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ABSTRACT 
CO2 is an environmentally friendly heat transfer fluid and has many advantages in thermal 
energy and power systems due to its peculiar thermal transport and physical properties. 
Supercritical CO2 (S-CO2) thermal energy conversion systems are promising for innovative 
technology in domestic and industrial applications including heat pump, air-conditioning, 
power generation, renewable energy systems, energy storage, thermal management, waste 
heat recovery and others. Both S-CO2 and transcritical CO2 thermodynamic cycles have 
been extensively investigated in order to improve the efficiencies of thermal and power sys-
tems and achieve net zero carbon emissions. This paper focuses on the progress and pros-
pects for current research and technology development of S-CO2 thermal energy conversion 
systems and their applications including power generation, energy storage and waste heat 
recovery. First, the CO2 thermal transport and physical properties and benefits using CO2 as 
a heat transfer fluid in thermal energy and power systems are discussed. Then, classification 
of CO2 thermodynamic systems is presented. Next, S-CO2 for power generation, energy stor-
age and waste heat recovery systems are presented. Finally, research needs of subcritical 
and supercritical CO2 heat transfer, fluid flow and heat exchangers for the development of 
various thermal energy and power systems are discussed.

Introduction

Due to global warming, climate change, waste pollu-
tion and energy consumption, developments and 
breakthroughs of scientific theories and innovative 
technologies for advanced and decarbonized thermal 
and energy conversion systems are urgently needed in 
order to achieve net zero emissions [1]. Research and 
development of thermal management, heat transfer 
enhancement and process intensification technologies, 
novel thermal energy and power systems, energy stor-
age and waste heat recovery technologies have been 
extensively conducted for the purpose of effective util-
ization of energy, decarbonization and environment 
protection over the past years [2–4]. As an efficient 
and environmentally safe working fluid, CO2 has been 
considered an alternative to conventional heat transfer 
fluids in various thermal energy conversion systems 
such as power generation, thermal energy conversion 

and utilization, waste heat recovery, air conditioning, 
heat pump and refrigeration systems, thermal manage-
ment for sustainable energy technologies, nuclear 
energy, high heat flux removal and so on [5–13].

S-CO2 Brayton thermodynamic cycle is a promising 
thermal conversion system for power generation to 
replace the conventional steam Rankine cycle owing 
to its high thermal efficiency, simple cycle layout, 
compactness of components and wide operation 
range [14–17]. S-CO2 Brayton systems can be used in 
thermal energy conversion systems using both no- 
renewable and renewable sources such as nuclear, 
geo-thermal, solar, thermal power plants, energy stor-
age and waste heat recovery [18–28].

In the heat pump, air-conditioning, and refriger-
ation systems, natural refrigerants which exist in 
nature’s biological or chemical cycles have been 
chosen to replace synthetic refrigerants [29]. As a 
nature refrigerant, CO2 (also known as R744) has 
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been receiving renewed interest as an efficient and 
environmentally safe working fluid in mobile air con-
ditioning, heat pump systems and refrigeration systems 
at low temperatures [30–32]. Due to its low critical tem-
perature Tcrit of 31.1 �C and high critical pressure pcrit of 
7.38 MPa, CO2 is utilized at much higher operating 
pressures in air-conditioning and heat pump systems. 
Supercritical CO2 gas cooling in gas coolers rather than 
condensation heat transfer in condensers operates in the 
high-pressure process. Furthermore, CO2 can be used in 
electronic cooling, two-phase thermosyphon loop and 
evaporative CO2 cooling system for the upgrade of the 
Compact Muon Solenoid pixel detector etc. [4]. CO2 

thermal systems can be used in geothermal energy util-
ization, combined heat, cooling and power systems, 
thermal management, solar energy utilization and recov-
ery of waste heat [33–51].

In order to develop advanced CO2 thermal and 
power systems, compressors, and heat exchangers 
such as evaporators, gas coolers, condensers, internal 
heat exchangers and recuperators should be properly 
designed [6–11]. CO2 heat exchangers with micro-
channels and enhanced elements can enhance heat 
transfer and thus improve the thermal efficiencies of 
various thermal energy conversion systems [7,8]. 
Understanding subcritical and supercritical heat trans-
fer and fluid flow is the key to design of various heat 
transfer components and needs to be specially investi-
gated due to the peculiar heat transfer and fluid flow 
behaviors for both evaporation and supercritical heat 
transfer processes. The sharp variations of the thermal 
transport and physical properties at high reduced 

pressures result in quite different heat transfer and 
fluid flow phenomena in various channels and com-
ponents [7,11]. Therefore, heat transfer calculation 
correlations and design methods of heat transfer com-
ponents have been extensively studied over the past 
years and technical risks in the design of the compo-
nents used for various thermal conversion systems are 
reduced. However, adaptation of the CO2 thermal and 
power systems to interface with various heat sources 
is imperative for its adoption as an industry manufac-
tured technology. Further research on CO2 heat trans-
fer and fluid flow in emerging enhanced heat transfer 
tubes and heat exchangers is still needed to provide 
robust and reliable design correlations and methods 
for various thermal energy conversion systems.

For understanding the current research and tech-
nology development of S-CO2 thermal and power sys-
tems and future research and technology development 
needs, this paper presents a review on S-CO2 thermal 
energy conversion systems and their applications 
focusing on power generation with conventional and 
renewable heat sources, energy storage and waste heat 
recovery. Research of CO2 heat transfer, fluid flow 
and heat transfer components and future research 
needs are also mentioned in this review.

CO2 thermal transport and physical properties 
and benefits of using CO2 as a heat transfer 
fluid in thermal energy conversion systems

CO2 is a nontoxic, environmentally friendly and non- 
flammable heat transfer fluid. It is stable at high 

Nomenclature 

C compressor 
CCGT combined cycle gas turbine 
DC data center 
HE heat engine 
HP heat pump 
HT high temperature 
HTR high temperature regenerator 
HXI heat exchange - ice 
HXW heat exchange - water 
HydT hydraulic turbine 
IHX internal heat exchanger 
LNG liquefied natural gas 
LT low temperature 
LTR low temperature regenerator 
MC main compressor 
ORC organic Rankine cycle 
P pump 
p pressure, Pa 
pps psuedocritical pressure, Pa 
pcrit critical pressure, Pa 
p1 low pressure, Pa 

p2 high pressure, Pa 
QL latent heat 
QS sensible heat 
RC recompressing compressor 
s entropy 
S-CO2 supercritical CO2 
ST stationary CO2 source 
T temperature, K, or turbine 
Tcrit critical temperature, K 
Tps pseudocritical temperature, K 
T-CO2 transcritical CO2 
W work 
WHR waste heat recovery 

Subscripts 
cha charge
crit critical
dis discharge
ps pseudocritical
1 low
2 high
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temperature with a large operational temperature 
range from −73 to 1000 �C at both subcritical and 
supercritical conditions in thermal energy and power 
conversion systems [33]. As shown in Figure 1, the 
critical point of CO2 is at the pressure of 73.8 bar and 
the temperature of 31.1 �C [52]. At the supercritical 
conditions, CO2 behaves like a gas but with the dens-
ity of a liquid performing like a single-phase fluid. 
Due to its particular thermodynamic and physical 
properties, CO2 can work at subcritical and supercrit-
ical conditions in various thermal and energy conver-
sion systems such as heat pump, air conditioning and 
refrigeration systems, power generation systems using 
both conventional and renewable energy sources, 
energy storage, cooling and heating, thermal manage-
ment and waste heat recovery.

The thermal transport and physical properties of 
CO2 may vary significantly near the critical point and 
thus can significantly affect the evaporation and 
supercritical heat transfer and fluid flow behaviors of 
CO2, the heat transfer components, and the thermal 
and energy systems. Figure 2 [19] shows the thermal 
transport and physical properties of CO2 versus tem-
perature at the pressures of 7.5, 8, 9, 10 and 12 MPa, 
which were obtained from REFPROP 7.0 [53]. For a 
constant pressure larger than the critical pressure, an 
important characteristic is that the specific heat 
reaches a sharp maximum as shown in Figure 2(c). 
This point is called the pseudocritical point as indi-
cated by the dash line in Figure 2(c) for the pressure 
of 9 MPa and the corresponding pressure and tem-
perature are the pseudocritical pressure (pps) and the 
pseudocritical temperature (Tps). Near the critical 
pressure, the thermal conductivity also reaches a max-
imum value. The thermal transport and physical prop-
erties of CO2 change drastically with temperature 
around the critical point in an isobaric process, 

especially near the pseudocritical and critical points. 
However, with increasing the pressure, these changes 
become less pronounced. The density and dynamic 
viscosity undergo a significant drop near the critical 
point, which is almost vertical within a very narrow 
temperature range while the enthalpy undergoes a 
sharp increase. The specific heat, thermal conductivity 
and Prandtl number have peak values near the critical 
points. The magnitude of these peaks decreases very 
quickly with increasing pressure.

Due to its high density, a relatively low fluid flow 
rate is needed for S-CO2 in thermal and power sys-
tems. This significantly reduces the compression work 
and lead to simple and compact turbines at high tem-
peratures and improvement of the system efficiency 
[34]. S-CO2 heat transfer and fluid flow processes are 
critical to reducing the temperature difference between 
the metal tubes and CO2. Furthermore, CO2 is used 
as a natural refrigerant for air-conditioning, heat 
pump and low temperature refrigeration systems. The 
physical and transport properties of CO2 are quite dif-
ferent from those of conventional refrigerants at high 
reduced pressures. In general, CO2 has much higher 
evaporation heat transfer than conventional refriger-
ants. Microchannels are needed for both evaporators, 
internal heat exchangers and gas coolers. 
Microchannel heat exchangers can increase the heat 
transfer and therefor increase the thermal system effi-
ciencies and make the thermal systems compact.

There are many benefits in using CO2 as a heat 
transfer fluid in various thermal energy and power gen-
eration systems. For example, combined S-CO2 heating, 
cooling and power generation systems are crucial to 
achieving zero carbon emissions. S-CO2 thermal con-
versions systems can be used for energy storage, waste 
heat recovery and cooling for high heat flux, solar col-
lectors, power generation, cooling for green hydrogen 
energy systems and so on. When S-CO2 is used as the 
heat transfer fluid for solar collectors and power sys-
tems, it eliminates a heat exchanger in the systems and 
thus results in more efficient and less complex units. 
Despite the benefits of using S-CO2, it also presents 
some challenges which need to be addressed here. 
Operating near the critical point means high working 
pressures, so reduced tube diameters are required lead-
ing in a reduction in the heat transfer rate in tubular 
receivers. As well as the possible leaks associated to 
moving parts and connections. Accordingly, the materi-
als considered for various components of the system 
must have resistance to corrosion and thermal fatigue 
caused by high temperature, oxidation, and creep. In 
the aspects of subcritical and supercritical CO2 heat Figure 1. p-T diagram phases to carbon dioxide [52].
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transfer, fluid flow and heat exchangers, proper calcula-
tions correlations and design methods should be veri-
fied and adopted [54–56].

Classification of S-CO2 thermal energy 
conversion systems

A thermal energy conversion system generally consists 
of four basic processes, namely compression, heat 
addition at high pressure p2, expansion, and heat 

rejection at low pressure p1. Depending on if there is 
a phase change process in the thermal energy conver-
sion systems, thermal power systems are classified as 
two types of systems as shown in Figure 3. In the 
Joule–Brayton cycle, the thermal system remains in 
the vapor region and in the Rankine system, the heat 
transfer fluid undergoes phase change process in the 
heat addition and heat rejection processes [11].

Thermal energy conversion systems are also classi-
fied according to their operating pressures below or 

Figure 2. Physical properties of supercritical CO2 at five different pressures versus temperatures [19]. (a) Density; (b) Enthalpy; (c) 
Specific heat (the dash line indicates the pseudo-critical point at the pressure of 9 MPa); (d) Thermal conductivity; (e) Dynamic vis-
cosity; and (f) Prandtl number.
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above the critical pressure of the heat transfer fluid 
(pcrit). There are three classifications: subcritical ther-
mal systems for p1 < pcrit and p2 < pcrit, supercritical 
thermal systems for p1 > pcrit and p2 > pcrit, and tran-
scritical thermal systems for p1 < pcrit and p2 > pcrit) 
as shown in Figure 3 [11]. In supercritical systems, 
the low pressure of the system is also above the crit-
ical pressure 73.8 bars, and there is no distinction 
between the fluid being in a liquid or a vapor state as 
shown in Figure 1. In transcritical systems, the low 
pressure of the system is below the critical pressure 
73.8 bars, and condensation heat transfer may occur 
in heat-rejection process. In transcritical systems, the 
lower the compressor inlet temperature and the closer 
the compression process is to the saturated liquid line, 
thus the lower the compression work. Therefore, tran-
scritical systems can improve the thermal efficiencies 
of the thermal systems.

Figure 4 shows the thermal efficiencies of various 
thermal power conversion systems and heat sources 
with respect to the turbine inlet temperature. The heat 
sources include geothermal energy, solar thermal 
energy, nuclear energy, coal, waste heat recovery, and 
liquefied natural gas (LNG). The power conversion 
systems are organic Rankine cycle (ORC), steam 
Rankine cycle (steam turbine), air Brayton cycle (gas 
turbine), combined cycle gas turbine (CCGT), and 

S-CO2 direct and indirect cycles [13]. As indicated in 
Figure 4, the steam Rankine cycle can achieve high 
efficiency at low turbine inlet temperatures because 
liquid water is incompressible and requires less work 
for compression. However, the gas turbine utilizes air 
and a large amount of work is consumed in the com-
pression process. Therefore, the thermal efficiencies of 
the systems with gas turbines are lower than that of 
the steam Rankine systems although the turbine inlet 
temperatures are much higher. This is because the 
compressors consume a large amount of work. 
Furthermore, there is a big issue with the materials at 
higher turbine inlet temperatures for the gas turbines.

S-CO2 thermal systems have higher efficiencies 
than other thermal systems and are promising systems 
to replace the existing systems. Figure 5 shows the 
principles of power conversion systems using steam 
and S-CO2. S-CO2 Brayton cycle is a power conver-
sion system which combines the advantages of both 
steam Rankine systems and gas turbine systems. CO2 

becomes more incompressible near the critical point 
[13]. Therefore, S-CO2 is compressed in the incom-
pressible region and the higher turbine inlet tempera-
ture can be utilized with less material issues as 
compared to the steam Rankine systems.

Progress and prospects for S-CO2 thermal and 
power conversion systems

S-CO2 Brayton systems for power generation

S-CO2 Brayton power generation systems have high 
thermal efficiency, simple cycle layout, compactness of 
component and wide operation range. Figure 6 shows 
the comparison of power conversion systems using 
water, air and CO2 as working fluids [13]. The advan-
tages of S-CO2 Brayton systems are due to the high 

Figure 3. Classification of thermodynamic power cycles (for 
interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article) [11].

Figure 4. Thermal efficiencies of power conversion systems 
and applications [13].
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density and low compressibility of CO2 near its crit-
ical point and the wide and rapid variation in the 
thermodynamic properties as shown in Figure 2. 
SCO2 Brayton systems can be used in nuclear, geo- 
thermal, solar and thermal power plants and com-
bined heat, cooling and power systems and others.

Various layouts of S-CO2 Brayton power generation 
systems have been investigated over the past years 
[56–62]. A simple recuperated S-CO2 Brayton cycle is 
the basic layout because a recuperator is essential for 

the system. Figures 7 and 8 illustrate a typical recom-
pression cycle which consists of a main compressor, a 
recompression compressor, a turbine, a low tempera-
ture recuperator, a high-temperature recuperator, and 
a precooler [18]. The thermodynamic processes occur 
at state points in the cycle in Figures 7 and 8. The 
recuperators minimize the heat which is wasted after 
the turbine stage. The precooler is set to achieve 
thermodynamic conditions of the main compressor 
inlet. This cycle uses a flow split in front of the 

Figure 5. Principles of power conversion system [13].

Figure 6. The comparison of steam, air, S-CO2 power conversion systems [13].
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precooler to allow some of the CO2 to bypass the 
cooling process and to be recompressed. The recom-
pression cycle is a typical layout which significantly 
improves the thermal efficiency of the system by 
recovering the heat and solving the pinch-point prob-
lem in the recuperators. The reheating and intercool-
ing cycles are typical layouts which improve the 
system performance by increasing the expansion work 
and reducing the compression work, respectively. 
Based on the basic S-CO2 Brayton cycle, research has 
been investigated to optimize the layouts in order to 
improving the thermal efficiencies of the thermal 
energy conversion systems [15,18,26,27,42].

One of the main advantages of the S-CO2 Brayton 
systems is the compact turbomachinery. This is 
mainly because the S-CO2 Brayton systems operate at 
the supercritical conditions, the minimum pressure is 
higher (up to 7.4 MPa) than any existing steam 
Rankine systems (a few kPa) or gas Brayton systems 
(up to 100 kPa). Furthermore, S-CO2 remains dense 
throughout the whole power generation systems. 
Therefore, the volumetric flow rate decreases as the S- 
CO2 density is higher than that of other working flu-
ids. This results in up to 10 times smaller turbomachi-
nery of the S-CO2 Brayton systems as compared to 

the turbomachinery of a steam Rankine cycle. 
However, the cycle pressure ratios of the S-CO2 

Brayton systems are much smaller as compared to 
those of the steam Rankine systems, the turbine outlet 
temperatures are relatively high. Therefore, a large 
amount of heat must be recuperated in order to 
increase the thermal efficiencies of the systems. The 
recuperation process is needed in the S-CO2 Brayton 
systems. The most efficient layout of the S-CO2 sys-
tems is the recompressing layout. This is because the 
S-CO2 systems are similar to the steam Rankine sys-
tems in terms of the layout while the systems are 
similar to the gas turbine systems in the aspect of the 
design of main components. Various layouts are 
employed for the S-CO2 power systems depending on 
their applications [42].

One key feature of the S-CO2 Brayton systems is 
that the specific heat of the cold side fluid is two to 
three times higher than that of the hot side fluid in 
the recuperators. It is especially important to explain 
why the recompressing layouts can improve the ther-
mal efficiencies. As shown in Figures 7 and 8, CO2 

flow is split to compensate for the specific heat differ-
ence in the low temperature recuperators and to 
maximize the heat recuperation in the recompressing 
layouts. Therefore, waste heat can be reduced, and 
thermal efficiencies can be improved in the recom-
pressing layouts [47].

The operating conditions in the S-CO2 heat 
exchangers play a crucial role in improving the ther-
mal efficiencies of the systems. As a large amount of 
heat is recovered in the recuperators to increase the 
thermal efficiencies of the systems, high effectiveness 
is required and therefore the capital cost increases 
when conventional shell and tube heat exchangers are 
utilized. However, various compact heat exchangers 
with high compactness (up to 10 times compared as 
compared to shell and tube heat exchangers), such as 
printed circuit heat exchangers have been commercial-
ized and can be applied to the S-CO2 cycle dir-
ectly [62].

S-CO2 Brayton systems can be applied to various 
heat sources including conventional sources and 
renewable sources. They are considered as an alterna-
tive to the steam Rankine systems, nuclear energy 
ranging from pressurized water reactors (both large 
and small modular reactors) to the next generation 
nuclear reactors and fusion reactor applications as 
well [42]. The S-CO2 systems can be utilized as top-
ping systems for fossil fuel powered plants and bot-
toming systems of gas combined cycle plants. There 
are also promising heat sources including several 

Figure 8. T-s diagram of S-CO2 Brayton recompression 
cycle [18].

Figure 7. Layout of S-CO2 Brayton recompression cycle [18].
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renewable energy sources such as high temperature 
fuel cells, concentrated solar power and geothermal 
power which can be integrated with energy storage 
technology [25,44,46,56,59].

S-CO2 thermal and power systems for energy 
storage

In recent years, research, and development of power 
generation from renewable resources are considerably 
increasing in order to achieve net zero carbon emis-
sion. Due to the stochastic and non-continuous nature 
of renewable resource availability (wind, solar and 
others), electrical energy storage is one of the main 
challenges for large-scale renewable power plants inte-
gration into the electric grid. Therefore, energy stor-
age systems at different scales are needed to advance 
toward electrified systems with a high share of renew-
ables. Depending on the amount of energy to be 
stored, there are different types of energy storage sys-
tems. Different integrations of S-CO2 systems in 
energy storage systems have been investigated 
[28,32,34,35,37,44].

Several options have been considered for storing 
electricity in thermal systems based on a combination 
of heat pumps and heat engines systems using CO2 as 
the working fluid. These are based on heat pumps, 
compression or incorporating underground reservoirs, 
thermal or geological storage [35]. One promising 
energy storage technology is to use reversible heat 
pumps based on two closed cycles, indirectly con-
nected by hot and cold thermal storage tanks. Figure 
9 [35] shows the conceptual system operation: in peri-
ods of excess energy, it is stored by a heat pump 
which compresses the working fluid. Sequence 1-2-3- 
4, transforming electrical energy into thermal energy 
and stores it, transferring/absorbing energy from the 
high and low-temperature (HT and LT) reservoirs. In 
periods with net electrical demand, the cycle follows 

the sequence 5-6-7-8, in which thermal energy is 
transformed into electrical energy by the operation of 
a heat engine. A functional heat transfer integration 
with heat storage tanks is required to obtain high effi-
ciencies in the operation of the heat pump energy 
storage system. During charging, the working fluid 
temperature must be above the storage temperature 
during the whole heat transfer process. Figure 9(a)
illustrates an example of poor integration in the tem-
perature profile of LT storage, where the working 
fluid changes state (horizontal line denoting evolution 
at constant temperature) temperature change occurs 
in storage. Figure 9(b) illustrates an example of good 
thermal integration with the parallel evolution of the 
charge-discharge temperature profiles in the heat 
exchange with the thermal storage, where there is a 
sensible heat exchange in the HT reservoir and a 
latent exchange in the LT reservoir.

The integration of an energy storage system and 
geological storage of CO2 based on renewable energy 
within carbon capture and utilization applications is 
promising. The CO2 captured in a power plant or 
industrial facility is used as a working fluid in the 
proposed thermodynamic cycle to store renewable 
electrical energy underground. The storage of energy 
occurs in mechanical (work) and thermal (heat) forms 
[35]. Figure 10 [35] illustrates the conceptual scheme 
of a new energy storage system and storage of 

Figure 9. Reversible heat pump energy storage system with: (a) bad-integrated temperature profiles, and (b) well-integrated tem-
perature profiles. QS: Sensible heat; QL: Latent heat; W: Work; cha: Charge; dis: Discharge [35].

Figure 10. Reversible heat pump energy storage system with 
well-integrated temperature profiles, including geological stor-
age. QS: Sensible heat; QL: Latent heat; W: Work; cha: Charge; 
dis: Discharge; ST: Stationary CO2 source [35].
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captured CO2 in a stationary source, consisting of two 
independent and open CO2 cycles, connected directly 
by geological storage and indirectly by thermal stor-
age. As shown in Figure 10, CO2 captured in a sta-
tionary source is used as a working fluid in a heat 
pump and injected into a geological formation 
(sequence 0-4-1-2-3-A), performing a charging cycle 
equivalent to that of the electrothermal system in the 
high (HT) and low (LT) temperature reservoirs. For 
the discharge, CO2 is extracted from the geological 
formation and used as the working fluid in the reverse 
cycle, ending with the re-injection of CO2 into the 
geological formation (sequence A-6-7-8-5-B).

To avoid the problem occurred in the traditional 
molten salt heat storage system, such as molten salt sol-
idifying, heat transfer loss between the molten salt and 
working medium, and heat loss of stored heat, Liu 
et al. [34] proposed a nonmolten salt heat storage 
scheme which uses compressed CO2 energy storage 
integrated with auxiliary combustion as shown in 

Figure 11 [34]. In the cycle, under the energy storage 
conditions, the working fluid flows through the tower 
collector to absorb heat, some of the working fluid 
enters the main turbine to meet the power generation 
demand while other of the working fluid enters the tur-
bine to drive the coaxial compressor to compress the 
CO2 near the critical point in the low-pressure tank 
and then stores it in the high-pressure tank. Under the 
energy release condition, supercritical CO2 flows out of 
the high-pressure tank, heated by a gas boiler, enters 
the turbine for work, and then passes through the heat 
exchanger to heat the bottom circulating working fluid. 
Then, CO2 is cooled to near the critical point and 
stored in a low-pressure tank without compression.

Geological storage in the concept of electrothermal 
energy storage has been studied in recent years. Carro 
et al. [35] have proposed an energy storage system 
using transcritical CO2 cycles based on the concept of 
electrothermal energy storage and its integration with 
geological CO2 storage. Figure 12 [35] illustrate the 

Figure 11. Schematic diagram of the integrated scheme of compressed CO2 energy storage and auxiliary combustion system [34].

Figure 12. Conceptual layout of the basic electrothermal energy storage system. C: Compressor; HydT: Hydraulic turbine; P: Pump; 
T: Turbine; HXW: Heat exchange - Water; HXI: Heat exchange - Ice; HT: High temperature; LT: Low temperature [35].
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proposed conceptual layout of the basic electrothermal 
energy storage system based on a reversible heat 
pump. The thermodynamic charging cycle starts at 
the compressor inlet, where the fluid is compressed, 
reaching the highest temperature of the whole process. 
After transferring the heat to the hot water tank, the 
fluid expands in a hydraulic turbine, in whose output 
the lowest temperature of the process is reached. 
Similarly, the discharge cycle begins at the pump inlet, 
where the working fluid is compressed. After the 
evaporator, it expands in a gas turbine.

S-CO2 heat pump systems for heating and waste 
heat recovery

Due to the advantages of energy-saving, high-effi-
ciency, and cost effectiveness, heat pump systems have 
been adopted in both residential and industrial sec-
tors. The heat pumps based on the vapor-compression 
cycle consume a small amount of energy for a single- 
stage or multiple-stages compression, in order to gen-
erate the high-temperature and high-pressure vapor. 
Thus, the following heat-rejection process can be uti-
lized for various purposes, including water heating, air 
heating, and steam production. Compared to electric 
or gas water heaters, the heat pump water heaters can 
contribute to a significant reduction in energy con-
sumption and is able to provide high-temperature hot 

water with a relatively high coefficient of performance 
(normally around 3 to heat hot water up to 65 �C). 
Saikawa and Koyama [56] developed a transcritical 
CO2 heat pump prototype as shown in Figures 13 and 
14. The CO2-water heat exchanger of the prototype is 
a countercurrent type as shown in Figure 15 [56]. 
Using capillary tubes for CO2 flow path could achieve 
high withstand pressure of the heat exchanger and 
high heat transfer coefficient of CO2. Also using plate 
with off-set inner fin for water flow path could 
achieve high heat transfer coefficient of water. Instead 
of a tube type, a plate type was selected for preventing 
the water path clogging. There is a case in which scale 
is generated when tap water is heated to over 60 �C. 
With these technologies, small and highly efficient 
heat exchanger with small temperature difference was 
developed.

Transcritical CO2 heat pumps can be used for 
waste heat recovery in domestic and industrial appli-
cations. Just for one typical example of waste of heat 
recovery of data centers (DCs) using CO2 heat pumps, 
the energy consumption of DCs has increased consid-
erably with the rapid development of the information 
technology industry. DCs use about 3% of the global 
electricity supply, and the consumption is increasing 
at an annual rate of 15–20%. Around 40% of the 
power consumed by DCs is used for the cooling sys-
tems. The exergy loss of energy flow in DCs is huge 
due to the use of electrical energy for cooling DCs. A 
large amount of waste heat of the cooling is dis-
charged to the external environment. Therefore, DCs 
may be considered energy producers if large amounts 
of low grade and medium-grade waste heat are effect-
ively recovered and used for building heating, water 
heating, refrigeration, and air conditioning. Wang 
et al. [62] have proposed a prosumer DC waste heat 
energy recovery system using a CO2 direct expansion 
ground source heat pump. Their proposed system is 
able to efficiently recycle the waste heat from DCs, 
including waste heat collection, building heating load 
matching, and non-heating period waste heat 

Figure 14. Photograph of the heat pump prototype [56].

Figure 15. The developed CO2-water heat exchanger [56].
Figure 13. Schematic of the heat pump prototype [56].
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utilization. Figure 16 illustrates the model and compo-
nents of the prosumer DC waste heat energy recovery 
system integrated with the CO2 direct expansion 
ground source heat pump [62]. The system consists of 
an evaporator placed in the cabinet, air cooler, work-
ing fluid pump, compressor, throttle valve, borehole 
heat exchanger, and heat exchangers. If the outdoor 
temperature is lower than the initial operating tem-
perature which is at least 5 �C below the temperature 
of the working fluid CO2, the air cooler will operate, 
and CO2 exchanges heat with outdoor air. To recycle 
the waste heat from the DC during the heating period, 
the temperature of CO2 from the DC is increased by 
the compressor, and CO2 exchanges heat with water 
that is used for building heating. In the non-heating 
period, CO2 is compressed and exchanges heat with 
the borehole heat exchanger. The heat generated by 
the DC is stored in the soil and later used for building 
heating. Different operation modes can be realized by 
applying different valve switching modes. The system 
can meet the cooling demands of the DC and recover 
waste heat for the purpose of building heating.

Research of heat transfer, fluid flow and heat 
exchangers for CO2 thermal and power 
systems

The transport and physical properties of CO2 strongly 
affect the heat transfer and pressure drops at both 
subcritical supercritical conditions. Fundamentals and 
design correlations of evaporation, vapor liquid two 

phase flow, supercritical heat transfer and fluid flow 
are important in the design of various components 
such as evaporators, gas coolers, compressors, recu-
perators in the CO2 thermal and power systems. In 
particular, microchannel heat exchangers, compact 
heat exchangers and printed circuit heat exchangers 
rather than shell tube heat exchangers have been 
developed and used in S-CO2 systems as shown in 
Figure 15 [56], 17 [63] and 18 [11]. Therefore, a good 
knowledge of the transport and physical properties 
and their effects on the calculation methods of CO2 
heat transfer, and pressure drops, and the design 
methods of the components are needed.

Studies of evaporation heat transfer, two phase 
flow, supercritical heat transfer and fluid flow behav-
iors in macro and microchannels, enhanced tubes and 
various heat exchanges have been extensively con-
ducted over the past decades [64–86]. The heat trans-
fer mechanisms and design correlations have been 
proposed for the purpose of design of various heat 
exchangers of CO2 as well [87–99].

For CO2 evaporation heat transfer and two-phase 
flow, the models developed by Cheng et al. [87–90] 
are the proper methods which have been widely 
adopted in the design and simulations of CO2 evapo-
rators [7,10,54,93]. For supercritical CO2 heat transfer 
and fluid flow, as most single-phase heat transfer cor-
relations were not developed for supercritical fluids, 
they cannot necessarily be expected to give accurate 
results for CO2 at supercritical conditions. The main 
reason is that near the supercritical and subcritical 

Figure 16. Model of the prosumer DC waste heat energy recovery system [62].
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regions, in the case of an isobaric change of state at 
subcritical pressures, all properties of a single-phase 
fluid change significantly continuously (sometimes 
very sharply) with temperature. If a supercritical fluid 
flow and heat transfer processes passe near the critical 
region, strong variations of fluid properties take place, 
and the heat transfer process is largely governed by 
local conditions [100–102]. In a S-CO2 gas cooling 
and heating heat transfer process, the pressure of the 
heat exchangers during heat transfer is maintained 
above the critical pressure, so the physical and trans-
port property variations can be severe as shown in 
Figure 2. Consequently, heat transfer coefficients have 
to be calculated locally and heat exchangers with small 
increments [102–108]. In addition, because of the 
large viscosity changes and gradients near the wall, 
pressure drop correlations need to be validated for 
S-CO2.

Concluding remarks

CO2 thermal energy conversion systems are promising 
technology in many applications in power generation 
with conventional and renewable energy sources, 
energy storage and waste heat recovery. Both super-
critical and transcritical CO2 thermal systems are effi-
cient energy conversion and utilization technology. 
The benefits of the S-CO2 thermal and power systems 
include (a) The thermal efficiency can be increased up 
to 5% as compared with the steam Rankine systems; 
(b) The turbomachinery can be much smaller and the 
overall system size can be reduced up to ten times as 
compared to the conventional steam Rankine systems; 
(c) The positive potential of the air-cooled S-CO2 

cycle can be adopted if the system design becomes 
more sophisticated; (d) As the minimum pressure is 
higher than the CO2 critical pressure, the purification 

Figure 18. (a) Typical printed circuit heat exchanger, (b) flow paths and details of the diffusion-bonded core, and (c) and of an 
etched plate [11].

Figure 17. The (a) one-pass and (b) two-pass internal configurations of the brazed plate heat exchangers [63].
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system requirements are lower than those of the steam 
Rankine systems; (e) CO2 is relatively cheaper and 
less harmful than other working fluids when an 
appropriate ventilation system is installed to prepare 
for a sudden large release of CO2 from the power 
conversion systems.

There are challenges of developing CO2 thermal 
systems and applications. Various layouts have been 
proposed for various applications. However, optimiza-
tion of the systems is still needed. Development high 
performance components is needed. Various heat 
transfer enhancement and process intensification tech-
nologies are needed. Both subcritical and supercritical 
CO2 heat transfer and fluid flow research is still 
needed. In particular, for microchannels and printed 
heat exchangers and emerging structures heat transfer 
components.
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