

High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues

BELL, Anthony

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/32985/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

BELL, Anthony (2022). High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues. In: British Crystallographic Association Spring Meeting, Leeds, UK, 11-14 Apr 2022. British Crystallographic Association. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

High temperature phase transitions in synthetic RbGaSi₂O₆ and RbFeSi₂O₆ leucite analogues.

A.M.T.Bell (Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK).

Leucite (KAlSi₂O₆) [1] is a tetrahedrally coordinated silicate framework mineral. Synthetic analogues of leucite can be synthesised with stoichiometries of $A^+_2B^{2+}Si_5O_{12}$ or $A^+C^{3+}Si_2O_6$, some of the silicon framework cations partially replaced by divalent (*B*) or trivalent (*C*) cations. A monovalent extraframework alkali metal (*A*) cation is also incorporated in these structures to balance the charges. Ambient temperature structures of synthetic anhydrous leucite analogues (where A = K or Rb and C = Al, Ga or Fe³⁺) all have $I4_1/a$ tetragonal structures [1-5] with **disordered** tetrahedrally coordinated sites (T-sites).

On heating these tetragonal leucites can undergo phase transitions to Ia-3d cubic. Phase transitions have been reported for KCSi₂O₆ [2, 4] and RbAlSi₂O₆ [4]. Two more $I4_1/a$ tetragonal to Ia-3d cubic phase transitions are reported after high temperature X-ray powder diffraction studies on RbGaSi₂O₆ (773K) and RbFeSi₂O₆ (673K).

- [1] Mazzi, F., et al. (1976). American Mineralogist, 61, 108-115.
- [2] Bell, A.M.T. & Henderson, C.M.B. (2020). Journal of Solid State Chemistry, 284, 121142.
- [3] Bell, A.M.T. & Henderson, C.M.B. (1994). Acta Cryst., C50, 1531-1536.
- [4] Palmer, D.C., et al. (1997). American Mineralogist, 82, 16-29.
- [5] Bell, A.M.T. & Stone A.H. (2021). Powder Diffraction, 36(4), 273–281.