

Applicability and efficacy of an enhanced nanolime consolidation technique for British Museum limestone objects

MAUCOURANT, Cyril, O'FLAHERTY, Fin http://orcid.org/0000-0003-3121-0492 and DRAGO, Amy

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/32062/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

MAUCOURANT, Cyril, O'FLAHERTY, Fin and DRAGO, Amy (2023). Applicability and efficacy of an enhanced nanolime consolidation technique for British Museum limestone objects. Journal of Cultural Heritage, 62, 339-348.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Applicability and efficacy of an enhanced nanolime consolidation technique for British Museum limestone objects

Supplementary materials

Fig. A Results of phenolphthalein tests carried out on cross-sections of fine-grained *Lavoux* limestone samples upon completion of treatments with steam cleaning (SC) and ultrasonic air humidification (UAH) at different periods, and nanolime (CaLoSiL® 5g/L in ethanol).

Fig B. Wettability tests carried out on the objects A-C for $Tp=21^{\circ}C$ and RH=40 %; and proposed kinetic model based on the absorption and migration rates.

Fig C. Measurement of residual water on objects (**a & b**) A, (**c & d**) B, and (**e & f**) C with a Protimeter (BLD 2000 Moisture Meter). The results are expressed in % of Water Moisture Equilibrium (% *WEM*).

Fig D. Conditioning and consolidation of objects: (a) Object A wrapped in Cling Film® with (b) Area #1 left unwrapped; (c) steam cleaning in process and (d & e) object submitted to UAH; (f) Area #1 of Object C before conditioning with (g) steam cleaning and (h) after conditioning; (i) Consolidation of Object A with nanolime being brushed over a japanese tissue; (j & k) Object B consolidated with nanolime being brushed and injected, respectively; and (l & m) Object C consolidated with nanolime being brushed and injected, respectively.

Fig E. Humidification and curing of treated objects: (a & b) DIW sprayed over the treated Area #1 of the objects B & C; (c & d) making process of humidification pad using medical gauze swab and hydrogel; (e-g) application of humidification pads over the treated Areas # 2 of the objects A, B, and C, respectively; (h) external and (i) internal views of the curing chamber of the object A; (j-n) and (o-s) details of the curing chambers for the object B and C, respectively.

Fig F. Surface hardness data obtained upon completion of tests carried out on (a & b) Object A; (c & d) Object B; and (e & f) Object C