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Summary

As the strain on health care continues to grow worldwide, the need for
reliable decision-making has never been more apparent. The computerisation
of electronic health records has provided a wealth of data that can be applied
to various medical use cases. Machine Learning algorithms are exploited to
try and assist with making effective decisions. The resulting contributions
within this work demonstrate that it is possible to lean on advancements in
computer science to develop support tools for medical practitioners which
assist in their decision-making processes.

This thesis contributes four core advances to the research domain: Firstly
the enhancement of current mortality prediction systems in intensive care
units was considered. Comparing multiple Machine Learning classifiers with
optimised pipelines produced results that were both comparable and more
effective at determining patient mortality than the existing APACHE II model.
The most encouraging classifier was Decision Trees whilst being trained using:
K-fold cross validation, Grid search hyper-parameter tuning and SMOTE
achieving an average AUROC score of 0.93 and accuracy of 0.92. Unlike
other mortality prediction systems which are often trained on small cohorts
of data, a method of retraining and optimising for different patient cohorts is
introduced. Retraining based on a patients age or admission in to the ICU is
also considered as a novel approach of keeping support tools up to date.

An ensemble imputation method has been developed that can be used to
generate the missing data in a real life dataset. This has produced accuracy

and recall results comparable to current state of the art techniques when



1

applied to the Cleveland hospital dataset.

In this work, strategies to rebalance datasets are investigated to predict
early onset Sepsis. One promising approach examined in this thesis is the use
of the RUSboost algorithm. This enabled the optimisation of a classifier that

has a high fidelity without overfitting.
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Chapter 1

Introduction

Machine Learning (ML) is a subset of Artificial Intelligence (AIl). It is the
collective title given to a group of sophisticated modelling techniques capable
of modelling extremely complex functions (Singh, 2018a; Petersson, 2021)).
These modelling techniques are now being applied to a range of problem
domains within finance, science, and engineering industries (Frankenfield,
2022al).

Anywhere that there are problems with prediction, classification, or re-
gression, [MI] techniques can be utilised. However, these modelling techniques
contain a large number of potential complex error surfaces. Possible errors can
include: local minima, plateaus in the search of landscape, and saddle points.
These errors make the process of training models difficult and time consuming
and means great care needs to be taken in setting model architectures and
parameters. This training process constitutes a crucial part of [All as the
performance of these models is dependent on both the training and data

provided to them.
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Due to the improvements of computers and the reduction in the cost
of high end graphical processing units and processing power, has seen
a resurgence of popularity in recent years and many industries are turning
to these techniques to solve complex problems (Singer, 2022). Medicine is
one such field of research that is looking to utilise to aid the industry
(Frankenfield, [2022a)).

Due to the ever changing nature of medicine, it is important that research
and technologies continue to advance, to compliment such developments
within the industry. [MLl can be utilised as a key driver in the evolution of
new and effective support tools. can either be used alongside existing
support tools to further confirm decisions, or optimised [MLl pipelines, can
in some instances, out perform many of the existing support tools. As a
consequence to the vast amount of decisions needed within medicine and
the evolving nature of patient cohorts, it has never been more important to
swiftly develop tools that can assist medical practitioners.

This thesis will look to build on the existing research undertaken on
three different medical datasets, to investigate and develop support tools for
medical practitioners, whilst also introducing some novel approaches to assist

in training models.

1.1 Research Aim

The research undertaken in this body of work overlaps and spans several
different disciplines including [ML], Data Analysis and Medicine. These areas

are combined to develop novel pipelines and techniques that are applied to
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accurately support medical decision making. The new techniques introduced
can be generalised and applied to many different[MI]tasks, including those that
have missing data - a significant challenge for many real-world applications
of [MIl

This work proposes to address the gap in research by focusing on applying
novel [MI] techniques to the field of medicine on three specific medical datasets
that are currently utilised, these datasets are from areas where the current
standards are no longer within acceptable tolerances or outdated. It is
demonstrated that the[MI]methodologies, novel pipelines and novel techniques
proposed in this body of work can be used as alternative or additional
techniques to make patient decisions. The aim of this research is to show that
[MTI] techniques can be applied to support medical practitioners in making
informed medical decisions for specific scenarios. A key contribution in
support of this aim includes the development of a new technique of dealing
with missing data as an alternative to existing commonly used imputation
methods. Moreover, a new method of predicting mortality in intensive care
units is introduced, including the development of an [MI] pipeline utilising
different techniques to rebalance unbalanced datasets. An extensive literature
review of current and state of the art [MIJ] techniques will also be performed.

Throughout this thesis, various techniques will be used in a knowledge
discovery process to accurately support medical decision making. The four

general research questions addressed in this work are the following:

1. Is it possible to predict the mortality of a patient admitted in to the
Intensive Care Unit ([CU)) more accurately than the current Acute

Physiology and Chronic Evaluation IT (APACHE TI)) tool or the Care
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Quality Commission (CQUC]) Intensive Care National Audit & Research
Centre (ICNARC]) benchmark when you are using the ICNARC dataset?

2. How can you handle changing patient cohorts admitted in to ICU over

time using the same ICNARC dataset?

3. The method presented in this thesis build on existing knowledge within
the [MI] domain by developing a novel method of data imputation
using ensemble techniques. This imputation method is applied to the

Cleveland Heart Disease classification dataset.

4. What is the most effective way of re-balancing the ”PhysioNet Comput-

ing in Cardiology Challenge” sepsis datasets?

1.2 Research Objectives

The main objectives of the PhD are given below:

1. Design and develop a novel method of determining mortality within an

[[CUl using the same data collected within the ICNARC dataset.

2. Apply new online [MI] techniques to deal with different patient cohorts
when cohorts are defined by splitting up a dataset by either date of

submission to [CU] or the age of the patient.

3. Introduce a novel method of dealing with missing data by using ensemble

methods.

4. Apply [MI rebalancing techniques to allow early detection of sepsis
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1.3 Key Contributions

The main contributions of this thesis are:

e Development of an effective tool to predict mortality in [CUL
A [MI] model was developed that can outperform current state-of-the-art
techniques in predicting mortality. Furthermore, it has been shown to
outperform the current standards used in hospitals — the APACHE TI|
and [CNARC] scores.

e Online Machine Learning implementation of mortality pre-
diction. Utilising online learning approaches it has been possible to
demonstrate the benefits of retraining support tool [MLl models over

time (Wainwright and Shenfield, 2023).

e Applying a novel method of data imputation to predict heart
disease. The ensemble imputation method developed and described in
this report has proven it is possible to combine imputation methods in

order to effectively fill missing data.

e 6 hour earlier sepsis prediction tool. Effectively re-balancing a
dataset to produce repeatable results is one of the most difficult tasks
undertaken by data scientists. The combination of these re-balancing
techniques and [MLl models has allowed the development of a model that

can determine the onset of sepsis 6 hours before current methods.

Additional contributions that have arisen from this body of work but have

not been described in this thesis are:



CHAPTER 1. INTRODUCTION 6

e Human Activity Recognition Making Use of Long-Short Term
Memory Techniques. Using an open source dataset, a model to
predict human activities and postural transitions has been developed.

(Wainwright and Shenfield, [2019).

e Building Actionable Personas Using Machine Learning Tech-
niques. Children survey data from 22 countries globally was utilised
to develop personas that can be used by marketing professionals to
better understand their target audience. Different clustering algorithms
were introduced and a novel way of segmenting children was developed

(Farrukh et al., 2022).

1.4 Thesis Structure

Chapter [ presents a thorough review of [ML] including theoretical concepts,
different types of learning, methods and a general taxonomy of [All A brief
history of [Allis also given, and some of the key issues with choosing the correct
approach to use are discussed. Chapter[2|also presents an in depth introduction
to different commonly used classifiers with many different techniques and
concepts introduced. The current state of [ML] and how it is currently used in
the medical domain is outlined in chapter [3]

Chapter [4] uses the techniques introduced in Chapter [2]to accurately predict
the mortality of patients in [CUl The model is developed using a dataset
provided by the that has electronic health records for patients
admitted into [CUl in a selection of London Hospitals between 2012 and 2014.

The full pipeline is examined with techniques for standardising, sampling
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and modelling the problem experimented on. The results are compared with
pre-existing literature and the [APACHE I and scores. Patient
cohorts, medicines, and treatments change dramatically over time. As a
direct result, existing support tools can become quickly outdated and provide
inaccurate results. Building on the knowledge introduced in Chapter [2] and
the concept of online learning, a real time [MI] model is developed that can
be trained over different time periods.

Chapter [5| builds on the limited techniques described in literature for
dealing with missing data. An in depth description of the different types of
missing data is conveyed before a complete dataset has data removed using
different combinations of systematic and random removal techniques. The
Ensemble Imputation Method (EIM]) technique is introduced and applied to
detect heart disease in patients where missing data is introduced. Chapter
[6] compares the outcomes of different dataset re-balancing techniques before
hypothesising and demonstrating a new method of re-balancing datasets. The
new method builds on existing techniques and combines them together. An
early onset sepsis detection dataset that is heavily imbalanced is utilised.

Finally, Chapter [7] presents the conclusions for this thesis and also outlines

some potential further work and research that could be worthy of investigation.



Chapter 2

Review Of Machine Learning

2.1 Introduction

This Chapter will provide a thorough review of the field of [Allwith an emphasis
on fundamental concepts. Section provides an introduction into
and describes some of the key research discoveries and historical points to date.
After giving an outline of [AIl some common advantages and disadvantages
are discussed.

ML is introduced in section with an explanation of some of the core
theoretical concepts and a discussion of popular classification techniques.
There are many applications for [ML], and some common uses in medicine
are outlined throughout this Chapter. Some medical domain uses of [MI]

techniques are then discussed in section
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2.2 A Short History of Artificial Intelligence

“We may hope that machines will eventually compete with men in
all purely intellectual fields. But which are the best ones to start
with? FEven this is a difficult decision. Many people think that
a very abstract activity, like the playing of chess, would be best”

(Turing, (1950

Emulating computer systems can learn, reason, and self-correct in order
to complete many different tasks - in some cases more quickly and accurately
than humans. These tasks can include providing personalised music recom-
mendations, translation of languages, and recognising speech (Rouse and
Botelho|, [2018; |Childs, 2011)). [All was inspired by the work undertaken by
Alan Turing, Norbert Weiner, and Claude Shannon which showed that it
might be possible to develop an electronic brain using existing knowledge of
neurology and how the human brain uses electronic signals (McCorduck and
Cfe|, 2004; |Crevier, 1993b)).

is a varied field of study, from applications trained to play board
games all the way through to complex machines that can carry out difficult
classification tasks (such as detecting cancers in X-rays and the detection
of obstacles for autonomous vehicles). [All has become intrinsic in the way
we interact with computers in modern society with [All techniques built-in to
aspects of everyday life (e.g. computational photography in mobile phones

and smart digital assistants) (Lewis| 2014).

LA quote taken from Alan Turing’s published work from 1950 called “Computing
Machinery and Intelligence”
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Concepts used in modern [AIl can be seen throughout civilisation over the
last 1800 years where initially philosophers attempted to describe human
thinking by introducing a symbolic system. However, it was not until the 1950s
that the field of [All was formalised. “Can machines learn?” - is a question
taken from the paper ‘Computer Machinery and Intelligence” published in
1950 by Alan Turing (Turing, 1950)). The paper proposed “The Imitation
Game” which later developed into “The Turing Test” a measure of the ability
of a machine/computers to think in a human-like fashion (Crevier}, [1993al).

The term “Artificial Intelligence” was introduced in 1956 by John Mec-
Carthy when the first academic conference on the topic was held at Dartmouth
College in Hanover, New Hampshire. An attendee at the conference, Marvin
Minsky, is quoted as saying “Within a generation [...] the problem of creating
[A] will substantially be solved” (Crevier|, |1993d). [All research continued to
develop in to the 1960s with the creation of new programming languages,
robots, and automatons. Science fiction cinema frequently showed artificially
intelligent beings with TV shows and movies growing in popularity over the
following decade, resulting in researchers being more attracted to study in
the field.

Regardless of the well-funded global research effort over several decades,
computer science researchers found it increasingly difficult to develop intelli-
gent machines. In order to create successful applications, such as computer
vision, there was a requirement for powerful machines capable of processing
enough data. At the time these machines were not readily available, and
the hardware was not capable of what was required. As a direct result,

governments lost faith in [All and saw it as a lost cause. Therefore, from the
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1970s to the early 1990s, an “AI Winter” took place where researchers dealt
with a shortage of funding (Schuchmann, [2019)).
The three main advances of [All in the last sixty years have been (Lewis,

2014)):
1. Search algorithms
2. Machine Learning algorithms
3. Statistical analysis in understanding the world at large

Eugene Goostman is the name given to the chatbot that successfully
passed The Turing Test in 2014 by convincing 33% of the panel that they
were having a conversation with a real boy for 5 minutes (Warwick and Shah)
2015). Although this accomplishment hasn’t been without controversy, with
[ATl experts saying that only a third of the panel were fooled and that the
bot was allowed to not answer a number of questions by claiming English
was a second language (Sample and Hern| 2014)). The Turing Test is widely
recognised as insufficient for measuring intelligence in machines, as it only
considers external behaviour. There is a wider field of research in assessing
machine intelligence, this research considers a complete measure of machine
intelligence and not just an updated version of the Turing Test (Menager,
2018; |Aron, [2015)).

The adoption of [All has been slow and has only begun to see real growth
and improvement since 2003, with the introduction of more advanced com-
puter systems. These systems are capable of handling vast amounts of data

and are able to solve complex mathematical calculations in a timely manner
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(Smith, [2006). Exponential gains in computer processing power and the
increasing availability of cheap computer storage has meant that large tech-
nology companies such as (but not limited to) Amazon, Google, and Baidu
use [AJl techniques to their commercial advantage. Potential applications
include enabling them to monitor potential customers by targeting adverts
and understanding consumer behaviour when shopping and interacting online.

Weak [AT] describes models that are trained to solve a very specific problem
and, in many cases, can outperform human capabilities. DeepMind’s AlphaGo
and Deep Blue from IBM are examples of Weak [All systems that are capable
of playing board-games better than human players (Han et al., [2019). Deep
Blue achieved this feat in 1997 when it defeated the Russian Grandmaster
Garry Kasparov. However, [All systems are not flexible and cannot be applied
to a different problem once developed (Goodrich| 2021]).

The theoretical concept of Strong [All sometimes referred to as Artificial
General Intelligence (AGI) describes systems that have the flexibility of
humans and can combine this flexibility with the advantages of a computer
by storing large amounts of data. This combination could result in more
reliable answers and reduced risks (Wang, 2019) by making use of clustering
and associations to process data and not just classification to find the more
appropriate answer (Wang, 2019). However, currently strong [ATl doesn’t exist,
it is just a theoretical form of machine intelligence and researchers disagree
as to whether such systems are even possible (Frankenfield} 2022b).

In 2022, [All advances were introduced at an unparalleled rate. Somethings
that will be improved in 2023 are chatbots, as increased Natural Language

Processing (NLP)) abilities pave the way for intelligent apps and virtual
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assistants to understand the users requests and issues. [MI] models will move
to Auto without the need for programmers to create specific models.
Furthermore, more jobs will make use of [All to complete everyday tasks
which can help drive efficiencies and streamline businesses. Lin (2020) state
that there had been a 270% growth in businesses turning to [All in the four
years before 2019 and this number continues to increase in 2023 with the [A]l

industry expected to be valued in excess of $267 Billion by 2027.

2.3 Machine Learning

The term “Machine Learning” was first introduced in 1959 by Arthur Samuel
whilst working for IBM. He produced one of the worlds first successful
computer based self-learning programs and developed a model that had the
ability to play checkers. The ‘Samuel Checkers-playing program’ is seen as a
key development in [MIJ research, and introduced the concept of beta pruning

of search trees (Samuell, [1959; [Weiss, [2003)).



1950: The Turing Test

The Turing Test is developed and can be
used to measure the intelligence of
machines.

1966: Eliza The Chat Bot

Eliza the first chat bot was developed and
is considered an example of the Turing
test.

1997: IBM Develop Deep Blue

Deep Blue is the first chess playing
computer that managed to beat 6 chess
champions at that time.
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1955: Al Phrase First Used

The phrase Artificial Intelligence was first
used by John McCarthy when completing
an application for funding.

1970-1980: Al Winter

No major breakthroughs of note in this
time. Due to the lack of computational
power it wasn’t possible further the field
in this time

2011: Siri

Siri was introduced as a digital assistant
that was found on iPods, iPhones and
many other apple products. It allowed
users to request making phone calls and
send messages etc.

2011: Watson

Jeopardy was won by the Watson
supercomputer against two human
competitors.

2014: Alexa

Amazon launched their first digital
assistant Alexa which was built in to their
echo products.

2017: AlphaGO

Go is a more complex game than chess
and was beaten by an Al tool that was
produced by Google.

2022: Chat GPT-3

It is a conversational language model that
is trained on 175 billion parameters. It is
one of the most powerful AL language
models to date.

4

2016: Tay

Microsoft’s Tay was a chatbot launched
on Twitter. It was removed 16 hours after
launch due to the racist and sexual
questions and answers it produced.

2018: Al Ethical Guidelines

An EU team met with industry experts to
develop the first set of ethical Al
guidelines, in regards to questions on the
most effective way to deal with Al

Figure 2.1: A Timeline Charting Key Developments in Artificial Intelligence

14
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In recent years, [MI] has advanced from the studies of computational
learning theory and simple pattern recognition techniques. It is now a category
of computer algorithms that can learn from historical data and accurately
predict outcomes without the need of being programmed explicitly (Samuel,
1959)) depending on the problem domain it is applied to. [MI}based learning
algorithms can discover hidden patterns and features embedded within the
data. The analytical models that are produced allow both data scientists and

computer analysts to make informed, valid, and reliable decisions and results

(Sarker, [2021)).

2.4 Current Approaches in Machine Learning

Predictive modelling and data mining are similar processes to those undertaken
by [MIl These three methods make use of vast datasets and search through
them looking for patterns, adjusting the outputs in the process accordingly.
As well as personalised marketing (as mentioned in the previous section), [MLJ

is commonly used in:
e Fraud detection
e Network security threat detection
e Building recommendation systems

All of these applications use the past behaviour of the user to build up a
picture where patterns can be identified. They can then infer suggestions
based on this past behaviour. An example of [MI] that is used frequently is

a spam filter on an email inbox. Both spam and non-spammed emails are
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easily classified using [MT] techniques (Dada et al., [2019). Examples of both
types of email are fed in to the algorithm, which will identify patterns
that allow for the prediction of their type. This then leads to the creation of
a rule that can be used with future emails. Future emails will be tested with
the accurate prediction rule and classified accordingly based on the results of
the algorithm (Angra and Ahujaj, 2017)).

Figure presents an overview of the process. The primary sections
are: Data Input, Feature Extraction, and Model selection. The Feature
Extraction part of the [MI process is one of the most important, as it aids in
the production of producing an accurate model, by selecting attributes in the
dataset that are most relevant to making good predictions. This process will
identify and remove any attributes that are unneeded, irrelevant, or redundant
as they do not contribute to the accuracy of the model and can in some case
reduce the accuracy dramatically (Shaikh and Ali, 2019; Brownlee, 2015).

Unlike dimensionality reduction methods such as principal component
analysis and Sammons mappings which try to combine attributes in the data
to reduce their size, feature extraction methods include and exclude variables
in the data without changing them (Shaikh and Ali, 2019).

[MT] has gone through a renaissance in recent years, with more companies
looking to introduce some form of [MIJ or [All into their business and business
processes. With the improvement of Graphics Processing Units (GPU)),
improvements in computational data handling, and the accumulation of
company records it is possible to produce accurate models to make predictions
with very reliable outcomes. Applying [MIJ in this way has trends and

companies can adapt their business processes accordingly.
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Figure 2.2: Structure Of Machine Learning Process
2.5 Taxonomy Of Machine Learning Methods

There are three main variations of [MI] algorithms: Supervised Learning, Un-
supervised Learning, and Semi-Supervised Learning. The following sections
describe these variations and give basic examples. The main focus in this
literature review will be on supervised and un-supervised techniques of [ML],
as they are the most relevant to the applications considered in this program
of research. The principal difference between supervised and unsupervised
learning is that supervised learning makes use of the ground truth labels —
that is, we have existing knowledge of what the output variable of the given
sample should be. As a direct result, the goal of supervised learning is to spot
the pattern between the dependent variables and the true output by finding
the best approximation for the relationship. Unlike supervised learning, in
un-supervised the labels are not used to spot patterns in the data, so the

algorithm has to infer the natural structure that is present in the data points

(Wakefield, 2022).
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2.6 Types of Learning Algorithm

As illustrated in figure [2.2] all [MLI design problems begin with a dataset. The
main focus of the process, once the data has been standardised and missing
data is dealt with, will be to select and refine a mathematical model that
captures the dynamics of the problem. Performance bounds can be presented
based on the optimised algorithm for the model (under the assumption that
the dataset is a large enough distribution of the full ground truth data).
“Which algorithm should I use?” is a common question asked by data scientists
when looking at a new problem, especially with the variety of [MI] algorithms
available. New algorithms and techniques are being developed at a rapid rate.

The main factors that will affect the model selection are (Li, [2017)):
1. Size, quality, and nature of data
2. Computational time that is available for training the model

3. What you want to achieve with the data in terms of metrics and

outcomes

Selecting the correct algorithm in order to produce the best results is one
of the more difficult challenges facing data scientists. Figure 2.3 shows the
decision process to select which algorithm to use depending on the dataset,
type of data, and desired output. Accuracy, ease of use, and required training
time are aspects of [MI] that should always be considered when choosing an
algorithm.

The selection of the most effective algorithm will be reliant on both the

type of learning problem and also what is known about the data. Looking at
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Figure 2.3: Which Machine Learning Algorithm Should Be Implemented Based On
The Metrics And Taxonomy Of Data?

the individual algorithms makes it easier to understand what they provide
and how they can be implemented (Deyl, [2016)). The following sections provide
details on some common statistical modelling algorithms for both supervised

and un-supervised problems. Further descriptions of any additional algorithms

used later in this body of work will be described as used.



CHAPTER 2. REVIEW OF MACHINE LEARNING 20
2.7 Supervised Learning

In Supervised learning a dataset will be a collection of labelled examples that

can be denoted as:

(l'z‘, yi)ﬁ\il (2'1)

Feature vectors are each individual element x; amongst N. Features are
described mathematically as 27. A feature vector is a single vector in which
the each dimension j=1,..., D will contain a value that will describe that
example, for instance age of a patient or if they are a smoker or not. For all
the examples in a given dataset j the feature vectors will always contain the
same type of information. The finite number of classes that all of these labels
belong to is referred to as y; for each element.

Consider, as an example, the classification of a patient into the Body Mass
Index (BMI) categories: underweight, normal, overweight, obese, extremely
obese as per Table[2.1] A patients height in cm, age, and weight in Kilograms
(kg)) or Pounds (b)) would be provided as x', 22, 2%, x* with the feature defined
at position j being the same for all patients; for example mgl) will represent a
patients weight in kg therefore xf) will also contain weight information and

so on for the whole series of data (Burkov, 2019).
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The main objective of Supervised learning is to find a mapping from
the feature vector of labelled data to a target output. Supervised learning
algorithms are trained by using labelled data (i.e where the output is already
known). In supervised learning, each data sample corresponds to a target and
the model is trained to find a set of “rules” to arrive at that target from the
input features. The model “rules” will be constantly updated until it has been
trained on all the data. Current techniques have achieved great success;
however, it is important to note that in many real-world applications it is
difficult to obtain reliable ground truth labels due to the high cost involved
in fully labelling the data.

Supervised learning is used in many different areas of data science includ-

ing:
e Bioinformatics
e Natural Language Processing (NLDP))
e Computer vision applications

The most widely used supervised learning algorithms are: K-Nearest Neigh-
bours, Neural Networks, Support Vector Machines, and Linear Regression
(Burkov, 2019).

Supervised learning can be broadly divided into two tasks:

e Classification: When supervised learning is used to predict a cate-
gorical variable this is known as classification. If there are only two

categorical labels, then it is described as binary classification.
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e Regression: Unlike in classification, regression is used when predicting

continuous values (Fumo, [2017)).

2.7.1 Empirical Risk and Structural Risk Minimisation

Empirical risks - Empirical Risk Minimisation (ERM)]) is a method for
finding a model that performs well on a given dataset. Given a set of training
examples, the empirical risk of a model is defined as the average loss over
all the examples in the dataset. The goal of is to find the model
that minimizes the empirical risk, or equivalently, maximizes the average
performance on the training set. This is done by choosing the model that

minimizes the following objective function:

1Y
argmglnN;L(ymf(xiﬂ)) (2.2)

In this formula, 6 represents the parameters of the model, f(z;60) is the
prediction made by the model for a given input x, and L(y, f(x;6)) is a loss
function that measures the error between the prediction f(z;6) and the true
label y. The sum is over all N training examples in the dataset, and the
average is taken by dividing by N. By minimizing this objective function,
we find the model parameters 6 that give the lowest average loss over all the
training examples. This in turn gives us a model that is expected to perform
well on the training set, and therefore, on unseen examples from the same
distribution as the training set (Li, |2021)).

Structural risks - In minimising the empirical risk, the model is suscep-

tible to overfitting. Overfitting occurs because the supervised learning model
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has too much flexibility (e.g too many degrees of freedom). This can result in
it being a bad candidate function for unknown data points, as the mapping
focuses on noise in the dataset rather than the actual data. In figure 2.4}
the solid and dotted-line both represent functions that reduce the empirical
risk to 0; however, the dotted-line is a classifier as it generalises better and
therefore might be more effective at predicting unknown data points.
Structural risk minimisation is used to prevent a supervised learning model
from overfitting the data. An effective way of determining \ is to use cross
validation techniques where the training data is divided into multiple sets
and part of the data is used to train the model with the performance of the
model tested on a validation set. For each iteration the penalty is adjusted

to find the value for A\ which minimises the risk (Zhang, 2010).
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— Overfitting Model

O 4 ——- Regularised
Model

Figure 2.4: Diagram To Demonstrate Overfitting Of Datapoints
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2.7.2 Linear Regression

Developed in the field of statistics, linear regression finds the relationship
between input and output variables. It is frequently used and is probably the
simplest [MLl algorithm.

Linear regression has been used to solve statistical problems for more than
200 years. It has been widely researched and many academic papers use it in
one form or another. Fundamentally linear regression is a model that finds
the linear relationship between the input variables () and output variable
(y). If there is a single input variable then the model is known as simple
linear regression, conversely a model dealing with multiple input variables is
known as multiple linear regression.

The ordinary least squares algorithm is frequently used to estimate the
linear regression model parameters from a dataset. Linear regression is
frequently used in [MI] due to its simple representation and explain-ability.

The mathematical representation is a linear equation that combines:
e Input values (z)
e The output (y)

The general form of a linear regression model is:

Y= f(w:f) + e (2.3)

Where the linear equation assigns a scale factor to each of the input values (z),
known as the coefficient it represented as 3. The bias coefficient is represented

as e; which gives the line an additional degree of freedom.
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In high dimensions | the linear regression model finds a hyperplane in
high dimensional space. Regression models are sometimes described by
defining their complexity (typically the number of coefficients or degrees of
freedom in the model). More coefficients mean the model is more flexible,
but more complex. If a coefficient is equal to 0 then that input variable has
no effect /influence on the model. Regularisation methods are used in linear

regression to reduce the complexity.

2.7.3 Logistic Regression

Investigating the relationship between the target and independent predictor
variables using regression analysis is a version of a predictive modelling

techniques. It is frequently used to look at:
1. forecasting
2. finding causal effect relationships
3. time series modelling

Logistic Regression is a supervised algorithm used for classification
tasks. It is a type of regression analysis that is used to predict the probability
of a binary outcome, such as whether an email is spam or not spam. In
Logistic Regression, the input data is first transformed into a set of features,
which are then used to make predictions about the probability of the binary
outcome. The algorithm works by finding the best coefficients for the features

that will maximize the probability of correctly predicting the outcome. The

2working with more than one input value (x)
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prediction made by logistic regression is based on the logistic function, which
maps the predicted probability to a value between 0 and 1. The logistic

function is defined as:

flx) =1/(1+e7) (2.4)

where z is the predicted value based on the features and coefficients. To
train a Logistic Regression model, the algorithm iteratively adjusts the co-
efficients to minimize the error between the predicted probabilities and the
true outcomes. This is typically done using an optimization algorithm, such
as gradient descent. Logistic Regression is a popular algorithm because it is
relatively simple to implement and interpret, and it is widely used for binary
classification tasks. However, it is not suitable for tasks with more than
two classes, or for tasks where the relationship between the features and the
outcome is more complex than a linear relationship.

There are many different types of Logistic Regression. These are defined

as:

e Binary Logistic Regression: The categorical response has only two
different values. For example detecting whether a patient has diabetes

or not.

e Multi-nominal Logistic Regression: There are more than two
different categorical variables such as detecting the weather based on
meteorological and atmospheric input variables to classify if its going

to rain, snow or have sun.

e Ordinal Logistic Regression: Ordinal Logistic Regression is used to
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predict multiple categories where the categorical output will have some
order. An example of this could be in predicting the degree classification

of a student, where the possible outputs have a natural order.

2.7.4 Decision Trees & Regression Trees

A decision tree is a directed acyclic graph that can be used to make decisions.
Decision trees can be used to build both classification and regression models.
A key use is in data mining to discover existing patterns of information that
are present within the dataset. Decision trees work by reducing the size of
the dataset by breaking it down in to smaller subsets by producing a set of
“rules”.

Unlike other learning algorithms decisions trees can accept both categor-
ical and numerical variables and do not require data normalisation which
means in some cases, the time needed to set up the model is reduced. A
completed decision tree comprises decision nodes and leaf nodes. Leaf nodes
are representative of the final output and should be equal to the ground truth
variable. A decision node must have two or more branches and represents a
“rule” applied to the input variable. The top node of the decision tree is known
as the root node, and is the strongest predictor. Figure shows the example

of a decision tree about prescribing antibiotics to children (Martignon) 2010).

ID3

The most commonly used algorithm for building decision trees is called 1D3.

It was developed by Quinlan| (1986). The algorithm uses a top-down greedy
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Fever for more than two
days?

YES

Child older than three years No Macrolides

old?

Prescribe
Macrolides

No Macrolides

Figure 2.5: Decision tree to detail whether antibiotics should be prescribed or not
(Martignonl, 2010))

search to search through all of the space and consider all of the possible
branches with no backtracking. ID3 was designed to build decision trees when
there are multiple features; however, it is generally found to construct simple
trees and there is no guarantee that better trees have not been overlooked.

ID3 uses information gain and entropy to build each node of the decision tree.

Entropy

The ID3 algorithm uses entropy to compute how similar the sample is and,

at each node, partitions the data into subsets where the resulting entropy
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of those subsets is minimised. This is commonly known as calculating the
homogeneity of a dataset. If the sample is all the same, then the entropy
value is 0, conversely, if a sample is equally divided then the entropy is 1.

Entropy is calculated using the following formula [2.5] below.

H(z)=— Zp(fm) log, p(;) (2.5)

The steps of the ID3 algorithm are:

1. Calculate the entropy for each attribute of the dataset.
2. Split the dataset for each different attribute.

3. Calculate the entropy for each different potential branch.
4. Add all the parts to get the total entropy for the split.

5. The results from step 4 are subtracted from the entropy before the split

(this is the information gain).

6. The attribute with the largest information gain is a decision node.

Divide the dataset at this point and repeat the steps 1-5.

7. Branches that have an entropy of 0 are leaf nodes, anything with a

value greater than 0 requires further splitting.

These steps are repeated until all of the data is classified.

Pruning

Unfortunately the ID3 algorithm when used on larger datasets with multiple

targets can result in overfitting of the dataset. There are three methods used
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to reduce overfitting for decision trees and to improve its ability of predicting

outputs: top-down pruning, bottom-up pruning, and error driven pruning.

2.7.5 Random Forests

Despite the pruning techniques described previously, decision trees do not
perform well with noisy data. A common effect of this is that multiple runs of
training a decision tree model can produce different trees and negatively effect
the overall accuracy of the model. Breiman proposed a method to overcome
these limitations called random forests (Breiman, 2001)). The final work by
Breiman combined their earlier approaches published between 1995 and 1998.
Random forests build on the decision tree learning algorithm to improve how
they deal with noisy data. Random forests aggregate and weight the results
of multiple smaller decision trees (created from subsets of the dataset as well
as subsets of the features). This reduces the impact bad data can have and is
known as a form of ensemble learning.

Another benefit of using random forests over decision trees is that they
can dramatically reduce the computation time needed to train the model. As
datasets grow and evolve, models need retraining or redeveloping.

A key advantage of decision trees is that they are easy to interpret. It
is possible to take a single sample and trace it through the tree to make a
decision. Unfortunately, the ensemble learning within random forests means

it is not possible to ascertain why the model has produced good results.
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2.7.6 Support Vector Machines

Support Vector Machines (SYMsd) are an alternative [MI] method that can
be used for both classification and regression problems. The key ideas were
written by Vapnik, Chevonenkis and co-workers where they described their
method for creating a maximum-margin hyperplane to separate data classes.
However, the research went largely unnoticed until 1992 when Boser, Guyon
and Vapnik described them in COLT-92 (Boser et all) |[1992). Original SVMs
weren’t particularly useful until the 1992 creation of the the kernel trick which

dealt with linearly separated data. SV Mgl are aptly described as:

Support Vector machines can be defined as systems which use
hypothesis space of a linear functions in a high dimensional feature
space, trained with a learning algorithm from optimization theory
that implements a learning bias derived from statistical learning

theory (Huang et al., |2017).

The main objective of a Support Vector Machine ([SVM]) is to find a
hyperplane in N-dimensional space (where N is the number of features) that
distinctly classifies all of the points. aim to find the hyperplane with
the maximum distance between points of different classes. In the process of
maximising the margin distance, the model is provided with reinforcement;
therefore additional observations can be correctly classified with a higher
degree of confidence.

These hyperplanes are the decision boundaries that are used to classify
observations. Depending on which side of the hyperplane the observation sits,

will determine which class it falls in to. When the number of input features
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is two, the hyperplane can be considered as a line where data points can fall
above or below the intersecting line. If there are three input features, then
the hyperplane is a two dimensional plane.

The position, orientation, and angle of the hyperplanes is determined by the
support vectors. These are single observations that sit close to the hyperplane
on the edge of the decision boundary. The more support vectors, the easier
it is to maximise the margin of the classifier. Finding the maximum margin
hyperplane enables to overcome the problems caused by overfitting
and underfitting. To maximise the margin between the observations and
the hyperplane a loss function known as Hinge Loss is often used. As well
as the loss function, a regularisation function is also used. When the
mis-classifies a data point then the loss value and regularisation cost are used
to update the hyperplane gradient (Cristianini and Ricci, [2008)).

One key aspect that makes so popular and powerful is the kernal
trick which makes them applicable to nonlinear classification tasks. The kernel
trick works by transforming the input data into a higher-dimensional space
using a kernel function, so that the classes can be separated by a hyperplane
in that space. This allows the to perform nonlinear classification
without actually having to compute the transformation of the data into the
higher-dimensional space.

The kernel function used in the kernel trick can be any function that
satisfies the Mercer condition, which basically states that the function should
be continuous and positive-definite. Some common kernel functions used in
[SVMH include the linear kernel, the polynomial kernel, and the radial basis
function Radial Basis Function (RBE]) kernel.
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Figure 2.6: Support Vector Machine Graphical Explanation

The kernel trick is a useful technique because it allows to perform
nonlinear classification without requiring the user to manually specify the
transformation of the data into the higher-dimensional space. This can be
particularly useful when the data is complex or when it is not clear what kind

of transformation would be most effective.
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2.7.7 Artificial Neural Networks

An Artificial Neural Network (ANN]) is a type of [MI] model inspired by the
structure and function of the biological brain described in [2.7.7 It consists of
layers of interconnected “neurons”, which process and transmit information.
Each neuron receives input from other neurons, and uses this input to compute
and output a signal to other neurons in the next layer. The structure and
function of Artificial Neural Networks (ANNs]) allows them to learn and
adapt to new data and tasks, without the need for explicit programming.
This is done through a process of training, in which the neural network is
presented with a large dataset and adjusts the strengths of the connections
between neurons (called weights) to improve its performance on the task.
[ANNSH have been successful in a variety of applications, including image and
speech recognition, language translation, and even playing games. They
are a powerful tool for solving problems that involve complex patterns and
relationships in data.

A neural network is a widely used classification technique that makes use
of some of concepts of the way the human brain learns (Gurney, 1997).

In 1943, Warren McCulloch and Walter Pitts published a paper entitled “A
logical calculus of the ideas immanent in the nervous activity” (McCulloch and
Pitts, 1943). The paper described how the authors used existing knowledge of
brain cells and how they are tied together in order to learn complex patterns.
These brain cells are commonly known as neurons. This collective research
allowed the authors to introduce the McCulloch-Pitts Neuron (MCP]) model

which is the basis for all common neural networks used today. The [MCP|
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model makes use of features from biological neurons to make up each node
in the network. The first [MCP] neuron developed had its limitations, and
it wasn’t until Frank Rosenblatt introduced the perceptron in the 1960s
(Rosenblatt], [1960) that significant developments were made in the field of
[ANNS In the perceptron, the Neural-Network (NNJ) neuron is passed through
a “pre-processer” that will contain units that are associated with it. The
perceptron will check if there is a specific feature in the data that can be
used to help predict the output (Rosenblatt], |[1960)). are capable of
finding patterns in data that are usually too complex for human beings to
identify. An becomes proficient at solving a specific problem because of

the information it is trained on.
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The Human Brain
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Figure 2.7: Schematic of a neuron within the human brain (Awan-Ur-Rahman),

2019).

The human brain is made up of cells called neurons. It is estimated that
there are 100 billion neurons in the human brain with 10e'® connections with

each other. A biological neuron consists of four parts:

1. Soma
2. Axon
3. Dendrite

4. Synapse

The Dendrite receives varying electro-chemical signals from other neurons

into the cell body. The Soma sometimes known as the cell body, contains a
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nucleus and other chemical structures that are required to support the cell
and lastly, performs the data processing. This is effectively done by triggering
an output when the strength of the input signal exceeds a certain threshold.
The Axon carries the output signal from the neuron to other neurons. The

Synapse is the point of connection between the dendrites of two neurons.

Artificial Neurons

In its simplest form a biological neuron takes some inputs, carries out some
calculations and produces an output - an [ANN] works in the same way Figure

illustrates what a 2-input neuron would look like.

Inputs Output

Figure 2.8: Two Input Neuron Diagram.

There are several things happening in figure [2.8

1. Each input (z) is firstly multiplied by a weight (w):

r1 — T1* Wy (26)

To —r X9k W (27)
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2. The weighted inputs are added together with a bias (which is denoted
by b).

(xy % wi) + (zy*x wo)+ b (2.8)

3. The resulting calculation from equation [2.8]is passed through a defined

activation function (f).

y= f((z, % wi)+ (zy% wy)+ b) (2.9)

This activation function is used to turn an input that is unbounded
into an output that has a predictable form. Sigmoid, the hyperbolic
tangent function, and the Rectified Linear Unit (Rel.Ul) function are
commonly used as activation functions in [ANNS A sigmoid function
can be thought of as compressing data in the range (—oo, +00) into

(0,1).

Feed Forward Networks

A feedforward neural network is a type of [ANN]| in which the connections
between the neurons do not form a cycle. This means that information flows
through the network in only one direction, from the input layer to the output
layer, without looping back.

In a feedforward neural network, the input data is passed through the
input layer, which then passes it on to one or more hidden layers. Each hidden

layer processes the data and passes it on to the next layer until it reaches the
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output layer. The output layer produces the final result or prediction based
on the input data.

Feedforward neural networks are typically used for supervised learning
tasks, such as classification and regression. They are called feedforward
because the data flows through the network in a single direction, from the
input layer to the output layer, without looping back.

The structure of a feedforward neural network can be represented as a
series of interconnected layers, where each layer consists of a set of artificial
neurons or nodes. The input layer receives the raw input data, and the output
layer produces the final prediction. The hidden layers process the data and
pass it on to the next layer. The number of hidden layers and the number of
neurons in each layer can be adjusted to optimize the model’s performance

on a given task.



CHAPTER 2. REVIEW OF MACHINE LEARNING 42
2.8 Unsupervised Learning

In contrast to supervised learning, unsupervised learning aims to train a
system to represent particular input patterns in a way that does not require
the ground truth output. An example of this is the way humans learn to
recognise objects. For example, when a baby is introduced to the family
dog. If weeks later, a family friend brings another dog round, the baby is
able to recognise it as a dog even though she has not seen this particular
dog previously. The features of the dog are recognised by the baby: 2 eyes,
walking on 4 legs, tail, and a collar. The baby has created a mental model of
a dog without necessarily having a mental label attached to it. This is an
example of unsupervised learning where you can learn from the structure of

the data provided.

“We expect unsupervised learning to become far more important
in the longer term. Haman and animal learning s largely unsu-
pervised: We discover the structure of the world by observing it,

not by being told the name of every object” (LeCun et al., |2015).

There are three main reasons to use unsupervised learning over supervised

learning:
1. Unsupervised [MI] is able to find unknown patterns within data.

2. Features can be found in unsupervised learning that can be made use

of for categorization.

3. It is quicker to produce datasets with unlabelled data, as it doesn’t
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require any manual intervention (unlike labelled datasets that are ex-

pensive to produce).

Clustering is the most important unsupervised problem and involves
finding structure and patterns in collections of uncategorised data. Businesses
that need to understand customer behaviour and purchase history may use
clustering techniques to focus advertising - particularly on social media.
Customers can be clustered on factors such as age, gender, purchase process,
and payment type.

Three different versions of clustering that can be implemented are:

1. K-means clustering: where the data points are partitioned into K

clusters based on minimising the variance between each cluster.

2. Hierarchical clustering: where data points are clustered into both
parent and child clusters. Customers may be initially split by age and

then further split by other identifying traits.

3. Probabilistic clustering: where a probabilistic scale is used to cluster
the data points into different clusters. An example might be in develop-
ing categories for sport equipment: “Football boot”, “Rugby boots”,
“Football ball” and “Rugby ball” can be clustered using two different
properties they relate to e.g.: the sport “Rugby” and “Football” or the

equipment type e.g. “boot” and “ball”.
Disadvantages Of Unsupervised Learning

1. Results may not be as reliable as they are automatically generated.

2. The user needs to spend time interpreting the final outcome clusters
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2.8.1 Clustering

Clustering is a type of unsupervised learning. Clustering is used to find
meaningful structure and groupings that are inherent within the data without
using labelled datasets. It involves dividing the population of data points into
a number of different groups such that data points within the same group are
similar to each other in some way. Figure displays the data points for a
given data set. From visual inspection it is obvious that three clusters can be

formed from the data, as shown in Figure [2.10]

»
»

Figure 2.9: Randomly generated dataset which could be split in to 3 clusters

Clustering is widely used in various industries to segment data and to
understand intrinsic groupings. The interpretation of whether they are good
clusters or not depends on the use case. However, common evaluation metrics

include Silhouette Scores (which measures the separation of clusters), and
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Figure 2.10: Clustering Example with cluster generated

the Calinski-Harabasz index (which is the ration between cluster distribution)

as well as the Davies-Bouldin Index (which measures how well spread and

dense the clusters are) (Wang and Xu, 2019; |Xiao et al., 2017)).

Clustering can be further split in to four main types of segmentation:
1. Centroid Models

2. Distribution Models

3. Density Models

4. Connectivity Models

Centroid models are iterative clustering algorithms which measures similar-

ity by the closeness of a data point to the randomly placed centroid. K-Means
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clustering is commonly used in clustering and is a centroid model. When
using these models, the number of required clusters needs to be defined before
training the model. Therefore, it is important that some prior information is
known about the dataset and what outcomes are to be expected. K-Means
clustering is the most commonly used clustering algorithm. It is an iterative
approach that aims to find the local maxima at each iteration. The K-Means
algorithm is usually attributed to Stuart Lloyd who introduced the algorithm
when working in the Bell Labs in 1957 (Lloyd, [1982)). It was developed as a
technique for pulse code modulation. The K-Means algorithm comprises of

five steps:

1. Specify the number of clusters that the data observations will be seg-

mented in to.
2. Randomly assign each observation to a cluster.

3. Randomly assign the starting centroids of the data. The number of

centroids should match the number of clusters determined in step 1.

4. Re-assign each point to the closest centroid and re-compute the positions

of the centroids, moving them around the data space as required.
5. Repeat step 4 until no more improvements are possible.

Distribution models try and understand how probable it is that a data
point belongs to the same distribution as other data points (Normal, Gaussian).
As a consequence to this, they are often prone to overfitting. Expectation-
Maximization is an example of distribution models and it uses multivariate

normal distributions to determine which cluster data points should fall into.
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No prior knowledge or understanding of the dataset is required, which makes
them a good technique to use in data exploration.

Density Models look at how dense a cluster of points is in the data space.
If some points are grouped densely together, it is said they belong to the
same cluster if they are also in the same region. DBSCAN and OPTICS are
commonly used density models.

Connectivity models are based on the idea that data points that are closer
in the data space will be similar to each other. Connectivity models use
hierarchical approaches to group the data together. Hierarchical Clustering
Analysis (HCA]) is an unsupervised clustering algorithm which generates clus-
ters that have prevalent ordering from the top to the bottom. Agglomerative
Hierarchical Clustering (AHC]) is one of the most commonly used models in
[HCAL It is a known as a “bottom up” method, as each observation starts
as its own cluster and pairs of clusters are iteratively merged together. The
distance between each cluster is measured using different linkage methods.

These methods are:

e Complete-Linkage: Complete-Linkage describe when the distance

between two clusters is defined as the longest distance.

e Single-Linkage:Single-Linkage is used when the distance between the
two clusters is the shortest distance this is known as Single-Linkage.

This linkage method is susceptible to outliers in the data.

e Average-Linkage: Average-Linkage is when the distances between
each pair of observations in each cluster is summed up and divided

by the total number of pairs This provides the average inter-cluster
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distance.

e Centroid-Linkage: Centroid-Linkage is the distance between the

centroids in two different clusters.

Different linkage methods are applicable for different data sets. There is no
exact use case for each method as they all produce different clusters.

Unlike [AHC], Divisive Hierarchical Clustering (DHC) is a “top down”
approach. All of the data points are initially assigned to a single cluster. The
observations are then partitioned to the two “least similar” clusters. This
recursive partitioning continues iteratively until there are no more splits that
can be done. For both [DHC| and [AHC the user needs to specify the number

of clusters required to understand when the termination should take place.

2.8.2 Dimensionality Reduction

With the computerisation of Electronic Health Records (EHRS), datasets
within the medical domain are increasingly getting bigger. To make these
datasets easier to interpret, dimensionality techniques are used to reduce the
number of features whilst ensuring that most of the information within the
dataset is preserved (Jolliffe and Cadima;, 2016)). Furthermore, explaining
the final classification of a [MI] problem can be difficult when there are many
features present. As the feature set grows beyond 2 and 3 dimensions, it is
not easy to visualise the dataset. Many features are correlatedﬂ and hence
redundant. For this scenario, where there are many correlated features, dimen-

sionality reduction is utilised. Dimensionality reduction reduces the number of

3Correlation explains how one or more variables are related to each other
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features under consideration by producing a set of principle variables. The set
of principal variables is obtained by two different methods: feature selection

and feature extraction (Uberoi, 2017).

1. Feature Selection: A subset of the original features is found. Features

are selected using three different techniques:

e Filter
e Wrapper

e Embedding

2. Feature Extraction: The data in a high-dimensional space is reduced

to a lower-dimensional space.

Zhu et al.| (2015)) developed a novel dimensionality reduction technique
called Niche Genetic Algorithm (NGAI); their methodology enabled them to
reduce the number of features in their sepsis dataset from 77 to 10 (many of
the features overlapped and were heavily correlated). The resulting model
produced an accuracy of 92% when predicting 28-day death in sepsis patients.
To better understand the concepts of dimensionality reduction, consider a
3D classification. This can be difficult to visualise; however, a 2D problem
can be mapped to a 2-dimensional space. A 1D problem can be mapped to a
single line.

There are various methods that can be employed for dimensionality re-

duction. They include:

e Principal Component Analysis (PCA)) is a dimensionality reduc-

tion technique that is commonly used in [MIl It is a linear transfor-
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mation method that reduces the number of dimensions in a dataset by

projecting the data onto a lower-dimensional subspace.

[PCAlis based on the idea that the directions with the highest variance in
the data are the most informative, and that the data can be projected
onto a lower-dimensional subspace while preserving as much of the

original variance as possible.

To perform [PCA] the data is first centered by subtracting the mean
from each feature. The covariance matrix of the centered data is then
computed, and the eigenvectors of the covariance matrix are found. The
eigenvectors are ranked by the corresponding eigenvalues, which indicate
the amount of variance in the data explained by each eigenvector. The
eigenvectors with the highest eigenvalues are selected as the principal

components of the data.

The data is then projected onto the subspace defined by the principal
components, resulting in a lower-dimensional representation of the data.
The number of dimensions in the final representation can be controlled

by selecting the number of principal components to keep.

e Linear Discriminant Analysis (LDA]) works by projecting the data
onto a lower-dimensional space that maximizes the separation between
the different classes. It does this by finding a projection that maximizes
the ratio of the between-class variance to the within-class variance. In
other words, [LDA] tries to find a projection that maximizes the difference
between the means of the different classes while minimizing the variance

within each class.
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To perform [LDAI the mean vector and covariance matrix for each class
are calculated. The mean vector for each class represents the center
of mass of the data points belonging to that class, and the covariance

matrix represents the spread of the data around the mean.

The projection is then found by solving a set of linear equations that
maximize the ratio of the between-class variance to the within-class
variance. The resulting projection is used to transform the data onto

the lower-dimensional space.
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2.9 Semi-Supervised Learning

Semi-supervised learning is a combination of supervised and unsupervised
learning approaches. It is used for similar applications to that of supervised
learning, and makes use of a combination of both labelled and unlabelled
data for training. There is usually a small amount of labelled data and
a greater amount of unlabelled data. Labelled data is usually much more
expensive to generate as labelling the data is often labour intensive. Semi-
supervised learning is used when a large amount of data is required, but the
cost associated with labelling is too high for a fully labelled training process.
Face identification, such as that implemented by Facebook and Google, is an
example of semi-supervised learning (Liu et al., |2021)).

A classic example of semi-supervised learning models is speech analysis.
Applying semi-supervised learning techniques can reduce and minimise the
effort required by human resources to greatly improve speech analytic mod-
els. Web content classification is another example of where semi-supervised
learning is utilised. Similarly to the previous use case, human intervention is
typically required to classify the content. Semi supervised learning techniques
can be implemented to speed up this content classification process. However
the key drawback is that it isn’t currently possible to verify that the labels
produced are accurate, therefore the resulting outcomes are not as trustworthy
as fully supervised techniques.

Gu et al|(2020) used semi-supervised learning with a graph embedded
Random Forest. A major challenge in the analysis of medical imaging is the

lack of images with labels or annotations present. As previously discussed
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the process of labelling and annotating records can be a very costly process
and in the medical domain it requires a level of expertise to correctly identify
records. The results presented by (Gu et al. (2020) demonstrated that using
the information gain calculation in Random Forests reduced the accuracy
of the results, however, utilising a graph-embedded entropy, they were able
to produce results that were significantly improved whilst also maintaining
the low computational burden and robustness to over-fitting that is a key

deciding factor in Random Forests.
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2.10 Comparison Of Algorithms

Linear Regression

Pro’s
e Simple to implement and efficient to train.
e Overfitting can be reduced by regularization.
e Performs well when the dataset is linearly separable.
Con’s
e Assumes that the data is independent which is rare in real life.
e Prone to noise and overfitting.
e Sensitive to outliers

Logistic Regression

Pro’s
e Less prone to over-fitting but it can overfit in high dimensional datasets.
e Efficient when the dataset has features that are linearly separable.
e Easy to implement and efficient to train.

Con’s

e Should not be used when the number of observations are lesser than

the number of features.

e Assumption of linearity which is rare in practise.
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e Can only be used to predict discrete functions.

Decision Tree

Pro’s
e Can solve non-linear problems.
e Can work on high-dimensional data with excellent accuracy.
e Easy to visualize and explain.
Con’s
e Overfitting. Might be resolved by Random Forest.

e A small change in the data can lead to a large change in the structure

of the optimal decision tree.
e Calculations can get very complex.

K Nearest Neighbour

Pro’s

e Can make predictions without training.

e Time complexity is O(n).

e Can be used for both classification and regression.
Con’s

e Does not work well with large dataset.

e Sensitive to noisy data, missing values and outliers.



CHAPTER 2. REVIEW OF MACHINE LEARNING

e Need feature scaling.

e Choose the correct K value.

K Means Clustering

Pro’s

e Simple to implement.

Scales to large data sets.

Guarantees convergence.

Easily adapts to new examples.

Con’s

e Sensitive to the outliers.

e Choosing the K values manually is tough.

e Dependent on initial values.

e Scalability decreases when dimension increases.

Support Vector Machine

Pro’s
e Good at high dimensional data.
e Can work on small dataset.

e Can solve non-linear problems.

Generalizes to clusters of different shapes and sizes.

o7
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Con’s

e Inefficient on large data.

e Requires picking the right kernal.

Principal Component Analysis

Pro’s
e Reduce correlated features.
e Improve performance.
e Reduce overfitting.
Con’s
e Principal components are less interpretative.
e Information loss.
e Must standardize data before implementing [PCAL

Naive Bayes

Pro’s
e Training period is less.
e Better suited for categorical inputs.
e Easy to implement.

Con’s

o8
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e Assumes that all features are independent which is rarely happening in

real life.

e Zero Frequency.

e Estimations can be wrong in some cases.

Artificial Neural Network

Pro’s

e Have fault tolerance.

e Have the ability to learn and model non-linear and complex relationships.

e Can generalize on unseen data.

Con’s

e Long training time.

e Non-guaranteed convergence.

Black box. Hard to explain solution.

Hardware dependence.

Requires user’s ability to translate the problem.

Adaboost

Pro’s

e Relatively robust to overfitting.

e High accuracy.
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e Easy to understand and to visualize.

Con’s

e Sensitive to noise data.

e Affected by outliers.

e Not optimized for speed.

60



CHAPTER 2. REVIEW OF MACHINE LEARNING 61
2.11 Summary

Spotting patterns in data can often be improved and sped up by using [A]l
to spot patterns in data quickly. Many real-world applications currently use
[AT] techniques to assist in making decisions and offer support for different
types of datasets. This Chapter has shown that the subset of [All [MI] can
provide robust solutions and provide an accurate prediction that could be
applied to many medical tasks. The main drawback now is the complexity of
developing such mathematical models and how to deal with missing data and
unbalanced datasets effectively.

This Chapter has aimed to provide a detailed introduction to the history
of [ATl and the different types of [MI] and introduce some core algorithms.
In section 2.2] an overview of [All and some of the most note-able historical
points to date were presented. Section described the different taxonomy of
models before supervised learning, and unsupervised learning is defined
and described.

The different types of learning algorithms and the decision considerations
of which algorithm to use are outlined in section [2.6] Figure [2.3]is a flowchart
of the decision-making process.

Supervised learning is discussed in section and the algorithms Linear
Regression, Logistic Regression, Decision Trees, Random Forests, SVM4 and
[ANNY are reported between subsections to

Section [2.8| introduces the concept of unsupervised learning and semi-
supervised algorithms. Clustering (in subsection and Dimensionality

reduction (in subsection(2.8.2)), which are statistical techniques are also
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defined.

Section [2.10] outlines the pros and cons for different algorithms. The
concepts, algorithms and decision-making processes are utilised throughout
this work. Chapter [3] describes some areas of medicine that utilise [All and the
algorithms that they have used. Decision Trees, Linear Regression, Neural
Networks, Random Forests are used in Chapter [d] The Logistic Regression

algorithm is selected for use in Chapter [5



Chapter 3

Machine Learning In Medicine

Image Technology News estimates that the market for [All in healthcare will
grow to more than $31.3 billion by 2025. This is a growth of more than 40%
since 2018 when the market was valued at $22.4B (Ind, 2019). This chapter
discusses some of the key areas of medical decision support that can be helped
by ML techniques, whilst also providing some examples that are commonly

described in literature. (Rajkomar et al., [2019; Inc, [2019)

3.1 Recordkeeping

As more health records in different countries are being moved to digital sys-
tems, health informatics are being used to streamline recordkeeping, improve
patient care, reduce the need for large administrative costs, and ensuring that
patients are not administered incorrect medicines due to allergies.

This shift to [EHRS allows data about patients to be easily transferred

between clinicians; however, the unstructured nature of these records makes

63
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them particularly difficult to process automatically. [NLPI - the application of
computational techniques to analyse natural language or speech - is a crucial

tool for making use of such data by extracting key information from [EHRS

3.2 Data Integrity

ML algorithms can only effectively use [EHRS where the data is complete
and contains minimal missing data. Gaps in healthcare information can
result in algorithms providing inaccurate predictions, which can hamper
decision making. It is important for healthcare professionals to maintain
the integrity of records and make sure that they are as complete as possible.
However, it is sometimes not possible to obtain all of the data due to time
constraints, machine failure, or lack of funding to complete tests. There are
several considerations that medical practitioners use to maintain the integrity

of patient data:

e Understand the process workflow and data life-cycle: The flow of
data should be well documented, continually reviewed and maintained.
The mapping of data can help to consolidate workflows by highlighting

potential risks and areas of improvements to the existing workflow.

e Automate data workflows: Manual data entry or transcription can
lead to poor integrity behaviour. Furthermore, different data entry
methods can lead to results that differ even though they are the same.
Automating data workflows can reduce the need for clinicians making

decisions when capturing data. Automated solutions that currently exist
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are Electronics Lab Notebook (ELN]) and Lab Information Management
Systems ([LIMS]), these systems can be put in place to capture data

efficiently in real-time and add the metadata to patient data.

e Review data for quality and completeness: Critical data should
be reviewed by experts with a knowledge of the subject area. The
Medicine and Healthcare Product Regulatory Agency(s) (MHRA])’s pro-

vide further guidance for data integrity and how it should be reviewed.

3.3 Predictive Analysis

Combining [MI] predictive analysis, [EHRS, and health informatics enables the
development of supporting tools that can be used to improve the healthcare
processes and leads to more accurate diagnosis and more effective treatments.
Furthermore, and most importantly, it can improve patient outcomes by
suggesting alternatives to surgery or suggesting medicines that may not have
been considered. [MI] can also provide information on areas that require closer
inspection and can be used to target specific research areas that may be
behind or where there is currently a gap in the area.

Jamin et al.| (2021) demonstrated that utilising different [ML] algorithms,
including and [ANNs| can be trained on medical data to provide better
results than medical support tools currently being used within industry.

Although predictive analysis demonstrates potential in medicine, protect-
ing a patient’s safety is essential. Regulatory and professional bodies ensure
that advanced algorithms are scrutinised and adhere to strict standards of

clinical benefit (Yu and Kohane, [2019). These standards are also applied to
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clinical therapeutics and predictive bio-markers. Independent and external
validation and prospective testing of newly developed algorithms are clearly
needed, although certain regulatory bodies have expressed concern about
the standard of these validations. Parikh et al. (2019) have proposed five
standards and guidelines to help regulate predictive analysis, which can be
used to validate algorithms before implementation within the clinical domain.
The Transparent Reporting of a multi-variable prediction model for Individ-
ual Prognosis or Diagnosis (TRIPOD) checklist is an example of an existing
standard used to validate multi-variable prediction models within medicine

(Collins et al., [2015]).

3.4 Applications of ML in Healthcare

[MI] is being considered for many different projects across the world as a key
tool for solving a range of issues (Obermeyer and Emanuel, 2016). Some
areas in medicine, where there has been significant research undertaken in

and where techniques are currently being used, are described in the

following sections.

3.4.1 Disease Identification & Diagnosis

The detection of patterns in data is a core function of [MIl In medicine this
can be used to detect patterns in diseases and specific health conditions by
training models on electronic health records and additional patient data. As
well as improving patient outcomes, many [ML] models in medicine can provide

additional benefits such as:
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e Shorter time to train than a human
e Improved diagnosis
e Improved consistency

Alzheimer’s Disease ([AD]) is the leading cause of dementia in Western
countries (Terry, [1994)). Alzheimer’s is usually characterised by the loss of
memory and the impairment of at least one cognitive function. There is no
specific test to determine if someone has [AD] with a definitive diagnosis only
available on autopsy or biopsy (Jameson et al., 2020)).

The current test for diagnosis is based upon:

Clinical history

Neuropsychological

Laboratory tests

e Neuroimaging

Electroencephalography (EEG)

To enable more accurate diagnosis faster Trambaiolli et al.| (2011)) described
an effective way of improving the diagnosis of Alzheimer’s. Their results
can produce more accurate diagnoses and follow-treatment results. Their
study utilised SVM4 to search for patterns in [EEG] windows to spot the
difference between those patients that are within the control group or are
showing signs of having [ADl Their experiments result in a quantitative

Electroencephalography (qEEG]) processing method that can automatically
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determine patients that have from normal individuals. The study was
undertaken by looking at [EEGE from 19 normal subjects. 14 were female
and 5 were male with a mean age of 71.6 years. 16 patients showing
mild to moderate symptoms were considered within the study (14 females/2
males). The analysis of [EEG] epochs found that the accuracy was 79.9% and

a sensitivity value of 83.2%.

3.4.2 Medical Imaging Diagnosis

High resolution imaging technologies such as X-rays, Computerized Tomogra-
phy (CAT)) scan, and Magnetic Resonance Imaging (MRI) provide so much
detail that it can be hard to spot cancerous cells by eye. Using these medical
images, [MI] techniques have been able to look at the images on a pixel level
to detect problems such as cardiovascular abnormalities and cancers. There
is a lot of research in the area of medical imaging diagnosis.

One such example is [Soenksen et al. (2021)), who have trained an algo-
rithm at the Massachusetts Institute of Technology that is more accurate at
diagnosing skin cancer than “board-certified dermatologists”.

Global cases of melanoma skin cancer will reach nearly half a million
(466,914) by 2040, an increase of 62% on 2018 figures (Team, 2022, 2020)).
Melanoma accounts for only about 1% of skin cancers but causes a large
majority of skin cancer deaths. Melanoma are a type of malignant tumour
that can be found on the skin. For years physicians and medical practitioners
have utilised visual inspections to identify Suspicious pigmented lesions (SPL).

These [SPLk can be an early indicator of skin cancer. Typically, at this stage,
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a tumour biopsy is removed and tested for cancerous cells (further treatment
is determined based on the results of these tests). Earlier identification of
in primary care can dramatically reduce patient costs and improve the
patient experience.

Soenksen et al.| (2021)) describe the utilisation of Deep Convolutional
Neural Networks (DCNN]) to classify and cluster images (these algorithms are
within the subset of[MIcalled deep learning). The are used to develop
an [SPL] analysis system. The system enables the identification of skin lesions
that could be dangerous if missed by primary caregivers or left untreated by
the patients themselves. 20,388 wide-field images from 133 patients located at
Madrid’s hospital Gregorio Maranén were publicly available and utilised by
Soenksen et al.| (2021). Each image was visually inspected by dermatologists
who determined the legion, allowing the researchers to compare their results.
The system demonstrated 90.3% sensitivity in distinguishing SPIk from
nonsuspicious lesions, skin, and complex backgrounds whilst eradicating the

need for cumbersome and time-consuming individual lesion imaging.

3.4.3 Robotic Surgery

Making use of data from previous surgeries that have been successful, ML}
based robots can be trained to carry out complex surgeries. Human surgeons
are susceptible to making mistakes - potentially causing a patient harm.
Building on existing learning strategies for surgeons, [MI}assisted robots have
been developed to focus on two key areas: feature detection and computer-

assisted intervention. These use cases are applied to both pre-operative
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planning (determining the most effective area to make an incision) and intra-
operative guidance (utilising image systems to understand how the body will
react to specific procedures). Training an [MIlbased surgical robot model
to assist in performing these tasks can reduce human error and aid medical
professionals during complex procedures. Furthermore, more operations can
be completed via keyhole surgery (Zhou et al., [2020)).

The advancements in these fields have led to an increase in Minimally In-
vasive Surgery (MIS]), and the combination of computer-aided intra-operative
guidance with the skills of surgeons has resulted in a reduction in surgical
trauma. The four key areas where different techniques are applied to

computer-aided intra-operative guidance are:

e Shape instantiation: This assists the surgeon to determine what shape

and size an incision should be to be most effective for the operation.

e Endoscope navigation: During an intra-operative procedure directing
an endoscope through the body can be a dangerous task, using computer

vision, navigation is supported.

e Tissue tracking: Tracking biopsies that have been removed or moni-

tored can be assisted by [All

e Augmented Reality (ARI): This enables the surgeon to see inside

the patient and explore the body effectively.
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3.4.4 Personalised Medicine

Reducing the time burden on any health practitioner is a tangible benefit of
using [MTJ for personalised medicine. This will also empower practitioners to
treat more patients quickly and correctly. This advanced care is developed
using [EHRs| genetic data, and other patient information to train models.
This leveraging of big data and predictive analysis techniques has created
many opportunities for researchers to tackle and solve issues surrounding
diseases, cancers, and depression (Duttal, 2021)).

Throughout the Coronavirus Disease ([COVID-19) pandemic, deciding
upon the most effective line of treatment for medical practitioners and clin-
icians was a monumental challenge for them to answer quickly. As the
world looked to medicine for the answers to open the world again, there
was confusion amongst clinicians about the efficiency of using remdesivir or
corticosteroid on patients with and if it leads to better survival
rates. A [MI] algorithm was developed to assist with this.

Lam et al.| (2021) answered this concern by utilising a gradient-boosted
decision tree model for training and testing on adult patient data (aged >
18 years) from 10 hospitals in the United States (US]). They wanted to test
the performance of both drugs on patients with longer survival times. Their
findings were significant and were based on the Fine and Gray proportional-
hazards models. The sample size for the experiment was 2364 patients. 893
patients had been treated with remdesivir and the remaining 1471 were
treated with a corticosteroid. Their results were hazard ratios of 0.56 and

0.40, respectively (both, P = 0.04). This demonstrated that both groups of
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patients were less likely to have increased survival rates using either drug.
This resulted in patients not being administered either drug.

There are many limitations to using [Allin the development of personalised
medicine. One such limitation is that many argue that big data analysis,
that combines information on individual patients to reflect population-level
relationships between data points, does not provide important individual-level
relations. The lack of ergodicity within these results can mean that results
are not beneficial for making treatment decisions for individuals (Fisher et al.,
2018)).

A second limitation is that there is a requirement to vet or test the
utility of healthcare products that are developed using [All This limitation is
motivated by previous results that have been inconsistent when developed
utilising [ATl - inconsistent results have been demonstrated in many [Allrooted
health products, including IBM’s Watson treatment decision system. Some
existing healthcare tools have been tested via traditional randomized clinical
trials, and some [Allbased decision support tools have been accepted via these
clinical trials (Schmidt), 2017; Abramoff et al., |2018; |Zhou et al.| 2019).

It might be effective to implement [Allbased learning systems with an
ongoing review of their algorithms, parameters, and features to ensure the
systems are always fit for purpose. This rolling training can require a large
amount of retraining and computational resource to provide effective results
(Schorkl, 2018}, [loannidis and Khoury, 2018} |Frieden|, [2017; |Abernethy and
Khozin|, 2017; Nature, 2018]).

Lastly, many [Allbased decision support systems leverage algorithms that

can be very difficult to interoperate. These systems rely heavily on deep
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learning and complex neural networks. Although the results for these trained
models can be reliable (if a large enough training set is used), it can be very

difficult to understand the interlinks between the inputs and outputs.

3.5 Machine Learning & Pharmaceuticals

Many monotonous customer service industry tasks have been early adopters
of the new methods in the field of [ML], whereas uptake in the medical and
pharmaceutical industry has lagged behind. However, due to the low success
rate of drug development (defined as phase I clinical trials to drug approvals)
across the globe, there is a growing need for pharmaceutical companies to
lower the costs in finding successful drugs. Quris recently released the “patient-
on-a-chip” system which can be used to reduce the need for animal testing
and speed up drug development (Coldewey|, 2021} Taylor, 2022} Bein et al.,
2022)).

Many stages of the drug manufacturing and development process have
been reviewed and areas of improvement utilising [MIJ] algorithms have been
considered by major pharmaceutical companies. Some examples of where

algorithms have been applied are:

e Targeting disease associations: Disease associations are the rela-
tionships between two or more diseases. These relations can be lifestyle-
related, genetic, or environmental. There are many different published
conference papers and academic journal papers which relate to targeting

disease associations with machine learning. The work undertaken in

2012 by [fordanescu et al. (2012)) aimed to use to identify new
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drug targets for Alzheimer’s disease. The algorithm was trained on a
dataset of 10,000 genes that are known to be associated with Alzheimer’s
disease. The algorithm produced a number of the potential drug targets
that have not been previously considered for Alzheimer’s. Some of these
targets include proteins that are used in the production of the amyloid
beta plaques — which are a pathological hallmark of Alzheimer’s disease.
The work showed real promise and demonstrated that can be a

powerful tool for identifying new drug targets especially for Alzheimer’s.

Lind and Anderson| (2019) made use of the random forest algorithm
to develop new drugs that are effective against all types of cancer.
Due to the heterogeneous nature of the disease, there is a wide variety
of different types of cancer. Cancer has many different symptoms
and causes which lead to many different treatment types. The work
undertaken was trained on a data set that contains 1001 cancer cell lines
and 225 drugs, including experimental and approved anticancer drugs.
The trained random forest classifier was able to predict the response of
patients to new drugs with an >80% accuracy. The paper highlighted
that additional validation would be needed to confirm the results of the

classifier.

e Improve the design and optimisation of small-molecule com-
pounds: Poly(ADP-ribose) polymerases (PARPs) are a class of enzymes
that are critical in repairing DNA. Parp indicators are used as a new
type of cancer drug. In 2019 |Ai et al.| (2022) used machine learning to

design new PARP inhibitors which had an improved target affinity and
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selectivity. A dataset of 10,000 molecules was used with the random

forest classifier to correctly develop the inhibitors.

e Further understand the disease mechanisms: Identifying diseases
and some of the causes of diseases has been researched for many years.
[MI] has shown promise in supporting this field of research. One such
example is the work undertaken by [Konovalov et al.| (2021), the authors
utilised a dataset with information on 20,000 patients. 10,000 of the
patients had cancer and 10,000 did not. Their trained random forest
algorithm was able to identify many bio-markers that were associated
with cancer. These bio-markers were not identified making use of
traditional methods. Furthermore, the model was able to identify bio-
markers that were associated with specific types of cancer. The work
demonstrated throughout this paper shows that machine learning has
the potential to revolutionize the identification of bio-markers for cancer
whilst also highlighting how this could be applicable to other diseases

as well.

Due to the promising results in certain areas of pharmaceuticals many
companies have continued to invest in [ML] or purchase start-up companies
that specialise in for medicine. IBM, Google, and Amazon are utilising
their cloud-based computation services to support the health care industry
by working with partners such as GE healthcare (Vermeer and Thomas, [2020;
Breant et al.| 2018; |J.D| 2022).
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3.6 The Ethics of AI within Medicine

As more decision making processes are being supported by [MI]in healthcare,
it is important that all of the ethical concerns that usually arise from an
problem are considered. This is of paramount importance when considering
medical problems, as the data provided must also be subject to legislation
already in place for dealing with medical data. There are three core areas

that consideration should be given to:

1. Sharing Patient Information: Naturally there are restrictions in
place around sharing patient information. It is important to ensure
that data is not shared that could be traced back to an individual
patient. The core of effective [MI] is effective, organised, and clean data.
As part of the cleaning process, typically hospital staff will make sure
the data is General Data Protection Regulation (GDPRI) compliant by
removing any identifiable information. In a medical setting, data can
be shared for medical reasons. For example a doctor may share patient
information with a surgeon or another doctor to get feedback or for a

second opinion on a decision that could effect a patient’s health.

2. Patient & Clinician Autonomy: Throughout the health-care indus-
try there are different types of patients. A vulnerable group of patients
are those who are incapable of making health care decisions themselves.
It is possible to use [ML]in conjunction with electronic health records
to assist in making these clinical decisions. However, there is a strong
argument that [MTlshould not replace patient or clinician autonomy, but

instead should support (rather than replace) clinical decision making.
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Tools that are developed using [ML] techniques must be used as support

tools to help inform the decision but not to make the final decision.

3. Patient Safety: “Garbage in, Garbage out“ is a cliché often used in
[MIl The general meaning is that if you pass flawed information into a
model, you will get flawed predictions. The systems reliability can be
undermined when using erroneous data. As a result, models should be
used with caution until the quality of data used to produce the model

is verified.

Similarly, cultural bias encoded in datasets can mean results can be
biased against certain ethnic backgrounds or cultures. This is very
important for medical decisions as it can result in over-diagnosis or
under-diagnosis which can mean some patients will be treated when not
needed and conversely not treated when required. These mistakes can

be life changing.

Patient safety and the resulting outcomes should always be considered
when looking at the predictions from [MI] models that could be life-
changing. As a direct result, all of the results presented in this body of
research should be taken as indicative. Additional required work and
the limitations of this work are discussed in Chapter [7| (Yoon et al.,
2021)).

All patient data that is used as part of this research is[GDPR]compliant and
anonymised to ensure that the patient can not be traced. The interpretability
and explainability of the models developed is an important ethical step that

has been considered throughout the research. Some additional questions that
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are answered in this body of research are:

1. Does the dataset contain any sensitive data?
2. Does the training dataset accurately represent the source population?
3. Can developers examine the logic behind the code base?

4. Are the patients made aware that their data will be used in the study?

3.7 Summary

As described previously, the [ATl market share within medicine has risen by
nearly 40% in recent years and will soon eclipse $31B USD. Medicine is one
of the areas where [Al]l techniques are starting to be utilised as support tools
for clinicians to improve the speed of diagnosis, perform minor surgeries and
for drug discovery. The emerging paradigm of [All in medicine is described in
this Chapter and where the areas for research and improvements lie.

This Chapter has aimed to provide an overview of the current state of
the industry and define some common use cases to date. In section the
changes to record keeping from paper to electronic health records is described.
The benefits of this development are defined and how it can lead to the ethical
sharing of patients records for research purposes is also explained. Moving to
[EHRS has also seen an improvement in the integrity of the data collection,
section talks about this and some of the dangers of having missing data
within records. Predictive analysis and what these advances can mean to the
industry is also described in section with an emphasis on how it can be

used to spot areas that need additional research.
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There are many different applications of [MI] in industry, section [3.4
focuses on these applications and details some existing academic research
or use cases. Disease identification and diagnosis and the work undertaken
withing research as well as in a clinical setting are outlined in subsection |3.4.1]
A brief overview of robotic surgery and how it could revolutionise routine
surgeries are introduced in subsection [3.4.3] In addition, subsection [3.4.4
introduces the concept of personalised medicine and what it can mean for
improved medical diagnosis by combining [EHRS, genetics and other patient
information to produce effective [MI] models by leveraging all the datasets
available.

Pharmaceutical companies and leading technology companies are working
together to improve the drug discovery process and improve the time taken
to find solutions to existing medical conditions. The steps involved in this
and some of the exact use cases are described in section 3.5

Due to the sensitive nature of the work undertaken in this research, it is
important to make sure that all the data is utilised ethically. Ethical approval
was provided at the start of this research. Section [3.6| outlines some of the
ethics around [MI] with an emphasis on the medical domain. Lastly how the
data in this research is ethically compliant is described at the end of the

Chapter.



Chapter 4

Mortality Prediction in

Intensive Care Units

4.1 Introduction

With National Health Service (NHS)) waiting times failing to meet targets for
over 16 months now and government cutbacks to nursing and hospital staff,
innovative ways of diagnosing and assessing patients will soon be introduced
(Campbell and editor, 2017). State of the art technology such as bespoke
medicines and computational models will be made use of. Computational
models that use [MIL algorithms have already been tested using real-world
hospital data, with promising results in predicting mortality rates in patients
at the [[CUl at North Middlesex hospital (Shenfield et al., [2017)).

Predicting the survival of a critically ill patient is a difficult task. There
have been many different scoring systems designed that have been used to

grade the severity of a patient’s illness. These systems include:

80
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e Acute Physiology and Chronic Evaluation II [APACHE II} The
[APACHE IT] score is currently the most commonly used system for
classifying the severity of disease of patients admitted to critical care
units. It is usually applied within the first 24 hours of admission to
[CU, and uses a combination of physiological variables, the patients
age, and the patients chronic health status to determine mortality
rate. Although later versions of the Acute Physiology and Chronic
Evaluation (APACHE]) score exist, the most commonly used version
is APACHE 1T due to later versions requiring more diagnostic tests
(Wagner and Draper, [1984).

e 274 Simplified Acute Physiology Score (SAPS II)): The [SAPS Il
score was introduced in 1993 as an alternative to the APACHE TI] score.
The features required for the [SAPS 11l score should be collected within
the first 24 hours of admission in to the [CU The Area-Under the
Receiver Operating Characteristic Curve (AUROC]) generated for the
score was 0.86, this was higher than the original SAPS score
that was 0.80. The score can be used to estimate mortality risk of a
group of patients however it is not intended to describe the chances of

survival of a patient (Le Gall et al., |1993)).

In this Chapter, the application of different [MI] techniques for accurately
predicting mortality in [CUlis discussed and compared. The key contributions

of this research are:

1. Evaluation of existing methods used for mortality prediction in [CUlis

compared.
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2. Development of an effective [MI pipeline provides an accurate predic-
tion of mortality that could be used as a support tool by medical

practitioners.

3. Comparison of the proposed [MI pipeline with the existing state-of-the-

art research.

4. Investigate the effects of retraining [MIl models varying ages and date

of submission for different patient cohorts.

The remainder of the chapter is structured as follows. Section |4.2|evaluates
the existing state-of-the-art research, section describes the proposed novel
approach to developing a pipeline and validating the results of the pro-
posed system as well as describing how the online approach to training will be
utilised and tested. Section [4.4] describes the dataset utilised throughout this
Chapter. The results themselves are discussed in section [4.4.2 and compared
to existing state-of-the-art research methodologies using confusion matrices
and Receiver Operating Characteristic (ROC]) curves. Section [4.5| presents
the methodology and results for online learning while utilising different age
and date of submission patient cohorts to understand the effects and accuracy
of results. The conclusions section [4.8] also examines the limitations of the

proposed approaches and outlines further work.
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4.2 Review of Existing Predictive Risk Mor-
tality Research

Even though there are multiple new methods for determining mortality within
[CU] the APACHE II] and scores continue to be the most used point-
based schemes worldwide (Keuning et al, [2020)). Similarly, the Sequential
Organ Failure Assessment ([SOFA]) is used in some parts of the world as a
mortality risk assessment tool, even though it was developed to assess sepsis
risk (Arts et al., 2005). Some common limitations that are associated with

these tools that have been detailed in the literature are:

1. There has been a decrease in performance over time. Kramer| (2005)

indicated that [SAPS Il was not within calibration tolerance by 2005.

2. There have been some calibration issues with both [APACHE I and
SOFAl scores (particularly when applying them to new patient cohorts
(Sakr et al., 2008)).

3. Sakr et al.| (2008) and |Lew et al.| (2019) noted that the tools were not
very reliable for patients within Europe or Singapore, as they were not

developed with data from these patient cohorts.

4. Some variables which are required to provide a score are difficult to
obtain, especially when patients are admitted into critical care situations.
For many cases, the data might not be available because it requires

expensive pathological laboratory tests and full patient medical history.

These limitations have led to researchers exploring alternative approaches
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for mortality prediction. The resurgence of [MI] techniques has provided some
promising preliminary results in this problem domain. Furthermore, online
[MT] models are comparatively easy to update, retrain, and re-calibrate for
different patient cohorts and as patient cohorts evolve over time (Lew et al.,
2019). Traditional approaches to mortality prediction often only capture a
single time period; this approach misses out on valuable insights and data
that could improve the models accuracy, precision or recall as things change
over time. Online learning can learn from new examples in real-time, ensuring
that the model constantly generalises well to the populations it is applied to,
even as environmental factors, operations, and medicines change over time.

A standard metric used in medicine to determine the performance of
diagnostic tools is the AUROC! is the “Area under the curve” for
the Receiver Operating Characteristic curve. The score is a way
of measuring how successful a binary classifier is at distinguishing between
classes (a detailed description of curves is in section [4.4.2).

For practical application, a mortality risk prediction model should only use
vital signs that can be continually monitored and should allow the doctor to
see how the risk will change. Deliberato et al. (2009) have developed a model
using purely vital signs. However, the models of 0.65 showed that
it is a poor discriminator between mortality and non-mortality cases. They
also used a combination of vital signs and additional features culminating in
a higher of 0.85 when the data was combined with score
and patient demographic.

Throughout the literature, there are many [MTl techniques used to consider

the prediction of mortality. However, there has been little focus on predicting
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mortality at admission (first 24 hours) to the [CUl One of the fundamental
disadvantages of this methodology is that it does not consider complications
that occur after admission. Neural networks (introduced in Chapter
have also started to be considered for mortality prediction. Some works have

focused on using simple feed-forward networks that are able to produce results

comparable to[APACHE Tl [Shenfield et al (2017) used [ANNg and the JADE

optimisation algorithm to obtain an accuracy of over 90% when at decision

criteria between 30-80%, with an [ATUROC score of 0.932.

An [ATUROC of 0.836 was achieved by |Alves et al.| (2018), who used

Convolutional Neural Networks (CNNI) layers before Long-Short Term Memory
(LSTM)) layers, significantly improving accuracy over purely [LSTM] layers.

[CNNI have been proven to be valuable tools for solving medical problems.

Samir et al.| (2021]) used [CNNI to predict heart anomalies accurately. Similarly,

Bukhari et al.| (2020) predicted gait detection correctly making use of [CNNL

Karabulut et al.| (2012)) outlined that the selection of features is an im-

portant step in developing all [MI] models. To develop a model that can
be automatically updated throughout a patient’s stay, the features must be
easy to obtain, measure, and repeat (preferably with no manual intervention

required from clinicians).

The Artificial Intelligence Mortality Score (AIMS]) (Baker et all, [2020)

scheme uses a hybrid [CNNHLSTM| network with a combination of age, gender,
and a selection of statistical parameters obtained within the first 24 hours of
admission into the [CUl [AIMS] achieved an [AUROC] score of 0.884 — 0.858,

depending on the length of stay within the [CUl In the [AIMS] system, scores

are generated over 3-day, 7-day and 14-day windows. [Yu et al.| (2020) used
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techniques to determine mortality and to take complications in to
account. Forty-eight hours of feature recording is needed to predict mortality
effectively using this method. They obtained an score of 0.885 using
a bi-directional [LSTML

The research described above relies on features containing complex diag-
nostic results, details about exiting health conditions, and previous patient
histories. The previously mentioned studies that look at mortality risk pre-
diction use a diverse feature set mainly made up of laboratory results that
include blood tests, urine samples, breath monitoring, and other complex
measurements that can take time to obtain. As described in Chapter [7], one
of the main factors affecting the uptake of [MIl in the medical domain and
the success of MLl models within the industry is the lack of transparency and
interpretability of models. Using common features (e.g clinical laboratory
tests and vital signs) helps overcome these problems by allowing results to be

interpreted by domain experts.

4.2.1 Mortality Prediction in Real-Time

Existing academic research that aims to investigate and improve on existing
support tools for medical practitioners dealing with patients admitted in to
ICUllook at a single snapshot in time and do not demonstrate how their models
perform overtime. These approaches can result in models that are not effective
against new medicines. The medical landscape with vast amounts of new
treatments, prescribed antibiotics, and medical recommendations is changing

rapidly. Biomedical research has resulted in breakthrough accomplishments
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which has seen the eradication of many life threatening diseases and viruses
such as polio and improved life saving options for Acquired Immune Deficiency
Syndrome ([AIDS]), cancer, and [COVID-T9 Due to the exponential rise of
treatments and solutions the United States of America (USA]) has seen the
number of drugs which are Food and Drug Administration (FDAI) approved
rapidly increase (Craven) 2022).

The continued development of medical advancements has seen a large
growth in medical understanding, increased complexity of medical practice
and more experts with medical specialism. Ideally as all fields of medicine
improve other areas should look to keep up and improve. The fact that the
[APACHE Tllscore (even though it is flawed) is still utilised today demonstrates

that improvements are required in this area.

4.3 Machine Learning Pipeline Development

To test the hypothesis that [MI] techniques can develop a mortality risk
prediction tool that provides similar or better accuracy than existing support
methods currently being used within [CUL The [ML pipeline development
framework shown in Figure 4.1 is used. The framework is made up of the

following steps:

1. The complete dataset is split into 3 sections. 70% is used as the training
dataset, 20% is used as the testing dataset and 10% is held back as the

unseen data.

2. The training data is used to train multiple different types of classification



CHAPTER 4. MORTALITY PREDICTION 38

models using standard hyperparameters. The 20% test data is used to

identify top 3 classifiers based on varying performance metrics.

3. The top three trained models (based on accuracy) then use different
hyperparameter optimisation and data re-balancing techniques to try
and find the most effective ML model according to the performance

metric of interest.

4. The resulting model is then tested using the 10% unseen data to generate
final scores and to check that the model generalises to unseen data and

doesn’t show signs of overfitting.

In this Chapter, K Nearest Neighbour, Linear SVMS Radial Basis Function
SVMs, Gaussian Process Models, Decision Trees, Random Forests, [ANNS,
AdaBoost, Naive Bayes, and Quadratic Discriminant Analysis are
investigated. Each classifier is trained and tested using repeated 10-fold
cross-validation, with the average accuracy calculated for each classifier.
Stratification techniques are used to ensure that the training and testing sets
reflect the overall class imbalance of the data (see Section [5| for more details).

Once the base classifiers are trained and the results are generated for
each classifier, the top three classifiers are selected based on the accuracy
of the model - accuracy is utilised as it indicates as a percentage how many
results the model got correct (Walker et al. 2020). If the target classes
are imbalanced, synthetic data is introduced to rebalance the dataset using
the Synthetic Minority Oversampling Techniques (SMOTE]) (Chawla et al.)
2002). The combination of synthetic data and real data is then used to

retrain the top three performing models. The test runs are repeated multiple
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Figure 4.1: Machine Learning Pipeline Methodology for developing a mortality risk

prediction tool
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times to check the results obtained are consistent and the averages are
generated, furthermore, it enables the spotting of trends and patterns forming
within the results. It also reduces the variance in the overall results which is
presented by showing the standard deviation ranges. Each model then has
the hyperparameters optimised using both random search and grid search
optimisation methodologies (see section . The performance metrics used
in this Chapter are described in section [1.3.2

The final models are again compared using both the accuracy score and the
score. The most effective model is then tested on the unseen dataset
to make sure that the model is not overfitting on the training/validation
dataset. The following sections describe the dataset and different techniques

used in the development of the [MII pipeline.

4.3.1 Feature Importances

Feature importances can provide a deeper understanding of a dataset. The
scores can demonstrate which features are most relevant to the target variable
and, conversely, which are least relevant. This can then be interpreted by
a domain expert to either remove unnecessary features or to collect more
useful data. The scores can also provide further insights into the model. For
example, inspecting the different scores that result from using different [MI]
algorithms can show how different features have different effects depending
on the variant of model used. Lastly, feature importances can improve the
predictive model by empowering the developer to remove unnecessary features,

resulting in a model that can be trained quicker. This deletion of features is
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commonly referred to as dimensionality reduction.

4.3.2 Performance Metrics

Confusion matrices sometimes known as error matrices, are often used to
summarise the prediction results of classification problems. They are com-
monly used in [MI] projects due to how easy they are to interpret. A typical
confusion matrix for a binary classification problem is shown in Figure

and shows:

e True Positive (TP]): That is the number of correctly classified exam-

ples that are positive.

e True Negative (TIN): That is the number of correctly classified

examples that are negative.

e False Positive ([FP]): That is the number of negative examples that

are mis-classified as positive.

e False Negative ([FN]): That is the number of positive examples that

are mis-classified as negative.

Confusion matrices are used to know how many mistakes a classifier makes,
and what those mistakes are. Correct predictions are shown in the diagonal
entries (blue squares with white text in Figure . A classifier performing
well should contain minimal examples in cells that are not on the diagonal.

The Error Rate (ERR]) and accuracy can be calculated using the equations

41 and 4.2

FP+ FN
FE = 4.1
rror Rate TPLTN L FPLFN (4.1)
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Figure 4.2: An Example of a 2x2 Confusion Matrix

TP +TN

4.2
TP+TN+ FP+ FN (42)

Accuracy =

The True-Positive Rate (TPR]) and False-Positive Rate (FPRI) are specified

as:

TP
TPR = —++ 4.3
R TP+ FN (43)
FP
=" 4.4
FPR FP+TN (44)

When a classification task has significantly imbalanced target output
classes, accuracy should be used with caution. If 95% of the dataset consists

of the positive class, simply always predicting a sample as positive yields
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an accuracy of 95%, which is misleading. By making use of the [TPR] it is
possible to see how well the classifier is performing even if the classes are
unbalanced.

Precision (PRE]) means “how many of the predictions made are correct?”
whereas Recall (REC]) means “how many positive points in the output are
successfully identified as being positive?” [PREl and [REC are very useful in
the medical domain, as it is essential to understand the performance of the
optimistic predictions.

[PREl and [REC] metrics are calculated using:

TP

Precision = ———— 4.5
recision = o5 s (4.5)
TP
U= 7= 4.
Reca TP LN (4.6)

The combination of [PRE| and [REC] into a single score is known as the F1

score, and is defined as:

(2% TP)

F1=
(2% TP) + FP + FN)

4.3.3 Cross-Validation

In K-fold cross-validation, the original dataset is partitioned randomly into
K equal sized partitions. A single K partition of the data is retained and
kept unseen (this is used as the validation data for testing the model) and
the remaining K-1 subsets are used as the primary training data. This

cross-validation process can then be repeated K number of times, with each
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different subset used once, as the validation data. This has many advantages
over other validation techniques as all of the observations are used for both
the training and validation data. Furthermore, each validation set is used
precisely once meaning that the models aren’t just trained on the same test
and train data sets. Figure shows how the data can be partitioned for each
fold. Stratified K-fold cross-validation was introduced to address datasets
that are not evenly balanced between the different classes. The data for
each fold is selected so that each fold contains a similar proportion of class
labels to that within the whole dataset. Repeated cross-validation repeats
the cross-validation a given number of times. These results are then averaged

out to produce a better estimation of the model performance.

4.3.4 Rebalancing Datasets

The process of re-balancing a dataset is often used in real-world dataset
classification tasks where the majority of results fall within a single class
(known as the majority class). A dataset can be said to have a ratio of 4:1
if, of the 100 records, 80 belong to the majority class and 20 belong to the
minority class. There are many techniques that can be used to rebalance
datasets. Chapter [6]focuses on this problem but, in this Chapter, the
technique will be used.

is a method used to auto-generate new synthetic instances of
data from the minority class within an unbalanced dataset. works by
adding points around the minority classes instances. New instances are created

by combining existing instances, therefore minimising (but not eliminating)
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the disadvantage of overfitting. Points within the minority class are selected,
and then synthetic data with similar attributes is imputed within the feature

plane. Figure [£.4 shows an example of SMOTE] and how it can be applied

to data (Chawla et al [2002).

O The Majority Class
‘ The Minority Class

@ The Synthetic Object Set

Figure 4.4: An overview of the synthetic minority oversampling technique

4.3.5 Hyperparameter Optimisation

techniques have multiple parameters that are critical in the training of the
model and controlling the accuracy of the resulting trained model. As a result,
the tuning of hyperparameters is an important step within any predictive
model development. The learning rate of a Neural Network is an example
of a hyperparameter, and is defined before the model is trained. Conversely,

the weights of the Neural Network are optimised during the training stage of
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the [MI] model development using the specified hyperparameters. There are

several common methods used to find a good set of hyperparameters and the

following subsections (4.3.5[ and [4.3.5)) will describe two of these methods -

grid search hyperparameter optimisation and random search optimisation.
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Grid Search

Grid search is the most commonly used technique to optimise hyperparameters
in conventional [MI] This brute-force approach iterates over every defined
combination of a specified set of hyperparameter values, kernels, or training
methods to find the result that provides the best performance. Figure
[4.5] shows a set of combinations of different values that will be tested for
hyperparameters 1 and 2. It is computationally expensive to try all the various
combinations of hyperparameters for many real-world problems, particularly

as the problem space becomes more complex. An alternative technique is

random search.
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Figure 4.5: An overview of the grid search algorithm and showing all of the possible
combinations for the two hyperparameters
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Random Search

Using random combinations of the hyperparameters to find the optimal set
for the constructed model is known as random search. A common drawback
of using random search is the variance that is introduced during computing.
Figure [4.6] shows a visual description of how random search can be applied to
a dataset.

Random values within a set of bounds are selected for the hyperparameters
at each iteration of the testing. The model is then trained and evaluated with
that set of hyperparameters (often using cross validation techniques) and then
a new set of hyperparameters are selected at random and the process starts
again. This iterative approach, combined with the randomness, typically
means that a large amount of the search space is considered. The random
search will continue to run for a finite number of iterations at which point

the training will stop.
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Figure 4.6: An overview of the random search algorithm showing all of the selected
combinations for the two hyperparameters considered here.
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4.4 Mortality Prediction using Machine Learn-
ing

4.4.1 ICNARC Dataset

The research in this section was undertaken using the dataset that
was collected at North Middlesex University Hospital cluster between January
1st 2012 and April 30th 2014. The dataset consists of 13,494 patient records,
where each row corresponds to a patient admitted into the [CUL There is no
missing data in the dataset.

The dataset is comprised of 41 features. As well as the physiological
features, there is some additional patient information collected; including
patient age at the time of admission into the [CU| whether the patient had
Cardiopulmonary Resuscitation (CPRI) within 24 hours of admission, the
location of the patient before the admission (which is often referred to as the
source), and whether the patient was intubated during the first 24 hours. All
of the features are defined in Table (.11
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Table 4.1: Features of the ICNARC Dataset

Used Variable Utilised
Anonymised Unit Identifier

Age in years at last birthday

Gender

Residence Prior to admission

Prior Dependency

Severe Liver Disease

Haematological Malignancy

Metastatic Disease

9 Severe Respiratory Disease and Home Ventilation
10  Immunocompromise

11  Cardiovascular Disease

12 Renal disease

13 CPR within 24 hours prior

14  Primary reason for admission

15 ICNARC Diagnostic Category

16  Condition Description

17 Type of Admission

18  Mechanically Ventilated at admission

19  Highest level of care received in unit within 24 hours
20  Basic respiratory support

21 Advanced respiratory support

22 Basic cardiovascular support

23 Advanced cardiovascular support

24  Renal support whilst in unit

25  Neurological support whilst in unit

26  Gastrointestinal support whilst in unit

27  Dermatological support whilst in unit

28  Liver support whilst in unit

0 O Uik Wi

29  APACHE II score Removed
30 ICNARC model physiology score Removed
31 Your unit survival Removed
32 Your hospital survival Removed
33  Expected dependency post-discharge from your hospital Removed
34 Date of admission to your hospital Removed
35 Date of discharge from your hospital Removed
36  Date of admission to your unit Removed
37 Date of discharge from your unit Removed
38 Date of death Removed
39 Date of declaration of brain stem death Removed
40 Readmission within same hospital stay Removed
41 Died or Survived Target Variable

Not all features of the dataset were utilised throughout the study, as with

many [MI] models, the dataset is explored to removed or encode features to
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make sure they can be used by the [MI classifiers. For this body of work all
date-time type features were removed from the study as they many of them
are only available if a patient has died and helps to mitigate overfitting.
Further to this point, the APACHE] and scores were removed from
the model. There was no missing data present in the dataset so no features
were removed because of that.

The mean age of the patients within the given ICNARC dataset is 60
years old. The minimum age of patients is 10 years old whilst the maximum
value is 103. Figure [4.7| shows the count of different ages present within the
dataset split by gender. There are more male records (55.05%) with only
44.95% identified as female. The average length of stay for those admitted
into the ICU is 17 days.

There are 675 different condition descriptions described within the dataset
in the conditionldesc column. The most common description is those who
have been admitted into the ICU with Pneumonia (6.75%). Figure [4.8]is a
word cloud of all of the descriptions.

The total number of patients present in the dataset who passed away in

the ICU is 1668.

4.4.2 Model Development & Evaluation

Section [4.3] discusses the steps taken to produce an effective [MLl pipeline. As
part of the exploratory data analysis stage, it is important to understand if
the class labels are imbalanced. Figure 4.9|shows the distribution of mortality

in the dataset, with 11,838 patients surviving and 1,675 dying. As a result,
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Patient Age Distribution by Gender
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Figure 4.7: The gender distribution within the ICNARC dataset.

following the classifier comparison stage and hyperparameter optimisation
techniques, SMOTE] is used to rebalance the minority class (see section m
for more information).

The dataset (outlined in section was used to train the
[MTI classifiers described in section using a variety of different performance
metrics to determine the suitability of the classifiers. The results of the
preliminary stages of training are presented in Table[4.2] The results obtained
show the scores for [PRE], [REC] Fl-score, and accuracy. Comparing the
results from Table [4.2]to those described in section [4.2] it can be seen that the
Decision Tree and AdaBoost classifiers obtain a comparable overall classifica-

tion accuracy (91% and 90% compared to the greatest classification accuracy



CHAPTER 4. MORTALITY PREDICTION 104

Word Cloud of Patient Condition Descriptions
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Figure 4.8: A word cloud of the most popular patient conditions within the ICNARC
dataset.

described in literature that utilised a similar dataset as 90% (Shenfield et al.,
2017)).
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Patient Outcome Distribution
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Figure 4.9: Histogram to show the distribution of patient outcomes in critical care

units as part of the ICNARC dataset

Table 4.2: Performance of different base classifiers (with the top 3 results presented

in bold)

Classifier Precision  Recall F1-Score Accuracy
K-Nearest Neighbour 0.84 (0.14)  0.85 (0.10)  0.84 (0.10)  0.85 (0.12)
Linear SVM 0.89 (0.08)  0.90 (0.07)  0.88 (0.08)  0.89 (0.04)
RBF SVM 0.75 (0.03)  0.87 (0.04)  0.81 (0.02)  0.87 (0.04)
Gaussian Process  0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 0.90 (0.02)
Decision Tree 0.90 (0.09) 0.91 (0.04) 0.89 (0.02) 0.91 (0.03)
Random Forest 0.85 (0.07)  0.87 (0.07)  0.88 (0.03)  0.87 (0.10)
Neural Network 0.88 (0.02)  0.89 (0.03) 0.88 (0.02)  0.87 (0.03)
AdaBoost 0.89 (0.05) 0.90 (0.03) 0.89 (0.04) 0.90 (0.02)
Naive Bayes 0.87 (0.03)  0.82 (0.02)  0.84 (0.02)  0.82 (0.18)
QDA 0.87 (0.04)  0.83 (0.01)  0.85 (0.02)  0.83 (0.08)

Confusion matrices for the top three performing classifiers (i.e Decision

Trees, Gaussian Process Models, and AdaBoost) are show in Figures ,

4.11], and respectively. Additional information and a complete set of
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confusion matrices produced for the classifier comparison stage is available in

Appendix [A]

Confusion matrix - Decision Tree
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Figure 4.10: Resulting confusion matrix produced from preliminary testing using a
Decision Tree to infer mortality in critical care units

Confusion matrix - Gaussian Process
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Figure 4.11: Resulting confusion matrix produced from preliminary testing using a
Gaussian Process to infer mortality in critical care units
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Confusion matrix - AdaBoost
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Figure 4.12: Resulting confusion matrix produced from preliminary testing using
AdaBoost to infer mortality in critical care units

4.4.3 Classifier & Hyperparameter Optimisation

Each of the top three preforming classifiers (from section were retrained
using both Grid Search hyperparameter optimisation and Random Search
hyperparameter optimisation techniques, to determine the most effective
hyperparameter set for each model. For each set of parameters,
score was produced and tests were repeated multiple times to reduce the
impact of stochasticity.

For the Decision Tree classifier the maximum leaf nodes is tuned in the
training process, where as in the a AdaBoost classifier the n_estimator (number
of estimators) and learning rate are the hyperparameters that were modified
in the tuning phase. Lastly, the Gaussian process algorithm that is typically
used for regression problems, has the kernal and optimiser selection modified

throughout the tuning process. The list of parameters that were modified
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remained consistent with the same thresholds (limits) maintained throughout
the experimental process.

Tables [.3] and [.4] show the mean scores and the standard devia-
tion over five runs using different hyperparameter optimisation techniques.
The Gaussian Process Model produced an average of 0.77 using grid
search. This demonstrates that the Grid Search hyperparameter optimisation
technique was not capable of finding a good set of parameters from the speci-
fied search space. The best values using grid search were produced
by the Decision Tree classifier (0.92) and the ADAboost algorithm (0.91).

The average scores produced when using the random search
hyperparameter optimisation were typically higher than those obtained when
using the grid search methodology. This is often seen as the grid search
methodology can miss local optima due to the parameters not included within
the defined parameters to search. The highest was using Decision
Trees (with an of 0.93).

For both runs of training the model with random search and grid search,
the results and standard deviation of the for the Gaussian process
varied quite a lot. This demonstrates that the hyperparameter selection stage
is very important for producing satisfactory and repeatable results.

It is also apparent that the results when using hyperparameter optimisation
and techniques are a lot higher than the initial classification results
presented in section 4.2 with each classifier outperforming the corresponding
classification results from earlier tests. was applied to the training
dataset to introduce additional records in the minority class, the sampling

strategy was used to make sure there was an equal amount of both target
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classes.

Table 4.3: Results to show AUROC for mortality prediction making use of Grid
Search Hyperparameter optimisation

Classifier AUROC

Gaussian Process 0.77 (0.40)
Decision Tree 0.92 (0.08)
Adaboost 0.91 (0.03)

Table 4.4: Results to show AUROC for mortality prediction making use of Random
Search Hyperparameter optimisation

Classifier AUROC

Gaussian Process 0.87 (0.32)
Decision Tree 0.93 (0.06)
Adaboost 0.89 (0.05)

Random grid search hyperparameter optimisation, with the decision tree
algorithm proved to be the most successful algorithm. The final parameter

set is shown in table [4.5]

Parameter Tuned Value
n_estimator 200
min_samples_leaf 4
max_features auto
max_depth 10

min_sample_splits 2

Table 4.5: Random Search Optimised Hyperparameters for Decision Tree Classifier

4.4.4 Final Performance Assessment

To further improve the discriminative capabilities of the trained model, syn-
thetic data was introduced to the minority class to rebalance the data frame.
This synthetic data made use of the [SMOTE technique to rebalance the

dataset ensuring there are equal numbers of both classes. Figure [4.13| shows
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a curve for the Decision Tree classifier. Used to demonstrate the trade
off between sensitivity and specificity of classifiers across different classifi-
cation thresholds, curves are commonly used in the medical domain to
determine the overall discrimination of a trained classifier. The of
the the decision tree model is labelled on Figure and is also shown in
Table [4.6

The dashed red line in Figure is defined as the baseline and is often
known as the “worst case” for a curve. The blue line indicates the
average curve across the repeated 10-fold cross validation, using random
search hyperparameters optimisation and oversampling techniques.

Table [4.6] shows the results obtained from repeating the final tests multiple
times. The maximum was 0.95, with a mean of 0.93. The
standard deviation of the over all runs 0.02 showed that there was
little variance in the results. Figure [£.14] is the and score
generated for the APACHE Il score on the same dataset. The final optimised
algorithm has produced better results than that and has improved on the
score for introduced in section however this is not using
the same set of features or dataset so further work would be required to fairly

compare the two scrobing systems.
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Figure 4.
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13: Receiver Operating Characteristic Curve for final decision tree model
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Figure 4.14: Results to show ROC curve for determining mortality using the

APACHE-II score
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Table 4.6: Results to show AUROC scores for mortality prediction making use of
Random Search Hyperparameter optimisation and SMOTE

Metric Result
Average AUROC 0.93
Standard Deviation AUROC 0.02
Maximum AUROC 0.95
Minimum AUROC 0.89

Table 4.7: Results for mortality prediction utilising decision tree classifier with
Random search optimisation on unseen data

Metric Result
Precision 0.91
Recall 0.93
Accuracy 0.92

The results in Table 4.7 showed that the addition of synthetic data
increased overall accuracy by 1%. The resulting model performs well on
unseen data and does not overfit on the original dataset, even with the

addition of synthetic data.
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4.5 Online Learning

4.5.1 Introduction

As discussed in section [4.2] a single mortality prediction model may start to
perform poorly as patient cohorts and treatments change. A more effective
solution might be to adapt the predictive model at a local level to deal with
evolving population demographics and available medical treatments. To this
point, an efficient solution would be that each hospital has their own trained
model that can be maintained and updated in real time.

Online learning (also known as real-time [MTl) is the process of training a
model in real time. As new data enters the system the trained parameters of
the algorithm are updated to try and find the best result for a predefined
metric. This section examines the effects of applying online learning to the
dataset using the pre-trained [MI] algorithm and parameters from
section 4.4.4]

Event driven architectures are common ways of deploying [MI] models in
a production setting. The continuous flow of data through a data stream
is given to the model, and the model training pipeline will handle any data
issues, transformations, or enrichment’s to ensure that the data is consistent

and ready to be utilised to retrain the model.

4.5.2 Mapping the System

Production ready online learning models require a detailed [ML] data pipeline

that deals with the dataset at varying stages of the model training process.
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Figure 4.15| shows a typical data pipeline for online learning. Due to the
extensive model development introduced earlier in this Chapter, for this
research I have focused on the resulting output, as the data fed in to the

model over time changes.

Model Data

Fetch

Data
" ".
Monitor Clean The Data

Model
Deployment

* . 4

Deploy Prepare
Model Data

Evaluate . Train
Model Model
Model
Development

Figure 4.15: An example of an online machine learning data pipeline

Furthermore, many online models use all of the data provided, however, as
the available treatments and medicines are changing rapidly within hospitals,
the last three months of the data are used in the model at each stage. The
dataset is split into different patient cohorts based on a feature, each different
cohort is used to train the model with a final split being used to test the

results.

4.5.3 Experimental Setup

To demonstrate the hypothesis that using different patient cohorts will im-

prove the overall performance of a trained classifier a selection of tests were
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undertaken. To demonstrate that as medicines and treatments improve over
time the model is constantly improving, the dataset was split based on dif-
ferent features: date of admission to [[CUl (training on the previous month,
testing on the current) and the age of the patient (testing on the old and

training on the young).

Experimental Setup: Date Of Admission

To demonstrate that retraining models, in real-time, can be used as an effective
way to develop mortality risk prediction tools that can handle new patient
cohorts. Two methods of splitting the dataset were used. One such method
was training on a previous month of data and testing on the next, with the
test data becoming the training data in the following month. Figure [4.16
presents this concept and how it would be applied across the year. The “date
of submission” into the [CUlis used to determine the data.

The model used to test this hypothesis is the optimised decision tree
classifier introduced in section 4.4l Each run was undertaken 10 times with

the [ATUROC] and accuracy scores presented for each month.
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Figure 4.16: Experimental setup for training and testing using online learning with
retraining triggered at the start of the month.
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Experimental Setup: Age

Another alternative approach to using the date of submission into [CUl as
the feature to split up the dataset, is using different age cohorts. The dataset
contains records of varying ages from 10 to 103. To prove the hypothesis
that training the young and testing the old can be a practical approach to
keeping mortality systems up to date, increments of 5 years will be considered.
Training for the first round of experiments is undertaken on those under 40,
and those older than 40 become the test set. 40 is selected as the cut off
age as the number of patients within the dataset under the age of 40 is only
2119 (15% of the dataset) - younger ages were considered but there is only
1 patient under the age of 10 and 226 under the age of 20 (1.6%). For the
second iteration, all the patients under 45 are considered, and those over 45
are used in the testing set. The and accuracy are recorded at each
increment to monitor how it changes over each experiment. The same decision

tree classifier is used to ensure the results are comparable to those produced

in sections [4.4.4) and [£.6.1] Figure demonstrates how the training and

testing data changes over time.
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Available Data
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Figure 4.17: Experimental setup for training and testing using online learning with
retraining triggered based on age.

4.6 Experimental Results

4.6.1 Experimental Results: Date of Admission

In total 11 different training and testing scenarios were considered throughout
the experiments. No test results were provided for January as this was the
first month used as training data. Accuracy and [AUROCI scores are provided

from February to December. Each test was run ten times to remove as much
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