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ABSTRACT 

In this work, a numerical model is proposed to analyze the influence of particle-particle 

interaction in laser directed energy deposition or LMD (laser metal deposition) of CM247 Ni-

based superalloy. The model is based on the analysis of contact between particles and the potential 

agglomeration of powder to predict powder conditions at the nozzle exit. Simulation results were 

experimentally validated and a good agreement was observed. At the nozzle exit mainly large 

particles (>100 µm) are found and small ones (<10 µm) tend to flow away from this region. This 

was also observed in the experimental PSD. Additionally, based on the relative velocity of 

particles, simulations are able to predict the formation of dents. In comparing virgin powder PSD 

and the one at the nozzle exit, it was observed that largest particles are collected at the exit. In 

order to explain this phenomena, particle agglomeration was analysed numerically. It was seen 

that small particles tend to adhere to the big ones due to their higher adhesive forces, which would 

explain the change in PSD. 

Keywords: Additive manufacturing; coaxial nozzle; directed energy deposition; agglomeration; 

particle adhesion. 

1 INTRODUCTION 

Laser metal deposition (LMD) technology is one of the most employed and studied Metal 

Additive Manufacturing (MAM) processes [1]. It is mainly employed for the generation of near-

net-shape components, but it can also be applied for material coating and for the repair of damaged 

or worn components. LMD consists on the deposition of melted powders layer-by-layer for the 

manufacturing of components [2], [3]. Figure 1 shows a schematic diagram of this AM 

technology. As it is seen, in LMD a laser is employed as heat source to melt the powders. As 

shown in Figure 1, powder and gas are delivered through a deposition nozzle that can have several 

configurations and shapes [4]. Among the different nozzle designs, the continuous coaxial nozzle 

design is the most common industrial solution. This nozzle configuration has shown the best 

performance for the deposition of narrow tracks and also regarding the powder catchment 

efficiency. During the process, carrier gas and shielding gas are used to deliver powder and avoid 

metal oxidation, respectively. Powders along with carrier gas and shielding gas are delivered 

through different external channels in the nozzle while the laser and inner shieling gas are located 

in an inner channel. This inner shielding gas has the main aim of protecting the optical system 

from bounced powders and metal vapours [5]. 



 

Figure 1. Schematic diagram of LMD process. 

Although the use of MAM technologies has increased dramatically during the last few 

years, there is still much work to accomplish in order to fully understand the influence of each 

parameter involved and to control and optimize the process. Considering this, numerical 

modelling of the process can provide an insight to the different phenomena that occur during 

LMD. In AM processes, lots of different thermo-mechanical and physical phenomena occur 

simultaneously and researchers have made efforts to model them in order to better understand and 

control the process performance. 

The first models found in the literature are analytical models that focused on different 

phenomena occurring in the process. Lin [6] predicted powder concentration based on a 

mathematical model that included the diffusion and convection models of powder in a gaseous 

medium. However, this model does not consider the influence of nozzle geometry and of shielding 

and carrier gas flows. This same author also studied the attenuation of laser powder as 

consequence of the shadowing effect of the powders based on the Bouguer-Beer law for two 

different coaxial nozzle arrangements; i.e., inward and outward configurations [7]. He observed 

that catchment efficiency is not significantly improved by a focused stream due to the high laser 

energy consumption that occurs in this case. 

In the last decade, numerical models have been employed to analyze the process as they 

enable the integration of different physical phenomena much more efficiently. Some works in the 

literature analyze the influence of nozzle geometry on the resulting powder stream and on the 

location of the focus point [8]. Lin himself developed a numerical model to analyze focused 

powder streams generated in LMD process with coaxial nozzle [9]. In 2005, Pan et al. [10] 

considered the influence of powder morphology on the obtained powder stream characteristics at 

the exit of a coaxial nozzle. However, they did not consider the effect of the carrier gas flow. 

Authors also employed their model to analyze the influence of nozzle geometry on the powder 

stream and concluded that the width and the outer diameter of the powder outlet passage have the 

greatest effect on the powder stream. Later these authors published another study [11] in which 

the effects of inner and outer shielding gasses and nozzle geometrical parameters on powder 

stream were simulated numerically. In the last work, the nozzle angle was included as variable in 

the model and they observed that smaller angles lead to a more focused powder stream. As one 



relevant conclusion authors pointed out that powder passage configuration and outer shielding 

gas must be optimized to ensure best laser energy utilization. Li et al. [12] simulated numerically 

LMD process in coaxial nozzles and studied the influence of nozzle geometry and configuration 

and powder feeding parameters on the characteristics of the converging region. They concluded 

that an increase in powder passage length improves the convergence. They also observed that 

uniformly sized powders lead to smaller convergence zones. Regarding the nozzle configuration, 

continuous coaxial nozzles achieve better convergence when compared to discrete coaxial 

nozzles. More recently, Xia et al. [13] a analyzed the feasibility of a new type of annular coaxial 

nozzle that transforms a 4-channel powder flow into a more uniform annular powder distribution. 

Based on a two-way turbulence coupling method, authors simulated the powder transport, 

convergence and concentration distribution and deposition performance of the nozzle. Zkovis et 

al. [14] developed a 3D model of the powder-gas flow in a radially symmetrical nozzle 

considering turbulent flow. Additionally, they employed a different modelling approach to 

simulate the flow in the region near to the nozzle wall, where the viscosity affects the 

characteristics of the flow. Wen et al. [15] also considered a turbulent model for simulating the 

powder and gas flows inside and out of the nozzle. Additionally, these authors also predicted the 

powder temperature evolution by considering the interaction between powders and laser beam. 

As in other research works presented above, they included the influence of powder morphology 

and size distribution in the process modelling. Zhang et al. [16] employed the gas-solid two-phase 

theory to simulate the flow field inside and out of the nozzle. They observed that for a given cone 

angle, if the cone ring gap decreases, the focusability of the stream is improved. On the other 

hand, given an invariable cone ring, if the cone angle acquires either too big or small values, the 

focusability of the powder is decreased. Finally, they also analyzed the influence of shielding gas 

velocity and observed that extreme values of this parameter also deteriorate the powder 

focusabilty. Morville et al. [17] developed a numerical model that considered dynamic and 

thermal behavior of LMD process with coaxial nozzle. This model considered collisions of 

powder with the nozzle wall and gas drag to predict the position of the powder stream focal point. 

The model was employed considering two different powders with different powder weights and 

authors noted that heavier powders reach the focus point closer to the nozzle exit. Another 

important conclusion of this work is that collision of the powders changes the structure of the 

powder size distribution and shape. It is also known that the density of the powders is changing 

the focal point distances. More recently, Takemura et al. [18] employed a CFD model to analyze 

the influence of gas-flow and nozzle geometry on the convergence of powder. They observed that 

convergence improves with higher carrier gas flow rates and convergence distance must be 

increased when high carrier flow rates are employed to maintain good powder convergence levels. 

Additionally, the suggested that sputter of powders and powder-flow convergence must be 

considered simultaneously when studying powder convergence. 

Modelling of LMD has also been conducted with the aim of understanding and controlling 

the resulting component microstructure. As an example of this, Nie et al. [19] integrated CFD 

modelling of the powder trajectories, physical energy function to predict laser energy absorbed 

by the powder and FEM modelling of LMD process. In 2019, Khamidullin et al. [20] analyzed 

the influence of powder  size distribution on the shape and dimensions of the deposition, the heat 

affected zone and the non-melted powders. Along with other phenomena, their model included 

the prediction of metal crystal micro-structure during the solidification of the deposition. 

With regard to the powder employed in these technologies, argon atomization and the 

plasma rotating electrode process are the two main technologies used to produce powders. Due 

to its ability to balance price and powder properties, the argon atomization technology has 

significant industrial applications in the field of advanced material processing and manufacturing. 

However, the uniformity and stability of the powder spreading during the additive manufacturing 

are likely to be significantly affected by satellites on powders which will affect particle non-



sphericity [21]. Works in the literature try to model powder behavior considering different 

interactions. Sinclair at al. [22] used 150m powders and found that inelastic interactions between 

powders are capable of producing segregation. Xiao‐Yang Sun et al. [23] studied the performance 

of Al2O3 particles and showed that at 27m/s speed powder particles of 150m size could erode 

surface in pipe erosion. They also noted that powder flowing at 5m/s and considering 90 

collisions can suffer fragmentation and with velocities higher than 25m/s, breakage of all particles 

occur [24]. Rozenblat et al. [25] studied particle breakage under impact load conditions and define 

the specific impact velocity from which powder breaking takes place. 

From the literature review presented above, it is clear that many attempts using numerical 

simulations of LMD process have been made to understand the influence of process variables on 

the powder flow behavior. However, the analysis of powder interaction with the nozzle and 

between particles, powder characteristics at the nozzle exit and powder agglomeration that may 

influence process performance and obtained component properties and quality is still missing in 

the literature. The present paper is aimed at analyzing the powder stream flow inside the nozzle 

taking into account (1) the inner and outer shielding gas and carrier gas flows, (2) the collisions 

between powders and with the nozzle walls, and (3) dent formation and agglomeration of the 

powder particles as consequence of the collisions. Concretely, the model focuses on the powder 

delivery system inside the nozzle and how this affects the powder flow at the exit and powder 

flows in LMD chamber. The main objective of the model is to predict possible powder 

agglomeration and dent formation that may alter powder morphology, modify powder PSD at the 

nozzle exit and, in turn, influence the process performance. It is worth noting that powder 

deposition and melt pool characteristics, the effect of particle non-sphericity, turbulent wakes 

behind powders and the effect of dispersed phase packing are beyond the scope of this study and 

are not analyzed here. 

2 MATERIALS AND METHODS 

As mentioned, in this work numerical simulations of powder flow during LMD process 

were conducted taking into account selected process parameters, powder morphology, size, 

material properties and interaction between particles. The performance predicted by the 

simulations has been experimentally validated. In this section, details about the numerical models 

employed and the experimental tests conducted are given. 

2.1 NUMERICAL SIMULATION 

To simplify the calculation, in this study, one-way coupling is used to simulate the gas 

and gas-solid flow. The powder stream was coupled as a discrete phase in the Euler-Lagrange 

model, which has already been proven to be an effective method in earlier similar research. The 

gas phase was calculated using the widely accepted standard k-ε turbulent flow model. 

Additionally, the following assumptions and simplifications were considered for the CFD 

simulations in the proposed model: 

• Continuous phase consists of the inner shield, carrier and shield gas while the 

powders operate as a discrete phase into the continuous phase. 

• CFD-DEM coupling is done in one-way. The fluid field influences the flow of the 

powders. Due to the low mass and concentration of the powders, the discrete flow 

of powder does not affect the continuous phase. 

• The model takes into account the forces of drag, inertia, and gravity while ignoring 

other factors like acceleration of the surrounding flow. 

• Substrate and powder materials are assumed as solid and homogeneous.  



• All powders are considered perfectly spherical and powder sizes are defined 

considering the PSD of the virgin powder that was measured experimentally. For 

the simulations, a PSD distribution of 1-130µm was considered. Further details 

about powder size are given in the following section. 

• The dimensions of the nozzle were defined based on those of a real coaxial nozzle 

fitted into Mazak i-400AM machine (see Figure 2). 

• The gas flow and powder velocity are assumed to be constant and perpendicular to 

the nozzle's inlet surface at the gas and gas-powder inlets. 

• Laser melting or deposition simulation is not considered in this system since it does 

not influence powder flow from the nozzle. Thus, the heat transfer is not included 

in the model but because of power-powder interaction occur in powder flow, 

thermal softening and inelastic collision is applied to powders while calculating 

dent formation. 

• The collision among powders in the passage of the nozzle is included. 

• The gravitational effect on the powder is included. 

• As for the gas sources, default properties of argon gas are employed. 

 

Figure 2. Schematic diagram of the LMD nozzle geometry considered in this work. 

The particle's absolute velocities can be 0 in a fluid by setting the X, Y, and Z components 

of velocities to zero. Particles are then accelerated in accordance with their force balance. So the 

inlet velocity of the particles is taken as relatively zero, and the flow rate is set as 8 g/min. To 

analyze the influence of argon gas flow and the powder size a gas-solid multiphase flow 

simulation model is conducted by using Ansys Fluent. The trajectory of each powder particle is 

described in a Lagrangian reference frame based on a force balance. The momentum loss when 

particles collide with internal walls of the nozzle is evaluated by a restitution coefficient, which 

is defined as the ratio of velocities before and after collision [26]: 

𝑒𝑛 =
𝑢1

𝑢0
 ( 1) 

where u0 and u1 refer to velocities before and after a collision, respectively. The momentum is 

lost in an inelastic collision when en < 1. Restitution coefficient, in general, depends on the 

material of the powder and nozzle, the impact velocity, the hardness ratio, and the roughness of 

the nozzle wall [27], [28]. In this study, a restitution coefficient of 0.3 was assumed at the 

beginning of the simulation for all powder particles. 

Figure 3 shows a flow diagram of the steps followed in the proposed approach. As 

mentioned above, particle-particle interaction is analyzed in this study as it can change powder 

morphology and, in turn, process performance. As shown in the figure, the results from the 

Shielding gas 
Carrier gas and 

powder particles 
Nozzle gas 



simulations are the prediction of dent formation (particle deformation) and particle agglomeration 

in LMD process based on the resulting stress fields. 

 

Figure 3. Flow diagram of the approach proposed in this work. 

As initial input, process parameters such as powder material, its properties and PSD and 

powder flow characteristics (powder feed rate, carrier gas flow, etc.) are needed. Table 1and Table 

2 show the process parameters considered and powder characteristics. With these parameter 

values, powder particle velocities are calculated first through Ansys Fluent software. Parameter 

values employed for the simulations were also employed in the experimental tests for validation. 

Nozzle Gas Flow Carrier Gas Flow Shield Gas Flow Powder Flow 

Ar (5 L/min) Ar (6 L/min) Ar (7 L/min) CM247LC (8 g/min) 
Table 1. Process parameter values employed for particle velocity calculation. 

C Al Ti Cr Mo Hf Ta Co W B N O O(supplier) Ni 
0.09 5.57 0.80 8.29 0.67 1.31 3.10 9.59 9.57 140ppm <20ppm <100ppm 75ppm Bal. 

Table 2. Composition (wt, %) of the CM247LC powder used in this research. 

Then, powder particles are forced to collide and considering the relative velocity between 

particles, stress field for a certain particle is calculated based on the Johnson - Cook plasticity 

model [26]. Dent formation is predicted next taking into account the powder material mechanical 

properties through the calculation of plastic deformation that are consequence of those stresses. 

Johnson Cook model was integrated in the simulations conducted in Ansys software for the 

calculation of plastic deformations. This model defines the yield stress Y as follows: 

𝑌 = [𝐴 + 𝐵𝜀𝑝
𝑛][1 + 𝐶𝑙𝑛𝜀𝑝

∗][1 − 𝑇𝐻
𝑚] ( 2) 

Where 𝜀𝑝 is the effective plastic strain, 𝜀𝑝
∗  is the normalized effective plastic strain rate 

and 𝑇𝐻 refers to the homologous temperature: (𝑇 − 𝑇𝑅𝑜𝑜𝑚)/(𝑇𝑀𝑒𝑙𝑡 − 𝑇𝑅𝑜𝑜𝑚) 

A, B, C, n and m are parameters that depend on the material. In this work CM247 nickel-

based alloy was employed for the experiments. Johnson Cook model parameters corresponding 

to this alloys group are summarized in Table 3 [29]. 

A (MPa) B (Mpa) C n m 

1108 699 0.015 0.5189 1.2861 
Table 3. Johnson-Cook model parameter values for nickel-based alloys 

In parallel, potential adhesion between particles is studied. Based on Maugis-Pollock and 

Collin-Zemin model [30]–[33] the possible agglomeration of powder particles is evaluated. If this 



last study concludes that powder particles may agglomerate under the given velocity conditions, 

by employing Rocky DEM simulation and Johnson-Kendall-Roberts (JKR) model [34] for 

adhesion force calculation, agglomeration of particles is predicted and simulated. In order to 

calculate the normal and tangential forces arising, the Hertzian Spring Dashboard model and 

Linear Spring Coulomb models were considered in Rocky DEM. Adhesive forces were calculated 

based on JKR model and an adhesive particle – particle interaction parameter of 1 J/m2 was set 

for the simulation. The rest of parameters were set as default. 

It is worth noting here that, unlike what is done in other studies, in this study powder 

motions are not stopped after colliding to the tube walls and small powders keep flowing even 

inside the tube. An imaginary chamber that covers the nozzle and the tube is added to the 

simulation in order to stop powder motion and remove them from calculation.  

2.2 EXPERIMENTAL TESTS 

To validate the results obtained in the model, powder flow was performed through the 

LMD nozzle over with a 5.76mm inner hole diameter (see Figure 4). Distance between nozzle 

outlet and powder stream focus plane was set to 10mm as recommended by machine 

manufacturers. The aim of this tests is to collect the powder spread along the radial direction and 

analyze the variation of PSD from the center to the outers of the powder. 

 

Figure 4. Schematic diagram of the experimental setup. 

According to the powder employed in the experiments, Figure 5 (a) shows a SEM image 

of the virgin CM247 powder that will be later compared to the powder collected on the tubes 

during the experimental tests to analyze the formation of dents and agglomeration of particles. It 

is observed that virgin powders have a spherical shape with size variety. PSD of the virgin powder 

is shown in Figure 5 (b). As it is seen, a bimodal powder was employed for the experiments, 

where most of the powder particles have 30 μm (small size particles) or 110 μm (large size 

particles) diameters. 

LMD 

Nozzle Tube with inner 

hole 



 

Figure 5. Virgin powder: (a) morphology and (b) PSD. 

In order to validate the flow calculated by the simulation, Schlieren imaging of the 

shielding gas was also conducted. Figure 6 shows a scheme of the setup employed for the Z-Type 

Schlieren imaging [35]. Those images were focused on the deposition area in order to capture the 

shape and dimensions of the convergence zone to compare it with the simulated CFD results. The 

setup was made up of a LED light bulb with a pin hole, two concave mirrors (100mm in diameter 

with 75mm focal length), a knife edge and a FLIR DSLR type digital camera with a telephoto 

lens (focal length of 55-200mm). Yellow arrows indicate the light source which goes to first 

concave mirror to obtain the parallel light area between two mirrors (blue arrows). This area is 

used to visualize the density difference in flow media. Second concave mirror reflects the light 

and send them to its focal point (red arrows). Finally, the knife edge is positioned at the focal 

point of the light and Schlieren images are recorded with FLIR camera. 

 

 

Figure 6. Setup employed for the Z-Type Schlieren imaging: (a) light source, (b) concave mirror 1, (c) concave 

mirror 2, (d) knife edge and (e) FLIP camera. 

3 RESULTS AND DISCUSSION 

In this section, results obtained from the experimental tests and those form the numerical 

simulations are presented. 

(a) (b) 

(a) 

(b) 

(d) 

(c) 

(e) 



3.1 CFD SIMULATION OF POWDER FLOW 

Figure 7 shows a comparison of the shielding gas flow predicted by the model (a) and the 

one experimentally captured through Schlieren imaging (b). Dotted lines in both figures represent 

the boundaries of the gas flow. It can be observed that the shape of these boundaries match in 

both cases. 

 

Figure 7. Schlieren image of the Argon gas flow (shielding gas): (a) numerical simulation and (b) experimentally 

captured. 

Regarding the sizes of particles collected in the tubes on the experimental tests, Figure 8 

shows a comparison of PSDs from the virgin powder (blue), the simulated powder (yellow) and 

the experimentally collected powder (grey). 

(a) (b) 



 

Figure 8. PSD of the virgin (blue), simulated (yellow) and experimentally collected (grey) powder. 

It is seen that the PSD simulated fits almost perfectly with the one from the virgin powder. 

However, the powder collected during the experimental tests differs slightly from them. PSD of 

particles collected in the tube show that a higher number of big particles with a 130μm 

approximate size reach the tubes. In the following section, numerical simulations conducted in 

this study will be presented. These simulations are aimed to explain, among other issues, the lack 

of small size particles at the nozzle exit noticed in the experimental analysis and the difference 

on PSD between the virgin powder and the one collected from the tube tests. 

Figure 9 shows the predicted path of 1μm (blue) and 130μm (red) powder particles. The 

selection of this two representative powder particle sizes is related to the experimentally obtained 

results. It was seen in Figure 8 that there is a significant difference between the PSD of virgin 

powder and the one collected at the nozzle exit in the tube tests. The following analysis is aimed 

at studying the flow of the smallest and largest particles in order to explain this difference in PSD 

distribution. 1 µm and 130 µm particles were selected as representative of each group. As it is 

seen in the figure, nozzle exit and the tube employed in the actual experimental tests were also 

modelled and integrated in the simulation system. From the simulation results, it is concluded that 

small particles flow away from the tube while all big particles are predicted to be collected inside 

the tube. Simulations results shown in this section are focused on the performance of smallest and 

largest powder sizes only because it is in these ones where main changes were observed in the 

experimental tests. 



 

Figure 9. 2D Trajectory of powder particles outside the nozzle. Blue and red lines correspond to 1μm and 130μm 

powder particles, respectively. 

Simulation results shown in Figure 9 are in good agreement with powder size distribution 

of particles experimentally collected at the nozzle exit (Figure 8). 

In order to further analyse the trajectories of powder particles and explain the PSD 

obtained at the nozzle exi in the tube test, Figure 10 shows the trajectories followed by 1μm 

(Figure 10 (a)) and 130 μm (Figure 10 (b)) particles. As it is seen, smallest particles flow away 

from the deposition area (in this case the tube area), while most of the biggest particles are 

predicted to converge in the tube. 

 

Figure 10. 3D Powder particle’s flow paths: (a) 1μm and (b) 130μm. 

The particular characteristics of small particles (<10 μm) has been noted by previous 

authors in the literature [36]. This particles move with gas flows and are difficult or even 

impossible to collect at the nozzle exit. However, it was seen that the proposed model could 

predict well the trajectory of these particles. 

As mentioned above, all the predictions are based on a first calculation to obtain the 

relative velocity of powder particles during the powder flow based on initial process parameter 

values. In order to analyze contact and collision between powders in the following steps, only 

relative velocity between powders is needed, therefore, in the following only relative velocity of 

particles will be considered. Figure 11 shows the relative velocity of the powder obtained along 

its trajectory for 130 μm powder particles. Concretely, relative velocity of 20 randomly chosen 

Tube with 

inner hole 

LMD Nozzle 

(a) (b) 



particles is shown in the figure, each color representing the velocity achieved by a different 

particle. This calculation was conducted with ANSYS Fluent software. 

 

Figure 11. Relative velocity of twenty 130μm powder particles simulated in ANSYS Fluent. Each color represents a 

different particle. 

Powder velocity on Z direction is considered as it is the direction in which the collision 

between powders is forced to occur. Nozzle exit is taken as the origin of this trajectory (0 value 

in X label). Values to the left of the origin (negative values) correspond to positions of the powder 

inside the nozzle, while positive values are positions once the powder is outside the nozzle. It is 

observed that a significant amount of powder achieves its maximum relative velocity near the 

nozzle exit. 

3.2 STRESS DISTRIBUTION AND DENT FORMATION 

Based on the velocity fields obtained in the previous step, collision between powder 

particles is analyzed through another simulation with ANSYS Explicit Dynamics. Particles are 

forced to collide in Z direction and the generated stress field as consequence of the collision is 

calculated through Johnson-Cook model for high-strain-rate simulation [37]. Concretely, one 

particle is considered fixed in x and y directions and free to move in z and the other one is moved 

for collision. The arising stresses are calculated considering the relative velocity between 

particles. As both particles are of the same material, both will deform, which will decrease the 

impact energy. A 10µm meshing element size is applied to the spheres that represent the powder 

particles and an adaptive sizing is considered to smooth the mesh. The rest of meshing parameters 

were left as default. Figure 12 shows an example of the stress field in a powder particle after 

collision. Concretely, the stress distribution after collision between two particles with a relative 

velocity of 18 m/s is shown. This relative velocity was selected for the following analysis because 

is the highest relative velocity value that was obtained as result of the particle flow analysis (see 

Figure 11).  



 

Figure 12. Stress values obtained after simulation of 130μm particle collision in ANSYS Explicit considering an 

18m/s relative velocity. 

At this stage and considering the stress field presented above, plastic deformation of the 

particles as consequence of the collision can be calculated as well. As it is seen in Figure 13 this 

plastic deformation is actually dent formation. The dent shown in the figure was predicted 

considering an 18m/s relative velocity between colliding particles. Details about dent dimensions 

are also included in the figure. 

 

Figure 13. Simulated dent formation and its dimensions (mm) for the 130μm particle with 18m/s relative velocity. 

In order to validate the prediction of dent formation, dent radius calculations conducted 

in this study were compared to those published in the literature by Alexander et al. [38] under the 

same process conditions. Figure 14 shows the contact radius a calculated through this model 

as 𝑎∗ =
𝑎𝑑𝑒𝑛𝑡

𝑅1
, where adent is the dent size and R1 is the particle diameter and the ones published 

by the authors mentioned above. As it is seen, the model employed in the present study is able to 

predict well the dent size. 



 

Figure 14. Validation of dent radius depending on the relative velocity of particles [38]. 

Additionally, the prediction of dent formation provided by the model was compared with 

the characteristics of the experimentally collected powder particles. Figure 15 shows SEM images 

of powder collected in the tubes at the exit of the nozzle. 

 

Figure 15. SEM images of powder particles collected after the experimental tests, showing two different 

phenomenon: (a) particle agglomeration and (b) dent formation. 

It is clearly seen in Figure 15 (a) that the morphology of powder particles changed after 

they exit the nozzle. The particles are no longer spherical after the interaction with the nozzle and 

between each other. Figure 15 (b) shows dents formed in a particular powder particle collected at 

the nozzle exit. Diameter of the dents were measured and values of the marked dents are (1) 

12.68μm, (2) 12.34μm and (3)13.58μm. Comparing both the experimental results shown in Figure 

15 (b) and the model prediction (Figure 13), it can be stated that the model predicts well the dent 

formation for a given relative velocity of powders although dent dimensions are slightly 

overestimated. 

3.3 PARTICLE AGGLOMERATION 

In an effort to explain the high amount of big particles collected at the nozzle exit, the 

analysis of particle agglomeration phenomena was integrated in the numerical model. 

Firstly, in order to add the powder bouncing phenomena to the simulation, the model 

proposed by Collin and Zemin [33] is integrated. The critical plastic adhesive sticking velocity 

(VCZ
Crit) is much larger than the adhesive sticking without considering plastic deformation 

(a) (b) 

2 

1 
3 



predicted by JKR theory, and the difference increases with the decrease in particle size [39]. The 

critical sticking velocity VCZ
Crit without bouncing is given by the following expressions: 

1

𝑚∗
=

1

𝑚1
+

1

𝑚2
 ( 3) 

𝑉𝐶𝑍
𝐶𝑟𝑖𝑡 = (

14.18

𝑚∗
)

1
2

(
𝛤5𝑅∗4

𝐸∗2
)

1
6

 ( 4) 

where m* is normalized powder mass (Eq. ( 3)) and E* and Γ are the normalized Young modulus 

and surface energy, respectively (Eq. ( 4)). As for the surface energy, Ning used 0.2 for surface 

energy (Γ) and Du et al. chose 1.0 in his calculations [39]. Abhirup et al. measured different 

material surface energies and the range of the surface energy in his study is 1.08 – 3.19 J/m2 [39], 

[40]. In this model, a surface energy of 1J/m2 was considered as the minimum value for metals. 

Taking all those expressions into account, particle collision and bouncing was further 

analyzed. Figure 16 shows a comparison of critical velocity (Vcrit) values above which particles 

are assumed to bounce back after collision. R1 values on the X axis refer to powder sizes. Only 

small size powders are analyzed because it is known that small particles are the ones that adhere 

to the big ones. This will be shown later in the simulation results as well. Values predicted in the 

present work (represented as diamonds) are compared to other simulated and experimental values 

extracted from the literature. It can be seen that values predicted are in good agreement with those 

find in other studies. It is worth noting that critical velocities for stable adhesion decrease with 

increasing powder size. 

 

Figure 16. Evaluation of contact between powders. 

Once powder agglomeration was studied, it was also simulated through Rocky DEM 

application. Figure 17 shows the powder stream simulated from the inside to the outside of the 

nozzle and a detailed image of the powder particles in that stream showing the agglomeration of 

particles. 
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Figure 17. Powder agglomeration simulation using Rocky DEM. 

Additionally, the size of agglomerated particles is also calculated and shown in Figure 

18. As seen in the figure, small particles (around 12μm) are gathered together and adhere to the 

bigger ones (from 60-130μm). This trend is due to the higher adhesion forces of the biggest 

particles (see Figure 19). It is worth noting here that no adhesion between large particles and small 

particles was observed, the agglomeration was only between different particle sizes. 

 

Figure 18. Prediction of the agglomerated particle sizes. 

 



 

Figure 19. Analysis of the adhesion forces obtained through the JKR model. 

This simulation results were also compared to the experimental findings. Figure 20 shows 

a detail of particle agglomeration observed at the nozzle exit. 

 

Figure 20. Agglomeration between particles at nozzle exit. 

Agglomeration type predicted by the model and shown in Figure 18 and Figure 19 is 

similar to the one experimentally observed and highlighted in red in Figure 20, which again 

validates the predictions obtained by the model proposed in this paper. 

4 CONCLUSIONS 

In this work, powder particle flow dynamics in LMD is studied to predict PSD 

distribution, dent formation and powder particle agglomeration at the exit of the nozzle. With this 



aim, simulations have been conducted using Ansys Fluent and Explicit software. Particle 

trajectory and relative velocities are first calculated taking into account the process parameter 

values (powder material, powder properties, powder flow rate, carrier gas flow rate, etc.). Powder 

particles are forced to collide and considering their relative velocities, stress fields and powder 

deformations (dent) are calculated based on the Johnson-Cook high-strain-rate model. Finally, 

particle agglomeration is analyzed integrating the adhesion phenomena through Johnson-Kendall-

Roberts model. Results obtained in the simulations have been validated through experimental 

tests in which powder morphology at the LMD nozzle exit was analyzed through SEM images. 

From the results obtained in the simulations and the experimental tests, the following conclusions 

can be drawn: 

• Only the large particles (>100μm) are collected at the outside of the nozzle. Small 

particles (<10μm) flow away from the deposition area. 

• The dent formation is predicted using a numerical simulation model based on the 

relative velocity of the colliding particles with values close to what measured 

experimentally. 

• It has been shown that small particles (around 12μm) tend to agglomerate around 

the bigger ones (60-130μm). This is due to the higher adhesion forces of the latest. 

• In general, it has been shown that predictions made by the approach proposed fit 

well with the experimental results. 
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