Sheffield
 Hallam
 University

High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues

BELL, Anthony
Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/32985/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

BELL, Anthony (2022). High temperature phase transitions in synthetic RbGaSi2O6 and RbFeSi2O6 leucite analogues. In: British Crystallographic Association Spring Meeting, Leeds, UK, 11-14 Apr 2022. British Crystallographic Association. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

High temperature phase
 transitions in $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ leucite analogues.

 Sheffield

 Sheffield

 Hallam

 Hallam

 University

 University

 Materials and

 Materials and Engineering Engineering Research Institute Research Institute

 A.M.T.Bell (Anthony.Bell@shu.ac.uk)

 A.M.T.Bell (Anthony.Bell@shu.ac.uk)}

Abstract

Introduction Leucite $\left(\mathrm{KAlSi}_{2} \mathrm{O}_{6}\right)$ [1] is a tetrahedrally coordinated silicate framework mineral. Synthetic analogues of leucite can be synthesised with stoichiometries of $A^{+}{ }_{2} B^{2+} \mathrm{Si}_{5} \mathrm{O}_{12}$ or $A^{+} C^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$, with some of the silicon framework cations partially replaced by divalent (B) or trivalent (C) cations. A monovalent extraframework alkali metal (A) cation is also incorporated in these structures to balance the charges. Ambient temperature structures of synthetic anhydrous leucite analogues (where $A=\mathrm{K}$ or Rb and $C=\mathrm{Al}, \mathrm{Ga}$ or Fe) all have $14_{1} /$ a tetragonal structures [1-5] with disordered tetrahedrally coordinated sites (T-sites). On heating these tetragonal leucites can undergo phase transitions to la-3d cubic. Phase transitions have been reported for $\mathrm{KCSi}_{2} \mathrm{O}_{6}$ [2, 4] and $\mathrm{RbAISi}_{2} \mathrm{O}_{6}$ [4]. High temperature X -ray powder diffraction has been done on $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ leucite analogues to look for more phase transitions.

Synthesis

$\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ were prepared from appropriate stoichiometric mixtures of $\mathrm{Rb}_{2} \mathrm{CO}_{3}, \mathrm{SiO}_{2}$, and $\mathrm{Ga}_{2} \mathrm{O}_{3}$ or $\mathrm{Fe}_{2} \mathrm{O}_{3}$, each mixture was loaded into Pt crucibles. The $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ mixture was heated to 1473 K and the $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ mixture was heated to 1673 K .

Data collection and analysis

Each sample was loaded into a Pt flat plate sample holder which was inserted in an Anton Paar HTK1200N high temperature stage mounted on a PANalytical X'Pert Pro MPD. High temperature X-ray powder diffraction data, using $\mathrm{Cu} \mathrm{K} \alpha$ X-rays and a PIXCEL-1D area detector, were collected on $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ up to 973 K and on $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ up to 873 K .
The $14_{1} / a$ tetragonal structure for $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ [5] was used as a starting model for Rietveld refinement, $\mathrm{Ga}_{2} \mathrm{O}_{3}$ impurity [6] was included as a second phase for Rietveld refinements [7] which were done using FULLPROF [8].
The $14_{1} / a$ tetragonal structure for $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ [4] was used as a starting model for Rietveld refinement. Mössbauer Spectroscopy [9] on the $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ sample also showed the presence of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ [10], so this was included as a second phase for Rietveld refinements which were done using GSAS-II [11].

High temperature X-ray Powder Diffraction.

Figure $1\left(\mathrm{RbGaSi}_{2} \mathrm{O}_{6}\right)$ and Figure $2\left(\mathrm{RbFeSi}_{2} \mathrm{O}_{6}\right)$ show how the tetragonal 004 and 400 Bragg reflections converge to a single cubic 400 reflection on heating. Rietveld refinements below the transition were done using the ambient temperature $14_{1} / a$ tetragonal structures. Above the transition Rietveld refinements were done using the la-3d cubic structures for $\mathrm{CsGaSi}_{2} \mathrm{O}_{6}$ [5] and $\mathrm{CsFeSi}_{2} \mathrm{O}_{6}$ [3] as starting structures with Rb replacing Cs. Figure 1 shows that the $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ transition takes place at 733 K and Figure 2 shows that the $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ transition takes place at 673 K . Figure 3 shows how the lattice parameters change with temperature for both $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$. Figures 4 and 5 show the Rietveld difference plots for $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ at 603 K and 773 K . Figures 6 and 7 show VESTA [12] plots of crystal structures for $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ at 603 K and 773 K , pink spheres represent Rb^{+}cations, blue tetrahedra represent disordered $(\mathrm{Si}, \mathrm{Fe}) \mathrm{O}_{4}$ units and red spheres represent O^{2-} anions.

Table 1 - Ambient temperature lattice parameters and I_{1} / a tetragonal to la-3d cubic phase transition temperatures (T) for $A^{+} C^{3+} S_{2} \mathrm{O}_{6}$ leucite analogues.

Stoichiometry	$\mathrm{a}(\AA)$		$\mathrm{C}(\AA \mathrm{A})$	C / a	

Discussion

High temperature X-ray powder diffraction has been done on $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ leucite analogues, in both cases there are phase transitions from $14_{1} / a$ tetragonal to $l a-3 d$ cubic. Ambient temperature lattice parameters and transition temperatures are given in Table 1 for 6 different $A^{+} C^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ leucite analogues. Figures 6 ($14_{1} / a 603 \mathrm{~K}$) and 7 (la3d 773 K) show crystal structures for $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$. Note how the tetragonal framework is more collapsed [13] than the cubic framework.
Due to the smaller ionic radii [14] for K^{+}compared to Rb^{+}the $\mathrm{KCSi}_{2} \mathrm{O}_{6}$ leucite analogues have higher c/a ratios and transition temperatures than the corresponding $\mathrm{RbCSi}_{2} \mathrm{O}_{6}$ leucite analogues. The smaller alkali metal cation ionic radius for K^{+}compared to Rb^{+}means a greater framework collapse. Consequently more energy is needed to expand the framework to a less collapsed cubic structure increasing the transition temperature.

Conclusions

High temperature X-ray powder diffraction has been done on $\mathrm{RbGaSi}_{2} \mathrm{O}_{6}$ and $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ leucite analogues. In both cases there are $14_{1} / a$ tetragonal to la-3d cubic phase transitions. The transition temperatures are $733 \mathrm{~K}\left(\mathrm{RbGaSi}_{2} \mathrm{O}_{6}\right)$ and $673 \mathrm{~K}\left(\mathrm{RbFeSi}_{2} \mathrm{O}_{6}\right)$.

