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Spike learning based Privacy Preservation of Internet of Medical Things
in Metaverse

Sunder Ali Khowaja, Senior Member, IEEE , Kamran Dahri, Muhammad Aslam Jarwar, Senior Member, IEEE ,
and Ik Hyun Lee

Abstract— With the rising trend of digital technologies, such
as augmented and virtual reality, Metaverse has gained a no-
table popularity. The applications that will eventually benefit from
Metaverse is the telemedicine and e-health fields. However, the
data and techniques used for realizing the medical side of Meta-
verse is vulnerable to data and class leakage attacks. Most of
the existing studies focus on either of the problems through
encryption techniques or addition of noise. In addition, the use
of encryption techniques affects the overall performance of the
medical services, which hinders its realization. In this regard, we
propose Generative adversarial networks and spike learning based
convolutional neural network (GASCNN) for medical images that
is resilient to both the data and class leakage attacks. We first
propose the GANs for generating synthetic medical images from
residual networks feature maps. We then perform a transformation
paradigm to convert ResNet to spike neural networks (SNN) and
use spike learning technique to encrypt model weights by repre-
senting the spatial domain data into temporal axis, thus making it
difficult to be reconstructed. We conduct extensive experiments on
publicly available MRI dataset and show that the proposed work is
resilient to various data and class leakage attacks in comparison
to existing state-of-the-art works (1.75x increase in FID score) with
the exception of slightly decreased performance (less than 3%)
from its ResNet counterpart. while achieving 52x energy efficiency
gain with respect to standard ResNet architecture.

Index Terms— Privacy Preservation, Medical Images,
Metaverse.

I. INTRODUCTION

Metaverse has gained huge popularity and attention in recent
times from industry and research alike. Metaverse transforms the
physical world into the virtual one while providing a sense of realism.
The history of metaverse dates back to 1992, however it was the
Facebook’s name to Meta that kind of made the metaverse a house-
hold name. Metaverse combines multiple emerging technologies such
as cloud/Edge computing, Internet of Everything (IoE), computer
vision, robotics, blockchain, and artificial intelligence to provide the
promised immersive experience [1]. Although metaverse is at nascent
stage now but its incessant evolution will help extend its boundaries
to the field of entertainment, tourism industry, agriculture, education,
finance, and healthcare [1].
Since the inception of COVID-19, researchers have been working
on the adoption of Metaverse for healthcare applications as the
metaverse can be integrated with the wearable sensors to provide
continuous monitoring services in both real and virtual worlds. One
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of the potential applications of medical informatics in metaverse is the
cancer detection. Cancer is considered as one of the leading causes of
death throughout the world [2]. In 2018 alone, cancer was responsible
for 9.6 million casualties [2]. The likelihood of survival from cancer
heavily depends on the early diagnosis and detection, which also
helps in reducing treatment expenses and morbidity, respectively.
A definite, reliable, and precise cancer prognosis at its early stage
is quite challenging due to the ambiguity in symptoms and images
acquired from varying modalities. Therefore, providing an accurate
cancer prognosis is required to reduce the morbidity rate and increase
the chance of survival [2].
Metaverse provides a lot of benefits in healthcare domain, however,
researchers have pointed out that it is vulnerable to security and
privacy attacks [1]. Moreover, due to the potential of metaverse for
collecting sensitive data, the stakes are significantly higher for the
breach of security. The malicious user can manipulate the data or
label that can cause misdiagnosis which can result in life altering
situation. Therefore, the security and privacy concerns in metaverse,
specifically for the medical data, has been the top priority for the
researchers to consider.
Existing works have mostly focused on the image encryption tech-
niques to preserve the data privacy [3], [5]. The process first encrypts
the images at the user end and is decrypted at the receiver end for
performing inference. The problem with the encryption techniques is
that the stronger they are, the more computationally complex they get,
which will hinder the metaverse experience eventually. Furthermore,
studies have proved that the use of encryption techniques degrades
the image quality to a certain extent, which is highly spurious for
medical images that are quite sensitive and minor changes could
result in false prognosis [4]. Recent methods are also capable of
extracting and recreating data from pre-trained model weights, which
is termed as model inversion attacks [6]. The aforementioned attack
help in the designing of model poisoning attack [7]. To divulge such
private information along with the class (prognosis) is considered to
be a severe threat in the field of privacy preserving machine learning.
Such information can be leveraged by the malicious attacker to be
misused in physical world or generation of strong adversarial attack.
Therefore, it is essential to develop a privacy preservation machine
learning model that not only addresses data leakage but also the class
leakage problem in metaverse, accordingly.
Recently, spiking neural networks have gained a lot of interest from
researchers due to its capability of preserving privacy as well as
lower power consumption [34]. Spike neural networks get activated
only when certain events occur, therefore, researchers have shown
that it yields 2x times less latency than conventional methods [34],
which is quite beneficial specifically with the domain of metaverse.
Researchers have also considered using CNNs and spike neural
networks together in order to overcome the performance issues,
especially in the domains of object detection, emotion classification,
and cybersecurity [25]. Although, spike neural networks have been
explored in existing studies for securing the weights, it exhibit the
problems including reduced performance, weight conversion issues,
and is mostly applied to traffic signs or moving objects.
In this regard, we propose generative adversarial networks (GAN) -
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spike learning based convolutional neural network (CNN) transforma-
tion paradigm (GASCNN) to address the problems concerning class
and data leakage in medical images. We address the data leakage
problem by using GANs to generate synthetic data and then apply
GAN-CNN transformation to camouflage the sensitive information.
The class leakage problem is addressed by using encryption on weight
parameters using spike learning strategy in a temporal manner. To
be specific, we use spiking leak-integrate-and-fire (LIF) activation to
optimize the parameters, which resists the calculation of backward
gradients. The transformation from GAN-CNN also helps in reducing
the computational complexity, as the spike based learning is compu-
tationally intensive for data generation. The transformation paradigm
kind of regularizes the training process so that it can be used for
edge devices as well. The contributions of this work are summarized
below:

• To the best of our knowledge, this is the first work to address
data and class leakage for medical images in the context of
Metaverse.

• We proposed spike learning strategy to protect the parameter
weights of CNN, which resists the recreation of data from model
parameters.

• We propose the transformation paradigm from GAN-CNN to
reduce the computational cost and enable its usage for edge
devices.

• We carry out extensive analysis on publicly available dataset
to show efficacy of GASCNN from privacy as well as energy-
efficiency point of view.

The rest of the paper is structured as follows: Section 2 provides a
consolidated literature review of existing works considering privacy
and security of medical images. Section 3 presents the proposed
methodology for GASCNN. Section 4 illustrates the experimental
setup along with the analysis carried out to prove the efficiency of
proposed work. Section 5 concludes the work and provides future
research directions, accordingly.

II. RELATED WORKS

This section consolidates a brief literature review on the methods
presented for data leakage, visual privacy, and model and feature
inversion. The studies related to data leakage will highlight the
works concerning privacy preservation machine learning models. The
visual privacy section highlights the studies that focus on encryption
techniques. The GANs and learnable encryption emphasize on the use
of GANs for the adopting privacy preservation within the learning
process and lastly, the model and feature inversion provides insights
for the studies that focus on differential privacy attacks. This work
proposes defense against data and class leakage attacks through
GANs and encryption, which concerns all the aforementioned cate-
gories, respectively. The last subsection will provide a summarization
as to how the proposed work is different and unique in comparison
to existing ones.

A. Data Leakage
Existing studies on data privacy and leakage have been centered

around learnability, statistics, information theory, anonymization,
shift-keying methods, and closeness [8]. The aforementioned studies
are good for static and small-scale datasets, however their perfor-
mance falters with increasing scale and dynamic environments. The
concept of differential privacy was introduced in [9] that prevents a
malicious attacker to gain access to the user or data, respectively. Over
the years, many encryption techniques have been proposed to prevent
the data from being leaked. Romi et al. [10] proposed the multi-
round encryption technique that used secure multichannel approach.

The method was prone to weak security and large computation
times. Yinan et al. [11] presented a selective encryption strategy with
small key sizes and termed it as DNA origami cryptography. The
method was effective in terms of computational complexity, but was
vulnerable to brute force attacks. Kaur et al. [12] proposed a high-
dimensional chaotic map by applying piecewise linear operations,
which performed quite well in comparison to the aforementioned
studies. The trend has been continued to recent times when variants
of aforementioned encryption techniques and hyperchaotic maps are
generated, nevertheless the problem of increased computation time
still remains.
Similar methods for the prevention of data leakage are applied
to medical images as well. A recent study [14] combined the
characteristics of frequency domain and discrete cosine transform
to encrypt images, which takes less computation time and is robust
against many security attacks, but performs poorly against crop and
noise attacks. Rehman et al. [13] proposed substitution boxes based
on chaotic maps for encrypting X-ray and MRI images. They used
a large key space, i.e., 2100 that could resist the brute force attacks,
therefore the problem of computational complexity at the time of
inference is prominent. Khowaja et al. [5] proposed the use of chaotic
maps along with a secret key image and noise level addition. The
encryption method showed better results than many chaotic map-
based techniques both in terms of performance as well as computation
times, but still it was not suitable for real-time inference systems.
Another recent study [7] proposed the combination of discriminative
and generative networks to simulate model inversion and poisoning
attacks to show its effect on the recognition performance. The study
showed that the data leakage and its subsequent poisoning quite
reduce the recognition performance by upto 20%, which is quite
significant in the domain of medical imaging. Cameiro et al. [15]
proposed the use of hyperchaotic maps by fusing multiple grayscale
images using bifurcation, phase, and Lyapunov diagrams. The method
was quite effective, however, resulted in large computation times.

B. GANs and learnable encryption
Recently, some studies have shifted towards the use of generative

adversarial networks (GANs) to perform data encryption and decryp-
tion. A study DeepEDN [16] was proposed to encrypt and decrypt
using cycle-generative adversarial network (Cycle-GAN) on medical
images. The study also showed that a specific region of interest
instead of the whole image can also be decrypted and extracted
using such methods. The term learnable encryption was introduced
in Tanaka scheme presented in the study [17]. The idea behind
Tanaka scheme is that the encryption will only be applied for humans
rather than machines, therefore, the encrypted images would be
directly learned by machines. An improvement over Tanaka scheme
was proposed in [18] with the name SKK scheme. The method
used independent keys for encryption rather than the same ones as
performed in Tanaka scheme. The usage of individual keys will lead
to efficient shuffling operation along with a large key-space that is
resilient to both the brute-force and DNN based attacks, respectively.
The SKK scheme would also require extensive data augmentation
tasks in order to provide a reasonable amount of accuracy. The use
of GANs eliminate the need for encryption key management, as
shown in one of the recent works proposed in [19]. The method
also uses cycle-GAN to transform the plain images to encrypted
ones using the encoder part. Tang et al. [35] proposed the use of
Markov-GAN method that used Simpson index to perform encryption
using Markov images. The method was performed on traffic sign
recognition dataset.
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C. Visual Privacy
Visual privacy preservation techniques aim to camouflage the

image data with certain operations such that the information cannot
be determined by the attacks. The operations performed for visual
privacy preservation include adversarial image perturbation, identity
obfuscation, down scaling, mean shift filtering, and Gaussian blur
[20]. Some recent studies have focused more on adding adversarial
perturbations, such as one-pixel attack, multi-pixel attack, jacobian
saliency map attack, carlini&wagner attack, fast gradient sign method
attack, and so forth [21]. Studies perform these attacks intentionally in
order to cope with the adversarial and differential privacy attacks on
the image data. Ryoo et al. [22] proposed the learnable machines on
downsampled data to cope with the attacks, however, such methods
require a trade-off between the security and performance accuracy.
Liao et al. [36] combined the characteristics of CNN and spiking
neural networks such that the feature extraction is performed using
the former network architecture while the latter learns to encrypt the
data via surrogate gradient learning. The work was performed on
motor imagery acquired using EEG signals.

D. Model and Feature Inversion
With the advancement in adversarial deep learning and machine

learning technologies, researchers have shown significant interest in
the ability of methods that can intercept a classifier for stealing data
from model weights and parameters [6]. First, such kind of the model
and feature inversion methods were designed around optimization
techniques that were able to invert mid to low level features extracted
from convolutional neural networks (CNN). Following these tech-
niques, other methods used up-CNN for improving the inversion of
mid-level representations [7]. These methods were good for low-level
feature inversion, however, the results were not effective for inversion
of high-level features, accordingly. Recently, methods based on GANs
were proposed that were not only able to invert high-level features but
also reconstruct the data from model parameters [6]. The study deep
leakage from gradients started the conversation for the reconstruction
of data from model weights, since then studies like improved data
leakage from gradients [23], PGSL [21], Industrial Private AI [5],
and SPIN [7] were proposed that leverage model inversion attacks for
specific applications. Following the trends, many studies considered
derivatives of the aforementioned works to perform data or class
label leakages from gradients such as WDLG [37], DEFEAT [38],
and GLAUS [39].

E. Difference between existing methods and ours
In comparison to existing works, our method can scale up to

high-dimensional data while encrypting the medical images using
learnable machines. Our work is different from existing works in
terms of transformation paradigm, i.e., from GANs to spike learning-
based CNNs in order to reduce the computational complexity of the
encryption system. To the best of our knowledge, this is the first work
to perform transformation of GANs to spike learning-based CNNs for
medical images in the context of metaverse. Furthermore, we show
that the proposed work is capable of achieving the best trade-off in
terms of recognition performance and computational complexity.

III. PRELIMINARY FOR LEAKAGE PROBLEMS

The conversion in the proposed work from ResNet to spike learning
based CNN is leveraged from the study [24]. The conversion assumes
that the model uses leak-integrate-and-fire (LIF) neuron, which is
formulated in equation 1.

Mt
p =

∑
q

wpqr
t
q + ϑMt−1

p (1)

In the above equation M refers to the membrane potential, wpq

represent the weights between post-synaptic neuron p and pre-
synaptic neuron q, and ϑ is the leak factor. The spike rtp is generated
when the M’s crosses the firing threshold ς . A soft reset is then
performed to lower the value of Mt

p by ς . The transformation
paradigm process is carried out by normalizing the firing threshold
ς or the weights. The weights of pretrained ResNet are replicated
to the attributed CNN or ResNet, followed by the consideration of
maximum activation value to set the firing threshold. Subsequently,
the maximum activation is computed for each layer and for each
time step. The transformation paradigm is then processed from the
first layer to all subsequent layers, respectively. Batch normalization
is not used during spike learning, as spikes are zero mean values.
However, the dropout layer is used as suggested in the existing studies
[24], [25].
The transformation paradigm requires the whole training data to
be converted from ResNet to spike learning based CNNs, which
leads to the privacy issues and data leakage. Existing studies have
suggested to use synthetic data rather than the actual data to perform
the transformation paradigm, which is similar with the studies per-
forming domain adaptation, model distillation, model compression,
and quantization [24]–[26]. But by doing so, the performance of the
recognition system is compromised to achieve an acceptable level of
trade-off.
Other than the data leakage, the attacker can also target shape of the
objects or patterns, which corresponds to the class leakage problem.
The algorithm in Table 1 provides a straightforward pseudocode to
generate image based on class representation. First, an input tensor
is initialized with uniform distribution. Pre-softmax logits are then
maximized via input noise using an iterative optimization strategy for
a specific target class. The image is then smoothed using Gaussian
blur to reduce gradients.
The algorithm makes a basic assumption that the gradients can be
calculated in an exact manner for all layers. However, when it comes
to spike neural networks, the gradients cannot be computed exactly
due to the nature of LIF activation, which is non-differentiable [24],
[25]. The only way to generate images representative of a specific
class is to apply the reverse transformation paradigm, i.e., from CNN
to ResNet. Generally, two types of techniques such as threshold
scaling and weight scaling are used for reverse transformation. Even
though, with the reverse transformation, it is not easy for the attacker
to obtain weights for the ResNet as the attacker has to apply several
combinations of scaling factor for each layer. The state-of-the-art
transformation methods operate on threshold scaling mechanism
[24], [25], that vary the threshold while ensuring the uniformity
of weight parameters. In this study, the class leakage problem and
transformation is addressed using threshold scaling technique. This
is made possible by replacing the LIF to rectified linear unit (ReLU)
neuron. By doing so, the attacker can simply use the algorithm in
Table 1 to reconstruct the image of a specific class.

IV. GASCNN
This section provides details regarding the workflow and method-

ology of the proposed work. The overall system workflow is shown
in Figure 1. We use encoder-decoder style generative adversarial net-
works (GAN) that would learn to generate images through Residual
Network (ResNet) architecture. The pretrained ResNet is then used
to perform the transformation paradigm, followed by the encryption
of weights using spike learning rule.

A. GANs for Image Generation
To create a synthetic dataset, we leverage conditional GANs

(CGAN) [27], which will generate brain MRI images while pre-
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Fig. 1. The proposed Generative Adversarial Network - Spike Learning based CNN Transformation Paradigm Framework (GASCNN).

TABLE I
ALGORITHM FOR IMAGE GENERATION THROUGH CLASS LEAKAGE

Input: Number of Iterations (N), learning rate (η), target class (L),
blur frequency (B)
Output: Image representing specific class x
1: Initialize uniform random distribution as input U(0,1) → x
2: for 1 → n to N :
3: if B % n == 0:
4: GaussianBlur(x) → x
5: end if
6: Compute pre-softmax output network(x) → y

7: η ∂yL
∂x

+ x → x
8: end for

serving the patients’ identity. The reason for using CGAN for the
synthetic image generation is that even though the training data
belongs to different sources, the inherent features can be modeled
for different Alzheimer’s stages. The synthetic image generation in
this study is composed of three modules, i.e., attention-based GAN,
discriminator, and a ResNet module, respectively.
Let us denote the 2D attention-based generator as Gena, synthetic
image slices as SL2D , target condition for disease stage as SC, and
2D discriminator as DIS, respectively. The generator architecture
first combines SC and ResNet generated feature map Res2D along
channel axis through concatenation. We used categorical cross-
entropy loss to train the ResNet and update feature maps, accordingly.
The input image is fed to the ResNet which generates a feature map,
which is then sent to the generator module. It should be noted that
SC and Res2D are of same dimensions, however, the SC comprises
a single value, i.e. [0, 0.5, 1], across all pixels representing the classes
AD, MCI, or Normal. The weighted sum of the generator Gena and
input Res2D results in synthetic image slices as shown in equation
2.

SL2D = ga − ga · ϱ+Res2D · ϱ (2)

where ϱ and ga are the outputs from Gena. The former represents the
pixel-wise attention mask generated through sigmoid function, while
the latter is the generated image through tangent hyperbolic function.
The mask ϱ in this case helps in preserving features and image
quality to help in aiding comparison, while the ga maintains unrelated
regions but at the same time modifies the brain areas considering
the conditions instigated by Alzheimer’s disease (AD) contortion.

The Gena architecture comprises an encoder, decoder, and transition
layer. Three convolutional layers are used in the encoder layer to
extract feature maps. Six residual blocks are used in the transition
layer to modify the feature maps in accordance with the target
condition. The decoder generates two outputs. The first is the mask
bounded by a sigmoid function that needs to be transformed outside
the region, and the second is the transformed image that is generated
using the tangent hyperbolic function and a transposed convolutional
layer.
The discriminator DIS is designed to increase the quality of gener-
ated synthetic slice such that it reciprocates realism along with the
verification of target condition in the generated image. The DIS
comprise of 5 convolutional layers and 2 Fully connected layers that
ensure the realism by verifying if the generated image is fake or real
Pa and that the generated image either meets the target condition or
not Psc. The input to the DIS can be either a generated synthetic
image from generator or real image, accordingly.
Wasserstein GAN (WGAN) has been used to train the GAN in the
proposed study with adversarial losses and gradient penalty [28] in
order to satisfy Lipschitz constraint. The reasons for choosing WGAN
and gradient penalty are three-fold. The first is the training stability,
the second is the improved quality of the generated synthetic images,
and the third is the fast convergence. The adversarial loss for the GAN
is defined in equation 3.

Lossadv =(∥∇zPa(z)∥2 − 1)2 · α− ERes2D [Pa(Res2D)]

+ ERes2D,SC [Pa(SL2D)]
(3)

The first term in the loss refers to the gradient penalty, while the
remaining terms represent Wasserstein distance. The notation z rep-
resents the weighted sum of Res2D and SL2D with the assumption
that it follows a uniform distribution U [0, 1]. The aforementioned
assumption is in compliance with the existing works [21], [25], [34].
This weighted sum can be defined as shown in equation 4.

z = (1− U) · SL2D + U ·Res2D (4)

The notation U refers to the uniform distribution [0,1]. The afore-
mentioned loss ensures the quality of generated synthetic images,
however, we also need to ensure the target conditions, which is carried
out using regression loss. The regression loss is defined in equation
5.

Lossreg = ERes2D [∥Psc(Res2D)− SC∥22] (5)
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We also adopt an attention-based adaptive identity loss [29], which
controls the degree of transformation via per pixel weighted combi-
nation between the Res2D and SL2D . The loss also ensures that
the boundary artifacts are not added and the transformation is not
excessive, which is essential to keep the realistic features intact in
the generated images. The said loss is defined in equation 6.

LossAAID = ERes2D,SC [∥(Res2D − SL2D) · (1− ϱ)∥] (6)

The reason for using attention-based adaptive identity loss is that the
generated image may represent artifacts such as unnatural boundaries
and instability in the training process that results in sharp changes
concerning attention maps. The aforementioned loss ensures that the
transformation is smoother and the boundary artifacts are reduced.
The generator also uses attention loss to avoid saturation in the
attention mask, i.e. Lossatt = ERes2D,SC [∥ϱ∥]. The total variation
loss also ensures spatial smoothness in the generated image, and is
defined in equation 7.

LossTV R =ERes2D,SCH,W∑
u,v

[|ϱu+1,v − ϱu,v|+ |ϱu,v+1 − ϱu,v|]

 (7)

Finally, the loss optimization functions for training the Generator and
Discriminator are given in equation 8 and 9.

LossGen = ERes2D,SC [Pa(SL2D)] + αTV R · LossTV R

+ αatt · Lossatt + αAAID · LossAAID + αreg · Lossreg
(8)

LossDIS = αreg · Lossreg + Lossadv (9)

B. Transformation of ResNet - SNN
This study assumes that once the generator network and ResNet

is trained from the previous stage, we do not have access to the
original dataset. However, we presume that the trained ResNet is able
to generate suitable features, which are essential for the generating
realistic images as the ResNet is trained in accordance with the
generator network in the previous stage. In order to go through the
transformation process, we need to use the maximum activation value
from each layer to compute the threshold value from synthetic images
[26]. It has been shown by existing studies that synthetic images from
transformed SNN result in the same performance when compared to
the ResNet. We follow the process of transformation from ResNet to
SNN as suggested in [24]–[26]. However, first we need to convert
the synthetic data as well. Following are the steps to perform data
free conversion.

• Initialize the synthetic dataset.
• For each class set compute the class similarity concerning

ResNet’s fully connected layer weights. Within the loop compute
the following.

• For number of samples per class, use Dirichlet distribution
to sample the soft labels and initialize input using uniform
distribution.

• Also, find the sample that minimizes cross entropy loss con-
cerning the feature maps of ResNet and associated label.

• Append the sample to converted dataset.
• Perform the transformation from ResNet to SNN using [24]–

[26].
Once the transformation is completed, the SNN’s are still vulnerable
to class leakage attacks, as one can recover the original ResNet by ac-
cessing the weights of the transformed SNN and changing the neuron
activation from LIF to ReLU. As medical images are considered to be
private and sensitive data, it is therefore necessary to encrypt the SNN
parameters using spike learning. For the conversion, the study uses

small-time steps such as 70 ∼ 100 as it reduces the memory for post-
transformation learning and training time, respectively. Furthermore,
studies have shown that using small steps results in inferential energy
efficiency. In addition, the performance loss is also reduced due to
the small time-steps, accordingly.

C. Spike learning based Encryption
The idea of spike based learning encryption is built upon the

assumption that it’s difficult to elucidate class information from
temporal data representation. As we have static images from our
synthetic dataset, a mapping to temporal representation needs to be
carried out. In this regard, we use rate coding, which generate spikes
within a specified time window. It should be noted that the number of
generated spikes are correlated with pixel intensity. Let’s suppose that
the maximum and minimum pixel intensity values are represented as
ımax and ımin. Random numbers with normal distribution within the
range [ımin, ımax] are generated for each pixel [u, v] and time-step
t. Each pixel intensity is then compared with the generated number,
if the pixel intensity is lower than the generated random number, the
rate coding will generate a spike. If the aforementioned condition
is not met, the spike will not be generated. This process spans the
pixels in spatial domain to temporal axis, accordingly.
The spikes from the temporal axis along with gradient optimization
are then used to train the transformed SNNs. Presynaptic spikes
are accumulated via LIF neurons to generate output spikes via the
computation shown in equation 1. The information incorporated in
spikes is propagated to all layers and accrued at the prediction layer.
In this way, the spikes from the temporal axis when passed through
softmax function can be represented in the form of probability
distribution. In order to train the SNN with spike learning, we use
cross entropy loss. However, studies have shown that training SNNs
need more than one feed-forward steps for a single input modality,
which increases the training time. Common practices for reducing
training time concerning SNN training is to reduce the volume of
synthetic data. However, reducing the number of samples might
result in overfitting. In this regard, a study [30] proposed the use of
knowledge distillation that helps in improving the ability of model
to generalize. In this regard, the loss function for training SNNs
incorporate both the distillation Lossdist and cross entropy loss
Lossent as shown in equation 10.

LossSNN =δ (Res2D(X,β), Snn2D(X,β)) · Lossdist
+ Lossent · (1− δ)

(10)

In above equation, δ refers to the balancing coefficient, distillation
temperature is represented as β, and X is the subset of converted
synthetic dataset. The knowledge distillation loss in equation 11 is
associated with better generalization and conversion of synthetically
generated data, accordingly. The study uses spatio-temporal back-
propagation to compute each layer’s gradients and accumulate them
throughout the t [25].

V. RESULTS AND ANALYSIS

In this section, we present the details regarding dataset, network
parameters, experimental setup, and analytical results.

A. Dataset
For the validation of the GASCNN method, we have considered

open source magnetic resonance imaging (MRI) brain tumor datasets.
We have combined three publicly available MRI image datasets. The
first is from Kaggle1 having 155 and 98 images for brain tumor and

1https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-
detection
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Fig. 2. Example images from MRI dataset

normal categories. The second dataset is from GitHub2 that comprise
3264 images with four categories, i.e., pituitary, glioma, meningioma
tumor, and no tumor, respectively. Lastly, the third dataset is a
publicly available3 having 3064 images with three categories, i.e.,
pituitary, glioma, and meningioma tumor from 233 patients. We
added 98 images with no tumor category with the second and
third dataset, which resulted in a total of 6426 images, respectively.
Furthermore, the images in third dataset were of 16-bits. In this
regard, we performed conversion to 8-bit followed by a histogram
equalization process to make it compatible with other images in the
dataset. Some images from the combined dataset are shown in figure
2.

B. Network Parameters

The proposed method consists of two sections, i.e., GAN and
SNN. Both of the phases were developed using Python and PyTorch
framework. For the GAN part, specifically, the hyperparameters used
in equation 7 are assigned the values as follows: αTV R = 10−5,
αatt = 0.1, αAAID = 7, and αreg = 3, respectively. The values of
αatt and αTV R are chosen based on the study [29], while the values
of αAAID and αreg are chosen on empirical basis. The learning rate
was set to 1e−4 along with constant decay. The model was trained
with ADAM optimizer for 150k iterations.
For ResNet conversion to SNN, threshold scaling [31] was applied.
For spike learning, the training was performed with a learning rate
of 1e−3 with a scheduling rate decay factor of 5 at 20% of number
of epochs. The network was trained on 5000 synthetically generated
images. The hyperparameters in equation 10, i.e., δ and β were set
to 0.6 and 15, respectively. Lastly, the values of B and η in Table 1
were set to 3 and 5. The network post transformation was trained for
30 epochs.

C. Performance Comparison

In this subsection, we show the experimental analysis to reveal
the effectiveness of the GASCNN as the network encrypts the
images without yielding notable recognition loss. The comparison

2https://github.com/sartajbhuvaji/brain-tumor-classification-dataset
3Cheng, Jun (2017): brain tumor dataset. figshare. Dataset.

https://doi.org/10.6084/m9.figshare.1512427.v5

TABLE II
COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH

STATE-OF-THE-ART WORKS USING F1-SCORE

Method Data Required F1-score
ResNet Training 97.52

SKK [18] Training 93.36
LIS [8] Training 89.30
CMI [5] Training 74.24

GASCNN Synthetic 94.88

Fig. 3. Qualitative comparison of the images encrypted using state-of-
the-art methods

is performed with SKK scheme [18], learnable image encryption
scheme (LIS) [8], and Chaotic-map based image encryption (CMI)
[5], and the proposed method. The comparison is performed using F1-
score. The results are reported in Table 2. We used ResNet18 network
architecture for reporting the accuracy on plain images. The results
reveal that the proposed method, even though uses synthetic data,
can encrypt the images without significant drop in performance. We
also provide a qualitative comparison on the encrypted images with
SKK, LIS, and CMI methods, accordingly. A qualitative comparison
is shown in Figure 3. For the visualization, we encrypt the spike map
with SKK scheme, respectively. It can be visualized that the SKK
encrypted image results cannot hide important features that represent
original class. Meanwhile, LIS encryption also provides an emergent
pattern that can be leveraged for data reconstruction. On the contrary,
the GASCNN does not provide any patterns or information that could
be helpful in reconstruction of data. Considering the qualitative and
quantitative comparison, it is safe to assume that the propose work
shows better resiliency to attacks in comparison to existing works
and exhibits a better coping mechanism to class leakage attacks.

D. Performance against security attacks
We validate the effectiveness of the proposed method against five

security attacks, i.e., minimum difference attack [32], leading bit
attack [32], model inversion attack [6], reverting SNN to ResNet
attack, and generating class representation attack. The initial three
attacks are used to reconstruct the original images from the encrypted
ones. The study [8] showed that the values of color component are
similar between edges for certain areas. The study also suggested that
the recovery of encrypted image is mainly dependent on the negative-
positive transformation, as the combined magnitude of each pixel’s
color component does not incur changes while shuffling them.
Similarly, the study [32] also revealed that the in order to recover the
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original image, the change should be minimized for color component
values. The method operates at the principle

∑
i |pi−qi|. In the above

expression q is the pixel that has yet to be decrypted, while p is a
decrypted nearby pixel. In order to decrypt pixel q, 48 permutations
of negative-positive transformation and color shuffling needs to be
carried out. The numbers of each option are computed and the one
which minimizes the steps towards decrypting pixel q is selected.
The model inversion attacks intend to recreate the original image
with differentiable model that minimize the distance between the
differential model and trained model weights, respectively. The study
[6] proposed deep leakage from gradients that showed if an attacker
gets their hands on the trained model, the weights can be leverage to
recreate the data.
The latter two attacks are concerned with class leakage attacks. If the
attacker gets their hands on the SNN, it might leverage the model
weights to recover the ResNet. The algorithm in Table 1 can then
be used to optimize the input. We believe that without spike learning
strategy, the attacker can use back-propagation to reconstruct the class
representation, however, the GASCNN uses spike learning which
presumably would help in coping with such attack as the weights
in spatial domain are encrypted.
The last attack assumes that the attacker wants to reconstruct the
class representation by directly back-propagating the SNN using the
algorithm in Table 1. The attacker might face problems in this case,
as the LIF activation function is non-differentiable [24], [25]. In this
regard, approximate gradient functions [25] are used. We assume that
the approximate gradients would have a strong deviation from the real
gradients due to the fact that the gradients needs to be accumulated
at first layer for converting temporal axis back to spatial domain.
To validate the robustness against the aforementioned attacks, i.e.,
minimum difference attack (MDA), leading bit attack (LBA), model
inversion attack (MIA), conversion-based class representation attack
(CBCRA), and direct class representation attack (DCRA), we perform
the experiment using Frechet inception distance (FID) metric [33]
on the plain images and encrypted images using SKK scheme, CMI,
and the proposed method, respectively. The FID scores are commonly
computed for the studies where GANs are used and the outputs needs
to be evaluated based on the similarity. The FID score undertakes
embedded features to compare the statistics. The lower FID score
suggests that the reconstructed image has original image-like features,
while the larger FID score suggests that the reconstructed image has
large deviations in comparison to original image feature space. The
results are reported in Table 3.
For the data leakage attacks, the model inversion attack cannot
be applied to CMI as it’s not machine learnable encryption. The
results reveal that the proposed method outperforms SKK and CMI
encryption techniques on all data leakage attacks. Furthermore, it
was observed that the model inversion and leading bit attacks can
recreate the original image from SKK scheme quite well. On the
contrary, minimum difference attack does not perform well on any of
the attacks and also introduces false colors during the reconstruction
process. Similar is the case with class leakage attacks, our proposed
method outperforms the SKK encryption schemes. It should be noted
that we directly used algorithm in Table 1 on SKK scheme. It was
observed that the SKK is quite vulnerable to CBCRA as it reveals
important features of the actual class label. The DCRA is only applied
to the proposed method as it is a direct attack on SNN. Our findings
concluded that the intrinsic nature of SNN (transformation paradigm
from ResNet to SNN) is effective against the DCRA, and is more
robust against this attack than the encryption version. The FID for
DCRA on transformed SNN was noted to be 417.7, respectively.
In addition, we also performed analysis concerning energy efficiency
using the estimation model proposed in [40], which considers mul-

TABLE III
COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH

STATE-OF-THE-ART WORKS ON DATA AND CLASS LEAKAGE ATTACKS

USING FID

Method Plain Images SKK CMI Ours
MDA 47.9 87.3 106.9 115.4
LBA 36.4 54.3 97.6 103.7
MIA 23.2 36.4 - 94.8

CBCRA 128.6 318.8 - 419.1
DCRA 134.8 - - 407.3

tiply and accumulate operations. The energy efficiency experiment
undertakes the inference stage only and compares it with standard
ResNet. Average number of spikes, i.e. Spike rate, across the layers
was used to calculate the energy. Our analysis showed that the
proposed work achieves a bit lower accuracy in comparison to
standard ResNet but with more than 52x energy gains suggesting
that the proposed approach lowers the spike rate, thus by extension,
is more energy efficient than the standard ResNet architectures.

VI. CONCLUSION

Metaverse is a concept that is gaining a lot of interest in the
research community. However, its reachability and digital footprint
makes it an easy target for data and class leakage attacks. This
paper proposes generative adversarial networks and spike learning
based convolutional neural network (GASCNN) to cope with the
data and class leakage issues for medical images. We proposed a
GAN-ResNet based medical image generation method, and spike
learning based encryption techniques for model weights. We have
carried out extensive analysis on publicly available MRI dataset to
show the efficacy of the proposed approach in terms of recognition
as well as performance against security attacks. The results reveal
that the proposed work is resilient to both data and class leakage
attacks that include minimum difference attack, leading bit attack,
model inversion attack, conversion based class representation attack,
and direct class representation attacks respectively. Our experiments
also reveal that the proposed work can achieved around 52x energy
efficiency gains in comparison to the standard ResNet, which is
compliant with existing spiking neural network architecture studies.
During our experiments, we found a limitation that the GAN must be
trained again if the data concerning a specific application is changed.
Even though a pre-trained ResNet on X-ray images is used, the
GANs cannot generate ResNet converted SNN unless the GAN is
first trained on few samples of original X-ray images first. We intend
to combine the universal source free domain adaptation with spike
learning techniques to make the network able of generating different
application oriented medical images while securing them with spike
learning based technique. Furthermore, we would like to dwell upon
the possible usage of the proposed method against model poisoning
attack in the domain of medical imaging, respectively.
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