

High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues

BELL, Anthony

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/32985/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

BELL, Anthony (2022). High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues. In: British Crystallographic Association Spring Meeting, Leeds, UK, 11-14 Apr 2022. British Crystallographic Association. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

High temperature phase transitions in synthetic RbGaSi₂O₆ and RbFeSi₂O₆ leucite analogues.

Sheffield Hallam University

Materials and Engineering Research Institute

A.M.T.Bell (Anthony.Bell@shu.ac.uk)

Introduction

Leucite (KAlSi₂O₆) [1] is a tetrahedrally coordinated silicate framework mineral. Synthetic analogues of leucite can be synthesised with stoichiometries of $A^+_2B^2+Si_5O_{12}$ or $A^+C^3+Si_2O_6$, with some of the silicon framework cations partially replaced by divalent (B) or trivalent (C) cations. A monovalent extraframework alkali metal (A) cation is also incorporated in these structures to balance the charges. Ambient temperature structures of synthetic anhydrous leucite analogues (where A = K or Rb and C = Al, Ga or Fe) all have $I4_1/a$ tetragonal structures [1-5] with **disordered** tetrahedrally coordinated sites (T-sites).

On heating these tetragonal leucites can undergo phase transitions to la-3d cubic. Phase transitions have been reported for $KCSi_2O_6$ [2, 4] and $RbAlSi_2O_6$ [4]. High temperature X-ray powder diffraction has been done on $RbGaSi_2O_6$ and $RbFeSi_2O_6$ leucite analogues to look for more phase transitions.

Synthesis

RbGaSi₂O₆ and RbFeSi₂O₆ were prepared from appropriate stoichiometric mixtures of Rb₂CO₃, SiO₂, and Ga₂O₃ or Fe₂O₃, each mixture was loaded into Pt crucibles. The RbGaSi₂O₆ mixture was heated to 1473K and the RbFeSi₂O₆ mixture was heated to 1673K.

Data collection and analysis

Each sample was loaded into a Pt flat plate sample holder which was inserted in an Anton Paar HTK1200N high temperature stage mounted on a PANalytical X'Pert Pro MPD. High temperature X-ray powder diffraction data, using Cu K α X-rays and a PIXCEL-1D area detector, were collected on RbGaSi $_2$ O $_6$ up to 973K and on RbFeSi $_2$ O $_6$ up to 873K.

The $I4_1/a$ tetragonal structure for RbGaSi₂O₆ [5] was used as a starting model for Rietveld refinement, Ga_2O_3 impurity [6] was included as a second phase for Rietveld refinements [7] which were done using FULLPROF [8].

The $I4_1/a$ tetragonal structure for RbFeSi₂O₆ [4] was used as a starting model for Rietveld refinement. Mössbauer Spectroscopy [9] on the RbFeSi₂O₆ sample also showed the presence of Fe₃O₄ [10], so this was included as a second phase for Rietveld refinements which were done using GSAS-II [11].

High temperature X-ray Powder Diffraction.

Figure 1 (RbGaSi₂O₆) and Figure 2 (RbFeSi₂O₆) show how the tetragonal 004 and 400 Bragg reflections converge to a single cubic 400 reflection on heating. Rietveld refinements below the transition were done using the ambient temperature 14₁/a tetragonal structures. Above the transition Rietveld refinements were done using the *la-3d* cubic structures for CsGaSi₂O₆ [5] and CsFeSi₂O₆ [3] as starting structures with Rb replacing Cs. Figure 1 shows that the RbGaSi₂O₆ transition takes place at 733K and Figure 2 shows that the RbFeSi₂O₆ transition takes place at 673K. Figure 3 shows how the lattice parameters change with temperature for both RbGaSi₂O₆ and RbFeSi₂O₆. Figures 4 and 5 show the Rietveld difference plots for RbFeSi₂O₆ at 603K and 773K. Figures 6 and 7 show VESTA [12] plots of crystal structures for RbFeSi₂O₆ at 603K and 773K, pink spheres represent Rb+ cations, blue tetrahedra represent disordered (Si,Fe)O₄ units and red spheres represent O²⁻ anions.

Table 1 - Ambient temperature lattice parameters and $I4_1/a$ tetragonal to Ia-3d cubic phase transition temperatures (T) for A+C3+Si $_2$ O $_6$ leucite analogues.

Stoichiometry	a(Å)	c(Å)	c/a	T (K)	Reference
KAISi ₂ O ₆	13.0548(2)	13.7518(2)	1.05339(3)	943	[4]
KGaSi ₂ O ₆	13.1099(4)	13.8100(4)	1.05340(6)	773-973	[2]
KFeSi ₂ O ₆	13.2036(2)	13.9545(3)	1.05687(4)	853	[4]
RbAlSi ₂ O ₆	13.2918(2)	13.7412(2)	1.03381(3)	753	[4]
RbGaSi ₂ O ₆	13.3752(6)	13.8040(6)	1.03206(9)	733	This work
RbFeSi ₂ O ₆	13.4500(15)	13.9274(7)	1.03549(17)	673	This work

Discussion

High temperature X-ray powder diffraction has been done on RbGaSi₂O₆ and RbFeSi₂O₆ leucite analogues, in both cases there are phase transitions from $I4_1/a$ tetragonal to Ia-3d cubic. Ambient temperature lattice parameters and transition temperatures are given in Table 1 for 6 different A+C3+Si₂O₆ leucite analogues. Figures 6 ($I4_1/a$ 603K) and 7 (Ia-3d 773K) show crystal structures for RbFeSi₂O₆. Note how the tetragonal framework is more collapsed [13] than the cubic framework.

Due to the smaller ionic radii [14] for K⁺ compared to Rb⁺ the KCSi₂O₆ leucite analogues have higher c/a ratios and transition temperatures than the corresponding RbCSi₂O₆ leucite analogues. The smaller alkali metal cation ionic radius for K⁺ compared to Rb⁺ means a greater framework collapse. Consequently more energy is needed to expand the framework to a less collapsed cubic structure increasing the transition temperature.

Conclusions

High temperature X-ray powder diffraction has been done on RbGaSi₂O₆ and RbFeSi₂O₆ leucite analogues. In both cases there are $I4_1/a$ tetragonal to Ia-3d cubic phase transitions. The transition temperatures are 733K (RbGaSi₂O₆) and 673K (RbFeSi₂O₆).

References:- [1] Mazzi, F., et al. (1976). Am. Mineral., 61, 108-115. [2] Bell, A.M.T. & Henderson, C.M.B. (2020). Journal of Solid State Chemistry, 284, 121142. [3] Bell, A.M.T. & Henderson, C.M.B. (1994). Acta Cryst., C50, 1531-1536. [4] Palmer, D.C., et al. (1997). Am. Mineral., 82, 16-29. [5] Bell, A.M.T. & Stone A.H. (2021). Powder Diffraction, 36(4), 273–281. [6] da Silva, M. A. F. M., et al. (2012). Journal of Physics: Conference Series 340, 1–7. [7] Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. [8] Rodríguez-Carvajal, J. (1993). Phys. B: Condens. Matter, 192, 55–69. [9] Bell, A.M.T. & Scrimshire A. (2021). In preparation. [10] Fleet, M. E. (1981). Acta Cryst. B37, 917–920. [11] Toby B.H. & Von Dreele R.B. (2013). J. Appl. Cryst. 46, 544–549. [12] Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. [13] Taylor, D. & Henderson, C.M.B. (1968). Am. Mineral., 53, 1476-1489. [14] Shannon, R. D. (1976). Acta Cryst. A32, 751–767.