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Summary

As the strain on health care continues to grow worldwide, the need for

reliable decision-making has never been more apparent. The computerisation

of electronic health records has provided a wealth of data that can be applied

to various medical use cases. Machine Learning algorithms are exploited to

try and assist with making effective decisions. The resulting contributions

within this work demonstrate that it is possible to lean on advancements in

computer science to develop support tools for medical practitioners which

assist in their decision-making processes.

This thesis contributes four core advances to the research domain: Firstly

the enhancement of current mortality prediction systems in intensive care

units was considered. Comparing multiple Machine Learning classifiers with

optimised pipelines produced results that were both comparable and more

effective at determining patient mortality than the existing APACHE II model.

The most encouraging classifier was Decision Trees whilst being trained using:

K-fold cross validation, Grid search hyper-parameter tuning and SMOTE

achieving an average AUROC score of 0.93 and accuracy of 0.92. Unlike

other mortality prediction systems which are often trained on small cohorts

of data, a method of retraining and optimising for different patient cohorts is

introduced. Retraining based on a patients age or admission in to the ICU is

also considered as a novel approach of keeping support tools up to date.

An ensemble imputation method has been developed that can be used to

generate the missing data in a real life dataset. This has produced accuracy

and recall results comparable to current state of the art techniques when
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applied to the Cleveland hospital dataset.

In this work, strategies to rebalance datasets are investigated to predict

early onset Sepsis. One promising approach examined in this thesis is the use

of the RUSboost algorithm. This enabled the optimisation of a classifier that

has a high fidelity without overfitting.
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Chapter 1

Introduction

Machine Learning (ML) is a subset of Artificial Intelligence (AI). It is the

collective title given to a group of sophisticated modelling techniques capable

of modelling extremely complex functions (Singh, 2018a; Petersson, 2021).

These modelling techniques are now being applied to a range of problem

domains within finance, science, and engineering industries (Frankenfield,

2022a).

Anywhere that there are problems with prediction, classification, or re-

gression, ML techniques can be utilised. However, these modelling techniques

contain a large number of potential complex error surfaces. Possible errors can

include: local minima, plateaus in the search of landscape, and saddle points.

These errors make the process of training models difficult and time consuming

and means great care needs to be taken in setting model architectures and

parameters. This training process constitutes a crucial part of AI as the

performance of these models is dependent on both the training and data

provided to them.

1



CHAPTER 1. INTRODUCTION 2

Due to the improvements of computers and the reduction in the cost

of high end graphical processing units and processing power, AI has seen

a resurgence of popularity in recent years and many industries are turning

to these techniques to solve complex problems (Singer, 2022). Medicine is

one such field of research that is looking to utilise ML to aid the industry

(Frankenfield, 2022a).

Due to the ever changing nature of medicine, it is important that research

and technologies continue to advance, to compliment such developments

within the industry. ML can be utilised as a key driver in the evolution of

new and effective support tools. ML can either be used alongside existing

support tools to further confirm decisions, or optimised ML pipelines, can

in some instances, out perform many of the existing support tools. As a

consequence to the vast amount of decisions needed within medicine and

the evolving nature of patient cohorts, it has never been more important to

swiftly develop ML tools that can assist medical practitioners.

This thesis will look to build on the existing research undertaken on

three different medical datasets, to investigate and develop support tools for

medical practitioners, whilst also introducing some novel approaches to assist

in training models.

1.1 Research Aim

The research undertaken in this body of work overlaps and spans several

different disciplines including ML, Data Analysis and Medicine. These areas

are combined to develop novel pipelines and techniques that are applied to
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accurately support medical decision making. The new techniques introduced

can be generalised and applied to many different ML tasks, including those that

have missing data - a significant challenge for many real-world applications

of ML.

This work proposes to address the gap in research by focusing on applying

novel ML techniques to the field of medicine on three specific medical datasets

that are currently utilised, these datasets are from areas where the current

standards are no longer within acceptable tolerances or outdated. It is

demonstrated that the ML methodologies, novel pipelines and novel techniques

proposed in this body of work can be used as alternative or additional

techniques to make patient decisions. The aim of this research is to show that

ML techniques can be applied to support medical practitioners in making

informed medical decisions for specific scenarios. A key contribution in

support of this aim includes the development of a new technique of dealing

with missing data as an alternative to existing commonly used imputation

methods. Moreover, a new method of predicting mortality in intensive care

units is introduced, including the development of an ML pipeline utilising

different techniques to rebalance unbalanced datasets. An extensive literature

review of current and state of the art ML techniques will also be performed.

Throughout this thesis, various ML techniques will be used in a knowledge

discovery process to accurately support medical decision making. The four

general research questions addressed in this work are the following:

1. Is it possible to predict the mortality of a patient admitted in to the

Intensive Care Unit (ICU) more accurately than the current Acute

Physiology and Chronic Evaluation II (APACHE II) tool or the Care
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Quality Commission (CQC) Intensive Care National Audit & Research

Centre (ICNARC) benchmark when you are using the ICNARC dataset?

2. How can you handle changing patient cohorts admitted in to ICU over

time using the same ICNARC dataset?

3. The method presented in this thesis build on existing knowledge within

the ML domain by developing a novel method of data imputation

using ensemble techniques. This imputation method is applied to the

Cleveland Heart Disease classification dataset.

4. What is the most effective way of re-balancing the ”PhysioNet Comput-

ing in Cardiology Challenge” sepsis datasets?

1.2 Research Objectives

The main objectives of the PhD are given below:

1. Design and develop a novel method of determining mortality within an

ICU using the same data collected within the ICNARC dataset.

2. Apply new online ML techniques to deal with different patient cohorts

when cohorts are defined by splitting up a dataset by either date of

submission to ICU or the age of the patient.

3. Introduce a novel method of dealing with missing data by using ensemble

methods.

4. Apply ML rebalancing techniques to allow early detection of sepsis
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1.3 Key Contributions

The main contributions of this thesis are:

• Development of an effective tool to predict mortality in ICU.

A ML model was developed that can outperform current state-of-the-art

techniques in predicting mortality. Furthermore, it has been shown to

outperform the current standards used in hospitals – the APACHE II

and ICNARC scores.

• Online Machine Learning implementation of mortality pre-

diction. Utilising online learning approaches it has been possible to

demonstrate the benefits of retraining support tool ML models over

time (Wainwright and Shenfield, 2023).

• Applying a novel method of data imputation to predict heart

disease. The ensemble imputation method developed and described in

this report has proven it is possible to combine imputation methods in

order to effectively fill missing data.

• 6 hour earlier sepsis prediction tool. Effectively re-balancing a

dataset to produce repeatable results is one of the most difficult tasks

undertaken by data scientists. The combination of these re-balancing

techniques and ML models has allowed the development of a model that

can determine the onset of sepsis 6 hours before current methods.

Additional contributions that have arisen from this body of work but have

not been described in this thesis are:
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• Human Activity Recognition Making Use of Long-Short Term

Memory Techniques. Using an open source dataset, a model to

predict human activities and postural transitions has been developed.

(Wainwright and Shenfield, 2019).

• Building Actionable Personas Using Machine Learning Tech-

niques. Children survey data from 22 countries globally was utilised

to develop personas that can be used by marketing professionals to

better understand their target audience. Different clustering algorithms

were introduced and a novel way of segmenting children was developed

(Farrukh et al., 2022).

1.4 Thesis Structure

Chapter 2 presents a thorough review of ML, including theoretical concepts,

different types of learning, methods and a general taxonomy of AI. A brief

history of AI is also given, and some of the key issues with choosing the correct

approach to use are discussed. Chapter 2 also presents an in depth introduction

to different commonly used classifiers with many different techniques and

concepts introduced. The current state of ML and how it is currently used in

the medical domain is outlined in chapter 3.

Chapter 4 uses the techniques introduced in Chapter 2 to accurately predict

the mortality of patients in ICU. The model is developed using a dataset

provided by the ICNARC that has electronic health records for patients

admitted into ICU in a selection of London Hospitals between 2012 and 2014.

The full ML pipeline is examined with techniques for standardising, sampling
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and modelling the problem experimented on. The results are compared with

pre-existing literature and the APACHE II and ICNARC scores. Patient

cohorts, medicines, and treatments change dramatically over time. As a

direct result, existing support tools can become quickly outdated and provide

inaccurate results. Building on the knowledge introduced in Chapter 2 and

the concept of online learning, a real time ML model is developed that can

be trained over different time periods.

Chapter 5 builds on the limited techniques described in literature for

dealing with missing data. An in depth description of the different types of

missing data is conveyed before a complete dataset has data removed using

different combinations of systematic and random removal techniques. The

Ensemble Imputation Method (EIM) technique is introduced and applied to

detect heart disease in patients where missing data is introduced. Chapter

6 compares the outcomes of different dataset re-balancing techniques before

hypothesising and demonstrating a new method of re-balancing datasets. The

new method builds on existing techniques and combines them together. An

early onset sepsis detection dataset that is heavily imbalanced is utilised.

Finally, Chapter 7 presents the conclusions for this thesis and also outlines

some potential further work and research that could be worthy of investigation.



Chapter 2

Review Of Machine Learning

2.1 Introduction

This Chapter will provide a thorough review of the field of AI with an emphasis

on fundamental ML concepts. Section 2.2 provides an introduction into AI

and describes some of the key research discoveries and historical points to date.

After giving an outline of AI, some common advantages and disadvantages

are discussed.

ML is introduced in section 2.7 with an explanation of some of the core

theoretical concepts and a discussion of popular classification techniques.

There are many applications for ML, and some common uses in medicine

are outlined throughout this Chapter. Some medical domain uses of ML

techniques are then discussed in section 3.

8
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2.2 A Short History of Artificial Intelligence

“We may hope that machines will eventually compete with men in

all purely intellectual fields. But which are the best ones to start

with? Even this is a difficult decision. Many people think that

a very abstract activity, like the playing of chess, would be best”

(Turing, 1950)1

Emulating computer systems can learn, reason, and self-correct in order

to complete many different tasks - in some cases more quickly and accurately

than humans. These tasks can include providing personalised music recom-

mendations, translation of languages, and recognising speech (Rouse and

Botelho, 2018; Childs, 2011). AI was inspired by the work undertaken by

Alan Turing, Norbert Weiner, and Claude Shannon which showed that it

might be possible to develop an electronic brain using existing knowledge of

neurology and how the human brain uses electronic signals (McCorduck and

Cfe, 2004; Crevier, 1993b).

AI is a varied field of study, from applications trained to play board

games all the way through to complex machines that can carry out difficult

classification tasks (such as detecting cancers in X-rays and the detection

of obstacles for autonomous vehicles). AI has become intrinsic in the way

we interact with computers in modern society with AI techniques built-in to

aspects of everyday life (e.g. computational photography in mobile phones

and smart digital assistants) (Lewis, 2014).

1A quote taken from Alan Turing’s published work from 1950 called “Computing
Machinery and Intelligence”
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Concepts used in modern AI can be seen throughout civilisation over the

last 1800 years where initially philosophers attempted to describe human

thinking by introducing a symbolic system. However, it was not until the 1950s

that the field of AI was formalised. “Can machines learn?” - is a question

taken from the paper ‘Computer Machinery and Intelligence’ published in

1950 by Alan Turing (Turing, 1950). The paper proposed “The Imitation

Game” which later developed into “The Turing Test” a measure of the ability

of a machine/computers to think in a human-like fashion (Crevier, 1993a).

The term “Artificial Intelligence” was introduced in 1956 by John Mc-

Carthy when the first academic conference on the topic was held at Dartmouth

College in Hanover, New Hampshire. An attendee at the conference, Marvin

Minsky, is quoted as saying “Within a generation [. . . ] the problem of creating

AI will substantially be solved” (Crevier, 1993a). AI research continued to

develop in to the 1960s with the creation of new programming languages,

robots, and automatons. Science fiction cinema frequently showed artificially

intelligent beings with TV shows and movies growing in popularity over the

following decade, resulting in researchers being more attracted to study in

the field.

Regardless of the well-funded global research effort over several decades,

computer science researchers found it increasingly difficult to develop intelli-

gent machines. In order to create successful applications, such as computer

vision, there was a requirement for powerful machines capable of processing

enough data. At the time these machines were not readily available, and

the hardware was not capable of what was required. As a direct result,

governments lost faith in AI and saw it as a lost cause. Therefore, from the
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1970s to the early 1990s, an “AI Winter” took place where researchers dealt

with a shortage of funding (Schuchmann, 2019).

The three main advances of AI in the last sixty years have been (Lewis,

2014):

1. Search algorithms

2. Machine Learning algorithms

3. Statistical analysis in understanding the world at large

Eugene Goostman is the name given to the chatbot that successfully

passed The Turing Test in 2014 by convincing 33% of the panel that they

were having a conversation with a real boy for 5 minutes (Warwick and Shah,

2015). Although this accomplishment hasn’t been without controversy, with

AI experts saying that only a third of the panel were fooled and that the

bot was allowed to not answer a number of questions by claiming English

was a second language (Sample and Hern, 2014). The Turing Test is widely

recognised as insufficient for measuring intelligence in machines, as it only

considers external behaviour. There is a wider field of research in assessing

machine intelligence, this research considers a complete measure of machine

intelligence and not just an updated version of the Turing Test (Menager,

2018; Aron, 2015).

The adoption of AI has been slow and has only begun to see real growth

and improvement since 2003, with the introduction of more advanced com-

puter systems. These systems are capable of handling vast amounts of data

and are able to solve complex mathematical calculations in a timely manner
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(Smith, 2006). Exponential gains in computer processing power and the

increasing availability of cheap computer storage has meant that large tech-

nology companies such as (but not limited to) Amazon, Google, and Baidu

use AI techniques to their commercial advantage. Potential applications

include enabling them to monitor potential customers by targeting adverts

and understanding consumer behaviour when shopping and interacting online.

Weak AI describes models that are trained to solve a very specific problem

and, in many cases, can outperform human capabilities. DeepMind’s AlphaGo

and Deep Blue from IBM are examples of Weak AI systems that are capable

of playing board-games better than human players (Han et al., 2019). Deep

Blue achieved this feat in 1997 when it defeated the Russian Grandmaster

Garry Kasparov. However, AI systems are not flexible and cannot be applied

to a different problem once developed (Goodrich, 2021).

The theoretical concept of Strong AI sometimes referred to as Artificial

General Intelligence (AGI) describes systems that have the flexibility of

humans and can combine this flexibility with the advantages of a computer

by storing large amounts of data. This combination could result in more

reliable answers and reduced risks (Wang, 2019) by making use of clustering

and associations to process data and not just classification to find the more

appropriate answer (Wang, 2019). However, currently strong AI doesn’t exist,

it is just a theoretical form of machine intelligence and researchers disagree

as to whether such systems are even possible (Frankenfield, 2022b).

In 2022, AI advances were introduced at an unparalleled rate. Somethings

that will be improved in 2023 are chatbots, as increased Natural Language

Processing (NLP) abilities pave the way for intelligent apps and virtual
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assistants to understand the users requests and issues. ML models will move

to Auto ML without the need for programmers to create specific models.

Furthermore, more jobs will make use of AI to complete everyday tasks

which can help drive efficiencies and streamline businesses. Lin (2020) state

that there had been a 270% growth in businesses turning to AI in the four

years before 2019 and this number continues to increase in 2023 with the AI

industry expected to be valued in excess of $267 Billion by 2027.

2.3 Machine Learning

The term “Machine Learning” was first introduced in 1959 by Arthur Samuel

whilst working for IBM. He produced one of the worlds first successful

computer based self-learning programs and developed a model that had the

ability to play checkers. The ‘Samuel Checkers-playing program’ is seen as a

key development in ML research, and introduced the concept of beta pruning

of search trees (Samuel, 1959; Weiss, 2003).
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Figure 2.1: A Timeline Charting Key Developments in Artificial Intelligence
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In recent years, ML has advanced from the studies of computational

learning theory and simple pattern recognition techniques. It is now a category

of computer algorithms that can learn from historical data and accurately

predict outcomes without the need of being programmed explicitly (Samuel,

1959) depending on the problem domain it is applied to. ML-based learning

algorithms can discover hidden patterns and features embedded within the

data. The analytical models that are produced allow both data scientists and

computer analysts to make informed, valid, and reliable decisions and results

(Sarker, 2021).

2.4 Current Approaches in Machine Learning

Predictive modelling and data mining are similar processes to those undertaken

by ML. These three methods make use of vast datasets and search through

them looking for patterns, adjusting the outputs in the process accordingly.

As well as personalised marketing (as mentioned in the previous section), ML

is commonly used in:

• Fraud detection

• Network security threat detection

• Building recommendation systems

All of these applications use the past behaviour of the user to build up a

picture where patterns can be identified. They can then infer suggestions

based on this past behaviour. An example of ML that is used frequently is

a spam filter on an email inbox. Both spam and non-spammed emails are
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easily classified using ML techniques (Dada et al., 2019). Examples of both

types of email are fed in to the ML algorithm, which will identify patterns

that allow for the prediction of their type. This then leads to the creation of

a rule that can be used with future emails. Future emails will be tested with

the accurate prediction rule and classified accordingly based on the results of

the algorithm (Angra and Ahuja, 2017).

Figure 2.2 presents an overview of the ML process. The primary sections

are: Data Input, Feature Extraction, and Model selection. The Feature

Extraction part of the ML process is one of the most important, as it aids in

the production of producing an accurate model, by selecting attributes in the

dataset that are most relevant to making good predictions. This process will

identify and remove any attributes that are unneeded, irrelevant, or redundant

as they do not contribute to the accuracy of the model and can in some case

reduce the accuracy dramatically (Shaikh and Ali, 2019; Brownlee, 2015).

Unlike dimensionality reduction methods such as principal component

analysis and Sammons mappings which try to combine attributes in the data

to reduce their size, feature extraction methods include and exclude variables

in the data without changing them (Shaikh and Ali, 2019).

ML has gone through a renaissance in recent years, with more companies

looking to introduce some form of ML or AI into their business and business

processes. With the improvement of Graphics Processing Units (GPU),

improvements in computational data handling, and the accumulation of

company records it is possible to produce accurate models to make predictions

with very reliable outcomes. Applying ML in this way has trends and

companies can adapt their business processes accordingly.
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Figure 2.2: Structure Of Machine Learning Process

2.5 Taxonomy Of Machine Learning Methods

There are three main variations of ML algorithms: Supervised Learning, Un-

supervised Learning, and Semi-Supervised Learning. The following sections

describe these variations and give basic examples. The main focus in this

literature review will be on supervised and un-supervised techniques of ML,

as they are the most relevant to the applications considered in this program

of research. The principal difference between supervised and unsupervised

learning is that supervised learning makes use of the ground truth labels –

that is, we have existing knowledge of what the output variable of the given

sample should be. As a direct result, the goal of supervised learning is to spot

the pattern between the dependent variables and the true output by finding

the best approximation for the relationship. Unlike supervised learning, in

un-supervised the labels are not used to spot patterns in the data, so the

algorithm has to infer the natural structure that is present in the data points

(Wakefield, 2022).
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2.6 Types of Learning Algorithm

As illustrated in figure 2.2, all ML design problems begin with a dataset. The

main focus of the process, once the data has been standardised and missing

data is dealt with, will be to select and refine a mathematical model that

captures the dynamics of the problem. Performance bounds can be presented

based on the optimised algorithm for the model (under the assumption that

the dataset is a large enough distribution of the full ground truth data).

“Which algorithm should I use?” is a common question asked by data scientists

when looking at a new problem, especially with the variety of ML algorithms

available. New algorithms and techniques are being developed at a rapid rate.

The main factors that will affect the model selection are (Li, 2017):

1. Size, quality, and nature of data

2. Computational time that is available for training the model

3. What you want to achieve with the data in terms of metrics and

outcomes

Selecting the correct ML algorithm in order to produce the best results is one

of the more difficult challenges facing data scientists. Figure 2.3 shows the

decision process to select which algorithm to use depending on the dataset,

type of data, and desired output. Accuracy, ease of use, and required training

time are aspects of ML that should always be considered when choosing an

algorithm.

The selection of the most effective algorithm will be reliant on both the

type of learning problem and also what is known about the data. Looking at
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Figure 2.3: Which Machine Learning Algorithm Should Be Implemented Based On
The Metrics And Taxonomy Of Data?

the individual algorithms makes it easier to understand what they provide

and how they can be implemented (Dey, 2016). The following sections provide

details on some common statistical modelling algorithms for both supervised

and un-supervised problems. Further descriptions of any additional algorithms

used later in this body of work will be described as used.
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2.7 Supervised Learning

In Supervised learning a dataset will be a collection of labelled examples that

can be denoted as:

(xi, yi)
N
i=1 (2.1)

Feature vectors are each individual element xi amongst N. Features are

described mathematically as xj. A feature vector is a single vector in which

the each dimension j=1,. . . , D will contain a value that will describe that

example, for instance age of a patient or if they are a smoker or not. For all

the examples in a given dataset j the feature vectors will always contain the

same type of information. The finite number of classes that all of these labels

belong to is referred to as yi for each element.

Consider, as an example, the classification of a patient into the Body Mass

Index (BMI) categories: underweight, normal, overweight, obese, extremely

obese as per Table 2.1. A patients height in cm, age, and weight in Kilograms

(kg) or Pounds (lb) would be provided as x1, x2, x3, x4 with the feature defined

at position j being the same for all patients; for example x
(1)
i will represent a

patients weight in kg therefore x
(2)
k will also contain weight information and

so on for the whole series of data (Burkov, 2019).
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The main objective of Supervised learning is to find a mapping from

the feature vector of labelled data to a target output. Supervised learning

algorithms are trained by using labelled data (i.e where the output is already

known). In supervised learning, each data sample corresponds to a target and

the model is trained to find a set of “rules” to arrive at that target from the

input features. The model “rules” will be constantly updated until it has been

trained on all the data. Current ML techniques have achieved great success;

however, it is important to note that in many real-world applications it is

difficult to obtain reliable ground truth labels due to the high cost involved

in fully labelling the data.

Supervised learning is used in many different areas of data science includ-

ing:

• Bioinformatics

• Natural Language Processing (NLP)

• Computer vision applications

The most widely used supervised learning algorithms are: K-Nearest Neigh-

bours, Neural Networks, Support Vector Machines, and Linear Regression

(Burkov, 2019).

Supervised learning can be broadly divided into two tasks:

• Classification: When supervised learning is used to predict a cate-

gorical variable this is known as classification. If there are only two

categorical labels, then it is described as binary classification.
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• Regression: Unlike in classification, regression is used when predicting

continuous values (Fumo, 2017).

2.7.1 Empirical Risk and Structural Risk Minimisation

Empirical risks - Empirical Risk Minimisation (ERM) is a method for

finding a model that performs well on a given dataset. Given a set of training

examples, the empirical risk of a model is defined as the average loss over

all the examples in the dataset. The goal of ERM is to find the model

that minimizes the empirical risk, or equivalently, maximizes the average

performance on the training set. This is done by choosing the model that

minimizes the following objective function:

argmin
θ

1

N

N∑
i=1

L(yi, f(xi; θ)) (2.2)

In this formula, θ represents the parameters of the model, f(x; θ) is the

prediction made by the model for a given input x, and L(y, f(x; θ)) is a loss

function that measures the error between the prediction f(x; θ) and the true

label y. The sum is over all N training examples in the dataset, and the

average is taken by dividing by N . By minimizing this objective function,

we find the model parameters θ that give the lowest average loss over all the

training examples. This in turn gives us a model that is expected to perform

well on the training set, and therefore, on unseen examples from the same

distribution as the training set (Li, 2021).

Structural risks - In minimising the empirical risk, the model is suscep-

tible to overfitting. Overfitting occurs because the supervised learning model
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has too much flexibility (e.g too many degrees of freedom). This can result in

it being a bad candidate function for unknown data points, as the mapping

focuses on noise in the dataset rather than the actual data. In figure 2.4,

the solid and dotted-line both represent functions that reduce the empirical

risk to 0; however, the dotted-line is a classifier as it generalises better and

therefore might be more effective at predicting unknown data points.

Structural risk minimisation is used to prevent a supervised learning model

from overfitting the data. An effective way of determining λ is to use cross

validation techniques where the training data is divided into multiple sets

and part of the data is used to train the model with the performance of the

model tested on a validation set. For each iteration the penalty is adjusted

to find the value for λ which minimises the risk (Zhang, 2010).
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Figure 2.4: Diagram To Demonstrate Overfitting Of Datapoints
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2.7.2 Linear Regression

Developed in the field of statistics, linear regression finds the relationship

between input and output variables. It is frequently used and is probably the

simplest ML algorithm.

Linear regression has been used to solve statistical problems for more than

200 years. It has been widely researched and many academic papers use it in

one form or another. Fundamentally linear regression is a model that finds

the linear relationship between the input variables (x) and output variable

(y). If there is a single input variable then the model is known as simple

linear regression, conversely a model dealing with multiple input variables is

known as multiple linear regression.

The ordinary least squares algorithm is frequently used to estimate the

linear regression model parameters from a dataset. Linear regression is

frequently used in ML due to its simple representation and explain-ability.

The mathematical representation is a linear equation that combines:

• Input values (x)

• The output (y)

The general form of a linear regression model is:

Yi = f(xiβ) + ei (2.3)

Where the linear equation assigns a scale factor to each of the input values (x),

known as the coefficient it represented as β. The bias coefficient is represented

as ei which gives the line an additional degree of freedom.
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In high dimensions 2 the linear regression model finds a hyperplane in

high dimensional space. Regression models are sometimes described by

defining their complexity (typically the number of coefficients or degrees of

freedom in the model). More coefficients mean the model is more flexible,

but more complex. If a coefficient is equal to 0 then that input variable has

no effect/influence on the model. Regularisation methods are used in linear

regression to reduce the complexity.

2.7.3 Logistic Regression

Investigating the relationship between the target and independent predictor

variables using regression analysis is a version of a predictive modelling

techniques. It is frequently used to look at:

1. forecasting

2. finding causal effect relationships

3. time series modelling

Logistic Regression is a supervised ML algorithm used for classification

tasks. It is a type of regression analysis that is used to predict the probability

of a binary outcome, such as whether an email is spam or not spam. In

Logistic Regression, the input data is first transformed into a set of features,

which are then used to make predictions about the probability of the binary

outcome. The algorithm works by finding the best coefficients for the features

that will maximize the probability of correctly predicting the outcome. The

2working with more than one input value (x)
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prediction made by logistic regression is based on the logistic function, which

maps the predicted probability to a value between 0 and 1. The logistic

function is defined as:

f(x) = 1/(1 + e−x) (2.4)

where x is the predicted value based on the features and coefficients. To

train a Logistic Regression model, the algorithm iteratively adjusts the co-

efficients to minimize the error between the predicted probabilities and the

true outcomes. This is typically done using an optimization algorithm, such

as gradient descent. Logistic Regression is a popular algorithm because it is

relatively simple to implement and interpret, and it is widely used for binary

classification tasks. However, it is not suitable for tasks with more than

two classes, or for tasks where the relationship between the features and the

outcome is more complex than a linear relationship.

There are many different types of Logistic Regression. These are defined

as:

• Binary Logistic Regression: The categorical response has only two

different values. For example detecting whether a patient has diabetes

or not.

• Multi-nominal Logistic Regression: There are more than two

different categorical variables such as detecting the weather based on

meteorological and atmospheric input variables to classify if its going

to rain, snow or have sun.

• Ordinal Logistic Regression: Ordinal Logistic Regression is used to
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predict multiple categories where the categorical output will have some

order. An example of this could be in predicting the degree classification

of a student, where the possible outputs have a natural order.

2.7.4 Decision Trees & Regression Trees

A decision tree is a directed acyclic graph that can be used to make decisions.

Decision trees can be used to build both classification and regression models.

A key use is in data mining to discover existing patterns of information that

are present within the dataset. Decision trees work by reducing the size of

the dataset by breaking it down in to smaller subsets by producing a set of

“rules”.

Unlike other learning algorithms decisions trees can accept both categor-

ical and numerical variables and do not require data normalisation which

means in some cases, the time needed to set up the model is reduced. A

completed decision tree comprises decision nodes and leaf nodes. Leaf nodes

are representative of the final output and should be equal to the ground truth

variable. A decision node must have two or more branches and represents a

“rule” applied to the input variable. The top node of the decision tree is known

as the root node, and is the strongest predictor. Figure 2.5 shows the example

of a decision tree about prescribing antibiotics to children (Martignon, 2010).

ID3

The most commonly used algorithm for building decision trees is called ID3.

It was developed by Quinlan (1986). The algorithm uses a top-down greedy
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Figure 2.5: Decision tree to detail whether antibiotics should be prescribed or not
(Martignon, 2010)

search to search through all of the space and consider all of the possible

branches with no backtracking. ID3 was designed to build decision trees when

there are multiple features; however, it is generally found to construct simple

trees and there is no guarantee that better trees have not been overlooked.

ID3 uses information gain and entropy to build each node of the decision tree.

Entropy

The ID3 algorithm uses entropy to compute how similar the sample is and,

at each node, partitions the data into subsets where the resulting entropy
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of those subsets is minimised. This is commonly known as calculating the

homogeneity of a dataset. If the sample is all the same, then the entropy

value is 0, conversely, if a sample is equally divided then the entropy is 1.

Entropy is calculated using the following formula 2.5, below.

H(x) = −
n∑

i=1

p(xi) log2 p(xi) (2.5)

The steps of the ID3 algorithm are:

1. Calculate the entropy for each attribute of the dataset.

2. Split the dataset for each different attribute.

3. Calculate the entropy for each different potential branch.

4. Add all the parts to get the total entropy for the split.

5. The results from step 4 are subtracted from the entropy before the split

(this is the information gain).

6. The attribute with the largest information gain is a decision node.

Divide the dataset at this point and repeat the steps 1-5.

7. Branches that have an entropy of 0 are leaf nodes, anything with a

value greater than 0 requires further splitting.

These steps are repeated until all of the data is classified.

Pruning

Unfortunately the ID3 algorithm when used on larger datasets with multiple

targets can result in overfitting of the dataset. There are three methods used
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to reduce overfitting for decision trees and to improve its ability of predicting

outputs: top-down pruning, bottom-up pruning, and error driven pruning.

2.7.5 Random Forests

Despite the pruning techniques described previously, decision trees do not

perform well with noisy data. A common effect of this is that multiple runs of

training a decision tree model can produce different trees and negatively effect

the overall accuracy of the model. Breiman proposed a method to overcome

these limitations called random forests (Breiman, 2001). The final work by

Breiman combined their earlier approaches published between 1995 and 1998.

Random forests build on the decision tree learning algorithm to improve how

they deal with noisy data. Random forests aggregate and weight the results

of multiple smaller decision trees (created from subsets of the dataset as well

as subsets of the features). This reduces the impact bad data can have and is

known as a form of ensemble learning.

Another benefit of using random forests over decision trees is that they

can dramatically reduce the computation time needed to train the model. As

datasets grow and evolve, models need retraining or redeveloping.

A key advantage of decision trees is that they are easy to interpret. It

is possible to take a single sample and trace it through the tree to make a

decision. Unfortunately, the ensemble learning within random forests means

it is not possible to ascertain why the model has produced good results.
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2.7.6 Support Vector Machines

Support Vector Machines (SVMs) are an alternative ML method that can

be used for both classification and regression problems. The key ideas were

written by Vapnik, Chevonenkis and co-workers where they described their

method for creating a maximum-margin hyperplane to separate data classes.

However, the research went largely unnoticed until 1992 when Boser, Guyon

and Vapnik described them in COLT-92 (Boser et al., 1992). Original SVMs

weren’t particularly useful until the 1992 creation of the the kernel trick which

dealt with linearly separated data. SVMs are aptly described as:

Support Vector machines can be defined as systems which use

hypothesis space of a linear functions in a high dimensional feature

space, trained with a learning algorithm from optimization theory

that implements a learning bias derived from statistical learning

theory (Huang et al., 2017).

The main objective of a Support Vector Machine (SVM) is to find a

hyperplane in N-dimensional space (where N is the number of features) that

distinctly classifies all of the points. SVMs aim to find the hyperplane with

the maximum distance between points of different classes. In the process of

maximising the margin distance, the model is provided with reinforcement;

therefore additional observations can be correctly classified with a higher

degree of confidence.

These hyperplanes are the decision boundaries that are used to classify

observations. Depending on which side of the hyperplane the observation sits,

will determine which class it falls in to. When the number of input features
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is two, the hyperplane can be considered as a line where data points can fall

above or below the intersecting line. If there are three input features, then

the hyperplane is a two dimensional plane.

The position, orientation, and angle of the hyperplanes is determined by the

support vectors. These are single observations that sit close to the hyperplane

on the edge of the decision boundary. The more support vectors, the easier

it is to maximise the margin of the classifier. Finding the maximum margin

hyperplane enables SVMs to overcome the problems caused by overfitting

and underfitting. To maximise the margin between the observations and

the hyperplane a loss function known as Hinge Loss is often used. As well

as the loss function, a regularisation function is also used. When the SVM

mis-classifies a data point then the loss value and regularisation cost are used

to update the hyperplane gradient (Cristianini and Ricci, 2008).

One key aspect that makes SVMs so popular and powerful is the kernal

trick which makes them applicable to nonlinear classification tasks. The kernel

trick works by transforming the input data into a higher-dimensional space

using a kernel function, so that the classes can be separated by a hyperplane

in that space. This allows the SVMs to perform nonlinear classification

without actually having to compute the transformation of the data into the

higher-dimensional space.

The kernel function used in the kernel trick can be any function that

satisfies the Mercer condition, which basically states that the function should

be continuous and positive-definite. Some common kernel functions used in

SVMs include the linear kernel, the polynomial kernel, and the radial basis

function Radial Basis Function (RBF) kernel.
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Figure 2.6: Support Vector Machine Graphical Explanation

The kernel trick is a useful technique because it allows SVMs to perform

nonlinear classification without requiring the user to manually specify the

transformation of the data into the higher-dimensional space. This can be

particularly useful when the data is complex or when it is not clear what kind

of transformation would be most effective.
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2.7.7 Artificial Neural Networks

An Artificial Neural Network (ANN) is a type of ML model inspired by the

structure and function of the biological brain described in 2.7.7. It consists of

layers of interconnected “neurons”, which process and transmit information.

Each neuron receives input from other neurons, and uses this input to compute

and output a signal to other neurons in the next layer. The structure and

function of Artificial Neural Networks (ANNs) allows them to learn and

adapt to new data and tasks, without the need for explicit programming.

This is done through a process of training, in which the neural network is

presented with a large dataset and adjusts the strengths of the connections

between neurons (called weights) to improve its performance on the task.

ANNs have been successful in a variety of applications, including image and

speech recognition, language translation, and even playing games. They

are a powerful tool for solving problems that involve complex patterns and

relationships in data.

A neural network is a widely used classification technique that makes use

of some of concepts of the way the human brain learns (Gurney, 1997).

In 1943, Warren McCulloch and Walter Pitts published a paper entitled “A

logical calculus of the ideas immanent in the nervous activity” (McCulloch and

Pitts, 1943). The paper described how the authors used existing knowledge of

brain cells and how they are tied together in order to learn complex patterns.

These brain cells are commonly known as neurons. This collective research

allowed the authors to introduce the McCulloch-Pitts Neuron (MCP) model

which is the basis for all common neural networks used today. The MCP
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model makes use of features from biological neurons to make up each node

in the network. The first MCP neuron developed had its limitations, and

it wasn’t until Frank Rosenblatt introduced the perceptron in the 1960s

(Rosenblatt, 1960) that significant developments were made in the field of

ANNs. In the perceptron, the Neural-Network (NN) neuron is passed through

a “pre-processer” that will contain units that are associated with it. The

perceptron will check if there is a specific feature in the data that can be

used to help predict the output (Rosenblatt, 1960). ANNs are capable of

finding patterns in data that are usually too complex for human beings to

identify. An ANN becomes proficient at solving a specific problem because of

the information it is trained on.
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The Human Brain

Figure 2.7: Schematic of a neuron within the human brain (Awan-Ur-Rahman,
2019).

The human brain is made up of cells called neurons. It is estimated that

there are 100 billion neurons in the human brain with 10e15 connections with

each other. A biological neuron consists of four parts:

1. Soma

2. Axon

3. Dendrite

4. Synapse

The Dendrite receives varying electro-chemical signals from other neurons

into the cell body. The Soma sometimes known as the cell body, contains a
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nucleus and other chemical structures that are required to support the cell

and lastly, performs the data processing. This is effectively done by triggering

an output when the strength of the input signal exceeds a certain threshold.

The Axon carries the output signal from the neuron to other neurons. The

Synapse is the point of connection between the dendrites of two neurons.

Artificial Neurons

In its simplest form a biological neuron takes some inputs, carries out some

calculations and produces an output - an ANN works in the same way Figure

2.8 illustrates what a 2-input neuron would look like.

Figure 2.8: Two Input Neuron Diagram.

There are several things happening in figure 2.8.

1. Each input (x) is firstly multiplied by a weight (w):

x1 → x1 ∗ w1 (2.6)

x2 → x2 ∗ w2 (2.7)
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2. The weighted inputs are added together with a bias (which is denoted

by b).

(x1 ∗ w1) + (x2 ∗ w2) + b (2.8)

3. The resulting calculation from equation 2.8 is passed through a defined

activation function (f).

y = f ((x1 ∗ w1) + (x2 ∗ w2) + b) (2.9)

This activation function is used to turn an input that is unbounded

into an output that has a predictable form. Sigmoid, the hyperbolic

tangent function, and the Rectified Linear Unit (ReLU) function are

commonly used as activation functions in ANNs. A sigmoid function

can be thought of as compressing data in the range (−∞, +∞) into

(0,1).

Feed Forward Networks

A feedforward neural network is a type of ANN in which the connections

between the neurons do not form a cycle. This means that information flows

through the network in only one direction, from the input layer to the output

layer, without looping back.

In a feedforward neural network, the input data is passed through the

input layer, which then passes it on to one or more hidden layers. Each hidden

layer processes the data and passes it on to the next layer until it reaches the
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output layer. The output layer produces the final result or prediction based

on the input data.

Feedforward neural networks are typically used for supervised learning

tasks, such as classification and regression. They are called feedforward

because the data flows through the network in a single direction, from the

input layer to the output layer, without looping back.

The structure of a feedforward neural network can be represented as a

series of interconnected layers, where each layer consists of a set of artificial

neurons or nodes. The input layer receives the raw input data, and the output

layer produces the final prediction. The hidden layers process the data and

pass it on to the next layer. The number of hidden layers and the number of

neurons in each layer can be adjusted to optimize the model’s performance

on a given task.



CHAPTER 2. REVIEW OF MACHINE LEARNING 42

2.8 Unsupervised Learning

In contrast to supervised learning, unsupervised learning aims to train a

system to represent particular input patterns in a way that does not require

the ground truth output. An example of this is the way humans learn to

recognise objects. For example, when a baby is introduced to the family

dog. If weeks later, a family friend brings another dog round, the baby is

able to recognise it as a dog even though she has not seen this particular

dog previously. The features of the dog are recognised by the baby: 2 eyes,

walking on 4 legs, tail, and a collar. The baby has created a mental model of

a dog without necessarily having a mental label attached to it. This is an

example of unsupervised learning where you can learn from the structure of

the data provided.

“We expect unsupervised learning to become far more important

in the longer term. Haman and animal learning is largely unsu-

pervised: We discover the structure of the world by observing it,

not by being told the name of every object” (LeCun et al., 2015).

There are three main reasons to use unsupervised learning over supervised

learning:

1. Unsupervised ML is able to find unknown patterns within data.

2. Features can be found in unsupervised learning that can be made use

of for categorization.

3. It is quicker to produce datasets with unlabelled data, as it doesn’t
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require any manual intervention (unlike labelled datasets that are ex-

pensive to produce).

Clustering is the most important unsupervised problem and involves

finding structure and patterns in collections of uncategorised data. Businesses

that need to understand customer behaviour and purchase history may use

clustering techniques to focus advertising - particularly on social media.

Customers can be clustered on factors such as age, gender, purchase process,

and payment type.

Three different versions of clustering that can be implemented are:

1. K-means clustering: where the data points are partitioned into K

clusters based on minimising the variance between each cluster.

2. Hierarchical clustering: where data points are clustered into both

parent and child clusters. Customers may be initially split by age and

then further split by other identifying traits.

3. Probabilistic clustering: where a probabilistic scale is used to cluster

the data points into different clusters. An example might be in develop-

ing categories for sport equipment: “Football boot”, “Rugby boots”,

“Football ball” and “Rugby ball” can be clustered using two different

properties they relate to e.g.: the sport “Rugby” and “Football” or the

equipment type e.g. “boot” and “ball”.

Disadvantages Of Unsupervised Learning

1. Results may not be as reliable as they are automatically generated.

2. The user needs to spend time interpreting the final outcome clusters
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2.8.1 Clustering

Clustering is a type of unsupervised learning. Clustering is used to find

meaningful structure and groupings that are inherent within the data without

using labelled datasets. It involves dividing the population of data points into

a number of different groups such that data points within the same group are

similar to each other in some way. Figure 2.9 displays the data points for a

given data set. From visual inspection it is obvious that three clusters can be

formed from the data, as shown in Figure 2.10.

Figure 2.9: Randomly generated dataset which could be split in to 3 clusters

Clustering is widely used in various industries to segment data and to

understand intrinsic groupings. The interpretation of whether they are good

clusters or not depends on the use case. However, common evaluation metrics

include Silhouette Scores (which measures the separation of clusters), and
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Figure 2.10: Clustering Example with cluster generated

the Calinski-Harabasz index (which is the ration between cluster distribution)

as well as the Davies-Bouldin Index (which measures how well spread and

dense the clusters are) (Wang and Xu, 2019; Xiao et al., 2017).

Clustering can be further split in to four main types of segmentation:

1. Centroid Models

2. Distribution Models

3. Density Models

4. Connectivity Models

Centroid models are iterative clustering algorithms which measures similar-

ity by the closeness of a data point to the randomly placed centroid. K-Means
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clustering is commonly used in clustering and is a centroid model. When

using these models, the number of required clusters needs to be defined before

training the model. Therefore, it is important that some prior information is

known about the dataset and what outcomes are to be expected. K-Means

clustering is the most commonly used clustering algorithm. It is an iterative

approach that aims to find the local maxima at each iteration. The K-Means

algorithm is usually attributed to Stuart Lloyd who introduced the algorithm

when working in the Bell Labs in 1957 (Lloyd, 1982). It was developed as a

technique for pulse code modulation. The K-Means algorithm comprises of

five steps:

1. Specify the number of clusters that the data observations will be seg-

mented in to.

2. Randomly assign each observation to a cluster.

3. Randomly assign the starting centroids of the data. The number of

centroids should match the number of clusters determined in step 1.

4. Re-assign each point to the closest centroid and re-compute the positions

of the centroids, moving them around the data space as required.

5. Repeat step 4 until no more improvements are possible.

Distribution models try and understand how probable it is that a data

point belongs to the same distribution as other data points (Normal, Gaussian).

As a consequence to this, they are often prone to overfitting. Expectation-

Maximization is an example of distribution models and it uses multivariate

normal distributions to determine which cluster data points should fall into.
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No prior knowledge or understanding of the dataset is required, which makes

them a good technique to use in data exploration.

Density Models look at how dense a cluster of points is in the data space.

If some points are grouped densely together, it is said they belong to the

same cluster if they are also in the same region. DBSCAN and OPTICS are

commonly used density models.

Connectivity models are based on the idea that data points that are closer

in the data space will be similar to each other. Connectivity models use

hierarchical approaches to group the data together. Hierarchical Clustering

Analysis (HCA) is an unsupervised clustering algorithm which generates clus-

ters that have prevalent ordering from the top to the bottom. Agglomerative

Hierarchical Clustering (AHC) is one of the most commonly used models in

HCA. It is a known as a “bottom up” method, as each observation starts

as its own cluster and pairs of clusters are iteratively merged together. The

distance between each cluster is measured using different linkage methods.

These methods are:

• Complete-Linkage: Complete-Linkage describe when the distance

between two clusters is defined as the longest distance.

• Single-Linkage:Single-Linkage is used when the distance between the

two clusters is the shortest distance this is known as Single-Linkage.

This linkage method is susceptible to outliers in the data.

• Average-Linkage: Average-Linkage is when the distances between

each pair of observations in each cluster is summed up and divided

by the total number of pairs This provides the average inter-cluster
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distance.

• Centroid-Linkage: Centroid-Linkage is the distance between the

centroids in two different clusters.

Different linkage methods are applicable for different data sets. There is no

exact use case for each method as they all produce different clusters.

Unlike AHC, Divisive Hierarchical Clustering (DHC) is a “top down”

approach. All of the data points are initially assigned to a single cluster. The

observations are then partitioned to the two “least similar” clusters. This

recursive partitioning continues iteratively until there are no more splits that

can be done. For both DHC and AHC the user needs to specify the number

of clusters required to understand when the termination should take place.

2.8.2 Dimensionality Reduction

With the computerisation of Electronic Health Records (EHRs), datasets

within the medical domain are increasingly getting bigger. To make these

datasets easier to interpret, dimensionality techniques are used to reduce the

number of features whilst ensuring that most of the information within the

dataset is preserved (Jolliffe and Cadima, 2016). Furthermore, explaining

the final classification of a ML problem can be difficult when there are many

features present. As the feature set grows beyond 2 and 3 dimensions, it is

not easy to visualise the dataset. Many features are correlated3 and hence

redundant. For this scenario, where there are many correlated features, dimen-

sionality reduction is utilised. Dimensionality reduction reduces the number of

3Correlation explains how one or more variables are related to each other
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features under consideration by producing a set of principle variables. The set

of principal variables is obtained by two different methods: feature selection

and feature extraction (Uberoi, 2017).

1. Feature Selection: A subset of the original features is found. Features

are selected using three different techniques:

• Filter

• Wrapper

• Embedding

2. Feature Extraction: The data in a high-dimensional space is reduced

to a lower-dimensional space.

Zhu et al. (2015) developed a novel dimensionality reduction technique

called Niche Genetic Algorithm (NGA); their methodology enabled them to

reduce the number of features in their sepsis dataset from 77 to 10 (many of

the features overlapped and were heavily correlated). The resulting model

produced an accuracy of 92% when predicting 28-day death in sepsis patients.

To better understand the concepts of dimensionality reduction, consider a

3D classification. This can be difficult to visualise; however, a 2D problem

can be mapped to a 2-dimensional space. A 1D problem can be mapped to a

single line.

There are various methods that can be employed for dimensionality re-

duction. They include:

• Principal Component Analysis (PCA) is a dimensionality reduc-

tion technique that is commonly used in ML. It is a linear transfor-
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mation method that reduces the number of dimensions in a dataset by

projecting the data onto a lower-dimensional subspace.

PCA is based on the idea that the directions with the highest variance in

the data are the most informative, and that the data can be projected

onto a lower-dimensional subspace while preserving as much of the

original variance as possible.

To perform PCA, the data is first centered by subtracting the mean

from each feature. The covariance matrix of the centered data is then

computed, and the eigenvectors of the covariance matrix are found. The

eigenvectors are ranked by the corresponding eigenvalues, which indicate

the amount of variance in the data explained by each eigenvector. The

eigenvectors with the highest eigenvalues are selected as the principal

components of the data.

The data is then projected onto the subspace defined by the principal

components, resulting in a lower-dimensional representation of the data.

The number of dimensions in the final representation can be controlled

by selecting the number of principal components to keep.

• Linear Discriminant Analysis (LDA) works by projecting the data

onto a lower-dimensional space that maximizes the separation between

the different classes. It does this by finding a projection that maximizes

the ratio of the between-class variance to the within-class variance. In

other words, LDA tries to find a projection that maximizes the difference

between the means of the different classes while minimizing the variance

within each class.
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To perform LDA, the mean vector and covariance matrix for each class

are calculated. The mean vector for each class represents the center

of mass of the data points belonging to that class, and the covariance

matrix represents the spread of the data around the mean.

The projection is then found by solving a set of linear equations that

maximize the ratio of the between-class variance to the within-class

variance. The resulting projection is used to transform the data onto

the lower-dimensional space.
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2.9 Semi-Supervised Learning

Semi-supervised learning is a combination of supervised and unsupervised

learning approaches. It is used for similar applications to that of supervised

learning, and makes use of a combination of both labelled and unlabelled

data for training. There is usually a small amount of labelled data and

a greater amount of unlabelled data. Labelled data is usually much more

expensive to generate as labelling the data is often labour intensive. Semi-

supervised learning is used when a large amount of data is required, but the

cost associated with labelling is too high for a fully labelled training process.

Face identification, such as that implemented by Facebook and Google, is an

example of semi-supervised learning (Liu et al., 2021).

A classic example of semi-supervised learning models is speech analysis.

Applying semi-supervised learning techniques can reduce and minimise the

effort required by human resources to greatly improve speech analytic mod-

els. Web content classification is another example of where semi-supervised

learning is utilised. Similarly to the previous use case, human intervention is

typically required to classify the content. Semi supervised learning techniques

can be implemented to speed up this content classification process. However

the key drawback is that it isn’t currently possible to verify that the labels

produced are accurate, therefore the resulting outcomes are not as trustworthy

as fully supervised techniques.

Gu et al. (2020) used semi-supervised learning with a graph embedded

Random Forest. A major challenge in the analysis of medical imaging is the

lack of images with labels or annotations present. As previously discussed
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the process of labelling and annotating records can be a very costly process

and in the medical domain it requires a level of expertise to correctly identify

records. The results presented by Gu et al. (2020) demonstrated that using

the information gain calculation in Random Forests reduced the accuracy

of the results, however, utilising a graph-embedded entropy, they were able

to produce results that were significantly improved whilst also maintaining

the low computational burden and robustness to over-fitting that is a key

deciding factor in Random Forests.
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2.10 Comparison Of Algorithms

Linear Regression

Pro’s

• Simple to implement and efficient to train.

• Overfitting can be reduced by regularization.

• Performs well when the dataset is linearly separable.

Con’s

• Assumes that the data is independent which is rare in real life.

• Prone to noise and overfitting.

• Sensitive to outliers

Logistic Regression

Pro’s

• Less prone to over-fitting but it can overfit in high dimensional datasets.

• Efficient when the dataset has features that are linearly separable.

• Easy to implement and efficient to train.

Con’s

• Should not be used when the number of observations are lesser than

the number of features.

• Assumption of linearity which is rare in practise.
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• Can only be used to predict discrete functions.

Decision Tree

Pro’s

• Can solve non-linear problems.

• Can work on high-dimensional data with excellent accuracy.

• Easy to visualize and explain.

Con’s

• Overfitting. Might be resolved by Random Forest.

• A small change in the data can lead to a large change in the structure

of the optimal decision tree.

• Calculations can get very complex.

K Nearest Neighbour

Pro’s

• Can make predictions without training.

• Time complexity is O(n).

• Can be used for both classification and regression.

Con’s

• Does not work well with large dataset.

• Sensitive to noisy data, missing values and outliers.
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• Need feature scaling.

• Choose the correct K value.

K Means Clustering

Pro’s

• Simple to implement.

• Scales to large data sets.

• Guarantees convergence.

• Easily adapts to new examples.

• Generalizes to clusters of different shapes and sizes.

Con’s

• Sensitive to the outliers.

• Choosing the K values manually is tough.

• Dependent on initial values.

• Scalability decreases when dimension increases.

Support Vector Machine

Pro’s

• Good at high dimensional data.

• Can work on small dataset.

• Can solve non-linear problems.
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Con’s

• Inefficient on large data.

• Requires picking the right kernal.

Principal Component Analysis

Pro’s

• Reduce correlated features.

• Improve performance.

• Reduce overfitting.

Con’s

• Principal components are less interpretative.

• Information loss.

• Must standardize data before implementing PCA.

Naive Bayes

Pro’s

• Training period is less.

• Better suited for categorical inputs.

• Easy to implement.

Con’s
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• Assumes that all features are independent which is rarely happening in

real life.

• Zero Frequency.

• Estimations can be wrong in some cases.

Artificial Neural Network

Pro’s

• Have fault tolerance.

• Have the ability to learn and model non-linear and complex relationships.

• Can generalize on unseen data.

Con’s

• Long training time.

• Non-guaranteed convergence.

• Black box. Hard to explain solution.

• Hardware dependence.

• Requires user’s ability to translate the problem.

Adaboost

Pro’s

• Relatively robust to overfitting.

• High accuracy.
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• Easy to understand and to visualize.

Con’s

• Sensitive to noise data.

• Affected by outliers.

• Not optimized for speed.
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2.11 Summary

Spotting patterns in data can often be improved and sped up by using AI

to spot patterns in data quickly. Many real-world applications currently use

AI techniques to assist in making decisions and offer support for different

types of datasets. This Chapter has shown that the subset of AI, ML can

provide robust solutions and provide an accurate prediction that could be

applied to many medical tasks. The main drawback now is the complexity of

developing such mathematical models and how to deal with missing data and

unbalanced datasets effectively.

This Chapter has aimed to provide a detailed introduction to the history

of AI and the different types of ML and introduce some core ML algorithms.

In section 2.2 an overview of AI and some of the most note-able historical

points to date were presented. Section 2.5 described the different taxonomy of

ML models before supervised learning, and unsupervised learning is defined

and described.

The different types of learning algorithms and the decision considerations

of which algorithm to use are outlined in section 2.6. Figure 2.3 is a flowchart

of the decision-making process.

Supervised learning is discussed in section 2.7 and the algorithms Linear

Regression, Logistic Regression, Decision Trees, Random Forests, SVMs, and

ANNs are reported between subsections 2.7.2 to 2.7.7.

Section 2.8 introduces the concept of unsupervised learning and semi-

supervised algorithms. Clustering (in subsection 2.8.1) and Dimensionality

reduction (in subsection(2.8.2), which are statistical techniques are also
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defined.

Section 2.10 outlines the pros and cons for different ML algorithms. The

concepts, algorithms and decision-making processes are utilised throughout

this work. Chapter 3 describes some areas of medicine that utilise AI and the

algorithms that they have used. Decision Trees, Linear Regression, Neural

Networks, Random Forests are used in Chapter 4. The Logistic Regression

algorithm is selected for use in Chapter 5.



Chapter 3

Machine Learning In Medicine

Image Technology News estimates that the market for AI in healthcare will

grow to more than $31.3 billion by 2025. This is a growth of more than 40%

since 2018 when the market was valued at $22.4B (Inc, 2019). This chapter

discusses some of the key areas of medical decision support that can be helped

by ML techniques, whilst also providing some examples that are commonly

described in literature. (Rajkomar et al., 2019; Inc, 2019)

3.1 Recordkeeping

As more health records in different countries are being moved to digital sys-

tems, health informatics are being used to streamline recordkeeping, improve

patient care, reduce the need for large administrative costs, and ensuring that

patients are not administered incorrect medicines due to allergies.

This shift to EHRs allows data about patients to be easily transferred

between clinicians; however, the unstructured nature of these records makes

63
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them particularly difficult to process automatically. NLP - the application of

computational techniques to analyse natural language or speech - is a crucial

tool for making use of such data by extracting key information from EHRs.

3.2 Data Integrity

ML algorithms can only effectively use EHRs where the data is complete

and contains minimal missing data. Gaps in healthcare information can

result in ML algorithms providing inaccurate predictions, which can hamper

decision making. It is important for healthcare professionals to maintain

the integrity of records and make sure that they are as complete as possible.

However, it is sometimes not possible to obtain all of the data due to time

constraints, machine failure, or lack of funding to complete tests. There are

several considerations that medical practitioners use to maintain the integrity

of patient data:

• Understand the process workflow and data life-cycle: The flow of

data should be well documented, continually reviewed and maintained.

The mapping of data can help to consolidate workflows by highlighting

potential risks and areas of improvements to the existing workflow.

• Automate data workflows: Manual data entry or transcription can

lead to poor integrity behaviour. Furthermore, different data entry

methods can lead to results that differ even though they are the same.

Automating data workflows can reduce the need for clinicians making

decisions when capturing data. Automated solutions that currently exist
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are Electronics Lab Notebook (ELN) and Lab Information Management

Systems (LIMS), these systems can be put in place to capture data

efficiently in real-time and add the metadata to patient data.

• Review data for quality and completeness: Critical data should

be reviewed by experts with a knowledge of the subject area. The

Medicine and Healthcare Product Regulatory Agency(s) (MHRA)’s pro-

vide further guidance for data integrity and how it should be reviewed.

3.3 Predictive Analysis

Combining ML, predictive analysis, EHRs, and health informatics enables the

development of supporting tools that can be used to improve the healthcare

processes and leads to more accurate diagnosis and more effective treatments.

Furthermore, and most importantly, it can improve patient outcomes by

suggesting alternatives to surgery or suggesting medicines that may not have

been considered. ML can also provide information on areas that require closer

inspection and can be used to target specific research areas that may be

behind or where there is currently a gap in the area.

Jamin et al. (2021) demonstrated that utilising different ML algorithms,

including SVMs and ANNs, can be trained on medical data to provide better

results than medical support tools currently being used within industry.

Although predictive analysis demonstrates potential in medicine, protect-

ing a patient’s safety is essential. Regulatory and professional bodies ensure

that advanced algorithms are scrutinised and adhere to strict standards of

clinical benefit (Yu and Kohane, 2019). These standards are also applied to
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clinical therapeutics and predictive bio-markers. Independent and external

validation and prospective testing of newly developed algorithms are clearly

needed, although certain regulatory bodies have expressed concern about

the standard of these validations. Parikh et al. (2019) have proposed five

standards and guidelines to help regulate predictive analysis, which can be

used to validate algorithms before implementation within the clinical domain.

The Transparent Reporting of a multi-variable prediction model for Individ-

ual Prognosis or Diagnosis (TRIPOD) checklist is an example of an existing

standard used to validate multi-variable prediction models within medicine

(Collins et al., 2015).

3.4 Applications of ML in Healthcare

ML is being considered for many different projects across the world as a key

tool for solving a range of issues (Obermeyer and Emanuel, 2016). Some

areas in medicine, where there has been significant research undertaken in

ML and where ML techniques are currently being used, are described in the

following sections.

3.4.1 Disease Identification & Diagnosis

The detection of patterns in data is a core function of ML. In medicine this

can be used to detect patterns in diseases and specific health conditions by

training models on electronic health records and additional patient data. As

well as improving patient outcomes, many ML models in medicine can provide

additional benefits such as:
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• Shorter time to train than a human

• Improved diagnosis

• Improved consistency

Alzheimer’s Disease (AD) is the leading cause of dementia in Western

countries (Terry, 1994). Alzheimer’s is usually characterised by the loss of

memory and the impairment of at least one cognitive function. There is no

specific test to determine if someone has AD, with a definitive diagnosis only

available on autopsy or biopsy (Jameson et al., 2020).

The current test for AD diagnosis is based upon:

• Clinical history

• Neuropsychological

• Laboratory tests

• Neuroimaging

• Electroencephalography (EEG)

To enable more accurate diagnosis faster Trambaiolli et al. (2011) described

an effective way of improving the diagnosis of Alzheimer’s. Their results

can produce more accurate diagnoses and follow-treatment results. Their

study utilised SVMs to search for patterns in EEG windows to spot the

difference between those patients that are within the control group or are

showing signs of having AD. Their experiments result in a quantitative

Electroencephalography (qEEG) processing method that can automatically
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determine patients that have AD from normal individuals. The study was

undertaken by looking at EEGs from 19 normal subjects. 14 were female

and 5 were male with a mean age of 71.6 years. 16 AD patients showing

mild to moderate symptoms were considered within the study (14 females/2

males). The analysis of EEG epochs found that the accuracy was 79.9% and

a sensitivity value of 83.2%.

3.4.2 Medical Imaging Diagnosis

High resolution imaging technologies such as X-rays, Computerized Tomogra-

phy (CAT) scan, and Magnetic Resonance Imaging (MRI) provide so much

detail that it can be hard to spot cancerous cells by eye. Using these medical

images, ML techniques have been able to look at the images on a pixel level

to detect problems such as cardiovascular abnormalities and cancers. There

is a lot of research in the area of medical imaging diagnosis.

One such example is Soenksen et al. (2021), who have trained an algo-

rithm at the Massachusetts Institute of Technology that is more accurate at

diagnosing skin cancer than “board-certified dermatologists”.

Global cases of melanoma skin cancer will reach nearly half a million

(466,914) by 2040, an increase of 62% on 2018 figures (Team, 2022, 2020).

Melanoma accounts for only about 1% of skin cancers but causes a large

majority of skin cancer deaths. Melanoma are a type of malignant tumour

that can be found on the skin. For years physicians and medical practitioners

have utilised visual inspections to identify Suspicious pigmented lesions (SPL).

These SPLs can be an early indicator of skin cancer. Typically, at this stage,
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a tumour biopsy is removed and tested for cancerous cells (further treatment

is determined based on the results of these tests). Earlier identification of

SPLs in primary care can dramatically reduce patient costs and improve the

patient experience.

Soenksen et al. (2021) describe the utilisation of Deep Convolutional

Neural Networks (DCNN) to classify and cluster images (these algorithms are

within the subset of ML called deep learning). The DCNNs are used to develop

an SPL analysis system. The system enables the identification of skin lesions

that could be dangerous if missed by primary caregivers or left untreated by

the patients themselves. 20,388 wide-field images from 133 patients located at

Madrid’s hospital Gregorio Marañón were publicly available and utilised by

Soenksen et al. (2021). Each image was visually inspected by dermatologists

who determined the legion, allowing the researchers to compare their results.

The system demonstrated 90.3% sensitivity in distinguishing SPLs from

nonsuspicious lesions, skin, and complex backgrounds whilst eradicating the

need for cumbersome and time-consuming individual lesion imaging.

3.4.3 Robotic Surgery

Making use of data from previous surgeries that have been successful, ML-

based robots can be trained to carry out complex surgeries. Human surgeons

are susceptible to making mistakes - potentially causing a patient harm.

Building on existing learning strategies for surgeons, ML-assisted robots have

been developed to focus on two key areas: feature detection and computer-

assisted intervention. These use cases are applied to both pre-operative
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planning (determining the most effective area to make an incision) and intra-

operative guidance (utilising image systems to understand how the body will

react to specific procedures). Training an ML-based surgical robot model

to assist in performing these tasks can reduce human error and aid medical

professionals during complex procedures. Furthermore, more operations can

be completed via keyhole surgery (Zhou et al., 2020).

The advancements in these fields have led to an increase in Minimally In-

vasive Surgery (MIS), and the combination of computer-aided intra-operative

guidance with the skills of surgeons has resulted in a reduction in surgical

trauma. The four key areas where different AI techniques are applied to

computer-aided intra-operative guidance are:

• Shape instantiation: This assists the surgeon to determine what shape

and size an incision should be to be most effective for the operation.

• Endoscope navigation: During an intra-operative procedure directing

an endoscope through the body can be a dangerous task, using computer

vision, navigation is supported.

• Tissue tracking: Tracking biopsies that have been removed or moni-

tored can be assisted by AI.

• Augmented Reality (AR): This enables the surgeon to see inside

the patient and explore the body effectively.
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3.4.4 Personalised Medicine

Reducing the time burden on any health practitioner is a tangible benefit of

using ML for personalised medicine. This will also empower practitioners to

treat more patients quickly and correctly. This advanced care is developed

using EHRs, genetic data, and other patient information to train models.

This leveraging of big data and predictive analysis techniques has created

many opportunities for researchers to tackle and solve issues surrounding

diseases, cancers, and depression (Dutta, 2021).

Throughout the Coronavirus Disease (COVID-19) pandemic, deciding

upon the most effective line of treatment for medical practitioners and clin-

icians was a monumental challenge for them to answer quickly. As the

world looked to medicine for the answers to open the world again, there

was confusion amongst clinicians about the efficiency of using remdesivir or

corticosteroid on patients with COVID-19 and if it leads to better survival

rates. A ML algorithm was developed to assist with this.

Lam et al. (2021) answered this concern by utilising a gradient-boosted

decision tree model for training and testing on adult patient data (aged ≥

18 years) from 10 hospitals in the United States (US). They wanted to test

the performance of both drugs on patients with longer survival times. Their

findings were significant and were based on the Fine and Gray proportional-

hazards models. The sample size for the experiment was 2364 patients. 893

patients had been treated with remdesivir and the remaining 1471 were

treated with a corticosteroid. Their results were hazard ratios of 0.56 and

0.40, respectively (both, P = 0.04). This demonstrated that both groups of
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patients were less likely to have increased survival rates using either drug.

This resulted in patients not being administered either drug.

There are many limitations to using AI in the development of personalised

medicine. One such limitation is that many argue that big data analysis,

that combines information on individual patients to reflect population-level

relationships between data points, does not provide important individual-level

relations. The lack of ergodicity within these results can mean that results

are not beneficial for making treatment decisions for individuals (Fisher et al.,

2018).

A second limitation is that there is a requirement to vet or test the

utility of healthcare products that are developed using AI. This limitation is

motivated by previous results that have been inconsistent when developed

utilising AI – inconsistent results have been demonstrated in many AI-rooted

health products, including IBM’s Watson treatment decision system. Some

existing healthcare tools have been tested via traditional randomized clinical

trials, and some AI-based decision support tools have been accepted via these

clinical trials (Schmidt, 2017; Abràmoff et al., 2018; Zhou et al., 2019).

It might be effective to implement AI-based learning systems with an

ongoing review of their algorithms, parameters, and features to ensure the

systems are always fit for purpose. This rolling training can require a large

amount of retraining and computational resource to provide effective results

(Schork, 2018; Ioannidis and Khoury, 2018; Frieden, 2017; Abernethy and

Khozin, 2017; Nature, 2018).

Lastly, many AI-based decision support systems leverage algorithms that

can be very difficult to interoperate. These systems rely heavily on deep
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learning and complex neural networks. Although the results for these trained

models can be reliable (if a large enough training set is used), it can be very

difficult to understand the interlinks between the inputs and outputs.

3.5 Machine Learning & Pharmaceuticals

Many monotonous customer service industry tasks have been early adopters

of the new methods in the field of ML, whereas uptake in the medical and

pharmaceutical industry has lagged behind. However, due to the low success

rate of drug development (defined as phase I clinical trials to drug approvals)

across the globe, there is a growing need for pharmaceutical companies to

lower the costs in finding successful drugs. Quris recently released the “patient-

on-a-chip” system which can be used to reduce the need for animal testing

and speed up drug development (Coldewey, 2021; Taylor, 2022; Bein et al.,

2022).

Many stages of the drug manufacturing and development process have

been reviewed and areas of improvement utilising ML algorithms have been

considered by major pharmaceutical companies. Some examples of where ML

algorithms have been applied are:

• Targeting disease associations: Disease associations are the rela-

tionships between two or more diseases. These relations can be lifestyle-

related, genetic, or environmental. There are many different published

conference papers and academic journal papers which relate to targeting

disease associations with machine learning. The work undertaken in

2012 by Iordanescu et al. (2012) aimed to use SVMs to identify new
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drug targets for Alzheimer’s disease. The algorithm was trained on a

dataset of 10,000 genes that are known to be associated with Alzheimer’s

disease. The algorithm produced a number of the potential drug targets

that have not been previously considered for Alzheimer’s. Some of these

targets include proteins that are used in the production of the amyloid

beta plaques – which are a pathological hallmark of Alzheimer’s disease.

The work showed real promise and demonstrated that ML can be a

powerful tool for identifying new drug targets especially for Alzheimer’s.

Lind and Anderson (2019) made use of the random forest algorithm

to develop new drugs that are effective against all types of cancer.

Due to the heterogeneous nature of the disease, there is a wide variety

of different types of cancer. Cancer has many different symptoms

and causes which lead to many different treatment types. The work

undertaken was trained on a data set that contains 1001 cancer cell lines

and 225 drugs, including experimental and approved anticancer drugs.

The trained random forest classifier was able to predict the response of

patients to new drugs with an >80% accuracy. The paper highlighted

that additional validation would be needed to confirm the results of the

classifier.

• Improve the design and optimisation of small-molecule com-

pounds: Poly(ADP-ribose) polymerases (PARPs) are a class of enzymes

that are critical in repairing DNA. Parp indicators are used as a new

type of cancer drug. In 2019 Ai et al. (2022) used machine learning to

design new PARP inhibitors which had an improved target affinity and
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selectivity. A dataset of 10,000 molecules was used with the random

forest classifier to correctly develop the inhibitors.

• Further understand the disease mechanisms: Identifying diseases

and some of the causes of diseases has been researched for many years.

ML has shown promise in supporting this field of research. One such

example is the work undertaken by Konovalov et al. (2021), the authors

utilised a dataset with information on 20,000 patients. 10,000 of the

patients had cancer and 10,000 did not. Their trained random forest

algorithm was able to identify many bio-markers that were associated

with cancer. These bio-markers were not identified making use of

traditional methods. Furthermore, the model was able to identify bio-

markers that were associated with specific types of cancer. The work

demonstrated throughout this paper shows that machine learning has

the potential to revolutionize the identification of bio-markers for cancer

whilst also highlighting how this could be applicable to other diseases

as well.

Due to the promising results in certain areas of pharmaceuticals many

companies have continued to invest in ML or purchase start-up companies

that specialise in ML for medicine. IBM, Google, and Amazon are utilising

their cloud-based computation services to support the health care industry

by working with partners such as GE healthcare (Vermeer and Thomas, 2020;

Breant et al., 2018; J.D, 2022).
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3.6 The Ethics of AI within Medicine

As more decision making processes are being supported by ML in healthcare,

it is important that all of the ethical concerns that usually arise from an ML

problem are considered. This is of paramount importance when considering

medical problems, as the data provided must also be subject to legislation

already in place for dealing with medical data. There are three core areas

that consideration should be given to:

1. Sharing Patient Information: Naturally there are restrictions in

place around sharing patient information. It is important to ensure

that data is not shared that could be traced back to an individual

patient. The core of effective ML is effective, organised, and clean data.

As part of the cleaning process, typically hospital staff will make sure

the data is General Data Protection Regulation (GDPR) compliant by

removing any identifiable information. In a medical setting, data can

be shared for medical reasons. For example a doctor may share patient

information with a surgeon or another doctor to get feedback or for a

second opinion on a decision that could effect a patient’s health.

2. Patient & Clinician Autonomy: Throughout the health-care indus-

try there are different types of patients. A vulnerable group of patients

are those who are incapable of making health care decisions themselves.

It is possible to use ML in conjunction with electronic health records

to assist in making these clinical decisions. However, there is a strong

argument that ML should not replace patient or clinician autonomy, but

instead should support (rather than replace) clinical decision making.
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Tools that are developed using ML techniques must be used as support

tools to help inform the decision but not to make the final decision.

3. Patient Safety: “Garbage in, Garbage out“ is a cliché often used in

ML. The general meaning is that if you pass flawed information into a

model, you will get flawed predictions. The systems reliability can be

undermined when using erroneous data. As a result, models should be

used with caution until the quality of data used to produce the model

is verified.

Similarly, cultural bias encoded in datasets can mean results can be

biased against certain ethnic backgrounds or cultures. This is very

important for medical decisions as it can result in over-diagnosis or

under-diagnosis which can mean some patients will be treated when not

needed and conversely not treated when required. These mistakes can

be life changing.

Patient safety and the resulting outcomes should always be considered

when looking at the predictions from ML models that could be life-

changing. As a direct result, all of the results presented in this body of

research should be taken as indicative. Additional required work and

the limitations of this work are discussed in Chapter 7 (Yoon et al.,

2021).

All patient data that is used as part of this research is GDPR compliant and

anonymised to ensure that the patient can not be traced. The interpretability

and explainability of the models developed is an important ethical step that

has been considered throughout the research. Some additional questions that
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are answered in this body of research are:

1. Does the dataset contain any sensitive data?

2. Does the training dataset accurately represent the source population?

3. Can developers examine the logic behind the code base?

4. Are the patients made aware that their data will be used in the study?

3.7 Summary

As described previously, the AI market share within medicine has risen by

nearly 40% in recent years and will soon eclipse $31B USD. Medicine is one

of the areas where AI techniques are starting to be utilised as support tools

for clinicians to improve the speed of diagnosis, perform minor surgeries and

for drug discovery. The emerging paradigm of AI in medicine is described in

this Chapter and where the areas for research and improvements lie.

This Chapter has aimed to provide an overview of the current state of

the industry and define some common use cases to date. In section 3.1 the

changes to record keeping from paper to electronic health records is described.

The benefits of this development are defined and how it can lead to the ethical

sharing of patients records for research purposes is also explained. Moving to

EHRs has also seen an improvement in the integrity of the data collection,

section 3.2 talks about this and some of the dangers of having missing data

within records. Predictive analysis and what these advances can mean to the

industry is also described in section 3.3 with an emphasis on how it can be

used to spot areas that need additional research.
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There are many different applications of ML in industry, section 3.4

focuses on these applications and details some existing academic research

or use cases. Disease identification and diagnosis and the work undertaken

withing research as well as in a clinical setting are outlined in subsection 3.4.1.

A brief overview of robotic surgery and how it could revolutionise routine

surgeries are introduced in subsection 3.4.3. In addition, subsection 3.4.4

introduces the concept of personalised medicine and what it can mean for

improved medical diagnosis by combining EHRs, genetics and other patient

information to produce effective ML models by leveraging all the datasets

available.

Pharmaceutical companies and leading technology companies are working

together to improve the drug discovery process and improve the time taken

to find solutions to existing medical conditions. The steps involved in this

and some of the exact use cases are described in section 3.5.

Due to the sensitive nature of the work undertaken in this research, it is

important to make sure that all the data is utilised ethically. Ethical approval

was provided at the start of this research. Section 3.6 outlines some of the

ethics around ML with an emphasis on the medical domain. Lastly how the

data in this research is ethically compliant is described at the end of the

Chapter.



Chapter 4

Mortality Prediction in

Intensive Care Units

4.1 Introduction

With National Health Service (NHS) waiting times failing to meet targets for

over 16 months now and government cutbacks to nursing and hospital staff,

innovative ways of diagnosing and assessing patients will soon be introduced

(Campbell and editor, 2017). State of the art technology such as bespoke

medicines and computational models will be made use of. Computational

models that use ML algorithms have already been tested using real-world

hospital data, with promising results in predicting mortality rates in patients

at the ICU at North Middlesex hospital (Shenfield et al., 2017).

Predicting the survival of a critically ill patient is a difficult task. There

have been many different scoring systems designed that have been used to

grade the severity of a patient’s illness. These systems include:

80
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• Acute Physiology and Chronic Evaluation II APACHE II: The

APACHE II score is currently the most commonly used system for

classifying the severity of disease of patients admitted to critical care

units. It is usually applied within the first 24 hours of admission to

ICU, and uses a combination of physiological variables, the patients

age, and the patients chronic health status to determine mortality

rate. Although later versions of the Acute Physiology and Chronic

Evaluation (APACHE) score exist, the most commonly used version

is APACHE II due to later versions requiring more diagnostic tests

(Wagner and Draper, 1984).

• 2nd Simplified Acute Physiology Score (SAPS II): The SAPS II

score was introduced in 1993 as an alternative to the APACHE II score.

The features required for the SAPS II score should be collected within

the first 24 hours of admission in to the ICU. The Area-Under the

Receiver Operating Characteristic Curve (AUROC) generated for the

SAPS II score was 0.86, this was higher than the original SAPS score

that was 0.80. The score can be used to estimate mortality risk of a

group of patients however it is not intended to describe the chances of

survival of a patient (Le Gall et al., 1993).

In this Chapter, the application of different ML techniques for accurately

predicting mortality in ICU is discussed and compared. The key contributions

of this research are:

1. Evaluation of existing methods used for mortality prediction in ICU is

compared.
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2. Development of an effective ML pipeline provides an accurate predic-

tion of mortality that could be used as a support tool by medical

practitioners.

3. Comparison of the proposed ML pipeline with the existing state-of-the-

art research.

4. Investigate the effects of retraining ML models varying ages and date

of submission for different patient cohorts.

The remainder of the chapter is structured as follows. Section 4.2 evaluates

the existing state-of-the-art research, section 4.3 describes the proposed novel

approach to developing a ML pipeline and validating the results of the pro-

posed system as well as describing how the online approach to training will be

utilised and tested. Section 4.4 describes the dataset utilised throughout this

Chapter. The results themselves are discussed in section 4.4.2 and compared

to existing state-of-the-art research methodologies using confusion matrices

and Receiver Operating Characteristic (ROC) curves. Section 4.5 presents

the methodology and results for online learning while utilising different age

and date of submission patient cohorts to understand the effects and accuracy

of results. The conclusions section 4.8 also examines the limitations of the

proposed approaches and outlines further work.
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4.2 Review of Existing Predictive Risk Mor-

tality Research

Even though there are multiple new methods for determining mortality within

ICU, the APACHE II and SAPS II scores continue to be the most used point-

based schemes worldwide (Keuning et al., 2020). Similarly, the Sequential

Organ Failure Assessment (SOFA) is used in some parts of the world as a

mortality risk assessment tool, even though it was developed to assess sepsis

risk (Arts et al., 2005). Some common limitations that are associated with

these tools that have been detailed in the literature are:

1. There has been a decrease in performance over time. Kramer (2005)

indicated that SAPS II was not within calibration tolerance by 2005.

2. There have been some calibration issues with both APACHE II and

SOFA scores (particularly when applying them to new patient cohorts

(Sakr et al., 2008)).

3. Sakr et al. (2008) and Lew et al. (2019) noted that the tools were not

very reliable for patients within Europe or Singapore, as they were not

developed with data from these patient cohorts.

4. Some variables which are required to provide a score are difficult to

obtain, especially when patients are admitted into critical care situations.

For many cases, the data might not be available because it requires

expensive pathological laboratory tests and full patient medical history.

These limitations have led to researchers exploring alternative approaches
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for mortality prediction. The resurgence of ML techniques has provided some

promising preliminary results in this problem domain. Furthermore, online

ML models are comparatively easy to update, retrain, and re-calibrate for

different patient cohorts and as patient cohorts evolve over time (Lew et al.,

2019). Traditional approaches to mortality prediction often only capture a

single time period; this approach misses out on valuable insights and data

that could improve the models accuracy, precision or recall as things change

over time. Online learning can learn from new examples in real-time, ensuring

that the model constantly generalises well to the populations it is applied to,

even as environmental factors, operations, and medicines change over time.

A standard metric used in medicine to determine the performance of

diagnostic tools is the AUROC. AUROC is the “Area under the curve” for

the Receiver Operating Characteristic curve. The AUROC score is a way

of measuring how successful a binary classifier is at distinguishing between

classes (a detailed description of AUROC curves is in section 4.4.2).

For practical application, a mortality risk prediction model should only use

vital signs that can be continually monitored and should allow the doctor to

see how the risk will change. Deliberato et al. (2009) have developed a model

using purely vital signs. However, the models AUROC of 0.65 showed that

it is a poor discriminator between mortality and non-mortality cases. They

also used a combination of vital signs and additional features culminating in

a higher AUROC of 0.85 when the data was combined with SAPS II score

and patient demographic.

Throughout the literature, there are many ML techniques used to consider

the prediction of mortality. However, there has been little focus on predicting
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mortality at admission (first 24 hours) to the ICU. One of the fundamental

disadvantages of this methodology is that it does not consider complications

that occur after admission. Neural networks (introduced in Chapter 2.7.7)

have also started to be considered for mortality prediction. Some works have

focused on using simple feed-forward networks that are able to produce results

comparable to APACHE II. Shenfield et al. (2017) used ANNs and the JADE

optimisation algorithm to obtain an accuracy of over 90% when at decision

criteria between 30-80%, with an AUROC score of 0.932.

An AUROC of 0.836 was achieved by Alves et al. (2018), who used

Convolutional Neural Networks (CNN) layers before Long-Short TermMemory

(LSTM) layers, significantly improving accuracy over purely LSTM layers.

CNN have been proven to be valuable tools for solving medical problems.

Samir et al. (2021) used CNN to predict heart anomalies accurately. Similarly,

Bukhari et al. (2020) predicted gait detection correctly making use of CNN.

Karabulut et al. (2012) outlined that the selection of features is an im-

portant step in developing all ML models. To develop a model that can

be automatically updated throughout a patient’s stay, the features must be

easy to obtain, measure, and repeat (preferably with no manual intervention

required from clinicians).

The Artificial Intelligence Mortality Score (AIMS) (Baker et al., 2020)

scheme uses a hybrid CNN-LSTM network with a combination of age, gender,

and a selection of statistical parameters obtained within the first 24 hours of

admission into the ICU. AIMS achieved an AUROC score of 0.884 – 0.858,

depending on the length of stay within the ICU. In the AIMS system, scores

are generated over 3-day, 7-day and 14-day windows. Yu et al. (2020) used
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LSTM techniques to determine mortality and to take complications in to

account. Forty-eight hours of feature recording is needed to predict mortality

effectively using this method. They obtained an AUROC score of 0.885 using

a bi-directional LSTM.

The research described above relies on features containing complex diag-

nostic results, details about exiting health conditions, and previous patient

histories. The previously mentioned studies that look at mortality risk pre-

diction use a diverse feature set mainly made up of laboratory results that

include blood tests, urine samples, breath monitoring, and other complex

measurements that can take time to obtain. As described in Chapter 7, one

of the main factors affecting the uptake of ML in the medical domain and

the success of ML models within the industry is the lack of transparency and

interpretability of models. Using common features (e.g clinical laboratory

tests and vital signs) helps overcome these problems by allowing results to be

interpreted by domain experts.

4.2.1 Mortality Prediction in Real-Time

Existing academic research that aims to investigate and improve on existing

support tools for medical practitioners dealing with patients admitted in to

ICU look at a single snapshot in time and do not demonstrate how their models

perform overtime. These approaches can result in models that are not effective

against new medicines. The medical landscape with vast amounts of new

treatments, prescribed antibiotics, and medical recommendations is changing

rapidly. Biomedical research has resulted in breakthrough accomplishments
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which has seen the eradication of many life threatening diseases and viruses

such as polio and improved life saving options for Acquired Immune Deficiency

Syndrome (AIDS), cancer, and COVID-19. Due to the exponential rise of

treatments and solutions the United States of America (USA) has seen the

number of drugs which are Food and Drug Administration (FDA) approved

rapidly increase (Craven, 2022).

The continued development of medical advancements has seen a large

growth in medical understanding, increased complexity of medical practice

and more experts with medical specialism. Ideally as all fields of medicine

improve other areas should look to keep up and improve. The fact that the

APACHE II score (even though it is flawed) is still utilised today demonstrates

that improvements are required in this area.

4.3 Machine Learning Pipeline Development

To test the hypothesis that ML techniques can develop a mortality risk

prediction tool that provides similar or better accuracy than existing support

methods currently being used within ICU. The ML pipeline development

framework shown in Figure 4.1 is used. The framework is made up of the

following steps:

1. The complete dataset is split into 3 sections. 70% is used as the training

dataset, 20% is used as the testing dataset and 10% is held back as the

unseen data.

2. The training data is used to train multiple different types of classification
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models using standard hyperparameters. The 20% test data is used to

identify top 3 classifiers based on varying performance metrics.

3. The top three trained models (based on accuracy) then use different

hyperparameter optimisation and data re-balancing techniques to try

and find the most effective ML model according to the performance

metric of interest.

4. The resulting model is then tested using the 10% unseen data to generate

final scores and to check that the model generalises to unseen data and

doesn’t show signs of overfitting.

In this Chapter, K Nearest Neighbour, Linear SVMs, Radial Basis Function

SVMs, Gaussian Process Models, Decision Trees, Random Forests, ANNs,

AdaBoost, Näıve Bayes, and Quadratic Discriminant Analysis (QDA) are

investigated. Each classifier is trained and tested using repeated 10-fold

cross-validation, with the average accuracy calculated for each classifier.

Stratification techniques are used to ensure that the training and testing sets

reflect the overall class imbalance of the data (see Section 5 for more details).

Once the base classifiers are trained and the results are generated for

each classifier, the top three classifiers are selected based on the accuracy

of the model - accuracy is utilised as it indicates as a percentage how many

results the model got correct (Walker et al., 2020). If the target classes

are imbalanced, synthetic data is introduced to rebalance the dataset using

the Synthetic Minority Oversampling Techniques (SMOTE) (Chawla et al.,

2002). The combination of synthetic data and real data is then used to

retrain the top three performing models. The test runs are repeated multiple
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Figure 4.1: Machine Learning Pipeline Methodology for developing a mortality risk
prediction tool
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times to check the results obtained are consistent and the averages are

generated, furthermore, it enables the spotting of trends and patterns forming

within the results. It also reduces the variance in the overall results which is

presented by showing the standard deviation ranges. Each model then has

the hyperparameters optimised using both random search and grid search

optimisation methodologies (see section 4.3.4). The performance metrics used

in this Chapter are described in section 4.3.2.

The final models are again compared using both the accuracy score and the

AUROC score. The most effective model is then tested on the unseen dataset

to make sure that the model is not overfitting on the training/validation

dataset. The following sections describe the dataset and different techniques

used in the development of the ML pipeline.

4.3.1 Feature Importances

Feature importances can provide a deeper understanding of a dataset. The

scores can demonstrate which features are most relevant to the target variable

and, conversely, which are least relevant. This can then be interpreted by

a domain expert to either remove unnecessary features or to collect more

useful data. The scores can also provide further insights into the model. For

example, inspecting the different scores that result from using different ML

algorithms can show how different features have different effects depending

on the variant of model used. Lastly, feature importances can improve the

predictive model by empowering the developer to remove unnecessary features,

resulting in a model that can be trained quicker. This deletion of features is
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commonly referred to as dimensionality reduction.

4.3.2 Performance Metrics

Confusion matrices sometimes known as error matrices, are often used to

summarise the prediction results of classification problems. They are com-

monly used in ML projects due to how easy they are to interpret. A typical

confusion matrix for a binary classification problem is shown in Figure 4.2

and shows:

• True Positive (TP): That is the number of correctly classified exam-

ples that are positive.

• True Negative (TN): That is the number of correctly classified

examples that are negative.

• False Positive (FP): That is the number of negative examples that

are mis-classified as positive.

• False Negative (FN): That is the number of positive examples that

are mis-classified as negative.

Confusion matrices are used to know how many mistakes a classifier makes,

and what those mistakes are. Correct predictions are shown in the diagonal

entries (blue squares with white text in Figure 4.2). A classifier performing

well should contain minimal examples in cells that are not on the diagonal.

The Error Rate (ERR) and accuracy can be calculated using the equations

4.1 and 4.2.

ErrorRate =
FP + FN

TP + TN + FP + FN
(4.1)
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Figure 4.2: An Example of a 2x2 Confusion Matrix

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

The True-Positive Rate (TPR) and False-Positive Rate (FPR) are specified

as:

TPR =
TP

TP + FN
(4.3)

FPR =
FP

FP + TN
(4.4)

When a classification task has significantly imbalanced target output

classes, accuracy should be used with caution. If 95% of the dataset consists

of the positive class, simply always predicting a sample as positive yields
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an accuracy of 95%, which is misleading. By making use of the TPR, it is

possible to see how well the classifier is performing even if the classes are

unbalanced.

Precision (PRE) means “how many of the predictions made are correct?”

whereas Recall (REC) means “how many positive points in the output are

successfully identified as being positive?” PRE and REC are very useful in

the medical domain, as it is essential to understand the performance of the

optimistic predictions.

PRE and REC metrics are calculated using:

Precision =
TP

TP + FP
(4.5)

Recall =
TP

TP + FN
(4.6)

The combination of PRE and REC into a single score is known as the F1

score, and is defined as:

F1 =
(2 ∗ TP )

((2 ∗ TP ) + FP + FN)
(4.7)

4.3.3 Cross-Validation

In K-fold cross-validation, the original dataset is partitioned randomly into

K equal sized partitions. A single K partition of the data is retained and

kept unseen (this is used as the validation data for testing the model) and

the remaining K-1 subsets are used as the primary training data. This

cross-validation process can then be repeated K number of times, with each
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different subset used once, as the validation data. This has many advantages

over other validation techniques as all of the observations are used for both

the training and validation data. Furthermore, each validation set is used

precisely once meaning that the models aren’t just trained on the same test

and train data sets. Figure 4.3 shows how the data can be partitioned for each

fold. Stratified K-fold cross-validation was introduced to address datasets

that are not evenly balanced between the different classes. The data for

each fold is selected so that each fold contains a similar proportion of class

labels to that within the whole dataset. Repeated cross-validation repeats

the cross-validation a given number of times. These results are then averaged

out to produce a better estimation of the model performance.

4.3.4 Rebalancing Datasets

The process of re-balancing a dataset is often used in real-world dataset

classification tasks where the majority of results fall within a single class

(known as the majority class). A dataset can be said to have a ratio of 4:1

if, of the 100 records, 80 belong to the majority class and 20 belong to the

minority class. There are many techniques that can be used to rebalance

datasets. Chapter 6 focuses on this problem but, in this Chapter, the SMOTE

technique will be used.

SMOTE is a method used to auto-generate new synthetic instances of

data from the minority class within an unbalanced dataset. SMOTE works by

adding points around the minority classes instances. New instances are created

by combining existing instances, therefore minimising (but not eliminating)
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Figure 4.3: An illustration of K-fold cross-validation
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the disadvantage of overfitting. Points within the minority class are selected,

and then synthetic data with similar attributes is imputed within the feature

plane. Figure 4.4 shows an example of SMOTE, and how it can be applied

to data (Chawla et al., 2002).

Figure 4.4: An overview of the synthetic minority oversampling technique

4.3.5 Hyperparameter Optimisation

ML techniques have multiple parameters that are critical in the training of the

model and controlling the accuracy of the resulting trained model. As a result,

the tuning of hyperparameters is an important step within any predictive

model development. The learning rate of a Neural Network is an example

of a hyperparameter, and is defined before the model is trained. Conversely,

the weights of the Neural Network are optimised during the training stage of
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the ML model development using the specified hyperparameters. There are

several common methods used to find a good set of hyperparameters and the

following subsections (4.3.5 and 4.3.5) will describe two of these methods -

grid search hyperparameter optimisation and random search optimisation.
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Grid Search

Grid search is the most commonly used technique to optimise hyperparameters

in conventional ML. This brute-force approach iterates over every defined

combination of a specified set of hyperparameter values, kernels, or training

methods to find the result that provides the best performance. Figure

4.5 shows a set of combinations of different values that will be tested for

hyperparameters 1 and 2. It is computationally expensive to try all the various

combinations of hyperparameters for many real-world problems, particularly

as the problem space becomes more complex. An alternative technique is

random search.

Figure 4.5: An overview of the grid search algorithm and showing all of the possible
combinations for the two hyperparameters
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Random Search

Using random combinations of the hyperparameters to find the optimal set

for the constructed model is known as random search. A common drawback

of using random search is the variance that is introduced during computing.

Figure 4.6 shows a visual description of how random search can be applied to

a dataset.

Random values within a set of bounds are selected for the hyperparameters

at each iteration of the testing. The model is then trained and evaluated with

that set of hyperparameters (often using cross validation techniques) and then

a new set of hyperparameters are selected at random and the process starts

again. This iterative approach, combined with the randomness, typically

means that a large amount of the search space is considered. The random

search will continue to run for a finite number of iterations at which point

the training will stop.

Figure 4.6: An overview of the random search algorithm showing all of the selected
combinations for the two hyperparameters considered here.
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4.4 Mortality Prediction using Machine Learn-

ing

4.4.1 ICNARC Dataset

The research in this section was undertaken using the ICNARC dataset that

was collected at North Middlesex University Hospital cluster between January

1st 2012 and April 30th 2014. The dataset consists of 13,494 patient records,

where each row corresponds to a patient admitted into the ICU. There is no

missing data in the dataset.

The dataset is comprised of 41 features. As well as the physiological

features, there is some additional patient information collected; including

patient age at the time of admission into the ICU, whether the patient had

Cardiopulmonary Resuscitation (CPR) within 24 hours of admission, the

location of the patient before the admission (which is often referred to as the

source), and whether the patient was intubated during the first 24 hours. All

of the features are defined in Table 4.1.
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Table 4.1: Features of the ICNARC Dataset

Used Variable Utilised
1 Anonymised Unit Identifier
2 Age in years at last birthday
3 Gender
4 Residence Prior to admission
5 Prior Dependency
6 Severe Liver Disease
7 Haematological Malignancy
8 Metastatic Disease
9 Severe Respiratory Disease and Home Ventilation
10 Immunocompromise
11 Cardiovascular Disease
12 Renal disease
13 CPR within 24 hours prior
14 Primary reason for admission
15 ICNARC Diagnostic Category
16 Condition Description
17 Type of Admission
18 Mechanically Ventilated at admission
19 Highest level of care received in unit within 24 hours
20 Basic respiratory support
21 Advanced respiratory support
22 Basic cardiovascular support
23 Advanced cardiovascular support
24 Renal support whilst in unit
25 Neurological support whilst in unit
26 Gastrointestinal support whilst in unit
27 Dermatological support whilst in unit
28 Liver support whilst in unit
29 APACHE II score Removed
30 ICNARC model physiology score Removed
31 Your unit survival Removed
32 Your hospital survival Removed
33 Expected dependency post-discharge from your hospital Removed
34 Date of admission to your hospital Removed
35 Date of discharge from your hospital Removed
36 Date of admission to your unit Removed
37 Date of discharge from your unit Removed
38 Date of death Removed
39 Date of declaration of brain stem death Removed
40 Readmission within same hospital stay Removed
41 Died or Survived Target Variable

Not all features of the dataset were utilised throughout the study, as with

many ML models, the dataset is explored to removed or encode features to
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make sure they can be used by the ML classifiers. For this body of work all

date-time type features were removed from the study as they many of them

are only available if a patient has died and helps to mitigate overfitting. 4.1

Further to this point, the APACHE and ICNARC scores were removed from

the model. There was no missing data present in the dataset so no features

were removed because of that.

The mean age of the patients within the given ICNARC dataset is 60

years old. The minimum age of patients is 10 years old whilst the maximum

value is 103. Figure 4.7 shows the count of different ages present within the

dataset split by gender. There are more male records (55.05%) with only

44.95% identified as female. The average length of stay for those admitted

into the ICU is 17 days.

There are 675 different condition descriptions described within the dataset

in the condition1desc column. The most common description is those who

have been admitted into the ICU with Pneumonia (6.75%). Figure 4.8 is a

word cloud of all of the descriptions.

The total number of patients present in the dataset who passed away in

the ICU is 1668.

4.4.2 Model Development & Evaluation

Section 4.3 discusses the steps taken to produce an effective ML pipeline. As

part of the exploratory data analysis stage, it is important to understand if

the class labels are imbalanced. Figure 4.9 shows the distribution of mortality

in the dataset, with 11,838 patients surviving and 1,675 dying. As a result,
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Figure 4.7: The gender distribution within the ICNARC dataset.

following the classifier comparison stage and hyperparameter optimisation

techniques, SMOTE is used to rebalance the minority class (see section 4.3.4

for more information).

The ICNARC dataset (outlined in section 4.4.1) was used to train the

ML classifiers described in section 4.1 using a variety of different performance

metrics to determine the suitability of the classifiers. The results of the

preliminary stages of training are presented in Table 4.2. The results obtained

show the scores for PRE, REC, F1-score, and accuracy. Comparing the

results from Table 4.2 to those described in section 4.2, it can be seen that the

Decision Tree and AdaBoost classifiers obtain a comparable overall classifica-

tion accuracy (91% and 90% compared to the greatest classification accuracy
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Figure 4.8: A word cloud of the most popular patient conditions within the ICNARC
dataset.

described in literature that utilised a similar dataset as 90% (Shenfield et al.,

2017)).
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Figure 4.9: Histogram to show the distribution of patient outcomes in critical care
units as part of the ICNARC dataset

Table 4.2: Performance of different base classifiers (with the top 3 results presented
in bold)

Classifier Precision Recall F1-Score Accuracy
K-Nearest Neighbour 0.84 (0.14) 0.85 (0.10) 0.84 (0.10) 0.85 (0.12)
Linear SVM 0.89 (0.08) 0.90 (0.07) 0.88 (0.08) 0.89 (0.04)
RBF SVM 0.75 (0.03) 0.87 (0.04) 0.81 (0.02) 0.87 (0.04)
Gaussian Process 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 0.90 (0.02)
Decision Tree 0.90 (0.09) 0.91 (0.04) 0.89 (0.02) 0.91 (0.03)
Random Forest 0.85 (0.07) 0.87 (0.07) 0.88 (0.03) 0.87 (0.10)
Neural Network 0.88 (0.02) 0.89 (0.03) 0.88 (0.02) 0.87 (0.03)
AdaBoost 0.89 (0.05) 0.90 (0.03) 0.89 (0.04) 0.90 (0.02)
Naive Bayes 0.87 (0.03) 0.82 (0.02) 0.84 (0.02) 0.82 (0.18)
QDA 0.87 (0.04) 0.83 (0.01) 0.85 (0.02) 0.83 (0.08)

Confusion matrices for the top three performing classifiers (i.e Decision

Trees, Gaussian Process Models, and AdaBoost) are show in Figures 4.10,

4.11, and 4.12 respectively. Additional information and a complete set of
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confusion matrices produced for the classifier comparison stage is available in

Appendix A.

Figure 4.10: Resulting confusion matrix produced from preliminary testing using a
Decision Tree to infer mortality in critical care units

Figure 4.11: Resulting confusion matrix produced from preliminary testing using a
Gaussian Process to infer mortality in critical care units
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Figure 4.12: Resulting confusion matrix produced from preliminary testing using
AdaBoost to infer mortality in critical care units

4.4.3 Classifier & Hyperparameter Optimisation

Each of the top three preforming classifiers (from section 4.4.2) were retrained

using both Grid Search hyperparameter optimisation and Random Search

hyperparameter optimisation techniques, to determine the most effective

hyperparameter set for each model. For each set of parameters, AUROC

score was produced and tests were repeated multiple times to reduce the

impact of stochasticity.

For the Decision Tree classifier the maximum leaf nodes is tuned in the

training process, where as in the a AdaBoost classifier the n estimator (number

of estimators) and learning rate are the hyperparameters that were modified

in the tuning phase. Lastly, the Gaussian process algorithm that is typically

used for regression problems, has the kernal and optimiser selection modified

throughout the tuning process. The list of parameters that were modified
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remained consistent with the same thresholds (limits) maintained throughout

the experimental process.

Tables 4.3 and 4.4 show the mean AUROC scores and the standard devia-

tion over five runs using different hyperparameter optimisation techniques.

The Gaussian Process Model produced an average AUROC of 0.77 using grid

search. This demonstrates that the Grid Search hyperparameter optimisation

technique was not capable of finding a good set of parameters from the speci-

fied search space. The best AUROC values using grid search were produced

by the Decision Tree classifier (0.92) and the ADAboost algorithm (0.91).

The average AUROC scores produced when using the random search

hyperparameter optimisation were typically higher than those obtained when

using the grid search methodology. This is often seen as the grid search

methodology can miss local optima due to the parameters not included within

the defined parameters to search. The highest AUROC was using Decision

Trees (with an AUROC of 0.93).

For both runs of training the model with random search and grid search,

the results and standard deviation of the AUROC for the Gaussian process

varied quite a lot. This demonstrates that the hyperparameter selection stage

is very important for producing satisfactory and repeatable results.

It is also apparent that the results when using hyperparameter optimisation

and SMOTE techniques are a lot higher than the initial classification results

presented in section 4.2 with each classifier outperforming the corresponding

classification results from earlier tests. SMOTE was applied to the training

dataset to introduce additional records in the minority class, the sampling

strategy was used to make sure there was an equal amount of both target
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classes.

Table 4.3: Results to show AUROC for mortality prediction making use of Grid
Search Hyperparameter optimisation

Classifier AUROC
Gaussian Process 0.77 (0.40)
Decision Tree 0.92 (0.08)
Adaboost 0.91 (0.03)

Table 4.4: Results to show AUROC for mortality prediction making use of Random
Search Hyperparameter optimisation

Classifier AUROC
Gaussian Process 0.87 (0.32)
Decision Tree 0.93 (0.06)
Adaboost 0.89 (0.05)

Random grid search hyperparameter optimisation, with the decision tree

algorithm proved to be the most successful algorithm. The final parameter

set is shown in table 4.5

Parameter Tuned Value
n estimator 200
min samples leaf 4
max features auto
max depth 10
min sample splits 2

Table 4.5: Random Search Optimised Hyperparameters for Decision Tree Classifier

4.4.4 Final Performance Assessment

To further improve the discriminative capabilities of the trained model, syn-

thetic data was introduced to the minority class to rebalance the data frame.

This synthetic data made use of the SMOTE technique to rebalance the

dataset ensuring there are equal numbers of both classes. Figure 4.13 shows



CHAPTER 4. MORTALITY PREDICTION 110

a ROC curve for the Decision Tree classifier. Used to demonstrate the trade

off between sensitivity and specificity of ML classifiers across different classifi-

cation thresholds, ROC curves are commonly used in the medical domain to

determine the overall discrimination of a trained classifier. The AUROC of

the the decision tree model is labelled on Figure 4.13 and is also shown in

Table 4.6.

The dashed red line in Figure 4.13 is defined as the baseline and is often

known as the “worst case” for a ROC curve. The blue line indicates the

average ROC curve across the repeated 10-fold cross validation, using random

search hyperparameters optimisation and SMOTE oversampling techniques.

Table 4.6 shows the results obtained from repeating the final tests multiple

times. The maximum AUROC was 0.95, with a mean AUROC of 0.93. The

standard deviation of the AUROC over all runs 0.02 showed that there was

little variance in the results. Figure 4.14 is the ROC and AUROC score

generated for the APACHE II score on the same dataset. The final optimised

algorithm has produced better results than that and has improved on the

AUROC score for SAPS II introduced in section 4.2 however this is not using

the same set of features or dataset so further work would be required to fairly

compare the two scrobing systems.
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Figure 4.13: Receiver Operating Characteristic Curve for final decision tree model

Figure 4.14: Results to show ROC curve for determining mortality using the
APACHE-II score



CHAPTER 4. MORTALITY PREDICTION 112

Table 4.6: Results to show AUROC scores for mortality prediction making use of
Random Search Hyperparameter optimisation and SMOTE

Metric Result
Average AUROC 0.93
Standard Deviation AUROC 0.02
Maximum AUROC 0.95
Minimum AUROC 0.89

Table 4.7: Results for mortality prediction utilising decision tree classifier with
Random search optimisation on unseen data

Metric Result
Precision 0.91
Recall 0.93
Accuracy 0.92

The results in Table 4.7 showed that the addition of synthetic data

increased overall accuracy by 1%. The resulting model performs well on

unseen data and does not overfit on the original dataset, even with the

addition of synthetic data.
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4.5 Online Learning

4.5.1 Introduction

As discussed in section 4.2 a single mortality prediction model may start to

perform poorly as patient cohorts and treatments change. A more effective

solution might be to adapt the predictive model at a local level to deal with

evolving population demographics and available medical treatments. To this

point, an efficient solution would be that each hospital has their own trained

model that can be maintained and updated in real time.

Online learning (also known as real-time ML) is the process of training a

model in real time. As new data enters the system the trained parameters of

the ML algorithm are updated to try and find the best result for a predefined

metric. This section examines the effects of applying online learning to the

ICNARC dataset using the pre-trained ML algorithm and parameters from

section 4.4.4.

Event driven architectures are common ways of deploying ML models in

a production setting. The continuous flow of data through a data stream

is given to the model, and the model training pipeline will handle any data

issues, transformations, or enrichment’s to ensure that the data is consistent

and ready to be utilised to retrain the model.

4.5.2 Mapping the System

Production ready online learning models require a detailed ML data pipeline

that deals with the dataset at varying stages of the model training process.
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Figure 4.15 shows a typical data pipeline for online learning. Due to the

extensive model development introduced earlier in this Chapter, for this

research I have focused on the resulting output, as the data fed in to the

model over time changes.

Figure 4.15: An example of an online machine learning data pipeline

Furthermore, many online models use all of the data provided, however, as

the available treatments and medicines are changing rapidly within hospitals,

the last three months of the data are used in the model at each stage. The

dataset is split into different patient cohorts based on a feature, each different

cohort is used to train the model with a final split being used to test the

results.

4.5.3 Experimental Setup

To demonstrate the hypothesis that using different patient cohorts will im-

prove the overall performance of a trained classifier a selection of tests were
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undertaken. To demonstrate that as medicines and treatments improve over

time the model is constantly improving, the dataset was split based on dif-

ferent features: date of admission to ICU (training on the previous month,

testing on the current) and the age of the patient (testing on the old and

training on the young).

Experimental Setup: Date Of Admission

To demonstrate that retraining models, in real-time, can be used as an effective

way to develop mortality risk prediction tools that can handle new patient

cohorts. Two methods of splitting the dataset were used. One such method

was training on a previous month of data and testing on the next, with the

test data becoming the training data in the following month. Figure 4.16

presents this concept and how it would be applied across the year. The “date

of submission” into the ICU is used to determine the data.

The model used to test this hypothesis is the optimised decision tree

classifier introduced in section 4.4.4. Each run was undertaken 10 times with

the AUROC and accuracy scores presented for each month.
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Figure 4.16: Experimental setup for training and testing using online learning with
retraining triggered at the start of the month.
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Experimental Setup: Age

Another alternative approach to using the date of submission into ICU as

the feature to split up the dataset, is using different age cohorts. The dataset

contains records of varying ages from 10 to 103. To prove the hypothesis

that training the young and testing the old can be a practical approach to

keeping mortality systems up to date, increments of 5 years will be considered.

Training for the first round of experiments is undertaken on those under 40,

and those older than 40 become the test set. 40 is selected as the cut off

age as the number of patients within the dataset under the age of 40 is only

2119 (15% of the dataset) - younger ages were considered but there is only

1 patient under the age of 10 and 226 under the age of 20 (1.6%). For the

second iteration, all the patients under 45 are considered, and those over 45

are used in the testing set. The AUROC and accuracy are recorded at each

increment to monitor how it changes over each experiment. The same decision

tree classifier is used to ensure the results are comparable to those produced

in sections 4.4.4 and 4.6.1. Figure 4.17 demonstrates how the training and

testing data changes over time.
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Figure 4.17: Experimental setup for training and testing using online learning with
retraining triggered based on age.

4.6 Experimental Results

4.6.1 Experimental Results: Date of Admission

In total 11 different training and testing scenarios were considered throughout

the experiments. No test results were provided for January as this was the

first month used as training data. Accuracy and AUROC scores are provided

from February to December. Each test was run ten times to remove as much
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variance as possible. Figure 4.18 and Figure 4.19 present the results for

accuracy and AUROC results for each of the ten runs.

When considering accuracy, the months of November and December pro-

vided the worst results with average accuracy of 0.838 and 0.821 respectively.

These results indicate that there may be new illnesses, or ailments in these

months that are not generally seen throughout the rest of the year, making it

hard to discriminate between those who will survive and those who will die.

The trend over the year is consistent, with the accuracy scores not fluctuating

much between 0.82 and 0.88. Additional data would be required to consider

if this is consistent each year. The trend at the end of the month is an

increase in accuracy; with additional data, it is easier to distinguish if this is

continuing in previous or future years.

July saw 1068 records tested by the decision tree algorithm. It provided

the highest accuracy with an average over the ten runs of 0.88. The number of

people admitted to ICU did fluctuate through the training and testing, with

1226 patients admitted into the ICU in December. The accuracy between the

spring months of April and May combined with the summer months of June

and July showed that the accuracy scores plateaued. However, May provided

the highest AUROC score at 0.732. This high AUROC score demonstrates

that in the month of May, the model can be considered a good classifier and

discriminate well.
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Figure 4.18: The accuracy scores for each run when splitting the dataset based on
date of submission.

November AUROC was the lowest with a score of 0.63. This indicates that

the model is only marginally better than the worst-case scenario. Perhaps

maintaining the decision tree classifier and the hyperparameters is not an

effective way of retraining a model each month with just a finite amount of

data. Further to this point, in November of the 1269 patients admitted to

ICU only 163 died. This heavily imbalanced dataset makes it difficult for the

model to determine a patient’s outcome accurately.

The results for the AUROC appear to run in three-month cycles. Typically

AUROC scores peak after three months and then drop down again. This

could be linked to seasonality. Runs for the months of March, April and May

(Spring) where the AUROC peaks at the end of the season. Similarly, for

the runs which are for the months of June, July and August; the AUROC
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peaks at the end of the cycle. This cycle indicates that there may be some

seasonality associated with how successful a mortality prediction tool is when

trained each month.

Figure 4.19: The AUROC scores for each run when splitting the dataset based on
date of submission

Further tests could be undertaken on a more extended dataset that can

demonstrate the results over a longer period than one year. Three-month

periods could be considered for the training data and then tested on the

current month. This would account for the seasonality changes presented in

Figure 4.20.

The combination of the previous year’s season and last month’s data may

provide the best results as it allows for changes in medicine, treatments and

operations not previously used; but also provides information on any of the

ailments or reasons for submission that might not be seen in the previous
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months/season.

4.6.2 Experimental Results: Age

The first round of experiments was split into seven training and testing

scenarios when using age as the trigger to split datasets. Starting at 40 the

dataset was split, training on those less than 40 and testing on those older.

For each experiment, 5 years were added until 70 years of age. Figure 4.21

and Figure 4.20 present the average results for accuracy and AUROC results

for each of the ten runs.

Unlike in section 4.6.1 the trend for AUROC is consistently rising through-

out the seven different dataset combinations. The maximum AUROC is 0.82

with the lowest achieved at the start of 0.67. The best AUROC score, as

expected, was achieved when training took place on those less than 70 and

testing on the rest. The AUROC scores plateaued for experiments of ages

¡50 to ¡60 with an average of 0.78 AUROC score. These runs are for patients

with cut-off ages varying between 50 and 60 years of age. This may indicate

that for these ages, the information within the dataset remains relatively

consistent with many patients experiencing the same issues.
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Figure 4.20: The average AUROC score when splitting the dataset based on age.

Figure 4.21: The average accuracy score when splitting the dataset based on age.

Figure 4.21 presents the accuracy over each different experiments. The

maximum accuracy was over 86.5% when testing patients over 50 years of
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age. The accuracy did drop when testing with patients 55 and over but rose

again to a second peak of 86.3%. The accuracy doesn’t change dramatically

throughout the experiments, as it only varies between 84.7% and 86.5% for

all of the different patient cohorts.

To better understand the results and to see if age can be used as a good

discriminator, further tests were undertaken, however, the age was not split

by 5 years but rather by 2. Figure 4.23 is the average accuracy over the 25

different scenarios. Testing split on patients less than 64 years old showed

the lowest average accuracy of 84%, but the overall trend continues to rise.

Similar results were demonstrated on the AUROC scores with the overall

score dropping. However, it is not the lowest AUROC achieved as that is

still the first experiment and with the smallest training set when splitting on

patients aged 40.

It is clear that more data shows it is possible to generate better overall

results in accuracy and AUROC, the more patients included in the training,

the larger the number of illnesses and issues are seen. This demonstrates

that the work undertaken to date should be treated with care unless updated

often using new data.
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Figure 4.22: The average accuracy score generated for online learning when splitting
the dataset 25 times.

Figure 4.23: The average AUROC score generated for online learning when splitting
the dataset 25 times.
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4.7 Discussion

The results in this Chapter demonstrate that it is possible to apply ML

techniques to mortality prediction cases within ICU. It has been shown that

using simple ML algorithms with optimisation techniques for re-balancing the

dataset and tuning hyper parameters can correctly identify 92% of patients

admitted into the ICU who had their patient data recorded and distributed

as part of the ICNARC dataset. Some limitations of this work is the finite

amount of data made available to train these models. Theoretically, they have

produced good results but would need to be reviewed over time to ensure

that they are reliable for different patient cohorts.

The data suggested that using a greedy search based algorithm such

as Decision Trees or Random Forests produced the most promising results.

Further work could be undertaken to investigate this more by using the results

from an ensemble of classifiers. The results produced by Neural Networks

would also require additional research. Neural Networks require large datasets

to correctly identify and train the weightings within the network.

The results challenge the existing support tools used in ICU. The results

for the optimised decision tree classifier produced a higher AUROC score

than APACHE II, 93% where as APACHE II only achieved an AUROC of

83% for the given dataset.

The novel approaches of retraining the model for different patient cohorts

based on age/date of submission, demonstrate results that are comparable

for most windows with those in state-of-the-art research. As procedures and

medicines change it is important that support tools account for these changes.
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Existing support tools such as SAPS II do not do this and have become

quickly outdated. The approach introduced is quick and can be applied to

any different patient dataset (with the same feature set).

There are some limitations in the work that needs to be considered. One

of the key limitations of this work are the finite number of records available

within the completed ICNARC dataset. A true representative sample with

equal age and genders splits needs too be used to understand how well

the model can discriminate for different age ranges and gender. Further to

this point, the data available within the ICNARC dataset does not have

information on any complications that have occurred whilst a patient has

been in the ICU. Introducing this as a new feature would allow the model to

account for those changes and show how a patients chance of survival may or

may not deteriorate over time.

The models presented act as a support tool for medical practitioners

and allow them to make more informed decisions on patients. The models

presented also support medical practitioners in understanding the chances of

survival without influencing whether they should intervene on a patient or

not.

Some avenues for further research include:

• Investigate the effects of retraining the model for those who have entered

the ICU via different wards or different reasons for admission.

• How does the results of the optimised ML algorithm compare to other

support tools such as the SOFA score.

• Test different Neural Network approaches on a larger dataset.
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Stakeholder Engagement

Throughout the research ongoing conversations took place with many experts

within the field of medicine, they found the work fascinating and engaged

throughout the work. They felt as though the research built on the existing

research in this field of study but believe that there needs to be more atten-

tion given to complications that can arise throughout the duration of stay

within ICU. Current mortality scoring systems provide a score at the time of

admission and don’t account for changes throughout the ICU stay.
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4.8 Conclusion

The current study has indicated that ML can be used to accurately predict

mortality in intensive care units. In this Chapter, the ICNARC dataset

was used, which contains 29 features acquired within the first 24 hours of

admission in to ICU. The most effective models made use of the Decision

Tree algorithm and achieved a classification accuracy of 92%, a PRE of 91%

and a REC of 93%. These results have indicated that the developed ML

model is more effective than current state of the art techniques at predicting

mortality on the patient cohort considered in this study.

Medical practitioners often use outdated methods to quantify mortality

risks to patients in intensive care units. The existing methods do not account

for changes in medicine, patients reactions to intervention, and can not be

calculated at admission to the ICU. Many risk mortality scores exist and are

specialised to different diseases or populations. This Chapter has presented

the development of a ML pipeline that can be used to correctly identify and

quantify the risk of mortality for patients admitted in to intensive care units.

The methodology used to develop the pipeline can be applied to many real-

world classification problems. The mortality risk prediction tool developed

in this chapter uses 29 features to determine the score (unlike the previous

work described in section 4.2). Section 4.5 introduces the techniques of online

learning and how it can be used for changing cohorts and developments in

medical treatments. The results show that it is possible to train the model at

different intervals for varying cohorts to improve the model accuracy.

It is expected that further research and development into ML for mortality
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risk prediction will result in an online ML support tool that can be trained

continuously with new data. This would make it suitable for application

across many different patient cohorts, and allow the adaption of the model

and methodology to be applied globally, as patient demographics evolve over

time.



Chapter 5

Using Ensemble techniques for

Data Imputation

5.1 Introduction

In statistical analysis and ML, missing data in datasets is a common occurrence

and can have a significant impact on the validity of any conclusions that

can be inferred from that data. This includes reducing the confidence levels

of any statistical or ML model developed using that dataset, and thus its

usefulness. There are a variety of reasons that missing data occurs including:

a non-response of a variable in an observation, faulty equipment, or improper

data collection. This means most statisticians and data science researchers

have to deal with missing data at some point in their analyses. In many

environmental science datasets, missing observations are a frequent occurrence

because of instrument failure or data collection quality control procedures

(Sabay et al., 2018).

131
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An example of reported missing data is the US centers for disease control

morbidity and mortality report published, which states 12,928,749 people

had received at least one dose of the COVID-19 vaccination throughout the

US in February 2021. It was noted that around 48.13% of those who had

received the vaccine had not provided their race or ethnicity despite being

explicitly told to provide this. This information is essential to ensure vaccine

roll-out standards are met and to maintain a consistent roll-out across all

ethnic groups (Painter, 2021).

Missing data causes issues with the feasibility of creating statistical and

ML models, with most multivariate analysis algorithms expecting complete

data (i.e. data for all observed variables) for each observation (Sabay et al.,

2018). Complete case deletion (where the observation with missing data

values is removed from the dataset) is commonly used to address issues as it

is the simplest and most intuitive way of dealing with missing data (Afifi and

Elashoff, 1966). The statistical model can then be created using the subset of

complete observations. However, as the number of cases with missing data

increases, the resulting impact of deleting cases becomes more severe due to

the fact that statistical models are only really reliable and effective if they

can make inferences about the entire population and not just the cases with

complete data. These deleted observations may also contain vital information

affecting the quality of the model output (Khan et al., 2018), so deleting an

entire observation because some of its values are missing is often undesirable.

Prior to removing data, one of the most important decisions that will

be under-taken by the researcher is deciding whether there is any pattern,

in the missing data. Frequently understanding the way the data is missing
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helps to understand the reason why it is missing and therefore how best to

address the missing data. For example, if data is missing at random then the

remaining data sample (after cases have been removed) is likely to still be

representative of the population. However, if data is missing according to a

systematic pattern then excluding cases with missing data from the modelling

process will bias the results of any model created from that dataset. In this

case, methods to deal with this missing data without excluding the entire

case are needed.

In this Chapter a novel approach to dealing with missing data by using

ensemble ML methods is proposed, and this method is applied to the binary

classification problem of detecting heart disease. The key contributions of

this Chapter are as follows:

1. A novel ML framework for missing data imputation is proposed.

2. Results for the base classifier are compared with state-of-the art ML

models described in literature.

3. The ensemble imputation methodology is applied to both data that is

missing at random and data that is systematically missing.

4. Results of the EIM are compared with state-of-the-art ML approaches.

The rest of the Chapter is organised as follows: section 5.2 considers

related work in identifying patterns in missing data and the application of

ensemble methods in ML problems, section 5.3 describes the proposed novel

approach to ensemble multiple imputation methods. Section 5.3 will then

describe the experimental methodology in detail: including the dataset to be
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used in the experiments, the process for removing data from the dataset, and

the baseline classifier to be used in the experiments. Section 5.4 shows the

results of the proposed ensemble method for data imputation and compares

those results both to a strong baseline method and to state-of-the-art results

reported in the literature. Finally, section 5.6 will present conclusions and

some ideas for further work.

5.2 Background and Related Work

5.2.1 Missing Data Patterns

Before deciding on the most appropriate way of dealing with the missing values

in a dataset the type of “missingness” and features should be considered.

Data that is missing can be uni-variate, monotonic, or in arbitrary patterns.

It is also important to understand the mechanisms that have led to there

being missing data. Little and Rubin (2002) introduced three different types

of missing data categories that are formed in relation to randomness:

• Missing Completely At Random (MCAR)

• Missing Not At Random (MNAR)

• Missing At Random (MAR)

Missing data can be described as MCAR if the probability of data missing

is equal for all the different cases, implying that the cause of the missing data

is unrelated to the data itself. As a result, it is possible to ignore many of

the difficulties that commonly arise with other types of missing data, besides
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the loss of information. An example of MCAR data is that of missing blood

oxygen recordings in a clinical record due to sensor malfunction. This means

each sample has the same chance of missing that data. Data that is MAR

occurs when the probability of the data being missing is accounted for by

other measured variables. For example, men are often less likely to respond

to questions about mental health in surveys. Modern missing data inference

methods generally start with the assumption that the missing data is MAR.

If the missing data is related to data that is not present within the current

dataset then the data is MNAR. It is difficult to impute missing values of this

type, as none of the data that is currently available in the dataset is related

to the data that is missing. For example, if a public survey was undertaken

asking for people’s opinions and those with the weakest opinions responded

less often, then it would be referred to as MNAR data. MNAR data is the

most complex to work with. Strategies to deal with MNAR data include

performing ‘what-if’ analysis in order to understand how sensitive the results

are to different scenarios (Hughes et al., 2019; Penny and Atkinson, 2012;

Wells et al., 2013).

5.2.2 Ensemble Methods

Ensemble learning, also known as meta-learning, is the process of combining

the predictions of multiple classifiers to solve a particular classification or

function approximation problem. It is often successful at improving the overall

performance of the model. Ensemble methods were first introduced as early

as 1979 in the research undertaken by Dasarathy and Sheela (1979). They
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proposed using an ensemble system in a divide and conquer setup where the

multiple classifiers were used to partition the feature space. Ensemble methods

have two main benefits, variance reduction and bias reduction (Smolyakov,

2019). The two most common forms of ensemble methods are bagging (using

sub-samples of the training dataset to develop different models) and boosting

(where the model attempts to create a strong classifier by generating a model

and then attempting to solve errors for each iteration by generating a new

model). Simple ensemble methods often construct a set of base classifiers and

then classify new data points by taking a vote on the predictions that are

made. The learning procedure for these algorithms can be divided into three

separate parts:

1. Data Pre-processing: Data pre-processing is the initial stage of

solving any classification problem. The data must be properly formatted

to allow the training of the base classifiers to take place. This is done

by editing and adapting the original training data to suit. Reshaping

the data, normalisation techniques such as PCA (see section 2.8.2),

and conversion of categorical variables using one-hot encoding are

examples of data pre-processing techniques that are commonly used in

the literature.

2. Constructing base models: This is the creation of the base classifier

with a specified learning algorithm as the base learner. In this Chapter,

the base classifier used is Logistic Regression (see section 2.7.3 for a

detailed overview), but the proposed techniques can be generalised to

any different classification technique.
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3. Voting: The final stage of developing an ensembled pipeline is to

combine the predictions of the base models that were developed in the

previous step into a final output prediction. There are several types of

voting systems that can be utilised:

• Averaging : Multiple predictions are made for each different data

point with an average of the predictions taken from all of the

models. Averaging can be used when making predictions in regres-

sion problems or while calculating probabilities for classification

problems.

• Weighted Average: Similarly to averaging, using a weighted average

takes an average of all of the predictions. However, before averaging,

each model is assigned a different weight that defines the overall

importance of each model for prediction.

• Max Voting : Generally used for classification problems, max voting

is used when each model makes a prediction of what it thinks is

the resulting class. Each prediction is a “vote”, and the prediction

with the most votes is used as the final predicted value (Tran et al.,

2016).

5.2.3 Imputation Methods

One of the key methodologies used by researchers to populate and fill missing

data is to utilise imputation. Imputated data is typically used in place of

records where there is missing data (often known as incomplete data). By

using various statistical calculations a suitable value can be found for what the
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missing data could be. The methods used for imputation can have a drastic

impact on the overall reliability of a ML model. Where possible ML models

should be trained with a complete dataset with no need for imputation.

There are three main categories that can be used for imputation:

1. Listwise Deletion: Listwise deletion is used when records are deleted

from a dataset if they are missing data on any of the variables present

within that data record. Although simple to apply and commonly seen

in literature, this is only sometimes the most efficient way of dealing with

missing data. When data is MCAR, listwise deletion should be used as

there is no difference from the complete cases within the dataset. If a

selection of results is missing due to the failure of a medical instrument

(or the data has not been collected for an undetermined amount of time)

the dataset could be biased therefore listwise deletion shouldn’t be

used. With any imputation or deletion methodology, caveats should be

presented for transparency and imputation/deletion methods should be

carefully selected depending on the sample size of the dataset and how

much could be added or removed. Listwise deletion can be used when

the sample size is overly large, and the number of cases for deletion is

minimal (Grace-Martin, 2014; Glas, 2010).

2. Single Imputation: These procedures allow a single value to fill in

the missing data element within a dataset by a defined single rule.

Mean imputations is a commonly used method where the mean value

is imputed in place of missing elements (Jamshidian and Mata, 2007;

Glas, 2010; Jakobsen et al., 2007). The following methods are examples
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of single imputation:

• Hot Deck Imputation: Missing values are replaced with values

observed earlier from other respondents with a “similar” pattern

in their other features. Despite being commonly used in practice,

the theory determining what data is similar is not as transparent

as other more straightforward imputation methods. Andridge and

Little (2010) reviewed the literature to explain how the data should

be selected.

• Cold Deck Imputation: A different approach for imputation is

cold-deck imputation; this utilises results from a source unrelated

to a dataset being considered. An example of cold-deck imputation

is taking responses from an old patient’s questionnaire to fill in

the missing answers within a current questionnaire. There is a

requirement to have expertise in the field to select the correct

records.

• Substitution: Substitution imputes data for missing records by

taking the results provided by others not initially included in the

sample. Consider a dataset containing a selection of recorded

features of women who have both had a miscarriage or have not

had a miscarriage from 2019-2021. Any missing data could be

filled by looking at patients from 2022 with no missing data where

the outcome is the same in relation to miscarrying.

3. Multiple Imputation: Multiple imputation procedures were devel-

oped to combat the uncertainty and bias introduced into datasets by
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using single imputation methods or listwise deletion. Several plausible

imputed datasets are generated, and their results are combined to find

the most relevant result.

Multiple copies of the dataset are synthesised with all the missing

data replaced by imputed values. These values are samples from their

predictive distribution based on existing values within the dataset. To

account for the uncertainty within the missing data, the imputation

procedure must use appropriate variability in the imputed values (Rubin,

2004; Sterne et al., 2009).

5.3 Materials & Methods

5.3.1 System Design

To test the hypothesis that using combinations of different single imputation

methods in an ensemble ML pipeline improves overall classification perfor-

mance in the presence of missing data, the experimental framework shown in

Figure 5.1 is proposed. This framework consists of the following steps:

1. Split the complete data set into training, test and unseen datasets.

2. Use the training/test set to develop and train an optimised base classifier.

3. Remove some of the data from the unseen data set.

4. Use multiple different imputation methods to create multiple unseen

testing data sets.
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5. Make predictions from those multiple testing sets using the base classi-

fier.

6. Combine those predictions into a final output using ensemble voting

methods.

Figure 5.1: Experimental set up for ensemble-based Multiple Imputation pipeline

The first step in this experimental framework is to split the complete

data set 70:20:10 into a training set, testing set and unseen dataset using

a stratified approach based on target classes (to ensure that the held out

test set is representative of the entire data set (Kumar, 2022)). The training

set is then used to develop and train the base classifier using a stratified

10-fold cross-validation strategy to tune the model hyperparameters (again,
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as with the splitting of the data into training and testing sets, stratification

is necessary to ensure that each fold is representative of the balance of the

full dataset). Once the optimal model parameters were selected via this

cross-validation process, the base classifier was then retrained on the complete

training dataset using those parameters, before being used for inference.

In this Chapter, a Logistic Regression classifier (see section 2.7.3) is

used as the base classifier primarily due to its simplicity and wide-spread

usage. The cross-validation process is used to select the penalty function,

regularisation strength, solver, and solver parameters to use. However, the

approach proposed in this Chapter is generally applicable to any classification

algorithm (e.g. ANNs, SVMs, Random Forests, etc.).

Once the base classifier is trained, a proportion of the data points are then

removed from the unseen test set to mimic real-world missing data. In this

Chapter, two missing data edge cases are considered: data that is MNAR,

and data that is MCAR (see section 5.4).

5.3.2 Simulating Missing Data

As discussed in section 5.2, data that is MNAR represents significant diffi-

culties for the development and application of predictive models – with the

systematic nature of the “missingness” often resulting in a biased estimate

of effect (Dong and Peng, 2013). In this Chapter the effect of MNAR data

across dataset features of varying feature importance is evaluated, to see how

the proposed approach performs in a range of MNAR data situations.

Firstly, to remove data in a systematic approach we use different com-
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binations of up to three features with 10% of the samples in the data set

removed.

In contrast to MNAR data, data that is MCAR typically does not in-

troduce bias into a predictive model. This means that, although MCAR

data reduces the number of samples we can analyse, the remaining data

is representative of the full data set of interest. To evaluate the ensemble

imputation approach proposed in this Chapter against MCAR data, data is

simply randomly removed from 10% of the samples across all features (rather

than systematically across specific features as done to simulate MNAR data).

The total number of data points that is removed remains the same in both

cases.

5.3.3 Imputing Missing Data and Ensembling Predic-

tive Models

The data removed in step 3 (as described in section 5.3), is then imputed

using a range of different simple imputation methods to create multiple

testing data sets. Throughout this Chapter the effectiveness of the proposed

method is evaluated using zero fill, one fill, mean fill, and mode fill imputation

methods (however, as discussed in Chapter 7, other more complex imputation

techniques can also be used, and this is an area for further work). The base

classifier developed in step 1 is then used to make predictions using each of

these testing sets, and the predictions are combined using ensemble voting

techniques (see section 5.3) to produce a final prediction. All models have

been implemented in the Sci-Kit learn ML framework (Pedregosa et al., 2011).
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5.3.4 Cleveland Heart Disease Dataset

26 million adults have been diagnosed with Coronary Heart Disease (CHD)

worldwide with an estimated 3.6 million adults being newly diagnosed every

year. The cost for heart failure management and care is approximately 1-2% of

the global expenditure of healthcare, with most cases being linked to recurrent

hospital admissions. The increased widespread presence, increasing numbers

of recurrent hospital admissions, and surge in hospital costs has highlighted

the need for prompt diagnosis and estimation of severity of heart disease to

allow for the most effective treatment to take place (NHS, 2015). Its estimated

that in the United Kingdom (UK) alone, 2.5 million people are living with

CHD, and CHD is responsible for 73,000 deaths each year (Townsend, 2014).

Usually a coronary angiogram is used to accurately diagnose both the presence

and severity of heart disease. This procedure is not suitable for large scale

screening as it is an expensive and invasive procedure. A possible solution to

these drawbacks is to use computational methods of predicting and estimating

the presence of CHD.

303 cases of heart disease data from V.A medical centre, Cleveland Clinic

foundation, and Long Beach were collected by Detrano et al. (1989), to

develop a discriminate function model for estimation probabilities of CHD.

The data collected has been used frequently in classification research literature

to benchmark base classifiers and pipelines. The majority of studies that used

the dataset consider 14 (13 input and 1 target feature) of the 76 problem

attributes (which are detailed in Das et al. (2009) and Nguyen et al. (2015)).

In this Chapter a subset of the classes were used. The data set categorises the
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severity of CHD from 0 (No heart disease present) to 1 (mild heart disease)

through 4 (severe heart disease). Although this data has been used extensively

in research for classification, most researchers have reshaped the problem

by combining groups 1-4 as a single class and distinguishing the presence of

heart disease from no heart disease detected (Nguyen et al., 2015). Table

5.1 describes all of the features within the dataset and a description of each

feature is also provided as well as the datatype. Figure 5.2 shows the spread

of classes in the unaltered dataset. Conversely, Figure 5.3 presents the spread

of classes used for this body of work once the classes were reassigned to make

it a binary classification problem. This work also helped to rebalance the

dataset.

Figure 5.2: Graph to show the original classes spread
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Figure 5.3: Comparison of how the dataset can be considered as a binary or
multi-class classification problem
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Table 5.1: General description of features present within the Cleveland heart disease
dataset. (Detrano et al., 1989)

Feature Type Feature Description
age Integer Age of subject (25 – 80)
sex Categorical Sex of subject (0 = female, 1 = male)
cp Categorical Type of chest pain experienced (1 =

typical angina, 2 = atypical angina, 3 =
non-anginal pain, 4 = asymptomatic)

trestbps Integer Resting blood pressure in mm Hg on
admission to the hospital (94 – 200)

chol Integer Serum cholesterol measure in mg/dl
(125 – 564)

fbs Categorical Fasting blood sugar level greater than
120 mg/dl (0 = false, 1 = true)

restecg Categorical Resting electrocardiogram results (0 =
normal, 1 = ST-T wave abnormality, 2
= left ventricular hypertrophy)

thalach Integer Maximum heart rate achieved in bpm
(71 – 202)

exang Categorical Exercise induced angina (0 = no, 1 =
yes)

oldpeak Real ST wave depression induced by exercise
relative to rest (0.00 – 62.00)

slope Categorical The slope of the peak exercise ST wave
segment (1 = upsloping, 2 = flat, 3 =
downsloping)

ca Integer The number of major vessels coloured
by fluoroscopy (0 – 3)

thal Integer Thalassemia (3 = normal, 6 = fixed
defect, 7 = reversable defect)

target Categorical Presence of coronary heart disease (0
= absent, 1 = present)
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5.4 Experimental Results

This section introduces the 10-fold cross validation results for training and

testing of the heart disease detection binary classification problem. The

results from a collection of classification algorithms are presented with a focus

on the Logistic Regression classifier. The ML models and EIM techniques

introduced in this Chapter were trained on a M1 Pro Macbook Pro with 16Gb

RAM. The training time for each classifier was negligible but is provided in

5.2 deonted with the column TT with results provided in seconds.

Baseline results and how they compare with existing literature are dis-

seminated in section 5.4.1. The baseline results are then compared with the

results from different testing scenarios in section 5.4.2.

5.4.1 State-of-the-Art Heart Disease Classification

The Logistic Regression classifier outlined in section 2.7.3 as well as some

other common ML algorithms were applied to the Cleveland heart disease

classification dataset containing those with or without heart disease; table 5.2

shows the Accuracy, REC, PRE, and F1 scores for the repeated 10-fold cross-

validated results. Logistic Regression provided the highest overall accuracy

of 0.86% and was therefore selected as the classifier that would be used to

test the process of imputing different single imputation methods and using

ensemble approaches on the results (described in sections 5.2.3 and 5.2.2).

The optimised Logistic Regression classifier also produced the best results

for REC and F1 score which are 0.90 and 0.88 respectively. The Näıve Bayes

has the highest PRE score with a score of 0.87.
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Table 5.2: Classifier Comparison results for the Cleveland Heart Disease Dataset

Model Acc(%) Recall Prec F1 TT(S)
Logistic Regression 0.86 0.90 0.86 0.88 0.263
Random Forest Classifier 0.82 0.86 0.82 0.84 0.041
Decision Tree Classifier 0.71 0.72 0.77 0.74 0.003
SVM - Linear Kernel 0.69 0.73 0.74 0.70 0.003
K Neighbours Classifier 0.69 0.82 0.69 0.74 0.005
Naive Bayes 0.67 0.50 0.87 0.61 0.002
Quadratic Discriminant A 0.59 0.54 0.64 0.56 0.003

Figure 5.4 shows the AUROC curve when using the optimised Logistic

Regression algorithm for the unseen validation set; it demonstrates that the

model can accurately discriminate between those with heart disease and those

without it. The solid green line indicates the results of the ROC curve for

those in Class 1 (with heart disease present). Class 0 (the solid blue line)

indicates those who do not have heart disease. The dashed black line suggests

a classifier which randomly chooses a patient’s outcome class – this can be

considered a worst-case scenario. Table 5.3 presents the overall results for

the ROC curve as well as the maximum and minimum AUROC scores from

the test dataset. The standard deviation of the AUROC over 10 runs is also

provided.

Table 5.3: AUROC scores for the optimised Logistic Regression model

Metric Results
Average AUROC 0.92
Standard Deviations AUROC 0.05
Maximum AUROC 1.00
Minimum AUROC 0.87

Several researchers have used different approaches to predict the presence

of CHD in a patient from the Cleveland heart disease dataset. Table 5.4

summarises the outcome of these research projects. Many research teams
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Figure 5.4: Receiving operator curves for baseline Logistic Regression model

have turned the dataset into a binary classification project, and only these

results are compared with the results generated in this work. The proposed

classifier for use in the EIM tests is a Logistic Regression classifier; the

accuracy generated for the optimised model shows that it can determine heart

disease at a comparable level to those described in the current state-of-the-art

literature.

The baseline model trained on the complete dataset introduced in this

section is used throughout the following sections. The unseen test dataset is

maintained throughout the experiments, but different data removal method-

ologies are used with synthetic data imputed.
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Table 5.4: Comparison of Accuracy scores for state-of-the-art heart disease research

Author Classifier Features Acc(%)
Shorewala (2021) Ensemble 13 75.1
Ali et al. (2020a) Ensemble 27 83.5
Bharti et al. (2021) SVM 13 84.26
Latha and Jeeva (2019) Ensemble 13 85.48
Ali et al. (2020b) ANN 13 86.20
Haq et al. (2018) SVM 13 88.00
Vijayashree and Sultana (2018) SVM 13 88.22
Aliyar Vellameeran and Brindha (2022) DBN 13 88.8
Tuli et al. (2020) DL 13 89
Sarra et al. (2022) SVM 13 89.47
Proposed Baseline Log-Reg 13 86.32

5.4.2 Ensemble Imputation Methods

Section 5.3 outlines the system design for testing the hypothesis that using

different single imputation methods to fill missing data in different copies of a

test dataset and then using different voting methods is an excellent approach

to deal with missing data. The Cleveland heart disease dataset contains no

missing data thus leading to a need to remove data from the unseen test

dataset. Two approaches were used to remove data:

1. Systematic Removal (SR) of Data: 10% of the data is removed from

3 features (30% in total). Each combination of 3 features is run five

times, and the average is presented. There are 13 features in the dataset

which means that there are 286 different combinations of 3 features that

can be used (1430 were undertaken due to the repeated experiments).

For each of these combinations 10% of the data is randomly removed

accross the dataset.

2. Random Removal (RR) of Data: 30% of the data is removed randomly
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across the full unseen dataset from any feature. This is run 100 times.

No data is removed from the target variable.

Once the unseen dataset with data removed was created, four copies of

the dataset were created; each dataset had a different method for imputation,

Mean, Mode, 0 fill and 1 fill.

The optimised Logistic Regression algorithm developed in section 5.4.1

provided predictions for each run with a different imputation method. Each

resulting prediction had two different voting methods to determine the final

prediction (Max Voting & Averaging).

Table 5.5 shows the PRE and REC obtained for the three most successful

runs of the SR and RR methodology. For Systematic removal in many

instances, the PRE score is increased and the REC results are comparable to

those obtained from utilising the complete unseen dataset.

The REC range for all the experiments was between 0.61 – 0.79. The range

is comparable to those that have utilised the dataset to generate optimised

algorithms. Table 5.6 shows the PRE ranges presented in literature for two

different research projects.
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Table 5.5: Precision, Recall & F1 scores of the models considered in this work (as
a percentage) for both methods of data removal and the scores compared to the
baseline results.

Data Removal Voting Method Recall Prec. F1 Score
Baseline - 0.87 0.77 0.82
SR Max Voting 0.92 0.79 0.85
SR Max Voting 0.71 0.68 0.69
SR Averaging 0.80 0.61 0.69
RR Max Voting 0.79 0.73 0.76
RR Averaging 0.81 0.73 0.77
RR Max Voting 0.75 0.67 0.71

Table 5.6: Precision range scores for the proposed EIM and different research
projects

Base Classifier Precision Range Scores
Decision Tree (A.Sabay et al., 2018) 69-77%
Decision Tree (Tu et al., 2009) 72%
Proposed Method 61-79%



Figure 5.5: Precision-Recall curve for the developed pipeline ensemble model with
max voting as the ensemble voting method.

Figure 5.6: Receiver-operating characteristics curve for the developed pipeline
ensemble model with max voting as the ensemble voting method and systematic
removal of three features
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5.5 Conclusion and Further Work

The key contribution of this Chapter is the development of a new method

of dealing with missing data which makes use of ensemble methods and

varying imputation methods. The proposed novel approach has produced

classification results (comparable to state-of-the-art with missing data) for

effectively determining heart disease. Moreover, the experiments conducted

show that there is a significant increase in the precision. This increase in

precision is very important in the medical domain, as false positives are more

tolerable than false negatives (which could lead to loss of life). The proposed

model is also efficient and can be easily modified for different imputation

methods. For the experiments in this Chapter Mean, Mode, 0 Fill, and 1

Fill were considered. Further work is planned to study different imputation

methods and apply the proposed approach to datasets that already have

existing data missing.

5.6 Summary

The results obtained from any ML problem varies dramatically depending on

the algorithm used, the hyperparameter tuning and how much data is missing.

One of the key aspects to consider is the type of missing data. If the dataset

has missing records, it can reduce the amount of overall training data or cause

the model to produce inaccurate results. This problem is magnified in real-

world applications as it is sometimes not possible to go back and retrieve the

missing data due to an instrument failure or the costs associated with it. This
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Chapter has proposed and demonstrated an alternative approach to dealing

with missing data by utilising ensemble techniques. Varying imputation values

for different types of missing data were used.

Section 5.2 has introduced some of the key concepts around missing

data, the effects of missing data and different techniques that are commonly

used in data to deal with these problems. Section 5.2.2 introduced the

concept of ensemble learning and how it can be used to improve the results

during ML training it also describes the three steps that need considering

for ensemble learning. The hypothesis of the work is introduced in section

5.3 with a detailed methodology of how data will be removed randomly and

systematically. Furthermore, a clear plan of testing is provided which shows

all the different tests undertaken to demonstrate the results.

Section 5.4 shows that the resulting ML model produces results for heart

disease classification that is comparable to current state-of-the-art research

papers when reframing the problem to classify patients that have or do not

have heart disease.

By using Logistic Regression and the complete Cleveland heart disease

dataset, a baseline set of results was obtained that was used to compare the

results from ensemble testing. Further work can be undertaken to improve this

result by utilising the hyperparameter tuning and data rebalancing methods

described in section 4.3.4.

The results produced by using ensemble techniques for missing data

imputation can increase the overall sensitivity of the dataset. Table 5.5

provides in-depth results and shows how it is increased for an unseen test

set as well. The ability to effectively impute data can have a large impact
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on the reliability and confidence of a ML model. Typically models trained

on finite datasets lack confidence and are not applicable to larger cohorts

of patients. The work undertaken in this Chapter has gone some way to

prove that ML models can be modified for different medical use cases and

can produce reliable results even if there is missing data within a patients

record. By using this method, some medical tests or required samples that

can take a long time to obtain could potentially be synthetically imputed into

the dataset if it is a time-critical medical emergency.



Chapter 6

Detection of Early Onset Sepsis

6.1 Introduction

From an estimated 44000 deaths in the UK in 2018, to a estimated 52000

deaths in 2019, the number of people contracting sepsis leading to death is

on the rise. Sepsis occurs when the body’s immune system starts to send

Infection-Fighting Chemicals (IFCs) to the body rather than just to the

infected area. These IFCs can lead to inflammation and begin attacking

healthy tissues. As a result, the body is no longer just fighting the infection,

but is also fighting itself. Currently, researchers do not know why this happens

and what exactly triggers sepsis. However, successful management of sepsis in

a clinical setting is possible - though it requires prompt recognition of sepsis

before the issue spreads (Aitkenhead and Dodds, 2018).

Medical Early Warning Systems (EWS) were first developed in the 1990s

to predict the onset of sepsis. Most use some set of physiological parameters

(including heart rate and systolic blood pressure) that are recorded at regular

158
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intervals. Weightings are given to values that deviate from the ‘normal range’

of what is expected, and this is used to predict sepsis before it progresses.

However, whilst EWS have been widely adopted, there is little to no evi-

dence that they improve patient outcomes due to concerns about reliability

(McLymont and Glover, 2016). This Chapter looks to build on the work done

to developed EWS and understand the process associated with building an

EWS with heavily imbalanced datasets.

The remainder of this Chapter is structured as follows: Section 6.2 provides

background on sepsis, how it is currently determined in medical care, and

why detection is so vital. Sections 6.2.3 and 6.2.4 describe the under sampling

and over sampling methods used in ML to date. Section 6.3 then introduces

the methods used to develop an effective model, whilst also describing the

dataset in more detail.Section 6.4 then presents the validated results using

both ROC curves and confusion matrices for performance assessment. Finally

section 6.6 presents conclusions, limitations and key areas for further work.

6.2 Related Work

6.2.1 Current Methods for Sepsis Prediction

Early detection of sepsis has been addressed in a number of studies. ML has

proved an effective way of detecting sepsis with some very good results.

Doggart and Rutherford (2019) described an approach for detecting Sepsis

by using a randomly under-sampled, boosted tree methodology which achieved

an area under the AUROC score of 77.79%.
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Vicar et al. (2019) used an LSTM classifier to detect the onset of sepsis.

To overcome the fact that the dataset is heavily imbalanced, they applied

Dice loss providing automatically weighted classes by the co-occurrence of

features.

Tran et al. (2019) proposed a novel neural network called AEC-Net. The

ACE-Net contains two main components; an auto encoder, and a Fully

Connected Neural Network (FCNN). For each iteration, the loss of the auto

encoder and FCNN are minimised. This process helped the model to provide

better generalisation to unseen data. Finally, an ensemble pipeline of Random

Forests, Gradient Boosting Decision Trees and the newly introduced AEC-Net

was used to generate the normalised score (Tran et al., 2019).

Finishing third overall in the Physionet 2019 early onset sepsis detection

challenge, Zabihi et al. (2019) used a systematic approach for sepsis prediction,

by defining a new set of features to model the missingness of the clinical

data. They developed a pipeline comprising of three main aspects: feature

extraction, feature selection, and classification. The pipeline used an ensemble

wrapper based, feature selection classifier which is similar to XGBoost.

Table 6.1 summarises the characteristics of the related literature. The

main difference between these works and that presented in this Chapter, are

the techniques used to rebalance the dataset so that the data contains a 50-50

split between both positive and negative cases. In addition the dataset used

in this work makes use of the Physionet 2019 early onset sepsis detection

challenge dataset, which is also used in a lot of the related literature. Those

that use different datasets have been highlighted in Table 6.1. The table also

contains information and results from different research papers and detailed
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(where available) the achieved area under the curve score.
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6.2.2 Data-Level Methods For Dealing With Class Im-

balance

Class imbalance refers to a problem where the classes in the target variable

are not represented equally. For example, in a binary classification problem

with a dataset that contains 99% of observations of one class and 1% of

observations of the other class, this would be an example of class imbalance.

This can lead to difficulty in training models, as they may be biased towards

the more prevalent class, and have difficulty in accurately identifying the less

prevalent class.

There are many approaches to handling class imbalance. Data level

solutions include many different forms of re-sampling such as: random over-

sampling, random under-sampling, directed over-sampling, directed under-

sampling, and combinations of the re-sampling techniques.

6.2.3 Oversampling

Random over-sampling is a non-heuritstic approach that deals with unbal-

anced classes through random replication/generation of the minority classes.

However, random over-sampling can increase the chances of a model overfit-

ting. Overfitting occurs because the existing minority class data is used to

make copies within the answer plane. A classifier will then construct rules

that are apparently accurate based on the data provided to it; however, this

may just cover one replicated example. Furthermore, the addition of data

can increase the time needed to train a ML model as it adds additional data

into the training phase.
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SMOTE

The SMOTE technique, was first introduced by Chawla et al. (2002). The

technique generates new synthetic instances of the minority class. Utilising the

K-Nearest Neighbour (k-NN) algorithm, SMOTE can generate new samples

that are within the vicinity of existing samples in the minority class. The

k-NN samples are chosen at random the along the lines which join all of the

minority samples. Section 4.3.4 in Chapter 4 provides and indepth review of

the SMOTE technique

6.2.4 Undersampling

Random under-sampling is a non-heuristic method that aims to rebalance

class distributions by randomly removing examples from the majority class.

This method is typically used to overcome the idiosyncrasies of ML algorithms.

Unlike oversampling, which introduces synthetic data, undersampling can

lose valuable information as data is randomly dropped. This can result in

the model not fitting as well as required for the ML problem. If samples are

drawn randomly, statistical analysis shows that the sample distribution can

be used to estimate the population distribution that they were drawn from.

Random Under Sampling Boost (RUSBoost)

The RUSBoost algorithm is based on the SMOTEBoost algorithm (Afifi

and Elashoff, 1966), which is, in turn, based on the AdaBoost.M2 algorithm

(Townsend, 2014). SMOTEBoost improves upon AdaBoost by introducing

an intelligent oversampling technique (Little and Rubin, 2002), which helps
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to balance the class distribution, while AdaBoost improves the classifier per-

formance using this re-balanced data. RUSBoost achieves the same goal, but

uses Randomly-Under Sampled (RUS) rather than SMOTE. The result is a

simpler algorithm with faster model training times and favorable performance

(Seiffert et al., 2008).

6.3 Methods & Material

6.3.1 Dataset

The work in this Chapter is based on data collected from Electronic Medical

Record(s) (EMR) of two hospitals systems: Beth Israel Deaconess Medical

Center and Emory University Hospital, which were made readily available

on the PhysioNet database as part of the 2019 PhysioNet challenge (Reyna

et al., 2020). The dataset includes data and labels for 40,336 patients from

both hospitals.

The dataset consists of hourly vital sign summaries, lab values, and static

patient descriptions. In total there were 40 features recorded hourly. There

are over 15 million datapoints within the whole dataset.

Multiple measurements taken each hour had the average value calculated

so that each record only had hourly samples - subsequently simplifying model

development. Missing data and erroneous data was present in the dataset and

required dealing with in the model development. The ground truth output

for each sepsis patient was labelled in accordance with the Sepsis-3 clinical

criteria (Reyna et al., 2020).
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• tsuspicion: Clinical suspicion of infection identified at the earliest times-

tamp of IV antibiotics and blood cultures within a given time interval.

If IV antibiotics were given first, then the cultures must have been

obtained within 24 hours. If cultures were obtained first, then IV an-

tibiotic must have been ordered within 72 hours. In either case, IV

antibiotics must have been administered for at least 72 consecutive

hours.

• tSOFA: Occurrence of organ failure as identified by a two-point increase

in the SOFA score within a 24-hour period.

• tsepsis: Onset of sepsis identified as the earlier of tsuspicion and tSOFA (as

long as tSOFA occurred no more than 24 hours before or 12 hours after

tsuspicion(Reyna et al., 2020))

6.3.2 Classification Algorithms

Boosting is an example of an ensembling modeling technique that attempts

to develop a strong classifier from a collection of weak classifiers. A set of

weak models are built in a series of steps. Firstly, a model is developed from

the training data. Secondly, a new model is built which will try and reduce

the errors found in the first model iteration. This procedure is iterated, and

additional models are added until either correct predictions are made for

all of the training data or the maximum number of models has been added.

Examples of boosting algorithms are:

• AdaBoost (AB): AdaBoost is used for binary classification and creates

a strong classifier from a weak one. It is an ensemble meta-algorithm.
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For each new model instance, the boosting method emphasises training

instances that were misclassified. AB minimises the experimental loss.

• Random Forest (RF): Random forests are fundamentally a collection

of Decision Trees. Each tree is constructed with a subset of the data

therefore making sure that each tree differs as much as possible. Clas-

sification decisions are made by the majority decision given from the

trained trees. A detailed explanation of Random Forests is in Section

2.7.5.

6.3.3 Experimental Setup

To build an effective ML pipeline that can accurately infer if a patient will

get sepsis faster than existing support methods, we utilise the ML pipeline

development framework defined in Figure 6.1. The framework is made up of

the following steps:

1. The dataset is split into three sections. Similarly to the work defined in

Chapter 4 the data is split: 70%, 20%, and 10%.

2. The 70% training data is used to train three different models making

use of the Logistic Regression, ADAboost and Random Forests algo-

rithms, to find out which would give the best result based on a defined

performance metric.

3. The models then uses oversampling and under-sampling techniques to

rebalance the dataset and ensure the class balance is consistent.
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4. The final model is tested on the 10% unseen data which will show how

well the model generalises to unseen data.

The experiments conducted in this body of research were completed using

Python and making use of the Sci-kit learn collection of tools called “imblearns”

which has the facility to use SMOTE and RUS protocols and build varying

reblancing pipelines (Pedregosa et al., 2011). Throughout the experimental

process these software packages were used to implement: feature selection,

class balancing and a series of ML classifiers. Missing values were all treated

the same and removed from the dataset, as the amount of records with missing

data was negligible. Each different classifier was tested using both resampling

methods, to see the effects before they were both combined and tried together.

Combining the two classification algorithms and investigating two methods of

sampling data and the combination of them both, meant there were several

different experiments that will be run. Ten fold cross-validation was used to

mitigate variability in the results and remove bias. The resampling methods

were only implemented during the model development process and will not

be used on the unseen validation dataset.
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6.3.4 Combining Rebalancing Methodologies

Section 6.3.3 introduces the concept of combining different rebalancing method-

ologies. SMOTE used on heavily imbalanced data can result in optimised

models that overfit and do not generalise well on unseen data. The intro-

duction of synthetic data is only produced by using existing data within the

class. This technique decides on feature space and assumes that features with

similar attributes are close together which indicates that they belong in the

same class programmatically. No expert or domain knowledge is considered

in this process. Similarly, random under-sampling removes cases randomly

from the majority set. As data (especially in the medical domain) can be

challenging to acquire, removing data is only sometimes the best solution due

to tight class boundaries. Furthermore, some data could be removed that

shows key aspects and differences between the models.

Throughout this Chapter, the SMOTE and random under-sampling

methodologies will be used; however, combining them will be considered.

Figure 6.2a – Figure 6.2d show all the different effects of under-sampling and

over-sampling on a dataset. A green section indicates data to be added, and

a red section indicates data that is removed. The combination of random

under-sampling and SMOTE will be used for this work. Different amounts of

data are removed and synthesised to demonstrate the effects of doing it. Four

combinations are used: 5%, 10%, 15% and 20% of the total dataset will be

synthetic data, and the rest will be under-sampled to present a classification

problem with equal balance in each dataset.

The same framework described in section 6.3.3 and shown in Figure 6.1 will
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be used for the combination of resampling methods, enabling the comparison

of results.
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(a)An example of an imbalanced dataset
with two classes

(b) An example of a rebalanced dataset
using SMOTE

(c) An example of a balanced dataset
using undersampling techniques

(d) Novel technique of using a combina-
tion of different rebalancing techniques

Figure 6.2: The effects of different re-sampling methods on datasets.
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6.4 Experimental Results

Table 6.2: Table to show results from varying rebalancing techniques applied the
sepsis dataset.

Classifier Technique Synthetic Data (%) AUROC
Logisitc Regression - 0.69
Logisitc Regression SMOTE 0.74
Logisitc Regression Undersampling 0.76
Logisitc Regression Combination 5 0.75
Logisitc Regression Combination 10 0.78
Logisitc Regression Combination 15 0.79
Logisitc Regression Combination 20 0.77
Random Forest - 0.73 (0.20)
Random Forest SMOTE 0.74
Random Forest Undersampling 0.69
Random Forest Combination 5 0.7
Random Forest Combination 10 0.7
Random Forest Combination 15 0.7
Random Forest Combination 20 0.71
AdaBoost - 0.78 (0.04)
AdaBoost SMOTE 0.79
AdaBoost Undersampling 0.77
AdaBoost Combination 5 0.79
AdaBoost Combination 10 0.79
AdaBoost Combination 15 0.81
AdaBoost Combination 20 0.84

Table 6.2 provides the results for the different experiments outlined in sections

6.3 and 6.3.4. Each classifier is tested with no rebalancing technique. The

runs act as a baseline classifier so that the results can be compared. Logistic

Regression obtained an AUROC score of 0.69 whereas Random Forests and

AdaBoost produced far superior results 0.77 and 0.78. One of the critical

drawbacks of Random Forests is the initial split up of the features; this is

demonstrated as the standard deviation for the baseline classifier was 0.2.

Standard deviation scores are not included within table 6.2 but are described
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in the text required.

The AdaBoost algorithm performed the best of the three classifiers when

synthetic data was introduced for the testing with SMOTE. The ensemble

nature of the algorithm has demonstrated that it can discriminate between

different levels of sepsis detection.

As the dataset is heavily imbalanced, under-sampling the dataset could

demonstrate how ineffective the model is at determining different levels of

sepsis, as the mistakes are magnified due to less data in the dataset1. These

results have been seen in the Random Forest algorithm which saw a downgrade

in performance compared to the baseline and SMOTE tests.

For each of the combination methods typically, there is a trend that

as more synthetic data is introduced, it is easier to discriminate between

classes. This could demonstrate that there is a wide feature space and well-

defined boundaries between results. For all classifiers this has remained true,

however when introducing 20% synthetic data to the Logisitic Regression

classifier, there was a downgrade in performance of AUROC score – 0.77

compared to 0.79 for the 15% synthetic data. As outlined previously, all

versions of rebalancing techniques have some element of randomisation. This

randomisation may be a factor as to why the performance has degraded.

The combination of 20% synthetic data via SMOTE and under-sampling

with the AdaBoost classifier has provided the best AUROC score of 0.84.

This result is comparable to those described in the literature, most notably

1A dataset containing 100 patients who may have cancer, the target variable indicated
99 do not have cancer, but 1 does. An optimised algorithm could demonstrate that it has
achieved 99% accuracy. Still, it cannot determine those who have cancer as there is not
enough information
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(Doggart and Rutherford, 2019) who made use of a Boosted Tree algorithm.

The XGboost, AdaBoost, Boosted Treed classifiers are based on converting

weak learners into strong learners. Adaboost is usually robust to overfitting

something demonstrated in our results with a standard deviation of 0.02

(when the 20% combination). These results were not presented by other

researchers and cannot be compared.

6.5 Discussion

The work introduced in this Chapter demonstrated that existing EWS for

determining sepsis needs to be updated. The detrimental effects of not

detecting sepsis early shows that it is an area of research that needs to be

developed. As part of the Physionet 2019 challenge, the freely available sepsis

dataset has gone some way to help with this research problem Reyna et al.

(2020). The results presented demonstrate that it is possible to detect sepsis

early with simple ML algorithms that can be trained very quickly to produce

valid results. The results show that boosted algorithms tend to perform better

on the data, as this approach allows the model to pick a result based on

multiple weak learners.

The results shown in table 6.2 have shown that they are comparable to

the current state-of-the-art literature in this field. While the combination

methodology introduced in section 6.3.4 has shown promise as an alterna-

tive approach to using either under-sampling or over-sampling, the results

obtained were consistently higher or comparable. Further experiments could

be undertaken on different problems with heavily imbalanced datasets to
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demonstrate and further prove the hypothesis.

Randomness is a crucial component of any resampling technique and must

be caveated to make the user aware of any methodologies used. Multiple

tests and cross-validation methods should be used to try and combat this

randomness and reduce the variance within the results.

The resulting AdaBoost algorithm has shown promise in determining

sepsis early. Further work could be completed to optimise the algorithm by

using some of the hyperparameter techniques that have been introduced in

section 4.3.4 of Chapter 4.

6.6 Conclusion

The current study indicates that different sampling ML techniques as part of

an optimised model, can be used to rebalance datasets to detect outcomes

accurately. The method introduced that combined both over sampling and

under sampling techniques provided the best AUROC scores. In this case,

our ML pipeline understands all of the psychological features used to detect

sepsis within a hospital. Where applicable studies will make sure that the

dataset has a balanced output to prevent the class imbalance problem. The

phyisonet dataset used in this body of work had a disparity of the classes in

the variables. The majority class was for patients who had sepsis, conversely,

for the minority class patients did not have sepsis.

Patient data for 40,336 patients were used to train and test the model.

The Random Forest classifier achieved a maximum AUROC of 0.71, it was

the AdaBoost algorithm that achieved the highest AUROC score of 0.84.
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These results indicate that the produced ML model has fewer limitations

compared to traditional early sepsis detection approaches. Additional steps

including feature removal and datasets from different locations, should be

further explored to augment sepsis detection which will result in improved

patient care by preventing sepsis before it becomes fatal to a patient.
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Conclusions

Driven by the increase in computational power and larger amounts of storage

and memory, and coupled with the vast amounts of data being generated and

stored by all industries, ML is being used to perform a wide range of complex

tasks with high levels of accuracy.

Modelling and inferring predictions to support medical practitioners is a

key area of research that needs to be continually reviewed and designed. ML

techniques such as, but not limited to, Linear Regression, Random Forests

and AdaBoost algorithms can produce effective models for specific use cases

in medicine and, in some cases, outperform existing methods. Nevertheless

the main drawback with these techniques is that the amount of training data

required to develop an accurate model with high confidence and put it into

production is not typically available in the research domain. Furthermore,

the lack of training data limits the results that can be obtained by certain

algorithms such as Neural Networks.
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7.1 Machine Learning in Health Care

The optimised ML framework proposed in Chapter 4 aims to improve upon

current methods used to predict the mortality of patients admitted into

ICU. With more people admitted into ICU daily it is critical that medical

professionals make informed decisions in a timely manner. These decisions

can ultimately effect the chances of a patient’s survival.

Unlike other industries such as the automotive and the aerospace industry,

the medical industry is slow to uptake new concepts due to the rigorous

amount of testing required (Topol, 2019; Syed, 2016). The current techniques

used in mortality prediction in ICU are trained on frozen datasets (a single

period of time, usually out of date instantly) that don’t necessarily consider the

effects of different cohorts, time of admission, or how treatments change over

time. An additional proposed methodology in Chapter 4 demonstrated how

online training can be applicable to ICU mortality prediction to continuously

update the models as treatments and patient cohorts evolve over time.

7.2 Missing Data Imputation

“Garbage in, Garbage out” is the cornerstone of training ML models. It means

that the effectiveness of a ML algorithm is defined by the data used to train

it. Commonly researchers will just use ad-hoc techniques to remove data,

including case deletion and simple imputation techniques. Chapter 5 has

sought to outline the dangers of missing data and show some of the issues

that can occur in the medical domain when dealing with missing data. Many
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algorithms make use of ensemble methods to help models generalise better to

unseen data – combining different algorithms and voting on the prediction

that occurs the most. A key contribution of Chapter 5 was the development

of a novel ensemble based imputation method to replace single imputation

techniques. This reduces the time needed for researchers to think about which

imputation techniques are most effective for their use case, whilst also proving

that combining different imputation methods can improve the sensitivity of

the output.

Chapter 5 also described the development of a simple ML pipeline for

detecting coronary heart disease. Section 5.4 alludes to how the developed

pipeline outperformed current state of the art techniques.

7.3 Rebalancing Datasets

Chapter 6 has shown that using ML techniques can detect sepsis 6 hours before

traditional methods can. A key issue that was apparent in the development

of the optimised ML pipeline is the unbalanced nature of sepsis datasets. A

major contribution of Chapter 6 is the rigorous performance comparison of

different rebalancing algorithms described in literature and the effects they

have on detecting sepsis. It was shown that rebalancing data can result in the

overfitting of models which can result in poor performance in the real-world.

The effectiveness of the rebalanced optimised ML model developed in

Chapter 6 was demonstrated on a real-world problem. The results presented

prove that, for the unbalanced sepsis dataset, rebalancing the dataset by

reducing the size of the majority class is an effective way of ensuring that the
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model does not overfit. In contrast, Chapter 6 shows that when introducing

synthetic data via SMOTE or other techniques, the resulting models are

prone to overfitting on the training data. Furthermore, a novel rebalancing

technique that made use of both SMOTE and undersampling was introduced

and tested on the dataset. These results demonstrated that the combination

of resampling techniques can improve the overall accuracy of a model and

reduce the level of overfitting of the model.

7.4 Future Challenges

7.4.1 Uptake Of The Techniques Within The Industry

There is still a long way to go until ML algorithms are accurate enough across

a global population to be used as support tools for medical practitioners.

Although ML research in the medical domain is becoming more prominent,

there often isn’t enough data to confirm that the model is ready for deployment

due to the ethics surrounding the sharing of electronic health records. It is

not easy to obtain medical data that is anonymous and complete. However,

AI is already being integrated into decision support tools in medicine in

some limited applications. To increase the development of medical decision

support tools using AI, the medical industry must make large datasets readily

available1 for research and industry projects.

1That are also consistent across the globe - i.e. all of the data and features collected
are the same
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7.4.2 Automated Machine Learning

Automated ML is the process of applying ML algorithms to real-world prob-

lems without the need for manual selection of model architectures, training

of the model, or tuning of hyperparameters to provide the best results. This

process can dramatically reduce the time needed to build ML models. Fur-

thermore, it is more user-friendly for non-ML practitioners and can be more

accurate than basic hard coded algorithms. The Tree-based Pipeline Op-

timization Tool (TPOT) library utilises the same ML frameworks used in

Chapter 4 and additional research into the results that can be achieved from

applying these techniques. Understanding and providing a full description

of how the techniques behave is a key aspect of any ML problem. Cloud

providers such as Amazon Web Services (AWS) and Microsoft Azure have

been producing many “black box” toolsets that take input data and produce

an output with very limited descriptions of how the model is developed,

what algorithm is used, and how the features are chosen. Even though these

methods have been widely used by companies with limited resources, they

have received some criticism due to their lack of transparency.
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Mortality Prediction Results

In this section additional results, graphs and diagrams are presented. The

results are detailed in Chapter 4 but do not need to be included in the body

of text.
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Figure A.1: Resulting confusion matrix produced from preliminary testing using
an AdaBoost classifier to infer mortality in critical care units

Figure A.2: Resulting confusion matrix produced from preliminary testing using a
Decision Tree to infer mortality in critical care units
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Figure A.3: Resulting confusion matrix produced from preliminary testing using
the Gaussian Process classifier to infer mortality in critical care units

Figure A.4: Resulting confusion matrix produced from preliminary testing using a
K-Nearest Neighbour classifier to infer mortality in critical care units
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Figure A.5: Resulting confusion matrix produced from preliminary testing using a
Linear SVM to infer mortality in critical care units

Figure A.6: Resulting confusion matrix produced from preliminary testing using a
Naive Bayes to infer mortality in critical care units
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Figure A.7: Resulting confusion matrix produced from preliminary testing using a
Neural Network to infer mortality in critical care units

Figure A.8: Resulting confusion matrix produced from preliminary testing using
QDA to infer mortality in critical care units
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Figure A.9: Resulting confusion matrix produced from preliminary testing using a
RBF SVM to infer mortality in critical care units

Figure A.10: Resulting confusion matrix produced from preliminary testing using
a Random Forest classifier to infer mortality in critical care units
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