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ABSTRACT

Supply chains operate in a highly distuptive environment where a SC master plan should be
updated in line with disruptions to ensure that a high service level is provided to customers while
total cost is minimised. There is an absence of knowledge of how a SC master plan should be updated
to cope with disruptions using hybrid modelling. To fill this gap, we present a hybrid modelling
framework to update a SC master plan in presence of disruptions. The proposed framework, which
is a precursor to a SC digital twin, integrates simulation, machine learning, and optimisation to
identify the production, storage, and distribution values that maximise SC service level while min-
imising total cost under disruptions. This approach proves effective in a SC disrupted by demand
increase and lead time extension. Results show that employing hybrid modelling leads to a notice-
able improvement in service level and total cost. The outcome of the new knowledge on using
hybrid modelling for managing disruptions provides essential learning for the extension of mod-
elling through a digital twin for SC master planning. We observe that in the presence of disruptions
it is more economical to keep higher inventory at downstream SC members than the upstream SC
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members.

1. Introduction

Supply chain (SC) disruptions are low-frequency-high-
impact events that disrupt product, information and
financial flows within a SC network (Ivanov et al. 2019).
The disruptions may be caused by internal problems
such as supplier failure or external events such as the
Covid-19 pandemic (Badakhshan and Ball 2023). SC dis-
ruptions result in delivery delays and product shortages
that propagate downstream of the SCs. This phenomenon
is known as the ripple effect and adversely impacts the
service level of the SCs (Dolgui and Ivanov 2021). The
ripple effect occurs when a disruption is not contained
in one part of a SC and spreads throughout a SC which
results in a reduced service level (Dolgui, Ivanov, and
Sokolov 2018). SC disruptions are becoming more preva-
lent. SC monitoring platform Resilinc reported that dis-
ruptions increased by 67% in 2020 compared to 2019
(Resilinc 2021). The Covid-19 pandemic was reported
the most disruptive event of 2020. The demand for many
products significantly increased. While the distribution
lead time between SC members was extended due to
delays at international borders. These led to reduced ser-
vice levels (Burgos and Ivanov 2021; Ivanov and Das
2020).

Under these circumstances updating a SC master plan
which contains the optimal production, storage, and dis-
tribution decisions in a SC in line with disruptions is
key to minimising the impact of the disruptions on the
SC service level. To identify these decisions, SC plan-
ners need to consider the complex dynamic interac-
tions between a wide range of variables in the presence
of disruptions (e.g. demand growth, lead time exten-
sion) which may result in an intractable problem (Bis-
chak et al. 2014). To address this, modelling techniques
that efficiently capture the complexities and dynamic
behaviour of SCs need to be integrated with the mod-
elling techniques that can identify the optimal configura-
tions (Ivanov and Dolgui 2021; Serrano-Ruiz, Mula, and
Poler 2021). Additionally, such configurations would be
used for analysing real-time or near real-time data that
are collected in a SC digital twin.

Simulation models have been widely applied to inves-
tigate the impact of disruptions on SC performance,
owing to their capability in capturing complexities
and incorporating the dynamic behaviour of SCs (e.g.
Ivanov 2020; Li and Zobel 2020; Llaguno, Mula, and
Campuzano-Bolarin 2022; Olivares- Aguila and EIMaraghy
2021). The main shortcoming of the simulation
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models is that they compare the effects of varied decisions
on SC performance under disruptions through perform-
ing what-if analysis and are not able to guide the deci-
sion makers by generating decision rules (Badakhshan
et al. 2020). Machine learning can address this short-
coming as it is able to assist decision makers in iden-
tifying suitable decisions in presence of disruptions by
generating decision rules (Priore et al. 2019). The appli-
cation of machine learning for predicting and managing
disruptions has been sparse (e.g. Brintrup et al. 2020;
Zheng, Kong, and Brintrup 2023). Although, it has been
widely used for demand forecasting in SCs (e.g. Guo
et al. 2022; Kantasa-Ard et al. 2021; Lau, Zhang, and Xu
2018; Zhu et al. 2021). Simulation and machine learn-
ing are predictive tools, therefore they cannot identify
the optimal SC master plan i.e. the optimal production,
storage, and distribution decisions (Ball and Badakhshan
2021).

Optimisation models are prescriptive tools which can
identify an optimal SC master plan and have been widely
used in the literature (e.g. Arani and Torabi 2018; Sut-
thibutr and Chiadamrong 2019; Yaghin, Sarlak, and
Ghareaghaji 2020). These models are not as efficient as
simulation models in capturing complexities and incor-
porating the dynamic behaviour of SCs as considering
these significantly increases their computational time.
Moreover, optimisation models only identify the optimal
decisions and do not generate decision rules as machine
learning does to assist decision makers in the decision-
making process.

By integrating simulation, optimisation, and machine
learning techniques, we can reap the benefits of each
technique. There is a gap in research on integrating
simulation, optimisation, and machine learning for SC
master planning. Moreover, there is a gap in the SC
master planning literature of considering disruptions.
From this perspective, this work develops a hybrid mod-
elling framework which integrates simulation, optimi-
sation, and machine learning for SC master planning
under lead time and demand disruptions. A SC digital
twin which is a replication of the physical supply chain
in digital environment is an effective tool for minimis-
ing the impact of disruptions on SC performance. The
reason for this is that a SC digital twin is responsive to
disruptions and updates SC decisions in line with disrup-
tions. Hybrid modelling is one of the main precursors
to a SC digital twin. The hybrid modelling frameworks
are needed to show the functionality of digital twins
offline before their integration with real-time or near
real-time data can be attempted. Leaping at live data
directly without solving the underlying modelling chal-
lenges will mean that whilst real-time or near real-time
modelling can be carried out, it is insufficient to address

SC master planning problem under disruptions in a rea-
sonable time. Although, literature on digital twins for
productions have highlighted the significance of hybrid
modelling frameworks that incorporate simulation, opti-
misation, and machine learning for tackling SC master
planning problem under disruptions (e.g. Dolgui, Ivanov,
and Sokolov 2020; Ivanov and Dolgui 2021), no studies
have demonstrated the application of such hybrid frame-
works in practice. To fill this gap, this study presents a
hybrid modelling framework that combines simulation,
optimisation, and machine learning to address the SC
master planning problem in presence of demand and
lead time disruptions. The research contribution there-
fore is demonstrating the ability to generate optimised,
explainable solutions with decision rules that account for
dynamics, constraints and disruptions in both demand
and lead time with a single framework.

The developed framework aims to answer three
research questions: (1) What is the impact of disrup-
tions on SC service level? (2) How can a hybrid mod-
elling framework identify an optimal SC master plan
to maximise SC service level in the presence of disrup-
tions while minimising SC total cost? and (3) How can
a hybrid modelling framework support the development
of a SC digital twin? By addressing these research ques-
tions, it is possible to both understand and minimise
the impact of disruptions giving the potential for iden-
tiftying the optimal SC master plan in the presence of
disruptions which in turn improves the service level. To
answer the first question, the framework uses discrete-
event simulation (DES) which is a widely used tool for
examining the impact of disruptions on SC performance.
To answer the second question, the framework inte-
grates simulation, optimisation, and machine learning
to update a SC master plan according to disruptions.
Hybrid modelling is more efficient than individual simu-
lation, optimisation, and machine learning for answering
research question 2 as it overcomes the shortcoming of
being bound by underlying methodological constraints
that exist in each of these modelling approaches (Onggo
et al. 2018). Simulation and machine learning cannot
determine an optimal SC master plan to maximise SC ser-
vice level under disruptions while minimising SC total
cost because they are predictive tools not prescriptive
ones. Optimisation is a prescriptive tool which can iden-
tify an optimal SC master plan to maximise SC service
level under disruptions while minimising SC total cost
but incorporating SC dynamics significantly increases
its computational time. By integrating simulation, opti-
misation, and machine learning we can identify an SC
master plan which minimises SC total cost and max-
imises SC service level under disruptions in a reasonable
time.



To answer the third question, the role of the developed
framework in a SC digital twin is discussed. Hybrid mod-
elling is the backbone of a SC digital twin. The hybrid
modelling frameworks are needed to demonstrate the
functionality of digital twins offline before their inte-
gration with real-time or near real-time data can be
attempted. Rushing into using live data without address-
ing the underlying modelling challenges will mean that
whilst real-time or near real-time modelling can be con-
ducted it is insufficient to address SC master planning
problem under disruptions in a reasonable time.

To illustrate the effectiveness of our approach, we com-
pare its performance against the case in which the SC
master plan is not adjusted in line with disruptions. This
study aims to show that hybrid modelling can support
decision making better than one technique alone and
therefore would result in increased performance. In turn,
the proposed hybrid modelling framework may con-
tribute to the development of a SC digital twin by incor-
porating real-time or near real-time data on the product
and order flows.

The remainder of the paper is organised as follows:
the literature review is presented in Section 2. Section 3
describes the SC master planning problem under disrup-
tions and presents the hybrid modelling framework for
addressing the problem. Section 4 discusses the impacts
of three disruption scenarios on the SC service level.
Section 5 shows the performance of the hybrid mod-
elling framework in managing the disruptions. Section 6
discusses the role of the hybrid modelling in a SC digi-
tal twin. Finally, Section 7 identifies the contributions to
knowledge and presents further research directions.

2. Literature review

The literature review is organised in line with four
research domains that are relevant to this study. These are
hybrid modelling for SC planning, SC disruption man-
agement, SC master planning and digital twins for pro-
duction. For each of these reviews searches were based on
Boolean combinations of keywords in specific databases
and generic inclusion and exclusion criteria were applied.
Throughout the Scopus data was used. For the hybrid
modelling review, the Web of Science and IEEE Xplore
databases were also employed. The inclusion criteria were
manufacturing supply chains, empirical studies (either
real case study or using synthetic datasets) and plan-
ning applications. The exclusion criteria were theoretical
studies, studies without application, those not primarily
focused on planning, absence of data sourcing and lack of
actionable decisions. The papers were drawn exclusively
from the keyword search and snowballing was not used.
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2.1. Hybrid modelling for SC planning

Hybrid modelling refers to a modelling approach which
consists of more than one modelling technique. The use
of hybrid modelling for addressing SC planning prob-
lems has gained popularity among both researchers and
practitioners (Mustafee et al. 2017). The reason for this
is that the hybrid modelling approach overcomes the
shortcoming of being bound by underlying methodolog-
ical constraints that exist in a single modelling approach
(Onggo et al. 2018). Of particular interest in this study is
the integration of simulation, optimisation, and machine
learning techniques for SC planning and the gaps in these
techniques to address SC planning problems. Therefore,
we review previous studies which have integrated these
techniques to address SC planning problems. The search
was used keywords ‘simulation’, ‘optimisation’, ‘machine
learning’, and ‘supply chain’. The identified papers were
then reviewed and those in which there was a clear
data exchange between the modelling techniques were
selected. Table 1 presents a summary of the literature on
hybrid modelling for SC planning.

The first group of papers integrated simulation and
optimisation to address SC planning problems. These
papers use simulation for considering SC uncertain-
ties and optimisation for determining optimal SC deci-
sions. For instance, Clavijo-Buritica, Triana-Sanchez, and
Escobar (2022) and Akhtari and Sowlati (2020) inte-
grated a discrete-event simulation (DES) model and a
mixed-integer programming (MIP) model to address a
SC network design problem. The DES model investi-
gated the impact of disruptions on SC performance and
the MIP model identified the optimal production, stor-
age and distribution values. Safaei et al. (2010) and Bil-
gen and Celebi (2013) paired a DES model which was
responsible for handling uncertainties such as machine
breakdowns, queuing, and transportation delays and a
MIP model which determined the optimal decisions
to address a production-distribution planning problem.
The main shortcoming of these papers is that they do
not provide any insight into the process of identifying
the optimal SC decisions. To overcome this shortcom-
ing, clear-box algorithms which can provide insight into
decision-making process by generating decision rules are
needed.

The second group of studies integrated simulation
and machine learning to address SC planning problems.
These studies use simulation data for training machine
learning algorithms. Jackson and Velazquez-Martinez
(2021) employed a DES model to generate data for a
multilayer perceptron model which classified inventory
policies as profitable or non-profitable in a food SC.
Morin et al. (2020) used the generated data by sawing
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Table 1. Literature on hybrid modelling for SC planning.

Study

Hybrid modelling
approach

Simulation role

Optimisation role

Machine learning role

Clavijo-Buritica, Triana-
Sanchez, and Escobar
(2022), Akhtari and Sowlati
(2020)

Safaei et al. (2010) and Bilgen
and Celebi (2013)

Jackson and Velazquez-
Martinez (2021), Morin et al.
(2020), Cavalcante et al.
(2019), Badakhshan and
Ball (2023) and Priore et al.
(2019)

Islam, Amin, and Wardley
(2021)

Gumte et al. (2021)

Bhosekar and lerapetritou
(2021), Goettsch, Castillo-
Villar, and Aranguren
(2020)

Onggo et al. (2018) and Onggo
(2019), Pereira and Frazzon

Simulation-optimisation

Simulation-optimisation

Simulation-machine
learning

Optimisation-machine
learning

Optimisation-machine
learning

Optimisation-machine
learning

SBO-machine learning

Predict the impact of
disruptions on SC
performance

Handle SC uncertainties

Generate data

Estimate optimisation
objective

Optimise SC network
design

Optimise production and
distribution decisions

Optimise supplier and
order allocation

optimise SC network
design

Optimise SC network

design

Optimise simulation
parameters

Predict SC performance

Predict uncertain
parameters in
optimisation model

Predict uncertain
parameters in
optimisation model

Shrink the decision space

Predict uncertain
parameters in

(2021), Raghuram et al.
(2022), Gonzalez, Jalali, and
Van Nieuwenhuyse (2020)

simulation model

simulation to train machine learning models to predict
the baskets of products that could be produced from
a log. Cavalcante et al. (2019) paired simulation and
machine learning to address a supplier selection prob-
lem. Badakhshan, Ball, and Badakhshan (2022) and Pri-
ore et al. (2019) trained a decision tree algorithm using
simulation data to reduce the bullwhip effect and cash
flow bullwhip in SCs, respectively. The main limitation
of these papers is that they cannot identify the optimal
SC decisions. In other words, they are only predictive
and not prescriptive. To address this limitation, optimi-
sation models are needed to determine the optimal SC
decisions.

The third group contains papers that integrated
optimisation and machine learning. Some of these
papers employ machine learning for predicting uncer-
tain parameters in optimisation models. For instance,
Islam, Amin, and Wardley (2021) paired a MIP model
and the relational regression chain method to address a
supplier selection and order allocation problem. Gumte
et al. (2021) employed the Neuro-Fuzzy C-means clus-
tering algorithm to handle uncertainty in a robust opti-
misation model which was developed for a biomass SC
network design. Some papers used machine learning
to shrink the decision space of an optimisation model
and therefore reduce the computation time. Bhosekar
and Ierapetritou (2021) employed the support vector
machine method to approximate feasible production

regions in a MIP model which aimed to optimise a
modular manufacturing SC. Goettsch, Castillo-Villar,
and Aranguren (2020) employed a multilayer percep-
tron model to select potential depots in a MIP model
which aimed to optimise a biomass SC. The main limi-
tation of these papers is that they mostly used black-box
machine learning algorithms which are unable to gener-
ate decision rules for the decision makers. To address this
limitation, again clear-box machine learning algorithms
are needed to generate decision rules for the decision
makers.

The fourth group contains studies that integrated
simulation-based optimisation (SBO) and machine
learning. SBO is a modelling framework which incorpo-
rates an optimisation algorithm into a simulation model
to determine the optimal simulation parameters con-
figuration (Kiick et al. 2016). In SBO, the optimisation
objective function is estimated using a simulation model
(Aslam and Ng 2015). These studies used machine learn-
ing to predict uncertain parameters in simulation mod-
els. Onggo et al. (2018) and Onggo (2019) developed
conceptual frameworks for integrating machine learn-
ing and SBO. Pereira and Frazzon (2021) and Raghuram
et al. (2022) presented a two-step approach for syn-
chronising demand and supply in SCs. In the first step,
demand was forecasted using an artificial neural net-
work. In the second step, the forecasted demand was
inputted into an SBO model where optimal distribution



and inventory parameters were identified using an opti-
misation algorithm. Gonzalez, Jalali, and Van Nieuwen-
huyse (2020) used a gaussian process regression model to
improve search efficiency in an SBO model. These studies
use SBO to determine the optimal values of the decision
parameters in SCs. The limitation of the SBO is that it
cannot include constraints on decision variables such as
the flow of products in a SC and therefore it cannot iden-
tify the optimal values for the decision variables. This
is because decision variables are endogenous to simula-
tion. To determine the optimal values for the decision
variables, there needs to be an independent optimisation
model which contains constraints on the decision vari-
ables. To this end, an independent optimisation model,
e.g. MIP, is needed to determine the optimal decisions
in a SC. Moreover, these studies used machine learning
only for predicting uncertain parameters in a simulation
model. Machine learning could also be used for defining
constraints on the decision variables in an optimisation
model.

Much of the literature on hybrid modelling for SC
planning do not consider disruptions. Moreover, there
is a scarcity of studies that show the application of a
simulation-optimisation-machine learning framework to
address SC planning problems. Although the applications
of such frameworks in other domains have been pre-
sented (e.g. Dong et al. 2022; Harper and Mustafee 2019;
Hou et al. 2022; Mohammadi, Safari, and Vazifehkhah
2022). Therefore, there is a gap in the literature on the
application of a simulation-optimisation-machine learn-
ing framework to address SC planning problems under
disruptions. This confirms research question 2: How can
a hybrid modelling framework identify an optimal SC
master plan to maximise SC service level in the pres-
ence of disruptions while minimising SC total cost? To
address these gaps, a combination of simulation, opti-
misation, and machine learning offers an opportunity
to address a SC master planning problem in the pres-
ence of demand and lead time disruptions. There is the
potential for strengths in each technique to overcome the
weaknesses in other techniques.

2.2. SCdisruption management

The existing body of literature on SC disruption man-
agement has employed various modelling approaches to
develop strategies aimed at reducing the adverse effects
of disruptions on SC performance. Simulation is widely
used to investigate the impact of disruptions on SC per-
formance, owing to its capability in capturing complex-
ities and incorporating the dynamic behaviour of SCs
(Ivanov and Dolgui 2021). The first category shown in
Table 2 corresponds to studies which applied simulation

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH . 5

for modelling SC disruptions. Three main simulation
methods, namely discrete-event simulation (DES), sys-
tem dynamics (SD), and agent-based simulation (ABS)
have been utilised to model SC disruptions.

For instance, Carvalho et al. (2012) investigated the
impact of transportation disruption on SC total cost.
They suggested holding redundant inventory and hav-
ing back-up transport could serve as effective strategies to
mitigate the impact of transportation disruption. Ivanov
(2020) considered supply, transportation, and demand
disruptions to study the impact of COVID-19 on global
supply chains. Olivares-Aguila and ElMaraghy (2021)
and Llaguno, Mula, and Campuzano-Bolarin (2022)
examined how supply and production capacity disrup-
tions affect the profitability and service level of SCs.
Bueno-Solano and Cedillo-Campos (2014) explored the
effects of border disruptions on inventory levels and total
costs within a global automotive supply chain. Chauhan,
Perera, and Brintrup (2021) created a model for the prop-
agation of failures to examine how a nested pattern topol-
ogy affects the resilience of SCs in the face of supply
disruptions. Li and Zobel (2020) introduced a frame-
work for assessing the resilience of a supply chain when
confronted with the ripple effect which refers to the dis-
ruption propagation from the initial disruption point
throughout the SC (Ivanov et al. 2019). The main lim-
itation of these studies is that they cannot optimise SC
performance. To address this, they need to be integrated
with an optimisation technique.

The second category of papers used machine learning
to predict disruptions and mitigate the negative impact
of disruptions on SC performance. For instance, Brin-
trup et al. (2020) employed a random forest algorithm to
predict SC disruptions using historical data available to
an Original Equipment Manufacturer (OEM). Xu, Mak,
and Brintrup (2021) proposed the use of bots to recon-
figure SCs in the face of disruptions. Hosseini and Ivanov
(2022) developed a multilayer Bayesian network (BN)
model capable of detecting triggers that caused disrup-
tions in SCs during the COVID-19 pandemic. Zheng,
Kong, and Brintrup (2023) used a federated learning
approach to predict order delays in SCs. Machine learn-
ing models cannot optimise SC performance in presence
of disruptions unless they are coupled with optimisation.

The third category consists of studies that applied opti-
misation to minimise the impact of disruptions on SC
performance. Sawik (2023) presented a stochastic mixed
integer programming model to address a SC reshoring
problem in the presence of manufacturing, transporta-
tion, and demand disruptions. Pathy and Rahimian
(2023) used optimisation to identify the optimal pro-
curement and inventory decisions for a pharmaceuti-
cal SC under demand disruptions. Babaei, Khedmati,
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Table 2. Literature on SC disruption management.

Study Modelling approach Disruption type Limitation by category
Carvalho et al. (2012) DES Transportation Incapable of optimising SC
performance in the presence
of disruptions
Ivanov (2020) DES Supply
Transportation
Demand
Olivares-Aguila and EIMaraghy (2021); Llaguno, Mula, and SD Supply
Campuzano-Bolarin (2022)
Capacity
Bueno-Solano and Cedillo-Campos (2014) SD Supply
Border
Chauhan, Perera, and Brintrup (2021) ABS Supply
Li and Zobel (2020) ABS Node
Environmental
Brintrup et al. (2020); Xu, Mak, and Brintrup (2021); Hosseini and Machine learning Supply Incapable of optimising SC

Ivanov (2022); Zheng, Kong, and Brintrup (2023)

performance in the presence
of disruptions

Sawik (2023) Optimisation Manufacturing Computationally inefficient
in case of considering SC
dynamics

Transportation
Demand
Pathy and Rahimian (2023) Optimisation Demand
Babaei, Khedmati, and Akbari Jokar (2023); Mohammed et al. Optimisation Supply
(2023)
Wang and Yao (2023) Optimisation Transportation
Capacity
Ivanov (2019) DES Capacity Not considering both demand
and lead time disruptions

Linear programming

Ivanov and Rozhkov (2020) DES Capacity
ABS
Parametrical optimisation

Jaenichen et al. (2022) Simulation Demand
Machine learning

Sindhwani, Jayaram, and Saddikuti (2023) Bayesian network Supply
DES
Optimisation

Saputro, Figueira, and Almada-Lobo (2021) DES Supply
Optimisation

and Akbari Jokar (2023) and Mohammed et al. (2023)
employed optimisation to address the SC network design
problem in the presence of supply disruptions. Wang
and Yao (2023) optimised a SC network structure under
capacity and transportation disruptions. The primary
constraint of optimisation models is that they will
become computationally inefficient if they consider SC
dynamics as simulation and machine learning models do.
To address this, optimisation models should be integrated
with simulation and machine learning.

Category four includes studies that used hybrid mod-
elling for SC disruption management. Ivanov (2019)
combined DES and linear programming to address a
network design and production-ordering management
problem in a beverage SC in the presence of capacity
disruption. Ivanov and Rozhkov (2020) integrated DES,
ABS, and parametrical optimisation to address an inven-
tory and production planning problem under capac-
ity disruption. Jaenichen et al. (2022) investigated the

consequences of demand disruption in semiconductor
SCs by combining simulation and tree-based supervised
machine learning. Sindhwani, Jayaram, and Saddikuti
(2023) integrated Bayesian network modelling, DES, and
optimisation to mitigate the ripple effect in a pharma-
ceutical SC. Saputro, Figueira, and Almada-Lobo (2021)
used simulation-optimisation to address an integrated
supplier selection and inventory management problem
in the face of supply disruptions. The main limitation
of these studies is that they either consider supply or
demand disruptions. There is no study which considers
both demand and supply disruptions.

As per the hybrid modelling review, this SC disrup-
tion review revealed there is no study which presented
a hybrid framework including simulation, optimisation,
and machine learning to address a SC master planning
problem in the presence of demand and lead time dis-
ruptions. This confirms research question 2: How can
a hybrid modelling framework identify an optimal SC



master plan to maximise SC service level in the presence
of disruptions while minimising SC total cost? To fill this
gap in the SC disruption management literature, we inte-
grate simulation, optimisation, and machine learning to
address a SC master planning problem in a two-echelon

SC under demand and lead time disruptions.

Table 3. Literature on SC master planning.
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2.3. SC master planning

SC master planning aims to coordinate production, stor-
age, and distribution in a SC to meet customer demand
at the minimum cost. To this end, it integrates planning
of different functional areas to identify the optimal

Study

Modelling approach

Model objectives

Uncertain parameters

Uncertainty
handling method

Arani and Torabi (2018)

Fallah, Eskandari, and Pishvaee
(2018)

Yaghin, Sarlak, and Ghareaghaji
(2020)

Martin, Diaz-Madroiiero, and
Mula (2020)
Peidro et al. (2012)

Sutthibutr and Chiadamrong
(2019)

Chern, Lei, and Huang (2014)

Gallego-Garcia, Gallego-Garcia,
and Garcia-Garcia (2021)

Ewen et al. (2017)

Orcun and Uzsoy (2011)

Powell Robinson Jr, Sahin, and
Gao (2008)

Alves and Mateus (2020)

Kegenbekov and Jackson
(2021)

Lauer, Legner, and Henke

(2019)
Afridi et al. (2020)

Vieira et al. (2022)

Chern, Chen, and Huang (2014)
Lietal. (2016)

Nedaei and Mahlooji (2014)

Mixed integer linear
programming (MILP)

MILP

Mixed integer non-linear
programming (MINLP)

MILP

LP

LP

MILP

Simulation

Simulation

Simulation
Simulation

Machine learning
Machine learning
Machine learning

Machine learning

Simulation-optimisation

Simulation-optimisation
Simulation-optimisation

Simulation-optimisation

Max net present value
(NPV)

Min total cost

Max total profit

Max total cost

Max total gross margin
Min idle time

Min backorder

Min total cost

Maximise total value of
purchasing

Min costs, Min
substitution priority

Max service level

Min total cost

Max production
capacity

Min Bullwhip effect

Min cost

Min instability

Min total cost

Min bullwhip effect

Min instability

Max service level

Min inventory cost
Min total cost

Max total profit
Max fill rate

Min cost
Min cost

Min instability

Costs

Price

Production capacity

Maximum allowed
debt

Costs

Demand
Production capacity
Costs

Price

Production capacity
Safety stocks
Process times

Gross margin
Idle time backorder

Costs
Demand

Production capacity
Recycling time

Supply shortage

Demand

Production capacity
Master plan design
factors

Environmental factors
Demand

Demand
Demand

Demand

Processing and setup
times

Robot travelling
velocity

Recycling time

Processing and setup
times

Demand

Master plan design
factors

Environmental factors

Fuzzy programming

Robust optimisation

Fuzzy programming

Robust optimisation

Fuzzy programming

Fuzzy programming

Stochastic
programming
Scenario analysis

Scenario analysis

Scenario analysis
Scenario analysis

Markov decision
process

Markov decision
process

Markov decision
process

Simulation

Simulation
Simulation

Simulation
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production, storage and distribution values in a SC
(Pibernik and Sucky 2007). Previous studies have mostly
employed one modelling technique to address the SC
master planning (SCMP) problem. Table 3 presents a
summary of the literature on SCMP.

The first cluster of papers developed optimisation
models to address the SCMP problem. For instance,
Arani and Torabi (2018) presented a bi-objective mixed
possibilistic-stochastic model to address a SCMP prob-
lem that integrated physical and financial flows. Sut-
thibutr and Chiadamrong (2019) presented a multi-
objective linear fuzzy model to identify an optimal SC
master plan in an uncertain environment. Yaghin, Sar-
lak, and Ghareaghaji (2020) proposed a mixed-integer
non-linear programming model to deal with the mas-
ter planning of a socially sustainable SC under fuzzy-
stochastic uncertainty. Social sustainability was investi-
gated through the lens of workers” working conditions
and social investment. Martin, Diaz-Madroiiero, and
Mula (2020) addressed a SCMP problem for a second-tier
automobile supplier using robust optimisation.

The second cluster contains studies that employed
simulation to study a SCMP problem. Gallego-Garcia,
Gallego-Garcia, and Garcia-Garcia (2021) presented a
simulation model to identify the best-fit procurement
order quantities for a manufacturer that faced supply
shortages from his supplier. Ewen et al. (2017) pro-
posed a simulation model to determine strategies for
improving manufacturing capacity in semiconductor
SCs. Orcun and Uzsoy (2011) used system dynamics sim-
ulation to study the effects of SC master planning on
the dynamic behaviour of the SCs. Powell Robinson Jr,
Sahin, and Gao (2008) applied simulation to evaluate
the impact of four SC master plan design factors includ-
ing non-frozen interval policy, planning horizon length,
frozen interval length and re-planning frequency and
four environmental factors including natural order cycle
length, vendor flexibility, demand range and demand
lumpiness on cost and instability of the SC master
plan.

The third cluster includes studies that employed
machine learning techniques to address a SC master
planning problem. For instance, Alves and Mateus (2020)
and Kegenbekov and Jackson (2021) applied the proxi-
mal policy optimisation algorithm which is a deep rein-
forcement learning algorithm to deal with the SC mas-
ter planning problem under demand uncertainty. Lauer,
Legner, and Henke (2019) employed the random forest
algorithm to predict the instability of a master plan in
a semiconductor SC. Afridi et al. (2020) used the Q-
learning algorithm to find the optimal replenishment
policy under a vendor-managed inventory setting in a
semiconductor SC.

Finally, cluster four contains studies that used simul-
ation-optimisation to address a SCMP problem. Pon-
signon and Monch (2014) presented a simulation-
optimisation model that integrated discrete-event sim-
ulation and genetic algorithms to determine the opti-
mal master plan in a semiconductor SC. Chern, Chen,
and Huang (2014) coupled a heuristic algorithm called
stochastic recycling process planning algorithm (SRPPA)
with simulation to address a SCMP problem in a
recycling supply chain. Li et al. (2016) integrated a
metamodel-based Monte Carlo simulation with multi-
objective optimisation to address a SC master planning
problem. Vieira et al. (2022) proposed a simulation-
optimisation approach that integrated a two-level mixed
integer linear programming model and a discrete-event
simulation model to determine the optimal master plans
ina SC.

There is no study on addressing the SCMP problem in
the presence of demand and lead time disruptions. This
confirms research question 1: What is the impact of dis-
ruptions on SC service level? Moreover, Serrano-Ruiz,
Mula, and Poler (2021) presented a conceptual frame-
work in which they highlighted the need for an integrated
simulation-optimisation-machine learning framework to
address a SC master planning problem in the face of dis-
ruptions. Although, there is no study which showed the
application of such an integrated framework for address-
ing a SCMP problem in practice. This confirms research
question 2: How can a hybrid modelling framework iden-
tify an optimal SC master plan to maximise SC service
level in the presence of disruptions while minimising SC
total cost? To fill these gaps in the literature, we inte-
grate simulation, optimisation, and machine learning to
address a SCMP problem in a two-echelon SC under
demand and lead time disruptions.

2.4. Digital twins for production

A digital twin is a virtual representation of a physi-
cal product or system that mirrors its physical coun-
terpart. To achieve this, the digital twin should have
real-time or near real-time communication with its phys-
ical twin throughout its lifecycle (Grieves and Vickers
2017). A digital twin evaluates the performance of its
physical counterpart and generates valuable insights to
improve its performance. Digital twin development pro-
vides cost saving opportunities such as reducing defects
and improving production efficiency (Badakhshan and
Ball 2021). The seven major elements of a digital twin
in SC and operations management are defined as tech-
nology, people, management, organisation, scope, task,
and modelling (Ivanov 2023a). Researchers have devel-
oped digital twins of products and systems throughout



four phases of their lifecycle including design, manufac-
turing, service, and retirement. The design phase refers to
the design of products and manufacturing processes and
systems. The manufacturing phase includes the produc-
tion and internal plant logistics. The service phase con-
tains distribution, use, and repair. The retirement phase
comprises operations such as disassembling, remanufac-
turing, reusing, and disposal. Much of the literature on
digital twins for production employed simulation and
optimisation modelling. Table 4 presents a summary of
the literature on the application of digital twins in pro-
duction systems.

The first set of papers developed digital twins in the
design phase of the physical twin’s lifecycle. For instance,
Huang, Wang, and Yan (2022) developed a digital twin
of reconfigurable machine tools to reduce manufactur-
ing cost. Sharma (2023) used a digital twin of a Cobotic
inspection work cell to reduce inspection time and error
in electric vehicle battery assembly process. Tao et al.
(2019) presented a digital twin-driven framework for
product design to reduce the design cost and design
cycle for a bicycle manufacturer. Liu et al. (2019) devel-
oped a digital twin of a shop floor manufacturing system
to examine the performance of the system before pro-
duction. Aderiani et al. (2019) used a digital twin to
find the optimal combinations of individual parts in the
design process of sheet metal assemblies. These stud-
ies concentrate on minimising design cost of manufac-
turing products and processes and do not consider SC
disruptions.

The second set of studies focused on the manu-
facturing phase of the physical twin’s lifecycle. Ding
et al. (2019) proposed a digital twin cyber-physical pro-
duction framework for production planning and con-
trol. Zhang et al. (2022) presented an improved multi-
fidelity simulation-optimisation to reduce the computa-
tional time of large-scale discrete optimisation problems
that are developed for production planning and con-
trol in a digital twin shop floor. Ait-Alla et al. (2021)
employed simulation-optimisation approach to optimise
the interconnection between a production system and
its digital twin. Leiden, Herrmann, and Thiede (2020)
developed a digital twin to increase the efficiency of
energy and resource planning in the Zinc nickel elec-
troplating process chain. Sharma and Kumar Tiwari
(2022) presented digital twins of robotic work cells to
scale up cost-effective assembly of electric vehicle bat-
tery. Wang, Lee, and Angelica (2021) developed a dig-
ital twin of a die-cutting machine to monitor machine
conditions in real- time. These studies focus on minimis-
ing the impact of production disruptions at manufac-
turer and do not study the impact of disruptions at SC
level.
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The third set of papers studied the service phase of the
physical twin’s lifecycle. These studies investigated the
role of SC digital twins in managing disruptions. SC Dig-
ital twins can simulate different scenarios to evaluate the
impact of disruptions such as supplier delays, transporta-
tion disruptions, or changes in customer demand on SC
performance. By modelling these disruptions, companies
can assess the potential consequences and explore alter-
native courses of action. This helps in developing contin-
gency plans and making proactive decisions to mitigate
the impact of disruptions. Burgos and Ivanov (2021) used
a SC digital twin to assess the impact of COVID-19 on
food retail SCs. Park, Son, and Noh (2021) presented
a digital twin-based SC control framework to minimise
bullwhip effect and ripple effect in an automobile parts
SC. Badakhshan and Ball (2023) presented a SC digi-
tal twin framework for inventory and cash management
under physical and financial disruptions. Zdolsek Drak-
sler, Cimperman, and Obrecht (2023) developed a SC
digital twin to tackle a last mile delivery problem in the
presence of transportation disruptions. The main short-
coming of these studies is that they used either simulation
or coupled simulation with machine learning to manage
disruptions. These studies cannot optimise SC perfor-
mance in the presence of disruptions due to the nature
of simulation and machine learning, which are primarily
predictive rather than prescriptive.

SC digital twins can incorporate risk assessment mod-
els to identify potential vulnerabilities in the SC. By
analysing historical data, market trends, and external
factors, SC digital twins can assess the probability and
impact of disruptions. This information allows com-
panies to prioritise risk mitigation efforts and allocate
resources effectively. Ivanov and Dolgui (2021) explored
the conditions surrounding the design and implementa-
tion of the digital twins for managing disruption risks and
improving resilience in SCs. Dolgui, Ivanov, and Sokolov
(2020) introduced the concept of reconfigurable SCs or
the X-network to integrate digitalisation, resilience, sus-
tainability, and leagility (Dolgui, Ivanov, and Sokolov
2018) in SCs. Ivanov (2023b) proposed a human-AlI sys-
tem called intelligent digital twin for SC stress-testing and
resilience. Ivanov and Dolgui (2022) conceptualised the
application of SC digital twins for preventing the ripple
effect in SCs. Serrano-Ruiz, Mula, and Poler (2021) pre-
sented a conceptual framework in which they discussed
the role of SC digital twins in addressing master produc-
tion scheduling problem in the presence of disruptions.
These studies presented conceptual frameworks but did
not show the application of SC digital twins in practice.

In the absence of hybrid models that integrate sim-
ulation, optimisation, and machine learning, a SC dig-
ital twin is limited by the inherent methodological
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Table 4. Review of digital twins in production.

Modelling
Study Lifecycle phase Research scope approach Business outcome Case study
Sharma (2023) Design Process design Simulation Reducing inspection time  Electric vehicle battery
and error assembly
Machine
Learning
Huang, Wang, and Yan Design Product and process Simulation Reducing manufacturing Reconfigurable machine
(2022) design cost tools
Tao et al. (2019) Design Product design Simulation Design cost and design Bicycle design
cycle reduction
Data mining
Liu et al. (2019) Design Product and process Simulation Design cost reduction Sheet metal assembly
design
Optimisation
Aderiani et al. (2019) Design Product design Simulation Increasing the geometrical ~ Sheet metal assembly
quality of final product
Optimisation
Zhang et al. (2022) Manufacturing Production planning Simulation- Reducing the Aircraft parts
and control computational
time
Optimisation
Ding et al. (2019) Manufacturing Production planning Simulation Production efficiency General shop floor
and control enhancement manufacturing
Optimisation
Ait-Alla et al. (2021) Manufacturing Process planning and Simulation Mean throughput time Light
control
Resource utilisation
Sharma and Kumar Tiwari ~ Manufacturing Process planning and Simulation Increasing throughput Electric vehicle battery
(2022) control assembly
Reduce production cost
Leiden, Herrmann, and Manufacturing Energy and resource Simulation Increasing resource and Zinc nickel electroplating
Thiede (2020) planning energy efficiency process chain
Wang, Lee, and Angelica Manufacturing Maintenance Simulation Reducing maintenance Die cutting machine
(2021) cost
Park, Son, and Noh (2021)  Service SC planning Simulation Reducing bullwhip effect Automobile parts SC
and ripple effect
Ivanov and Dolgui (2021) Service SC planning Simulation Enhancing SC resilience General
Optimisation
Data analytics
Serrano-Ruiz, Mula, and Service SC planning Simulation Enhancing SC resilience General
Poler (2021)
Optimisation
Machine learning
Dolgui, Ivanov, and Sokolov  Service SC planning Simulation Enhancing SC resilience General
(2020)
Optimisation
Data analytics
Ivanov (2023b) Service SC planning Simulation SC stress-testing General
Optimisation Enhancing SC resilience
Data analytics
Badakhshan and Ball Service SC planning Simulation Minimising cash conversion  FMCG
(2023) cycle
Machine learning
Zdolsek Draksler, Service SC planning Simulation Reducing SC cost Last mile delivery
Cimperman, and
Obrecht (2023)
Machine learning
Wang and Wang (2019) Retirement Recovery and Simulation Reducing electrical and Electrical and electronic
remanufacturing electronics equipment equipment
waste
Wang et al. (2020) Retirement Recovery and Simulation Reducing the uncertainty ~ Automatic guided vehicle
remanufacturing in remanufacturing remanufacturing
process
Optimisation

Data analytics

constraints associated with each of these modelling
approaches. Consequently, it is unable to effectively
optimise SC performance in the face of disruptions.

Although, various studies presented conceptual frame-
works to underline the importance of such hybrid frame-
works (e.g. Dolgui, Ivanov, and Sokolov 2020; Ivanov



2023; Ivanov et al. 2019; Ivanov and Dolgui 2022;
Serrano-Ruiz, Mula, and Poler 2021). There is no study
that shows the practical implementation of a SC digital
twin framework incorporating simulation, optimisation,
and machine learning to minimise the impact of lead
time and demand disruptions on SC performance. To fill
this gap, we develop a SC digital twin which incorporates
simulation, optimisation, and machine learning to min-
imise the impact of lead time and demand disruptions on
SC performance.

The fourth set of studies examined the role of a dig-
ital twin in the retirement phase of a physical twin
lifecycle. Wang and Wang (2019) developed a digital
twin framework for the recovery and remanufacturing of
retired electrical and electronic equipment. Wang et al.
(2020) proposed Big Data-driven Hierarchical Digital
Twin Predictive Remanufacturing paradigm to reduce
uncertainty in the remanufacturing process of retired
products.

The gaps in digital twins for production literature are
as follows. Firstly, Literature on digital twins in produc-
tion is still in its infancy and more research on the appli-
cation of digital twins in practice is required (Badakhshan
and Ball 2021). Secondly, much of the literature either use
simulation or integrate simulation and machine learn-
ing or integrate simulation and optimisation. There is
limited research on the application of hybrid modelling
frameworks which integrate simulation, optimisation,
and machine learning, Although the importance of such
frameworks in developing SC digital twins has been high-
lighted in the literature (e.g. Dolgui, Ivanov, and Sokolov
2020; Ivanov 2023; Ivanov and Dolgui 2021). This con-
firms research question 3: How can a hybrid modelling
framework support the development of a SC digital twin?
Thirdly, the hybrid modelling frameworks are needed
to show the functionality of digital twins offline before
their integration with real-time or near real-time data
can be attempted. Leaping at live data directly without
solving the underlying modelling challenges will mean
that whilst real-time or near real-time modelling can be
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carried out it is insufficient to address SC master plan-
ning problem under disruptions in a reasonable time.
Fourthly, there is no study that showed the application
of digital twins to address SC master planning problem
under demand and lead time disruptions in practice.

To fill these gaps, in this study, a hybrid model which
integrates a simulation model, DES, an optimisation
model, MIP, and a machine learning algorithm, the deci-
sion tree, is developed to minimise the impact of demand
and lead time disruptions on SC service level.

2.5. Summary of literature review

There are four features that are collectively absent
from the four strands of literature discussed in Sec-
tions 2.1-2.4: (a) optimisation, (b) explainable solutions
with decision rules, (c) the presence of SC dynamics,
and (d) demand and lead time disruptions. These four
features independently exist in published works but not
combined. To consider these four features simultane-
ously, this study presents a hybrid modelling framework
which integrates simulation, optimisation, and machine
learning. This hybrid framework is used to address a SC
master planning problem in the presence of demand and
lead time disruptions. The hybrid modelling framework
uses simulation to incorporate the dynamic behaviour
of SCs (feature c) under demand and lead time disrup-
tions (feature d). It uses machine learning to provide
explainable solutions (feature b) on the minimum inven-
tory values that ensure a service level above 98% for all
products. It uses optimisation (feature a) to identify the
optimal production, storage, and distribution values that
minimise the SC total cost.

3. Problem description and modelling approach

Following on from the literature review outcome, the
problem considered here is the SC master planning. The
general structure of the studied SC is depicted in Figure 1.
The SC includes two echelons: (1) manufacturers, and (2)

Figure 1. The general structure of the SC.
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distribution centres (DCs). Manufacturers send products
to DCs which are responsible for meeting the uncertain
demands of end customers. In this study multiple prod-
ucts and periods are considered. Production capacities at
manufacturers and storage capacities at distribution cen-
tres are restricted to reflect practice. This is typical of
the configurations considered in the literature (e.g. Fal-
lah, Eskandari, and Pishvaee 2018; Yaghin, Sarlak, and
Ghareaghaji 2020). The decisions to be addressed are: (1)
The production rates at manufacturers (2) The flow of
products in the network, (3) The inventory levels at SC
members, (4) The number of products which have not
been delivered in time to the customers, i.e. backlog, and
(4) The number of the required workforce at manufactur-
ers. We aim to minimise SC total cost by identifying the
optimal values for decisions 1-4. In the presence of SC
disruptions, the optimal values of decisions 1-4 need to
be updated in line with the disruptions to minimise the
impact of the disruptions on the SC service level. Inte-
grating simulation, optimisation and machine learning
has the potential to provide an effective way of decision
making in the presence of disruptions. Therefore, in this
study, we develop a hybrid modelling framework that
integrates simulation, optimisation and machine learn-
ing to update the optimal values of the decision 1-4 in
line with disruptions.

3.1. Hybrid modelling framework

The literature reviews earlier brought out the gaps in
current disruption modelling work. This work sought to

develop and deploy a framework that could be config-
ured to provide four simultaneous features of (a) gener-
ate explainable solutions with decision rules, (b) optimal
solutions, (c) that account for system dynamics and con-
straints and (d) disruptions (in both demand and lead
time). These four features independently exist in pub-
lished works but not combined. This novelty has there-
fore potential to generate better, explainable, practical
solutions to SCs under disruptions.

Figure 2 shows the developed hybrid modelling frame-
work. The simulation model represents the physical SC
by considering the dynamics (feature (c)) in the prod-
uct and order flows under constraints and generates the
inventory data to be inputted into the machine learning
model. The machine learning model then generates deci-
sion rules (feature (a)) for setting the minimum inventory
levels of products at SC members. The decision maker
defines the minimum inventory levels of products at
SC members into an optimisation model where the SC
master plan is determined (feature (b)). In the presence
of disruptions (feature (d)) the framework triggers the
re-running of the simulation and machine learning to
develop new rules for new explainable solutions.

When disruptions in product flow happen the sim-
ulation model is updated, and a new set of data is fed
into the machine learning model to give new decision
rules for setting the minimum inventory levels of prod-
ucts at SC members in optimisation model. In turn, the
SC master plan which consists of the optimal produc-
tion, storage and distribution decisions is outputted to the
physical SC for execution. Figure 2 captures the essence
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of digital twins with the flow of data between the physical
supply chain and the digital model equivalent and back.
Whilst the set up could have been for real-time continu-
ous updates, the set up was periodic updates with specific
updates when disruptions are detected. This allowed the
research to incorporate the properties of digital twins
with lower frequency updates but still useful for decision
making.

One challenge in implementing such hybrid frame-
works is interfacing simulation, optimisation, and
machine learning models as these models are mostly
developed using different system architectures and soft-
ware. To overcome this challenge, we use Python lan-
guage to develop simulation, optimisation, and machine
learning models. This removed the software barrier to
integration and so the focus could be on integrating the
modelling conceptually.

3.1.1. Decision tree algorithms

The Decision tree is a supervised machine learning tech-
nique that discovers decision rules in the form of if-then-
else statements from data. This simplifies the decision-
making process for the users. The decision tree technique
extracts the decision rules by inspecting a training dataset
with m examples that are represented as a features-value
table. The features refer to the inputs of the problem
and the value refers to the output of the problem that is
going to be predicted. The decision tree technique fol-
lows three steps to extract the decision rules: (1) Splitting
the training dataset into n sub-tables. One table for each
possible output value, (2) Dividing combinations of the
features and counting the number of occurrences for each
combination in the rows of the sub-tables, (3) Sorting
the combinations of the features based on the number
of occurrences in descending order and extracting the
decision rules accordingly.

This research seeks to provide guidelines to assist deci-
sion makers in setting out minimum inventory levels of
products at SC members by generating decision rules.
This helps the decision makers in comprehending the
decision-making process. The decision tree technique
can provide decision rules, unlike most machine learn-
ing techniques which are generally considered black-
box systems (Priore et al. 2019). Therefore, we employ
the decision tree technique. There is a wide range of
decision tree algorithms such as CART (Breiman et al.
1984), MARS (Friedman 1991), ID3 (Quinlan 1979),
C4.5 (Salzberg 1994), and CHAID (Kass 1975). Among
the decision tree algorithms, C4.5 and CART are the most
employed owing to their capability in making a good
trade-off between learning speed and error rate (AlMana
and Aksoy 2014; Wu et al. 2008). Therefore, in this study,
we use the CART algorithm.
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The CART algorithm uses the concept of Gini impu-
rity to sequentially select the nodes of the decision. The
Gini impurity indicates the likelihood of incorrect clas-
sification of new, random data if it were given a ran-
dom class label according to the class distribution in
the dataset. Equation (1) defines the Gini impurity for a
dataset that contains D rows and # classes.

Gini(D) =Y pi(l—p)=1-> p? (1)
i=1 i=1

where p; represents the probability of samples belong-
ing to class i at a given node. In the case of all records
belonging to the same class, the Gini impurity would
be zero. The best feature for the first split of the deci-
sion tree is determined by calculating the Gini impurity
for all features and selecting the feature with the lowest
Gini impurity. This process continues for each subse-
quent split until the maximum depth of the decision tree
is reached. The maximum depth of a decision tree is a
hyperparameter that could be set by the user. If the user
does not specify the maximum depth of a decision, the
nodes will be expanded until all leaf nodes contain only
one class. More detail on the CART algorithm can be
found in (AlMana and Aksoy 2014; Breiman et al. 1984;
Wu et al. 2008).

3.1.2. Simulation model

As it was shown in Figure 1, in this study, a two-echelon
SC with 2 manufacturers and 3 DCs which supply 5 prod-
ucts to 6 customers is considered. The distribution lead
times between manufacturers and DCs and between DCs
and customers are 1 week. The production capacities
which include the available machine processing time and
labour processing time at manufacturers are allocated to
products based on products’ demands. This means that
the higher the demand for a product, the higher its share
of production capacity. The available machine processing
time at each manufacturer is 40 h per week. The available
workforce in each manufacturer is 10 and each labour
works 40 h per week. Tables 5 and 6 report the machine
time and labour time required for processing each prod-
uct at manufacturers. Table 7 presents the demand for
each product under no disruption and demand and lead
time disruptions scenarios. If a DC cannot fulfil his cus-
tomers’ demands in full using its inventory, the unmet
order is backlogged. This negatively impacts the service
level of a DC which is the ratio of the DC sales rate to his
customers demands.

We assume that the two SC echelons operate accord-
ing to a periodic-review inventory policy with a review
period of 1 week. This means every week each SC mem-
ber reviews its inventory and work-in-process (WIP) and
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Table 5. Machine processing time for each product at

manufacturers.

Product
Manufacturer P1 P2 P3 P4 P5
Manufacturer 1 12.56 6.82 9.76 11.64 8.12
Manufacturer 2 13.47 5.28 9.87 13.23 7.56
Table 6. Labour processing time for each product at
manufacturers.

Product
Manufacturer P1 P2 P3 P4 P5
Manufacturer 1 2.56 3.52 5.46 7.24 6.12
Manufacturer 2 3.47 2.28 6.37 6.23 736

places an order with its upstream member. The WIP rep-
resents the orders that have been sent by the upstream
member but still have not been delivered. The sequence
of events for each SC member is as follows: (1) receive
the products that were ordered the previous week (lead
time = 1) and added to the inventory. Storage capacities
for SC members are limited. (2) Use the inventory to meet
orders received from downstream members and backlogs
(if they exist). (3) Send products downstream and update
the inventory positions (both net inventory and WIP)
and if necessary generate a backlog. (4) Use the order-
up-to (OUT) policy developed by Mosekilde, Larsen, and
Sterman (1991) to calculate the amount to order to the
upstream member. The employed OUT policy has been
widely used in the literature (e.g. Aslam and Ng 2016;
Goodarzi et al. 2017; Priore et al. 2019). The amount
to order is calculated using Equation (2). Each member
seeks to meet the average demand (D) of its downstream
member and bridge the gaps between inventory and WIP
with their corresponding desired values.

NI
OP; = Max(0, D + a(DI — (INV, — B)+
INVGAP
+ B(DWIP — WIP,)) )
WIPGAP

The desired inventory and the desired WIP are constant
values that are specified by each SC member. « is the
inventory proportional controller and 8 is WIP propor-
tional controller. These proportional controllers give a
weight between 0 and 1 to the gap terms (Disney et al.

Table 7. Demand of products in each scenario.

2007). A high « represents an aggressive policy for bridg-
ing the inventory gap and a high g indicates that all pend-
ing delivery orders have been considered when deciding
on the amount of order to be placed with the upstream
member.

We applied the DES methodology to represent the
dynamics of the studied SC. The simulation model is
developed using the Simply library in python to analyse
the impact of demand and lead time disruptions on the
SC service level. The simulation time is 52 weeks, one
year, with a warm-up period of 12 weeks. The Simulation
time step is 1 week. We used the simulation run moni-
toring and output data analysis to verify the simulation
model. To validate the output results of the simulation,
100 replications have been performed to reduce the out-
put randomness. For testing, we compared the results of
the replications.

3.1.3. Optimisation model

The following mathematical notations are defined to for-
mulate the optimisation model for addressing the SC
master planning problem:

Indices

i Index of products i = 1,2,...,P

j Index of manufacturersj = 1,2,...,F

k Index of distribution centres k = 1,2,...,D
c Index of customersc = 1,2,...,C

t Index of period t = 1,2,...,T

Parameters

Cijt Production cost per unit of product i in

manufacturer j in period t

tcijke  Transportation cost per unit of product i from
manufacturer j to distribution centre k in
period t

tcikes  Transportation cost per unit of product i from

distribution centre k to customer c in period t
hfiji: ~ Holding cost per unit of product i at
manufacturer j in period t
Holding cost per unit of product i at distribution
centre k in period t
uikee  Tardiness cost per unit of product i not delivered
from distribution centre k to customer ¢ in
period t
kijt Cost of one operator processing product i at
manufacturer j in period t

hdikt

Product

Scenario P1 P2

P3 P4 P5

Uniform (30, 60)
Uniform (52, 104)

No disruption
Demand and lead time disruption

Uniform (15, 30)
Uniform (26, 52)

Uniform (32, 64) Uniform (20, 40) Uniform (25, 50)
Uniform (56, 112) Uniform (35, 70) Uniform (43, 86)




ptmijt Machine processing time required per unit of
product i at manufacturer j in period t

Ptwije Labour time required per unit of product i at
manufacturer j in period t

it Demand of customer ¢ from distribution centre
k for product i in period t

ajt Time available per workforce at manufacturer j
in period t

w;;’“x Maximum number of workforce available at
factory j in period t

peit Available machine processing time at
manufacturer j in period t

MIM;; Minimum inventory of product i at
manufacturers in period t

MID; Minimum inventory of product 7 at distribution
centres in period t

ICM; Maximum inventory capacity at manufacturer j

ICDy Maximum inventory capacity at distribution
centre k

L Distribution lead time from factories to
distribution centres

Decision

variables Continuous

Xijt Number of product i to be produced at factory j
in period t

Vijkt Number of product i to be transported from
factory j to distribution centre k in period t

Ziket Number of product i to be transported from
distribution centre k to customer ¢ in period t

Sijt Number of product i held at factory j at the end
of period t

qikt Number of product i held at distribution centre
k at the end of period t

Viket Number of product i not delivered from
distribution centre k to customer c in period ¢,
i.e. Backlog

Decision

variable Integer

Wijt Number of operators processing product i at

factory j in period ¢

The objective function (1) sets the minimisation of SC
total cost (TC) that contains production costs for man-
ufacturers, transportation costs between manufacturers
and DCs and between DCs and customers, inventory
holding costs at manufacturers and DCs, backlog cost
and workforce cost.

T F P
Minimise TC = Z Z Z XijtCijt

t=1 j=1 i=1
T D F P

22D ikl

t=1 k=1 j=1 i=1
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Constraint (2) gives the available machine processing
time upper bound which is 40hrs per week. Constraints
(3) states that the inventory level of each product at each
factory for each period is equal to the number of products
produced minus the number of products that flow out to
the distribution centres plus the inventory that is left over
from the previous period. Constraint (4) states that the
net inventory level of each product at each distribution
centre for each period t is equal to the sum of products
that are sent by the factories at time t-L and arrive at the
distribution centre at time t minus the amount of prod-
ucts that flow out of the distribution centre to customers
at time t plus the net inventory that is left over from the
previous period, i.e. t-1. I represents the distribution lead
time from factories to distribution centres.

P
Zptmijtxijt < pCjt V], t. (4)
i=1
D
Sijt = Xijt — Z)’ijkt +siji—1 - Vi gt (5)
k=1
F C
Qikt = Viket = Z}’ijkt—L - Z Ziket T qikt—1 — Viket—1
j=1 c=1
Vi, k, t. (6)

Constraint (5) enforces the number of products
shipped from distribution centres to each customer in
each period to be less or equal to the customer’s demand
in the same period plus the backlog from the previ-
ous period. Constraint (6) calculates the backlog of each
product by subtracting the number of products that are
sent to each customer from customer demand.

Vi k,c, t. (7)
Vi, k,c,t. (8)

Ziket < iket + Viket—1

Viket = Diket — Ziket
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Constraint (7) states the required labour processing
time must be less or equal to the available labour pro-
cessing time. Constraint (8) ensures that the number of
workforces is less or equal to the max number of the
available workforce. Constraints (9) and (10) ensurehat
the inventory level for each product is greater or equal to
the minimum inventory level of the product. Constraints
(11) and (12) enforce that the aggregated inventory of
products does not exceed the maximum inventory capac-
ity. Finally, constraint (13) enforces the non-negativity of
the decision variables.

P
Zptwlﬂ * Xijt < Ajt * Wijt V_], t. (9)
i=1
P
Z Wit < Wi Vi, t. (10)
i=1
MIM; < s Vi,j,t. (11)
MIDjy < qiks Vi j, t. (12)
P
> s <ICM; Vi t. (13)
i=1
P
> it < ICDi Vkit. (14)
i=1
Xijts Yijkt» Zikets Sijts Qikt Viket = 0, Wit € ZT (15)

4. What is the impact of SC disruptions on SC
performance?

This section is focused on the first research question,
what is the impact of disruptions on SC service level?

Four scenarios are designed to investigate the impact
of disruptions on the SC service level.

The global settings for all modelling scenarios are
shown in Table 8. As it was shown in Table 7, we use
a uniform distribution to represent the demands of all
products. The demands of products can also be expressed
using alternative distributions, such as Normal and Pois-
son.

Table 8. Global settings for all disruption scenarios.

Run time 52 weeks

Warm-up period 12 weeks

Inventory proportional controllers (all SC 0.5
members)

WIP proportional controllers (all SC members) 0.2

Desired inventories (each product at DCs and 3 times minimum
manufacturers) customer demand

Desired WIPs (each product at DCs and 3 times minimum
manufacturers) customer demand

Distribution lead time between SC members 1 week

DES model timing of action 1 week

4.1. Scenario 0: no disruption in SC

This scenario serves as a baseline scenario and shows
the performance of the SC when no disruption exists.
The impacts of disruptive events are compared with the
results obtained from a no disruption scenario. Figure 3
shows demand, the mean inventory levels at SC mem-
bers, and the mean DCs service level for all products.
As it can be seen, for all products the mean inventory
levels held by the manufacturers is higher than the inven-
tory levels held by the DCs. The reason for this is that
the DCs receive customers’ demand for each product.
While the manufacturers receive the DCs” demand which
contains DCs’ inventory and WIP gaps in addition to
the customers’ demands for each product. Under a no
disruption scenario the average fill rates for DCs and
manufacturers remain at 100% throughout the 52 weeks
of simulation.

4.2. Scenario 1. Demand disruption

This scenario studies the impact of an increase in cus-
tomer demand on SC performance. Figure 4 illustrates
the impact of customer demand growth by 75% for all
products from week 16 to week 36 on SC performance.
This means that the lower and upper bounds of demand
for each product increase by 75%. The mean inventory
levels of all products at SC members fall during the dis-
ruption which results in drops in the service level of
the DCs for all products. Table 9 shows the impact of
disruption duration on SC performance. The 95% confi-
dence intervals (CIs) for the mean manufacturers’ inven-
tory, mean DCs inventory, and mean DCs service level
that is calculated from 100 simulation runs are reported.
The longer the disruption time, the lower the mean of
inventory values at the SC members and the lower the
mean of DCs service level. For instance, compared to
the no disruption scenario the 20-week demand growth
reduced the mean of product 1 inventory at DCs and
manufacturers by 71% and 56%, respectively. This also
led to a 3% reduction in mean DCs service level for
product 1.

4.3. Scenario 2. Lead time disruption

This scenario studies the impact of distribution lead
time extension caused by delays at international borders.
Figure 5 illustrates the impact of an increase in distri-
bution lead time from manufacturers to DCs and from
DCs to customers by 1 week between weeks 16 and 36 on
SC performance. The mean inventory levels of all prod-
ucts at DCs fall during the disruption which results in
drops in the service level of the DCs for the products. For
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Figure 3. Experiment results: No disruption.

instance, compared to the no disruption scenario the 20-
week lead time extension reduced the mean of product
1 inventory at DCs and manufacturers by 43% and 21%,
respectively. This also led to a 4% reduction in mean DCs
service level for product 1. This shows that the demand
increase has a higher impact on reducing inventory lev-
els at SC members than the lead time extension. The
reason for the reduced inventory levels at manufactur-
ers is that at the start of the lead time disruption, the
week 16 wholesaler increases its demands as they strive
to bridge the gap between its desired inventory of prod-
ucts and its actual inventory of products impacted by the
disruption. This reduces inventory levels at the manu-
facturers which results in lower mean inventory levels
of the products at the manufacturer compared to the no
disruption scenario.

4.4. Scenario 3. Demand and lead time disruptions

This scenario combines scenarios 1.1 and 1.2 to investi-
gate the impact of simultaneous disruptions in demand
and lead time on SC performance. In this scenario,
demand grows by 75% and lead time from manufactur-
ers to DCs and from DCs to customers increases by 1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
Week

week between week 16 and week 36. As Figure 6 shows,
the mean inventory levels of all products at manufactur-
ers and DCs fall during the disruption which results in
the drops in service level of the DCs for the products.
For instance, compared to the no disruption scenario
the 20-week demand growth and lead time extension
reduced the mean of product 1 inventory at DCs and
manufacturers by 78% and 62%, respectively. This also
led to an 18% reduction in the mean DCs service level
for product 1. This shows that the impact of this sce-
nario, i.e. demand and lead time disruptions, on mean
inventory levels at SC members and mean DCs ser-
vice levels for all products is higher tha SCenario 1.1,
i.e. demand increase, and scenario 1.2, i.e. lead time
extension.

The results of the studied scenarios show that demand
and lead time disruptions have adverse impact on SC ser-
vice level. This adverse impact should be prevented by
updating minimum inventory levels held at SC members
in line with demand and lead time disruptions. As it is
shown in Figure 2, machine learning can identify the new
minimum inventory levels held at SC members using the
data generated by the simulation model after considering
the disruptions. This is elaborated in Section 5.
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Figure 4. Experiment results: Demand disruption.
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Table 9. Impact of demand increase duration on SC performance.

SC Performance

Disruption time (days)

Indicator 95% Cl 5 10 15 20
Mean DCs inventory P1 [72 +4] [64 1+ 7] [55410] [46 +12]
P2 [52+3] [34+ 4] [22+ 6] [15+6]
P3 [95+8] [87 +10] [82+11] [78 +13]
P4 [73+£5] [71+£5] [71+7] [69 £ 10]
P5 [58 + 4] [47 £ 6] [43£38] [39£10]
Mean manufacturers inventory P1 [118 £ 7] [103£+9] [96 £ 10] [89 £ 11]
P2 [79+4] [62+5] [47 £ 6] [35+6]
P3 [134£7] [128 £9] [125£10] [120£12]
P4 [132£5] [119 £ 6] [104 £ 8] [96 £ 9]
P5 [144 £+ 6] [115+9] [91+9] [75 4+ 10]
Mean DCs service level P1 [98.55 + 1.42] [97.80 4+ 0.97] [96.59 4 0.99] [97.08 +1.72]
P2 [98.71 £0.81] [98.39 £ 1.14] [97.82+1.48] [95.88 + 1.89]
P3 [98.55 £ 1.32] [96.33 £ 1.75] [95.62 +2.33] [97.37 £ 2.67]
P4 [100 £ 0] [99.25 +0.28] [99.11 £ 0.49] [98.52 +0.73]
P5 [98.58 + 1.22] [97.01 £1.25] [94.09 + 1.80] [95.35 + 1.84]

5. How can a hybrid modelling framework
maximise SC service level in the presence of
disruptions while minimising SC total cost?

This section addresses research question 2, how can a
hybrid modelling framework identify an optimal SC mas-
ter plan to maximise SC service level in the presence of
disruptions while minimising SC total cost?

5.1. Insights on inventory management using the
decision tree algorithm

As was discussed in Section 3.1.1, the decision tree
algorithm needs data in the form of a feature-value table
to generate the decision rules. We consider the mean
inventory values of a product at manufacturers and DCs
as features and the mean DCs service level for the product
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Figure 5. Experiment results: Lead time disruption.

as value. We consider two classes to represent the mean
DCs service level of a product: (1) low represents the
service level below 98% and (2) high represents the
service level above 98%. We follow the procedure pre-
sented in Figure 7 to generate data for the decision tree
algorithm. Firstly, feasible intervals for inventory replen-
ishment parameters are defined within the simulation
model. These include inventory proportional controller
(o), WIP proportional controller (8), desired inventory,
and desired WIP. The inventory and WIP proportional
controllers follow a uniform distribution in the range [0,
1] and the desired inventory and desired WIP follow a
uniform distribution in the range of [0, 3xmax customer
demand] in line with prior works in the literature (e.g.
Ciancimino et al. 2012; Dominguez, Framinan, and Can-
nella 2014; Priore et al. 2019). Thereafter, the simulation
model is run for 1600 weeks and the mean inventory
values of all products at manufacturers and DCs and cor-
responding classes for the mean DCs service levels for the
products are recorded for each week.

We employ the CART algorithm in the Scikit-learn
library to structure the inventory management knowl-
edge obtained from the training dataset into a decision

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
Week

tree. The 10-fold cross-validation method is used to val-
idate the results. This randomly divides the example
set into 10 subsets, 9 of which are used for knowledge
extraction and 1 is used for testing the decision tree by
calculating the number of examples which were clas-
sified correctly. This process is repeated ten times and
the average of the results known as hit ratio is reported.
This metric represents the accuracy of the decision tree
algorithm. Figure 8 displays the hit ratio for different
sizes of the training dataset (between 100 and 2000 exam-
ples). As expected, the hit ratio improves as the number of
examples increases. Nonetheless, this indicator stabilises
in a narrow range, approx. 89-92%, over 100 examples.
The slight variability is mainly caused by the randomness
of the examples chosen by the cross-validation method.
Overall, it is observed that the decision tree algorithm is
capable of capturing the relationships between the inven-
tory levels of the products and DCs service levels for the
products.

The design of a decision tree highly impacts its accu-
racy. The higher the depth of a decision tree, the higher
its accuracy. Although, this only applies to training data
and the accuracy of a decision tree on test data will not
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Figure 7. Flow diagram for generating data.

improve beyond a certain depth. If a decision tree grows
beyond this certain depth, the tree will overfit the training
data which means the decision rules extracted from the
tree are unreliable (Priore et al. 2019). To prevent overfit-
ting, the hyperparameters of a decision tree need to be
tuned. This is known as pruning. Among the decision
tree parameters, the max depth of the tree plays a key role
in overfitting prevention. To find the optimal max depth
of the decision tree, we follow two steps: (1) creating a
full tree without setting any max depth. This results in a

decision tree with depth 8. (2) Using Grid search which is
a hyperparameter tuning technique to find the max tree
depth that produces the highest accuracy on test data.
This is known as the optimal max depth of the tree, and
we found it to be 4 in our case. Therefore, we set the max
depth of the decision tree to be 4.

Figures 9 and 10 represent the decision tree with max
depth 4 for no disruption and demand and lead time dis-
ruptions scenarios, respectively. These figures show the
branches generated from mean DCs product 1 inventory
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Table 10. Extract of decision rules.

Rule If Then Hit ratio

1 DC_inventory_p1 > 58 high 989/989

2 55 < = DC_inventory_pl < = 58 high 48/51

1 30 < DC_inventory_p1 < = 38and low 20/25
m_inventory_pl1 < = 93

12 DC_inventory_p1 < = 30 low 227/227

and mean manufacturers’ product 1 inventory. The class
variable at the bottom of each box indicates the class
of mean DCs service level. Classes low and high are
represented by blue and brown boxes, respectively. Var-
ious combinations of the two attributes result in differ-
ent inventory policies. Under no disruption scenario, 12
decision rules are extracted by the decision tree algorithm
from which 8 result in a high mean DCs service level, i.e.
more than 98%, and 4 lead to low mean DCs service level,
i.e. below 98%. Under the demand and lead time dis-
ruptions scenario, the decision tree algorithm generates
13 decision rules from which 9 result in the high mean
DCs service level and 4 lead to the low mean DCs service
level.

As an illustration, Table 10 reports some of the rules
for the no disruption scenario. Next to each rule, the ratio
of the number of examples properly classified over the
total number of examples that verify the conditions of
the rule known as the hit ratio is reported. For instance,
rule 11 states that if the mean DCs product 1 inventory is

between 30 and 38 and the mean manufacturers’ product
1 inventory is less or equal to 93, the mean DCs service
level is predicted to be low which means the mean DCs
service level is lower than 98%.

The decision tree illustrates the order of relevance of
the features. The features which are higher in the deci-
sion tree are more significant in explaining the target,
i.e. value. For instance, in the decision tree depicted in
Figures 9 and 10, the mean DCs inventory is the most
relevant attribute in explaining the mean DCs service
level. This was expected as the mean DCs inventory is
the determinant factor for the mean service level which
is provided by the DCs. It can also be seen in both fig-
ures that a high mean DCs service level can be provided
through following two policies: (1) holding inventory lev-
els close to the upper interval of the customers’ demand
at DCs, i.e. rule 1 (2) keeping inventory as high as 2.3
times upper interval of the customers’ demands at the
manufacturers and holding lower inventory than pol-
icy 1 at the DCs, i.e. rule 11. Under the no disruption
scenario where the distribution lead time from manufac-
turers to DCs is stable, implementing policy 2 provides
saving opportunities on transportation costs and there-
fore it is more economical to implement policy 2. While
in the presence of demand and lead time disruptions in
which the distribution lead time from manufacturers to
DCs is extended, deploying policy 2 may compromise
the mean service level by the DCs. Moreover, Figures 9
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Figure 9. Decision tree for no disruption scenario.
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Figure 10. Decision tree for demand and lead time disruptions scenario.

and 10 reveal that DCs and manufacturers need to keep
higher inventory under demand and lead time disrup-
tions scenario than in the no disruption scenario to keep
a high mean DCs service level. This is in line with the
findings by (Ivanov et al. 2019) that recommend increas-
ing inventory throughout the SC as a proactive strategy
for dealing with SC disruptions.

Table 11. Results from optimisation model for each scenario.

5.2. Insights on identifying the optimal SC decisions
using optimisation

The developed optimisation model in Section 3.1.3 can
determine the optimal production, storage, and distribu-
tion decisions in SCs under no disruption and demand
and lead time disruption scenarios. The data presented
in Tables 4-6 are used to demonstrate the applicability

Decisions
2 e Sit D ke Gike > Wit
Scenario Xiji il Z LAl . Vi J SC total cost
% " %ty’”“ k% o 5242 5243 2 ik 5252
No disruption P1 6539 5499 2483 20 58 0 6 173258
P2 3059 2279 875 15 27 0
P3 6915 5719 2547 23 61 0
P4 4563 3627 1755 18 36 0
P5 5174 4498 2054 13 47 0
Demand and lead time disruption P1 8983 8983 3991 0 96 0 10 301227
P2 4043 4043 1703 0 45 0
P3 9620 9620 4368 0 101 0
P4 5993 5993 2769 0 62 0
P5 7020 7020 2964 0 78 0




Table 12. Impact of lead time on mean inventory values and SC
total cost.

Decisions
Lead time M M SC total cost
52 %2 52 %3
L=1 P1 27 58 173258
P2 15 27
P3 23 61
P4 18 36
P5 13 47
L=2 P1 21 82 243952
P2 1 35
P3 18 86
P4 15 52
P5 9 68
L=3 P1 0 100 297620
P2 0 48
P3 0 106
P4 0 63
P5 0 81

of the optimisation model. We also perform sensitivity
analysis on the distribution lead time parameter to anal-
yse the performance of the optimisation model. It should
be noted that all numerical experiments are implemented
in Pyomo and solved using the CPLEX 20.0 solver on
an Intel(R) Core (TM) CPU i7-10610U @2.60 GHz with
32GB RAM. Since the developed model is linear, the
solution times in our numerical experiments were not
significant (i.e. less than 30 sec).

Table 11 reports the mean results obtained from the
optimisation model under no disruption and demand
and lead time disruptions scenario. Demand and lead
time growth increase the inflow of products within the
SC and the mean inventory held by the DCs. Although
it reduces the mean inventory held by manufacturers.
The reason for this is that the optimisation model aims
to avoid missing customer demand by keeping all the
inventory at DCs. This is in line with policy 1 which was
explained in Section 5.1. Another noteworthy observa-
tion is that under no disruption scenario the means of
optimal inventory values at DCs are equal to the mini-
mum inventory levels recommended by the decision tree
algorithm. Although, under the demand and lead time
disruptions scenario the means of optimal inventory val-
ues at DCs are higher than the recommended values by
the decision tree algorithm. This shows the necessity of
integrating optimisation with simulation and machine
learning to identify the optimal SC decisions.

Table 12 reports the impact of lead time on average
inventory levels at DCs and manufacturers. Lead time
extension increases the inventory levels at DCs. While it
reduces the inventory levels at the manufacturers. This
leads to an increase in SC total cost as the unit inventory
holding cost in DCs is higher than in manufacturers.
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5.3. Responsive vs. unresponsive SC master
planning

In this section, the performance of the supply chain
operating in a responsive planning manner is compared
with the unresponsive alternative under the demand and
lead time disruptions. This enables us to investigate the
effectiveness of the proposed hybrid modelling frame-
work presented in Figure 2 in minimising the impact of
demand and lead time disruptions on SC service level. In
the unresponsive case, the minimum inventory levels to
be held at SC members are defined by Equations (9) and
(10) in the optimisation model are not adjusted in line
with the disruptions. Therefore, the SC master plan is not
updated in line with the disruptions. While in the respon-
sive case, the minimum inventory levels to be held at SC
members are adjusted in line with the disruptions to keep
the mean DCs service level at a high level, i.e. above 98%.
Therefore, the SC master plan is updated in line with the
disruptions.

In the demand and lead time disruptions scenario,
nine decision rules that are represented by brown boxes
at the end node of the decision tree in Figure 10 lead
to the high mean DCs service level. Four of these deci-
sion rules have a Gini impurity greater than 0.2 and are
excluded from further analysis. We obtain five SC master
plans using the hybrid modelling framework presented
in Figure 2. We then use simulation to compare the per-
formance of the five responsive SC master plans against
three unresponsive alternatives which are obtained from
decision rules with a Gini impurity lower than 0.2 in
Figure 9, i.e. decision rules 1, 2, and 3.

Table 13 reports the 95% Cls for the mean of DCs ser-
vice level for each product obtained from 100 simulation
runs for the responsive and unresponsive cases under
the demand and lead time disruptions scenario. Each
run includes 52 weeks. The responsive approach signif-
icantly increases the mean DCs service level compared
to the unresponsive approach. For instance, the respon-
sive approach increased the mean DCs service level for
product 1 under demand and lead time disruptions sce-
nario by 16.88 percent. Rule 1 of responsive policy which
recommends holding inventory levels close to the upper
interval of the customers’ demands at DCs, provides the
highest service level or the lowest backlog, therefore, it
results in the lowest SC total cost. Following this rule
reduces the SC total cost by 15% compared to the rule
1 of unresponsive approach.

In the responsive case, from rules 1 to 5 shown in
Figure 10, the minimum inventory to be held by the
DCs decrease which results in a reduced mean DCs
service level. Although the rate of the mean DCs ser-
vice level reduction is significantly lower than that of
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inventory abatement. For instance, the minimum inven-
tory of product 1 to be held by the DCs in rule 1 is 85
which is 42% higher than the value in rule 5.

To statistically verify that the responsive policy out-
performs the unresponsive policy, we used the t-test
technique. We have tested the significance of the dif-
ference between the means of the DCs service level for
each responsive policy and each unresponsive policy and
obtained a p-value much lower than 0.05 in all cases.
Thus, we reject the null hypothesis (equality of means in
unresponsive and responsive cases).

To sum up, our results show the impact of unrespon-
siveness to SC disruptions on the SC service level. This
is caused by not updating the SC master plan in line with
disruptions. We demonstrate that responsive policy offers
a promising solution for keeping a high SC service level
while minimising SC total cost. To implement respon-
sive policy, minimum inventory levels in the optimisation
model need to be updated in line with disruptions. This
can be achieved by using decision rules on minimum
inventory levels at SC members generated by the deci-
sion tree algorithm. To generate the decision rules, the
decision tree algorithm requires data on disruptions that
are provided by simulation. That is why we need to inte-
grate simulation, optimisation, and machine learning to
remain responsive in the presence of SC disruptions.

6. Role of hybrid modelling in SC digital twins
for master planning

This section addresses research question 3, how can a
hybrid modelling framework support the development of
a SC digital twin?

A digital twin for SC master planning enables the
continuous cycle of improvement and adjustment of
the SC in near real-time (Marmolejo-Saucedo, Hurtado-
Hernandez, and Suarez-Valdes 2019). To build a digi-
tal twin for SC master planning three main steps need
to be taken: (1) Collecting real-time or near real-time
data on all processes and resources required to gener-
ate a SC master plan from the physical SC environment
(2) Pre-processing the collected data and (3) Analysing

the pre-processed data in the digital SC environment
to inform decision making (Serrano-Ruiz, Mula, and
Poler 2021). The main physical processes for SC mas-
ter planning are: (1) Inventory planning; (2) Produc-
tion planning (3) and Distribution planning. To execute
these processes, resources including machines, labour
and inventory are required. Real-time or near real-time
data on these processes and resources may be collected
from enterprise resource planning (ERP) systems and
by using I4.0 enabling technologies such as industrial
IoT, i.e. drawing on available data from the Informa-
tion Technology (IT) and Operating Technology (OT)
systems.

The real-time or near real-time data collected on pro-
cesses and resources come from multiple sources and
are usually characterised by incompleteness and redun-
dancy. To address these, data pre-processing is required
before the actual use of the collected data. Data pre-
processing transforms the collected raw data into under-
standable and usable forms for analysis. The data pre-
processing includes data integration and data cleaning.
The data integration combines data that come from mul-
tiple sources into a coherent data store. The data cleaning
deals with incompleteness and redundancy through esti-
mating missing values and dropping duplicates (Acheme
and Vincent 2021).

Simulation, optimisation, and machine learning are
the three main techniques for analysing the pre-
processed data on SC master planning processes and
resources. Each of these techniques has limitations.
Simulation and machine learning are not prescriptive
and therefore cannot identify the optimal SC decisions.
Optimisation would be computationally inefficient if it
included the complexities and dynamic behaviour of
SCs as simulation and machine learning do. Integrat-
ing these three techniques results in overcoming their
individual shortcomings and therefore determining the
optimal SC master plan in line with disruptions in a
reasonable time. The need for such an integrated frame-
work has been highlighted in the studies which pre-
sented conceptual frameworks for developing SC digi-
tal twins (e.g. Dolgui, Ivanov, and Sokolov 2020; Ivanov

Table 13. 95% Cl for the DCs service level for each product under demand and lead time disruptions scenario.

Policy P1 P2 P3 P4 P5 SC total cost
Unresponsive (rule 1) [82.06 + 1.72] [84.78 +1.89] 85.37 £ 2.67] [88.52 +0.73] [87.35+1.84] 346549
Unresponsive (rule 2) [81.92 + 1.44] [84.32 +1.41] 85.12 4+ 2.15] [88.16 + 0.89] [87.26 +1.82] 358221
Unresponsive (rule 3) [81.65 £ 1.53] [84.06 £ 1.22] 84.37 £2.35] [88.05 £+ 0.72] [87.15 £ 1.25] 359533
Responsive (rule 1) [98.94 + 0.62] [99.47 £ 0.43] 99.32 4+0.58] [98.70 £ 0.46] [98.87 £0.51] 301227
Responsive (rule 2) [98.76 £+ 0.73] [99.32 + 0.86] [99.13 £ 0.74] [98.57 £0.52] [98.64 £ 0.63] 302453
Responsive (rule 3) [98.51 +0.75] [99.06 £ 0.91] [98.96 + 0.83] [98.46 + 0.64] [98.55 + 0.48] 307621
Responsive (rule 4) [98.34 £+ 0.21] [98.84 + 0.75] [98.56 + 0.42] [98.35 £ 0.31] [98.38 £ 0.57] 310250
Responsive (rule 5) [98.11 £ 0.16] [98.36 + 0.45] [98.14 £ 0.22] [98.20 £ 0.62] [98.15 £ 0.36] 314584
Increase (%) 16.88 14.69 13.95 10.18 11.52 (15)




and Dolgui 2021). Although, the application of such
an integrated framework in practice is absent from the
literature.

Given this, as shown in Figure 2, we integrate simula-
tion, optimisation, and machine leaning techniques in a
hybrid framework to identify the optimal master plan in
a SC in the presence of disruptions. Without this integra-
tion, the use of SC digital twins with real-time or near
real-time data would not be effective as the SC master
plan could not be adjusted in a reasonable time in line
with disruptions. This work therefore provides the essen-
tial foundation framework to analyse the collected data
on SC master planning processes and resources and make
necessary adjustments to cope with disruptions. This
framework can be enhanced into a digital twin for SC
master planning by upgrading the data flows to real-time
or near real-time data on customer demand, distribution
lead time between SC members, and available workforce
time and machine time at SC members.

7. Concluding discussion

SC disruptions create imbalances in flows of products
into the SCs. The COVID-19 pandemic is a recent exam-
ple of a SC disruption that caused an unprecedented
increase in demand and challenged SCs around the globe.
There was an unprecedented increase in demand of many
products and distribution lead time between SC mem-
bers extended due to delays at international borders.
These have caused unpredictability in inventory levels
and shortages at some SC members that consequently
reduced service levels to the customers (Ivanov and Das
2020).

This work develops a hybrid modelling framework to
determine the optimal production, storage, and distri-
bution decisions under SC disruptions. The developed
framework answers three research questions: (1) What
is the impact of SC disruptions on SC service level? (2)
How can a hybrid modelling framework maximise SC
service level in the presence of disruptions while min-
imising SC total cost? and (3) How can a hybrid mod-
elling framework support the development of a SC digital
twin? To answer the first question, the framework uses
discrete-event simulation (DES) which is a widely used
tool for examining the impact of disruptions on SC per-
formance. To answer the second question, the framework
firstly employs the decision tree algorithm which gen-
erates decision rules to update the minimum inventory
levels of products at SC members in line with disrup-
tions and then applies optimisation to identify the SC
master plan. To answer the third question, the role of the
developed framework in a SC digital twin is discussed.
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7.1. Theoretical and methodology contributions

The use of hybrid modelling for addressing SC plan-
ning problems has become increasingly popular among
researchers and industry professionals alike (Mustafee
et al. 2017). Much of the developed hybrid models in
the literature combine two of simulation, optimisation,
and machine learning techniques to address SC plan-
ning problems. There is a scarcity of studies that show
the application of an integrated simulation-optimisation-
machine learning framework to address SC planning
problems. Although the applications of such frame-
works in other domains have been presented (e.g. Dong
et al. 2022; Harper and Mustafee 2019; Hou et al. 2022;
Mohammadi, Safari, and Vazifehkhah 2022).

This study presented a hybrid modelling framework
which integrates simulation, optimisation, and machine
learning to address a SC master planning problem in the
presence of SC disruptions that overcomes the method-
ological constraints that exist in each of these techniques
and hence work to date. The presented framework uses
simulation to incorporate the dynamic behaviour of SCs
under demand and lead time disruptions. It uses machine
learning to provide explainable solutions with decision
rules to determine the optimal SC master plan with min-
imum inventory values that ensure a service level above
98% for all products. In combination, it uses optimisation
to identify the optimal production, storage, and distri-
bution values that minimise the SC total cost. Using this
framework, the impact of three SC disruption scenarios
were examined, (1) demand increase, (2) lead time exten-
sion, and (3) simultaneous demand increase and lead
time extension, on the SC service level.

The results showed that under these disruptions, SC
service levels for all products dropped because of insuf-
ficient inventory levels at DCs. We have also obtained
insights on the impact of minimum inventory levels of
the products at SC members on SC service levels for
the products. Our results show that in the presence of
demand and lead time disruptions higher inventory lev-
els should be kept at closest SC members to customers,
in this study DCs, than in upstream SC members, man-
ufacturers, to provide the highest service levels for cus-
tomers. This reduces the level of risk mitigation inventory
at upstream SC members (Liicker, Chopra, and Seifert
2021). We show that a service level above 98% can be
achieved by maintaining higher inventory levels at man-
ufacturers compared to the DCs. However, this approach
comes at the cost of incurring higher SC total cost. Sapu-
tro, Figueira, and Almada-Lobo (2021) state that inven-
tory control is not an effective strategy to address long
disruptions, i.e. disruptions which last more than 5 days.
While we show that our hybrid modelling framework can
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effectively tackle long disruptions. As shown in Figure 2,
the crucial aspect lies in updating simulation model in
line with disruptions and generating new set of data for
machine learning model which is responsible for gener-
ating decision rules for setting inventory decisions.

SCs can improve their resilience against disruptions
by leveraging adaptive strategies (Zhao, Zuo, and Black-
hurst 2019). We show that responsive planning in which
the minimum inventory levels for the products at the
DCs and manufacturers are updated in line with the
SC disruptions to keep the mean DCs service level at
the high level, i.e. above 98%, is an effective strategy for
dealing with disruptions in the SCs. In particular, we
show that responsive planning provides a considerably
higher service levels for all products and lower SC total
cost compared to unresponsive planning. This is in line
with the findings by Kamalahmadi, Shekarian, and Parast
(2022). We observed that in the responsive case the rate
of the mean DCs service level reduction is significantly
lower than that of inventory abatement at downstream
SC members and inventory growth at upstream SC mem-
bers. For instance, as shown in Figure 10, the minimum
inventory of product 1 to be held by the DCs in rule 1 is
42% higher than the value in rule 5. While service level
of rule 5 is 0.83% lower than that of rule 1.

The integrated simulation-optimisation-machine lea-
rning framework is one of the main precursors to a
SC digital twin. Such a framework is needed to show
the data exchange mechanism between modelling tech-
niques before incorporating real-time or near real-time
data can be attempted. Rushing into using live data with-
out specifying the data exchange mechanism between
modelling techniques will mean that whilst real-time or
near real-time modelling can be conducted it is insuf-
ficient to address SC master planning problem under
disruptions in a reasonable time.

The main limitation of the presented simulation-
optimisation-machine learning framework is that scal-
ing it to handle large-scale and real-time scenarios can
pose challenges in terms of computational infrastruc-
ture requirements. Therefore, it is crucial to guaran-
tee access to an adequate computational infrastructure
before attempting to scale such a hybrid framework for
large-scale and real-time scenarios.

7.2. Managerial implications

The first step for practitioners wishing to minimise the
impact of SC disruptions on SC service level using the
presented hybrid modelling framework would be to repli-
cate the known real-world SC in a controllable envi-
ronment, e.g. through a simulation model. This process
includes considering SC disruptions and studying their

impacts on the SC service level. The simulation model
enables the exploration of a wide range of scenarios and
investigates the suitability of various inventory policies in
each scenario.

Secondly, the generated data by the simulation model
can be translated into knowledge by a machine learning
algorithm, which could establish a set of decision rules for
setting minimum required inventory for each product to
ensure a high service level to customers in the presence of
SC disruptions. This creation of decision rules or policy
settings will allow practitioners to not only have a tool to
explore disruptions, as in the paragraph above but also to
gain insight into varied inventory policies which ensure
a high service level.

Thirdly, practitioners aim to minimise SC total cost in
addition to keeping a high service level. This is achieved
by formulating an optimisation model which helps prac-
titioners to identify optimal production, storage, and
distribution decisions which minimise the SC total cost
while keeping a high service level. The decision rules
from the previous step inform the constraints on inven-
tory levels at SC members.

Fourthly, we have illustrated this process in a case
study. The decision tree algorithm has proven to success-
fully identify the inventory policies that provide a high
service level using the data generated by the simulation
model. The optimisation model has proven to determine
the optimal SC master plan that minimises SC total cost
while keeping a high service level. This demonstrates that
practitioners can achieve tangible performance improve-
ments using the developed framework.

Finally, the presented hybrid modelling framework
also demonstrates the superiority of responsive planning
over unresponsive planning in the presence of disrup-
tions to practitioners. We show that responsive planning
significantly increases service levels to customers under
SC disruptions. Overall, these outcomes illustrate the
potential for how the practice could derive better policy
settings to achieve higher performance in companies by
reaping the benefits of integrated modelling.

7.3. Limitations and future research

To consider directions for future research, the limi-
tations of this work are discussed as follows. Firstly,
this study illustrates the application of hybrid modelling
frameworks in SC master planning. This framework
can be enhanced into a SC digital twin by incorpo-
rating real-time or near real-time data on the product
and order flows. For instance, real-time or near real-
time data on customer demand, distribution lead time
between SC members, and available workforce time and
machine time at SC members. Secondly, in this paper,



a multi-product forward SC is studied. Future research
may consider closed loop SCs. Thirdly, the objective of
this work is to minimise SC total cost, while maximising
SC service level. Future work can consider other objec-
tives such as minimising carbon emissions. Fourthly, we
used the decision tree algorithm to identify the inventory
policies which maximise SC service level. Future research
may compare the performance of the other machine
learning techniques with the performance of the decision
tree algorithm in maximising the SC service level. Fifthly,
this study only investigates the impacts of disruptions
in physical flow on the SC service level. Future research
may study the impact of disruptions in information and
financial flows in addition to disruptions in physical flow
on SC performance. Sixthly, we use a uniform distribu-
tion to represent the demands of all products. Future
research may utilise alternative distributions such as Nor-
mal and Poisson to express the demands of products.
A seventh area of research that could develop from the
work here is to consider how not just different modelling
systems come together but how also different levels of
fidelity and scope are brought together. This would con-
tribute to effective modelling at scale. Finally, this study
integrated simulation, optimisation, and machine learn-
ing to address a SC master planning problem under SC
disruptions. Future research could employ the same inte-
grated framework for addressing other SC problems in
the presence of disruptions such as supplier selection and
network design problems.
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