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ABSTRACT: Bismuth telluride-based alloys possess the highest
efficiencies for the low-temperature-range (<500 K) applications
among thermoelectric materials. Despite significant advances in the
efficiency of p-type Bi2Te3-based materials through engineering the
electronic band structure by convergence of multiple bands, the n-
type pair still suffers from poor efficiency due to a lower number of
electron pockets near the conduction band edge than the valence
band. To overcome the persistent low efficiency of n-type Bi2Te3-
based materials, we have fabricated multiphase pseudobinary
Bi2Te3−Bi2S3 compounds to take advantages of phonon scattering
and energy filtering at interfaces, enhancing the efficiency of these
materials. The energy barrier generated at the interface of the secondary phase of Bi14Te13S8 in the Bi2Te3 matrix resulted in a higher
Seebeck coefficient and consequently a higher power factor in multiphase compounds than the single-phase alloys. This effect was
combined with low thermal conductivity achieved through phonon scattering at the interfaces of finely structured multiphase
compounds and resulted in a relatively high thermoelectric figure of merit of ∼0.7 over the 300−550 K temperature range for the
multiphase sample of n-type Bi2Te2.75S0.25, double the efficiency of single-phase Bi2Te3. Our results inform an alternative alloy design
to enhance the performance of thermoelectric materials.
KEYWORDS: multiphase, thermoelectric, energy filtering, phonon scattering, bismuth telluride-based

1. INTRODUCTION
Two-thirds of the world’s energy is wasted as heat, with low-
grade waste heat, up to 500 K, accounting for 60% of this lost
energy.1 Thermoelectric generators (TEGs) that convert
thermal energy to electricity and vice versa are a pioneer
recovery technique for low-grade waste heat; several promising
materials have been explored for power generation applications
including GeTe,2 PbTe,3 and silicide.4 However, there are only
a few thermoelectric materials that perform relatively well in
TEGs within this temperature range, with a conversation
efficiency of <10% over a narrow temperature range.5

Therefore, further development is required to improve the
conversion efficiency of current thermoelectric materials,

defined by the dimensionless figure of merit, zT T
2

e l
= + ,

where α, σ, κe, and κl are the Seebeck coefficient, the electrical
conductivity, the electronic thermal conductivity, and the
lattice thermal conductivity, respectively.
The state-of-the-art thermoelectric material for the low-

temperature range (<500 K) is based on Bi2Te3 alloys. Despite
significant advances in the conversion efficiency of p-type
Bi2Te3-based materials, upon reaching zT of ∼1.5 at room

temperature,6,7 the n-type pair still suffers from poor efficiency,
and the zT of ∼0.9 is still the highest value at room
temperature,8 resulting in low generated power by the TEG.
This is associated with the lower number of electron pockets
near the conduction band edge of Bi2Te3 than the valence
band, failing to take advantages of the power factor, S2σ,
enhancement through engineering the electronic band
structure by convergence of multiple bands.9 Therefore, a
new approach is required to tackle its persistent low zT.
Recently, multiphase thermoelectric materials have attracted

the attention of the thermoelectric research community10 due
to higher degrees of freedoms that these materials provide to
design high-performance compounds through phonon scatter-
ing at interfaces,11,12 energy filtering,12,13 modulation dop-
ing,14,15 and potentially benefiting from incorporating mag-
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netic interaction.16,17 The energy filtering effect creates
potential barriers in the electronic band structure of the
matrix through interfaces with the secondary phases, resulting
in an increase in the overall Seebeck coefficient.13,18 The
secondary phases with the larger band gaps and higher carrier
concentrations than the matrix can increase the electrical
conductivity of the multiphase compounds called modulation
doping.15,19 These strategies are adopted to improve the
thermoelectric performance, mostly by enhancing the power
factor (α2σ); however, the lattice thermal conductivity is
influenced at the presence of secondary phases.17,20

Here, we have selected a pseudobinary Bi2Te3−Bi2S3 system,
which contains multiphase compounds of Bi2Te2S and Bi2Te3
or Bi2S3 phases. Both phases of Bi2Te2S (∼0.28 eV)21 and
Bi2S3 (1.3 eV)22 have higher band gaps than Bi2Te3 (∼0.15
eV).23 We have shown that n-type multiphase pseudobinary
Bi2Te2S−Bi2Te3 compounds possess a higher power factor and
simultaneously provide lower total thermal conductivities than
single-phase counterparts, resulting in a relatively high
thermoelectric figure of merit of ∼0.7 over the temperature
range of 300−550 K, compared to ∼0.3 for the Bi2Te3 sample.
These new findings will inform the design of next-generation,
multiphase compounds with enhanced thermoelectric perform-
ance for low-grade waste heat recovery applications.

2. MATERIALS AND METHODS
2.1. Synthesis. A set of polycrystalline Bi2Te3−xSx (x = 0, 0.25,

0.5, 0.75, and 1.0) samples were synthesized by direct reaction of
stoichiometric amounts of high-purity Bi (99.999%, Alfa Aesar), Te
(99.999%) shots, and dried S (99.99%) powder in vacuum-sealed
quartz ampoules in an Ar glove box. The ampoules were homogenized
at 1123 K for 10 h, quenched in cold water, and annealed at 673 K for
72 h. The obtained ingots were hand-ground to fine powders in an
agate mortar and pestle housed inside an Ar atmosphere glove box.
The powders were then loaded into a graphite die and sintered under
vacuum to produce rods of 6 mm in diameter and 12−14 mm in
length, using spark plasma sintering at 633 K and an axial pressure of
50 MPa for 5 min. The density (ρ) of samples was measured via the
Archimedes method such that the relative densities were ≥99% for all
samples.

The multiphase samples of Bi Te S Iy2 2.75(1 ) 0.25(1 )y y
3 3

(y = 0.005,
0.01, and 0.02) that are iodine-doped samples of multiphase
Bi2Te2.75S0.25 were fabricated to ingots by direct reaction of
stoichiometric amounts of high-purity Bi (99.999%, Alfa Aesar), Te
(99.999%) shots, dried S (99.99%) powder, and BiI3 (99.999%, Alfa
Aesar Puratronic), using the abovementioned heat treatment
procedure. The hand-ground powders were then loaded into a
graphite die and sintered under vacuum to produce pellets using spark
plasma sintering (FCT System GmbH, KCE FCT-H HP D-25 SD,
Rauenstein, Germany) at 673 K and an axial pressure of 50 MPa for 5
min, obtaining samples with 11 mm in diameter and ∼12 mm height.
Although the same sintering parameters were used to sinter these
samples, the change in the SPS equipment resulted in samples with
densities (ρ) of >90% of the relative densities, lower that the densities
of >99% of the theoretical density for previous samples.
2.2. Material Characterization. The phase purity and crystal

structure of sintered samples were characterized by powder X-ray
diffraction (XRD) using a PANalytical X’Pert PRO X-ray diffrac-
tometer with Cu Kα radiation (λ = 1.5406 Å, 40 kV, 25 mA). The
lattice parameters were determined by Rietveld refinement of the
collected diffraction patterns using the FullProf program.

For the microstructure and chemical mapping, samples were cut
from the sintered disk cross section of Bi2Te3−xSx (x = 0 and 0.5)
ingots such that the compression direction was parallel to the sample
surface. The sample surface was polished up to 1 μm diamond and
then subjected to Ar-ion milling on a Leica EM RES101 at 4 kV for 1

h. The grain and phase distribution and chemical composition of
samples were characterized using a JEOL JSM-7001F field emission
gun scanning electron microscope (SEM), equipped with an Oxford
Instruments 80 mm2 X-Max energy-dispersive spectroscopy (EDS)
detector and a Nordlys-S(II) electron backscattering diffraction
(EBSD) detector working concurrently with the OI Aztec acquisition
software. Combined EBSD and EDS maps were collected from 480 ×
360 μm2 areas at an accelerating voltage of 15 kV, a probe current of
∼5.5 nA, and a step size of 0.24 μm. In the Bi2Te3 and Bi2Te2.5S0.5
samples, overall indexing rates of ∼91.5 and 92.2% were obtained
such that most zero solutions were located at grain boundary regions.
The maps were cleaned by removing wild orientation spikes and
filling-in zero solutions via cyclic extrapolation down to five neighbors
and processed using the OI HKL Channel-5 analytical software suite.
The parameters used to collect and process the combined EBSD and
EDS maps are detailed in our previous study.24

2.3. Electronic Transport Property Measurements. The
electrical conductivity and Seebeck coefficient were measured
perpendicular and parallel to the compression/sintering direction of
the pellet and rod samples, respectively, by cutting ∼2 × 2 × 9 mm3

specimens from the pellet. The measurements were carried out from
room temperature to 523 K under a helium atmosphere by using a
Linseis LSR-3 apparatus.

The laser flash diffusivity method (Linseis LFA 1000) was used to
measure the thermal diffusivity of the pellet and rod samples. The
thermal diffusivity (D) of all samples was measured parallel to the
compression/sintering direction. The thermal conductivities (κ) were
calculated by κ = D × Cp × ρ. The heat capacity (Cp) of all samples
was measured according to the ASTM-E1269-11 standard test using a
differential scanning calorimeter (PerkinElmer-DSC 8000). The
density (ρ) of samples was measured via the Archimedes method.

The samples were cut with their long axis perpendicular to the
sintering direction of samples to measure the Hall coefficient (RH)
from transverse electrical resistivity measurements using the DC
transport option of a Quantum Design physical property measure-
ment system (PPMS) at temperatures between 5 and 400 K under a
±2 T magnetic field. The Hall carrier concentration (nH) and Hall
carrier mobility (μH) were calculated using nH = 1/(RH·e) and μH =
σ/(nH·e), respectively. The room-temperature Hall coefficient (RH) of
doped samples was measured through van der Pauw method, using an
ECOPIA-HMS-3000 apparatus to obtain the room-temperature Hall
carrier concentrations and electronic mobilities.

3. RESULTS AND DISCUSSION
3.1. Composition and Microstructure Analysis.

According to the pseudobinary phase diagram of Bi2Te3−
Bi2S3

25 (Figure 1), Bi2Te3−xSx (x = 0.25, 0.5, and 0.75)
compounds comprise two phases, namely, Bi2Te3 and Bi2Te2S.

Figure 1. Phase diagram of Bi2Te3−Bi2S3, adapted from ref 25,
indicating the composition of samples Bi2Te3−xSx (x = 0, 0.25, 0.5,
0.75, and 1).
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The purity and crystal structure of the undoped Bi2Te3−xSx
(x = 0, 0.25, 0.5, 0.75, and 1) samples are determined by
indexing the powder X-ray diffraction (XRD) patterns, shown
in Figure 2. All samples exhibit trigonal crystal structures. The

Bi2Te3 sample is a single phase belonging to the R3̅m space
group with the lattice parameters a = b = 4.39 Å, c = 30.47 Å, α
= β = 90°, and γ = 120°. However, the sample stoichiometri-
cally referred to as Bi2Te2S comprises two phases, namely,
Bi2Te3 and Bi14Te13S8. The latter phase belongs to the R3̅
space group with the lattice parameters a = b = 4.18 Å, c =
29.45 Å, α = β = 90°, and γ = 120°. The tetradymites Bi2Te3
are based on five layers in three blocks in a [Te2−Bi−Te1−Bi−
Te2 ]0 − [Te2−Bi−Te1−Bi−Te2]1/3 − [Te2−Bi−Te1−Bi−
Te2]2/3 sequence with the subscripts indicating the z
translation of the blocks within the hexagonal unit cell.26

In the case of Bi2Te2S, it was initially proposed that the S
atoms substituted at Te sites.27 However, this structure was
unstable at that composition due to the high strains on the
internal sulfur layer caused by the electronegative anion of
sulfur and the very different ionic radii of Te and S, resulting in
a large size mismatch of the hexagonal-close-packed Te and S
layers. Therefore, a more complex formula, Bi14Te13S8, was
suggested for the single-phase structure where S only occupies
the Te1 sites in the Bi2Te3 structure.26,28 This phase has an
orthorhombic crystal structure, belongs to the R3̅ space group
with lattice parameters of a = b = 11.24 Å and α = β = γ =
56.83° or a corresponding hexagonal structure with lattice
parameters of a = 4.25 Å, c = 29.6 Å, α = β = 90°, and γ =
120°.28 The stoichiometrically prepared sample of Bi2Te2S
contains less sulfur than single-phase Bi14Te13S8, and therefore,
as XRD results indicate, it contains a secondary Bi2Te3 phase
within the Bi14Te13S8 matrix.
It is worth noting that this crystal structure has been indexed

as Bi2Te2S in the XRD databases of the Inorganic Crystal
Structure Database (ICSD) and Open Quantum Materials
Database (OQMD). Consequently, we used this to identify
phases in our previous work,24 and in fact, the phase labeled
the Bi2Te2S phase in our previous report24 is the Bi14Te13S8
phase. We acknowledge the incorrect labeling of the Bi14Te13S8

phase as Bi2Te2S in our previous study and refer to it as
Bi14Te13S8 in this work. Rietveld refinement was also employed
via the FullProf software suite to determine the proportion of
phases, summarized in Table 1.
The electronic transport properties of bismuth chalcoge-

nides are affected by the fraction of individual phases.7,29

Therefore, we employed a combination of an EBSD technique
and EDS mapping to discriminate the Bi2Te3 and Bi14Te13S8
phases.24

Figure 3a,c shows the band contrast maps of the Bi2Te3−xSx
(x = 0 and 0.5) sample cross section, the surface parallel to the
sintering direction, respectively. The low-angle grain bounda-
ries (LAGBs) are defined as misorientations between 2 ≤ θ ≤
15° in blue and high-angle grain boundaries (HAGBs) as
misorientations >15° in black. Since the powder was hand-
ground from an annealed ingot in an agate mortar and pestle, it
resulted in a large variation in grain sizes, with some grains
exceeding 100 μm. In general, most large grains are elongated
perpendicular to the direction of sintering. The latter is along
the map vertically.
Figure 3d shows the phase distribution maps of Bi2Te3 (red)

and Bi14Te13S8 (blue) phases in the multiphase sample of
Bi2Te2.5S0.5. Although the same fabrication method was
employed to prepare these samples, the grain sizes in the
multiphase Bi2Te2.5S0.5 sample are much smaller than in single-
phase Bi2Te3 (compare Figure 3a,c). The phase diagram of
Bi2Te3−Bi2S3

25 (Figure 1) shows that there is a eutectic
transformation between Bi2Te3 and Bi14Te13S8, following
which a lamellar structure is expected in the final ingot. This
has resulted in much finer grain size in the multiphase sample
of Bi2Te2.5S0.5 than in the single-phase Bi2Te3 sample.
Figure 3b shows the EBSD image of the Bi2Te3 phase in a

single-phase sample of Bi2Te3, and Figure 3e,f shows the EBSD
image of Bi2Te3 and Bi14Te13S8 phases, respectively, in the
multiphase sample of Bi2Te2.5S0.5. These images show the
orientation of the unit cells’ c-axis of each phase relative to the
compression axis. The grains sizes of both phases in the
Bi2Te2.5S0.5 sample are very similar and elongated perpendic-
ular to the sintering direction, similar to the single-phase
sample.
3.2. Electronic Transport Properties of Bi2Te3−xSx (x =

0, 0.25, 0.5, 0.75, and 1) Samples. Figure 4 shows the
temperature-dependent thermoelectric properties of the
undoped Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples
between 300 K and 500 K. All thermoelectric properties of this
set of samples were measured parallel to the sintering
direction.
All samples show negative Seebeck coefficient values, which

indicates that electrons compose most charge carriers. The
Seebeck coefficient (Figure 4a) of all samples with x = 0.5 and
0.75 decreases with temperature, exhibiting a temperature
dependence behavior typical of intrinsic semiconductors. The
Bi2Te2S and Bi2Te3 samples show a bipolar effect within the
range of 400−500 K that is typical behavior of narrow band
gap degenerate semiconductors30 where the intrinsic carriers

Figure 2. Room-temperature X-ray diffraction patterns of Bi2Te3−xSx
(x = 0, 0.25, 0.5, 0.75, and 1).

Table 1. Estimated Mass Ratio of the Phases in the Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) Samples Obtained by Rietveld
Refinement

x 0 0.25 0.5 0.75 1

Bi2Te3 100 83.9 ± 1.5 55.4 ± 0.7 33.4 ± 1.8 18.9 ± 0.3
Bi14Te13S8 16.1 ± 0.8 44.6 ± 0.5 66.6 ± 0.7 81.1 ± 0.8
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are excited and compete with the extrinsic carriers, which in
turn decreases the Seebeck coefficient with increasing the
temperature as a result of the combined contribution of
negative and positive charge carriers.
The electrical conductivity (Figure 4b) of all samples, except

for samples with x = 0 and 0.25, increases with temperature
and exhibits a temperature dependence behavior, typical of
intrinsic semiconductors. The highest value of power factors,
∼1.75 mW/m·K2 (Figure 4c) was obtained in the multiphase
Bi2Te2.75S0.25 sample (containing roughly 16 wt % of Bi14Te13S8
in the matrix of Bi2Te3) at around room temperature with a
Seebeck coefficient of ∼150 μV/K and above 1.5 mW/m·K2

over the whole temperature range. This marks a significant
increase from ∼1.25 mW/m·K2 for the single-phase Bi2Te3.
The temperature-dependent Hall coefficient, RH, of

Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples between
10 and 400 K (Figure 5) shows that the Hall coefficient of
multiphase samples with x = 0.5 and 0.75 decreases with
temperature, while the values are constant over the whole
temperature range for the rest of samples. The Hall carrier

concentrations (nH) of all samples were calculated at 350 K
and are summarized in Table 2. These samples are all undoped
and the charge carriers are caused by the structural defects.
The multiphase samples of Bi2Te3−xSx (x = 0.5, 0.75, and 1)
with a larger fraction of the Bi14Te13S8 secondary phase show
very low charge carrier concentrations (∼1018 cm−3), while the
carrier concentration of the multiphase sample of Bi2Te2.75S0.25
is ∼1.2 × 1019, similar to the charge carrier concentration of
Bi2Te3 (∼1 × 1019), explaining the higher electrical
conductivity and the behavior, typical of a degenerate
semiconductor. The optimum thermoelectric performance of
n-type Bi2Te3 is usually achieved at carrier concentrations in
the lower range of ×1019 cm−3,31 similar to the single-phase
sample of Bi2Te3 and the multiphase sample of Bi2Te2.75S0.25.
All samples of this study are undoped, and these results suggest
that the variations in the charge carrier concentrations in these
materials might not be solely due to a substitutional effect of
Te with S in Bi2Te3 but likely due to the random formation of
antisites and vacancy defects and various ratios of each phase
in these samples. Table 2 summarizes the Seebeck coefficient,

Figure 3. (a) Band contrast and (b) EBSD image of the Bi2Te3 sample, indicating a single-phase compound with grains elongated normal to the
direction of sintering. (c) Band contrast, (d) phase distribution map of Bi2Te3 (red) and Bi14Te13S8 (blue), (e) EBSD image of the Bi2Te3 phase,
and (f) EBSD image of the Bi14Te13S8 phase in the Bi2Te2.5S0.5 sample, showing the sample containing both phases with grains sizes much smaller
than the single-phase Bi2Te3 sample. EBSD images indicate the orientation of the unit cells’ c-axis of each phase relative to the compression axis.
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carrier concentration, and mobility of Bi2Te3−xSx (x = 0, 0.25,
0.5, 0.75, and 1) samples at room temperature.
Although the point defects have controlled the carrier

concentration of samples and effects on their electrical
conductivity significantly, regardless of the carrier concen-
trations, all multiphase samples of Bi14Te13S8−Bi2Te3
(Bi2Te3−xSx (x = 0.25, 0.5, 0.75, and 1)) show much higher
Seebeck coefficients than the single-phase Bi2Te3. The
Bi2Te2.75S0.25 sample with carrier concentration similar to
Bi2Te3 (∼1.0 × 1019) have shown the Seebeck coefficient of

∼150 μV/K, much higher than the value of ∼120 μV/K for
single-phase Bi2Te3 at room temperature (Figure 4a). This can
be explained by the energy filtering effect, where the potential
barriers generated in the electronic band structure of the
matrix through interfaces with the secondary phases increases
the overall Seebeck coefficient.13,18 In this effect, low energy
carriers are scattered by potential barriers formed at the
junction of the two phases. The barrier height can be
approximated as a function of the difference between the
electron affinity of two phases. The multiphase samples of
Bi14Te13S8−Bi2Te3 (Bi2Te3−xSx (x = 0.25, 0.5, 0.75, and 1))
have an estimated barrier height of ≈ 0.7 eV, considering the
electron affinity, χ, of ≈5.26 eV for Bi14Te13S8

32 and ≈4.5 eV
for Bi2Te3,

33 schematically demonstrated in Figure 6.

Figure 4. Temperature dependence between 300 and 500 K of (a) the Seebeck coefficient, (b) the electrical conductivity, (c) the power factor, and
(d) the total thermal conductivity of Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples parallel to the sintering direction.

Figure 5. Temperature dependence of the Hall coefficient, RH, for
Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples between 5 and 400
K.

Table 2. Room-Temperature Resistivity (ρ), Seebeck
Coefficient (α), Hall Charge Carrier Concentration (nH),
and Hall Mobility (μH) of Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75,
and 1) Samples

x
resistivity,

ρ (mΩ·cm)

Seebeck
coefficient,
α (μV/K)

Hall carrier
concentration, nH

(cm−3)
Hall mobility,
μH (cm2/V·s)

0 0.94 −118 1.0 × 1019 655
0.25 1.80 −153 1.2 × 1019 284
0.5 17.9 −136 1.9 × 1018 183
0.75 17.2 −210 1.7 × 1018 213
1 14.3 −147 2.7 × 1018 161
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The temperature dependence of the total thermal con-
ductivity, κ, between 300 and 500 K for all Bi2Te3−xSx (x = 0,
0.25, 0.5, 0.75, and 1) samples is presented in Figure 4d. The
total thermal conductivity of all samples increases with
temperature, indicating low carrier concentrations in these
samples. In general. all multiphase samples of Bi2Te3−xSx (x =
0.25, 0.5, 0.75, and 1) show the total thermal conductivities
much lower than the single-phase Bi2Te3 sample. The total
thermal conductivity of the highly conductive multiphase
Bi2Te2.75S0.25 sample, with similar charge carrier concentration
to Bi2Te3, is below ∼1.1 W/m·K over the temperature range as
a result of the finer microstructure (Figure 3).
To understand the effect of the microstructure on the lattice

thermal conductivity of these samples, a multiband parabolic
model with one electron (n) band and one hole (p) band was
employed to calculate the electronic and bipolar contributions
of the thermal conductivity for all samples.34 The multiband
model considers both holes and electrons, and the overall
Seebeck coefficient and electrical conductivity of samples can
be described by

S
n n p p

n p
=

+
+ (1)

n p= + (2)

where αn, αp, σn, and σp are the partial Seebeck coefficient and
electrical conductivity of electrons and holes, respectively. The
electronic (κe) and bipolar (κb) contributions of the thermal
conductivity are given as

L L T( )e n n p p= + (3)

T( )b
n p

n p
n p

2=
+ (4)

where Ln and Lp are the Lorenz numbers of the conduction
and valence bands, respectively. More details of the
calculations are provided in the Supporting Information. The
electronic (κe), bipolar (κb), and lattice (κL = κ − κe − κb)
thermal conductivities of Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and
1) samples are presented in Figure 7. The most electrically
conductive samples (x = 0 and 0.25) show higher values of
electronic contribution to the total lattice thermal conductiv-
ities than the less conductive ones (Figure 7a). The bipolar
thermal conductivity of all samples increases with temperature
and decreases with an increase in the fraction of the secondary
phase (Figure 7b) due to the larger band gap of Bi14Te13S8.
The lattice thermal conductivity of all samples decreases with
the temperature, indicating the phonon scattering mecha-
nisms.35 All multiphase samples with a fine microstructure (x =
0.25, 0.5, and 0.75) show lower lattice thermal conductivity
than Bi2Te3, most likely due to additional scattering of
phonons at the defects, the grain boundaries, and the interfaces
between two phases. The bipolar and lattice thermal
conductivities of samples are calculated according to the
multiband model. This model is developed for single-phase
compounds, whereas there is a significant fraction of secondary
phase existing in the samples of the current study; this
introduces substantial errors in the calculated values of bipolar
and lattice thermal conductivities of multiphase samples.
Overall, the combination of low total thermal conductivity
and high power factor in the highly conductive multiphase
Bi2Te2.75S0.25 sample results in a reasonably high figure of merit
of ∼0.7 (Figure 8) with values higher than 0.6 over the full
temperature range of 300−500 K.
The multiphase samples of Bi2Te2.75S0.25, containing

Bi14Te13S8 and Bi2Te3, were doped with iodine to obtain
samples of Bi Te S Iy2 2.75(1 ) 0.25(1 )yy

3 3
(y = 0.005, 0.01, and

0.02), with various charge carrier concentrations. The
thermoelectric performance of these samples was measured
for both directions parallel and perpendicular to the sintering
orientation.
3.3. Electronic Transport Properties of (y = 0.005,

0.01, and 0.02) Samples. The temperature-dependent
Seebeck coefficient, electrical conductivity, total thermal
conductivity, and figure of merit of iodine-doped multiphase
Bi2Te2.75S0.25 compound, measured parallel to the sintering
direction at the temperature range of 300−530 K, are shown in
Figure 9a−d, respectively. The thermoelectric performance of

Figure 6. Schematic diagram of the energy filtering effect at the
interface between Bi2Te3 and Bi14Te13S8.

Figure 7. Temperature dependence of the (a) electronic thermal conductivity; (b) bipolar thermal conductivity; and (c) lattice thermal
conductivity for Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples between 300 and 500 K measured parallel to the sintering direction.
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these samples was also measured at the direction perpendicular
to the sintering direction (detailed in the Supporting
Information). The electronic transport properties of these
samples are compared with the intrinsic sample, shown in
Figure 4. The samples are named with their Hall carrier
concentrations in Figure 9 for simplicity of comparison. The
electrical conductivity has been increased and the Seebeck

coefficient has been reduced by the increase in the carrier
concentration, as expected; the intrinsic sample has shown
only slightly lower charge carrier concentrations (1.2 × 1019
cm−3) than the slightly doped sample (1.7 × 1019 cm−3);
however, it has higher electrical conductivity and higher
thermal conductivity than the slightly doped samples. We have
used the same fabrication method to prepare doped samples as
the intrinsic ones; however, the SPS equipment used to sinter
these samples was changed, which had lower accuracy in the
pressure control system at lower ranges, resulting in samples
with densities (ρ) more than 90% of the relative densities,
much lower than the density of intrinsic samples (>99% of the
theoretical density) that were prepared by different equipment.
The porosities in the doped samples resulted in lower electrical
conductivity of samples with the same chemistry and carrier
concentrations due to scattering of electrons.36 However, it
also reduced the thermal conductivity (Figure 9c) of samples
due to the scattering of phonons in the porous structure. This
resulted in a similar figure of merit for both samples, showing
that optimum charge carrier concentrations for this composi-
tion is also in the lower range of ×1019 cm−3, similar to the
single-phase n-type Bi2Te3 sample.31 The intrinsic Bi2Te3
sample prepared in this study (Table 2 and Figure 4) showed
the charge carrier concentrations at the lower range of ×1019

Figure 8. Temperature dependence of the figure of merit, zT, for
Bi2Te3−xSx (x = 0, 0.25, 0.5, 0.75, and 1) samples between 300 and
500 K measured parallel to the sintering direction.

Figure 9. Temperature dependence of (a) the Seebeck coefficient; (b) the electrical conductivity; (c) the total lattice thermal conductivity; and (d)
the figure of merit, zT, of Bi Te S Iy2 2.75(1 ) 0.25(1 )y y

3 3
(y = 0.005, 0.01, and 0.02) samples between 300 and 500 K measured parallel to the sintering

direction, compared with the intrinsic sample shown in Figure 4.
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cm−3, proving a reasonable comparison of the thermoelectric
performance of multiphase samples with the single-phase n-
type Bi2Te3.
These results suggest that there is a possibility to obtain high

room temperature and/or over a wide temperature range
thermoelectric performance in the multiphase pseudobinary
Bi14Te13S8−Bi2Te3 alloys. These samples exhibit a high power
factor and simultaneously provide low total thermal con-
ductivities.

4. CONCLUSIONS
In summary, multiphase pseudobinary Bi14Te13S8−Bi2Te3
compounds are promising high-performance thermoelectric
materials around room temperature. We have shown that the
finely distributed secondary phase of Bi14Te13S8 with a larger
band gap and electron affinity than the matrix Bi2Te3 increased
the Seebeck coefficient through the energy filtering effect. This
resulted in a higher power factor of multiphase compounds
relative to single-phase Bi2Te3. Simultaneously, the increased
number of interfaces between the two phases formed through
eutectic transformation during solidification of the compounds
added additional scattering centers for phonons, leading to a
decrease in the lattice thermal conductivity of multiphase
samples. The combination of these beneficial effects resulted in
a reasonably high figure of merit of ∼0.7 over the temperature
range of 300−550 K for the multiphase sample of
Bi2Te2.75S0.25, doubling the efficiency of single-phase Bi2Te3.
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