
The transaction pattern through automating TrAM

LAUNDERS, I., POLOVINA, S. <http://orcid.org/0000-0003-2961-6207> and
HILL, R.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/32/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

LAUNDERS, I., POLOVINA, S. and HILL, R. (2009). The transaction pattern through
automating TrAM. In: 17th International Conference on Conceptual Structures,
Moscow, Russia, July 26-31 2009. Aachen, CEUR-WS.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

The Transaction Pattern through Automating

TrAM

Ivan Launders1, Simon Polovina2, and Richard Hill2

1 BT Global Services, PO Box 200, London, United Kingdom
ivan.launders@bt.com

2 Cultural, Communication & Computing Research Centre (CCRC)
Sheffield Hallam University, Sheffield, United Kingdom

{r.hill,s.polovina}@shu.ac.uk

Abstract. Transaction Agent Modelling (TrAM) has demonstrated how
the early requirements of complex enterprise systems can be captured
and described in a lucid yet rigorous way. Using Geerts and McCarthy’s
REA (Resource-Events-Agents) model as its basis, the TrAM process
manages to capture the ‘qualitative’ dimensions of business transactions
and business processes. A key part of the process is automated model-
checking, which CG has revealed to be beneficial in this regard. It enables
models to retain the high-level business concepts yet providing a formal
structure at that high-level that is lacking in Use Cases. Using a concep-
tual catalogue informed by transactions, we illustrate the automation of
a transaction pattern from which further specialisations impart a tested
specification for system implementation, which we envisage as a multi-
agent system in order to reflect the dynamic world of business activity.
It would furthermore be able to interoperate across business domains as
they would share the generalised TM as a pattern.

1 Introduction

Transactions form a crucial part in enterprise systems and should therefore form
a crucial part of their design. A central element of a transaction is the exchange
of resources between agents. Transaction Agent Modelling (TrAM) exploits the
formal underpinnings of Conceptual Graphs (CG) and Economic Accounting,
a transactions-oriented architecture that is based upon Geerts and McCarthy’s
Resource-Events-Agents (REA) model [4],[12],[13],[15]. REA enables models to
be built that reflect business activities which may include economic transactions.
These models use the following core concepts:

– Resource - Any resource that is the subject of an exchange or transaction;
– Event - The activities that are required for a transaction to take place;
– Agent - A person, system or organisation that participates in the transaction.

TrAM, based on REA, captures the critical ‘qualitative’ dimensions of busi-
ness transactions and business processes. These dimensions (e.g. ‘quality of life’)
don’t always lend themselves to be measured in monetary terms, but need to be

factored into design in order to usefully support business decisions. TrAM expli-
cates and tests the subjective human judgement that otherwise leads to errors
of omission or commission in capturing these qualitative nuances of transactions
that nonetheless have significant consequences [13]. In outline, TrAM firstly cap-
tures the concept of a transaction, referred to as the Transaction Model (TM),
permitting high-level models including their qualitative dimensions to be rapidly
constructed and evaluated during the early requirements phase [7],[8]. This pro-
cess ensures that vital domain knowledge is captured and retained from the
outset so it is not lost in the later phases that lead to system prototyping and
implementation. Secondly, it enables the validation of the generated models in
a formal manner that is based on the TM, with business scenarios expressed
as rules. This process specialises the TM according to each particular business
domain, thus providing a transaction pattern from which these specialisations
impart a tested specification for system implementation. We envisage this sce-
nario as a multi-agent system in order to reflect the dynamic world of business
activity. It would furthermore be able to interoperate across business domains as
they would share the generalised TM as a pattern [13]. This is aided by using a
generic ontology in the form of a ‘conceptual catalogue’, as explained later. The
explication and testing of transactions is underpinned by the formal rigour un-
derlying CG, including a range of computing operations that can be performed
with them. Indeed, prior work has identified that CG software tools, namely
Amine (http://amine-platform.sourceforge.net/), enable TrAM to be developed
further by automating certain key CG operations such as projection, specialisa-
tion and maximal join [17]. Since it is a rich and well engineered application of
CG theory in software, Amine also provides a model-checking environment that
also assists the debugging of ontologies by identifying erroneous inconsistencies.
TrAM is illustrated in Figure 1, which describes the overall stages in designing
and implementing an enterprise system:

1. Initial concept analysis with UML use cases and CG;
2. Refine requirements analysis with CG and UML use cases;
3. Inference against the TM and verify;
4. Translate to an implementation design specification (e.g. UML);
5. Implementation (as a multi-agent system, MAS, or an alternative form of

enterprise application).

Figure 1 however describes TrAM as a manually-oriented process, where
the designer or knowledge engineer draws and evaluates diagrams (in this case
CG) rather like an analyst uses UML diagrams (www.uml.org) to design a sys-
tem. Whilst for UML there are numerous open-source or commercial tools to
automate the analysis, design and implementation process (such as Together,
www.borland.com/us/products/together/), for CG these remain underdeveloped.
For TrAM to be sustained it needs to integrate a rich automation process in or-
der to verify and test enterprise transaction models. TrAM has remained with
CG rather than UML as our experiences have shown that CG focus on busi-
ness rather than system models, as highlighted later. (A detailed evaluation is
a current project, with the results expected to be published by 2010.) We hope

Fig. 1. The original TrAM framework.

that TrAM will encourage Amine and other CG tools out of the research labs
into mainstream use. An overall approach for this automated form of TrAM is
as follows:

1. Conduct Transactional Use-Case (TUC) Analysis;
2. Transform into CG;
3. Create and Refine the Type Hierarchy;
4. Build the TM Ontology;
5. Include the Conceptual Catalogue;
6. Refer to the Generic Transaction Model (TM);
7. Implement the TM Pattern;
8. Test and Refine the TM with Business Rules.

2 The TrAM Automation Process

This enhanced TrAM is illustrated by Figure 2, which also shows iteration across
the domain ontologies and the conceptual catalogue. It exploits the productivity
of computers rather than the manual human-based approach inherent to Figure
1. Figure 2 frees the human to focus on the creativity in conceptualising business
transactions, leaving the mechanical checking and processing of the consequent
transaction models to the computer. With this automated TrAM we accordingly
have an integrated conceptual structure, where the human expert can articulate
their knowledge through concepts as CG structures that by virtue of their opera-
tions as previously noted, can be computer processed. As the differences between
Figure 1 and Figure 2 may be rather subtle, the actual process is explicated in
detail as follows.

Fig. 2. TrAM, with automation.

2.1 Step 1 - Conduct Transaction Use-Case (TUC) Analysis

Transactional Use-Case (TUC) analysis provides a starting point to drive the
process. The practice of use-case analysis defines a use case as “a particular

form or pattern or exemplar of usage, a scenario that begins with some user of

the system initiating some transaction or sequence of interrelated events” [10].
Use-case analysis is a manual process that enumerates the scenarios that are
fundamental to the enterprise system transactions. To assist in this delineation,
Fowler describes the distinction between low level system use cases and high level
business use cases [2]. A system use case is the interaction with the software,
whereas a business use case discusses how a business (enterprise) responds to a
customer or event. TrAM focuses on business transactions and therefore is at
business level. But what do we actually mean by a TUC? Let us explore this in a
use-case diagram. We want to see the ‘system’ (the box) in the use-case diagram
to represent the enterprise. As a transaction the activities of the UML actors
are drawn in a way that they ‘balance’ each other out. Each actor is linked to
a task that shows a process e.g. ‘manage’ associated with a resource e.g. ‘care’.
This maps to the TM as the former is an Economic Event whilst the latter is
an Economic Resource. At this stage we begin to identify what are the inside
and outside agents in our enterprise system and how they transact with each
other through events and resources. Figure 3 is a simple TUC that illustrates
a community healthcare domain example [14]. In this example there are three
agents, where the inside agent (an elderly person) transacts with two outside
agents, in this case to obtain the care she needs. It gives a high level view in
terms of identifying events and balancing resources between agents that TrAM
would then explicate.

Fig. 3. Transactional Use-Case.

2.2 Step 2 - Transform into CG

The next step is to translate the Transactional Use-Case into CG. Figure 4
provides the CG for the community healthcare exemplar. In TrAM the initial
analysis with CG and TM is an iterative step leading to a refined requirements
analysis, progressively refining the easily readable but comparatively informal
TUC model with the rigour and formality of CG operations such as specialisa-
tion. TUC analysis captures process-level tasks without unduly compromising

RequesterElderly_Person

manager

Deliverer Care

Local_Authority

Care_Provider

Fig. 4. The TUC in CG.

the transaction’s qualitative dimensions. If the potential of an agent-based (or
enterprise) system is to be realised, then the agents must be able to understand
and process decisions or actions that require qualitative reasoning. Generation
of terms for an ontology is largely based upon the existing processes together
with the system analyst’s knowledge and experience. From an enterprise system
modelling perspective, the process of describing and articulating TUC serves to
capture agent interactions with resources, and reactions to events as we have
seen.

2.3 Step 3 - Create and Refine the Type Hierarchy

Figure 5 illustrates the initial type hierarchy for the healthcare scenario. It is
the starting point for building the ontology for this domain. Applying the TrAM
process involves expanding the type hierarchy. Refinement in the type hierar-
chy brings an alignment of each category in the TM domain ontology; refinement
can also define a partial ordering of an ontology. A comprehensive type hierarchy
also needs to capture and include relations. Types and relations are augmented
by some generic ontology not specific to business transactions. It serves to re-
flect business diversity by allowing the TM for one domain to interoperate with
TMs of other domains according to more generic terms. As well as enabling en-
terprises to discover hitherto unidentified business transactions that reflect the
wider scope of their capabilities, it helps identify the TM as a design pattern
[1], [3]. As indicated earlier, we refer to this generic ontology as a conceptual
catalogue.

Fig. 5. Type Hierarchy for Health Care.

2.4 Step 4 - Build the TM Ontology

Gruber describes the meaning of ontology as a formal specification of the terms in
a domain and the relationship between them [5]. An ontology defines a common
vocabulary for agents who need to share information in a domain. It adds to the
type hierarchy by containing the definitions of the basic concepts in the domain
and the relations among them. Accordingly Figure 6 illustrates the healthcare
ontology in Amine showing the implementation of its type hierarchy including
relational types and subtypes for a general non-TM specific conceptual catalogue
item ‘source’. The relational CG for source is described through both a canon
and a definition. Building an ontology using TrAM is as previously identified an
iterative process which will drive out CG logic errors and test design assumptions
captured through the transactional use-case analysis. This occurs as a result of
breaking down the CG’s into manageable steps prior to performing functions

Fig. 6. Healthcare Ontology in Amine.

on them such as projection and maximal join. Amine’s Ontology layer is used
in order to create, edit, query, test and subsequently specialise the TM. The
more specialised the TM the more it informs about what it is attempting to
model. Using Amine’s ontology layer we are therefore able to implement a refined
type hierarchy, including relational types and subtypes. Building and testing a
prototype TM ontology satisfies a key step in TrAM by verifying the conceptual
analysis of an enterprise system.

2.5 Step 5 - Include the Conceptual Catalogue

Let us begin by explicating what is meant by the conceptual catalogue. A key el-
ement in the automation of TrAM is the inclusion of an ontology that is generic
to both inside and outside business transactions. As our test we used Sowa’s
Conceptual Catalogue’ (SCC) [17] (pp405-424). SCC provides a starter set, for
an ontology with illustrative concepts and relations with their associated canons.
Sowa subsequently developed SCC into a more comprehensive ontology [16]. SCC
thus offers a simple but expressive vehicle for our comparative ontology. Figure
7 illustrates conceptual relations building up a conceptual catalogue for our
example healthcare ontology. Source in the TM is identified as source tm to dis-
tinguish it from source in Sowa’s conceptual catalogue but they are nonetheless
related. The canon for source is as defined in SCC, as it represents a canonical
use of this term i.e. the concept types that ‘source’ relates to. In Figure 8 the
definition for ‘source tm’ is given. It arises from the TM rather than SCC. It

Fig. 7. Developing a TM Conceptual Catalogue in Amine.

is a definition because it is described in terms of its super-relation source i.e.
source. It exemplifies how the TM is integrated with SCC. The other examples
(e.g. ‘destination’) are given elsewhere [6].

2.6 Step 6 - Refer to the Generic Transaction Model (TM)

Core to TrAM is the TM. It enables models to retain the high-level business
concepts yet it also provides a formal structure for the TUC. This is achieved
in two ways. Firstly the concept of a transaction is captured by the TM, per-
mitting high-level models including their qualitative dimensions to be rapidly
constructed and evaluated during the early requirements phase. This process
ensures that vital domain knowledge is captured and retained from the outset
so it is not lost in the later phases that lead to system prototyping and imple-
mentation. Secondly, the TM enables us to validate the generated models in a
formal manner that is based on the TM, with business scenarios expressed as
rules as illustrated in Figure 10. These rules are used to improve the system
specification in that they test the operation of the rule against the TM. This
process specialises the TM according to each particular business domain. The
TM thus stems from a generic TM that provides a transaction pattern across
business domains as they would share this generalised TM as a pattern. Figure
8 illustrates the generic TM and is described in detail elsewhere [6-8, 13-15].
In summary the TM shows that that all transactions comprise of two economic
events, denoted by *a and *b. The transaction is complete when both economic
events balance, which indicates that *a always opposes *b, representing debits
and credits. Additionally there are two related economic resources, *c and *d,
each having independent source and destination agents and these are the agents

we have identified in our transactional use-case analysis. The Inside Agent and
Outside Agent refer to the parties involved with the transaction. The Inside and
Outside prefix denotes the relative perspective of the transaction for each party.
The braces ‘*’ denote plurality, indicating that each concept can represent a
number of aggregated resources, events or agents. The TM is a formal structure
of the TUC, embodying abstract concepts that can nonetheless be connected
with SCC, specialised and tested across domains including by the automated
processes we have described.

Transaction

Inside_Agent: {*}

Outside_Agent: {*}

partpart Economic_Event: {*b}Economic_Event: {*a}

Economic_Resource: {*d}Economic_Resource: {*c}

source destination event_subjectevent_subject

destination source

Fig. 8. The Transaction Model (TM).

2.7 Step 7 - Implement the TM Pattern

We have identified the TM new pattern in accordance with the expectations of
software design and higher level patterns [1],[3]. Figure 9 illustrates the Amine
implementation for the TM as a design pattern in CG. Amine enables the con-
struction of an accurate implementation of the TM, developing in parallel a
conceptual catalogue of conceptual relations.

Fig. 9. Graphical View of TM in Amine.

2.8 Step 8 - Test and Refine the TM with Business Rules

Having built and verified the TM Ontology, the next part of the automation pro-
cess is to use Amine’s CGOperations interface to perform projection (subsume)
and maximal join in order to implement business rules against the TM thus
testing it and further specialising it. This is a stage that clearly benefits from
automation. The human expert conceptualises these rules and the computer then
runs the resultant structures. Previously in TrAM this was conducted manually,
and certainly in our experiences most unsuccessfully. Undoubtedly therefore,
automating this stage in TrAM provides the necessary refinements to the TM.
It reveals design detail in type definition and canons providing further refine-
ments. Figure 10 provides the CG for an example business rule in the community
healthcare system. It shows that if an elderly person has assets below a certain
threshold then the local authority is the destination (i.e. pays) for the care. This
is described more precisely elsewhere [14]. The IF part (the antecedent) of the
rule is projected (subsume in Amine) against a ‘fact’ CG that is provided and
describes an actual business scenario. If it projects the THEN part of rule can
undergo a Maximal Join to the TM, hence refining (specialising) it. Figure 11

IF

THEN

Local_Authority destination Care

THEN

Local_Authority destination Care

manager

total_value

£: @<threshold

Local_Authority

Asset: {*}

owner requester CareElderly_Person

IF

THEN

Local_Authority destination Care

THEN

Local_Authority destination Care

manager

total_value

£: @<threshold

Local_Authority

Asset: {*}

owner requester CareElderly_Person

Fig. 10. Healthcare System Business Rule.

shows the Amine implementation for the fact to project the rule into (note there
should be referents in the concepts to explicate it is a fact). In this case our
example fact to test against (the projection) would be successful. Should it not
project it implies that the TM cannot be refined according to this scenario; the
TM may thus not reflect the enterprise or the business rule itself is inaccurate. As
such it tests the business rules as well as the TM. Figure 12 shows the successful
projection (subsume) operation in Amine. Input CG1 on the left hand side of the
illustration contains the IF part. Input CG2 on the right hand side of the screen
shot contains the fact to project into. Figure 13 shows the subsequent success-
ful maximal join in operation through the TM. The TM has inferred the value
‘Local Authority:SCC’ from the business rule. Maximal join facilitates inference

Fig. 11. Fact to Project Rule into, in Amine.

Fig. 12. Successful Projection of Rule into Fact.

because projections can be made into larger graphs containing more enterprise
system information. The maximal join occurs on the maximally extended pro-
jection. In summary the rules part of the process is achieving inference in two

Fig. 13. Successful maximum join in operation through the TM.

steps, by projection of the IF part (antecedent) and by assertion of the THEN
part (consequent).

3 Results

Exploring the Transaction Pattern through the automation of TrAM has firstly
helped to clarify the process for a TM design pattern. A TM design pattern then
becomes a general repeatable solution (a sequence of steps and re-usable CG’s) to
be stored and re-used. An implementation of the TM in Amine for the healthcare
domain ontology has also revealed how beneficial it is to be able to build an au-
tomated model for TrAM. Implementing the TM pattern in this automated way
significantly helps verify the TrAM framework in that it brought about refine-
ment in the type hierarchy aligning categories in the domain ontology as well as
developing a TM conceptual catalogue. The operational model quickly revealed
errors and tested design assumptions revealing that an incomplete transactional-
use case analysis and ultimately incomplete domain ontology will not give the
desired results once business rules are applied. Ultimately the operational model
as exemplified by the healthcare example showed how successful projection and
maximal join operations were able to merge facts into the TM, adding to the
qualitative outcomes. Figure 13 shows the result of the rules part of the TrAM
process achieving inference (inferring the value ‘Local Authority:SCC’ from a
business rule) which typifies the effectiveness of automation.

4 Concluding Remarks

Exploring the Transaction Pattern through the automation of TrAM provides a
sound starting point for the implementation of a transaction pattern as an archi-
tecture for implementing multi-agent enterprise systems. The benefit of model
verification from the implementation of the TM domain ontology and a concep-
tual catalogue, now permits the designer to examine the transaction model in
operation. Implementation or prototyping reveals design detail in terms of CG
behaviour within the TM as well as testing the proof of business rules when work-
ing with the ontology. Amine allows the designer to verify the model, through
the refinement of the TM ontology, editing, querying, testing and subsequently
specialising the TM. Amine provides useful automation by checking type hierar-
chies; however it is not easy to adjust and edit the ontology in Amine if an error
is made a in the upper levels of the ontology. Whilst such issues may typify the
immaturity of CG tools in general, we are of the view that applications will drive
the development of CG tools. TrAM, even with this automation, thus remains
in development when compared to arguably, less expressive, but more integrated
UML tools.

5 Acknowledgements

This work has been assisted by Amine’s author, Adil Kabbaj. We also acknowl-
edge the support of our colleague Lynne Dawson. We thank the many students
whom we have taught TrAM to and reminded us of CG’s general applicability in
the real world. Part of this project was in receipt of an AgentCities Deployment
Grant from the European Union AgentCities.rtd Project (IST-2000-28385).

References

1. de Moor, A. (2005) Patterns for the Pragmatic Web. In Proc. Of the 13th Interna-
tional Conference on Conceptual Structures (ICCS 2005), Kassel, Germany, July,
1-18,2005

2. Fowler. M. (2004) UML Distilled (Third Edition), Addison-Wesley, 103-104.

3. Gamma, E., Helm, R., Johnson, R., Vissides, J., (1994) Design patterns: Elements
of reusable object-oriented software, Addison-Wesley.

4. Geerts, G. L., McCarthy. W. E. (1991). ”Database Accounting Systems”, in Infor-
mation Technology Perspectives in Accounting: an Integrated Approach, Chapman
and Hall, 159-183.

5. Gruber, T.R. (1993). A Transaction Approach to Portable Ontology Specification.
Knowledge Acquisition 5: p199-220

6. Hill, R., Polovina, S., (2008) ‘An Automated Conceptual Catalogue for the Enter-
prise’, Supplementary Proceedings of 16th International Conference on Conceptual
Structures (ICCS 09): Conceptual Structures: Knowledge Visualization and Rea-
soning, Toulouse, France, July 2008, Eklund, P., Haemmerl, O. (Eds.), CEUR-WS,
Vol-354, 99-106.

7. Hill, R. (2006). ‘Capturing and Specifying Multi-Agent Systems for the Manage-
ment of Community Healthcare’ in Yoshida, H., Jain, A., Ichalkaranje, A., Jain,
L.C., Ichalkaranje, N., editors, ‘Advanced Computational Intelligence Paradigms
in Healthcare - 1’, Chapter 6, 127-164, Studies in Computational Intelligence, 48,
Springer, Berlin.

8. Hill, R., Polovina, S., Beer, M. D. (2005) ”From concepts to agents: Towards a
framework for multi-agent system modelling”, Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Utrecht University, Netherlands, ACM Press, 1155-1156.

9. Hrub, P., Kiehn, J., & Scheller, C. V. (2006). Model-driven design using business
patterns. Berlin; New York: Springer-Verlag.

10. Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992) Object-
Oriented Software Engineering. Wokingham, England: Addison-Wesley.

11. McCarthy, W. E., (1982) ”The REA Accounting Model: A Generalized Framework
for Accounting Systems in a Shared Data Environment”, The Accounting Review,
554-578.

12. McCarthy, W. E., (1979) ”An Entity-Relationship View of Accounting Models”,
The Accounting Review, 667-686.

13. Polovina S., Hill, R. (2009) ”A Transactions Pattern for Structuring Unstructured
Corporate Information in Enterprise Applications”, International Journal of Intel-
ligent Information Technologies, April-June 2009, Vol. 5, No. 2, IGI Publishing,
34-48.

14. Polovina, S., Hill, R. (2005). ”Enhancing the Initial Requirements Capture of
Multi-Agent Systems through Conceptual Graph”, Proceedings of 13th Interna-
tional Conference on Conceptual Structures (ICCS ’05): Conceptual Structures:
Common Semantics for Sharing Knowledge, July 18-22, 2005, Kassel, Germany,
Dau, F., Mugnier, M-L., Stumme, G. (Eds.); LNAI 3596, Springer, 439-452.

15. Polovina, S. (1993) ”Bridging Accounting and Business Strategic Planning Using
Conceptual Graphs”, Conceptual Structures: Theory and Implementation, Pfeiffer,
Heather D; Nagle, T. (Eds.), LNAI, Springer-Verlag, Berlin, 312-321.

16. Sowa, J. F., (2000) Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA.

17. Sowa, J. F., (1984). Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley.

