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Abstract
Sports concussions are a public health concern. Improving helmet performance to reduce
concussion risk is a key part of the research and development community response. Direct and
oblique head impacts with compliant surfaces that cause long-duration moderate or high linear
and rotational accelerations are associated with a high rate of clinical diagnoses of concussion.
As engineered structures with unusual combinations of properties, mechanical metamaterials
are being applied to sports helmets, with the goal of improving impact performance and
reducing brain injury risk. Replacing established helmet material (i.e. foam) selection with a
metamaterial design approach (structuring material to obtain desired properties) allows the
development of near-optimal properties. Objective functions based on an up-to-date
understanding of concussion, and helmet testing that is representative of actual sporting
collisions and falls, could be applied to topology optimisation regimes, when designing
mechanical metamaterials for helmets. Such regimes balance computational efficiency with
predictive accuracy, both of which could be improved under high strains and strain rates to
allow helmet modifications as knowledge of concussion develops. Researchers could also share
mechanical metamaterial data, topologies, and computational models in open, homogenised
repositories, to improve the efficiency of their development.
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1. Introduction

Sporting concussions are prevalent and recognised as a pub-
lic health concern [1–5]. Mechanical metamaterials are engin-
eered structures with combinations of mechanical properties
that are not possible in the individual materials they are made
from [6–15]. They are suggested as options to improve hel-
met impact performance (e.g. [16–33]). In helmets, mechan-
ical metamaterials can be tailored to reduce linear and rota-
tional acceleration, thought to be associated with the clinical
diagnosis of concussion [16–33].

Helmets are an established mechanical intervention for
reducing head injury risk. They are considered effective at
preventing severe head injury (e.g. skull fracture), but less
so for concussion [34–42]. While there are many mechanical
metamaterials reviews [14, 43–49], including those on pro-
tective equipment [50, 51], as well as some on general hel-
met materials (e.g. [52]), there is not a published review of
mechanical metamaterials for sports helmets. Here, we formu-
late the current challenges relating to helmet development, and
summarise the breadth of relevant mechanical metamaterials
research. Finally, we include perspectives on opportunities and
requirements for helmet development, focusing on reducing
concussion risk.

Concussions can cause short-term functional impairments
and long-term health problems [53, 54]. They are typically
considered a mild traumatic brain injury (TBI) [55–57], and
are part of the larger family of TBI. Concussion injuries can
be caused either by a direct blow to the head, or an impact to
the body that causes head acceleration (e.g. via. whiplash) [2,
58]. Symptoms of concussion, such as those related to phys-
ical, cognitive, and emotional health, usually resolve within
two weeks [2, 3, 53, 59–61], but can last longer [62, 63].
Concussions do not typically cause detectable structural dam-
age to the brain [2, 62, 64], so they are challenging to diagnose
and manage.

A history of concussions [3, 54, 62, 65] or repetitive sub-
concussive head impacts [53, 62, 66] are associated with
microstructural changes in the brain, and short or long-
term functional, physiological, and neurological changes.
Reported consequences include reduced quality of life [67],
and increased risk of psychiatric disorders [4, 53, 60, 66,
68, 69], neurodegenerative disorders [53, 60, 66, 70], and
suicide [71].

Rugby, American football, and ice hockey have the highest
reported concussion rates in mainstream sports [41, 72].
Concussions are also of concern in other sports, including
association football [73–76], lacrosse [72, 77], snow-sports
[34, 78–82], cycling [27, 83–85], water-sports [86], and rock
climbing [87]. Strategies to reduce concussion risk, such as
rule changes and helmet developments, have been introduced
to various sports, with limited success [35, 37, 38, 40, 42, 83,

88, 89]. There has also been notable investment by govern-
mental agencies [90, 91], and charitable organisations [92, 93],
in concussion research and related technology development
over the past two decades.

Team sports are often played in environments that can
be controlled and regulated [41, 72], unlike outdoor sports
such as cycling, snow-sports, water-sports, and climbing
[27, 34, 78–87]. In many mainstream sports, strategies such as
promoting helmet use have had limited effects on concussion
rates [34, 37, 39–42, 72, 79, 82, 94]. Factors affecting reported
concussion rates are multifaceted, so identifying the effect of
interventions is challenging.

Risk factors for concussion include impact surface shape
and stiffness, and impact speed, energy, direction, and location
[35, 37, 38, 40, 42, 83, 88, 89, 95]. Ice hockey presents an
interesting case for helmet development, as it includes vari-
ous diverse impact types (e.g. high-speed puck, rigid ice and
boards, and collisions between players and their equipment—
which are considered compliant) [96, 97]. The introduction
and regulation of ice hockey helmets have helped to nearly
eliminate serious head injuries, particularly skull fractures [37,
38]. Despite these developments, and aswith othermainstream
sports [37, 39–42, 72], concussion rates in ice hockey have
been steadily increasing [37, 39–42, 72]. Most ice hockey
concussions (93%) are caused by collisions between players
(i.e. compliant surfaces) [37, 63, 88, 96–99], while the remain-
ing 7% are from falls onto ice [97]. About two-thirds of players
indicate they would continue to play even if they thought they
had sustained a concussion [100]. This attitude to concussion
likely results in underreporting [37, 39, 41, 101].

There is an ongoing debate over different possible concus-
sion mechanisms [89, 102–105]. It is generally agreed that the
clinical condition resulting from an injury associated with dia-
gnosed concussion is caused by excessive, or overly rapid, tis-
sue deformation [102]. Such tissue deformation can be caused
by skull deformation [89, 106, 107], movement of the brain
within it [102, 104, 106, 108], and by pressure gradients [106].
Most closed head injuries (non-fracture) follow head acceler-
ations that damage brain tissue [104, 109–112]. During linear
(radial) impacts, injury can be caused by the brain being forced
against the faster-moving skull [89, 113, 114]. During head
rotation, loose coupling can damage connective blood vessels
and neurons [102, 104, 106, 114]. Linear and rotational head
accelerations are likely to be present during head impacts [103,
110, 115, 116], and helmets should aim to limit both.

2. Measures of concussion risk

Helmets are typically designed to decrease the various meas-
ures thought to contribute to head injury risk. Peak linear
acceleration (PLA) is thought to contribute to severe injuries
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such as skull fractures, and concussions [109, 115, 117–121].
The Wayne state tolerance curve, derived from animal and
cadaver tests, combined linear acceleration and duration when
assessing injury risk [122, 123]. Further threshold curves
(e.g. Gadd severity index [124] and head injury criterion
[125]) integrate acceleration over a portion of the impact
duration, with a weighting factor for high accelerations
[95, 109, 125–142].

Peak rotational acceleration (and velocity) are commonly
considered asmeasures of concussion risk [109, 120, 127, 137,
143–156]. Various measures of head injury risk use rotational
kinematics (e.g. the rotational injury criterion [157] and brain
injury criterion (BrIC) [158, 159]). The generalized accelera-
tion model for brain injury tolerance [160] and head impact
power [161–163] combine linear and rotational kinematics,
while the weighted principal component score also includes
impact location [55, 164].

Numerical brain trauma models have been developed (e.g.
[114, 165–168]). These models use measured kinematics as
input variables to predict brain deformation metrics, such
as principal strain, cumulative strain damage, or pressure
[169–172]. Modelling the material properties of the brain is
challenging, and care must be taken to ensure meaningful
results [173].

In-field measurements with sensors, following validation
(typically against video footage), can detect and character-
ise actual sporting head impacts [73, 174]. These sensors can
be attached to the skin [73, 175–178] or helmet [73, 176,
179–184] or embedded within mouthguards [73, 185–188].
Collected sensor data, along with subsequent clinical dia-
gnosis, are helping to develop our understanding of concussion
[73, 174], as are mechanical tests [189, 190], numerical
simulations [173], and measurements from cadaver [70] and
animal testing [191]. Findings from such work indicate bene-
fits to (i) minimising peak linear and rotational accelera-
tions; (ii) minimising the duration over which these val-
ues remain elevated; and (iii) shifting focus from PLA to
also include rotational kinematics and duration. These meas-
ures, thought to increase concussion risk, are associated with
impacts with compliant bodies, such as collisions between ice
hockey players [37, 63, 88, 96–99]. Validated test methods,
representative of conditions in the field of play, as well as
brain models and biofidelic (similar to a biological system)
headforms [192, 193], help further our understanding of con-
cussion mechanisms.

3. Helmet testing

There are many reviews on helmet testing, and Whyte et al’s
is particularly comprehensive [95]. As such, only key points
related to helmet development are summarised here. Helmets
are typically fitted to a headform when tested [95]. Most
helmets certification tests within standards include a drop
test onto a fixed anvil [126–130, 132, 194–216], with some
exceptions [126–130, 200]. None of these tests cover the full
range of impact types a helmet may experience during use [95,
143, 190, 217, 218]. Certification tests within helmet standards

are typically designed to ensure a minimum level of protection
from a severe head impact (e.g. skull fracture, rather than
concussion) [95].

Standards typically use centric impact vectors that cause
predominantly linear acceleration [126, 127, 195, 197, 199,
213–215, 219–221], and a rigid anvil [95, 217, 222]. Tests
using non-centric impact vectors aremore common in research
publications than in standards, following growing recogni-
tion that few actual sporting collisions and falls cause cent-
ric impact vectors (e.g. [143–145, 170, 223–228]). Such non-
centric impact vectors can be imparted using drop tests onto
oblique anvils (e.g. [32, 179, 229, 230]), pneumatic rams [151,
190, 224, 231], pendulums and impulse hammers [77, 153,
226–228, 232, 233], or projectiles [234].

Energy is the typical metric used to classify impact tests
and, for helmet testing, is usually between 18 and 150 J
(depending on the sport [95]). Where rigid anvils are used
for testing, energies may be lower than those expected dur-
ing actual sporting collisions and falls, with a view to main-
taining similar severities, and acceleration vs. time profiles, to
the actual collisions and falls [190, 227, 229]. Wider ranges
of impact velocities, energies, and anvil compliances are used
in research studies than in standards [85, 95, 189, 229, 234].
Measures of magnitude, and sometimes duration, of linear and
rotational acceleration, are used to define injury risk (to pre-
vent varying helmet mass from affecting perceived perform-
ance). As covered in section 2, there is ongoing discussion
around the acceleration magnitudes and time profiles that are
associated with clinical diagnosis of concussion, which should
be resolved before updating standards [95]. As such, metrics
are often compared to in-field measures for actual sporting
collisions and falls, and those collected with an un-helmeted
headform [190, 226–229].

Various standardised headforms, with limited
biofidelity [95, 234–241], are used to test helmets [95, 234–
244]. Attempts have been made to use low friction covers to
improve the biofidelity of the headform and helmet interface,
with clear differences in rotational acceleration [32, 136, 245,
246]. Attempts have also been made to develop more biofi-
delic headforms [192, 193]. Neckforms [145, 153, 167, 170,
179, 222, 223, 239, 246–249], including biofidelic ones [95,
143, 146, 156, 218, 238, 250–254], are sometimes attached to
headforms to achieve more realistic post-impact behaviour.

Sports concussions are typically caused by impacts with
compliant surfaces [37, 63, 88, 96–99], inducing long-duration
impacts (noted as high risk in section 2). These compliant sur-
faces may also increase friction, and rotational head accelera-
tion, during oblique impacts [189, 190] thought to cause con-
cussion. Such oblique impacts with compliant surfaces are not
tested for in certification tests within standards and are rarely
used in peer-reviewed studies on new helmet technologies.
Further, headforms with low biofidelity may cause unrealistic
coupling with the helmet, potentially introducing errors while
measuring rotational kinematics in the laboratory [32, 136,
245, 246]. Mechanical metamaterials, offering greater control
over effective properties than conventional materials, could be
used in helmet development efforts focused on reducing meas-
ures of concussion risk, while maintaining protection against
skull fracture.
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Figure 1. (A) Vinyl nitrile (VN) foam, (B) Expanded polypropylene (EPP_ foam and slip plane, and (C) a shear-thickening polymer (STP)
pad as parts of an ice hockey helmet liner (authors’ own images).

4. Helmet design

4.1. Established concepts

The idealised goal of impact protective equipment is to absorb
induced impact energies without exceeding measures associ-
ated with injury risk. For a consistent impact scenario, like a
certification test, the selection process for an energy-absorbing
material is established. The challenge with helmets is the
diverse variety of impact scenarios. There are various hel-
met designs available for different sports [35, 36, 217], with
two main categories. The first category is single-impact hel-
mets, which crush under impact and are designed to protect the
head against one severe (high energy) impact. These include
motorsports, cycling, and alpine sports helmets. After such an
impact, these helmets should be replaced as they are dam-
aged, and offer limited protection [35, 217]. The other cat-
egory is multi-impact helmets, which are designed to maintain
their impact performance over a (typically) long service life,
e.g. several years. These are used for American Football, ice
hockey, and lacrosse [35, 217], to name a few.

Helmets typically have at least three layers. A stiff (polymer
or composite) outer shell (figure 1(A)) prevents penetration
[35, 36, 84, 217, 255, 256], absorbs the initial shock [84, 257],
and helps to hold the helmet together during or after an impact
[84]. A compressible foam or lattice liner absorbs energy
through deformation (figure 1, [217, 256]).Most single-impact
helmets, particularly those for cycling, use crushable, expan-
ded polystyrene (EPS) foam [36, 258]. Vinyl nitrile (VN)
(figure 1(A)) and expanded polypropylene (EPP) (figure 1(B)),
are often used in multi-impact helmets [35, 151, 259–261].
Many helmets also include a comfort liner, often a compli-
ant foam [262], as shown in figure 1(A). New materials and
components are also being added to helmets, generally inten-
ded to exceed minimum requirements in certification tests
(e.g. [30, 31, 33, 263–269]).

Inspecting example compressive stress (σ) vs. strain (ε)
relationships (figure 2), the area under the curve is the energy
absorbed per unit volume (W [270]). The compressive stress
vs. strain relationships of cellular materials, such as foams, can
often be divided into three sections: (i) linear elasticity, up to
∼5% strain; (ii) plateau, elastic or plastic buckling of the cell
walls; and (iii) densification, where cell walls self-contact and
the constituent material is compressed [270].

Figure 2. Example compression stress vs. strain for different
relative densities of a foam at equal strain rates (arbitrarily using
engineering strain values for simplicity). Area W under the curve
illustrates the absorbed energy. The start (1) and end (2) of the stress
plateau are marked for each foam. Reproduced with permission
from [270].

Energy absorption efficiency (W/σ) is highest during the
plateau region [271], which can be tailored by modifying
the constituent material or foam relative density [270]. An
ideal foam for a given impact (e.g. curve 0.03 in figure 2)
absorbs the induced energy during the plateau region, without
densifying [35, 270]. Energy absorption before densification
increases with liner thickness. However, overly large helmets
are uncomfortable [35, 270] and can increase rotational accel-
erations by increasing torque applied to the head [35]. As such,
helmet liner thickness is generally limited. So, combining lay-
ers of foam of varying relative density, and hence stiffness,
may broaden the range of manageable impacts, but will give
lower maximal efficiency [36, 272].

4.2. Emerging developments

Various approaches have been taken to make helmets more
effective over a wider range of impacts. Shear-thickening flu-
ids (STFs) and polymers (STPs) are non-Newtonian (figure 3).
The viscosity of these materials increases with shear strain
rate [273–276]. STFs include suspensions [273] and gels
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Figure 3. Behaviour of Newtonian and shear-thickening fluids
(where gradient increase with shear rate).

[277], while STPs (which are more commonly used in con-
sumer products) are viscoelastic solids [275, 276, 278]. STPs
adapt to impact severity [279, 280]; they can be flexible and
elastic during normal use and minor impacts, or stiffen and
increase damping during severe impacts [273, 281]. The vis-
cosity change is reversible, providing an alternative to crush-
able foam over multiple impacts [282, 283], with slow recov-
ery potentially reducing rebound, impact duration, and vari-
ous measures of injury risk [125, 133–136]. So, foamed STPs
are used in PPE [273, 275, 277, 279], including helmets liners
(figure 1(C)) [34]. STPs can also be formed into a struc-
ture and used within helmets to reduce rotational kinematics
[18, 25].

A low-friction layer, placed between the helmet’s liner and
shell (figure 2(B) [21, 284]), or between layers of foam [265],
allows relative rotation between components. This relative
rotation has been shown to reduce the rotational kinematics
of headforms during oblique impact tests [32, 230, 245, 284–
288]. A well-known example of this technology is the multi-
directional impact protection system (MIPS) [264]. The inclu-
sion of anisotropic helmet liners has also been shown to reduce
rotational acceleration during certain oblique impacts [19–21,
289]. Such liners may have fibrous columns [21], or elongated
cells [20], making them stiff through thickness but transversely
compliant, lowering shear stiffness [290, 291]. Salomon’s EPS
4D helmet liner uses a similar principal, whereby columns
of EPS foam appear to be designed to shear during oblique
impacts [268]. These examples are relatively standard, using
conventional materials and manufacturing methods.

Patents have been filed featuring concepts related to the
application of mechanical metamaterials in helmets. These
include helmets, or helmet liners, based on structured poly-
mers such as lattices (e.g. [292–297]), sprung/suspended
inserts (e.g. [298]), modular/custom fit structured compon-
ents (e.g. [299, 300]), foamed/structured shear thickening
materials (e.g. [301, 302]), bulk shear thickening materials
(e.g. [303]), and fluidic properties (e.g. [304, 305]). Many of

these innovations feature in commercially available helmets
(e.g. [30, 31, 263, 269]).

5. Mechanical metamaterials

Mechanical metamaterials can be made in various ways and
have unique properties that could improve sport helmet per-
formance. They can be fabricated from conventional materials
such as foam [306, 307] or textiles [51, 308], or designed as
periodical/graded cellular structures [12–14, 309].Mechanical
metamaterials can also be made from sheets of material by
folding (known as origami) [310–327], or by folding, cut-
ting, and joining (known as kirigami) [17, 328–344]. With
high levels of control over end properties—given the addi-
tional degrees of design freedom afforded by controlling
topology and base material—mechanical metamaterials are
well suited to addressing complex engineering problems, like
impact protection [17, 50, 262]. The common forms of unusual
mechanical properties are auxetic (negative Poisson’s ratio)
behaviour (covered extensively in various reviews [46, 50,
307, 309, 345, 346] and textbooks [308, 347, 348]), negat-
ive stiffness [349–356], shape morphing [337, 357–359], for-
ce/torque coupling [360–364], active/adaptive behaviour [351,
365–367], or programmable properties that are tuned to a spe-
cific application [17, 26, 28, 341, 361].

5.1. Auxetic metamaterials

Poisson’s ratio is the negative product of the ratio of lat-
eral to axial strain. Auxetic materials undergo transverse
expansion when stretched axially, and contract transversely in
compression [11, 285, 306]. So, they form a dome shape under
bending, and are used in a helmet liner for this reason (i.e. flat
sheets can fit into domed helmets [32, 263]).

Poisson’s ratio is one of the basic elastic constants,
and (with Young’s modulus/stiffness) affects shear modulus,
bulk modulus, and indentation resistance [368]. As detailed
elsewhere [368], Poisson’s ratio increases resistance to penet-
ration by concentrated loads [369–373], and shear modulus
[374–378]. The increased tendency of materials with a low
or negative Poisson’s ratio to deform volumetrically, rather
than in shear (figure 4), may also increase strength. With
lower shear strain, the likelihood of failure close to a crack tip
or an ellipsoid reduces, according to Von-Mises, Tresca, and
crack propagation theories [379, 380].Without the presence of
stress concentrations caused by a crack or ellipsoid, Von-Mises
and Tresca criterion are unaffected [368]. So, auxetic helmet
sections may fail less readily, reducing waste and severe head
injury risk.

The re-entrant-like cellular structure of auxetic foams is
imparted by compressing conventional foam to buckle cell
ribs [306, 307, 381]. So, while there is some uncertainty over
whether these foams meet the requirement for the precisely
defined topology of some metamaterial definitions [7–9], they
are still a related medium. Readers interested in auxetic foam
manufacturing are referred to Jiang et al’s review [307].
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Figure 4. Contour plots of maximum shear (engineering) strain in 100 × 100 mm thin plates loaded parallel to the short axis of a
5 × 20 mm central ellipsoidal hole, with arbitrary, equal tensile loads and moduli, but Poisson’s ratios of (A) 0.5 and (B) −0.5. Static
structural simulations were undertaken in Ansys Mechanical to demonstrate this concept.

Auxetic foams have been shown to increase vibration damping
[382, 383], and to exhibit peak impact forces up to ten times
lower than their conventional counterparts [291, 384–388].
It should be noted that peak force during the typically stiff
anvil and impactor impacts is not a scalar measure. Indeed,
peak force increases exponentially as the foam densifies (see
figure 2) and ‘bottoms out’ under impact. Further, auxetic
foams made from expanded foam, as typically used in helmet
liners, have not been reported.

Auxetics may provide benefits in helmet liners: (i) The
ability to adapt to the shape of impacting bodies—remaining
soft when impacting a relatively flat surface, but effectively
stiffening under concentrated loads. (ii) High vibration damp-
ing, redistributing vibrations transversely. (iii) A tendency to
bulk over shear deformation, reducing the likelihood of fail-
ure. Conversely, the early densification strain caused by the
tendency to bulk deformation may shorten the stress vs. strain
plateau in cellular solids—causing densification at lower strain
([291], figure 2). With the ability to include a stiff shell, the
benefit of the high indentation resistance possible for auxetics
is unclear and has not been empirically demonstrated in hel-
mets. Flexible shell helmets (e.g. [227, 228]) may, however,
benefit from the increased indentation resistance of auxetic
materials. Further, the increase in shear modulus with negat-
ive Poisson’s ratio goes against the broad strategy of reducing
liner shear stiffness to reduce rotational acceleration [25, 32,
263, 264, 284, 286–288]. So, the application of auxetic materi-
als in helmet liners requires careful design based on justifiable
benefits, such as increasing indentation resistance to facilitate
lower stiffness liners.

An unstudied, potentially useful topic is auxetic helmet
shells. Fibre-polymer composites can be auxetic, with the neg-
ative Poisson’s ratio achieved by fibre alignment [389, 390].
Due to the use of conventional fibres and pre-preg, auxetic
fibre-polymer composites can be made with standard compos-
ite manufacturing methods [391]. These auxetic composites
have been shown to resist back face damage under impacts

[392]. Such increased resistance to back face damage could
increase the lifespan of multi-impact helmets featuring com-
posite shells, particularly those with flat sections that are more
susceptible to back face damage.

5.2. Periodic structures

Advances in additive manufacturing, and moulding methods
[25], have allowed mass production of lattice and honeycomb
mechanical metamaterials (e.g. [31, 33, 263, 393, 394]). These
methods allow precise manufacturing of complex geometries
[16, 395–397], expanding the range of available properties
to meet complex requirements, such as those seen in hel-
mets. 2D extruded cellular structures, such as honeycombs
(figure 5(A)), repeat periodically in two directions [398].
Honeycomb and tubular structures are studied frequently as
energy-absorbing elements in sports equipment and helmets
[23, 399–403], such as in Koroyd’s helmet liner [31]. 3D peri-
odic cellular structures, such as lattices, consist of unit cells
repeating in three directions, increasing degrees of freedom
during design, but also increasing manufacturing complexity
and hence costs [395, 397, 398, 404–409].

Exemplary unit cell designs include hexagonal/re-entrant
(figure 5(A)) [410, 411]), square/cubic (figure 5(B)) [412]),
or chiral/antichiral (figure 5(C)) [413–417]. Unit cell
design degrees of freedom include; varying rib orientation
(figures 5(A) and (B)), length, or thickness—slender ribs are
often less stiff, varying rib form (figure 5(B))—Eigenmode
example); varying the number of ribs (figures 5(A) and (B)),
or adding and combining shapes and features (figure 5(C)).
Unit cell patterning also affects topology, and so metamaterial
properties; unit cells can be mirrored (figures 5(A-i) and (C)),
linearly repeated (figures 5(A), (B) and (C-iii)), or rotated
(figure 5 (C-v)).

When creating honeycombs, some variation can be applied
in the extruded direction, as is the case of Miura-ori-inspired
structures (figure 5 (B-ii)) [418, 419]. Gradient metamaterials
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Figure 5. Some notable mechanical metamaterial design degrees of freedom: (A) Honeycombs, with large angle rib modifications,
becoming (i) re-entrant. (B) Quadrilateral honeycomb, with Eigenmode rib tessellation to form an auxetic unit cell, or small rib rotations
and extrusion path modification, forming a (ii) Miura-ori inspired metamaterial. (C) Various periodic rotational and translational repetitions
of a chiral unit cell, forming (iii) antitetra chiral, (iv) 2D chiral and (v) 3D chiral metamaterials. Pink wireframe notes the simplest repeating
unit cell, subsequent repetitions are shown in grey or blue.

can also be developed by spatially varying unit cell para-
meters and properties [402, 403, 420, 421]. These variations
can be continuous or discrete (i.e. gradual or abrupt change)
[422–424]. 3D periodic cellular structures are being used in
helmets (e.g. ice hockey [33] and American football [393]).
Such liners, or inserts, can also feature some through thick-
ness variation, and can be made from STPs [30].

Concerning some common topologies, hexagonal honey-
combs are relatively stiff, with low density, for compres-
sion parallel to their extruded dimension [402, 425–428].
During impacts in the extruded direction, cell walls crumple
and buckle [31, 426], with densification occurring at ∼75%
compression [402]. When impacted or compressed perpen-
dicular to their extruded dimensions, honeycomb stiffness is
lower [28, 402, 427, 429, 430]. Re-entrant hexagonal honey-
combs can be more compliant than equivalent density regular
hexagonal ones (at low strains), due to the extra junction for
rib hinging to occur around [423, 429, 431, 432]. Buckling
may not occur with these re-entrant unit cells, causing an
almost linear compressive stress vs. strain response, i.e. a less
pronounced plateau and densification region [369, 423, 429].
Such re-entrant unit cells may not be optimal within a target
impact severity (e.g. as in figure 2), but are less prone to stark
peak force increases during severe impacts [29, 291, 385]. It

is possible to design tall, slender stiff re-entrant cells that
undergo buckling [271, 422].

Structures made of solid rotating shapes are often
stiff in compression, as the internal shapes undergo self-
contact/densification at low strains, making them less suited
for sporting impacts [433–436]. These rotating shapes have
been made as lattices with hollow cells [437], or cut from
foams, to tune out of plane properties while relying on foam
characteristics through thickness [438, 439]. High energy
absorption, low initial crushing peak forces, large densific-
ation strain, and low strain rate sensitivity can be achieved
with folded (kirigami or origami) structures [332, 333, 335,
440, 441]. By including such folds through the thickness of
these structures, it is possible to tune buckling regions, and
the length of the compressive stress plateau [17] (figure 2).
Kirigami structures made from paper have been used in a
recyclable cycling helmet [442].

For application in helmets, periodic structures must be pat-
terned to fill an often complex/nearly spherical space. Such
patterning, using conventional computer-aided design soft-
ware, can be time-consuming and inefficient. Algorithmic-
based design software, such as those marketed by nTopology
[443], Hyperganic [444], or Rhino3d [445] can make the pro-
cess of generating such geometries more efficient. Noting
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Figure 6. (A) Stages of snap through in a buckling beam. (B) Snap through element. (C) Inclusion in a cubic unit cell and (D) metamaterial,
recreated from ref [353]. (E) Example force displacement (arbitrary values), including stages from (A). Reprinted from [353], © 2019
Elsevier Ltd.

that impact vectors are usually non-centric, further chal-
lenges arise. Where there are enough unit cells, the response
at various angles can be calculated based on orthotropic,
strain-dependent properties, using standard elasticity tensor
transformation [423, 446, 447]. So, response to off-axis
impacts can be designed by tuning the out-of-plane properties.
Where there are too few unit cells to homogenise the mater-
ial properties, as is often the case for periodic structures, the
off-axis response must be obtained by higher order material
approximations [448], microstructurally faithful simulations
[25], or experimentally [25, 32].

5.3. Force torque coupling

Advances in fabrication methods have allowed realisation of
a wide range of unusual and potentially beneficial proper-
ties. Mechanical metamaterials with force–torque coupling
(known herein as twist) have seen increasing interest, since
their rational design was shown in 2017 [363]. Like (negative)
Poisson’s ratio, twist translates axial deformation to transverse
deformation—increasing resistance to indentation [360]. So,
twisting mechanical metamaterials may resist penetration by
concentrated loads, without shortening the stress plateau under
compression (as seen for auxetics—see section 5.1).

The development of these metamaterials could also facil-
itate more efficient analysis and design of lattices. The twist-
ing response is not included in classical (Cauchy) continuum
mechanics, but it is in micro-morphic continuum mechanics
(where a uniform load causes internal strain gradients [448]).
Eringen presented some special cases in micro-morphic
theories [448]. These include micropolar—where the gradi-
ents occur by rotation of rigid unit cells (sand provides an intu-
itive example), and micro-stretch—where the gradients occur
by unit cell volume change, without shape change (picture the
bronchi). Each of these allows some simplification (over the
micro-morphic continuum)—reducing the amount of informa-
tion required to approximate the response of a metamaterial—
but may also cause some loss in precision.

Clearly, in the case of foams and lattices, which have rel-
atively large internal features (when compared to the scale
of external loads), micro-morphic continuum theories often
apply [360, 449, 450]. Where classical continuum theories

cannot be used, typical approaches to designing mechanical
metamaterials for impact protection are experimental, or by
using microstructurally faithful numerical models [17, 26, 28,
29, 415, 416, 419, 451], which are less efficient. So, devel-
oping and applying these micro-morphic continuum theor-
ies, including their viscoelastic and visco-plastic formula-
tions, could facilitate more efficient mechanical metamater-
ial analysis, design, and application in single or multi-impact
helmets [448].

5.4. Negative stiffness

Snap-through elements cause negative stiffness behaviour,
corresponding to a drop in force as applied deformation
increases [349–355]. Negative stiffness can be achieved by
the buckling of an end constrained/preconditioned beam
(figure 6). The beam snaps from one state of equilibrium to the
next following the application of a perpendicular load (often
via a connecting rib) [349, 350, 355]. The negative stiffness
region is present for a segment of the force vs. compression
relationship, corresponding to when the beam snaps through
(figure 6(E)). Increasing the diagonal angle of the symmetric
beam (φ, figure 6(B)) increases the onset, and length, of the
region [353]. Making the beam less slender increases the crit-
ical buckling load and hence the magnitude of both positive
and negative stiffness [353]. Negative stiffness has been shown
to improve protection during impacts [452], balancing the pos-
itive stiffness of neighbouring unit cells to flatten and elong-
ate the stress plateau (figure 2). Designing and manufacturing
relatively unstable negative stiffness inclusions within helmets
could bring added complexity, and further work applying these
concepts to helmets is needed.

5.5. Topology optimisation

Precise control over topology allows the design of a desired
response to various loading conditions. An efficient approach
to topology optimisation is to optimise a unit cell, and homo-
genise (expand to an effective bulk material) using a set of
boundary conditions (i.e. periodic symmetry [451, 453–458]).
Readers interested in homogenisation theory could refer to
refs [459–461]. Such an approach is not widely applied during
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Figure 7. (A) Single bi-beam design and buckling direction for different axial compressive strain rates. (B) Multi-material hexagonal cell
causing a switch in the dominant deformation mode.

sporting impacts, causing high strains and strain rates, mean-
ing degrees of freedom surrounding unit cell boundaries are
influential and challenging to predict. For example, end load-
ing for buckling beams, such as cell ribs, can vary with neigh-
bouring cell deformation, meaning a multi-cell optimisation
is needed [462–464]. Instead, whole metamaterial samples
are often optimised or iteratively improved [17, 22, 26, 32].
Developing and applying micro-morphic theories [448] to lat-
tices under impact may facilitate the prediction of rib con-
straints, and efficient (unit-cell) topology optimisation [465].
Open data approaches (such as the meta-genome [466]) could
help develop these new homogenisation methods.

5.6. Adaptive metamaterials

While shear thickening polymers can adapt their stiffness to
various collision types, more degrees of design freedom, such
as deformation mode switching, are possible. Deformation
mode switching can be achieved by including an adaptive
material, such as a viscoelastic one, that activates a topolo-
gical instability [14]. For example, a beam’s buckling mode
(e.g., direction) can be designed to switch at a given strain rate.
When two laterally connected beams of different stiffness (i.e.
bi-beams) are axially compressed (figure 7(A)), the stiffer one
drives the buckling direction while the other provides support,
causing buckling towards the stiffer side. So, in figure 7(A),
the deformation direction will switch at the strain rate when
the viscoelastic beam becomes stiffer than the hyperelastic
one. Bi-beams positioned like those in figure 7(A) will buckle
away from each other at low compression rates, and towards
each other, causing stiffening via self-contact, at high com-
pression rates. Negative effective viscoelasticity can also be
achieved with such a system of bi-beams [365], if the order
in figure 7(A) is reversed, so bi-beams effectively soften by
buckling away from each other at high compression rates.
Obtaining negative effective viscoelasticity with highly vis-
coelastic materials demonstrates the level of control available
via topology that could be useful when designing helmets.
The response of these bi-beams, while previously shown to
be retained for off-axis deformation angles of ∼10◦ [365], is
unknown during oblique impacts. Flexing of the beams may

provide a desirable low shear modulus, as in similar tests of
long-cell anisotropic foam liners [20, 289], and should be stud-
ied further.

More stable adaptive metamaterial systems can also be
designed. The dominant deformation mode in hexagonal hon-
eycombs and lattices is cell rib flexure [429, 447] (figure 7(B-
i)). Such flexure reduces the distance to the neighbouring junc-
tion, respectively reducing and increasing the magnitude of
positive and negative compressive Poisson’s ratios. Placing
viscoelastic material in the cell ribs could switch the domin-
ant mode, increasing the magnitude of positive Poisson’s ratio,
and hardness [368], during more severe impacts (figure 7(B-
ii)). Conversely, placing viscoelastic material in the junction
of auxetic, re-entrant honeycombs or lattices could have a
similar effect, by amplifying the dominance of rib flexure
to draw neighbouring junctions inward. These concepts have
been demonstrated using dual materials of different stiffness,
but not viscoelastic ones, and present notable options for future
research, particularly related to applications in helmets [467,
468]. Interestingly, such switching mechanisms and changes
to Poisson’s ratio can be achieved with one material, based on
local changes in strain rate and stiffness; shifting the point of
deformation [469–471].

The use of embedded electronics as active adaptive mech-
anisms is emerging [14, 472, 473]. These include piezoelec-
tric inclusions, which stiffen when an electrical field is applied
[472], or embedded electromagnets [352]. Such systems allow
a controlled response, with the potential for embedded elec-
tronics to sense environmental changes, like impact severity
or strain rate, fall initiation, temperature or relative humid-
ity, and micro-controllers to define a programmed response
or adaption [14, 472, 473]. Challenges to application are asso-
ciated with the manufacture of sufficiently small and robust
components [14, 352].

6. Discussion

Some commercial, or mid- to high- technology read-
iness level mechanical metamaterials, show promise
to reduce concussion risk when applied to helmets
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Table 1. Summary of key metamaterial types, properties, benefits, and challenges for application in helmets.

Metamaterial Potential benefit Potential application Challenges

Periodic structures Tuneable response Compliant/crushable liners Efficient design and manufacturing,
particularly during non-centric
impacts

Auxetics

Domed curvature Helmet liner manufacturing solution Already established

High indentation resistance Compliant/crushable liners,
particularly of soft-shell helmets

Early densification, and increased
shear modulus

High toughness
Compliant/crushable liners Making crushable auxetic foam

Helmet shells, particularly
fibre-polymer composites

Demonstrating the requirement

Force–torque
coupling

High indentation resistance Compliant/crushable liners,
particularly of soft-shell helmets

Cannot be simulated as bulk solids
using the Cauchy continua

Negative stiffness Extension of stress vs. strain plateau
region

Compliant liners Cost-effective design of such unstable
mechanisms

Adaptive
metamaterials

Improved performance across various
impact types

Compliant liners Cost-effective manufacture and
design—often featuring multiple
materials deformation mechanisms

[18, 21, 25, 30, 32, 263–265, 393]. Separately, these metama-
terials appear to have sufficient degrees of freedom to reduce
shear and compressive response, and rotational and linear
measures (e.g. [18, 21, 25, 30, 32, 263–265, 268, 284, 393]),
reduce the duration of high accelerations via crushable or vis-
coelastic liners (e.g. [18, 25, 30–32, 263, 393]), and adapt to
surface compliance, or impact severity, via rate dependency
(e.g. [18, 30, 266]). For commercial helmets [30–33, 263–266,
268, 284], independent, peer-reviewed, analysis of such func-
tions is rarely published. These systems, along with [18], have
demonstrated commercial viability of mechanical metamater-
ials (e.g. use of single material injection moulding or additive
manufacturing). So, they reduce barriers to entry and raise
awareness, facilitating continuous improvements and further
application of mechanical metamaterials. Table 1 summarises
the key mechanical metamaterial types covered in this review.

With the greater degrees of freedom afforded when design-
ing mechanical metamaterials come some additional chal-
lenges. Firstly, metamaterials can be more expensive to man-
ufacture than established helmet materials, so currently tend
to only be used in high-end helmets [30, 31, 33, 263,
269]. Secondly, the effect of increasing, or changing, the
pool of materials used in helmet design needs to be con-
sidered; particularly susceptibility to environmental consider-
ations such as temperature, relative humidity, contaminants,
and ultra-violet radiation [474]. Conversely, the greater design
affordances associated with mechanical metamaterials could
reduce susceptibility to environmental effects; with poten-
tial to achieve the required performance using only materi-
als that resist degradation due to environmental conditions.
The sports market may again be an important early adopter;
providing long term, in-field (user) testing in variable envir-
onments before uptake by more conservative sectors such as
aerospace.

Peer-reviewed publications noting tests of new helmet tech-
nologies rarely use biofidelic anthropomorphic test dummy
heads or necks, nor impacts onto compliant anvils. Unrealistic
coupling between helmet and head may affect rotational
accelerations [32, 136, 245, 246], while impacts with compli-
ant surfaces are amongst the most common causes of sport-
ing concussion [37, 63, 88, 96–99]. Mechanical metamater-
ial design streams that reflect these high injury risk scen-
arios could be developed, to ensure mechanical metamater-
ials are designed and implemented in helmets based on up-
to-date measures of concussion risk. An extensive range of
mechanical metamaterial properties has been demonstrated
(e.g. [18, 21, 25, 32, 284]), so such design streams appear
feasible. Funding calls, challenges, and open data approaches
that promote collaborations and knowledge exchange between
groups with state-of-the-art test methods, and those develop-
ing metamaterials and helmets, could be beneficial. Such ini-
tiatives could be sport specific (e.g. [475]), or broader (e.g.
[90–93, 466]).

Ametamaterials approach to helmet design: unit cell optim-
isation and patterning, based on an objective function of meas-
ures of concussion risk and manufacturing constraints, could
be used to improve helmet impact performance [456, 462].
Such an approach requires some form of rate dependency or
adaption, justifying research developing ranges of viscoelastic
materials for additive manufacturing. We note two forms of
unusual property that are of prominent interest in helmet devel-
opment: (1) negative stiffness inclusions, to extend or flatten
the stress plateau (figure 6), and (2) adaptive metamaterials
(figure 7). Switching of deformation mechanisms may provide
options to increase rate dependence without the presence of
extreme viscoelasticity. Efficient topology optimisation for
such systems also requires some development, to apply peri-
odic constraints that reflect rib buckling with single/minimal
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unit cells [456, 462]. With such methods, helmet manufactur-
ers could adapt to developing knowledge of concussions, or
design affordances offered by new manufacturing methods.

7. Conclusions

Mechanical metamaterial design affords degrees of freedom
that could allow helmets with an impact response that adapts
between severe impacts that cause skull fracture and those
that might lead to clinically diagnosed concussion. The object-
ive functions that mechanical metamaterial helmet liners are
designed or optimised for could be modified, by testing
and refining the designed helmets on biofidelic headforms
under representative test conditions to better understand the
required effective properties. As such, efforts encouraging
collaborations between those developing helmets, mechan-
ical metamaterials, and test methods, could improve helmets.
Epidemiological studies may help identify the effect of such
interventions over time. Improving the efficiency and avail-
ability of topology optimisation tools at high strains and strain
rates, would allow helmets to be updated as knowledge of con-
cussion improves. Here, open data and opensource software
initiatives will be beneficial. To increase options for mechan-
isms of adaption to impact severity, researchers could focus
on increasing options to print or mould viscoelastic mater-
ials or developing topological approaches to tune effective
viscoelasticity.
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[436] Dudek K K, Drzewiński A and Kadic M 2021 Self-rotating
3D mechanical metamaterials Proc. R. Soc. A
447 20200825

[437] Gao Y, Wei X, Han X, Zhou Z and Xiong J 2021 Novel 3D
auxetic lattice structures developed based on the rotating
rigid mechanism Int. J. Solids Struct. 233 111232

[438] Cross T M, Hoffer K W, Jones D P, Kirschner P B and
Meschter J C 2015 Auxetic structures and footwear with
soles having auxetic structures US 2015/0075034 A1 vol 1

[439] Moroney C 2021 The application of auxetic structures for
rugby shoulder padding PhD ThesisManchester
Metropolitan University

[440] Li Z, Chen W and Hao H 2018 Numerical study of open-top
truncated pyramid folded structures with interconnected
side walls against flatwise crushing Thin-Walled Struct.
132 537–48

[441] Li Z, Chen W and Hao H 2018 Blast mitigation performance
of cladding using square dome-shape kirigami folded
structure as core Int. J. Mech. Sci. 145 83–95

[442] Shiffer I, Hertz K, Tu D and Heller L Ecohelmet 2017
(available at: www.ecohelmet.com/) (Accessed 14 April
2023)

[443] nTopology 2023 (available at: www.ntop.com/)
[444] Hyperganic 2023 (available at: www.hyperganic.com/)

(Accessed 14 August 2023)
[445] Rhino 2023 (available at: www.rhino3d.com/6/new/

grasshopper/) (Accessed 14 August 2023)
[446] Hearmon R F 1962 An Introduction to Applied Aniso-tropic

Elasticity (Oxford University Press) p 12
[447] Masters I G and Evans K E 1996 Models for the elastic

deformation of honeycombs Compos. Struct.
35 403–22

[448] Eringen A C 1999 Microcontinuum Field Theories 1st edn
(Springer Science+Business Media)

[449] Lakes R 1991 Experimental micro mechanics methods for
conventional and negative Poisson’s ratio cellular solids as

cosserat continua J. Eng. Mater. Technol. Trans. ASME
113 148–55

[450] Lakes R and Drugan W J 2015 Bending of a cosserat elastic
bar of square cross section: theory and experiment Trans.
ASME, J. Appl. Mech. 82 1–16

[451] Nightingale M, Hewson R and Santer M 2021 Multiscale
optimisation of resonant frequencies for lattice-based
additive manufactured structures Struct. Multidiscip.
Optim. 63 1187–201

[452] Pan F, Li Y, Li Z, Yang J, Liu B and Chen Y 2019
3D pixel mechanical metamaterials Adv. Mater.
31 1–8

[453] Wang Y, Groen J P and Sigmund O 2019 Simple optimal
lattice structures for arbitrary loadings Extrem. Mech. Lett.
29 100447

[454] Andreassen E, Clausen A, Schevenels M, Lazarov B S and
Sigmund O 2011 Efficient topology optimization in
MATLAB using 88 lines of code Struct. Multidiscip.
Optim. 43 1–16

[455] Sigmund O 2001 A 99 line topology optimization code
written in Matlab Struct. Multidiscip. Optim.
21 120–7

[456] Murphy R, Imediegwu C, Hewson R and Santer M 2021
Multiscale structural optimization with concurrent
coupling between scales Struct. Multidiscip. Optim.
63 1721–41

[457] Mehreganian N, Fallah A S and Sareh P 2023 Impact
response of negative stiffness curved-beam-architected
metastructures Int. J. Solids Struct. 179 112389

[458] Chen Y, Shi J, He R, Lu C, Shi P, Feng J and Sareh P 2023 A
unified inverse design and optimization workflow for the
Miura-oRing metastructure J. Mech. Des. 145 091704

[459] Pinho-da-Cruz J, Oliveira J A and Teixeira-Dias F 2009
Asymptotic homogenisation in linear elasticity. Part I:
mathematical formulation and finite element modelling
Comput. Mater. Sci. 45 1073–80

[460] Oliveira J A, Pinho-da-Cruz J and Teixeira-Dias F 2009
Asymptotic homogenisation in linear elasticity. Part II:
finite element procedures and multiscale applications
Comput. Mater. Sci. 45 1081–96

[461] Cioranescu D and Donato P 1999 Introduction to
Homogenization (Oxford University Press)

[462] Carstensen J V, Lotfi R, Chen W, Szyniszewski S,
Gaitanaros S, Schroers J and Guest J K 2022
Topology-optimized bulk metallic glass cellular materials
for energy absorption Scr. Mater. 208 114361

[463] Carstensen J V, Lotfi R and Guest J K 2015 Topology
optimization of cellular materials for properties governed
by nonlinear mechanics 11th World Congress on
Structural and Multidisciplinary Optimization pp 1–6

[464] Carstensen J V, Guest J K and Lotfi R 2016 Topology
optimization of nonlinear cellular materials 17th
AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conf. pp 1–10

[465] Wu L, Mustafa M, Segurado J and Noels L 2023
Second-order computational homogenisation enhanced
with non-uniform body forces for non-linear cellular
materials and metamaterials Comput. Methods Appl.
Mech. Eng. 407 115931

[466] Earnshaw J et al 2023 Meta-genome (available at: https://
meta-genome.org/) (Accessed 27 March 2023)

[467] Johnston R and Kazancı Z 2021 Analysis of additively
manufactured (3D printed) dual-material auxetic
structures under compression Addit. Manuf. 38 101783

[468] Wang K, Chang Y H, Chen Y, Zhang C and Wang B 2015
Designable dual-material auxetic metamaterials using
three-dimensional printing Mater. Des. 67 159–64

[469] Gao D, Wang B, Gao H, Ren F, Guo C, Ma S, Cao T, Xia Y
and Wu Y 2021 Strain rate effect on mechanical properties

22

https://doi.org/10.1016/j.compstruct.2012.12.034
https://doi.org/10.1016/j.compstruct.2012.12.034
https://doi.org/10.1016/j.compstruct.2016.02.014
https://doi.org/10.1016/j.compstruct.2016.02.014
https://doi.org/10.1016/j.mechmat.2014.06.008
https://doi.org/10.1016/j.mechmat.2014.06.008
https://doi.org/10.1016/j.addma.2019.03.022
https://doi.org/10.1016/j.addma.2019.03.022
https://doi.org/10.1016/j.euromechsol.2003.10.006
https://doi.org/10.1016/j.euromechsol.2003.10.006
https://doi.org/10.4028/www.scientific.net/AMM.148-149.992
https://doi.org/10.4028/www.scientific.net/AMM.148-149.992
https://doi.org/10.3390/polym11061040
https://doi.org/10.3390/polym11061040
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1007/s10853-006-6339-8
https://doi.org/10.1007/s10853-006-6339-8
https://doi.org/10.1098/rspa.2020.0825
https://doi.org/10.1098/rspa.2020.0825
https://doi.org/10.1016/j.ijsolstr.2021.111232
https://doi.org/10.1016/j.ijsolstr.2021.111232
https://doi.org/10.1016/j.tws.2018.08.023
https://doi.org/10.1016/j.tws.2018.08.023
https://doi.org/10.1016/j.ijmecsci.2018.06.035
https://doi.org/10.1016/j.ijmecsci.2018.06.035
https://www.ecohelmet.com/
https://www.ntop.com/
https://www.hyperganic.com/
https://www.rhino3d.com/6/new/grasshopper/
https://www.rhino3d.com/6/new/grasshopper/
https://doi.org/10.1016/S0263-8223(96)00054-2
https://doi.org/10.1016/S0263-8223(96)00054-2
https://doi.org/10.1115/1.2903371
https://doi.org/10.1115/1.2903371
https://doi.org/10.1115/1.4030626
https://doi.org/10.1115/1.4030626
https://doi.org/10.1007/s00158-020-02752-8
https://doi.org/10.1007/s00158-020-02752-8
https://doi.org/10.1002/adma.201900548
https://doi.org/10.1002/adma.201900548
https://doi.org/10.1016/j.eml.2019.03.004
https://doi.org/10.1016/j.eml.2019.03.004
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s00158-020-02773-3
https://doi.org/10.1007/s00158-020-02773-3
https://doi.org/10.1016/j.ijsolstr.2023.112389
https://doi.org/10.1016/j.ijsolstr.2023.112389
https://doi.org/10.1115/1.4062667
https://doi.org/10.1115/1.4062667
https://doi.org/10.1016/j.commatsci.2009.02.025
https://doi.org/10.1016/j.commatsci.2009.02.025
https://doi.org/10.1016/j.commatsci.2009.01.027
https://doi.org/10.1016/j.commatsci.2009.01.027
https://doi.org/10.1016/j.scriptamat.2021.114361
https://doi.org/10.1016/j.scriptamat.2021.114361
https://doi.org/10.1016/j.cma.2023.115931
https://doi.org/10.1016/j.cma.2023.115931
https://meta-genome.org/
https://meta-genome.org/
https://doi.org/10.1016/j.addma.2020.101783
https://doi.org/10.1016/j.addma.2020.101783
https://doi.org/10.1016/j.matdes.2014.11.033
https://doi.org/10.1016/j.matdes.2014.11.033


Smart Mater. Struct. 32 (2023) 113001 Topical Review

of the 3D-printed metamaterial foams with tunable
negative Poisson’s ratio Front. Mater. 8 1–12

[470] Cervinek O, Pettermann H, Todt M, Koutny D and Vaverka O
2022 Non-linear dynamic finite element analysis of
micro-strut lattice structures made by laser powder bed
fusion J. Mater. Res. Technol. 18 3684–99

[471] Mauko A, Fíla T, Falta J, Koudelka P, Rada V,
Neuhäuserová M, Zlamal P, Vesenjak M, Jiroušek O and
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