

Antimicrobial Fe2O3-CuO-P2O5 glasses

MITCHELL, Alexandra L., LEE, Sung Hoon, MCENROE, David J., NULL, Eric L., STERNQUIST, Daniel A., HUFZIGER, Kathryn A., RICE, Brian J., SCRIMSHIRE, Alex, BINGHAM, Paul http://orcid.org/0000-0001-6017-0798 and GROSS, Timothy M.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/32554/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

MITCHELL, Alexandra L., LEE, Sung Hoon, MCENROE, David J., NULL, Eric L., STERNQUIST, Daniel A., HUFZIGER, Kathryn A., RICE, Brian J., SCRIMSHIRE, Alex, BINGHAM, Paul and GROSS, Timothy M. (2023). Antimicrobial Fe2O3-CuO-P2O5 glasses. Scientific Reports, 13 (1): 17472.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Supplementary Information

Title:	Antimicrobial Fe ₂ O ₃ -CuO-P ₂ O ₅ glasses
Authors:	Alexandra L. Mitchell ^{1*} , SungHoon Lee ² , David J. McEnroe ¹ , Eric L. Null ¹ , Daniel A. Sternquist ¹ , Kathryn A. Hufziger ¹ , Brian J. Rice ¹ , Alex Scrimshire ³ , Paul A. Bingham ³ , Timothy M. Gross ¹
Author Affiliations:	¹ Corning Incorporated, 1 Riverfront Plaza, Corning, NY 14831, USA.
	² Corning Technology Center Korea, Corning Precision Materials Co., Ltd., 212 Tangjeong-ro, Asan, Chungcheongnam-do 31454, Republic of Korea.
	³ Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, United Kingdom.
	*Corresponding author's email: <u>mitchellal@corning.com</u>

Supplementary Table 1. FeCuP glass compositions used for the AIMD simulations, taking oxidation state into account. The Fe content for glass #6 was lowered and P content raised compared to experimental values so that the composition could be distinguished from glass #5.

# Atoms	1	2	3	4	4	5	6	
	Not Simplified		Simplified		Not Simplified	Simplified		
	(No Fe)		(All Fe as Fe	0)	(FeO & Fe ₂ O ₃)	(All Fe as FeO)		
Р	44	44	44	44	55	44	48	
Fe	0	2	4	6	9	4	2	
Cu	24	20	22	20	25	20	20	
0	128	128	128	128	163	128	136	
Sum	196	194	198	198	252	196	206	
O/P Ratio	2.91	2.91	2.91	2.91	2.96	2.91	2.83	

Supplementary Table 2. FeCuP glass compositions (Series A = Glasses #1-#4 and Series B = Glasses #4-#6)

Analyzed composition (mol%)	1	2	3	4	5	6
P2O5	46.4	46.1	45.3	44.7	47.5	49.4
Fe ₂ O ₃	0.0	4.3	8.7	13.1	9.1	8.8
CuO	53.2	49.4	45.3	41.2	42.2	40.5
SiO ₂	0.5	0.3	0.7	1.0	1.2	1.3

Supplementary Table 3. Analyzed atom ratios in bulk glasses and in the Day 5 solution showing that about half the expected P was released during leaching. Data in 3a is normalized to Cu (as the largest component of the leachate) and in 3b is normalized to P (as the glass former).

Table 3a				
	Init	ial	Day 5 S	olution
Glass #	Fe/Cu	P/Cu	Fe/Cu	P/Cu
1	0.00	1.74	0.00	0.76
2	0.17	1.86	0.15	0.89
3	0.38	2.00	0.30	0.87
4	0.64	2.17	0.51	1.00
5	0.43	2.25	0.41	1.05
6	0.44	2.44	0.37	1.16

Table 3b					
	In	itial	Day 5 Solution		
Glass #	Fe/P	Cu/P	Fe/P	Cu/P	
1	0.00	0.57	0.00	1.32	
2	0.09	0.54	0.17	1.13	
3	0.19	0.50	0.35	1.15	
4	0.29	0.46	0.51	1.00	
5	0.19	0.44	0.39	0.96	
6	0.18	0.41	0.32	0.87	

Supplementary Table 4. The center shifts (CS) and quadrupole splitting (QS) obtained from room temperature Mössbauer spectra for Fe²⁺ and Fe³⁺ ions. Redox ratios were calculated assuming the room temperature recoil-free fraction ratio $f(\text{Fe}^{3+}) / f(\text{Fe}^{2+}) = 1.3$.

	Glass #2		Glas	s #3	Glass #4		Glass #5		Glass #6	
Center Shift (mm s ⁻¹)	0.40	1.33	0.44	1.20	0.44	1.25	0.45	1.22	0.48	1.27
Quadropole Splitting (mm s ⁻¹)	0.65	2.27	0.62	2.52	0.82	2.28	0.57	2.33	0.65	2.25
$\mathrm{Fe}^{2+}/\Sigma\mathrm{Fe}$ (%)	58	42	53	47	35	65	40	60	45	55
Assignment	(III)	(II)	(III)	(II)	(III)	(II)	(III)	(II)	(III)	(II)
Reduced X ²	0.621		0.698		0.783		0.595		0.5	94

% Bond Type	1	2	3	4	4	5	6
	Not Simplified		Simplified		Not Simplified	Simp	lified
	(No Fe)	(4	All Fe as FeO))	(FeO & Fe2O3)	(All Fe as FeO)	
Р–О–Р	37.5 ± 0.0	38.6 ± 1.2	36.9 ± 0.7	36.1 ± 0.7	35.4 ± 1.6	37.5 ± 0.8	37.2 ± 0.7
P–O–Fe, F	e	0.2 ± 0.3	0.2 ± 0.3	1.3 ± 0.8	1.6 ± 0.5	0.5 ± 0.4	0.2 ± 0.4
P–O–Fe		6.9 ± 2.8	13.6 ± 1.9	18.6 ± 1.9	18.8 ± 2.7	13.1 ± 2.5	6. 5±1.4
Fe-O-Fe		0.5 ± 0.7	1.1 ± 0.4	1.3 ± 0.9	2.5 ± 0.0	0.6 ± 0.9	0.2 ± 0.4
Fe-O-x		0.8 ± 0.6	0.2 ± 0.3	0.2 ± 0.3	0.4 ± 0.5	0.9 ± 0.4	2.5 ± 0.4
Р–О–х	62.5 ± 0.0	53.1 ± 0.6	48.1 ± 1.4	42.7 ± 0.9	41.3 ± 0.9	47.3 ± 1.4	53.5 ± 0.7
Sum	100	100	100	100	100	100	100

Supplementary Table 5. AIMD results corresponding to data shown in Figure 5.

Supplementary Figure 1. XRD data for glass #4 showed low levels of crystallinity.

Supplementary Figure 2. Room temperature ⁵⁷Fe Mössbauer spectra and fits for glasses **a**) #2, **b**) #3, and **c**) #4 (top to bottom), with CS relative to α-Fe.

Supplementary Figure 3. Average coordination number for oxygen, which links neighboring P- and Fe-polyhedra as a function of glass #. Values were determined by *ab-initio* molecular dynamics simulations for the analyzed compositions.

Supplementary Figure 4. The amount of leached a) Fe and b) P as a function of Fe₂O₃ content (mol%).