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Abstract 1 

Tactical positioning is essential for success in short-track speed skating as the race format 2 

(direct, head-to-head competition over multiple laps) prioritises finishing position over 3 

finishing time. Despite this, current research into tactical positioning treats the race’s laps as 4 

discrete, independent events. Accordingly, the aggregate metrics used to summarise each 5 

lap’s tactical positioning behaviour do not allow us to explore the sequential nature of the 6 

data, e.g., Lap 2 occurs after Lap 1 and before Lap 3. Here, we capture the sequential 7 

relationships between laps to investigate tactical positioning behaviours in short-track speed 8 

skating. Using intermediate and final rankings from 500 m, 1,000 m, and 1,500 m elite short-9 

track races, we analyse whole-race and sub-race race sequences of group and winner tactical 10 

positioning behaviours. This approach, combined with a large dataset of races collected over 11 

eight seasons of competition (𝑛 = 4,135), provides the most rigorous and comprehensive 12 

description of tactical positioning behaviours in short-track speed skating to date. Our results 13 

quantify the time-evolving complexity of tactical positioning, offer new thoughts on race 14 

strategy, and can help practitioners design more representative learning tasks to enhance skill 15 

transfer. 16 

Keywords  17 

Performance analysis; tactics; decision-making; athlete-environment interactions; 18 

interpersonal competition; sequence analysis. 19 

Introduction 20 

Short-track speed skating is a form of competitive ice speed skating that consists of 21 

individual events (500 m, 1,000 m, 1,500 m) and relay events (2,000 m, 3,000 m, 5,000 m) 22 

performed anticlockwise on a 111.12 m oval (International Skating Union, 2021). In all 23 
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events, athletes and teams must qualify through several rounds of competition to reach the 24 

medal contest (e.g., heats, quarterfinals, and semi-finals), with each qualifying race 25 

characterised by multiple skaters or teams (typically four to six) racing head-to-head at 26 

speeds exceeding 11 m/s (Bullock et al., 2008; ISU, 2021). Critically, advancement through 27 

the competition and medal colour depends on an athlete’s or team’s finishing rank and not 28 

their finishing time. For example, an athlete could win/ qualify from semi-final 1 with a 29 

slower finishing time than an athlete who failed to qualify from semi-final 2 (Hext et al., 30 

2022). For this reason, an athlete’s decisions regarding how and when to invest their limited 31 

energy resources – both before (strategic) and during (tactical) the race – are considered 32 

essential for success (Hext et al., 2017, 2022; Muehlbauer & Schindler, 2011). This goal-33 

directed regulation of exercise intensity is known as ‘pacing’ (Abbiss & Laursen, 2008). 34 

In recent years, researchers have highlighted the importance of athlete-environment 35 

interactions for understanding pacing behaviour, i.e., the outcome of the strategic and tactical 36 

decision-making process (Hettinga et al., 2017; Konings & Hettinga, 2018c; Renfree et al., 37 

2014; Renfree & Casado, 2018; Smits et al., 2014). For example, factors that characterise the 38 

environment in short-track speed skating, such as the competition stage, the competition 39 

importance, and preceding race efforts, all alter pacing behaviour (Konings & Hettinga, 40 

2018b, 2018d). Arguably the most crucial athlete-environment interaction for understanding 41 

pacing behaviour in short-track speed skating is those between athlete and opponent 42 

(Hettinga et al., 2017; Hext et al., 2022; Konings & Hettinga, 2018c). Konings & Hettinga 43 

(2018a) showed that the high variability observed in between-race finishing times is 44 

primarily due to athletes altering their pacing behaviour to that of other opponents, 45 

particularly during the race’s early stages. Furthermore, drafting possibilities, competing for 46 

the optimum line, avoiding collisions, minimising fall risk, and overtaking all represent other 47 

athlete-opponent interactions that may cause an athlete to alter their pace (Konings et al., 48 
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2016; Noorbergen et al., 2016). For these reasons, previous research has investigated tactical 49 

positioning – i.e., athletes ranking within the race (1st, 2nd, 3rd, 4th, etc.) – to help contextualise 50 

pacing behaviour (Konings et al., 2016; Noorbergen et al., 2016), explore how it can be 51 

learned (Menting et al., 2019), and as a subject in its own right, based on position being the 52 

most important performance outcome (Haug et al., 2015; Hext et al., 2022; Maw et al., 2006; 53 

Muehlbauer & Schindler, 2011; Sun et al., 2021).  54 

Our understanding of tactical positioning in short-track speed skating is based on two 55 

levels of analysis: group and individual behaviours. The group level of analysis focuses on 56 

the collective behaviour of all athletes in the race, with researchers quantifying the tactical 57 

importance of athlete ranking at the race start and end of each lap by using Kendall’s Tau-b, 58 

τb, to measure the similarity between athletes’ intermediate and final rankings (Haug et al., 59 

2015; Konings et al., 2016; Maw et al., 2006; Menting et al., 2019; Muehlbauer & Schindler, 60 

2011; Noorbergen et al., 2016; Sun et al., 2021). In contrast, the individual level of analysis 61 

focuses on the tactical positioning behaviours of individuals and usually those of the winner, 62 

assuming that they are the most successful at the decision-making process and, therefore, 63 

their actions are of interest (Konings et al., 2016). In this scenario, researchers quantify how 64 

winners position themselves at the race start and end of each lap by calculating the proportion 65 

of races where they skated at each ranking or their mean rank (Bullock et al., 2008; Konings 66 

et al., 2016; Maw et al., 2006; Muehlbauer & Schindler, 2011; Noorbergen et al., 2016; Sun 67 

et al., 2021). Typically, researchers only use the group level of analysis to infer race strategy. 68 

Although, on occasions, both group and winner behaviours are used. For example, 69 

Noorbergen et al. (2016) concluded that tactical positioning is crucial from the race start in 70 

the 500 m as there was a positive association between athletes’ start position and final 71 

rankings (τb = 0.38), and 51% of winners started in first position.  72 
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Without underestimating these approaches’ insights, the methods used to investigate 73 

tactical positioning behaviours treat the race start and each lap as discrete, independent 74 

events. Accordingly, the aggregate metrics used to summarise each lap do not allow us to 75 

explore the sequential nature of the data, e.g., Lap 2 occurs after Lap 1 and before Lap 3. In 76 

Table 1, we demonstrate how this limits our capacity to understand tactical positioning by 77 

analysing the tactical positioning behaviour of winners for the ‘Start’ and ‘Lap 1’ in 10 races. 78 

Using traditional discrete lap analyses, Table 1 shows that 50% of winners started in 1st 79 

position (mean rank: 1.8 ± 0.9), and 60% were ranked 1st at the end of Lap 1 (mean rank: 1.6 80 

± 0.8). The standard interpretation of such results would infer that: (1) tactical positioning is 81 

crucial from the race start, and (2) acknowledge that some variation in tactics exists based on 82 

the relatively high standard deviation in winner rank. Now let us consider the data’s 83 

sequential structure and produce ten race sequences of the form: (Start position, Lap 1 rank). 84 

First, Table 1 shows that only one race had a sequence where the winner started and remained 85 

in 1st, i.e., (1, 1). Such a finding would question the discrete lap analysis’s interpretation that 86 

tactical positioning is crucial from the race start. Second, analysis of the ten sequences allows 87 

us to surmise the different winning tactical positioning behaviours, unlike the discrete lap 88 

analysis, which could only propose their presence. Table 1 reveals five unique winning 89 

sequences: (1, 3), (1, 2), (1, 1), (3, 1), and (2, 1), and identifies the modal sequence as (3,1), 90 

appearing in 3 out of 10 sequences. Note that this measure of central tendency also respects 91 

the semantic definition of rank, unlike the mean, as an athlete cannot occupy a ranking of 1.8 92 

or 1.6. Both examples highlight how techniques that capture the relationship between discrete 93 

events offer a deeper understanding of performance in sport (Borrie et al., 2002). 94 

State sequence analysis is a statistical framework for identifying patterns in 95 

temporally ordered lists of objects, states, or events (Lowe et al., 2020). Originally used for 96 

sequence matching in bioinformatics and later developed for investigating longitudinal 97 
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patterns in the social sciences (Abbott & Tsay, 2000; Ritschard & Studer, 2018), researchers 98 

have since applied sequence analysis to a variety of domains (Conway et al., 2019; Lowe et 99 

al., 2020; Roux et al., 2019; Vanasse et al., 2020). We recently demonstrated the utility of 100 

state sequence analysis for investigating tactical positioning in short-track speed skating 101 

(Hext et al., 2022). We showed that the higher level of measurement granularity afforded by 102 

the state sequence analysis better captured the complexity of tactical positioning. In the 1,000 103 

m event, we detected 1,269 unique sequences of group behaviour compared to the single 104 

sequence produced by the traditional discrete lap approach, which combined the aggregate 105 

metrics used to summarise each lap. We concluded that capturing this complexity offers a 106 

more detailed understanding of tactical positioning that could enhance the strategic and 107 

tactical decisions essential for success in short-track speed skating (Hext et al., 2022).  108 

For these reasons, this study investigates tactical positioning in short-track speed 109 

skating using state sequence analysis. Specifically, we use static and dynamic sequence 110 

analysis to investigate group and winner tactical positioning behaviours in the 500 m, 1,000 111 

m, and 1,500 m events. The static sequence analysis provides an overall view of tactical 112 

positioning behaviours as it treats the complete race sequence (start to end) as a single unit of 113 

analysis. The dynamic sequence analysis provides a more nuanced view of how tactical 114 

positioning evolves throughout the race as it evaluates nested race sequences with a constant 115 

endpoint (the final lap) but varying start points (e.g., Lap 1, Lap 2, Lap 3). To comment on 116 

the utility of accounting for the dataset’s sequential structure, we compare our results with the 117 

most up-to-date, complete race, discrete lap analyses of group and winner behaviours 118 

(Konings et al., 2016; Noorbergen et al., 2016). As such, we do not stratify our analysis by 119 

different environmental factors in this study.  120 
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Method 121 

This study was approved by the Research Ethics Committee at Sheffield Hallam University, 122 

UK. 123 

Dataset 124 

Our dataset consisted of 10,804 races (500 m = 4,308; 1,000 m = 4,056; 1,500 m = 2,440), 125 

from 62 competitions (44 World Cups, 8 European Championships, 8 World Championships, 126 

and 2 Winter Olympic Games), over an 8-season period (2010/11 to 2017/18). All data was 127 

retrieved from the International Skating Union’s results website 128 

(https://shorttrack.sportresult.com/). For each race, the dataset contained all competitors’ 129 

starting position, intermediate rankings, and final rankings. The dataset coded starting 130 

positions from 1 (innermost track position) to 𝑛 (outermost track position) and intermediate/ 131 

final rankings from 1 (leading athlete) to 𝑛 (last athlete). Note the deliberate distinction in 132 

terminology between start position and intermediate/ final rankings: at the race start, all 133 

athletes have the same ranking but different spatial positions as they are distributed across a 134 

start line perpendicular to the direction of the track (Hext et al., 2022).  135 

Before analysing the dataset, we excluded races with falls, disqualifications, missing 136 

values, tied intermediate rankings, and races where the number of athletes competing was not 137 

equal to the event’s modal value, i.e., 4 athletes for the 500 m and 1,000 m, and 6 athletes for 138 

the 1,500 m. These strict inclusion criteria were in line with previous short-track speed 139 

skating research (Hext et al., 2022; Konings et al., 2016; Noorbergen et al., 2016). Our final 140 

dataset included 4,135 of the 10,804 races (500 m = 2,020, 46.9%; 1,000 m = 1,549, 38.2%; 141 

1,500 m = 566, 23.2%). We provide a complete breakdown of our cleaning procedure in 142 

Supplemental Table 1. 143 
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Data analysis 144 

Sequence definition 145 

We consider a sequence, 𝑥𝑖, as an ordered, discrete-time series of elements, 𝑎, of length, 𝑙, 146 

that can be represented as (𝑎1, 𝑎2, … , 𝑎𝑛), where 𝑙(𝑥𝑖) = 𝑎𝑛. The discrete-time series 147 

represents the points in the race where we measure athlete rank: the race start and end of each 148 

lap. Each element in the series has a state that belongs to a finite set of states that characterise 149 

tactical positioning behaviour, i.e., the state-space. We use two different state spaces to 150 

characterise tactical positioning behaviour. The first state-space characterised the group’s 151 

tactical positioning behaviours. As described in Hext et al. (2022), we quantified the group’s 152 

tactical positioning behaviour by measuring the similarity between start/intermediate and 153 

final rankings in each race using Kendall’s Tau-b, τb. A Kendall’s τb = 1 represents a perfect 154 

agreement between start position/ intermediate and final rankings, and a Kendall’s τb = -1 155 

represents a perfect disagreement. The second state-space characterised the winner’s tactical 156 

positioning behaviours and included all possible athlete rankings. We summarise each 157 

event’s group and winner behaviour state-space in Table 2 of the Supplemental material.   158 

Static and dynamic sequence formation 159 

We formed static and dynamic sequences for each race in the dataset. Figure 1 illustrates this 160 

process. Our static analysis generated a complete race sequence of the group’s and winner’s 161 

tactical positioning behaviours. For example, the winner’s tactical positioning behaviour, (4, 162 

4, 1, 1, 1, 1), indicates that the winner started and remained in 4th until Lap 2. From this point 163 

onwards, the winner was ranked first at the end of each lap. Note that in Figure 1, we 164 

represent all sequences using the state-permanence-sequence format (Aassve et al., 2007). In 165 

this format, each successive distinct state in a sequence is given together with its duration, 𝑡, 166 

so that 𝑥𝑖 =  (𝑎1, 𝑡1) − (𝑎2, 𝑡2)−. . . −(𝑎𝑛 , 𝑡𝑛). Accordingly, we represent the winning 167 
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sequence, (4, 4, 1, 1, 1, 1), as (4, 2) – (1, 4). Given the length of our sequences, particularly in 168 

the 1,500 m event (𝑙(𝑥) = 15), we will use this format for the remainder of the manuscript.  169 

Our dynamic analysis generated nested sequences of the group’s and winner’s tactical 170 

positioning behaviours. The nested sequences had a constant endpoint (the race’s final lap) 171 

but varying lengths. The number of nested sequences for each race was equal to 1 − 𝑙(𝑥𝑖), 172 

where 𝑙(𝑥𝑖) is the number of elements in the static race sequence. Starting from Lap 1, we 173 

incremented the start point of each nested sequence by one lap until the start point equalled 174 

the race’s final lap. As demonstrated in Figure 1, we create five nested sequences (Lap 1–5, 175 

Lap 2–5, …, Lap 5) from the six elements (Start, Lap 1, …, Lap 5) in the 500 m. Overall, the 176 

static and dynamic sequences formed 6, 10, and 15 sequence periods in the 500 m (4.5 laps), 177 

1,000 m (9 laps), and 1,500 m (13.5 laps), respectively. Here, note that our analysis uses Lap 178 

1 to represent the tactical positioning behaviours at the end of the initial half-lap in the 500 m 179 

and 1,500 m events.  180 

Sequence metrics 181 

For each sequence period, we calculated the number of unique sequences, 𝑛𝑥, and the 182 

sequence duplication rate, 𝑠𝑑𝑟 = (1 − (
𝑛𝑥

𝑛
)) · 100, where 𝑛 is the number of races in the 183 

dataset. A sequence duplication rate of 0% indicates that no sequences are the same, and a 184 

sequence duplication rate of 100% indicates that all sequences are the same. In addition, we 185 

calculated each sequence’s absolute and relative support. A sequence’s absolute support, 186 

𝑠𝑢𝑝(𝑥𝑖), denotes the number of times the sequence occurs in the sequence period, with its 187 

relative support, 𝑟𝑒𝑙𝑆𝑢𝑝(𝑥𝑖) = (
𝑠𝑢𝑝(𝑥𝑖)

𝑛
) · 100 (Fournier-Viger et al., 2017; Hext et al., 188 

2022). For example, in a dataset of 1,000 races, an absolute support of 500 would indicate 189 

that 500 races had the same sequence of tactical positioning behaviours, representing a 190 
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relative support of 50%. We performed all sequence analyses in MATLAB 2021b and used 191 

the R statistical programming language (version 4.0.0) to interrogate the data. 192 

Results  193 

Figure 2 quantifies the time-evolving complexity of tactical positioning in short-track speed 194 

skating. First, note that regardless of the level of analysis (group or winner behaviour), the 195 

complexity of tactical positioning increases with race distance, i.e., the static sequence 196 

duplication rates decrease (Start– Lap 𝑛). Second, tactical positioning becomes less complex 197 

as the race progresses, i.e., the dynamic sequence duplication rates increase as the length of 198 

the nested sequences decreases. Here, the only exception is the start of the 1,500 m. Until the 199 

sequence period Lap 5–15, the group sequence duplication rates remain at 0%. In other 200 

words, all observed sequences are unique. Finally, the group tactical positioning behaviour is 201 

more complex than the winner and, as a result, converges to 100% slower. That is, the group 202 

sequence duplication rate is always lower than the winner sequence duplication rate, for each 203 

sequence period, in all events.  204 

Figure 3 illustrates the time-evolving distribution of all detected sequences’ relative 205 

support, with Table 2 reporting the most frequent sequence for each period. We provide the 206 

complete list of unique group and winner sequences and their associated support in the 207 

supplemental material. Note that for all events and levels of analysis, the median support is 208 

always close to 0%. In other words, exact group and winner behaviours typically do not 209 

reoccur on multiple occasions. Nevertheless, we did identify behaviours that frequently 210 

recurred, i.e., sequences with a support greater or equal to the inner fence: 𝑄3 +211 

(1.5 ∗ 𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒) (Tukey, 1977). Generally, the most frequent sequence 212 

represents behaviours where the winner is ranked first, and the group order mimics the final 213 

rankings for the entirety of the race. The only exception is in the 1,500 m event, where we 214 
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only saw this group behaviour from the sequence periods Lap 11–14 onwards. When 215 

considering the complete static race sequence, the support for these group and winner 216 

behaviours is greatest in the 500 m and decreases with race distance. When considering the 217 

dynamic race sequences, the support increases as the race progresses and is always greater for 218 

the winner, regardless of the event.   219 

Discussion 220 

We have used static and dynamic sequence analysis to investigate tactical positioning 221 

behaviours in short-track speed skating. To our knowledge, we are the first to use this 222 

statistical framework in short-track speed skating performance analysis. Whereas existing 223 

research treats laps as discrete events, we captured the sequential relationship between these 224 

events for the entire race sequence (static) and nested race sequences with a constant 225 

endpoint but varying lengths (dynamic). By combining this approach with a large dataset of 226 

races collected over eight seasons (𝑛 = 4,135), our results provide the most rigorous and 227 

comprehensive description of tactical positioning behaviours in short-track speed skating to 228 

date.   229 

A key feature of our sequence analysis is that we do not use aggregate metrics to 230 

summarise each lap. Instead, we form sequences that capture the athlete-opponent 231 

interactions throughout – and specific to – each race. In doing so, we provide stronger 232 

evidence that reaffirms several beliefs about tactical positioning in short-track speed skating. 233 

For example, current discrete lap analyses suggest that tactical positioning is crucial from the 234 

race start in the 500 m because the start/ intermediate rankings (end of each lap) positively 235 

correlate with the final rankings (Haug et al., 2015; Maw et al., 2006; Muehlbauer & 236 

Schindler, 2011; Noorbergen et al., 2016). However, as this evidence evaluates each lap 237 

independently from all other laps, it can only infer – rather than show – that winners adopt a 238 
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skate-from-the-front strategy during races. In contrast, our analysis considers how each 239 

winner positioned themselves from one lap to the next for the entirety of the race. 240 

Accordingly, our finding that nearly one in every two races was won by the athlete starting 241 

and remaining in first position (𝑟𝑒𝑙𝑆𝑢𝑝 = 47.5%) is stronger empirical evidence that 242 

controlling the race from the front is a key determinant of success in the 500 m. Similarly, 243 

current discrete lap analyses propose that athletes reduce their effort to skate-from-the-front 244 

as the race distance increases (Muehlbauer & Schindler, 2011; Noorbergen et al., 2016; Sun 245 

et al., 2021) and that the number of ways to win increases with the race distance (Sun et al., 246 

2021). The former is inferred from positive correlations between start/ intermediate rankings 247 

and final rankings decreasing, and the latter is inferred from the standard deviation of the 248 

winner’s rank increasing. Our analysis provides stronger empirical evidence as we can show 249 

that: (1) the support for the skate-from-the-front strategy decreases (𝑟𝑒𝑙𝑆𝑢𝑝500 𝑚 = 47.5%, 250 

𝑟𝑒𝑙𝑆𝑢𝑝1,000 𝑚 = 8.1%, 𝑟𝑒𝑙𝑆𝑢𝑝1,500 𝑚 = 0.5%); and (2) the winner’s sequence duplication rate 251 

decreases (𝑠𝑑𝑟500 𝑚 = 94.1%, 𝑠𝑑𝑟1,000 𝑚 = 57.7%, and 𝑠𝑑𝑟1,500 𝑚 = 0.7%), as the race 252 

distance increases. 253 

While confirming established ideas on tactical positioning behaviours in short-track 254 

speed skating, our analysis also offers new perspectives. For example, we found that the most 255 

recurring winning behaviour in the 1,000 m and 1,500 m events was to skate-from-the-front. 256 

With seven laps to go, this sequence represented at least one in every four races 257 

(𝑟𝑒𝑙𝑆𝑢𝑝1,000 𝑚= 30.5%, Lap 3–9; 𝑟𝑒𝑙𝑆𝑢𝑝1,500 𝑚 = 24.7%, Lap 8–14). This strategy differs 258 

from current discrete lap analyses, which advocate that athletes should conserve energy by 259 

occupying a ranking other than first until Lap 6 (1,000 m) and Lap 10 (1,500 m), because 260 

there is not a strong relationship between intermediate and final rankings before this 261 

(Konings et al., 2016; Noorbergen et al., 2016). Note that we ensured this finding was due to 262 

our sequence analysis rather than due to analysing different datasets (8 seasons from 2010/11 263 
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to 2017/18 compared to 1 season from 2012/13) by replicating the traditional discrete lap 264 

analysis on our dataset. As illustrated in the Supplemental Material (Supplemental Figures 1–265 

4), there were no discernible differences between the two datasets – and the inferences drawn 266 

– when treating laps as discrete events. Our observation of this most-recurring sequence 267 

suggests that some winners choose to forgo the physiological benefit of drafting and lead for 268 

the majority. This decision, in part, may be due to: (1) the athlete deciding that the difficulty 269 

in overtaking is more costly than having other competitors benefit from drafting them 270 

(Hoffman et al., 1998); and (2) attempting to mitigate the risk of falls associated with 271 

collisions (Hext et al., 2022). Such a strategy, therefore, may be more suited to an athlete 272 

with a higher perception of risk (Micklewright et al., 2015). While we do not endorse one 273 

strategy over another, it is clear that more than one winning strategy exists. Importantly, 274 

sequence analysis allows us to capture and broaden our understanding of the different race 275 

strategies adopted in short-track speed skating.    276 

Our analysis also has several more direct implications for race strategy and 277 

performance research in short-track speed skating. First, we provide an empirical list of group 278 

and winner behaviours, and their associated support, at any stage of the race. We hope that 279 

practitioners can use this list to: (1) support the formulation of race strategies and tactics; and 280 

(2) inform the design of practice constraints and learning tasks that represent the performance 281 

environment and thus enhance the transfer of skill from training to competition (Pinder et al., 282 

2011). Second, we believe both researchers and practitioners should use individual levels of 283 

analysis to inform race strategy rather than the norm of using group behaviour, as the latter is 284 

more complex and therefore appears to underestimate the importance of tactical positioning 285 

for an individual, particularly during the race’s earlier stages. For example, consider the 286 

1,000 m event where the most recurring group and winner sequence supported a skate-from-287 

the-front strategy. For the sequence period Lap 2–9 (89% of the total race distance), the 288 
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winner support for this strategy was at least 1 in 5 races (𝑟𝑒𝑙𝑆𝑢𝑝 = 22.2%) compared to at 289 

least 1 in 20 races for the group behaviour (𝑟𝑒𝑙𝑆𝑢𝑝 = 5.2%). Third, future work should 290 

explore detecting commonalities between unique sequences to create a taxonomy of tactical 291 

positioning behaviours. Such a taxonomy would enhance our understanding of the different 292 

race strategies and tactics utilised in short-track speed skating by capturing the latent 293 

structures of the many behaviours observed. State sequence analysis is well suited for this 294 

work because it offers a suite of metrics and methods for estimating sequence dissimilarity 295 

and building sequence typologies (Lowe et al., 2020; Ritschard & Studer, 2018). Finally, 296 

future work should replicate our sequence analysis for different race scenarios because 297 

previous research has shown that environmental factors, such as the season, competition 298 

round, whether athletes are male or female, and the competition importance, can evoke 299 

modifications in tactical positioning or pacing behaviour (Konings & Hettinga, 2018b; Maw 300 

et al., 2006; Muehlbauer & Schindler, 2011; Sun et al., 2021). Such analyses would help 301 

coaches and athletes tailor their race preparation for the relevant performance environment. 302 

While our work represents an advance in tactical positioning analysis in short-track 303 

speed skating, we should note two limitations. First, our dataset only represented race 304 

scenarios with each event’s modal number of athletes, no falls, and no disqualifications. 305 

While these strict inclusion criteria resulted in our analysis excluding over half of each 306 

event’s data, we could compare our sequential analysis directly with results from traditional 307 

analyses. Second, our sequences only characterised group and winner behaviour at the race 308 

start and end of each lap. Accordingly, we could not characterise within-lap position changes 309 

as this exceeds the dataset’s resolution. For example, an athlete may start and finish a lap 310 

ranked 2nd but be ranked 1st halfway through the lap. Note, however, that this issue is present 311 

in all studies that use competition results to investigate tactical positioning behaviours in 312 

short-track speed skating. 313 
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Conclusion 314 

Tactical positioning behaviour is a complex process that emerges from multiple athletes 315 

interacting continuously over many laps. By accounting for the sequential structure of these 316 

interactions, we can begin to quantify and decode this complexity. Here, we have taken the 317 

first step by providing the most rigorous and comprehensive description of tactical 318 

positioning behaviours in short-track speed skating to date. This empirical aid quantifies the 319 

time-evolving complexity of tactical positioning, offers new thoughts on race strategy based 320 

on the prevalence of winners choosing to skate-from-the-front, and can help practitioners 321 

design more representative learning tasks to enhance skill transfer.  322 
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Tables 

 

Table 1. Example analysis of winners tactical positioning behaviours (𝑛 = 10) using discrete 

lap analysis and sequence analysis 

 

 Discrete Lap Analysis  Sequence Analysis 

Race Id Start Position Lap 1 Rank  Race Sequence 

1 1 3  (1, 3) 

2 1 2  (1, 2) 

3 1 2  (1, 2) 

4 1 3  (1, 3) 

5 1 1  (1, 1) 

6 3 1  (3, 1) 

7 2 1  (2, 1) 

8 3 1  (3, 1) 

9 3 1  (3, 1) 

10 2 1  (2, 1) 

     

Ranked 1st 50% 60%  – 

Mean Rank 1.8 1.6  – 

Standard Deviation Rank 0.9 0.8  – 

Starting positions are coded from 1 (innermost track position) to 𝑛 (outermost track position). 

Lap 1 rankings are coded Lap 1 from 1 (leading athlete) to 𝑛 (last athlete). 
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Table 2. Most recurring group and winner tactical positioning behaviours in the 500 m, 1,000 m, and 1,500 m events 

  Group    Winner   

Event Race period Sequence 𝑆𝑢𝑝 𝑟𝑒𝑙𝑆𝑢𝑝  Sequence 𝑆𝑢𝑝 𝑟𝑒𝑙𝑆𝑢𝑝 

500 m Start–Lap 5 (1,6) 250 12.4%  (1,6) 960 47.5% 

 Lap 1–5 (1,5) 613 30.3%  (1,5) 1,356 67.1% 

 Lap 2–5 (1,4) 777 38.5%  (1,4) 1,452 71.9% 

 Lap 3–5 (1,3) 1,056 52.3%  (1,3) 1,621 80.2% 

 Lap 4–5 (1,2) 1,463 72.4%  (1,2) 1,813 89.8% 

 Lap 5 (1,1) 2,020 100%  (1,1) 2,020 100% 

         

1,000 m Start–Lap 9 – – –  (1,10) 126 8.1% 

 Lap 1–9 (1,9) 53 3.4%  (1,9) 261 16.8% 

 Lap 2–9 (1,8) 81 5.2%  (1,8) 344 22.2% 

 Lap 3–9 (1,7) 144 9.3%  (1,7) 472 30.5% 

 Lap 4–9 (1,6) 222 14.3%  (1,6) 614 39.6% 
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 Lap 5–9 (1,5) 336 21.7%  (1,5) 772 49.8% 

 Lap 6–9 (1,4) 457 29.5%  (1,4) 946 61.1% 

 Lap 7–9 (1,3) 683 44.1%  (1,3) 1,160 74.9% 

 Lap 8–9 (1,2) 1,070 69.1%  (1,2) 1,380 89.1% 

 Lap 9 (1,1) 1,549 100%  (1,1) 1,549 100% 

         

1,500 m Start–Lap 14 – – –  – – – 

 Lap 1–14 – – –  – – – 

 Lap 2–14 – – –  – – – 

 Lap 3–14 – – –  – – – 

 Lap 4–14 – – –  (1,11) 12 2.1% 

 Lap 5–14 – – –  (1,10) 20 3.5% 

 Lap 6–14 – – –  (1,9) 43 7.6% 

 Lap 7–14 – – –  (1,8) 91 16.1% 

 Lap 8–14 – – –  (1,7) 139 24.6% 

 Lap 9–14 (0.87,2) – (1,4) 18 3.2%  (1,6) 180 31.8% 

 Lap 10–14 (0.87,1) – (1,4) 29 5.1%  (1,5) 235 41.5% 
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 Lap 11–14 (1,4) 68 12.0%  (1,4) 307 54.2% 

 Lap 12–14 (1,3) 135 23.9%  (1,3) 395 69.8% 

 Lap 13–14 (1,2) 272 48.1%  (1,2) 487 86.0% 

 Lap 14 (1,1) 566 100%  (1,1) 566 100% 

The group behaviour represents the similarity between all athletes’ intermediate and final rankings measured using Kendall’s Tau-b. The winner 

behaviour represents the rank of the winner. The state-permanence-sequence format provides each successive distinct state in the sequence with 

its duration. For example, a winner sequence of (1,6) in the 500 m indicates that the winner started and remained in first for the entirety of the 

race. 𝑆𝑢𝑝 = Absolute support; the number of times the sequence occurs in the sequence period. 𝑟𝑒𝑙𝑆𝑢𝑝 = Relative support; the proportion of 

races that the sequence occurs in the sequence period. Note, we only report sequences with a relative support ≥ 2%, i.e., a sequence that occurs 1 

in every 50 races.
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Figure 1 
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Figure 2 

 

  



26 

 

Figure 3 
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Figure captions 

Figure 1. Static and dynamic race sequence formation. First, we extract the winner (denoted 

by the red circle) and group tactical positioning behaviours at the race start and end of each 

lap. Second, we form our static and dynamic sequences. The static sequence treats the whole 

race as a single unit of analysis. The dynamic sequences are nested race sequences with a 

constant endpoint (the final lap) but varying start points (e.g., Lap 1–5, Lap 2–5, Lap 3–5). 

Note that we represent all sequences using the state-permanence-sequence format, i.e., each 

successive distinct state in a sequence is given together with its duration. For example, we 

represent the static winning sequence: (4, 4, 1, 1, 1, 1), as (4, 2) – (1, 4). 

 

Figure 2. The sequence duplication rate for group and winner tactical positioning behaviours 

in the 500 m, 1,000 m, and 1,500 m. A sequence duplication rate of 0% indicates that no 

sequences are identical, and a sequence duplication rate of 100% indicates that all sequences 

are identical. We report the number of unique sequences detected in the brackets.  

 

Figure 3. Boxplots of sequence relative support for group and winner tactical positioning 

behaviours in the 500 m, 1,000 m, and 1,500 m. Frequently recurring sequences are identified 

as those greater or equal to the inner fence: 𝑄3 + (1.5 ∗ 𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒). Annotated 

sequences represent the most frequent sequence with a relative support ≥ 2%.  


