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User perception of Teachable Robots: A
comparative study of Teaching Strategies, Task

Complexity and User Characteristics.

Imene Tarakli1 and Alessandro Di Nuovo1

Sheffield Hallam University,S11WB, Sheffield, United Kingdom
i.tarakli@shu.ac.uk

Abstract. This study explores the influence of teaching methods, task
complexity, and user characteristics on perceptions of teachable robots.
Analysis of responses from 138 participants reveals that both Teach-
ing with Evaluative Feedback and Teaching through Preferences were
perceived as equally user-friendly and easier to use compared to the
non-interactive condition. Additionally, Teaching with Evaluative Feed-
back enhanced robot responsiveness, while Teaching with Preferences
yielded results similar to the passive Download condition, suggesting
that the degree of interactivity and human guidance in the former may
not substantially impact user perceptions. Personality traits, particu-
larly extraversion and intellect, shape teaching method preferences. Task
complexity influenced the perceived anthropomorphism, control, and re-
sponsiveness of the robot. Notably, the classification task led to higher
anthropomorphism, control, and responsiveness scores. Our findings em-
phasise the importance of task design and the need of tailoring teach-
ing methods to the user’s personality to optimise human-robot inter-
actions, particularly in educational contexts. Project website: https:
//sites.google.com/view/teachable-robots.

Keywords: Users perception · Robot Teaching · Education.

1 Introduction

Education has shown an increasing interest in the use of social robots to support
children’s learning [14]. Studies revealed that social robots stimulate a wider ar-
ray of valuable social behaviours in children, prompt engagement with the phys-
ical world through their embodiments, and promote a personalised and tailored
learning environment to the individual’s student needs [3] [4].

The pedagogical potential of social robots allows them to assume active roles
in classrooms, including tutor, peer, or learner roles (see [20] for a detailed tax-
onomy). A prominent trend of portraying the robot as a novice learner has
been noted in the recent literature [14]. In this setting, the robot, acting as
a less knowledgeable peer, receives guidance from students to enhance its per-
formance. This concept is based on the learning-by-teaching paradigm, a well-
acknowledged psychological approach in which learners instruct a third party,
leading to a deeper understanding on their part.

https://sites.google.com/view/teachable-robots
https://sites.google.com/view/teachable-robots
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Research reveals that engaging with a novice robot improves children’s learn-
ing outcomes by establishing a non-judgmental context, boosting student confi-
dence, and fostering meta-cognitive skills [13]. However, for a robot to effectively
play the role of a novice learner, it must comprehend student instructions, expla-
nations, and feedback, necessitating it to emulate child-like learning capabilities.

Interactive Reinforcement Learning (RL) emerges as a promising approach to
endow robots with cognitive capabilities. Within this framework, non-technical
human instructors guide the robot’s learning process by providing feedback. Dif-
ferent forms of feedback can be employed to teach the robot including demon-
stration, instruction, and evaluative feedback [19]. While most methods assume
an optimal and rational teacher [5], a presumption often unsuited for children,
evaluative feedback offers a sturdy alternative. In this method, users guides the
robots by providing information about the quality of its actions. This type of
feedback can not only accommodate human errors [9] but also cultivates active
learning, pushing the robot towards trial-and-error which requires from the hu-
man teacher a deeper comprehension of the task. Moreover, a more recent trend
in interactive RL is preference-based learning [6] [16] [11]. Here, the teacher pro-
vides information about the relative preferences of different actions of the robot,
guiding the learning process with comparisons rather than explicit evaluations.

While Interactive RL systems have demonstrated considerable success in in-
structing robots across a range of tasks, prior studies have predominantly focused
on optimising the robot’s learning algorithm, often overlooking the user’s per-
spective on these teaching methods. However, understanding the user’s perspec-
tive is essential for designing robotic systems that better align with the user’s
expectations, and fostering engaging, intuitive, and satisfying interaction with
social robots. This aspect holds particular significance in education, where the
quality of interaction directly influences the effectiveness of the learning process.

This work aims to investigate users’ perspectives on interactive teaching
methods involving robots. Our primary focus centres on two distinct methodolo-
gies: teaching with evaluative feedback and teaching through preferences. Firstly,
we conduct a comparative analysis of these teaching methods to investigate the
impact of these methods on the users’ perception of robots. Secondly, we as-
sess whether the nature of the task impacts the user’s perception of the teaching
method. Lastly, we examine the potential influence of users’ personality traits on
their preference for specific teaching approaches. By exploring these aspects, this
research aims to understand the relationship between the teaching method and
the users’ perceptions of the robot, thus contributing to a deeper understanding
of how robots can be effectively incorporated into educational settings.

2 Related Work

Prior work in Human-Robot Interaction (HRI) extensively investigated how
human would interact with teachable robot [22] [17] [12]. These studies have
primarily focus on understanding users’ intention and training strategies when
providing evaluative feedback to robots. The insights from these works have con-
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tributed to the refinement of the learning algorithm that are better aligned with
the user. While these findings are essential for effective HRI, earlier research
focused more on improving the robot performance through algorithmic design,
often overlooking the investigation of users perception of the robot.

In a recent study [18], researchers investigated the influence of diverse teach-
ing methods, including interactive Reinforcement Learning (RL), on users’ per-
ceptions of a care robot. Their findings highlighted a correlation between the
level of anthropomorphism attributed to the robot and the extent of involve-
ment in the teaching. Moreover, they observed that the perceived success of the
robot had a greater impact on user trust and usability compared to the teaching
method employed. While this study offers an initial insight, our research aims
to extend these observations to different contexts, such as educational settings,
by assessing the perceived intelligence and control over the robot. We will assess
factors like perceived intelligence and control over the robot, as well as measure
the perceived usability of the teaching method itself, rather than solely focusing
on the robot’s usability as previously done.

To our knowledge, no prior research has explored preference-based learning
within the context of HRI. Our study stands a pioneering effort, investigating
the application of preference-based learning in HRI for the first time.

3 Methodology

To investigate the user’s perspective on various teaching methods involving
robot, we conduct an online between-subject study. Participants are randomly
assigned to view one video showcasing a specific teaching method among three
conditions: teaching with evaluative feedback, teaching with preferences, and a
control group devoid of teaching intervention. They also engaged in a specific
training task chosen from navigation, control, and classification tasks. This study
has been granted ethical approval by the Ethics Committee of Sheffield Hallam
University (Application ID: ER56422859, July 12th, 2023).

3.1 Teaching conditions

We conduct a comparative analysis of three teaching scenarios involving distinct
teaching methods: Interactive RL from Evaluative Feedback, Preference-based
RL, and a Download condition where the robot learns without a human inter-
vention. The latter condition was inspired by the work of Moorman et al. [18]
and represents the control group of the study as no interaction with the robot
is invovled. Figure 1 depicts the three teaching scenarios.

Download: In this condition, no teaching from the user is involved. This
condition serves as a control in the study because it represents a baseline scenario
where no active teaching intervention from the user is present. Participants are
solely passive observers, watching a video where a robot retrieves and executes
a pre-existing robotic program that corresponds to the training task.
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Binary Feedback

Evaluative Feedback Preferences Download

Fig. 1: Overview of the teaching condition. From left to right: Teaching with
Evaluative Feedback, teaching with Preferences and Download condition.

Interactive RL from human evaluative feedback: In this condition, users
teach the robot by proving feedback about the quality and correctness of its ac-
tions. Through trial and error, the robot progressively improves its performance
by refining its strategies based on the evaluations provided by the human instruc-
tor. The design of this condition draws inspiration from the TAMER framework
[15], where the teacher consistently provided evaluate feedback to the robot.
To illustrate this to the participants we present paired videos: one showcasing
the robot’s trial-and-error learning and the other illustrating a teacher using a
gaming controller to provide evaluative feedback. The teacher, the experimenter
in this case, pushes a red-labelled joystick to provide negative feedback, and a
green-labelled joystick to provide positive feedback to the robot. The human
teacher within the video is presented as rational, consistently providing accurate
feedback to guide the robot to optimal performance outcomes.

Preference-based Reinforcement Learning: In this scenario, users instruct
the robot by providing ranked preferences over pairs of executed trajectories. The
robot employs these preferences to enhance its performance through a classic Re-
inforcement Learning (RL) algorithm. The prevalent approach in the literature
consists of initially training the robot in a simulation. Here, human preferences
are collected by comparing side-by-side video clips of the robot’s trajectories.
Once the learning is completed in the simulated environment, it is then trans-
ferred to real-world robots. An alternative, through less common, consists of
directly training the robot in real-life scenarios by offering preferences for se-
quential trajectories executed by the robots. In a prior study, we compared both
strategies and found no statistically significant difference in user perception be-
tween them. Consequently, we have chosen to proceed with the widely adopted
strategy of instructing the robot through simulation-derived videos. Specifically,
the design of this condition is inspired by the work of Christiano et al. [6],
wherein side-by-side trajectory snippets possess varying start and end states. To
illustrate this teaching condition to the participants, we present them with a
video featuring an experimenter in the role of a teacher. The teacher employs a
web interface to convey her preferences for the robot’s trajectories. Within the
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web interface, each page displays two video clips of the robot’s trajectories side
by side. The teacher is provided with three choices: expressing a preference for
video 1, expressing a preference for video 2, or opting to skip if no preferences
are held. Similar to the previous teaching scenario, the teacher is rational and
provides accurate preferences to guide the robot toward optimal performance.

3.2 Task Domain

The robot’s teaching is conducted across three distinct tasks: navigation, con-
trol, and classification. All tasks are performed using the Vector robot and are
illustrated in figure 2.

– Navigation Task: In this task, the objective is to instruct the robot to
navigate through a maze and reach a predetermined position while avoiding
colliding with obstacles.

– Control Task:In this task, the robot must approach a cube, lift it, and
accurately place it in a specific location. Although this task shares similarities
with the navigation task, it introduces more complexity by expanding the
range of actions to manipulate the cube.

– Classification Task: The goal of this task is teaching the robot how to
categorise object in two distinct groups. object into two categories. To simply
the teaching process, we consider three actions: classifying an object into
category A, category B, or opting not to classify it.

By considering a variety of tasks, our goal is to broaden the study’s applica-
bility to ensure our aim is to ensure that the finding can be readily extrapolated
to various pedagogical applications.

Lift the cube

Place the cube

Push the cube to the
 right category

Navigate to the goal
 while avoing obstacles

Control Task Classification TaskNavigation Task

Fig. 2: Experimental tasks: Participants observe the teaching process of a robot
within one of three types of tasks: navigation, control and classification.
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3.3 Research Questions

The study focuses on two research questions:

– RQ1. How does different interactive teaching method influence users’ per-
ceptions of the robot?

– RQ2. To what extent does the user’s characteristics influence their prefer-
ence for a specific teaching method?

– RQ3. How does the nature of the task influence the user perceptions of the
robot?

3.4 Participants

We determined the recommended sample size N of participants by conducting
an a priori analysis on G*Power (version 3.1) for a MANOVA (α = .05, power
= .95, number of groups = 9). By considering a small effect (f2(V ) = 0.0625),
the analysis suggested a sample size of N = 144.

Although the primary focus of this study is to comprehend user perceptions
within an educational context, recruiting this number of school-age children as
participants would have posed logistical challenges. Consequently, participants
were recruited through Prolific, with an age criterion of 18 to 26 years. We
hypothesize that by targeting individuals within this younger age range, the
findings of this research will extend to a younger demographic, akin to children.

Initially, 145 participants were recruited online. Every participant received a
compensation of £1.80 upon completing the study. After excluding individuals
who did not fully complete the questionnaire, failed the attention check, and
exhibited outliers (>3 standard deviations) for more than one variable of interest,
the final sample size consisted of 138 participants (Mage = 22.87, SDage = 1.78,
80 men, 56 women, 1 non-binary).

3.5 Measures

In the following, we outline the metrics used to assess the user’s perspective of
teaching methods during the study. For metrics assessed using Likert scales, a
5-point scale (1 = Strongly Disagree to 5 = Strongly Agree) was utilised, unless
indicated otherwise.

– Demographics: We collect the participants age, gender and education level.
– Personality: We measure five personality traits (Neuroticism, Extraversion,

Openness, Agreeableness, and Conscientiousness) by using the Mini-IPIP,
20-item Likert scale [8].

– Robotic Prior Experience: We assess the participants’ prior experience
with robot through the robotics experience scale, 5-item Likert scale [18].

– Perceived Control: we measure the perceived control of participants over
the robot by adapting a 3-item Likert scale from Delgosha et al. [7].

– Responsiveness: we measure the responsiveness of the robot by adapting
the the Godspeed’s animacy scale into a 2-item Likert scale [1].
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– Likability, Anthropomorphism and Intelligence: To assess the likabil-
ity, anthropomorphism and intelligence, we adapted Godspeed’s Likability,
Anthropomorphism and Intelligence, to 5-item Likert scale. [1].

– Usability and Acceptance: To assess the usefulness, ease of use, and intent
to use of the teaching method, we utilise an 8-item Likert scale adapted from
the Technology Acceptance Model (TAM) [2].

– Perceived success: We measure the participants’ perceived success of the
robot by collecting a binary metric.

3.6 Procedure

The study was conducted online through Qualtrics. The survey begun with an
informed consent page, followed by questions about demographics, personality
traits, and their prior experience with robots.

Afterwards, participants were assigned to one of three teaching conditions
(Teaching with evaluative feedback, Teaching with Preferences, and Download
condition). Within the teaching condition, participants were further randomly
assigned to observe the teaching of a robot in a specific task out of three (navi-
gation, control, and classification). This design yielded a between-subject study
structure comprising a total of nine distinct groups.

The rest of the study was organised as follows:

– Introductory phase: Participant are first familiarised with their assigned
teaching condition, during which we provide explanations about the teaching
process involving the robot.

– Training phase: Next, participants watch a video of the experimenter in-
structing a robot to execute a task. The teaching method and task’s nature
are tailored to each participant based on their assigned conditions. At the
end of the training, participants observe the identical final performance of
the robot within the assigned task. By maintaining the final performance
constant across teaching conditions, we aim to mitigate the risk of perfor-
mance confounding.

– Testing phase: After visioning the training video, participants proceed to
watch a sequence of four videos, in which the robot’s performance is assessed
across diverse environments of the same nature as the assigned task. Similar
to [18], we consider different trajectories in the testing trials, encompassing
two successful, one ambiguous and one failure. In the ambiguous trajectory,
the robot actions may not optimal but ultimately lead to success. By demon-
strating a success rate of 75%, as was suggested in prior works [24] [18], we
aim to replicate real-life scenarios, where failures are more likely to occur.
It’s worth noting that the testing videos remain consistent for the assigned
task, regardless of the teaching condition.

Following this, the participants proceed to complete the survey, where they
provide their rankings for their perception of the robot, its task completion
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success, the effectiveness of the teaching method. To ensure the participant en-
gagement, we introduce an attention check between the testing phase and the
questionnaire during the online study.

All videos involving the experimenter training and testing the robot are
demonstrated via a Wizard-of-Oz approach. This choice is made to maintain
the failure and agent’s performance consistent between the conditions [18]. The
links to all videos can be found on the project website.

Moreover, in the training phase videos, the teaching with evaluative feedback
condition entailed giving feedback to an actual robot, whereas the preference-
based condition involved expressing preferences over simulated trajectories of
the robot, following the established practice in the literature. All simulations of
the study were designed and executed on Webots [23].

4 Results

Prior to conducting the analysis, we evaluated the internal consistency of the sur-
vey items using Cronbach’s alpha test. Results are reported in the project web-
site. Moving forward, we performed Multivariate Analysis of Variance (MANOVA)
considering various dependent variables based on the experimental conditions,
accompanied by post-hoc follow-up analyses.

To ensure the validity of parametric tests (such as univariate ANOVA and
t-tests), we first checked if the assumptions of normality and homoscedasticity
were met using the Shapiro-Wilk test and Levene’s test, respectively. In cases
where the data did not meet these assumptions or was of an ordinal nature,
non-parametric tests were employed. However, MANOVA was an exception to
this approach, for which we employ the Pillai-Bartlett trace test, known for its
robustness in the presence of assumption violations [10].

We calculated the effect size, d, using Cohen’s d coefficient and considered
statistical significance at the level of p < 0.05. Through the analysis, we made
a conscientious effort to align with the recommended best practices detailed in
the guidelines by Schrum et al. [21].

4.1 Impact of the teaching method on the user’s perception

To assess the potential impact of the teaching method on users’ perceptions
of the robot, we aggregated data from all tasks and conducted a MANOVA,
where teaching methods were treated as independent variables. By employing
Pillai’s trace as the measure, we identified a significant influence of the teaching
method on perceived anthropomorphism, responsiveness, control, and ease of
use (V = 0.11, F (8, 266) = 1.99, p = 0.048). Figure 3a depicts the significant
differences between the teaching conditions.

– Responsiveness: A Kruskal Wallis (KW) test revealed a significant ef-
fect of the teaching method on perceived responsiveness (H(2) = 6.46, p =
0.040). A subsequent Wilcoxon rank sum test with Bonferroni correction in-
dicated that instructing the robot with Evaluative Feedback (M = 8.14, SD =
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1.33) led to significantly higher perceived responsiveness compared to the
Download condition (M = 7.33, SD = 1.58), W = 2.45, p = 0.014, d =
0.56. However, the perceived responsiveness of the robot while being taught
through providing Preferences (M = 7.69, SD = 1.67) did not significantly
differ from the teaching methods involving Evaluative Feedback and the
Download condition.

– Ease of use: A significant main effect of the teaching method on the
perceived ease of use of the method was identified through a KW test
(H(2) = 6.37, p = 0.041). Although not meeting the Bonferroni correc-
tion threshold, a comparison between teaching conditions showed that the
download condition (M = 7.33, SD = 1.58) was somewhat perceived as
less user-friendly compared to both teaching with evaluative feedback (M =
8.15, SD = 1.33), W = −2.15, p = 0.03, d = −0.42, and teaching with
preferences (M = 7.69, SD = 1.67), W = −2.13, p = 0.03, d = −0.44. No
significant different in perceived ease of use was found between Teaching
with Evaluative Feedback and Teaching with Preferences.

However, our analysis did not reveal any significant main effects of the teach-
ing condition on the perceived anthropomorphism, control, intelligence, likability,
perceived usefulness, or intent to use the teaching methods.

4.2 Relationships between User Characteristics and Perceptions of
Robot and Teaching Methods

We examined whether the users’ personality and background variables were as-
sociated with their perceptions of the robot and the teaching method. To ensure
the validity of our analysis, we ensured that relevant qualitative measures were
evenly distributed across all training conditions, thereby ruling out potential
correlations due to sampling biases.

– Extraversion: Extraverts demonstrated a more positive perception of the
robot in the Teaching with Evaluative Feedback condition. Indeed, in this
condition, extraversion traits exhibited a significant positive correlation with
the perceived responsiveness (r = 0.42, p = 0.003), perceived intelligence
(r = 0.46, p = 0.001) and likability of the robot (r = .36, p = 0.015). More-
over, a Wilcoxon rank-sum test on Extraversion with perceived success as an
independent variable indicated that participants who perceived the robot as
successful exhibited higher extraversion traits (M = 11.33, SD = 3.65) com-
pared to those who perceived the robot as having failed (M = 9.69, SD = 4),
W = 2.226 p = 0.02, d = 0.44.

– Intellect: Intellect traits were highly correlated with the ease of use of
the Teaching with preferences (r = 0.42, p = 0.002), and likability of the
robot (r = 0.35, p = 0.015) in the Teaching with Evaluative Feedback
condition. Similarly, intellect traits were significantly related to the per-
ceived responsiveness of the robot in the Teaching with Evaluative Feedback
(r = 0.36, p = 0.013).
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– Prior experience with robotics: In the Download condition, we observed
a strong correlation between prior expertise with robots with the perceived
usefulness of the method (r = 0.37) as well as the perceived anthropomor-
phism of the robot (r = 0.38), (both p = 0.013).

We did not identify any significant relationships between the gender, educa-
tional level and other personality traits of the users, and their perception of the
robot and the teaching method.

4.3 Impact of the nature of the task on the user’s perception

Finally, we investigated whether the nature of the training task influenced the
perception of the robot, regardless of the teaching method employed. Combin-
ing data from all teaching conditions, we executed a MANOVA with the task’s
nature as the independent variable. By employing Pillai’s trace as the measure,
we identified a highly significant influence of the nature of task on perceived
anthropomorphism, responsiveness, and control over the robot (V = 0.14, F(6,
268) = 3.41 , p = 0.003). Figure 3a illustrates the significant differences between
the tasks.

– Anthropomorphism: A KW test revealed a significant difference in the
perceived anthropomorphism of the robot within the different tasks (H(2)
= 7.39, p = 0.025). After running a Wilcoxon rank-sum, we found that
robots were significantly more anthropomorphised in the classification task
(M=12.29, SD=4.32) than in the navigation task (M=9.98 ,SD=4.13), W=
2.6 , p=0.009, d=0.55 However, no significant difference emerged in compar-
ison with the control task (M = 11.08, SD = 3.4).

– Control: After running a KW test, we identified a main effect of the nature
of the task on the perceived control over the robot (H(2) = 6.15, p=0.046).
A Wilcoxon rank-sum test revealed that a significantly higher control over
the robot was perceived in the classification task (M=12.07, SD=2.52) than
in the navigation task (M=10.8, SD=2.74), W=2.39, p=0.02, d=0.48. No
difference with the control task was identified (M=11.46, SD=2.3).

– Responsiveness: A significant main effect of the nature of the task on the
perceived responsiveness of the robot was identified through a KW test (H(2)
= 8.41, p = 0.015). After performing a Wilcoxon rank-sum test, we identi-
fied that the perceived responsiveness of the robot was significantly higher
in the classification task (M=8.27, SD=1.36) than in the control (M=7.29,
SD=1.68), W=2.78, p=0.005, d= 0.63. No difference with the navigation
task was identified (M=7.71, SD=1.49).

No significant difference was identified among the perceived intelligence and
likability of the robot across the tasks.
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(a) (b)

Fig. 3: (a) Comparison of the responsiveness and ease of use between the teaching
conditions. (b) Comparison of the anthropomorphism, control and responsive-
ness between the tasks.

5 Discussion

The results of the study indicate that a user’s perception of a teachable robot
can be influenced by various factors, including the chosen teaching method, the
nature of the task, and the individual’s inherent characteristics and background.

Regarding the impact of teaching method on user perception of the robot
(RQ1), the analysis revealed, with a medium effect size, that participants per-
ceived the robot as more responsive in the Teaching with feedback condition
compared to the Download condition. This suggest that the more interaction
and human guidance is observed, the more responsive the agent is perceived.
Additionally, Teaching with Feedback and with Preferences were perceived as
equally user-friendly, and easier to use than the Download condition. This result
is contrary to our prior assumptions, as the former methods requires more effort
compared to the latter. However, Teaching with Feedback aligns more closely
with natural human teaching methods, leading us to postulate that the per-
ceived ease of use is positively influenced by the resemblance to familiar human
interactions. However, contrary to [18], our study did not reveal any significant
impact of the teaching method on the perceived anthropomorphism of the robot.

Moreover, we examined whether there was a relationship between the person-
ality traits and background of the user with its perception of the robot (RQ2).
The analysis identified a moderate correlation between extraversion traits and
a favourable perception of Teaching with Feedback condition. Extraverts exhib-
ited a significant correlation with the perceived responsiveness, intelligence and
likability of the robot within this specific teaching condition. We hypothesize
that Teaching with Evaluative Feedback fostered a more dynamic and engaging
interaction as the teacher directly interacts with the robot, resonating well with
the socially outgoing nature of extraverted individuals. Moreover, intellect traits
exhibited a significant correlation with ease of use in the Teaching with Pref-
erences condition and with likability and responsiveness in the Teaching with
Evaluative Feedback condition. This implies that individuals possessing higher
intellect traits are inclined to be more receptive towards innovative teaching
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methods that involve robots, diverging from the traditional Download condi-
tion. Lastly, we found a weak correlation between prior experience with robots
and the perceived anthropomorphism and usefulness of the robot in the Down-
load condition. This hints that individuals more familiar with robots tend to
attribute higher human-like qualities to the robot when no direct interaction is
involved. This familiarity also seemed to make them find the method more useful
in the context of the study.

Lastly, we examined whether the nature of the training task could influence
the user’s perception of the robot (RQ3). The results showed that participants
engaging in the classification task reported higher levels of perceived anthropo-
morphism, control, and responsiveness of the robot in contrast to those in other
tasks. This result can be attributed to the classification task’s higher level of de-
mand and its incorporation of more social attributes, distinguishing it from the
other tasks and necessitating a greater degree of engagement from the partici-
pants. We postulate that tasks that require greater engagement and complexity
contribute to an increased sense of control and perceived responsiveness over the
robot. Additionally, tasks that simulate a more intricate and human-like scenario
tend to augment the perceived anthropomorphism of the robot in the eyes of the
participants.

6 Limitation

While our study offers valuable insights, several limitations need to be acknowl-
edged that may impact the interpretation and generalisation of the findings.

First, the metric assessing robot responsiveness displayed an internal con-
sistency (α = 0.6). While this score is generally perceived as passable, it does
not exceed the acceptable range set in this study (α > 0.7). Consequently, any
results derived from this metric should be treated with caution.

Second, the study was conducted exclusively online. While this allowed a
more diverse participant pool, future research could benefit from replication in
a face-to-face setting where participants could engage in direct interactions with
the robot. The contextual differences between online and in-person interactions
could introduce variances in the observed outcomes.

Additionally, although we recruited participants within a young age range,
our study primarily focused on adults. Consequently, the generalisability of our
findings to children remains uncertain, and further investigation is needed to
understand how age influences perceptions of teachable robots.

Lastly, the duration of training for the different teaching methods was not
considered in our study. The time required to learn and execute a method could
potentially impact participants’ perceptions of the robot’s performance. Future
research could explore the relationship between training duration and user per-
ceptions to gain a more comprehensive understanding of this aspect.
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7 Conclusion

In this study, we investigated the impact of teaching methods, task nature, and
user characteristics on users’ perceptions of robot. Our findings provide valuable
insights for including the robots in the education landscape. Teaching with Eval-
uative Feedback emerged as a preferred method, improving both responsiveness
and ease of use compared to the non-interactive condition. Similarly, personal-
ity traits influenced teaching preferences, highlighting the need for personalised
interactions. Moreover, the task’s complexity influenced anthropomorphism, con-
trol, and responsiveness, highlighting the importance of task design.

Our study indicates the importance of considering intricate interplay of these
factors in HRI, particularly within education. By aligning teaching methods with
natural tendencies, personalising interactions based on personality traits, and
crafting engaging tasks, we have the opportunity to create more enriching and
enjoyable educational experiences with robots.
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