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There is a clearly identified need for adjusting the current implemented standards and methods in the area of process 

improvement, like Six-Sigma to be aligned with technology advances in the context of Industry 4.0. Thus, this research 

aims to focus on the Six Sigma DMAIC methodology and introduce a new quality improvement cycle toward Industry 

4.0. The proposed new Six-Sigma implementation procedure is called the DMAISE (Pronunciation: də-mɛ́jz/də-mayz) 

improvement cycle, which consists of five main phases: Data Measurement, Analysis, Interpretation, Simulation and 

Enhancement. DMAISE cycle is introduced to obtain all benefits from the DMAIC while not being affected by its 

limitations that result from the lack of proper integration of technologies available through the advancements inspired by 

Industry 4.0. A questionnaire survey is developed to collect data from practitioners, experienced employees, and 

academics in the available organisations to evaluate and validate the proposed new cycle. The results demonstrated that 

the proposed cycle is considered a viable quality improvement cycle for the new challenges that arise with the Industry 

4.0/digital era and the smart technologies being developed for manufacturing environments. 
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1. INTRODUCTION 
 

Industry 4.0 is the newest industrial revolution introduced in 2011 by the Federal Ministry of Education and Research 

Germany (BMBF) to describe the trend of interconnectivity and digitalisation in manufacturing embodied in cyber-

physical systems (Kagermann et al., 2011). Industry 4.0 comes as a successor to three former industrial revolutions, all 

related to the introduction of the steam engine, mass production with the aid of electrical power and automation using IT 

and electronics (Mogos et al., 2019). It highlights the importance of new and innovative technologies being readily 

available to businesses in the twenty-first Century (Morgan 2019). Industry 4.0 has been discussed as a novel model for 

achieving intermittent manufacturing by dramatically improving mass production’s productivity through automation and 

digitisation (Tamás and Illés, 2016; Chiarini and Kumar, 2020). It represents the next step to significantly increase the 

efficiency and quality of the products; whilst offering flexibility and customisation, which is not possible with 

conventional production systems (Saad et al., 2021). It promises to offer enormous opportunities for future production, 

including modular, efficient, and intelligent manufacturing systems which allow the creation of customised products in 

a batch size of one with the same economic conditions as mass-producing them (Lasi et al., 2014; Sony and Naik, 2020). 

Industry 4.0 can significantly improve customer satisfaction by eliminating defective products and providing better 

services (Chiarini and Kumar, 2020). Unlike the conventional system, which focuses on optimising production processes, 

Industry 4.0 seeks to optimise each specific product (Valdeza et al., 2015). Since optimisation requires zero defects, 

quality management is required to achieve this goal (Lee et al., 2019). Hence, the need for integration of Industry 4.0 

technologies and concepts with continuous improvement practices to get the maximum benefit from available resources 

has been stressed in the literature (e.g., Vlachos et al., 2021; Tortorella et al., 2022; Chiarini et al., 2020; Antony et al., 

2019; Vinodh et al., 2020; Chiarini and Kumar 2020; Skalli et al., 2023). 

Six-Sigma is one of the most widely used continuous process improvement methods to achieve operational 

excellence. It was initially created for the electronics industry in the 1980s as a systematic problem-solving approach 

consisting of steps to identify problems and customer needs, reduce the likelihood of process errors, and increase 

productivity (Kwak and Anbari, 2006). Six-Sigma has since extended its importance in numerous other industries, 

including general manufacturing and service industries like governments and hospitals due to its rigid structure and step-

by-step instructions (Tjahjono et al., 2010; Antony et al., 2012). It represents the probability (or percentage) of defect-

free products in the output. A defect thereby represents every possible cause of customer dissatisfaction (Seow and 



 

Saad et al. Short Running Title 

 

2 

 

Antony, 2004). In this case, Six-Sigma describes a success rate of 99.99966% or 3.4 Defects-Per-Million-Opportunities 

(DPMO) (Li et al., 2011). This low number can be achieved by reducing variation in the process until enough products 

are within the upper and lower specification limit that is required by the customer (Paul, 1999). The final goal is the 

reduction of variance and thus higher customer satisfaction due to higher quality. As a process improvement tool, Six 

Sigma focuses on improving established processes using specific techniques such as the DMAIC cycle and examines 

quality management through advanced statistical methods (Chiarini and Kumar, 2020). The word DMAIC is the 

abbreviation of the five phases, including Define, Measure, Analyse, Improve and Control (Foster, 2007):  

• Define: In this phase, the needs and expectations of internal and external customers and the technical 

requirements of the process are stated, and the products and processes that need to be improved are identified. 

• Measure: In this phase, the expected performance of the process and the current state of the process are 

determined. Input and output variables of the process are defined, and measurement systems are evaluated. 

• Analyse: In the analysis phase, the data is analysed, and the most important input and internal factors of the 

process that affect the process outputs are identified. 

• Improve: At this phase, activities and improvements that lead to the optimisation of process outputs and the 

elimination of downtime and changes in the process are identified. 

• Control: Finally, in this phase, the acquired advancements are secured, and guidelines to prevent similar issues 

in future are provided. 

Industry 4.0 generates in-process data streams that traditional Six-Sigma approaches are not applicable in such an 

environment (Giannetti and Ransing, 2016). Six-Sigma DMAIC is limited in the scope of data collection and analysis 

due to the manual process of problem definition and measurement, restricted intelligence, and a narrow overview of 

humans overseeing the process (Ghosh and Maiti, 2014). However, the new technologies incorporated in Industry 4.0, 

such as Machine Learning and Big Data, can detect system-wide issues or untapped potential in real-time and automate 

the continuous improvement process to apply it in areas that could not be examined yet (Gupta et al., 2020). The concept 

of Industry 4.0 promises significant enhancements in process improvement due to large quantities of available data, new 

possibilities of data analytics using simulation, and advanced technologies (Tamás and Illés, 2016). Undoubtedly, this 

development will change conventional quality improvement techniques like Six-Sigma to be applied in the future. Hence, 

the main aim of this research work is to develop a new methodology called DMAISE Cycle to adjust currently 

implemented standards and methods to improve the processes using the knowledge of technologies that will be universal 

very shortly.  

This research work has been conducted at Sheffield Hallam University (SHU) by the Integrated Manufacturing, 

I4.0 & Supply Chain Management Research Group, and serves the purpose of indicating the necessary changes to the 

quality improvement tool Six Sigma and the associated DMAIC cycle when combined with the new technologies of 

Industry 4.0. The remainder of the paper is organised as follows: in the next section, the new Six-Sigma DMAISE 

improvement cycle with its concurrent processes, outputs and technologies is proposed. In section 3, the validation of the 

proposed cycle is presented. Then, the paper ends with overall conclusions and a discussion. 

 

2. THE PROPOSED SIX-SIGMA DMAISE CYCLE  
 

As mentioned above, this paper aims to reinvent the DMAIC cycle with all the advantages it offers while not being 

affected by its limitations that result from the lack of proper integration of technologies available through the 

advancements inspired by Industry 4.0. The new proposed Six-Sigma improvement cycle is named DMAISE. The word 

DMAISE is the abbreviation of the five phases of the quality improvement cycle towards Industry 4.0, which comprises: 

Data Measurement, Analyse, Interpretation, Simulation and Enhancement. A comparison and overview of DMAIC vs. 

DMAISE are illustrated in Figure 1. 
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Traditional DMAIC cycle Proposed new DMAISE cycle

1. Definition 1. Data Measurment

2. Measurement 2. Analysis

3. Analysis 3. Interpretation

4. Improvement 4. Simulation

Slow 

Adjustments

Real Time 

Adjustments

5. Control 5. Enhancement

 
Figure 1. Comparison of traditional DMAIC and proposed DMAISE cycle 

 

In the rest of this section, the proposed DMAISE cycle is explained in detail and the following colour code is used 

to facilitate the understanding of the cycle:  Every phase (blue) may consist of the number of processes (orange), decisions 

(purple) and outputs (grey) along with required technologies (red). They are introduced individually at first and then 

combined in the final DMAISE diagram. 

 

2.1 Data Measurement Phase 

 

The sequence of the proposed DMAISE cycle is started by measuring the data instead of defining the problem first. 

Through conventional manufacturing systems, data are documented on paper, while, with the recent development, 

integrated information technology with manufacturing along with ‘computerised systems utilisation’ allows machines to 

collect and save data simultaneously (Farsi and Zio, 2019). Hence, during the Data Measurement phase, as shown in 

Figure 2, the machines collect and log the data, while a Measurement System Analysis (MSA) is conducted independently 

to ensure data reliability. 
 The effectiveness of Industry 4.0 depends on the data that is collected as well as the intelligent systems that are 

used to conclude and decide what the information means. The fundamental tool enabling a cyber-physical system (CPS) 

is thus the infrastructure that allows reliable data collection in real-time (Lee et al., 2015). This data is collected internally 

and externally using many sensors and a kind of identification technology like Radio-Frequency Identification (RFID) 

and Real-time Locating Systems (RTLS) that are connected through the network commonly referred to as the Internet of 

Things (Zhang et al., 2016). This provides an accurate representation of inputs, process characteristics and outputs to 

portray the machines and processes while being tether-free and compatible with different types of data or protocols 

(Vijayaraghavan et al., 2008). Considering the amount of data that is constantly produced by this network of sensors, the 

collection and analysis using Big Data is the next critical factor to reaching a successful quality improvement process 

(Lee et al., 2014). This goes hand in hand with a reliable integration of Cloud Computing to store and access the data 

flexibly and allow easy adjustments as well as the possibility to access it from anywhere. However, it is essential to have 

a sophisticated Cybersecurity implementation ensuring that only authorised parties have access (Bagheri et al., 2015; 

Rüßmann et al., 2015). The output of this phase is a Plant Snapshot that exactly reflects the condition of every component 

in the plant at one specific moment (Lee et al., 2015). 

 

Required Technologies 

(Data Infrastructure):

1. Data Measurement

Record and Log 

the Data

Data Collection 

(Internal & 

External)

Conduct 

Measurement 

System Analysis 

(MSA)  

Plant 

Snapshot

• Sensors

• RTLS & RFID

• Internet of Things (IoT)

• Cloud Computing

• Big Data (Data Access & 

Distribution)

• Advanced Cybersecurity
 

Figure 2. Illustrates the contents of the data measurement phase including its required technologies, processes, and 

output. 

 

2.2 Analysis Phase 

 

After the data measurement, the next phase is Analysis which is critical to analyse data properly and turn it into usable 

information. To prepare for the analysis, the data must be cleaned properly to avoid noise, incomplete data sets or simply 
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correct errors that have been detected (Zhang et al.,2003). Machine Learning (ML) and Data Mining serve the purpose 

of categorising the data (Oussous et al., 2017), thus enabling the conversion from data to useable information (Lee et al., 

2015). Humans are not able to cope with the significant amount of data that is collected (Dogan and Gurcan, 2018); let 

alone analyse it in real-time. Recent developments in the area of algorithms have significantly improved the capabilities 

of ML, which can capture and process large amounts of data at high velocity (Günther et al., 2017). Newly developed 

systems must be fed with available data that is cleaned, categorised and selected. Data cleaning and categorisation are 

essential in this stage since this enables the detection of patterns using advanced statistics (Larose, 2005). Considering 

the amount of information that must be analysed, the degree of optimisation for this system to achieve a real-time data 

analysis is crucial for avoiding unintentional disruptions in the processes. This offers flexibility and responsiveness that 

cannot be achieved with current technologies. The basic extraction of information from the collected data is referred to 

as Data Mining and comprises two common techniques: descriptive and predictive data mining (Han et al., 2011). The 

descriptive type is applied for clustering and associating data that allows categorisation into groups by looking for 

common rules. The predictive type goes one step further and is used to classify these categories according to predefined 

classes representing the importance and enabling prediction (Han et al., 2011). This information can then be further 

processed and analysed to determine the dependencies of variables, Critical to Quality factors (CTQs) and Key 

Performance Indicators (KPIs). Traditionally, this was a process that involved manually selecting the measured data and 

then using statistical analysis software, brainstorming as well as cause and effect diagrams for the analysis (Srinivasan et 

al., 2016). Especially these processes are perfect examples of how the capabilities of Industry 4.0 can optimise the output 

of a Six Sigma step since they enable the automated recognition of patterns in data sets that cannot be analysed manually 

by humans (Wu et al., 2017; Teti et al., 2010). The classical statistical analysis programs are static and can therefore only 

handle a limited amount of data. Moreover, they must be told what to investigate, while humans then interpret the results 

using tools like Pareto analysis. Advanced statistical analysis, on the other hand, will be able to autonomously detect 

these patterns in a greater pool of available information and thus make it possible to achieve enhancements that nowadays 

remain undetectable. Next, by integrating the RFID and conventional Value Stream Mapping (VSM), Dynamic Value 

Stream Mapping (DVSM) is created that provides real-time information regarding the inputs and outputs of every 

machine and process (Ramadan et al., 2012). Consequently, the output of the phase is a list of confirmed root-causes for 

lower KPIs and the relationship between the identified variables. Figure 3 demonstrates the processes included in the 

adjusted Analysis phase along with the required technologies. 

  

Required Technologies 

(Analysis Capabilities):

2. Analysis

 Analyse 

Dependencies, 

CTQs and KPIs 

Create Dynamic 

Value Stream 

Mapping 

(DVSM) 

Confirmed 

Root-Causes 

& Output  

Relationship

• Machin Learning (ML)

• Data Mining Technology

• Adv. Statistical Analysis
Data Processing 

using Machine 

Learning (ML) ( 

Clean & 

Categorise Data)
 

Figure 3. Illustrates the contents of the analysis phase including its required technologies, processes, and output. 

 

2.3 Interpretation Phase 

 

The Interpretation phase in the DMAISE cycle replaces the traditional Define phase in DMAIC and is thus responsible 

for deciding which problems are going to be solved. As illustrated in figure 4, the first stage is defining the internal and 

external constraints that result from limitations of the company and resources like machines, employees and equipment 

or the suppliers, logistics, laws, etc. Consequently, these limitations outline the best achievable performance in the context 

of the company’s goals and objectives. This is followed by a comparison of this optimal condition with the status quo 

and the interpretation of the difference into necessary changes of process variables. Next, is to define target variables and 

process robustness. According to Gianetti (2017), process robustness defines the ability of a product to fulfil the 

customer’s requirements despite variances in the process input. With the amount of available internal and external data 

(e.g., usage information from customers) and advanced software capabilities, it is possible to adjust the required upper 

and lower specification limits to improve the operations capabilities (Gianetti and Ransing, 2016). This adaptation of the 

accepted tolerance improves the cost-effectiveness of the process. However, traditional models do not adequately 

represent real systems due to the ‘non-linear interactions’ (Ransing et al., 2015) between a high number of variables. 

This phase requires a self-aware Artificial Intelligence (AI) that can contextualise the information regarding production 

characteristics. In this case, it almost acts like an advanced Enterprise Resource Planning (ERP) and Master Production 

Schedule (MPS) which is equipped with human intuition and the resources of increased computational power and storage 

to cope with the available information. If it recognises any significant changes in the priorities, it will reiterate the KPIs 

that have been specified in the previous Analysis phase. Also, many researchers believe that even though automation will 

be unavoidable, some tasks will still require human intervention (Vaidya et al., 2018). This leads to the belief that it is 
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important to offer a new and improved kind of communication between humans and machines. The communication 

between humans and machines must be efficient and intuitive. The classical Human Machine Interfaces (HMI) that can 

be found on machines or ERP systems are generally receipts of an order that has been mechanically input using keyboard-

like buttons and displays feedback from the process and ways of interacting with the system on a 2D screen (Gorecky et 

al., 2014). However, due to current advancements, it is changed to advanced devices such as ‘touch interfaces, voice 

interfaces, gesture interfaces, and virtual and augmented reality glasses’ (Farsi and Zio, 2019). Many companies are now 

using Virtual Reality (VR) and Augmented Reality (AR) to offer new ways of increasing efficiency and improving 

development. Maintenance and repair can be a good example of which operator by using VR/AR glasses, would be able 

to simply monitor the machine's performance parameters and adjust it without even physically touching it (Farsi and Zio, 

2019). These technologies also decrease the need for training new employees by integrating them more effortlessly into 

new processes and training them to decrease the production ramp-up and test new procedures that rely on human actions 

digitally (Schmitt et al., 2013). At the end of the Interpretation phase, all the process goals regarding the three critical 

categories (Quality, Cost and Time) will be defined. 

 

Required Technologies 

(Contextualisation):

3 Interpretation

Compare Goals 

and Objectives 

with Current 

State

Define Target 

Variables & 

Process 

Robustness

Final 

Process 

Goals QTC

• Artificial Intelligence (AI)

• Adv. Human Machine 

Interfaces (HMI)

• Virtual Reality (VR)

• Augmented Reality (AR)
Defining the 

Internal & 

External 

Constraints

Any 

Changes
No

Yes

 
Figure 4. Illustrates the contents of the interpretation phase including its required technologies, processes and output 

 

2.4 Simulation Phase 

 

The next phase is Simulation which is key to the future of process improvement strategies (Rüßmann et al., 2015). The 

application of simulations avoids the high costs of pilot experiments due to additional training or readjustments of 

processes and machines that might not improve the output (Badakhshan et al., 2020). At the first stage of this phase, the 

simulation models under-measured data in the previous phases need to be adjusted. With the additional information 

available through the collected data and the advancements in AI as well as computation power, the difference between 

simulated models, scenarios and reality can shrink to a negligible factor. These high-accuracy simulation models are 

already being implemented in the industry and are commonly referred to as Digital Twins (Uhlemann et al., 2017), which 

is a replica of the machine and process and thus offer a very high accuracy (Rosen et al., 2015). It is a virtual 

representation of the actual physical component, product or system that includes more or less all information that mirrors 

its state and behaviour (Karanjkar et al., 2018). Digital Twins enable the processing of the machine’s behaviour and the 

consequences of interaction with their environment (Qi and Tao, 2018; Tao et al., 2017). Further advancements using AI 

might introduce self-tuning simulations that can react to changes by comparing past data with the simulation results and 

reach a very high degree of similarity (Badakhshan and Ball, 2022). This will be essential in contextualising data to 

understand consequences (Simons et al., 2017). The largest investment during the implementation phase of traditional 

Six Sigma projects is the development of new or adjusted processes that must be tested using the Design of Experiments 

(DOE) technique (Kelton, 1999). In a process that depends on many variables, it is difficult to achieve optimal conditions 

with the limited resources available without disrupting the manufacturing process. Therefore, accurate simulations that 

replicate the real system avoid the need for the required time and financial investment while being able to achieve a 

higher degree of refinement to achieve superior system optimisation (Montevechi et al., 2007). Also, instead of the 

conventional DOE the ‘retrospective DOE data mining’ can be utilised which can detect potential experimental designs 

from the huge amount of data and then draw out beneficial and meaningful information from alternative experimental 

designs (Chien et al., 2014.). After reiterating the simulation several times until a desirable outcome is achieved, the 

potential improvements of the KPIs can be analysed. Finally, risk and cost-benefit analyses are conducted to see if the 

changes are worth the trouble and have a low possibility of failing or causing other problems. If this is not positive with 

the proposed solution, further DOEs will be simulated until a satisfactory solution is achieved. The output of the 

Simulation phase is the list of optimised solutions that can be implemented through the next phase. Figure 5 shows the 

processes included in the adjusted Simulation phase along with the required technologies. 
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Required Technologies 

(Virtualisation):

4. Simulation

Conduct 

Retrospective 

DOE data mining

Identify Potential 

Improvements, 

Conduct Risk & 

Cost- Benefit 

Analysis

List of 

Optimised 

Solutions & 

Implementation

• Sophisticated Digital 

Twin

• Self-Tuning Simulation

Adjust Simulation 

Model According 

to Measured Data

Positive 

Outcomes
Yes

No

 
Figure 5. Illustrates the contents of the simulation phase including its required technologies, processes, and output. 

 

2.5 Enhancement Phase 

 

As given in Figure 6, the last phase in the DMAISE cycle is the implementation of the proposed changes that result in 

the enhancement of the process. Up to this point, the simulation results have digitally determined the variables that need 

a change in the process. Here, a fully integrated CPS, a Self-adjusting System, is required to make decisions on its own 

with enough redundancy to be considered reliable and safe. It can adjust itself autonomously using actuators according 

to commands from the supervisory system. Another option for this might be using autonomous robots that can move 

freely and can learn new skills. Traditional robots require tedious programming to achieve this level of accuracy and have 

limited capabilities when working with humans (i.e., high safety precautions). New developments in visual and tactile 

systems will enable autonomous and collaborative robots to overcome these barriers (Bahrin et al., 2016). Subsequently, 

newly generated data need to be compared with simulation data constantly and check the similarity. If there is a higher 

degree of variance than expected (for example >1%), the simulation model should be adjusted accordingly to represent 

the system after the changes, and the process of DOEs will be repeated. The final stage in this phase is the documentation 

of the manufacturing process versions with the implemented changes, deviations and remaining information that might 

be useful in the future.  

 
Required Technologies 

(Decentralised Decision 

Making):

5. Enhancement 

Compare Newly 

Generated Data 

with Simulation 

Data

Lessons 

Learned, 

Training Plan 

& Process 

Control

• Self-Adjusting System

• Actuators

• Advanced Autonomous 

Robots

• Collaborative Robots

Adjust the 

Machines & 

Processes with 

Ongoing 

Measurement

High 

Similarity
Yes

Transition from 

Project to Process 

Owner

No

 
Figure 6. Illustrates the contents of the enhancement phase including its required technologies, processes, and output. 

 

All of these phases will still have to be done in the given sequence, however, the goal for the speed of recognising 

changes and implementing improvements is to reach real-time adjustments and thus improve competitiveness and 

flexibility to a level that is not possible today. The final DMAISE proposed cycle presented in Figure 7 includes step-by-

step instructions on how to detect and eradicate inefficiency using the latest technologies. 
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Figure 7. Illustrates the contents of the DMAISE cycle, including its phases, required technologies, processes and 

output of each phase. 

3. VALIDATION OF THE PROPOSED DMAISE CYCLE 
 

An empirical research study using a questionnaire survey was utilised in this paper to collect the required data and validate 

the proposed cycle. The questionnaire was designed for data collection purposes from academics and industrialists who 

were recognised and selected carefully by the research team as professional experts in this research area. The 

questionnaire was divided into two sections. The first section consisted of items related to the respondent’s background. 

The second section of the questionnaire consisted of items related to evaluating the suitability of the proposed Six-Sigma 

DMAISE cycle within Industry 4.0. 

 

3.1 Data Collection  

 

Data was collected through an electronic survey. A total of 70 questionnaires were sent out to professional experts, and 

thereby 53 responses were received in the allotted time, the response rate (i.e., 76%) is considered to be quite high and 

acceptable (Saunders et al., 2009; Khamkham, 2017). The collected data were reviewed for completeness and correctness, 

and no significant errors were found. Therefore, the data were loaded into SPSS 24 software and subsequently, several 

descriptive statistical analyses were conducted. Next, the applicable statistical analysis was performed to check the 

reliability and validity of the proposed DMAISE cycle. The details of the participant's profiles are presented in Table 1: 

• This table shows that from the total respondents, who returned the filled questionnaire, 30% were Quality 

Engineers, followed by Academics who are experts in six-sigma implementation in the manufacturing 

environment, and Quality Managers with 19% each. The percentage of participants certified as green/black belt 
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was 11%, and Directors, Project Leaders, and Quality Coordinators were recorded as 9%, 8%, and 4%, 

respectively.  

• Moreover, 45% of the respondents have over ten years of work experience, 60% of the respondents have work 

experience of fewer than five years, and just 12% were between 6 and 10 years of experience.  

• Table 1 also demonstrates the classification of the participants' sectors, where 28% of the respondents 

belonged to the Automotive sector, 24% were from the Aerospace sector, and 19 % belonged to higher 

education. The remaining 29% were others, including the Chemical, Customer goods, Electronics, Energy and 

Materials industries.  

• Finally, as shown in table 1, the majority of the 53 analysed participants worked at large companies with more 

than 1,000 employees (55%), followed by 28% working for a firm size of 1-249 employees and 17% from a 

firm size of 250-999 employees.  

 

Table 1. Participants’ profiles 

 
Characteristics  Percentage (%) 

Job title 

 

Quality Engineers 

Academics 

Quality Managers 

Green/Black Belts 

Directors,  

Project Leaders  

Quality Coordinators 

30 

19 

19 

11 

9 

8 

4 

Work experience 

(in years) 

0-5 

6-10 

+10 

43 

12 

45 

Industrial sectors Automotive 

Aerospace 

Chemical & Pharma 

Consumer Goods 

Education  

Electronics 

Energy 

Materials 

28 

24 

6 

4 

19 

6 

7 

6 

Firm size (number of employees) 1-249 

250-999 

+1000 

28 

17 

55 

 

 

 

3.2 Reliability and Validity Analysis  

 

In this study, Cronbach's Alpha was used to measure the internal consistency of the instruments used to evaluate the 

proposed cycle. Typically, Cronbach's Alpha should be greater than 0.7 to consider the items being measured are 

consistent and reliable (Field, 2013; Khamkham, 2017). Therefore, the test was employed for  the following seven items 

to check both the consistency of the questionnaire and also how these items are closely related to the proposed DMAISE 

cycle:  

a) the evaluation of the Required Technologies (RT),  

b) the evaluation of the Proposed New Phases (PNP),  

c) the evaluation of the content of the Data Management Phase (DMP),  

d) the evaluation of the content of the Analysis Phase (AP),  

e) the evaluation of the content of the Interpretation Phase (IP),  

f) the evaluation of the content of the Simulation Phase (SP), and finally  

g) the evaluation of the content of the Enhancement Phase (EP).  

The results in Table 2 demonstrate that the coefficient alpha is 0.848 and the standardised item alpha is 0.847, which 

is greater than 0.7, thus, all the items are consistent and reliable. 
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Table 2. Reliability test 

 
Cronbach's Alpha Cronbach's Alpha Based on Standardised Items No of Items 

.848 .847 7 

 

In this study three different types of validity tests were employed including content validity, construct validity and 

criterion-related validity. In this research, the items of the questionnaire that have been used to evaluate DMAISE cycles 

and the 20 technologies associated with the DMAISE cycle have content validity since they were derived from an 

extensive review of the literature (Flick, 2018; Khamkham, 2017). In addition, Chi-Square goodness of fit was carried 

out to evaluate the construct validity of items that have been used for evaluating the proposed DMAIS cycle. Additionally, 

Exploratory Factor Analysis (EFA) was employed to extract the new factor structure and examine the construct and 

criterion validity of the items that have been used to evaluate the associated technologies of the proposed cycle.  

 

3.2.1 Chi-Square Goodness of Fit Test  

 

Chi-square goodness of fit was used to check the validity of the proposition items that were used to evaluate the proposed 

DMAISE cycle to ensure that the items measure what was supposed to be measured. Chi-square goodness of fit is used 

to measure to what extent the observed values are statistically significantly different from the expected values (Flick, 

2018; Khamkham, 2017); the corresponding P value is significant if the P value is ≤ 0.05 (Bryman and Cramer, 2005). 

Therefore, the results in Table 3 illustrate that P-value (i.e., Asymp. Sig) is less than 0.05 for all the items used to evaluate 

the proposed DMAISE cycle. This means that the results are significantly different from the actual observed values and 

expected values of all the considered items used to evaluate the proposed cycle. That can also be an indication of the 

possibility of publishing the results and generalising from the current research sample to the entire population (Balck, 

2011; Alzuabi, 2015; Khamkham, 2017). 

 

Table 3. Test Statistics 

 
 Evaluation 

of the RT 

Evaluation 

of the PNP 

Evaluation of 

the DMP 

Evaluation 

of the AP 

Evaluation of 

the IP 

Evaluation 

of the SP 

Evaluation 

of the EP 

Chi-Square 29.170a 24.642a 47.283a 40.491a 37.094a 30.302a 35.774a 

df 4 4 4 4 4 4 4 

Asymp. Sig. .000 .000 .000 .000 .000 .000 .000 

 

3.2.2 EFA Test  

 

EFA was undertaken to identify the relationship (i.e., correlation) between the associated technology of the DMAISE 

cycle and DMAISE phases, determining the total number of latent factors represented on the survey and thus confirming 

the construct validity. Latent factors refer to the items of the questionnaire that have been used to evaluate the importance 

of 20 associated technologies with respect to the DMAISE cycle.  

Construct validity is an effective technique for checking the unifactoriality of each factor (Thompson and Daniel, 

1996; Khamkham, 2017). It is a measurement technique to examine whether the instrument's scales act like the attributes 

being measured. Therefore, to identify the construct validity, the associated technologies must be evaluated by EFA. This 

is a crucial test used to measure the construct validity of each associated technology and determine the instrument's 

appropriateness (Pallant, 2010; Khamkham, 2017). Field (2013) stated that one of the main usages of factor analysis is 

to measure and understand the structure of the latent factors. Additionally, Williams et al. (2012) and Khamkham (2017) 

expressed that EFA is a statistical technique that describes the variability among observed correlated variables to explore 

and verify a set of correlation coefficients in three steps; namely, reducing a large number of variables into a smaller 

number, establish underlying dimensions between the measured variables and latent construct and hence provide 

construct validity evidence for self-reporting scales.  

The EFA was undertaken with the use of SPSS 24 through the data-reduction factor analysis method to examine 

the construct validity of each associated technology of the DMAISE cycle in this analysis. The more variation explained 

by the factors resulting from factor analysis, the more powerful the instrument measure what is supposed to be measured 

(Mallak et al.,1997; Khamkham, 2017). Moreover, the Principal Component Analysis (PCA) method was employed to 

extract the factors. The PCA is a vital extraction method used in the literature to produce scale unifactoriality or 

unidimensionality (Williams et al., 2012; Khamkham, 2017). 

However, Khamkham (2017) claimed that a sample size of more than 100 is required to carry out a good factor 

analysis, ‘many arbitrary ‘‘rules of thumb’’ exist that specify the required number of cases, but there is no absolute 

scientific answer to this issue’ (Wong and Aspinwall 2005, 71). Thus, the authors believe that performing factor analysis 

was better than not performing any to indicate the construct validity. 
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The purpose of extraction is to reduce many items into factors (Williams et al., 2012; Khamkham, 2017). To attain 

scale dimensionality and simplify the factor solution, ideally, multi-procedures should be used to analyse factor analysis 

(Thompson and Danial, 1996; Khamkham, 2017). In this regard, the most common procedures used by researchers to 

produce unidimensionality are:   

• Factorability test: To check the appropriateness of data for obtaining factor analysis, the Kaiser-Meyer-Olkin 

test (KMO) is used to assess the suitability of the data set for factor analysis, this test is calculated based on the 

correlation matrix, where the higher correlation among the variable, the more suitable of data for performing 

factor analysis test (Field, 2013). Moreover, Barlett’s test of sphericity; is used to check if the data have equal 

variation among the variables to ensure that there is redundancy between observed variables. Therefore, KMO 

with a value greater than 0.6 is satisfactory for factor analysis, whereas Barlett’s test of sphericity should be 

significant and P-value ≤ 0.05 (Williams et al., 2012; Khamkham, 2017). 

• Factor extraction: PCA method with the Eigenvalue method is a vital method to identify the retained factors. 

The mathematical formula for calculating factors from the covariance matrix is taken from Anton and Rorres 

(2013 𝐴𝑥 =  ⅄𝑥, Where; ⅄ = Eigenvalue and A = the covariance matrix. Any Eigenvalue with a value greater 

than (1.00) is considered to be acceptable and can be returned (Williams et al., 2012; Khamkham, 2017). 

• Factor rotation: the Direct Oblimin technique is a method used for producing more correlated factors; the test 

provides patterns of loading in a manner that is easier to interpret (Williams et al., 2012; Khamkham, 2017). In 

this regard, if the factor loading is greater than 0.3, is considered to be a minimal level, greater than 0.4 is 

moderate and highly significant if more than 0.5 (Hair et al., 2006). 

Hence, the first step is to examine the suitability of the data for factor analysis. The results in Table 4 demonstrated 

that KMO is 0.775 and the Sphericity test is significant. The KMO with a value greater than 0.6 is adequate for factor 

analysis, whereas Barlett’s test of sphericity should be significant and P-value ≤ 0.05 (Williams et al., 2012; Khamkham, 

2017). 

Table 4. KMO and Bartlett's Test 

 
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .775 

 

Bartlett's Test of Sphericity 

Approx. Chi-Square 500.385 

Df 190 

Sig. .000 

 

Second, in factor extraction, the results of the primary solution obtained from the first trial were fairly unsatisfactory 

where the results of PCA extracted five Latent factors with Eigenvalue exceeding 1.00 (Williams et al., 2012; Khamkham, 

2017). However, the results of the component matrix in Table 5 showed that most of the items loaded pretty strongly on 

only the first factor with a correlation value of more than 0.3, whereas most of the items loaded on the other factors are 

very weak and part of them are loaded negatively, which is resulted to retain only one factor for the next extraction run 

to aid the interpretation the view supported by (Pallant, 2010). Therefore, as can be seen from the results in Table 6, for 

the second run is extracted one latent factor that is eligible for being interpreted and labelled in a further step. Since only 

one factor is retained, factor rotation cannot be performed, and components matrix correlation can be used to interpret 

the structure of the latent factor obtained (Pallant, 2010; Khamkham, 2017). Hence, the results from the component 

matrix shown in Table 5 revealed that the entire items of the associated technologies are strongly correlated with the 

latent factor with correlation values ranging from 0.782 to 0.333. As it can be seen that five items are highly correlated 

with the latent factor, which are IoT, self-adjusting system, self-tuning simulation, Advanced Autonomous Robots and 

Advanced Cybersecurity, with a correlation value of more than 0.7. These items are considered the most vital 

technologies of Industry 4.0 associated with the DMAISE improvement cycle. Consequently, the latent factor obtained 

can be labelled as; the most significant key driver for implementing the DMAISE cycle within Industry 4.0, where the 

latent factor with its correlated items has a significant impact on the implementation process of the DMAISE cycle 

developed in this study. Moreover, the latent factor explained 38.059% of the variances (see Table 6). 

Therefore, the survey instruments of the DMAISE cycle’s associated technologies are validated since the entire 

items correlated strongly with one latent factor with high loading greater than 0.33 as well as the internal consistency of 

the latent factor was tested and found 0.94, which is greater than 0.7 (See Table 7). Thereby, the associated technologies 

of the DMAISE cycle are statistically considered significant and reliable. 
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Table 5. Components matrix 

 

Evaluation of the important technologies of the DMAISE 

cycle 

Component 

1 2 3 4 5 

Sensors .336 .171 .132 .685 .222 

RFID .627 .301 .230 .034 .120 

Internet of Things (IoT) .782 .110 .055 .295 .199 

Cloud Computing .608 .259 .361 .221 .178 

Big Data (Data Access & Distribution) .635 .174 .330 .274 .233 

Advanced Cybersecurity .699 .115 .086 .232 .156 

Advanced Statistical Analysis .333 .332 .519 .166 .368 

Data Mining  .444 .394 .153 .034 .474 

Machine Learning (ML) .648 .331 .149 .205 .071 

Actuators .501 .192 .061 .059 .472 

Artificial Intelligence (AI) .654 .255 .127 .345 .138 

Advanced Human-Machine Interface .492 .065 .522 .234 .303 

Augmented Reality (AR) .590 .595 .032 .118 .024 

Virtual Reality (VR) .632 .557 .295 .018 .081 

RTLS .662 .385 .064 .089 .017 

Sophisticated Digital Twin .616 .211 .308 .238 .053 

Self-tuning Simulation .740 .064 .172 .180 .232 

Advanced Autonomous Robots .704 .335 .245 .043 .075 

Self-adjusting System .762 .238 .016 .256 .013 

Collaborative robots .627 .038 .183 .030 .263 

Extraction Method: Principal Component Analysis. 

a. 5 components extracted (i.e., Latent factors extracted). 

 

Table 6. Factors extraction for the retained factor 

 

Total Variance Explained 

Latent factor 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 7.612 38.059 38.059 7.612 38.059 38.059 

2 1.755 8.776 46.835    

3 1.237 6.185 53.020    

4 1.162 5.811 58.832    

5 1.052 5.261 64.092    

6 .948 4.740 68.833    

7 .913 4.565 73.398    

8 .822 4.108 77.506    

9 .727 3.634 81.140    

10 .629 3.146 84.285    

11 .539 2.695 86.980    

12 .516 2.580 89.561    

13 .476 2.381 91.942    

14 .413 2.063 94.005    

15 .352 1.760 95.765    

16 .243 1.216 96.981    

17 .199 .994 97.975    

18 .180 .900 98.875    

19 .140 .702 99.577    

20 .085 .423 100.000    

       Extraction Method: Principal Component Analysis 
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Table 7. Component matrix of the factor retained. 

 
 Component Latent factor 

1 

Cronbach alpha test of the latent factor .94 

 Internet of Things (IoT) .782 

 Self-adjusting System .762 

 Self-tuning Simulation .740 

 Advanced Autonomous Robots .704 

 Advanced Cybersecurity .699 

 RTLS .662 

 Artificial Intelligence (AI) .654 

 Machine Learning (ML) .648 

 Big Data (Data Access & Distribution) .635 

 Virtual Reality (VR) .632 

 Collaborative robots .627 

 RFID .627 

 Sophisticated Digital Twin .616 

 Cloud Computing .608 

 Augmented Reality (AR) .590 

 Actuators .501 

 Advanced Human-Machine Interface .492 

 Data Mining Technology .444 

 Sensors .336 

 Advanced Statistical Analysis .333 

Extraction Method: Principal Component Analysis. 

a. 1 components extracted (i.e., latent factor extracted) 

 

4. CONCLUSION AND DISCUSSION 
 

In the current competitive world, manufacturing companies face diverse competition characterised by changing customer 

expectations, intense competition, globalisation, financial crisis, and economic downturn. Under these challenging 

environments, for companies to be competitive, they must constantly adapt to the latest technologies and processes to 

maintain the sustainability of the process. I4.0 is the latest advancement in the industrial process, which has been 

presented as a solution to ensure the productive sector's success in the digital era but must be aligned with organisational 

process improvement to guarantee such sustainability. Hence, the focus of this research was on the Six-Sigma DMAIC 

methodology to introduce a new quality improvement cycle toward Industry 4.0. 

 

4.1 Contribution to the Body of Knowledge  

 

To the best of our knowledge, this is the first paper that proposed a new Six-Sigma improvement cycle within Industry 

4.0 to incorporate the Six-Sigma DMAIC advantages and Industry 4.0 capabilities (e.g., technologies) in a single 

framework. In this paper, the impact of the digital era on the implementation of the Six-Sigma DMAIC cycle was studied 

and led to the development of a new implementation cycle called the ‘DMAISE Cycle’.  

The DMAISE cycle consists of five main phases, which are Data Measurement, Analysis, Interpretation, Simulation 

and Enhancement. The process steps and outcomes along with associated technologies have been defined in detail. A 

questionnaire was developed to collect opinions from practitioners, researchers and managers who are experts in 

implementing Six-Sigma in their organisations to validate the proposed cycle.  

 

4.2 Contribution to Practice 

 

Since 2011, when Industry 4.0, the newest industrial revolution, was announced in Hannover, this movement has started 

and expanded from some theoretical concepts to real-world applications worldwide. The considerable amount of data 

generated from Industry 4.0 is essential for the Six-Sigma implementation as it is a data-driven approach to continuous 

improvement.  Hence, there is an identified need for the integration between both Six-Sigma and Industry 4.0 to enable 

practitioners to collect and analyse data in real-time and propose solutions to cope with uncertainties in the workplace. 

The proposed DMAISE cycle not only can be considered a viable quality improvement methodology for the new 

challenges that arise with Industry 4.0 and its technologies but also is valuable for industrial organisations and can lead 

to improving the quality system and attaining high operation performance at a faster rate to cope with the amount of data 

generated in today’s digital era. 
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4.3 Impact on Society and Education  

 

Clearly, society doesn’t acquire the required skills to cope with the application of digital technologies in Six-Sigma 

organisations. There is a two-dimensional problem in this regard: neither the Six-Sigma practitioners are fully aware of 

digital technologies and data analytics, nor the digital professionals are entirely knowledgeable about the Six Sigma 

principles. This proves the need to update Six Sigma practitioners and digital professionals on Six Sigma and I4.0. 

Universities should also provide specialised courses to cover Six-Sigma and I4.0 and their integration; the research team 

of this paper have already started this mission within the community. 

 

4.4 Limitations and Future Research 

 

As with any study, this research work has some shortcomings. However, these shortcomings can be a route and map for 

future research. It would be interesting and necessary to investigate whether the traditional Six Sigma tools can still be 

used in the new cycle or if there is a need to identify new tools and techniques that can be utilised in the proposed cycle. 

In addition, the DMAISE cycle is now at a stage of development that requires detailed industrial evaluation to identify 

its risks, opportunities and critical success factor with regard to the industrial performance of enterprises before being 

tested in the real environment. 
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