sufficiency for updating beliefs on X by only updating M by the
data D. Geometrically, this means that given M, D and X are
orthogonal and thus uncorrelated; these results are established
in Goldstein (1986). Further, the sample mean, X̄ = 1

m
∑m

i=1 Xi,
is Bayes linear sufficient for updating beliefs on M, and con-
sequently on X. Second order exchangeability affords two main
advantages: first, belief specifications are simplified; and second,
sufficiency of the sample mean makes inference independent of
the number of samples m.

3.3. Exchangeability Analysis for Multi-Model Ensembles

Rougier, Goldstein, and House (2013) leverage second order
exchangeability to describe a Bayes linear approach for mod-
eling MME’s. In what follows, we explicitly define multivariate
quantities, represented by the bold font. Let X := {X1, . . . , Xm}
be a collection of q-dimensional outputs from the m simulators
that form the MME; X∗, the true unobserved process that the
simulators aim to model; and ZX, the noisy and incomplete
observation of X∗. The model requires only two assumptions:
first, that the Xi are second order exchangeable and, second,
that the Xi are coexchangeable with the truth X∗, implying
cov[X∗, Xi] = �, ∀i. As in (3), exchangeability withinX implies

Xi = MX + Ri
X, i = 1, . . . , m, (4)

where MX is a shared mean term, the Ri
X are the zero-mean,

uncorrelated residuals of each simulator with common vari-
ance, and the MX and Ri

X are uncorrelated. Coexchangeability
between X∗ and X implies sufficiency of MX for X∗. This allows
us to write

X∗ = AMX + UX (5)



4 L. ASTFALCK ET AL.

Figure 1. Graphical representation of the coexchangeable and coexchangeable
process models. Boxes represent observed quantities, dashed circles represent
unobserved quantities over which we make prior belief specifications, and solid
circles represent unobserved quantities for which we calculate updated beliefs.
Analogous to conditional independence in probabilistic models, arrows may be
used to identify Bayes linear sufficiency between quantities. For simplicity, residual
terms are omitted.

where A is a known matrix, and UX represents the ensemble
discrepancy that is uncorrelated withMX and theRi

X. The data,
ZX are modeled as

ZX = HXX∗ + WX (6)

for measurement error WX, and known incidence matrix HX.
The statistical model defined by (4)–(6) will hereafter by referred
to as the coexchangeable model; a graphical representation is
provided in Figure 1(a). Inference for this model makes use of
Bayes linear sufficiency of the ensemble mean, X̄ = 1

m
∑m

i=1 Xi,
for updating by X and is therefore very efficient. Updated
beliefs on X∗ is done in two stages: first the update of our
beliefs by the ensemble, and second by the data; the inferen-
tial procedure is outlined in the supplementary material. Cli-
mate post-processing routines, as in Steiger et al. (2014), are
subsumed by the coexchangeable model, and simply describe
(6) with beliefs E[X∗] = X̄ and var[X∗] = P. Calcula-
tions that rely on ensemble methods approximate P by the
empirical covariance matrix of the ensemble, or some lin-
ear transformation thereof (see definitions in Whitaker and
Hamill 2002). Our contributions, that build on the coex-
changeable model, may also be considered as similar develop-
ments to such post-processing routines popular in the climate
sciences.

4. The Coexchangeable Process Model

4.1. Exchangeable Processes

Consider each simulator as producing output pairs of q-
dimensional fields (Xi, Yi) with the corresponding fields in
reality denoted (X∗, Y∗), for which we have partial observa-
tions ZX and ZY, made with some error. In what follows we
define SST by X and SIC by Y. Changes in SST and SIC are
driven by complex physical relationships. We capture struc-
tural dependencies between random quantities (X, Y), by first
only imposing the coexchangeable model for Xi, X∗, and then
considering exchangeability judgments over the processes Yi,
given Xi, and coexchangeability of Y∗, given X∗. Whilst it is
enticing to consider the coexchangeable model over both fields
simultaneously, it is deficient here in two ways. First, due to
the dependence of Yi on Xi, the assumption of second order

exchangeability between the Yi is violated. Second, the natural
way to construct the model is to define the process of Yi given Xi

parameterized by some β i as in a hierarchical model. Inference
on the β i is of scientific interest; however, the coexchangeable
model does not allow for this. The model sophistication required
to handle the hierarchical structure requires nuanced judgments
of conditional second order exchangeability. In this section, we
simply state the exchangeable process model, and defer detailed
discussion of the conditional exchangeability judgments to
Section 4.2.

For any single simulator we model E[Yi] = M(Xi; β i) as
a process of Xi parameterized by some β i, specific to the ith
simulator. The mean function M(Xi; β i) may represent any
relationship between Xi and β i and, to infer β i from Yi, we need
only specify a joint inner product space in which they reside.
We set M(Xi; β i) = φ(Xi)β i where φ(·) maps Xi to some
specified family of basis functions. In our application, we use a
monotonic decreasing spline basis for φ(·) to reflect the property
that warmer SSTs will tend to lead to less SICs. We may then
write

Yi = φ(Xi)β i + Ri
Y (7)

where Ri
Y is some associated residual term. A simple example

to consider is where Xi and Yi represent temporal observations
at a single location, φ(Xi) = Xi and β i is a scalar. This simply
models Xi and Yi as scalar multiples of each other, where the
multiplier is simulation dependent. Such examples are common
when modeling emergent constraints in climate modeling. Note,
the choice to model M(Xi, β i) linear in β i is not required by the
theory but it allows for natural specification of the inner product
space and leads to sufficiency arguments, discussed below, that
aid computation. To complete the analogy with a Bayesian hier-
archical model, we impose second order exchangeability over
β1, β2, . . . so that

β i = Mβ + Ri
β , (8)

with expectation E[β i] = Mβ and covariance cov[β i, β i′ ] =
var[Mβ ] + 1{i=i′}var[Ri

β ].
Conditional exchangeability does not lead to sufficiency of

the sample mean and so we must calculate the belief updates in
the much larger joint inner product space. Define �i := φ(Xi);
equations (7) and (8) imply that the joint space of the Yi and the
β i can be formed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

...
Ym

β1

...
βm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

�1 · · · 0q×k
...

. . .
...

0q×k · · · �m

0qm×k

0km×km Jm×1 ⊗ Ik

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β1

...
βm
Mβ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
Y

...
Rm

Y
R1

β
...

Rm
β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where 0a×b is a a × b zero matrix, Ja×b is a a × b matrix of ones,
and Ia is the a × a identity matrix.

Calculating the belief updates using (9) is not immediately
obvious as the random quantities β i appear on both the left-
hand side as data and the right-hand side as unknown parame-
ters. Noting that (8) is equivalently restated as 0 = Mβ +Ri

β −
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β i, and using the re-parameterization of Hodges (1998), we can
re-express (9) as

⎡
⎢⎢⎣

Y1

...
Ym

0km×1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

�1 · · · 0q×k
...

. . .
...

0q×k · · · �m

0qm×k

−Ikm Jm×1 ⊗ Ik

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β1

...
βm
Mβ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
Y

...
Rm

Y
R1

β
...

Rm
β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

with the familiar linear canonical form Y = XB + E. As we con-
sider the joint representation, expectation is taken jointly over
the Yi and β i. The adjusted expectation, EY[B], and adjusted
variance, varY[B], are calculated via (1) and (2); the joint belief
specifications and specific updating equations are provided in
the supplementary material. We note that the specification of (9)
differs from the standard approach to modeling exchangeable
processes in Bayes linear statistics where inference only concerns
Mβ by, in effect, substituting (8) into (7) (see Goldstein and
Wooff 1998). By jointly modeling the β i and Mβ we provide
a closer analogy to Bayesian hierarchical models.

As we are required to update our beliefs in the joint inner
product space, computation of EY[B] and varY[B] can be diffi-
cult. These calculations require an order O(m3(q + k)3) matrix
inversion of var[Y], where m is the number of simulations in
the MME, q is the dimension of the climate simulation, and
k is the dimension of the β i. Theorem 4.1 shows that a Bayes
linear sufficiency argument can be made that permits a smaller
computational order of O(8k3m3) for k < q, thus enabling
efficient inference. Theorem 4.1 says, in effect, that the beliefs on
B may be equivalently updated by the projection of the Yi onto
the k-dimensional column space of �i. For climate models, q is
generally very large. For many basis designs k 
 q, and when
groups, i, index MIP simulations, m is generally small.

Theorem 4.1. Let β̂ = (β̂
1
, . . . , β̂

m
) with β̂

i = (�
ᵀ
i �i)†�

ᵀ
i Yi.

Then β̂ is Bayes linear sufficient for Y for adjusting B if the
column space of projection matrix Pi = �i(�

ᵀ
i �i)†�ᵀ

i , C(Pi),
is invariant over i, that is, C(Pi) = C, ∀i.

Proof. Proof available in the supplementary material.

Matrix �i being of full rank is sufficient, but not necessary,
in satisfying the condition C(Pi) = C, ∀i in Theorem 4.1, and
most sensible basis designs will ensure this. Assuming C(Pi) =
C, ∀i, and appealing to the sufficiency of β̂ for Y for adjusting B,
we write the joint specification of the exchangeability judgments
made in (10) as

⎡
⎢⎢⎢⎢⎣

β̂
1

...
β̂

m

0km×1

⎤
⎥⎥⎥⎥⎦ =

[
Ikm 0km×k
−Ikm Jm×1 ⊗ Ik

]
⎡
⎢⎢⎢⎣

β1

...
βm

Mβ

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
β̂

...
Rm

β̂

R1
β

...
Rm

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

whereRi
β̂

= (�
ᵀ
i �i)†�ᵀ

i Ri
Y. Calculation ofE

β̂
[B] and var

β̂
[B]

follows (1) and (2); the specific equations are given in the sup-
plementary material. We also provide partial updating equations
for E

β̂
[Mβ ] and var

β̂
[Mβ ] which are calculated with compu-

tational order O(k3m3) and may be used in equations (S4) and
(S5) that update the full coexchangeable process model.

4.2. Repeated Observations of a Process

Assume, within each simulator output i, we observe a sequence
(Xi

1, Yi
1), (Xi

2, Yi
2), . . . of observation/covariate pairings; here,

each (Xi
t , Yi

t) is some p-dimensional sub-level process contained
in (Xi, Yi) and the β i are invariant to the dimension indexed
by t. In the simple example provided above, each (Xi

t , Yi
t) are

pairings of scalar observations, and so p = 1, and β i is invariant
in time. Similarly, for our application, each t indexes time, but
the Xi

t and Yi
t are spatial observations within the spatio-temporal

Xi and Yi; though we could instead index space, both space
and time, or some other feature of the process. The exchange-
able process model implicitly requires an assumption of con-
ditional exchangeability in (7), the second order equivalent of
the exchangeability judgments used in Bayesian regression (for
discussion see Williamson and Sansom 2019). Specifically, con-
ditional second order exchangeability implies that the Yi

1, Yi
2, . . .

are second order exchangeable given some Xi
t that is constant for

all t. We may thus specify a mean process, E[Yi
t] = M(Xi

t ; β i)
for some known covariate Xi

t and unknown parameter β i; above,
we assume the mean process to be E[Yi

t] = φ(Xi
t)β

i. According
to the second order representation theorem,

Yi
t = φ(Xi

t)β
i + Ri

Yt (12)

where cov[Yi
t , Yi

t′ ] = cov[M(Xi
t ; β i),M(Xi

t′ ; β
i)] + 1{t=t′}

var[Ri
Yt

] and we arrive at (7) by building the joint representa-
tion, that is, stacking the instances of t. In can be intuitive to
think of the full simulator outputs (Xi, Yi) as matrices with the
variant and invariant dimensions (here, space and time) indexed
across the rows and columns, respectively. The mathematics in
Section 4.1 simply then require Xi and Yi to be substituted by
their vectorized equivalents, vec(Xi) and vec(Yi).

4.3. Reality as a Coexchangeable Process

We now show how judgments of coexchangeability may be
made to incorporate (10) or (11) into the coexchangeable model.
Define the true process of Yi that the simulators attempt to
resolve as Y∗. An assumption coexchangeability of Y∗ and Yi

given fixed Xi = X ∀i, and hence �i = � ∀i, is equivalent
to assuming coexchangeability of Y∗ and the β i. Bayes linear
sufficiency of Mβ for the Yi for adjusting Y∗ follows. We write
a model for Y∗ such that

Y∗ = AYMβ + UY, (13)

where UY is a model-mismatch term uncorrelated with the Yi

and the assumption of coexchangeability permits AY to be any
matrix of suitable dimensions. The choice of AY = φ(X∗)
is obvious in our context but different choices are permissible
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should they make sense to the application. Finally, the data, ZY
are modeled as

ZY = HYY∗ + WY, (14)

for measurement error WY, and known incidence matrix HY.
Similar to Rougier, Goldstein, and House (2013), we assume

sufficiency of Y∗ for ZY, allowing us to update beliefs on Y∗ in
two stages. The assumption of sufficiency of Y∗ for ZY is akin to
an assumption of conditional independence between ZY and the
Yi in a probabilistic analysis. The two-stage update of beliefs on
Y∗ may thus be equivalently thought of as either the joint update
by the Yi and ZY or as sequential updates by the Yi and then
ZY. As with the coexchangeable model in Section 3.3, we show
an graphical representation of coexchangeable process model in
Figure 1(b); the equations for the two-stage belief update are
provided in the supplementary material.

5. Joint Reconstruction of Paleo Sea-Surface
Temperature and Sea-Ice with PMIP3 and PMIP4

5.1. Paleodata

Geological, ecological and geochemical measurements of the
LGM have large associated uncertainties, and these uncertainties
are further compounded by relating the measured processes
into proxies for SST and SIC. We use judgments from subject
matter experts to account for sampling bias and the errors in
the proxy-data, which are considered to be systematic in space.
In some cases we directly incorporate these judgments into the
belief structure of the model, namely, expectations, variances,
and covariances. In other cases, similar to Rougier et al. (2022),
we use “pseudo-observations” to reflect subject matter experts’
judgments in sparsely observed areas.

SST data, ZX, uses proxy measurements obtained from sea-
bed sediment core samples recorded either as annual or summer
means. The measurements are shown in Figure 2; annual and
summer means are depicted with points and triangles, respec-
tively. There is very likely some strong observation bias in the

foraminifera-based proxy measurements from the Arctic and
Nordic seas, approximately north of 62◦ N. In this region, very
cold water and full sea-ice coverage are common; both inhos-
pitable conditions for most foraminifera species. The nonexis-
tence of foraminifera in ocean sediments are rarely reported,
since the absence of foraminifera leaves little to be analyzed in
ecological or geochemical studies. Thus, observations may be
biased toward the warm climate events naturally present within
the inter-decadal variability, when foraminifera are found. We
account for this through the specification of the measurement
error term in (6), WX. Define BN as a set of indices that index
observations from the Nordic Seas in ZX. We set E[WX]b = 2
andE[WX]b∗ = 0 for b ∈ BN and b∗ /∈ BN. As the bias originates
from a systematic reporting error we believe the measurement
errors to be correlated. We partition var[WX] = VD(I+VB)VD
and set VD as the diagonal matrix of the reported standard
deviations in the MARGO dataset, and VB[b,b′] = 1 ∀b, b′ ∈ BN
where b 
= b′, and 0 otherwise. This represents the weakest
possible belief specification as it makes the measurement error
in the Nordic seas perfectly correlated, in essence reducing
the information into a single observation. Without accounting
for the bias in these observations, the Nordic Seas would be
too warm to support sea-ice, which is known from geological
records not to be the case. The specification of E[WX]b = 2
comes from subject matter experts; even still, due to the imposed
correlation structure the analysis is not sensitive to this specifi-
cation. Finally, we set incidence matrix in (6), HX = HT

X ⊗ HS
X,

where HT
X calculates either the annual or summer means of X∗

as necessary, and HS
X spatially interpolates these averages from

simulator’s spatial grid to the data locations.
Point-wise proxy measurements of SIC are difficult to inter-

pret and unreliable. More robust are estimates of maximum
sea-ice extent. The Northern and Southern extents used for ZY
are shown in Figure 2 by the red dashed lines. ZY is a 4145-
dimensional vector, that is, the same spatial resolution as the
numerical models, that records a 1 at spatial locations within the
extent boundaries, and a 0 outside. Incidence matrix, HY in (14)
is a p × q matrix that collates, from Y∗, the February SIC from

Figure 2. Proxy-based measurements of LGM SST and maximum sea-ice extents. Annual and summer mean SST’s are represented by points and triangles, respectively.
Sea-ice extents are represented by a red dashed line. The Southern sea-ice extent is as reported in Gersonde et al. (2005) and the Northern sea-ice extent is provided by
coauthors.
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the Northern hemisphere and August SIC from the Southern
hemisphere. We specify measurement error, WY, to be spatially
correlated and certain of SIC estimates in the poles, where we
are confident that there is full sea-ice coverage, and mid-latitude
and equatorial regions, where we are confident there is zero
sea-ice. We set var[WY] = Kcor[WY]K where K is a diagonal
matrix that represents our marginal uncertainty and cor[WY]
is spatially correlated error; descriptions of K and cor[WY] are
given in the supplementary material.

5.2. Fitting the Coexchangeable Process Model

To fit the coexchangeable process model we first model SST
via the coexchangeable model described in Section 3.3 and the
process of SIC given SST is modeled using the methodology
developed in Section 4. As described above, we build a MME
by selecting a single representative simulation from each of
the PMIP3 and PMIP4 modeling groups, with the exception
of the HadCM3 model simulations where we make use of all
three available PMIP4 simulations that use different ice sheet
boundary conditions. The m = 13 models selected are

S = {CNRM-3, IPSL-3, MIROC-3, MPI-3,

CCSM4-3, GISS-3, MRI-3, AWI-4,

MIROC-4, MPI-4, HadCM3-PMIP,

HadCM3-Glac1D, HadCM3-Ice6G}.

(15)

The assumption of coexchangeability is a prior judgment, and
at the time of the analysis each of these models was deemed
coexchangeable by the project’s SMEs. Each ensemble member
was projected onto the FAMOUS ocean grid with 4145 spatial
locations, and we use the 12 monthly means of SST and SIC.

5.2.1. Sea-Surface Temperature
Following notation in Section 3.3, define the ensemble SSTs as
X = {X1, . . . , Xm}, and assume second order exchangeability
within the ensemble. This leads to the representation in (4), for
which we require prior specification of var[MX] and var[Ri

X].
Coexchangeabilty of Xi and X∗ leads to (5), for which we require
prior specification of model mismatch terms E[UX], var[UX]
and incidence matrix A. We specify var[RX] = α2var[MX]
so that var[X] = (1 + α2)var[MX] and, following Rougier,
Goldstein, and House (2013), set E[UX] = 0 and A = I.

For most climate fields, including SST, we can exploit spatio-
temporal structure so that computation of adjusted beliefs is
scalable. The most obvious way to do this is to assume sep-
arability through space and time so that var[X] and var[X∗],
and hence var[UX], have a Kronecker structure. For example,
var[X] = var[XT]⊗var[XS] where T denotes time and S denotes
space. If we similarly partition var[UX] = var[UXT] ⊗ var[UXS ]
and equate either var[XT] = var[UXT] or var[XS] = var[UXS ]
computation of our adjusted beliefs is efficient. Note that this
assumption is weaker than the application in Rougier, Goldstein,
and House (2013) where it is assumed that κ2var[X] = var[U].
Here, we set var[XT] = var[UXT] = Jn×n as our subject matter
experts believe that discrepancies between the Xi and reality are
predominantly spatial and constant in time.

We set var[XS] as the positive semidefinite matrix that mini-
mizes the distance between var[X] and the empirical covariance

matrix of X, SX, under the Frobenius norm. This specification
follows similar arguments to Rougier, Goldstein, and House
(2013) where var[X] = SX, but preserves Kronecker structure in
var[X] to allow for efficient computation. Details of this calcu-
lation are in the supplementary material. Elements of var[UXS]
are defined via the C4-Wendland covariance function such that

var[UXS][s,s′] = κ2
(

1 + τ
d(s, s′)

c
+ τ 2 − 1

3
d(s, s′)2

c2

)
(

1 − d(s, s′)
c

)τ

+
(16)

where τ ≥ 6, c ∈ (0, π ], (a)+ = max(0, a), and d(i, j)
is the geodesic distance between locations i and j. The C4-
Wendland covariance function is commonly chosen so as to
define a smooth process on the sphere; (see, e.g., Astfalck et al.
2019). Parameters are specified as κ = 1.61, c = 0.92, and τ = 6;
these values are selected to represent the subject matter experts’
beliefs as to the magnitude and correlation lengths of UX. A
sensitivity analysis is provided in the supplementary material to
highlight how these judgments influence inference.

The two-stage Bayes linear update follows Rougier, Gold-
stein, and House (2013). As with Rougier, Goldstein, and House
(2013), we assume the first update EX̄[X∗] is well approx-
imated by EX̄[X∗] ≈ X̄ and we calculate varX̄[X∗] =(

α2

m+α2

)
var[MX]+var[UX] so varX̄[X∗] → var[U] as m → ∞.

Here, we choose α2 = 1 and have m = 13 and so do not assume
varX̄[X∗] ≈ var[U]. From specifications var[UXT] = var[XT]
and var[X] = 2var[MX], varX̄[X∗] has Kronecker structure so
that varX̄[X∗] = varX̄[X∗

T] ⊗ varX̄[X∗
S], where varX̄[X∗

T] = Jn×n
and varX̄[X∗

S] = var[XS]
2(m+1)

+ var[UXS ]. The above specifications
lead to a prior predictive for X∗ that is warmer than our true
beliefs at the poles where we are certain there was full sea ice
coverage and so the SST must be −1.92◦C. This is problematic
due to the data sparsity in the poles, and so we correct our prior
by adding 10 equally longitudinally spaced pseudo-observations
at 80◦N and 80◦S, each of −1.92◦C. Figure 3(a) and (b) plot
EX̄[X∗] and marginal standard deviation of varX̄[X∗], respec-
tively, for January.

The second update is calculated by

EX̄,ZX [X∗] = X̄ + varX̄[X∗]Hᵀ
XvarX̄[ZX]−1

(ZX − HXX̄ − E[WX]), and (17)

varX̄,ZX [X∗] = Jn×n ⊗
(

varX̄[X∗
S] − varX̄[X∗

S]
(
HS

X
)ᵀ

varX̄[ZX]−1HS
XvarX̄[X∗

S]
)

, (18)

where varX̄[ZX] = HXvarX̄[X∗]Hᵀ
X + var[WX]. Figure 3(c) and

(d) show these updates, also for January, respectively. Figure 3(e)
and (f) give indication of what information is gained from the
data: Figure 3(e) shows the difference the ensemble mean and
EX̄,ZX [X∗]; Figure 3(f) shows the empirical standard deviation of
the ensemble, which when compared to Figure 3(d) is shown to
be more uncertain. Regions of cooling are apparent westward of
large continental masses, that is on the North American Pacific
Coast, or the African Atlantic Coast. This is indicative of models
not capturing up-welling phenomena, and is a pattern previ-
ously observed in the error between models and pre-industrial



8 L. ASTFALCK ET AL.

Figure 3. Adjusted beliefs of January SST: (a) expectation of SST adjusted by X̄, equal to the ensemble mean; (b) marginal standard deviation of SST adjusted by X̄; (c)
expectation of SST adjusted by X̄ and ZX ; (d) marginal standard deviation of SST adjusted by X̄ and ZX ; (e) contribution of the data to our expected beliefs of SSTEX̄,ZX

[X∗]−X̄;
and (f ), marginal standard deviation of the ensemble. All plots are shown in degrees Celsius.

simulations (Eyring et al. 2019), as well as the cooling in the
Southern Ocean, and warming the Indian and Pacific oceans.
Larger uncertainty is seen in the Pacific where measurements
are sparse.

5.2.2. Sea-Ice Concentration Given Sea-Surface Temperature
Following notation in Section 4 we now consider the process of
SIC given SST. Define the jointly-observed ensemble of SST and
SIC as (X,Y) = {(X1, Y1), . . . , (Xm, Ym)} where each Yi is a
spatio-temporal vector of SIC that we model dependent on SST,
Xi. The Yi comprise 12 (i.e., monthly) 4145-dimensional condi-
tionally second order exchangeable spatial processes, Yi

t , where
i indexes the ensemble member and t indexes time. We assume
E[Yi

t] = φ(Xi
t)β

i which leads to the representation in (7),
for which we require specifications of φ(·), E[β i], var[β i], and
var[Ri

Yt
]. We assume the β i to be second order exchangeable

which leads to the representation in (8) that requires spec-
ification of E[Mβ ], var[Mβ ] and var[Rβ ]. Together, these
exchangeability judgments lead to the representation for the Yi

in (9), and equivalently (10).
For modeling SIC given SST we require spatial variation in

the physics of the process. For example, the relationship between
SIC and SST is different in the Nordic seas where sea-ice is sup-
ported at warmer SSTs than other locations. To account for this,
we specify φ(Xi

t) = 	(Xi
t)�

i where 	(Yi
t) models the behavior

of SIC and SST at individual locations using spline bases, and
�i is a fixed-rank spatial basis of the spline coefficients. Note
that we can model the spline coefficients individually in space,
in which case φ(Xi

t) = 	(Xi
t), but as the size of β i then

scales with the spatial resolution; this is not feasible for climate
models. Here we specify 	(Xi

t) with I-spline bases, a basis family
commonly used for monotone functions (Ramsay 1988). To ease
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computation, we project the spatial basis �i onto a principal
component design calculated using a projection of the Yi onto
the column space of the 	(Xi), 
̂i. Approximating the spatial
coefficients using principal components restricts inference for
the β i and Mβ to linear combinations of 
̂i; we argue this is
appropriate for modeling the mean MME process. We use a
more flexible parametrization in the model discrepancy below
so that inference on Y∗ given the SIC data is not restricted to
linear combinations of the principal component design. Full
specification of 	(Xi

t) and the �i are in the supplementary
material. All �i = φ(Xi) are full rank and so the conditions
of Theorem 4.1 are met and β̂ = (β̂

1
, . . . , β̂

m
) is sufficient

for (X,Y) for updating B = (β1, . . . , βm,Mβ). We specify
var[Ri

Yt
] as a heteroscdastic error process; smaller variance is

specified for very cold SSTs, where we are confident there is
sea-ice, and warm SSTs, where we are confident there is no
sea-ice, and larger variance is specified for SSTs approximately
between −1◦C and 3◦C where sea-ice behavior is variable. As
above we assume E[Mβ ] is well approximated by the empirical
mean of the MME members so that E[Mβ ] = 1

m
∑m

i=1 β̂
i
;

further, similar to Rougier, Goldstein, and House (2013), we
set var[β i] = λ where λ is a diagonal matrix of the eigen-
values calculated from the principal component decomposition
described above. As before we set var[Rβ ] = var[Mβ ] and so
var[Rβ ] = var[Mβ ] = λ/2.

Adjusted beliefs E
β̂
[B] and var

β̂
[B] are calculated as in the

supplementary material. As mentioned in Section 4.1 an advan-
tage of specifying our model jointly over the β i and Mβ is that
we obtain inference for each β i (as opposed to only Mβ as in
Goldstein and Wooff 1998). We look at the individual fits in
Figure 4 where we plot, at four locations, the fit ensemble mem-
bers prior to the coexchangeable adjustment. Location A shows

a point in the Arctic where the models largely agree. Location
B shows a region that occasionally sees small concentrations of
sea-ice in the models but is predominantly too warm to support
full sea-ice coverage. Location C shows three MME members
whose relationship of SIC given SST disagree with the rest of
the ensemble. Finally, location D shows sea-ice behavior at the
Antarctic sea-ice edge. Given the SSTs that are observed, the
differing physics predominantly lead to differences in Winter
sea-ice.

Coexchangeability of Y∗ and β i leads to (13) for which
specification of A(X∗), E[UY] and var[UY] is required. We
set A(X∗) = φ(X∗) and model discrepancy so that UY =
	(X∗)U
, and thus E[UY] = 	(X∗)E[U
] and var[UY] =
	(X∗)var[U
]	(X∗)ᵀ. The matrix U
 represents the discrep-
ancy of the spatial spline coefficients for the reality model.
Should our MME contain models with high spatial resolution
we could specify U
 as a lower-rank process (e.g., with fixed-
rank methods such as Cressie and Johannesson 2008); we do not
find the need to do so here. We set E[U
] = 0 and var[U
] =
Il×l⊗var[UYS] where l is the number of spline coefficients at each
location and var[UYS] is calculated by the C4-Wendland func-
tion in (16) with parameters κ = 0.3, c = 4, and τ = 6; again,
we include a sensitivity analysis in the supplementary material
to examine the sensitivity of our inference to differing parame-
terizations. The first update E

β̂
[Y∗] and var

β̂
[Y∗] is calculated

given X∗ usingE
β̂
[Mβ ] and var

β̂
[Mβ ] as previously calculated.

The second update E
β̂ ,ZY

[Y∗] and var
β̂ ,ZY

[Y∗] are calculated
given X∗ as in (S6) and (S7). Expectations and marginal standard
deviations of both updates, calculated with X∗ = EX̄,ZX [X∗],
are shown in Figure 5. The expected SSTs do not produce
adequate sea-ice when only considering learnt relations from
the MME (Figure 5(a)) and marginal standard deviation of SIC

Figure 4. Spline fits, parameterized by β i , of SIC given SST to each ensemble member prior to the coexchangeable adjustment. Shaded regions denote ±2 standard
deviations.
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Figure 5. Adjusted beliefs of August SIC given expected SST, X∗ = EX̄,ZX
[X∗]: (a) expectation of SIC adjusted by β̂ ; (b) marginal standard deviation of SIC adjusted by β̂ ;

(c) expectation of SIC adjusted by β̂ and ZY ; (d) marginal standard deviation of SIC adjusted by β̂ and ZY ; (e) ensemble mean; and (f ), marginal standard deviation of the
ensemble. Values are of sea-ice concentration measured between 0 and 1.

is large in regions where the expected SST is cold enough to
guarantee sea-ice coverage (Figure 5(b)). Updating SIC using the
data leads to more extensive sea-ice cover (Figure 5(c)) and a
reduction of standard deviation everywhere except the sea-ice
boundary (Figure 5(d)). We also show, in Figure 5(e) and (f) the
empirical ensemble mean and standard deviation, respectively.
Our final reconstruction produces more sea-ice in the Southern
Hemisphere, but more crucially, drastically reduces the sea-ice
uncertainty in the sea-ice interior. Similar behavior is seen in
the Northern Hemisphere winter.

6. Sampled Boundary Conditions and their Influence
on Glacial Ice Sheet Modeling Outputs

The remit of this work was to reconstruct, with uncertainty, joint
SST and SIC fields to act as boundary conditions into FAMOUS-

Ice (Smith, George, and Gregory 2021), an ‘atmosphere only’
global climate model coupled to a ice sheet model. To examine
the effects that the reconstruction has on the atmosphere-ice
sheet model outputs we run a small ensemble varying only
the SST and SIC boundary conditions. Bayes linear analysis
updates our beliefs of the first two moments of X∗ and Y∗.
Define the Cholesky decompositions LX and LY, so that LXLᵀ

X =
varX̄,ZX [X∗] and LYLᵀ

Y = var
β̂ ,ZY

[Y∗]. We may probabilistically
sample

X̃∗ ∼ EX̄,ZX [X∗] + LXZ (19)

Ỹ∗ ∼ E
β̂ ,ZY

[Y∗] + LYZ (20)

where Z is a vector of independent random variables Zi with
E[Zi] = 0 and var[Zi] = 1. Note, assigning a distributional
form to the Zi is a further choice; for example, we could assign a
Gaussian, uniform, or any other distribution that would make
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Figure 6. A single plausible sample from the SST and SIC reconstructions. (a) and (b) show SSTs from February and August, respectively and (c) and (d) show SICs from
February and August, respectively.

sense given the context. Similar to how ensemble design is
considered in history matching (e.g., Salter et al. 2019), we may
eschew such distribution assumptions and set the bounds of the
Zi with an appeal to Chebyshev’s inequality. As is standard in the
history matching literature, we set the concentration parameter
k = 3 and sample Zi ∼ U(−k, k); we call this the plausible
set, and stress that it is not a probabilistic design, rather, a
bounding notion of plausibility. To generate a joint sample (X̃∗,
Ỹ∗), we first sample X̃∗ and then Ỹ∗. The structural depen-
dencies between the sampled X̃∗ and Ỹ∗ are captured by our
updated beliefs on Mβ and U
. An example of a joint sample
(X̃∗, Ỹ∗

) for the months of February and August is given in
Figure 6.

We generate an ensemble of 25 runs comprising a single refer-
ence run using the mean SST and SIC fields produced as part of
the PMIP4 LGM experiments, and 24 randomly generated plau-
sible samples of SST and SIC. Averaging over PMIP models to act
as boundary conditions in ice-sheet modeling is commonplace
(e.g., Kageyama et al. 2017). Crucially, it should be noted that
the reference run and each of the PMIP runs (X,Y) do not lie
within the calculated plausibility bounds. To examine the impact
of running with plausible boundary conditions, we compare
reference and plausible ice sheet heights at four geographically
distinct locations: Arctic Canada, Central Greenland, Hudson
Bay, and the Pacific coast; this is shown in Figure 7. The sim-
ulator is run for 5000 years, with the ice sheet initialized with
the LGM Glac-1D reconstruction (Tarasov et al. 2012). Beyond
the SST and SIC fields, no other model parameters were changed
and the model set-up was based on previous simulations of the
Greenland ice sheet (Gregory, George, and Smith 2020).

Figure 7 shows that the boundary conditions have a strong
influence on the simulated ice sheet. SST and SIC can affect
ice sheets either through changing the evaporation over the
ocean that transforms into snow falling on the ice sheet, or by
warming/cooling the regions close to the oceans thus affecting
the surface melt rate. We find that the primary differences in
ice sheet size are due to changes in snow accumulation. Our
ensemble mainly produces lower ice elevation than the reference
run. Examination of the individual ensemble members revealed
that this was due to the cooler Eastern Pacific and Western
Atlantic boundary conditions reducing evaporation over these
oceans causing a reduction in the accumulation of snow onto
the ice sheet. The difference between the reference run and the
samples is most pronounced at the Pacific coast. This matches
our expectation that ocean-proximal sites are more sensitive to
marine influence of the SST and SIC than more continental sites.
This is also where we see the strongest reduction in SST in our
samples compared to the PMIP model simulations. Indeed, the
second update causes a strong Pacific cooling along the coast of
North America (Figure 2(e)) relative to what we expect based
on the PMIP models. This is a region where models tend to
underestimate the upwelling of cold waters from the deep ocean.

Such biases are common in climate models, but are partic-
ularly problematic for coupled climate-ice sheet models where
the strong feedbacks between climate and ice sheets amplify
the effects of climate biases, which can lead to runaway ice
sheets (amplified growth or decay) and unrealistic geometries.
The ensemble shows a substantial spread of ice elevation (5%–
10% of height) caused by the variance in reconstructed SST and
SIC, highlighting the importance for considering this source of
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Figure 7. Ensemble time-series plots at four spatial locations: Arctic Canada (A), Central Greenland (B), Hudson Bay (C), and the Pacific Coast (D). The reference run is shown
in red, the simulations forced with sampled boundary conditions in black.

uncertainty for modeling past ice sheets. Our results show that
correcting for biases and incorporating uncertainty in surface
ocean conditions has a substantial effect on the simulated ice
sheet, which in turn influences the internal dynamics of the
ice sheet and its vulnerability to collapse or propensity to grow.
The ice sheet geometry itself has direct impact on atmospheric
circulation and an indirect influence on ocean circulation from
runoff, thus directly impacting global heat distributions and
surface climate conditions. Our methodology provides a way to
reduce climate biases by prescribing ocean surface conditions
compatible with observations, while at the same time exploring
the effects of this source of uncertainty on other parts of the earth
system.

7. Discussion

By exploiting natural conditional exchangeability judgments
we develop theory for the coexchangeable process model, as
an extension to Rougier, Goldstein, and House (2013), that
combines multi-model ensembles and data to model correlated
spatio-temporal processes. We provide results for efficient and
scalable inference that may be used for large spatio-temporal
problems where probabilistic Bayesian methods are often com-
putationally infeasible (see, e.g., Sansom, Stephenson, and
Bracegirdle 2021). Our methodology requires fewer assump-
tions and less onerous belief specifications than that required by
a probabilistic Bayesian analysis. To achieve these advancements
we develop a Bayes linear analogue to a hierarchical Bayesian
model. By combining exchangeability judgments and using the
reparameterization of Hodges (1998), we extend the Bayes lin-
ear exchangeable regressions methodology. We obtain hitherto
missing desirable properties present in traditional Bayesian

hierarchical models such as the ability to make individual group
level inference.

Large scale computational models often have complex spatio-
temporal boundary conditions. This is particularly true for
Earth system modeling, when any simulation of part of the Earth
system, requires other spatio-temporal fields as boundary condi-
tions. Our application looked at palaeo-era ice-sheet modeling,
where our model had a coupled atmosphere and ice-sheet, with
the SST and SIC as prescribed boundary conditions. These are
usually specified using results from a reference simulation, or
using a member of a Model Intercomparison Project (MIP).
However, individual simulations of Earth system components
are known to have biases and any individual simulation cannot
adequately represent uncertainty due to boundary conditions.
An idea for future investigation is to use the differences between
MIP phases to estimate the ensemble discrepancy. This would
allow for differences between older and newer MIP phases to
inform the discrepancy between the newer models and reality.
Whilst outside the scope of this work, using MIP iterations to
inform model discrepancy is an interesting avenue, especially
for models of the present-day where lots of data are available for
validation.

Our methodology allows MIP simulations to be combined
with observations efficiently, leading to joint reconstructions of
climate boundary conditions that can be used in any area of
Earth System modeling. We demonstrate its efficacy by recon-
structing last glacial maximum SST and SIC to force an ice-
sheet model. We show that the differences between reference
ice-sheets and ice-sheets under plausible boundary conditions
were considerable and that the uncertainty in the ice-sheet due
to propagated boundary condition uncertainty is not ignorable.
Other aspects of the Earth system are likely to be sensitive to
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their boundary conditions, so that joint reconstructions of the
type we present here would allow MIP simulations and data to
be combined in order to correct existing biases and quantify an
important source of uncertainty. The use of MIP ensembles to
drive simulations of Earth system components leads to impor-
tant questions around how these ensembles should be designed.
Our method makes the case that a priori exchangeability across
as many models as possible is an important design goal.

Supplementary Materials

The supplementary material contains coexchangeable model and coex-
changeable process model updating equations, calculations for belief adjust-
ments, a proof to Theorem 4.1, and prior specifications for the application
in Section 5.
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