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Social Graph and Their Applications to Robotics 

Fatma Ali Saad Alwafi 

Abstract 

In this thesis, we propose a new method to design a roadmap-based path planning algorithm in 

a 2D static environment, which assumes a-priori knowledge of robots’ positions, their goals’ 

positions, and surrounding obstacles. The new algorithm, called Multi-Robot Path Planning 

Algorithm (MRPPA), combines Visibility graph VG method with the algebraic connectivity 

( 𝜆ଶ) of the graph Laplacian and Dijkstra's algorithm. The MRPPA implies sequential path 

planning for each robot based on the measured value of algebraic connectivity of the graph 

Laplacian, and the predefined weight functions to controlling the motion of robots while 

avoiding inter-robot collision, when planning the path of each robot, considers all the paths 

already planned for path correction and collisions’ avoidance. The algorithm provides 

optimality of all planned paths because the paths depend on the order of planning, thus the 

choice of the right sequence for path planning of robots have significant impact on the 

performance of the team. VG has been selected because it produces solutions with optimal path 

lengths, i.e., short distances travelled from start positions to target, especially if combined with 

Dijkstra’s algorithm. However, VG forces the robots to move near obstacles, and is 

computationally expensive, because it uses all vertices in the environment.  Therefore, we have 

developed algorithms based on VG called the Central algorithm (CA) and its associate, the 

Optimisation Central algorithm (OCA). Contrary to VG, CA selects a relatively smaller 

number of vertices using the so-called Central Baseline (CB), in which the obstacles that 

intersect with the baseline only are considered, and it generates waypoints, travelling, through 

which the robots can avoid obstacles to reach their targets. Both algorithms employ a smaller 

number of obstacles, and this reduces the computational complexity of finding the optimal 

paths. Thus, it can create paths relatively fast and is convenient for path planning applications 

in obstacle-rich environments, whilst retaining the advantages of the VG. CA and OCA have 

made finding the shortest paths simpler because the process of path planning is equipped with 

pre-calculated step-by-step instructions. All these features make it more efficient than the VG.  

Simulation results show that the proposed algorithms can find safe and the shortest paths in 2D 

environments. Also, the results comparison with the VG confirmed that both the CA and OCA 

can find global optimal paths (short and safe) with computational efficiency. 
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1 Introduction 

1.1 Motivation 

Over the course of the 20th century, robotics and automation became a critical part of modern 

society; they have been used in many domains such as medical, manufacturing, logistics, 

aerospace, transportation (warehouses and trans-shipment in harbours), industrial (assembly 

lines) and agricultural [1]. Society therefore progressively looks to the use of robotics to 

accomplish many tasks that are complex and difficult to do. For instance, there are new 

application fields that relatively recently have appeared, such as underwater and space 

explorations, search and rescue, in particular, in hazardous environments, and service robotics. 

It is becoming increasingly common to use groups of robots to achieve these missions [2][3]. 

Typically, the required tasks involve several sub-tasks that can be performed in parallel with a 

small amount of coordination required between robots. Thus, it has become very important to 

find ways to describe individual behaviours of robots, which when deployed as a team, can 

their tasks as a group [2]. Although robots’ use is widespread in some fields, most modern 

robots need well-organised environments to know the conditions that can be predicted to work 

whilst avoiding failure. Besides that, with technological advancements, robots have become 

less expensive and more capable, especially when being used to solve a wide range of important 

and complex issues [2][4]. The idea of creating sets of mobile robots that are cooperated to 

perform more complex and pre-defined task is everyday closer to become a reality. In addition, 

the design of a team of robots in executing cooperative tasks in an autonomous way has 

attracted the attention of many researchers in recent years [4][5]. The essential precept, beyond 

a new concept of coordinating mobile robots, was directly inspired through the surveillance of 

natural systems, where it is easy to see many forms in nature such as social animals that are 

amazing and beautiful examples of cooperative entities. These animals can arrange themselves 

to perform incredibly difficult and complex tasks. For example, this can be observed by swarms 

of birds in the air, schools of fishes in the sea or by colonies of the ants and herds of animals 

on the land (see Figure 1.1) [4]. Also, it can be readily observed that natural teams are execute 

team-level missions, and they are instinctively able to turn simple individual behaviours into 

impressive team-level feats [2]. Even though these animals have limited cognitive capabilities, 

they are act and collaborate to accomplish their missions in ingenious methods to access their 

common targets. Given these wonderful examples, the concept of simulating natural 

behaviours of animals and applying them to mobile robotics seems a very attractive idea [4]. 

For this reason, in the field of mobile robotics there is increased attention to the systems that 
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are consisted of many autonomous mobile robots called multi-robot systems (MRS), and the 

study of this system has grown significantly in size and importance recently [6]. Mobile robots 

are automatic machines that can move in the environment of workspace. In addition, an 

independent mobile robot is a physically autonomous system, equipped with various sensors 

and actuators, essential and sufficient to perform and achieve a certain task [1]. Multi-robot 

system approaches introduce several advantages over single-robot solutions. A multi-robot 

system works in a shared environment to accomplish some tasks that may be difficult to 

accomplish by a single robot [4]. 

 

Figure 1. 1: Examples of social animals (2014) available online at 
http://www.peta.org/issues/animals-used-for-food/factory-farming 

Furthermore, a key ability of multi-robot autonomous systems is cooperative localisation in 

difficult unknown environments or complex partially known environments via sharing 

information to reach common targets. Also, the performance of individuals within the team can 

be remarkably improved through allowing them to perform complex tasks collaboratively in 

various areas in a more reliable manner. Cooperative work allows performing the missions in 

less time or with the least cost [3][5]. The main topic fields of multi-robot systems are 

communication, mapping, and exploration, architectures, task allocation, and control, 

localisation, object transport and manipulation, motion coordination, and reconfigurable robots 

[3]. The research works that have studied and developed multi-robot systems have made 

remarkable progress in recent decades. A team of scientists began investigating this trend of 
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the research in the late 1980s [3][6]. The research study began in the early 1990s, for example 

shown in [7], and it has received a rising interest since the mid-1990s [8]. Additionally, in the 

early to mid-1990s there was a boom of multiple robot systems inspired by the general 

intelligent behaviour of large biological insect communities, such as ants [9]. Besides that, 

multi-agent robot systems (MARS) control problems have obtained significant importance. 

Each MARS has a transport subsystem that contains many mobile robots. The controlling 

problem similar to that of a mobile robot team, can be divided into two key parts: (1) optimal 

global mission decomposition into sub-missions and distributing it optimally among separate 

robots in the team; (2) path planning, control, and movement correction for each mobile robot 

[10]. In computer science, the research for multi-agent systems usually uses software agents 

that have been widely studied in the 1980s and 1990s [11]. Also, multi-agent systems have 

replaced single agents as the computing paradigm in artificial intelligence [11][12]. In the 

robotic society, the agents in a multi-agent system can also be robots, thus multi-agent systems 

are referred to as multi-robot systems as well [11]. In [13] the authors have introduced a 

taxonomy that classifies multi-agent robotic systems based on their computational abilities and 

communication techniques that has led to the understanding of team behaviour, which emerges 

collaboratively, and have described theoretical issues that may be raised in the study of 

cooperation of multi-robot systems, illustrating the usefulness of the taxonomy in simplifying 

discourse about robot collective properties. Authors in [14][15] have proposed the 

classification of swarm, collective or robot collaboration research by defining a taxonomy or 

collection of axes [13]. This is not surprising or unexpected. The continued improvement of 

the technology and the infrastructure has enabled the deployment of multi-robot systems 

consisting of increasing numbers of robots. Also, the growing attention to these systems is 

expected to lead to significant progress in accomplishing complex tasks by them. What is more, 

a multi-robot system will be superior to a single robot by performing certain dangerous tasks 

successfully, such as environmental exploration, or demining tasks [8]. Within search 

applications, a multi-robot system offers many advantages over single robot’s solutions, 

especially when used in a hazardous area or inaccessible area to humans, for example, disaster 

relief workers could use a swarm of robots to search and- rescue victims. Swarm robotics 

applied in search missions could offer many major advantages over traditional search 

techniques [16]. Multiple robots in swarm robotics collectively solve problems by forming 

benefits structures and behaviours like the ones observed in natural systems, such as swarm of 

fish, bees, or ants [17][18]. The team (group) behaviours appearing in the swarms emerge great 

robustness and flexibility [18]. However, the distributed nature of these systems makes the 
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design of the effective algorithms quite difficult, the total performance relies significantly on 

the issues arising from the complex interactions between the robots. The design of these 

algorithms has highly challenging requirements. One is that the robots must be highly mobile. 

Another one is that the robots must maintain a communication network across a large 

geographical domain. So, distributed algorithms must be robust to changing network topology. 

The third requirement is that the robots must estimate their physical composition. This means 

that the characteristics of the environment where robots operate must be evaluated, also the 

robots will need some geometric information about the locations of other robots, or they cannot 

coordinate their movements. The last one is that multi-robot distributed algorithms must be 

robust to population changes due to robots failures or the addition of new members. 

Fundamentally, in order for the algorithms to be able to achieve these requirements, they must 

operate at the intersection of physical mobility, communication networking, and distributed 

computation [19]. In addition to that, these algorithms need to overcome several challenges. 

One of these challenges is the development of distributed motion algorithms that guarantee 

connectivity of the overall network. The algorithm needs limited local information and 

communication among robots to determine the addition or deletion of network links through 

distributed consensus and market-based auctions [20]. The other one is how to design 

appropriate coordination strategies between the robots that enable them to perform operations 

efficiently in terms of time and working space [6]. Thus, all this requires a multi-robot system 

to have the ability to make decisions based on the situation of its surrounding environmental 

changes that may greatly enhance its autonomy [21]. The existing technologies can operate a 

system like a multi-robot system in a known and relatively regular environment. It also operates 

in a dynamic environment that has obstacles that may appear while performing the task; these 

technologies are not sufficient because robots do not have the ability to make their own 

decisions [21]. Therefore, particular attention has been presented to a multi-robot system 

developed to operate in dynamic environments, where uncertainty and unexpected changes can 

occur due to the presence of robots and other factors that are external to the MRS itself. 

Technological Improvements in both (hardware and associated software) are the main reasons 

behind the increasing interest in MR system, where the software techniques developed for 

robots, applications take advantage of the hardware improvements and introduce complicated 

and credible solutions for the basic missions, which robot must be capable to execute whilst 

working in real environments: path planning, object recognition, object transportation, 

localisation, and tracking, etc [22]. Besides, autonomous multi mobile robots are systems that 

operate in a partially unknown and unpredictable environment. This means that robots must 
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have the capability to move without disruption and have the ability to avoid any obstacle placed 

inside the confinement of movement. In addition, these systems have little or no human 

interference for their movement and are designed in a way that follows a predetermined path, 

whether in an external or internal environment [23]. Additionally, the autonomy of the system 

involves many domains such as communications, trajectory generation, and sensor fusion, 

cooperative tactics, task allocation, scheduling, and path planning. The path planning is an 

important domain in the control of mobile robots, and it is considered one of the main elements 

of autonomy and plays a key role in enhancing the autonomy level of a multi-robot system. 

Therefore, it is taken into consideration when designing multi-robot systems [21][24].  

Even though the use of a multi-robot system has many important advantages that distinguish it 

from a single robot system, it has also some foundational problems, which require solutions, 

such as consensus protocol, flocking, formation control, task allocation, rendezvous, 

containment, centralised and decentralised control, mapping, exploration, optimisation and 

communications, and the motion planning problem [3][25]. These problems are still under 

study and analysis and researchers are still looking to find suitable solutions to address them in 

order to achieve a high quality of overall performance, although there are advanced studies on 

this subject and many articles address more than one of these problems [3][25]. For this reason, 

we investigate one of these problems - the problem of motion planning. The research 

investigates a multi-robot system in terms of its advantages, disadvantages, and problems. It 

focusses specifically on the problem of motion planning and how to solve it by using the 

concept of graphs. Graphs and algebraic graphs theory are efficient and powerful tools that are 

both used to solve a wide range of problems.   

1.2 Brief Overview of Graph Theory 

Graph theory was originated in1736 when Swiss mathematician Leonhard Euler solved the 

Konigsberg bridge problem (a famous example is the 'Seven Bridges of Konigsberg’ 'problem): 

where the author in his published paper in 1736 discussed the possibility of crossing all the 

seven bridges of Konigsberg just one time [2][26][27][28][29]. See Figure 1.2 for an 

illustration. The first paper of graph theory in history was written by Euler about the seven 

Bridges of Königsberg in 1736 [30]. Euler's main insight was that the islands and bridges could 

be modelled by a simple mathematical structure, the mathematical structure constructed for the 

problem is known as a graph model of the problem [27][28]. Since Euler's solution to this 

problem, graph theory has evolved to become one of the essential fields of applied mathematics 

[31]. Since then, graph theory has contributed to solving many mathematical issues [27].  
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Although graph theory is closely related to applied mathematics, it is a multi-disciplinary field 

among Mathematics, Operations Research, and Computer Science. Industrial and systems 

engineering uses graphs as well for optimisation [2][29][30]. Graphs are one of the important 

concepts that could help to solve problems in various fields. In mathematics and computer 

science, graph theory is the study of graphs, which are mathematical structures used to model 

relations between objects of a certain collection [2][29][30].  

 

Figure 3.2: Konigsberg bridges. Bóta, A. (2015) Methods for the description   and analysis of 

processes in real-life networks, available online at       

                      https://www.google.co.uk/search?q=graph+theory+three&biw 

At present, graph theory is an effective domain in both theoretical and applied sciences. It is a 

rapidly developing area of research, and its various applications to networks, distributed 

computing, social networks, and web graphs partly explain the growing attention to it [2]. On 

the other hand, graphs are quite efficient tools for describing relationships between objects that 

are represented by nodes (vertices). In turn, relations among nodes are represented by 

connections [29]. In general, any mathematical object involving points and connections among 

them can be called a graph or a hypergraph. For example, physical networks, map colourings, 

databases, organic molecules, ecosystems can be modelled as graphs. All these examples 

require multi-graphs, like directed graphs or graphs which allow loops. Therefore, graphs can 

serve as mathematical models. Graph theory has been studied to solve many problems, such as 

traffic routing problems, payload transport, task assignment, air traffic control and many other 

applications, including robotics [2][29][30]. Motion planning is an eminently important topic 

for mobile robots since, by definition, a robot performs missions by moving in the real world 

[25]. The problem of motion planning is one of many difficult problems that can be solved by 

using concepts of graph theory. It is also considered a common problem in multi-robot systems 

and still requires more investigation [32]. Much research has been dedicated to this problem, 

because of its importance in different areas and not only in multi-robot systems. The main task 
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of motion planning is to produce a continuous movement or path that connects the start position 

to the target position without collisions. In robotics, the problem of motion planning includes 

producing a continuous robot motion from one configuration to another in a configuration 

space whilst avoiding collision with obstacles [21] [25]. Also, the problem at hand is to design 

a strategy that allows the robots to arrive their required locations through short collision-free 

paths [33].  

1.3 Graph Environment Models 

 There are several environment models that are widely known for purposes of path planning 

problems, such as vector (obstacles are represented by polygons), grid (occupancy cells), and 

graph. Each one of these environments has specific features and drawbacks. A graph is 

considered a suitable model for motion planning problems and path planning purposes, as a 

basis, the graph model contains only possible paths, i.e., information about obstacles is 

excluded when the graph is established [11]. Masehian, E., & Sedighizadeh, D, (2007) 

mentioned that more than 50 percent of all recent robot planning algorithms are dependent on 

classical methods. However, the implementation of the classical methods is in constant 

reduction if it is compared with heuristic approaches [33][34]. Therefore, many approximation 

algorithms have been proposed to address the motion planning problem [30]. In fact, there are 

three kinds of (classical methods) graph approaches that contribute to solving this problem cell 

decomposition, potential field, and roadmap [21][30][33]. Roadmap approaches are one of the 

main techniques that allow groups of robots to find the shortest path in the workspace to 

perform their tasks. Specifically, the roadmap algorithms for two-dimensional (2D) path 

planning that drive robots to move along the path designed in the configuration to reach 

required goals. This approach uses information from static obstacles, and it contains simple, 

collision-free path segments that are combined [32]. The most common roadmap methods are 

Visibility graphs (VG) and Voronoi Diagrams (VD) [21][33][34][35]. These methods 

graphically analyse the map to produce a connectivity graph or network. A connectivity graph 

is a set of feasible paths from the current robot location, through sets of consecutive vertices, 

to the goal location [33]. On the other hand, path planning utilising roadmap-based approaches 

represent the environment by establishing maps or graphs from sets of vertices and edges;( in 

each method, the vertices and edges are determined to build a road map in different manner 

[21][35]). Voronoi diagrams produce vertices (waypoints) that are equidistant to two or more 

objects (or VD of a set of geometric objects is a division of space into cells, each of which 

contain points closer to one particular object) [33][34]. Also, the roadmap contains paths or 
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Voronoi edges that are equidistant from all the points surrounding obstacles, the points where 

the paths meet are called nodes (i.e., VD determines vertices that are equidistant from all the 

points in obstacles region) [21][35][36]. Voronoi diagrams were first used by Canny, J [37]. 

Takahashi, O., & Schilling, R. J, have employed VD in many robots’ path planning methods 

[38], whilst Lin, C.C., Chuang, W. J., & Liao, Y. D, have combined VD with heuristic methods 

[39]. Although VD generates long paths and are far from obstacles (this makes it relatively safe, 

due to increased distance among obstacles and the robot), however, the paths are not optimal 

(as it is long) and not efficient, thus this is the main disadvantage of this method [21][33][35]. 

Visibility graphs are considered to be one of the oldest roadmap methods that applied in a 2D 

environment, and they were used on robot Shakey [35]. VG considers obstacle vertices in the 

environment to be the vertices, through which the robots can arrive at their required locations 

(or it is the set of lines in the free space that links an advantage of object to another; these 

advantages are vertices of polygonal obstacles [11][33][34]). Visibility graph approaches 

proceed to link vertices that are visible to each other. These visible vertices have the property 

that a straight line connecting them does not intersect the interior of obstacles [33][35]. Asano, 

T., Asano, T., Guibas, L., Hershberger, J., & Imai, H, have firstly used VG in robot motion 

planning and, they ensured that the robot would find the shortest path to its target [40], 

Alexopoulos, C., & Griffin, P. M have introduced two algorithms for path search using a 

visibility graph established from a ‘tessellation of contours and removal concave highs’[24] 

[41]; the first one was a V*graph algorithm, which minimised the number of considered nodes, 

hence, minimising the computational complexity of the algorithm [42][33]. Also, the algorithm 

assumed that the obstacles were static. The second one was called E *Graph and, it assumed 

the obstacles could move along linear paths at a constant speed [24][41]. In contrast to Voronoi 

paths, one advantage of VG is the ability of finding a path with the shortest distance if one 

exists [21]. In addition, there are several algorithms that are employed for solving optimisation 

problems on the graph such as Dijkstra's algorithm: A*, and D*algorithm, etc [11]. These 

algorithms are employed to obtain the optimal paths, or to find the shortest collision-free paths 

[21]. In addition, it is often possible to transform vector and grid environment models to the 

identical graph representation, and the possible paths can be represented by a visibility graph. 

Hence, the algorithms can be applied, for instance, on visibility graphs [11]. Furthermore, the 

visibility graphs methods can help the robots in the system move to the desired goal location 

while avoiding collisions [21]. The advantages of using a visibility graph for motion planning 

are that it’s a well-understood and simple method that produces optimal paths in a two or three-
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dimensional workspace [11]. Also, it is computationally effective, and guarantees to obtain an 

optimal path if there is one [21][35]. For this reason, this thesis focuses on the visibility graphs 

method in a 2D environment. This chapter does not discuss exact Visibility Graph (VG) method 

in detail. More information about as Exact VG method could be found in Chapter three.  

1.4 Aim and Objectives 

1.4.1 Aim 
The overall aim of this project is to study and provide a solid mathematical background to the 

development of multi-robot systems based on graph theory and algebraic graph theory. In 

particular, this project aims to develop path planning algorithms for a multi-robot motion 

planning problem in a two-dimensional (2D) environment based on graph techniques and graph 

search algorithms. In addition, to demonstrate how path planning can be improved using graph 

theory to find a collision-free path through an environment with obstacles, from a specified 

starting position to the desired target destination with the achievement of certain optimisation 

criteria. 

1.4.2 Objectives 
• Establishing a theoretical framework for a multi-robot system based on graph theory. 

• Investigating the motion planning problem for a multi-robot system and discuss how 

to develop and find a solution to it based on graph techniques and graph search 

algorithms. 

• Investigating the path-planning problem or collision avoidance between robots and 

address it through exploiting tools from the graph theory, such as the properties of 

weighted graphs, edge-weight functions, and the matrices associated with graphs and 

their eigenvalues, especially the Laplacian matrix and its second smallest eigenvalue 

and their important roles to determine the measure of robustness connectivity. 

• Designing and execution of a roadmap-based multi-robot path planning algorithm in a 

2D static environment, consisting of polygonal obstacles, which assumes a-priori 

knowledge of robots' positions, their goals’ positions, and surrounding obstacles. The 

algorithm combines the visibility graph method with the algebraic connectivity 

(second smallest eigenvalue 𝜆ଶ) of graph Laplacian and the Dijkstra's algorithm for 

find the optimal path for robots’ motion whilst avoiding a collision.  

• Develop two path planning algorithms in two-dimensional (2D) workspace 

environments based on the visibility graph method, to improve its performance to 

generate paths safer and not too close to obstacles during movement to avoid collision. 
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1.5 Contributions of the Thesis to Existing Knowledge   

In order to extend the area of knowledge and emphasise the important role of advanced graph 

algorithms, and to address the path planning problem for a multi-robot system, several solutions 

are developed which form the contributions of this thesis.  

The first contribution is the development of an algorithm for multi-robot path planning in 2D 

space. The result of the proposed algorithm is an optimal, collision-free path. The proposed 

algorithm is based on the combination of the visibility graph method with the algebraic 

connectivity (second smallest eigenvalue  𝜆ଶ ) and the Dijkstra's algorithm. The algorithm 

implies sequential path planning for each of robots (path by path) based on the measure value 

of algebraic connectivity of graph Laplacian, which controls the inter-robot’s connectivity 

when it away from zero. In addition, predefined weight evaluation function (edge weights), 

when planning the path of each robot, considers all the paths already planned for path correction 

as well as avoiding collisions. The algorithm provides optimality of all planned paths because 

the paths depend on the order of planning, thus the choice of the right sequence for path 

planning of robots have significant impact on performance of the team. Additionally, these 

algorithms possess a standard of completeness and computational efficiency to path planning 

and are able to find optimal paths if the environment is known.  It is also emphasised that the 

visibility graph method and Dijkstra’s algorithm are chosen because they are guaranteed to 

produce an optimal path if one exists, where within the context of this thesis, an optimal path 

means the path that has the shortest distance from a start position to a goal position. 

The second contribution of the thesis is the development of a set of path planning algorithms 

that are based on the visibility graph (VG) method. The algorithms are computationally 

efficient because the number of obstacles that are used for path calculation is relatively small. 

This means the algorithms find paths by reducing the number of obstacles (as well as edges) 

which lowers the computation time contrary to the visibility graph approach. On the other hand, 

the algorithms hold the completeness criterion as it will generate a path if one exists, hence 

they solve the problem of the conventional VG method, and they hold the completeness 

criterion. The outcome of the developed path planning algorithms is optimal (shortest) and 

collision-free (safe) paths that direct robots safely away from obstacles. In addition, they reduce 

the computational complexity of roadmap approaches and are also able to produce general 

solutions for different environments. The algorithms plan safe paths for the robots in the C-

space; so that they can traverse through the vertices of obstacles in different scenarios of 

workspaces without the collisions, even with add new obstacles. It is also worth emphasising 
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that the algorithms possess the criteria of path planning and may be capable of finding a 

globally optimal path if the knowledge of the environment is fully and accurately known. Note, 

the optimal paths here mean the safe and shortest paths.  

Additionally, the software packages and the simulations to realise the path planning algorithms 

have been developed. The proposed control algorithm strategies are designed to be user-

friendly, equipped with step-by-step instructions using MATLAB in two 2D environments, 

where random or particular scenarios can be generated. Simulation results demonstrate the 

effectiveness of the proposed algorithm. 

1.6 Outline of the Thesis 

This thesis is structured as follows:  

The thesis focuses on studying and providing a solid mathematical background to further 

develop a self-organising multi-robot system, initiated in the Centre for Automation and 

Robotics Research, establishing a theoretical framework for such a system based on graph 

theory approaches. Each chapter focuses on a specific topic and starts with an introduction 

section that includes detailed information about the robotics based on the literature review.  

Chapter 2 is a review of the relevant literature on multi-robot systems and main characteristics 

of these systems in terms of coordination and formation control, centralisation and 

decentralisation, communications, and the motion planning problem. 

Chapter 3 presents a comprehensive literature survey of the importance of graphs to study of 

a multi-robot system, and how problems of this system can be solved using graphs properties. 

Specifically, it provides a broad survey of literature about the motion planning problem and 

the importance of path planning and discusses how to solve this problem based on graph 

algorithms. 

Chapter 4 introduces the multi-robot motion planning and application details of the concepts 

of graph theory to this system. Particularly, the problem of motion planning is discussed and 

graph-theoretical techniques to solve the problem are presented. More specifically, it 

investigates: (1) the multi-robot motion planning based on roadmap methods in a 2D 

environment; (2) the key role of algebraic connectivity (second smallest eigenvalue 𝝀𝟐 of the 

graph Laplacian) to maintain connectivity and avoid collisions; (3) the multi-robot path 

planning proposed algorithm based on visibility graph methods in conjunction with the 

algebraic connectivity and the Dijkstra's algorithm. The chapter also presents the pseudocode 
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of the developed algorithm and provides details on how and why the algorithm works to find a 

collision-free path.  

Chapter 5 deals with direct applications of path planning based on the proposed algorithm to 

find the optimal path for a team of multiple robots and to drive them to reach their 

predetermined targets in a known workspace environment. In addition, it gives examples of 

randomly different scenarios of different workspace environments for groups of multi-robots 

and discusses the proposed path planning algorithms in 2D environments based on the VG 

method. The chapter also demonstrates the application of these algorithms to path planning. 

Furthermore, the improvement of the proposed path planning algorithms is highlighted. 

Additionally, it discusses and compares the results of the study conducted.   

Chapter 6 explains the simulations and experiments software package that has been developed 

for path planning to validate the effectiveness of the proposed control algorithms strategies 

using MATLAB and discussed the results that have been obtained. 

Chapter 7 concludes with comments on the work and provides conclusions based on the 

proposed work in this thesis. Lastly, the chapter combines final comments about the results 

obtained and the possible guidelines for future work. 

Appendix A: summarises some of the main concepts and principles of graph theory, 

algebraic graph theory, and   provides a detailed description of Dijkstra’s algorithm. 

Appendix B: presents a program for calculating the shortest paths using Dijkstra’s algorithm 

for a team of multiple robots developed in MATLAB. 

Appendix C: presents a program that implements the path following algorithm for Differential 

Drive robots to follow the desired path using a robot simulator developed in MATLAB. 
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2 An Overview of Main Characteristics of Multi-Robot Systems  

2.1 Introduction to Multi-Robot Systems 

At the present time, the development of multi-robot systems (MRSs) is one of the most 

important research topics. It has raised the interests of many researchers and has seen 

tremendous progress of the related technology. An MRS can be described as a group of robots 

that are operating in the same working environment. Modern robotic systems might range from 

simple devices equipped with sensors, to ones that can obtain and process data, to complex 

mechanisms that are able to interact with the working environment using fairly sophisticated 

methods. It is also difficult to provide a definition of the level of autonomy needed for robots 

to be considered as ‘independent’ entities working in the environment, instead of simple 

machines that supply services to the operator [5][22][43]. This chapter focuses on the overview 

of the existing research on multi-robot systems. It starts with the description of main 

characteristics of these systems, their importance, and what potential problems may occur and 

how they can be solved.  

2.2 Multi-robot systems versus single robot systems 

A single-robot system (SRS) consists of an individual robot only, which is capable to act in 

the environment and to interact with it. In this system, the robot is often designed to handle a 

mission on its own account. Whilst an SRS provides relatively robust performance, some 

missions might be inherently very intricate or even impossible for a single robot to perform, 

for instance, spatially separated missions [6][13]. According to Dudek, G., Jenkin, M.R., Milios, 

E. & Wilkes, D, the inherent constraint is the spatial limitation of a single-robot system (for 

more information, see [13]). An MRS consists of more than one individual robot. Most of 

researchers agree that a multi-robot system provides advantages over a single robot system for 

many reasons. An MRS focuses on the execution of tasks in a more efficient way by increasing 

the number of small and simple robots in simultaneous operations [6][43]. It brings flexibility 

and robustness to the system by taking advantage of natural parallelism inside the system. In 

addition, a multi-robot system has a desirable capability for accomplishing spatially distributed 

tasks, which cannot be achieved by a single robot; examples of these tasks are underwater 

discoveries, big area surveillance, and goal detection [22][43][44]. In addition, an MRS can 

solve several problems including establishing mobile communication networks, distributed 

sensing, and robotic search and rescue applications. The main reason for the growing interest 

in multi-robot systems, is their ability to withstand system failures by creating redundant 

processes and expanding responsibilities (if one of the robots fails, the others step in). Thus, 
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the system provides a decreased failure rate. For instance, multiple robots can localise 

themselves quite effectively, if they exchange information about their positions whenever they 

sense each other, this may lead to the increase of the overall system durability [43][45][46]. In 

the real world, an MRS is beneficial not only when they are performing different acts, but also 

when the robots have the same abilities. In addition, from an engineering viewpoint, an MRS 

can improve the effectiveness of the automated system, either in terms of performance in 

achieving appointed missions, or in the robustness and reliability of the system (this can be 

raised via modularisation). Furthermore, even when an individual robot can accomplish the 

given mission, the potential of deploying a group of robots can improve the performance of the 

whole system [22]. On the other hand, the efficient control strategies represent big challenges 

for the development of those systems, since the robotic agents mostly have limited sensing 

abilities, mobility, and communication. The robots might have no communication abilities or 

might be able to communicate with each other only at a specific distance or having 

communication links that might follow a certain random pattern.  On top of that, the robots can 

just sense each other directly in their field-of-view [47]. Nevertheless, despite all these 

drawbacks, designs of MRSs proved to be very robust against the failure of robots or 

communications. Moreover, an MRS presents various attractive advantages in many ways, in 

particular, those that are linked to the ability of scaling up the systems. All these advantages 

have given researchers incentives to expand research activities in this direction recently 

[43][47][2][48][49][50]. Furthermore, there are other advantages that make MRS usage more 

widespread than SRS as follows [48]: 

 A multi-robot system can accomplish complex tasks that are not achievable at all or 

would be too difficult for a single robot. 

 An MRS has a better spatial distribution where the tasks are inherently distributed in 

time or space.  

 Setting up many resource-bounded robots is easier than using a powerful and complex 

single robot and allows tasks executions with lower costs. 

 Multiple robots can act together, where the cooperative action allows problems solving 

and performing tasks in shorter time due to parallelism. 

 Different robots may provide complementary capabilities at the same time. 

 Redundancy offered by the introduction of multiple robots can raise the overall 

robustness of the system [48]. 

 The possibility to work on repetitive tasks is another advantage of a multi-robot system. 
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All these advantages have contributed to the study of multi-robot systems in the last few 

decades [2][5][6][44][45][50][51][52][53][54]. Furthermore, there is increasing attention 

recently to the development of systems of multiple autonomous robots because they exhibit 

collective behaviour, with advantage over one single robot with multiple abilities which may 

waste resources. Whereas multiple different robots, each one has its own configuration, are 

more robust, flexible, and cost-effective. In addition, the tasks to accomplish may be too 

difficult for one individual robot, whilst they can be effectively done by multi-robots [55]. 

Moreover, multi-robot systems have been used in various real-life applications instead of single 

robots because of their efficiency and applicability. Also, the multi-robot system is defined as 

the team of robots organised in the shape of a multi-agent architecture so that they can act 

towards the same or different targets to execute a common mission [56][57]. In addition, over 

the last ten years, the multi-robot system has continued to attract attention due to expected 

special abilities such as robustness, communication, coordination, parallel operation, 

awareness, cooperative behaviour, and scalability. Thus, compared to a conventional SRS, 

MRSs can cover a wide range of fields during goal recognition, object transportation/relocation, 

or where a multi-robot solution is more efficient, more cost-effective, more reliable, and more 

robust than a single robot. All these characteristics are relevant to the efficiency of multi-robot 

systems [57][58][59]. 

 

Figure 2.1: Example of a Multi Robot System1 

2.3 Classification of Multi-Robot System  

In this part, we will describe many works related to MRS through collecting them according to 

their taxonomy. There are many kinds of MRSs, each capable of executing a wide range of 

missions. Since the vast variety of apparatus and configurations can be classified as multi -

 
1  The images of robots used are images of robots e-pucks ( https://e-puck.gctronic.com/) 
 that live in our robotics lab. 



31 
 

robots, it is essential to understand different factors that are important in MRSs, along with: 

how this system is classified, what its properties are, and also some shapes of classification to 

put these systems into perspective [56][60]. Many survey and research papers have been 

introduced that are related to MRS classification. In addition, several published research papers 

have organised and given a taxonomy of multi-robot [56]. Iocchi, L., Nardi, D., & Salerno, M., 

have presented a taxonomy for MRSs based on their cooperative abilities, where the 

classification allows for an accurate taxonomy of various typologies of multi -robot systems, 

with special attention to those design choices concerning cooperation inside the MRS [43]. 

Farinelli et al. in [22] also introduced a taxonomy to categorise approaches to coordination in 

MRS. The taxonomy introduced in [22] is characterized by two sets of dimensions: 

Coordination Dimensions and System Dimensions, as shown in Figure 2.2 [22].  

  

Figure 2.2: Example of MRS taxonomy from [22] 

Whilst Dudek et al. in [13] proposed a taxonomy that classify multi-agent systems based on 

communication, calculational capacity, and a little other parameter. They have proved that a 

cooperative effort may be more compelling when compared to a single entity of the collection, 

and they discussed the classification of multi-robot system focused on the calculation and 

communication aspects. Wang et al in [61] have categorised multi-robot coordination into four 

approaches, i.e., deliberative, hybrid, reactive, and behaviour- based. Cao et al in [62] have 

been suggested some dimensions for classifying the multi-robot system. Czarnecki, C. A.  in 

[60] has presented a classification of multi-robot systems, the details about the proposed 

classification in [60] are shown in Figure 2.3.  
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Figure 2.3: Multi-robot system classification from [60] 

In contrast, Verma et al. in (2021) have focused on categorising the coordination approaches 

for multi-robot system. Figure 2.4 shows the general classification that is suggested in [56]. 

 

Figure 2.4: Classification of MRS [56] 

The taxonomies that are proposed for classifying the MRSs have focused on the important 

aspects that influence the development of a MRS. The taxonomy in Figure 2.2, has considered 

the problem of coordination as a central problem in designing an effective MRS. In addition, a 

coordination considers as a cooperation where the actions executed by each robot consider the 

actions performed by the other robot. It is also defined the coordination as a set of rules that 

the robots must follow to interact with each other in the environment [22]. In Figure 2.3 the 
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taxonomy only given considered the independent fixed base multi-robot systems (IFMRS), see 

[60]. Whilst, in Figure 2.4 the taxonomy focusses on classification of the coordination 

approaches for MRS and considered the coordination an important and difficult element in 

designing effective MRSs, especially when dealing with difficult missions and large-scale 

systems. So, for MRSs to obtain widespread acceptance, the robots and their control systems 

must be adaptable and flexible in the environment of their working and to their missions it 

performs [56]. 

To provide a classification for MRSs, we need to know what different and important aspects 

that have effect on the development of this system.  We have identified three dimensions related 

to MRS with some similarities to other previous taxonomies. The taxonomy we are proposed 

for classifying MRS is characterized by three dimensions: composition, coordination, and 

communication. The first aim at characterising includes the composition that influence team 

development, while the second one concerns the kind of coordination that is achieved in the 

MRS, the last one is communication type that affects the performance of MRS through 

exchange the information between the robots, see Figure 2.5 and Sections 2.3, 2.4, 2.6 and 2.7 

for more details about the proposed classification. 

 

Figure 2.5: Classification of MRS 

2.4  Homogeneous multi-robot systems versus heterogeneous multi-robot systems  

Usually, the field of a multi-robot system includes mobile robots that can move and interact 

with each other to achieve a certain task and/or to reach a specific target with additional 

requirements to keep a particular formation [6]. It is often referred to as a team of robots; and 
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can either be arranged as heterogeneous or homogeneous, or by other mean, based on 

composition. MRSs can be categorised as heterogeneous and homogeneous robot systems 

[56][57]. Members in a heterogeneous multi-robot team/group differ in the hardware structure 

or in the control systems, or in both [43][56][63]. In addition, the abilities of the robots may 

vary, where the robots can be specialised for specific missions [6]. Moreover, in heterogeneous 

multi-robot teams, the specialisation is determined either via functional or structural 

differences, or both, between team members [56][63]. Also, each robot in a heterogeneous team 

performs a different function, thus it is important for the robots to coordinate their works to 

accomplish a collective mission [64]. A heterogeneous system may consist of diverse robots, 

for instance, different types of robots like aerial and land robots which can operate together to 

help coordinate the group and to determine probable goals to execute their tasks whilst 

maintaining a specific formation [6][22][43][63]. On the other hand, the team of homogeneous 

multi- robots contain the same configuration forms, capabilities, and properties [57]. A 

homogeneous team is often composed of small robotic units that share an identical control 

system and equivalent physical structures [63]. Every individual robot has its own controller 

that is an exact copy of those assigned to the other teammates. The specialisation in a 

homogeneous robot team emerges by a self-organising process or dynamic of mission /role 

allocation, where the team members autonomously allocate the roles between themselves [63]. 

Besides, in homogeneous multi-robot teams, the abilities of all robots are identical, because all 

the robots have the same hardware and software [6][43][63]. Moreover, if the robots of a 

deterministic homogeneous system are subject to the same inputs, they have the same 

behaviour through generating the same outputs. Moreover, they work differently just when 

they behave under different conditions in environment in which they operate, or if the system 

is non- deterministic [43]. Additionally, a homogeneous multi-robot team has many advantages 

such as that it can be easily amended; its composition is simple and less expensive, easy to 

process spreading, and easier to maintain the design process [6][22][43][63]. In general, the 

homogeneous or the heterogeneous of the members can influence the way in which robustness 

is achieved [43]. Heterogeneous multi-robot/team requires some shape of inter-robot 

communication, on the contrary, inter-robot communications for a homogeneous multi-robot 

team is not mandatory. But a main requirement for the homogeneous team with no inter-robot 

communication, to be strong (i.e., robust) is that the single robot of the team must be intelligent, 

i.e., be able to make choices and act accordingly.  Thus, a strong interior control structure inside 

each robot in the team is required for a single robot to be intelligent [64]. Heterogeneous multi-

robot systems are more complex than homogeneous multi-robot systems, therefore their 
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mission planning becomes very difficult. For example, the robustness of a heterogeneous robot 

group is fragile due to allocation, where if an individual in the group fails, it is difficult to 

replace its function and the whole group is likely to fail. Similarly, the group may fail, due to 

environmental changes and uncertainties. On the other hand, homogeneous robots’ groups do 

not suffer from these restrictions because their members’ ability to perform any role makes the 

group's performance less susceptible to individual robot failure and to changes in the operating 

conditions [6][22][43][63]. Figure 2.6 provides a classification of multi -robot system based on 

the homogeneous and heterogeneous robots [64]. As a result, our work takes into account only 

homogeneous robots due to their advantages over heterogeneous counterparts, and ease of 

handling.  

  

Figure 2.6: Classification of MRS based on homogeneous and heterogeneous robots [64] 

2.5 Coordination control of MRSs 

Despite improvements of the modern technology used in multi-robot systems, there remain 

several challenges to overcome. One of the most interesting challenges is the control and 

coordination of a team of mobile robots. Coordination is known as collaboration in which the 

actions of the team are accomplished by all robots together such that, each robot takes into 

consideration actions of other robots in the team and does it in a coherent and high-performance 

manner [6][43]. In addition, coordination, and cooperation in multi robot are known as: “joint 

operation or work amid a team of robots”, or the coordination is the mechanism employ for 

cooperation [56].  There is also a set of predefined instructions that the robots must follow to 

interact with each other in the environment. Coordination is a core task for a multi-robot system, 

where the system performance may be directly impacted by the quality of coordination and 

control [6][43]. An essential control problem for distributing and coordinating a team of mobile 
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robots in an uncertain or complex environment is how to ensure and maintain the connectivity 

of mobile robots under constraints of communication to accomplish their tasks, without 

collisions with each other. Furthermore, coordination can be either dynamic or static, and 

centralised or decentralised. Dynamic coordination happens during the performance of the task, 

and it is often based on the synthesis and analysis of the information. Where information can 

be acquired via the means of communication, it is defined as reactive or online coordination 

[43][56][65][66][67]. This type of coordination has difficulty handling intricate tasks, and it is 

also divided into two classes: implicit coordination and explicit coordination. Implicit 

coordination is known as techniques that use the dynamics of the interaction between the 

environment and the robots to accomplish the required collective performance that usually 

manifests in the form of emergent behaviour [6][25]. It is often connected with implicit 

communication when the robot considers the behaviour and models of others, whereas explicit 

coordination is defined as techniques that use accredited collaboration ways and 

communication, such as those employed in multi-agent systems, and that are usually used to 

deal with relatively more sophisticated robots. It is also often connected with explicit 

communication that is produced through the active behaviour of robots. Integrating implicit 

and explicit information can improve the coordination performance for the entire robot system 

[25].   

On the other hand, static coordination requires the adoption of an agreement before starting the 

task. For instance, traffic control that involves certain rules such as standing at the intersection 

and maintaining adequate distance between a robot and the corresponding robot and keeping 

it, for example, to the right. It is also defined as offline coordination or deliberative coordination. 

This type of coordination can deal with complex tasks, where the real-time control may be 

difficult to implement and substandard [65][67][68][69]. Additionally, control coordination in 

a multi-robot system has received tremendous attention lately; due to the many advantages 

which can be acquired when replacing a single robot system with a multi-robot system. In fact, 

many researchers have turned their attention towards nature to find ideas that may help to solve 

various coordination issues in a distributed manner. Challenging features remain concerning 

different aspects of coordinated control such as formation control, flocking, rendezvous, 

consensus, synchronisation, containment control, cooperative and simultaneous searching and 

reconnaissance, cooperative localisation, and mapping [5][45]. The challenges of a multi-robot 

system are to design suitable coordination strategies among robots that enable them to 

accomplish processes efficiently in terms of the working space and time [70]. Different control 

strategies have been proposed to accomplish the distribution of control coordination of a multi-
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robot system; these strategies include many methods such as the graph-based method, 

behaviour-based, leader-follower, and virtual structure, etc.  The graph-based method has 

become dominant over the other methods, since a multi-robot system can be modelled as a 

mathematical structure, known as a graph. Also, most aspects of coordination control can be 

studied via utilising the benefits of graph theory; the developments have lately been 

summarised for both graph theory and algebraic graph theory, both are playing core roles in 

order to provide a coherent profile of the distributed control coordination for a multi-robot 

system, especially in the formation control. For example, the Laplacian graph perspective that 

provides insight into different research issues of multi-robot systems, is of high importance 

[68][71][72][73] (see Chapter 3 and 4 for more detail on how graph theory concepts are 

employed in studies of multi-robot systems). Another concept of coordination control design 

that has the same importance, and is closely related to network connectivity, is formation 

rigidity. The rigid graph theory has played a key role in network localisation and analysis of 

the configuration performance [68]. 

 

Figure 2.7: Classification of Coordination in MRS [68] 

2.6 Formation Control 

Formation control of a multi-robot system is considered one of the core subjects in robotics, 

which has seen many research studies lately. It is also an important domain not just because of 

its theoretical importance, but also because it meets many practical requirements [48][74]. The 

concept of formation can be observed from natural life; it is not an invention or discovery of 

the human mind; it can be seen in flocks of migratory birds or flocks of animals or schools of 

fish. The idea behind formation control was directly inspired by observing these examples in 

nature, and then applying them to robots. Formations are designed to implement particular 
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tasks that may be hazardous to humans to perform [73][74][75]. Formation in a multi-robot 

system is defined as an overlapping physical structure, where the system is maintained in 

tightly pre-defined restrictions and provisions. In addition, it allows the capability to transfer 

big objects compared to a single robot and reduces the total effort and time needed to explore 

a large area and mapping [73][76]. On the other hand, formations of multiple robots are known 

as sets or teams of mobile robots, which have been structured and established to maintain some 

predefined geometric pattern, which is adapted to environmental constraints through 

controlling orientations and positions of every individual robot in the team, whilst allowing the 

team to move toward the specified target at the same time [43] [51][73].   

 

 

Figure 2.8: Example of formation control for multi robot system 

Moreover, many formation control strategies have been developed to perform certain tasks via 

various ways [75]. One of the formation control strategies is known as scaling which allows 

the volume of the formation to increase or to contract. Another strategy controls the formation 

to move and rotate, where the formation is considered as a rotational constant [77]. There are 

other strategies which just require each robot to ‘sense’ particular aspects of other robots. In 

addition, control strategies that allow communication are more flexible but are also mostly 

more complex to implement [22][47][76]. Technological progress has also led to studies and 

research to improving these strategies for formation control to allow a team of robots to move 

in the working environment whilst keeping the formation and capability to change the 

formation scale if necessary. These strategies that allow the formation scale to alternate if 

needed, have a great practical importance when the previous formation may not suffice. For 

instance, if we have a team of autonomous robots moving inside a certain factory to perform a 

specific task, the team may require maintaining a particular configuration form, but it may also 

need to change the shaping scale due to the presence of obstacles [74][76]. Formation control 
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is a very well-studied problem, and several different approaches can be found in the literature 

[78]. In addition, the formation problem is defined as the coordination of a team of robots to 

get into and to keep a formation with a specific form. Application fields of formation control 

include security patrols, search and rescue operations, remote terrain and space exploration, 

landmine removal, area coverage and reconnaissance in military missions, control of arrays of 

satellites and UAVs [79]. One of the advantages of formation control is that a group of mobile 

robots can be used in order to accomplish and perform various tasks in a single time-span or at 

the same time, which cannot be achieved or are impossible to be completed by a single robot 

[47][73][75]. These capabilities require solving some important issues to successfully 

accomplish formation control for a team of mobile robots: 

 How to change the pattern of formation automatically and adapt to an unknown 

environment. 

 How to create and prepare transformation of formation during robots’ transit. 

 How to control and maintain formation pattern during movement.  

 How to design any kind of formation shape and achieve it. 

 How to change the motion plan to avoid obstacles. 

 How to alter the form of the formation [51] [43][73].  

All the above issues can be solved with the use of graphs which will be discussed in detail later 

in Chapter three.  

2.7  Centralised/Decentralised Approaches 

In multiple robot system, the control of a multi robot team is a challenging issue. There are two 

strategies to this issue: Centralised and decentralised [80]. In addition, the main decision to be 

made when determining a team architecture of robots is whether the system is centralised or 

decentralised [6][61]. In centralised control strategy of multi robot system, the global 

information about the case of the entire system is maintained. The system collects information 

from all robots and saves track of their location in environment [80]. This strategy has an agent 

or leader that is in accountable of organising the act of the other robots; the leader is in charge 

for the decisional operation with the participation of the entire team, while other members work 

according to directions given by the leader [43][56][57]. All the decisions are made by the 

leader to define if a computation mission is to be executed by the leader or via a specific robot 

[57]. A leader has global information about the environment, and whole information about the 

robots. The leader can communicate with all the robots to share information [6]. In addition to 

that, this type of the control strategy can be applied to a fixed group, or it may be employed in 
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a hierarchical structure, where the robots can operate under the control of a leader, and they 

may act as leaders of subgroup of robots themselves in an MRS [43]. The leader then arranges 

a group of robots to reach a common target, plans missions for single group members and 

supervises the entire process. In a multi-robot system, it is possible to allow more than one 

member to acquire the role of a leader during the mission [80]. Although, the centralised 

strategy is relatively easy to design, it is not robust to communication failures and unexpected 

positions. The centralised strategy is appropriate when the number of robots is small, and the 

environment is known and constant. However, this strategy is ineffectual with large number of 

robots due to the high computation requirement of the leader, and the communication cost 

between the robots [6][43] [56] [80]. The centralised strategy has been applied in autonomous 

logistics, traffic control, and transportation systems in hospitals [56][80]. Moreover, this 

control strategy suffers from scalability problems and a drawback that it relies heavily on 

communication. Therefore, when a communication failure occurs, this may lead to the failure 

of the entire system [79][80]. On the other hand, a centralised strategy is an approach that 

depends on the leader which means that with the failure of the central unit, the system cannot 

accomplish their tasks [56][65][80]. A further classification can be introduced for centralised 

system based on the method that the leader role is played, which are strongly centralised or 

weakly centralised [43][56]. In strongly centralised systems, a constant leader is employed 

(which can be a robot or some remote server) which stays the same during the whole mission 

duration. It is possible that more than one member in the multi-robot system is allowed to 

obtain the role of leader, and they can plan the actions of other robots. However, in the case of 

strongly centralised systems, the role of a leader is assigned to a one robot at the beginning of 

the task. It remains the same until completion of the whole task [43][56]. Weakly centralised 

systems:  in this approach more than single robot is permitted to become leader during the task. 

A leader is not selected in advance, but the role of the leader is dynamically assigned during 

the execution of the task based on some criteria, depending on the environment changes, 

communication, or forced by the failure of the current robot leader. There can be many policies 

to choose a leader such as some pre-set priorities, calculation force, etc. [43][56]. In addition, 

if there are multiple leaders and all of them are finally controlled by a single robot, these 

approaches are also classified as centralised. If these leaders work independently, and are not 

controlled by one single leader, then it is called hierarchical. Also, in several states, multi-robot 

system does not follow fully centralised or decentralised approaches [56]. Generally, both weak 

and strong, permitted for a simpler mission assignment among the team member because just 

one of them, the leader, is in accountable of it. Strongly centralised systems have the drawback 
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that they strongly depended on communication. Hence, when a communication failure takes 

place, it results in the failure of the whole process of the system. In addition, it can fail in 

accomplishing its task, if the leader is broken or when its leader goes out of order, and it has 

an advantage that a well-suited robotic agent can be realised to be the leader, for example, by 

having the appropriate computing capabilities to analyse the environmental data used to take 

decision. Weakly centralised systems attempt to recover from a leader failure by choosing a 

new leader. Therefore, weakly centralised systems are more robust than strongly centralised 

because it can choose a new leader in state of leader failure [43[56].  

By contrast, decentralised control strategies consist of robotic agents that are completely 

independent in the process of adopting decisions, where each robot is an autonomous unit that 

operates according to its position in the team without a leader. Besides that, the decision-

making is done with the participation of all members [56][80]. In this approach, the 

computation mission is executed by any single or multiple robots in the group. There are no 

certain leaders throughout the mission and hence it permits all other robots to proceed with 

their account even if one robot fails [57]. Decentralized systems can better respond to changing 

or unknown environments, and often have more superior robustness, flexibility, adaptability, 

and reliability. However, the solutions they reach are usually sub-optimal [6][43]. In addition, 

the decentralised strategy is extremely robust, and it can perform very well in complex and 

hazardous environments. This strategy is scalable; potentially many heterogeneous robots can 

collaborate to reach a common goal [56][79][80]. Besides, the decentralised approach is 

currently a dominant paradigm, and the behaviour of this approach is usually described 

employing such terms as “self-organisation” and “emergence” [61]. Decentralised multi-robot 

architecture is typical in swarm robotics. Often, robotic swarm contain several simple robots 

that have primitive behaviour [80]. 

Furthermore, this strategy is designed as in either a distributed way or a hierarchical way. In 

the first category there has no central control agent and treats all agents equally in terms of the 

communication and control: all the robots are equal with respect to each other and are 

completely autonomous in the decision-making process. Therefore, if one of the agents stops 

working, the other agents can still complete their task [6][43][56][61]. Although, the distributed 

architectures produce good robustness to the failure by allowing each robot to take decisions 

dependently, but many intricacies come to achieve the coordination among robots [56]. 

In the hierarchical design, robots are formed as small local groups and leaders are distributed 

to perform their tasks [56][74][81]. In addition, there exist one or more local central control 

agents which organise robots into clusters. The hierarchical architecture is a hybrid architecture, 
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intermediate between a centralised architecture and a distributed architecture [6]. When the 

operation of coordination is locally centralised, it is called hierarchical. Also, the MRS has 

local leaders, but they are not eventually controlled by single leader. Such approaches are 

generally used in MRS with multiple missions where a team of robots work on different 

mission, or a mission is divided within the robots’ teams by negotiation, but, not by commands 

from the leader or the central system. This type of approaches is less robust than distributed, 

but it can be realised just with local communication or global communication with less 

complexity and cost [56]. Despite advances in the techniques for coordinating movements of 

multiple robots in the formation by the employment of decentralised control, decentralised 

approaches that are mostly studied are Leader Following, Behaviour-based, and Virtual 

Structure, where the approach of the Leader Following is the most studied in multi robot 

systems [73][82][83][84][85]. Tools from algebraic graph theory have been used for the study 

of the leader-follower system, where the followers are governed by the Laplacian based 

feedback law [49]. Figure 2.9 shows a leader-follower network with robot-followers indicated 

as 

 𝑉௙  =  {𝑅ଶ, 𝑅ଷ, 𝑅ସ, 𝑅ହ} and robot-leaders as  𝑉௟ = {𝑅ଵ, 𝑅଺}. A good review of these approaches 

can be found in [49][75][85]. 

 

 

Figure 2.9: Example of a leader-follower network  

Moreover, decentralized control strategies are the most popular approach for teams of MRS 

[44]. Recently, decentralised strategies have become more prevalent, where sensing hardware 

and communication have become easier to execute on groups of agents and less expensive [79]. 

In addition, these control strategies can accomplish a range of tasks including the location 

rendezvous [79]. What is more, when designing decentralised control strategies for multi-agent 

systems, it is important to have information about communication abilities of the agents and 

the sensing ranges. In addition, it is often very useful to model a multi robot system as a graph-
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theoretic framework where each robot corresponds to a node, and each information link 

corresponds to an edge [79]. In addition, one important feature is that the latest current research 

addresses the combination of graph theory with decentralised controls [86]. This graph-

theoretical approach is discussed in detail in Chapter 3. On the other hand, the decentralised 

system means that its every unit (robot) has the following attributes: 

• Limited sensing/communication (information gathering);  

• Limited computing power (information processing); 

• Limited available memory (information storage). 

These cases of work abilities, limited sensing, and communication that relates to the idea of 

decentralisation, distributed sensing (decentralised), and control, are also closely related to the 

concept of graphs. For example, the consensus protocol for a multi-robot system is one of the 

most important solutions for a team of a robot with the target to drive the entire system into a 

final common position. This problem has been resolved in a completely decentralised way. 

Good examples of decentralised formation control are shown in [6][49][59][67]. Next, in more 

detail, what the decentralised controller does exactly mean. For example, assumed that a team 

consists of five robots that represented as a graph for encoding the information flow among 

robots (communicated, sensed, and elaborated). The decentralisation is such that: on every edge, 

the volume of the information flow is constant (the number of robots). If we add the sixth robot, 

it does not increase the information, memory, or computing power that needed by robots (1, 2, 

3, and 4). Thus, the amount of information grows linearly with the number of neighbours (see 

Figure 2.9) [6][67][86]. In general: decentralised approaches are more robust to robot failures, 

malfunctions, or communication failure [56]. The research communities have shown their 

increasing attention towards employing decentralised approaches for multi-robot coordination. 

But the cost of communication is a challenge faced by many researchers when using 

decentralised coordination by explicit communication. However, the utilise of implicit 

communication is also possible to achieve a decentralised approach. Utilising implicit 

communication is more scalable. Therefore, in practice, a combination of implicit and explicit 

communication may be more beneficial and efficient. When coordination is achieved by 

utilised both decentralised and centralised approaches, the coordination can be called hybrid 

coordination [56]. In addition, it is exceedingly claimed in previous studies that the 

decentralised strategy has many inherent features over the centralised strategy, involving 

scalability, fault tolerance, reliability, and natural exploitation of parallelism. But we are not 
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aware of any published theory or empirical comparison that directly supports these claims [61]. 

For this reason, our work in this thesis focuses on centralised control strategies, as we deal with 

a small number of robots [56].  

 

 

Figure 2.2: Centralised and decentralised control 

http://www. https://www.softwareadvice.com/resources/it-org-structure-centralize-vs-

decentralize/  

2.8 Connectivity (Communication) 

Communication in a multi-robot system is considered an essential and important issue, and it 

has received major attention from researchers recently. The concept of communication for a 

multi-robot system has several meanings, where this concept is defined as the process of 

transferring information from one robot to another robot, based on the way robots’ sense or 

share information directly or indirectly. Robots can cooperate by communication mechanisms 

that enable them to share information among themselves. Communication also means any way 

that the robots can exchange or sense some information about each other [56]. In addition, there 

are several different methods to establish communication links between robots. The importance 
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of communication lies in the knowledge of two main parts. The first one is: how robots can 

communicate with each other, and the other one is: how robots can exchange information with 

each other to participate in performing various operations [13][87][88]. Communication can 

be explicit, for example, via Wi-Fi, or implicit, for instance by sensing each other by sensors, 

or via the environment, where the environment itself is a communication medium [6][56][89]. 

Explicit communication utilises additional communication hardware - a device intended for 

signals that other team members can understand. The robots interchange information directly 

utilising unicast and broadcasting intentional messages in explicit communication. Whilst, in 

implicit communication, robots gain information about other member robots via the 

environment. This communication uses staggery between team members and can be gained by 

using specific sensors in the robot [56]. In addition, the communication structure of a team 

defines the possible modes of inter-agent interaction. There are three characteristic key types 

of interactions that can be supported: interaction via Sensing, interaction via Communications, 

and interaction via Environment [6][61]. The simplest, most limited sort of interaction happens 

when the environment itself is the communication medium, and there is no explicit 

communication or interaction among agents. Some researchers have called this modality 

“cooperation without communication” [61]. Dudek et al. in [14] have suggested a more detailed 

taxonomy of communication structures. On the other hand, dynamic networks have lately 

appeared as an effective method of modelling different shapes of interaction within a group of 

mobile agents, like communication and sensing. Communication is a flexible and powerful 

way for exchange of the information among the members of the team to perform networks’ 

operations [89]. These networks consist of several mobile robots that are determined as 

continuous dynamical systems of continuous space with communication abilities [61][88][90]. 

These robotic networks are assigned to perform a variety of tasks, such as search and rescue 

missions. In addition, information exchange in these systems can be of two types: either the 

effective communication or passive sensing between agents. Communication among agents 

may be stronger and more flexible than passive sensing. Also, it requires robots to follow a 

common protocol to handle communications between agents, which might be a difficult 

requirement because it needs communication hardware that often is wireless [61][88][91]. 

Moreover, communication can help robots to collaborate through learning information that is 

observed or inferred from others to configure the system [78][83][92]. The design of control 

composition algorithms is a hard task for multi-robot systems, even when dealing with a single 

network. Wireless communication plays a vital role in distributing these algorithms.  
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2.9  Motion Planning Issues Overview 

Motion planning is a common problem in the development of autonomous robotics, which has 

been addressed in many types of research. It also has importance and great value not just in 

robotics but also in various fields such as maintenance planning, computer-aided design, and 

virtual environments. Motion planning comprises sensor-based planning, configuration spaces, 

decomposition and sampling methods, matrices computation and their properties, and 

advanced planning algorithms. The main function of motion planning is to produce a 

continuous path that links a start location (S) to a goal location (G) where the robot movement 

is free from collisions with surrounding obstacles [21][93]. In addition, it is an ability to build 

collision-free paths that connect robots to their target destinations. Moreover, motion planning 

is one of the important tasks in the intelligent control of autonomous mobile robots [94][95]. 

With a technical standpoint, the problem of motion planning is to properly define a path for a 

robot in a specific environment from a start position to a goal position while avoiding a collision. 

Or, in other words, the motion planning problem in its simplest form is how the robot moves 

from an initial configuration to the other configuration until it reaches a target configuration in 

the optimal path without collision. To describe the problem of motion planning in a correct and 

simple manner, this requires knowing and identifying two commands. The first one is what 

information is possessed by the robot to do its mission in a workspace environment, and the 

second is what capacities possessed by the robot to move inside the environment of the 

workspace without any collision with known or unknown obstacles to reach the goal 

[21][93][96][97][98]. Often the motion planning of the robot is separated into two categories: 

one category is trajectory planning which is aimed to schedule the motion of the robot along 

the planned track in a workspace, and the other category is the path planning that guides the 

robots to find the optimal path among two points in a workspace [99]. Furthermore, the motion 

planning is related to several expressions or terms such as Path planning, Trajectory planning, 

Navigation, Global path planning, and Local navigation [21].  

2.10 Multi-Robot Motion Planning 

In a multi-robot system, to find paths (shortest) for a team of robots that are operating together 

in a shared workspace that allows robots to move from their initial position to the goal positions 

whilst avoiding collision with obstacles and with each other, it must be taken into consideration 

that MRS forms itself a graph. This graph will be dynamically changing whilst robots progress 

to their goals, where the robots and obstacles are geometric entities, and the robots operate in 

the configuration space. Furthermore, each robot has its own start and target positions, and it 
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computes its own movement based on the information at its disposal to move along its path 

whilst avoiding mutual collisions [87][100]. The motion planning problem of a multi-robot 

system can also be classified into two categories: centralised and decentralised, where in the 

first category a multi-robot system is considered as a single robot system instead of several 

autonomous entities. Within this category, a single robot (a leader or master) or a central based 

station has all information of the whole system and control all robots, as mentioned above in 

section (2.7). Some algorithms based on randomised sampling have used this type of approach 

to improve system performance. The centralised motion planning often addresses coordination 

via setting the robot speeds along their respective paths, where the path of each robot is 

calculated independently, and it uses the sampling algorithms to coordinate previously built 

paths [6][87][100]. The introduction of algorithms based on sampling techniques such as the 

roadmap method had a major effect on the domain of motion planning because of their 

simplicity, efficiency, and applicability to a wide area of issues, such as the multi-robot systems 

case [95], which we will use in this thesis. Whereas a multi-robot system in the second category 

operates in a distributed and independent manner and more rapidly than in the first category 

[6][88][96].  In addition, the decentralised category is considered more common than the 

centralised one [6][87][100].  

In fact, in order for a multi-robot system to collaboratively achieve a certain mission in a 

common workspace, one of the key missions for each robot is to reach its single target without 

colliding with a static obstacle or another robot. In addition, in an environment of a multi-robot, 

path-planning or collision avoidance is an important problem.  The main important problem 

that faces robots when they move in the environment is that they must consider the presence 

of obstacles, and any dynamic objects such as a moving robot [100]. The collision avoidance 

problem has been widely investigated for a multi-robot system in the literature and many 

different approaches have been used, with typical solutions relying on the possibility of 

avoiding collisions with obstacles and between robots [78]. The developed algorithms for 

collision avoidance can help avoid the collision from any static obstacles and inter-robot 

collision avoidance. Besides, path planning and collision avoidance with polygonal obstacles 

in most of the known methods involve the use of graph search algorithms to find the shortest 

path from the possible paths [101]. Moreover, the collision avoidance among robots is gained 

through exploiting tools from the graph theory such as the properties of weighted graphs, edge-

weight functions, the Laplacian-based algorithm used for graph connectivity to represent the 

link between the robots [78] 
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3 Graph Theoretic approach to the study of multi-robot systems 

3.1 Introduction  

Graphs and algebraic graph theory are fundamental and strong tools to study and analyse 

stability of the formation control involving all above-mentioned aspects in Chapter two. Graphs 

are used to control a group of mobile robots in keeping a desired formation and altering 

formations and providing information exchange when needed while navigating in an 

environment with obstacles. They can help accomplish transformations between different 

formation patterns [55][71][75][102][103]. The use of graph theory has been highly 

advantageous to determine relations among the individual robots, because of its algorithms and 

definitions that have been developed to find minimal constraints and rigid structures [76]. 

Besides that, directed graphs have been used to describe the topologies and configuration 

patterns, where the description of graph topology has been used for stability analysis of the 

controllability of robot formations and for selection of suitable controllers for certain formation 

patterns [74][104]. The problem of formation control is handled by exploiting strategies that 

are based on graph theory. For example, delays in the communication channels may make the 

system unstable, for this reason, the formation control strategy is described on the basis of 

weighted-edge graphs, where the weighted edge has been used for both of formation control 

and collision avoidance [102]. The problem regarding formation modelling has been studied at 

the beginning of this century [74]. Moreover, some aspects of the formation control of a team 

of mobile robots can be improved by taking advantage of algebraic graph theory. For instance, 

weighted graphs properties can be used to obtain a formation shape and avoid collision among 

robots moving in the environment [22][105]. According to Desai et, al. in [103], directed 

acyclic graphs have been adopted to represent the control graph between mobile robots, and 

for the design of the control strategy. In addition, it can employ graph algorithms by adding a 

specific geometric pattern, to maintain formation generation and control the consensus problem. 

Furthermore, the tools of algebraic graph theory have been used successfully for formation 

control, which aims to drive the whole system (consisting of N robots) to a common final state, 

where locally distributed and scalable formation controllers can be designed using properties 

of the Laplacian matrix [22][74][105]. Moreover, graph theory in both classifications, 

geometric and topological, has a fundamental role in the design of control algorithms [89]. 

Additionally, the communication architecture among robots often relies on the approach of 

modelling systems as graphs, where every robot is represented as a node (vertex) of a graph 

and the communication links between robots are represented edges of the graph, which are 
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defined according to the predetermined communication model. Graphs have been used broadly 

to study sensors and robots’ networks.  They have also been utilised as models of wireless 

communication [84][90][106]. For instance, the connectivity of the communication graph is a 

property that enables coordination between robots; communication has an essential role in 

keeping formation or coordination among robots. That means, to perform a task that requires 

keeping formation successfully, the robots should ensure that the communication graph is 

connected, for the exchange of information between the robotic systems [55][74][103][106]. 

Also, there is a complex interplay among communication and mobility because the 

communication network is occasionally subject to change, each time a robot moves. Besides, 

robots need to coordinate their movement, and determine the right place to move to perform 

their tasks correctly which ensures information exchange. All these can be achieved via 

communication. Where the communication lets the robots share information to find which 

robots are nearby, and to assess their ability to transmit information to other robots [51][106]. 

Normally, understanding complex systems such as multi-robot systems require a bottom-up 

analysis, i.e., how these systems are connected, and their interactions are best characterised as 

networks whilst maintaining the desired formation and changing formations during navigating 

an environment with obstacles.  

3.2 Graphs approach for a multi-robot system 

Multi-robot system can be represented as a graph, where each robot can be considered as a 

vertex of the graph, and the communication structure between robots can be described as an 

edge of the graph [61][102], see figure 3.1. A graph (G) represents a linkage between a set of 

vertices, where vertices relate to each other, and these vertices can be connected if there are 

paths (edges) between them.  

 

Figure 3.1: Example of a multi robot system represented as a graph 
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All vertices that are near a vertex are defined as a set of its neighbours which relate to others 

by edges. Therefore, the link between any two robots is represented as an edge of a graph. In 

addition to that, this system can be adapted to various sorts of graphs for communication 

architecture such as directed graphs and undirected graphs. Many types of research are using 

undirected graphs in robotics systems because it is easy to deal with information exchange 

between the robot and their neighbours. There are two models of undirected graphs, weighted 

graphs that consist of weighted edges and unweighted graphs do not have weighted edges 

[5][102]. According to Coogan, S, many different graphs can be associated with multiple robots 

(agents)[47]. Example are sensing graphs where each sensor encodes to what the robots 

(agents) can measure, or sense, i.e., relative speeds and positions of other robots inside its 

sensing graph without active communication, as well as detection of obstacles and boundaries 

[47]. Also, the communication topology between robots can be modelled as a graph, commonly 

referred to as the communication graph, and communication links can be established as 

unidirectional (moving or operating in a single direction) or bidirectional (operating in two 

directions), (see Appendix 8 for more information) [102]. Hence, the problem of ensuring the 

exchange of information in mathematical terms means that the communication graph should 

be connected. Graph theory is used to encode the information flow among robots, also it is an 

important tool in the analysis of the stability and control of robot formations [47][102]. There 

is an example of the graph that is a random graph in which the communication links are 

modelled through random operations [47]. In addition, weighted-edges graphs are exploited to 

lead a team of mobile robots to establish the required shape while collisions avoiding [102]. 

3.3 Importance of graphs for multi-robot systems 

Graphs are strong tools for increasing the power of the communication links for information 

flow between robots for a workflow to perform their tasks. In addition, the matrices that are 

related to graphs have important and useful properties for development of multi-robot systems 

such as adjacency matrix, diagonal matrix, incidence matrix, and the last but not the least,  the 

Laplacian matrix2 which has an important role to solve problems of networked systems such 

as consensus protocol, flocking, formation control, and the rendezvous problem, in addition to 

the motion planning problem that is considered in this thesis(see Chapter four  for more details). 

These problems have been studied widely in the field of decentralised control and attracted 

considerable attention in many types of research. The rendezvous issue has been discussed in 

 
2   Graph properties are described in detail on Appendix 8.  
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[84][107][108][109], where they have been explained that the problem of formation control 

may be expressed as consensus issues, where the formation error is determined for every robot 

and the aim is to stabilise the formation (i.e., control the formation error for each robot to each 

zero) [107][108][109]. According to Rahmani, A., Jia, M., Mesbahi, M., & Egerstedt, M, the 

control method for multi-agent rendezvous is Laplacian-based (see the definition of the 

Laplacian matrix in Appendix 8). Their study was aimed to identify effects of graph-theoretic 

concepts on system theoretic properties of the robotics system. They have shown how the 

symmetry structure of the network directly relates to the controllability of the corresponding 

robotics system, for more information see example in [49].  On the other hand, Fax, A. and 

Murray, M mentioned that they had applied the tools of graph theory to associate the 

communication network topology with formation stability [59]. They proved a Nyquist 

standard by using the eigenvalues of the Laplacian matrix of the graph to define the impact of 

the graph on formation stability; they also proved a separation principle which stated that if the 

information flow was stable for the given graph, then the stability of formation had been 

achieved, and the information flow become rendered highly strong among robots. A good 

example of a consensus-based formation control strategy is given in [59] confirming that even 

in the presence of delays in the communication, the agreement is reached. Moreover, a multi-

agent system shows a stable behaviour, even in the presence of a varying communication 

topology [59]. The Adjacency and Laplacian matrices have been widely used in multi-robot 

system graphs (see [59][107][110][111]). Fax, J. A., & Murray, R. M, also pointed out that the 

eigenvalues of the Laplacian matrix could display the system’s stability with laws governing 

the closest neighbours (see [59][110]). Jadbabaie, A., Lin, J., & Morse, A. S, have exploited 

the properties of the Laplacian matrix to demonstrate the convergence of boids (bird-oid 

objects) speed [107][111][112]. Examples of consensus protocol problems are given in 

[102][103]. In addition, Falconi, R., Sabattini., Secchi, C., Fantuzzi, C., & Melchiorri, C, stated 

that the problem of the consensus protocol for multi-agents (robots) could be solved in a totally 

decentralised method with the Laplacian-based feedback way. They described a consensus-

based algorithm for the formation control of teams of robots through the definition of suitable 

edge weight functions, where they proved and achieved formation control and collision 

avoidance between robots by exploiting tools of graph theory, see examples in [78][113]. 

Zavlanos, M. M., & Pappas, G. J, pointed out that the controlling network problem of robots 

(agents) can be solved using an algebraic graph theory, where the condition of the connectivity 

has translated through the dynamics of a Laplacian matrix and its spectral characteristics 

[114[115]. In addition, in distributed networks, the effectiveness of collaboration like networks 
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and multi-agent systems is based on vertices’ capability to exchange information. The 

availability of different communication protocols with diverse technical characteristics opens 

the possibility to guarantee connectivity during a system’s operation in any condition [116]. 

Communication can be represented by a graph, in which connectivity can be expressed by a 

well-known algebraic connectivity value or Fiedler value, called the second smallest 

eigenvalue of the Laplacian matrix, which is indicated by 𝜆ଶ, and is a measure of connectivity 

of the communication graph [115[116]. It is one of the most substantial tools employed in 

several applications that require maintaining connectivity. This value is determined by the 

graph topology and the parameters of a graph, for instance, the number of vertices n, number 

of edges m, minimal degree 𝑑௠௜௡, etc [116]. Also, for many common graph topologies, such 

as cycle or cube graphs, and complete graphs, the algebraic connectivity is known and can be 

defined by the number of vertices n in the graph, such as, the algebraic connectivity for a cycle 

graph:   𝜆ଶ  =  2(1 −  𝑐𝑜𝑠 
ଶగ

௡
 ),   whilst for a complete graph 𝜆 ଶ =  𝑛  [116]. However, the 

graph topology can be changed by allowing processes on the graph, which may involve the 

addition or removal of vertices and edges. Thus, in an incomplete graph, the maximal value of 

the algebraic connectivity is upper bounded by the graph parameters (i.e., the upper-bound of 

for 𝜆 ଶ  an incomplete graph with n vertices is defined by 𝜆 ଶ ≤  𝑛 –  2, whereas the bound 

related to the minimal degree is indicated by the following inequality: 2𝑑 ௠௜௡ −  𝑛 +  2 ≤

 𝜆 ଶ ≤  
௡

௡ିଵ
𝑑௠௜௡  ) [116]. Furthermore, second smallest eigenvalue is usually used to catch 

connectivity of dynamic networks. For a weighted graph 𝐺 =  (𝑉, 𝐸, 𝑊) the entries of the 

Laplacian matrix (L) are often related to the weights in 𝑊 so that the i, j entry of L is indicated 

by [𝐿]௜௝ =  ∑ 𝑤௜௝
௡
௝ୀଵ 𝑖𝑓 𝑖 = 𝑗, 𝑎𝑛𝑑 [𝐿]௜௝ = −𝑤௜௝ 𝑖𝑓 𝑖 ≠ 𝑗  [90][115].  Fielder, in 1973, has 

recognised the importance of  𝜆 ଶ in connectivity properties of the graph and called it algebraic 

connectivity because of its connection to the vertex and edge connectivity: correspondingly the 

number of vertices or edges that require to be removed to disconnect a graph. Also, the 

properties of the graph Laplacian for connectivity and partitioning of graphs are important, 

specifically on the number of connected components, and measures of how easy it is to partition 

a graph into two disconnected subgraphs [115] [ 116]. Some of the key concepts in the algebraic 

graph theory which are used in this thesis are summarised in Chapter 4 and Appendix A. All 

these studies have demonstrated the importance of graph theory for the development of robotics 

systems.  
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3.4 Path planning problem 

The path planning problem is a case of motion planning problems, which is still an open 

problem to be studied widely. It is an important problem that covers a wide area of robotics 

research. Path planning plays a main role in enhancing robotic navigation systems in both 

dynamic and static environments. The static environment consists of only static obstacles in 

the domain of the workspace, whereas the dynamic environment contains both dynamic and 

static obstacles in the workspace domain [21][35][117][118].   

      

Figure 3.2: Example of a workspace in a static environment 

      

Figure 3.3: Example of a workspace in a dynamic environment 

In addition, path planning is still one of the challenging problems in the field of robotic 

applications [35][118]. Furthermore, path planning is essential for robots in a multi-robot 

system to find a safe route to be traversed from the starting point to the goal point, which does 

not result in collision with any obstacles based on the amount of the information available about 

the environment that may be partially or completely known or unknown, the approaches to path 

planning vary considerably [21] [35][117][118]. Path planning in multi-robot systems has been 

often tackled as an optimisation problem focused on finding the shortest collision-free path 

[119]. Additionally, the design of path planning is a key topic that has gained extensive 

attention in the field of mobile robotics. The main feature of a multi-robot system is the 

capability to plan its own motion to perform specific tasks. For instance, in the path planning 
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problem, a collision-free path is calculated for a robot to move from a start location to a goal 

location between static obstacles; here the task of robots is to avoid a collision and to reach the 

target destination. In addition, mobile robots can navigate by themselves with a perfect path 

planning system without human intervention to access their goal destination. The performance 

of path planning can be described via several algorithm properties such as optimality, speed, 

and completeness [117][118]. Moreover, path planning indicates to the computation of the path 

that an object must follow in navigation from a starting point to a given 

destination/configuration. This is considered a principal problem in robotics, since the moving 

object may be a robot itself, a part of it (e.g., its robotic arms) or an object being carried by one 

or more robots [120]. The key stages in path planning are choosing a suitable map 

representation for the application and decreasing the robot to a point-mass that allows planning 

in the configuration space.  

3.4.1 Path planning classification 
The problem of the path planning can be classified into two classes, depending on the range of 

knowledge of robots for all information around the surrounding environment. Class one is local 

path planning, and the second class is global path planning [117][118][121].  A local path 

planning requires the robot to move in both static and dynamic environments [122]. This path 

planning method is employed for solving the problem of robot path planning to avoid obstacles 

in a real-time environment via sensors measurements to obtain information for the location of 

the robot in the workspace, and the form and size of the obstacles in a partially known 

environment [123]. After that, this information is used to proceed with local path planning. The 

essential point here is that the first step is to sense obstacles in the environment and then define 

a collision-free path [124]. In the local path planning problem, algorithms used for the path 

planning work in response to the change of environment whilst a robot is moving with the 

objective of finding an optimal path. In contrast, a global path planning needs total knowledge 

of the environment and, so a collision-free optimal path is created within the environment to 

move robots from initial location to goal location before the robots start moving 

[35][118][121][125]. This means, all robots have prior information about their work 

environment such as location of the obstacles and targets. Many researchers have processed 

the problem of global path planning and have found some suitable solutions such as Rapidly 

expanding Random Tree (RRT) methods, and probabilistic roadmap (PRM) [117][118][121]. 

An early model of the global path planning is Piano's Mover problem which is studied widely 

[121]. Even though details of path planning algorithms are totally different, most of them 
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follow a common framework for finding of the shortest path between the start and the goal 

points [35][99][118]. Furthermore, an important consideration for algorithms of the path 

planning is completeness. The first stage determines a map for robots, which may have a 

complex geometric form, in the configuration space [35][99][117][118][126]. 

3.4.2 Path planning approaches 
In practice, different approaches have been introduced to execute path planning for robots. 

Such approaches rely on the environment, type of sensor and robot abilities. In addition, they 

gradually contributed for improve performance in terms of distance, cost, time, and complexity 

[121]. In general, the problem of path planning is to find a path joining some points for collision 

avoidance with obstacles in a workspace. The map of the workspace can be transformed into 

different types of search spaces, to reduce the search space size. A search space is established 

by roadmap methods, cell decomposition methods, or artificial potential field methods. The 

roadmap method transforms the workspace into a set of vertices and paths that enable a graph 

search [118]. Besides, most methods of path planning consist of two-stage operation to 

establish collision-free paths. Stage one is called the pre-treatment stage. In this stage the 

environment is represented that includes objects/obstacles. Then it defines free spaces which 

introduces workspace (W) in dimensional space with a graph that we call the environmental 

graph, where the vertices and edges are established in W with considering the configuration of 

robots (R) and obstacles (O). In addition, the concept of configuration space (C-space) is 

applied to represent O and R in W [21][35][117][118]. Typically, in the C- space, the size of 

robot is reduced to a point, while the size of obstacles is enlarged according to the robots 'size. 

These techniques are used to build a so-called roadmap from the environmental graph (see 

subsection 3.8 for more detail on a roadmap), and each technique uses a different way to 

determine vertices and edges. The second stage is the query stage. At this stage, the first 

position (S) and the goal position (G) are integrated into the roadmap if it is present, or into the 

environmental graph. The path is then calculated in the represented environment by using one 

of the graph search algorithms [21]. Moreover, the workspace W is defined as the world that 

consists of obstacles that occupy some space in the environment and of a free space, where a 

robot works in, or all points that a robot can reach (i.e., the space where robot can move in, 

which are in Euclidean space 2D or 3D) [21][72].  

3.5 Configuration space (C-space) 

To plan a robot's motions when there are several degrees of freedom, a construction called a 

configuration space is used. A configuration space (C-space) represents each possible 
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configuration as a single point and contains all the possible robot's configurations (or a C-space 

is the space containing all possible configurations of a robot and obstacles region in W). It is 

used to ensure that a robot does not collide with obstacles O in W [21][72][118]. Lozano-Perez 

[127] proposed that instead of dealing with a complex geometrical representation of a robot in 

the Euclidean representation of the workspace, the robot can be considered as a point in its 

configuration space [118]. Path planning led to the development concept of the C-space 

through polygonal obstacles. The concept of C- space is a key formalism for robot motion 

planning that allows determination of positions of robots and the obstacles. A robot 

configuration C is a specification of the physical state (the positions of all robot points) relative 

to a fixed coordinate system (fixed environment frame) [21][72]. Generally, the common 

concept behind most of the path planning methods to represent W is C-space [21]. In C-space 

the configuration of a robot is a set of parameters that especially determine the position of each 

point in the robot. The position of a robot is represented as a configuration illustrate the form 

of the robot, and the motion is described as a path in configuration space [21], whereas the 

robots and its environment (e.g., the geometry of the obstacles), are represented in a (2D or 

3D) dimensional workspace. This means that the configuration space is the area of all possible 

specification of obstacles and robots in W [21][128].  

3.5.1 Advantages of C- Space  
The advantage of using the C-space in path planning is to ensure that robots do not intersect 

with obstacles in W. It supplies a uniform framework for path planning, and it represents an 

essential formalism and substructure that allows evaluation and comparison of diverse 

algorithms [21][129]. In addition, one way the configuration of a single robot may be described 

is by a moving point which means the robot has zero size. Besides, if a robot moves in a two-

dimensional space, the configuration can be expressed using two parameters, or in other words, 

its position can be represented as two coordinates (x, y), which means that the configuration 

has two parameters. If the robot moves in a three-dimensional workspace the exact position 

can be represented as a configuration that has three parameters (x, y, and z) [48]. The planning 

problem increases exponentially with the number of dimensions in the configuration space. For 

this reason, the possible configurations are often reduced to simply the (x, y) coordinate space 

for global path planning. See Figure 3.4 for an example of workspace and configuration space 

[130].  
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Figure 3.4: Examples of workspace and configuration space   

http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-
planning.pdf  

3.6 Classifications of robot path planning methods 

The mission of the mobile robot path planning is to find a free-collision path by an environment 

with obstacles, from a given start position to a desirable target destination whilst satisfying 

certain optimisation criteria. Path planning method may be divided into various types depended 

on different situations and based on the environment where the robot is in [121][130]. One is 

an online type: path planning in a dynamic environment that has both dynamic and static 

obstacles in the map. Second is an offline type: path planning in static environment that just 

consists of the static obstacles in the map [118]. In addition, each type could be further 

classified into two sub-sets based on how much information the robot has about the surrounding 

environment, as follows: (1) path planning in a partially known or uncertain environment as 

the robot explores the environment using sensors to obtain the local information of the position, 

form, and size of obstacles, and then use the information to proceed local path planning; (2) 

path planning in a clearly known environment as the robot already knows the position of the 

obstacles prior it starts to move. The path for the robot may be the global optimised result 

because the whole environment is known [118]. In fact, this thesis focusses only on the offline 

kind, which means static and known environment. Because in the static and known 

environment, the robots know the whole information of the surrounding environment before 

they start travelling to execute their tasks. Consequently, the optimal paths can be calculated 

offline before the robots moves. In addition, the techniques of path planning in this 

environment are relatively mature such as roadmap method, which is used for static 

environment. Figure 3.5 illustrates the hierarchy of a classification model of Robot path 

planning [118] [121] 
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Figure 3.5: Classification model of robot path planning method [118][121]  

3.7 Techniques of path planning methods 

Although techniques of path planning for a mobile robot system have become more efficient, 

the sampling-based motion planning ways approaches become more successful because they 

depend on the idea of either resolution or probabilistic complete-ness [128][130]. Path planning 

methods for a clearly known static environment includes three classical techniques that can 

solve the problems of robot path planning in the C-space [118]. Most planning methods employ 

one of these three techniques to represent the configuration space (C-space), which are 

roadmaps, cell decomposition, and potential fields. Figure 3.6 shows the techniques 

representations of Path Planning Methods [21][118][128][130]. From these three methods, 

roadmap is one of popular approach to find a path for a robot, and it is widely used for path 

planning problems. In our work, we will consider roadmap method for solving the motion 

planning problem. 
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Figure 3.6: Path planning techniques representation of path planning methods 

3.8 Roadmap 

Roadmaps are graphs that represent how to move from one place to another [118]. This 

approach consists of constructing a graph whose vertices are collision-free configurations. In 

addition, the roadmap is an extension of the skeleton approach, and it is a collection of paths 

that allow for effective navigation in C-space [131]. The idea behind the roadmap approach is 

to find an optimal path in D-dimensional configuration space whilst maintaining the 

connectivity of robots in the free space. Based on the roadmap, a collision-free path from start 

to the target configurations is determined by graph search algorithms.  In addition, the roadmap 

approach provides solutions to a multitude of scientific problems like the motion planning 

problem. Also, roadmap methods are fast and most of them are easy to execute and have useful 

and valuable features [21[118]. Besides, it is the best approach as the convergence speed is 

known, and it does not have any problematic heuristics [21][132]. This approach is 

probabilistically complete which means that if there is solution it will be found with high 

probability in bounded time. Furthermore, the algorithms that utilise random sampling 

techniques are notably used to construct a roadmap for mobile robots. Due to the fact that these 

algorithms work well in practice, most of the studies in this area addressed the problem of 

motion planning for a single robot between static obstacles [129][132][133][134]. There are 

different types of roadmaps that are suggested to achieve this task, such as visibility graph, 

Voronoi diagram or retraction approach, and silhouettes [128]. Though these methods are 
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different, they have one thing in common: they try to convert the free space from the workspace 

to a graph representation (e.g., a roadmap) [21].  

3.8.1 Voronoi diagram 
A Voronoi diagram (VD) is one of the most important and popular methods for generating a 

roadmap from a C-space. This diagram is defined as the collection of points equidistant from 

two or more objects, see Figure 3.7 [135]. It can be built as the robot enters a new environment. 

It creates roadmaps that joint the start and target configurations by shaping paths containing 

line segments and parabolic arcs (for polygonal obstacles) that maximise the clearance among 

the obstacles and the robot. In addition, this diagram is a set of locations in the plane that is a 

collection of areas that divide up the plane, each area corresponds to one of the locations and 

all the points in one area are closer to the area representing the area than to any other location 

[35][118]. The Voronoi diagram partitions the space into regions, where each region contains 

one object. For each point in a region, the object within the region is the closest to that point 

than any other object. Also, VD paths are far away as possible from the obstacles, hence, there 

is no required growing obstacle boundaries. Therefore, if a robot follows the edge of the VD, 

it will not collide with obstacles. This feature makes VD safe, however the paths generated are 

inefficient and not optimal in terms of path length. This is why VD is not considered in our 

study [21][33][35][118]. 

  

Figure 3.7: An example of a Voronoi diagram 

3.8.2 Visibility graphs 

Visibility graph is one of the earliest roadmap methods, which applied to 2D spaces. It is 

utilised in robot motion planning when the geometry of environment is known [118]. In 

addition, visibility graph is a main concept in calculational geometry, for a given group of 

geometrical objects (e.g., segments, polygons, points, rectangles) they encode which objects 

are visible to each other [136]. In contrast to the Voronoi diagram, the visibility graph (VG) 

uses the nodes of the obstacles including the starting and goal points in the C-space as the 
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vertices [21]. Using this approach, Lozano-Perez and Wesley proposed standard complexity 

𝑂 (𝑛ଷ) to find a path in a C-space with N vertices [137], which was further reduced by Lee to 

𝑂 (𝑛ଶ 𝑙𝑜𝑔 𝑛) and by Guibas and Hershberger to 𝑂(𝑛ଶ) time in two dimensions, where n is the 

number of edges [138]. This technique is often used for motion planning in 2-dimensional 

configuration spaces in practice [21][121][138]. In computational geometry, a visibility graph 

is a basic concept that is used in various sorts of issues, algorithms, and structures [138]. The 

key concept of the visibility graph method is that if there is a free-collision path among two 

points, then there is a polygonal path that bends just at the obstacle’s nodes. Free-collision path 

(in curves) can be transformed into line segments (straight line) [130]. In addition, visibility is 

defined as the capacity to draw a straight line among two vertices without crossing any other 

edge in the input of graph G, where two visible vertices are said to be unobstructed by any 

obstacle, and a line is drawn between them in the output of graph called visibility graph (VG) 

[21][137]. It is one of the techniques for path planning representing a C-space of an 

environment with polyhedral obstacles. Moreover, a visibility graph is a very important 

structure which is applied mainly to 2D configuration spaces with polygonal obstacles 

[137][138]. There are 𝑂(𝑛ଶ)  edges in the visibility graph, and it can be established in 𝑂(𝑛ଶ) 

time and space in 2D, where n is the number of vertices [135]. The configuration space (2-

dimensional) of the VG is known as a network that is established from sets of vertices (V) and 

edges (E) and it includes a set of polygonal obstacles (O) [129][131]. This network or VG is 

an undirected graph where the edge is a linear segment that connects a pair of mutually visible 

vertices. Also, the edges of the VG network are edges of the obstacles. In addition, the VG has 

many applications to solve problems of multi-robot systems, such as the problems of robotic 

motion planning and finding the shortest path to move robots inside an environment while 

avoiding obstacles [127][131]. The problem of the shortest path for mobile robots can be 

formulated as to how to find an optimal continuous path through the environment with 

obstacles without collision or intersection of their interior, and the ‘task’ of visibility graph is 

not just to find the path but to find the minimum distance free path from an initial point S to 

the endpoint (target) E when the visibility graph is constructed [21][127][129]. There are many 

examples of using the method of visibility graphs in the problem of robotic motion planning. 

The famous example is given by Nilsson for the Shakey Robot project; Nilsson introduced the 

visibility line (VL), where the graph is established depending on a planar map called the grid 

model [139]. This method evolved via studies of the problem of the path planning for ground 

robots or UAVs. Also, Thompson used the VL to establish a roadmap and applied search 
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algorithm to point robot to find the optimal path [138]. Lozano-Perez and Wesley suggested a 

VL-based algorithm to solve the problem of finding the least path (minimum path) to a 

polyhedral object moving from a start position to a target position between known polygonal 

obstacles considering the dimension of the object [127]. Moreover, Tokuta used the VL method 

as well, he introduced the VGRAPH method in a two-dimensional workspace. This method 

included a start position and a goal position for a robot in the roadmap and used a search 

algorithm to define the containment of the point, which included visibility of the point from 

the node. Where a point is joined by defining its visibility from all obstacle nodes [140]. Rosli 

bin Omar worked on the development of path planning for unmanned aerial vehicles (UAVs) 

using a visibility line-based method, and he applied this method on a single robot (a single 

UAV) [21][134]. See Figure 3.8 for an example of a visibility graph. In our work, we selected 

the visibility graph (VG) approach to the representation of the C-space of a multi-robot system 

as it is particularly beneficial for polygonal environments, and it is reducing the problem of 

motion planning to a graph search. In addition, it is a well-understood and simple method that 

produces optimal paths in a two-dimensional workspace [11][21][99][137]. Visibility graph 

method considers obstacle vertices, in the map, to be the vertices through which the robot can 

reach its desired position. These visible vertices have the property that a straight line connecting 

them does not intersect the interior of obstacles [33][35]. Additionally, this method guarantees 

that the robot will find the shortest path to its goal [40]. Visibility graph have been used to 

reduce the number of considered vertices, thus reducing the computational complexity of the 

algorithm [33][41]. Also, it is computationally effective, and guarantees to obtain an optimal 

path if there is one, optimal path means; the safe and shortest path [21][35].  

 

Figure 3.8: Example of Roadmap visibility graph for single robot  

3.9 Graph Search Algorithms 

Once a method of representing the environment has been created, the second step is to search 

for the best path for this representation using graph search algorithms [118]. These algorithms 
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come from a wide range of applications, and they have also received wide attention, due to 

their importance in path planning [21][118][120].  

In robot planning positions, the cost function (usually depended on cost considerations and 

time) that is typically used is the length of a path. Thus, algorithms for extracting this shortest 

path are desired to allow efficient robot navigation. Several graph search algorithms need to 

investigate each vertex in the graph to define the optimum path [118]. In addition, they search 

paths in a systematic way to ensure that the solution exists and uses the lowest number of 

iterations when calculating the perfect possible path and it considers each vertex (V) in the 

graph (G) [21][118][132]. This may occupy much time to establish a path, especially for a large 

environment that consists of many vertices. Therefore, there are several search algorithms to 

address this problem, for example, Breadth First Search (BFS), Depth First Search (DFS), 

Dijkstra's algorithm and A* algorithm [21][35][118]. These algorithms plan the entire path 

before starting physical movement in any place [141][142]. BFS expands the vertices based on 

a heuristic approximation of the cost to the target [141][142], and it is a restriction of generic 

search in that it explores all neighbours of a selected node prior it goes deeper in the graph. It 

utilises a queue as its data structure to gain the restriction. But it does not define in which order 

to push select the neighbours of a chosen node [21][35][118]. DFS is exploring the graph 

differently than BFS. In DFS the deepest vertex is expanded first [21][118]. It moves forward 

by the graph, backtracking just when requisite whilst BFS explores close nodes prior going 

deeper to the far more nodes [118]. It utilises stack as its data structure to gain this restriction 

[35][118]. DFS progresses towards the target as fast as possible, looking for a route until it 

found a dead end [21]. Among the popular known and most used algorithms for path planning 

problem are Dijkstra’s and A* algorithms, and many variants and expansions have been 

proposed for these algorithms (e.g., D*, or the jump point search) [119]. These algorithms 

depend on the environment where the map represents a graph and then finds a path in that graph 

and these algorithms just consider a subset of vertices. During a series of technological 

development, research-based planning has benefited significantly from these algorithms to 

create an advanced path, where Dijkstra's algorithm was the first algorithm that uses the best 

approach to find optimal shortest path [21][121].  

3.9.1 Dijkstra's algorithm 

Dijkstra’s algorithm is considered a simple and excellent one for solving path planning 

problems. In 1959, the Dutch computer scientist Edsger Dijkstra introduced Dijkstra’s 

Algorithm, which he used to find the shortest path based on the cost (weight) assigned to 
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vertices to move from the first point to all points in the graph. All costs at the vertices are 

positive and are gradually calculated during the implementation of the algorithm. Also, this 

algorithm is considered complete, i.e., if there is a solution, it will find it [21][121][143]. 

Dijkstra's algorithm works by visiting vertices in the graph. It begins from the first point (node) 

where the path must start, while all direct neighbours of this node are marked to calculate 

distances to reach from the start point to the neighbouring vertices. After that, it moves from 

the first node to all its neighbouring vertices to check the costs (distances) and mark them to 

choose the least cost. Once all neighbours of the node have been checked once, the algorithm 

proceeds to the next node with the least cost, where it is repeatedly testing the closest vertex 

that is not tested and chooses one with the least cost until it reaches the target. Furthermore, 

there exist a variety of applications and special states where the Dijkstra's algorithm can be 

employed. As well as the computation of distances and direction, it also can be used for other 

concepts. For example, in the cases where the Euclidian distance is not the required cost, but, 

for instance, time is the cost [121] [143].  A commonly utilised algorithm for finding the 

shortest path is based on Dijkstra's algorithm and employs a full visibility graph [103]. In 

addition, the important condition when obstacles are static is that the path is established by a 

sequence of line segments linking a subset of points of edges visible, among them obstacles. 

Many algorithms depending on this condition have been developed; the best known is named 

Algorithm V Graph using a visibility graph built from the image taken on the environment, and 

the shortest path is defined by the method of Dijkstra's algorithm [24].  

There are several different application areas for Dijkstra’s algorithm; the following examples 

explain some applications of this algorithm according to [127]. 

 Routing Systems: In graphs, the Dijkstra’s Algorithm is used to find the least path 

(shortest distance) from one vertex to another vertex. According to this result, the 

shortest path algorithm is used extensively in network routing protocols 

[144][145][146]. 

 Dijkstra’s algorithm is applied to find directions automatically between actual sites like 

driving directions on websites and mapping as MapQuest or Google Maps. Often, the 

algorithm is used to create all the roads by calculating the distance and collecting data 

to get the least or shortest distance. For instance, if cities are represented as vertices in 

the graph and the driving distances among pairs of cities connected by direct roads that 

are represented as edge path costs, thus Dijkstra's algorithm can be used for measuring 

the shortest road between one city and all other cities [145], see Figure 3.9.  
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Figure 3.9: Google maps 

 https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Muthuraman-Spring-2014-

CSE633.pdf.pdf   

 In applications of communication networks, Dijkstra’s algorithm is used to solve the 

minimum delay path problem, which is the problem of the shortest path. For instance, 

in data network directing the target is to find the path of data packets that pass through 

a switching network with a least delay [146]. 

 Traffic information systems: to calculate the most efficient road, the systems use the 

graph theory and Dijkstra’s Algorithm. 

 Flight Schedule: A travel agent needs software to prepare the flight schedule for 

customers. Also, the agent has the right to access the database of all airports and flights 

such as the flight number, source (origin) airport, and destination. In addition, the flights 

have leaving and arrival time. Therefore, the agent needs to determine the earliest 

arrival time for the destination given a source airport and start time exactly 

[144][145][146]. 

 Determination of a file server: To determine a file server in a local area network, the 

time transferring files from one computer to another computer is considered. Therefore, 

Dijkstra's algorithm is used to reduce the number of hops from the file server to each 

other computer on this network [146]. 

 Robot Path Planning: Dijkstra's algorithm is used to solve different problems related to 

the determination of shortest paths e.g., in factories, transport, and facilities layouts 

[99][146]. 

3.9.2 A* algorithm 

The A* algorithm is one of a family of graph search algorithms which is a variation of Dijkstra's 

algorithm in which the value of the heuristic, h(n), is zero. This algorithm is the most popular 

choice for finding a path, due to the fact that it can be used in a wide range of contexts, and it 
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is totally flexible. The algorithm uses the actual distance from the start point as well as the 

estimated distance to the target point; also, it could be used to find the shortest path like 

Dijkstra's algorithm [21[99][118]. As a result, the total cost function at the current node n can 

be expressed as follows:      

f(n) = h(n) + g(n) 

where f(n) is the goodness of the node, h(n) is the heuristic value of the node (nearness to the 

goal and it is computed using information available in the roadmap), whilst g(n) is the cost 

from the start position to the node. The algorithm will evaluate the node in the graph for which 

the resultant f(n) is the best. The heuristic value is a calculation of what the straight-line 

distance from the current vertex to the target will be if there are no obstacles in between them 

[21][35][118]. However, there is no manner to estimate the true heuristic value in advance. In 

addition, the heuristic function minimises the total number of states/vertices required to be 

explored by A*. As both forward and backward costs are employed, it thus combines the Best-

first search and Dijkstra’s algorithm. If the backward (g(n)) cost is dominant, then A* face is 

equivalent to be Dijkstra's algorithm and the result is the shortest path from the source vertex 

to the target, but the search process occupy longer. This situation is called acceptable heuristic 

which means the estimated distance h(n) among vertex n and the source vertex does not 

underestimate the true distance from the vertex to the target. In the extreme case, A* becomes 

Dijkstra’s algorithm if the heuristic value h(n) is zero. Moreover, if the forward cost or heuristic 

weighting is dominant, A* is similar to the Best-first search, and it is not guaranteed to produce 

a shortest path, even though the path is produced faster. A* becomes -first search if the 

backward cost is zero. Like Dijkstra’s algorithm, A* has a priority queue that stores the list of 

nodes, it is complete if a solution exists, provided that the time and memory are unlimited. It 

will find the target point if it can be possibly found in the map or graph. In an optimal sense, 

A* is guaranteed to produce a path with the least cost from a starting point to a target point if 

the heuristic value is admissible, which means smaller than the actual value [21][35]. 
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Figure 3.10: A* Search algorithm [35][118] 

A* some properties, e.g., it will always find a solution, given one does exist, and it will be 

complete if h(n) is not less than the estimate of how close the vertex is to the target. In addition, 

it is optimal in that it will provide a quicker search of any other shortest path algorithm which 

utilises the same heuristic if a closed set is not utilised. Therefore, the algorithm is commonly 

used in mobile robotics [35][118] [122].  

3.10 Path planning comparative analysis: A* algorithm or Dijkstra's algorithm 

Typically, when we traverse from one situation to another, we look for the shortest path 

between two situations to reach the goal task in a timely manner. In fact, when we need to find 

the shortest path among two vertices, we represent it in a graph that models something like 

time or distance between situations, and then we introduce path-finding algorithms, namely, 

Dijkstra’s algorithm and A*Search. These algorithms are efficient; their applications are 

widespread, and they are universally applicable [118]. Hence, this makes them of considerable 

importance. Dijkstra's algorithm is especially the same as A* algorithm, except there is no 

heuristic (h(n)= 0 always), thus, it searches by extending out equally in every trend, whilst A* 

scans the region just in the trend of destination. Dijkstra’s is simple compared to A*, and it is 

efficient enough to use for relatively considerable problems because it has an order of 𝑛2, 

where n is the number of vertexes. The key drawback of the algorithm is the fact that it 

consumes much time, (i.e., ends up exploring a much larger region prior the goal is found), so, 

this makes it slower than A*.  A* uses Best First Search, whilst Dijkstra’s uses Greedy Best 

First Search, hence this makes A* algorithm faster if compared with Dijkstra’s algorithm [148]. 

It can be observed that the difference between Dijkstra’s algorithm and A* algorithm is that 

we add the heuristic to the cost that is used to order vertices in the priority queue. A heuristic 

is an intuitive concept to problem solving. It is an instinct about what makes sense 

mathematically and can be applied when traditional methods to solve the problem fail, it may 

solve a problem faster. A heuristic may be some key information about how close a vertex is 

to our desirable destination. Indeed, the shortest distance among any two points is a straight 

line. The straight-line distance from a vertex to the goal gives us a good estimation about how 

much farther that we may have to cross on a graph, which encodes distances as edge weights. 

Adding our estimate for the distance that we have left to the distance that we crossed from the 

source gives us a better approximation for how costly a shortest path going through that vertex 

may be. Thus, if we need to ensure that the path is the shortest, our estimated cost must 

underestimate the true cost. In addition, if a heuristic always underestimates the true cost, it is 
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called an admissible heuristic. Although admissible heuristics ensures that A* algorithm will 

provide a shortest path (or by other means, leaving this algorithm unmodified, will always 

provide the shortest path), however, it expands far too many vertices. Besides, increasing the 

distance multiplier can dramatically minimise vertex extension, but finds expensive paths, 

whilst decreasing it to zero will run Dijkstra’s algorithm, for more information see [149]. 

In general, both algorithms have the importance of their own, for example, Dijkstra’s is often 

utilised when we do not know where our goal destination is, whereas A* is utilised when we 

know the source and destination. We will assume that we have a resource-gathering unit that 

requires to go to obtain some resources of some type. It might know where many resource areas 

are, but it desires to go to the nearest one. In this case, Dijkstra's algorithm is better than A* 

because we do not know which one is the nearest [148].     

3.11 Shortest path analysis 

Basically, the shortest path problem in the graph theory is known as the problem of finding a 

path among two vertices in a graph G. This means that the total of the weights of its constituent 

edges is reduced. To understand the shortest path problem, we give practical examples of 

driving directions: if someone wants to go to a specific place in the city, they will determine 

the best route between two junctions on the route map, streets junctions, and highways. Here, 

the geographically defined aim is to obtain the fastest route to reach the target destination. This 

is similar to the problem of finding the shortest path between two vertices when referring to 

the graph: where the route network can be considered as a graph with positive weights with 

different terminologies like the best versus shortest, the weights in the graph may represent 

distance, estimated time, or some other cost [21][141]. Also, the vertices may represent route 

intersections and each edge of the graph is associated with a part of the route among two 

intersections. Additionally, this approach is applied in networking systems that using routing 

protocols: The Internet can be represented as a graph where vertices are represented as 

computers or network vertices, and edges represented as a direct connection (link) [141][142]. 

A particular path between two vertices of computer networks might be unavailable because 

one computer in the path might be overloaded with excessive movement or might be paused. 

For this reason, we consider the shortest path as the first choice, and not as the only choice. In 

addition, these graphs are particular in the sense that some edges are more significant than 

others, for example, for a long-distance travel such as motorway [21][144][145]. The difficulty 

of the shortest path is to find a road with the lowest travel cost from one destination to many 

destinations through the network. Furthermore, the analysis of the shortest path is important 
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due to its wide applications in the field of transport. According to Alija, A. S [141], the shortest 

path helps computing an optimal path, and optimal directing is the process of determining the 

best path to move from one place to another. This path may be faster or shorter based on how 

it is defined. Due to the nature of applications, there is a requirement for techniques to 

determine the shortest path, whether from a point of view of processing time or in terms of the 

needs of the memory. For example, if someone is new and does not know the place, they may 

face many obstacles and perhaps waste much more time in determining the endpoint. For this 

reason, it is very important to detect the route to the end destination in a road network so as not 

to face the complexity of calculating the shortest paths, or difficulty of finding an endpoint in 

the real route network. There are some solutions that have been established to overcome these 

obstacles, such as to provide a map for the area and then, after entering the starting point and 

the final location, it is probable to obtain the shortest path [141][142]. Besides, to solve the 

problem of the shortest path, there are many algorithms that can be used, which range from 

simple to complex such as Dijkstra’s algorithm, A* algorithm etc. [21][141][142]. The simple 

approach is to walk towards the target until encountering any type of obstructions, the direction 

then will be changed [141][142].  

In fact, in problems of motion planning, the edge weight may be a distance between locations, 

a cost connected with the travel, or a time needed to travel. While in electrical networks, the 

edge weight is likely to be impedance or resistance of the edge, and the path weight is the total 

of the weights of each edge in the path. On the other hand, in a weighted graph the lowest 

weight path between two vertices is called the shortest path if this path has a minimum weight 

among two vertices. Additionally, the graph is weighted if a non-negative (positive) number, 

called the weight, is linked to each edge [72][132], by considering the problem of how to 

calculate the shortest paths from one vertex to all other vertices in the weighted graph.  

3.11.1 An example of finding shortest path: 
According to Flitter, H. & Grossmann,T [142], there is someone who wants to travel from 

Bucheggplatz to Stauffacher in Zurich city via the tram in a short time. They applied the 

Dijkstra's algorithm to find the shortest distance road from Bucheggplatz to Stauffacher, see 

Figure 3.11.  
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Figure 3.11: Example of a public transport network in Zurich city [142]. 

There are many possible paths inside the network from Bucheggplatz to Stauffacher as shown 

in Figure 3.12, but whichever is the shortest path that person must start from the source 

(Bucheggplatz) to reach the target (Stauffacher). Dijkstra’s algorithm defines that the shortest 

path among two areas on a given network which is the public transport network of a city (From 

Bucheggplatz over Helvetiaplatz to Stauffacher [BP→HE→ST] (see Fig 3.12) [142]. 

 

Figure 3.12:Example of public transport network in Zurich city [142]. 

To show how this algorithm works step by step, we illustrated in Figure 3.13 how a path can 

be found from the source Bucheggplatz (BP) to the target Stauffacher (ST). We represent the 

transport network as a directed graph, where each link (edge) refers to a direct connection 

between two places, and each link carries a weight that it refers to the travel time in minutes, 

as shown in Figure 3.13. 
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Figure 3.13: Example of a public transport network represented as a graph 

Here with О Vertex visited (tested) is marked, with О Vertex in progress, → (yellow arrow) 

indicates Edge in progress, and with → (green arrow) the shortest path is indicated.  

 Dijkstra’s algorithm starts from the source vertex (BP); hence the vertex is placed in the 

priority queue. The adjacent vertices to source vertex (BP) are vertices BQ, SP, HP, HE and 

CE which are shown in the graph above. It can see that vertex (SP) contains the lowest cost 

which is (2) as shown in Fig 3.13.  Then vertex (SP) is kept in a Priority queue. The neighbours 

of vertex (SP) are vertices (BQ), (CE) and (ST) (see Fig 3.13). From these three vertices, vertex 

(BQ) has the lowest cost from vertex (BP) which is labelled as (8), so (BQ) is stored in a priority 

queue. After that, vertex (BQ) is extended to its adjacent vertices, which in this case only 

namely, vertex (ST). But in this stage, there are three vertices that are unvisited yet, which are 

(HP), (HE) and (ST) [141]. Between the three remaining vertices, vertex (HP) has the lowest 

cost which is (8) from the source vertex (BP). Hence vertex (HP) is put in a priority queue. The 

neighbours of vertex (HP) are vertices (HE) and (ST), where vertex (HE) has the lowest cost 

from vertex (BP) which is (11). Thus, vertex (HE) is stored in P a priority queue and then 

Vertex (HE) is extended to its adjacent vertex which is vertex (ST). Vertex (ST) is the last one 

that is examined and put in a priority queue with the vertices (HE) and (BP).  As (ST) is the 

target vertex, then vertices (HE) and (BP) are backtracked [127]. The shortest path found with 

the lowest cost by vertex (HE) which is (12), (see Figure 3.13). Note that this path can be called 

‘the path of waypoints’ [25]. The shortest path in this graph is [BP+HE+ST] = [11+1] =12 (see 

Fig 3.13).  
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Figure 3.14: Example of shortest path in graph from (BP) to (ST) 
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4 Multi-robot motion planning-Based on Roadmap methods  

4.1 Motion planning problem 

In this chapter, we start our investigation into the problems of motion planning of a multi-robot 

system with a specific focus on how utilisation of graph theory and algebraic graph theory 

concepts can contribute to their solutions. As was mentioned in Chapter 3, this problem is 

considered one of the multi-robot problems which graph theoretic approaches have played a 

significant role in developing and solving [95][96]. Multi-robot motion planning is the problem 

of computing feasible paths for a team of robots between a start location and a target location 

in an environment. It is a major technique that enables robots to move in an environment [131] 

[150]; it also includes determining what motions are appropriate for the robot so that it reaches 

a target state without collisions into obstacles [151]. Therefore, the motivation behind our 

interest to study the motion planning problem is to design mobile robots that can implement 

specific and detailed instructions. One of those instructions is to move a robot from one point 

(v) to another point (u) inside the workspace environment (W), or in other words, determine 

the robot path [150]. The motion planning problem for a multi-robot system is the path planning 

problem that can be formulated as the problem of finding a collision-free path for the robot 

movements from a start position to a goal position in a given environment according to some 

criteria (e.g., distance and time), in such a way that the straight-line path between two 

consecutive positions do not intersect with the interior of the obstacles [95][96]. Path planning 

problem is one of the critical problems in robotics, which has been under extensive study until 

nowadays. To achieve that, two skills are needed: the first one being the ability to know how 

to apply the properties of graph algorithms, linear algebra, and geometry to multi-robot systems; 

the second one being the ability to formulate and solve the motion planning problems in a 

multi-robot system. This chapter presents the motion planning algorithm that is referred to as 

a roadmap method. The roadmap is built by a set of paths each of which consists of collision-

free area connections. This method demonstrates the ability of robots to move between 

obstacles in their configuration spaces. In order to achieve this, it is assumed that each robot is 

able to gain all the necessary information around it (locations of neighbouring robots and 

obstacles) through its knowledge of free workspace [129][147]. We consider the fundamental 

task of moving robots from start point S to endpoint E in an environment with static obstacles. 

In this task, the failure or success of robots’ motion depends on their knowledge ability of the 

workspace [152].  
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4.2  Motion Planning Roadmap Method 

A roadmap as we discussed in Chapter 3 is a set of locations in the configuration space along 

with the paths that connect them [146]. It is a general approach to solving the problem of motion 

planning. Roadmaps are representing the connectivity of free space for robots which consists 

of a workspace where robots will be working along with the start and goal configurations for 

each robot. It determines paths that robots should follow to reach their goals whilst avoiding 

collisions with obstacles as well as with other robots. In addition, a roadmap can be reached 

for each point 𝑠 ௦௧௔௥௧ in free space, if a path from 𝑠 ௦௧௔௥௧  to some other vertices in a roadmap 

with access to the 𝑔 ௚௢௔௟ exists. Furthermore, a roadmap is connected if any two locations are 

connected via a path [146][153][154][155]. Besides, the introduction of algorithms based on 

sampling techniques such as the roadmap method had a major effect on the domain of motion 

planning because of their simplicity, efficiency, and applicability to a wide area of issues, such 

as the MRS case [95].   

4.2.1 Problem definition  
Multi-robot motion planning is an issue that concerns with finding paths for multiple robots 

from their given starting positions to their goal positions without colliding with obstacles or 

each other in the environment [156]. Our aim is to plan the movement of robots from the first 

position to the target position in a workspace environment through a sequence of steps that will 

be implemented as follows in section 4.2.  

4.2.2 Problem Statement Assumptions 
In the development of the approach presented in this thesis the following assumptions are made. 

 The workspace  𝑊 =  2𝐷  𝑜𝑟 𝑅ଶ is a bounded polygon, mostly just a rectangle. 

 The motion of the multi-robot begins at the initial position 𝑠 ௦௧௔௥௧  and continues until 

the final position𝑠 𝑔 ௚௢௔௟ .  

 Within the workspace W, there are a limited number of obstacles 

 The beginning position and goal position exist within the workspace W and outside all 

obstacles. 

 All obstacles in the environment are considered static, and they can be represented by 

a set:  𝑂௜ = 𝑂ଵ, 𝑂ଶ,….., 𝑂௡.  

 The obstacle  𝑂௜ ⊂ 𝑊 = 𝑅ଶ  is geometrically represented as a convex polygon. 

 The team of robots consists of a set 𝑅௜of mobile robots. 
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 There are N robots denoted as:  (𝑅ଵ, 𝑅ଶ, 𝑅ଷ, … 𝑅ே), described by a moving point (that 

is a robot has zero size) at (x, y). 

 The robot knows the start site and the target site. 

 The robots here do not have sensors, but they have total knowledge of the free space. 

 Every robot has exact knowledge of the workspace environment (the location and the 

geometric representation of the obstacles).  

 The robot movement is omnidirectional which means that the robot can move in all 

possible directions. 

 Each robot can access information about any robot in the team by connectivity. 

4.2.3 Problem inputs and outputs 
Inputs into multi-robot pathfinding problem are: 

A graph G (V, E) where |V | = N. The vertices V of the graph are all the possible positions for 

robots, and the edges E are all possible paths between the positions 𝑅 robots, each labelled as 

𝑅ଵ, 𝑅ଶ..., 𝑅௡. Each of these robots has a start position 𝑠௜  ∈ 𝑉, and a goal position 𝑔௜ ∈ 𝑉. 

The output of this problem is a plan, that specifies position of every robot, where at the 

beginning all robots are at their initial positions and at the end all robots are located in their 

target positions [156]. 

4.3  Roadmap Environment Model 

Graph models are more appropriate for path and motion planning problems because as a rule, 

graph model just contains possible paths, since the information about obstacles is excluded 

during the graph establishing [10]. Points (places) in the environment and permissible paths 

between them are represented by the graph, vertices of which represent certain places in the 

environment and edges represent permissible possible paths. The environment model can be 

represented by a visibility graph method [10][150]. A visibility graph is beneficial in many 

applications because of its simplicity, visualisation, and completeness. In addition, the 

advantages of using this method for motion-planning are the following: it is a very simple 

method, and a well-understood method that produces optimal paths in a configuration space 

[10]. In addition, by using this approach, we can efficiently compute roadmaps in environments 

with polygonal obstacles and find an optimal path from the start positions to the goal positions 

[72][93][131]. A visibility graph is a graph, of which vertices represent vertices of polygonal 

obstacles, and its edges represent possible straight paths (i.e., visibility lines) connecting the 

obstacle vertices [157]. Once the graph is created, the starting and goal points are added and 
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the visible edges, connecting them with other graph vertices, are computed [10]. In fact, a 

visibility graph formation has two stages: The first stage is the construction of the graph itself 

(the configuration space that consists of the set of obstacles, where all visibility lines represent 

a C-space according to forms of obstacles). At the second stage, the start and goal 

configurations are assumed to be present as vertices to choose the optimal path in the 

configuration space defined by polygonal obstacles [21][158].  

4.4 Motion planning-based on the visibility graph method 

The visibility graph method used for multi-robot path motion planning is described as an 

undirected weighted graph (G), where (V) is the set of vertices representing robot 

configurations, (E) is the set of edges representing paths between vertices, and w is a function 

that assigns the weight (length path) to each edge in E [10][128][151][157].  

The environmental movement of the robot is viewed as a graph (𝐺) = (𝑉;  𝐸; 𝑤ா), where 

 V is the set of vertices (with which we will typically associate a location (physical 

position in 2D = 𝑅ଶ  ), or, in other words, the set of vertices corresponding to the 

position of the obstacles the robot must avoid, the starting points from which the robot 

should move, and the end points of which the robot should move towards [128][157].  

 𝐸 ⊂ 𝑉 × 𝑉   is a set of edges in the graph, which is the route surrounded by obstacles.  

 𝑤ா: 𝐸 → 𝑅ା  is the weighted cost associated with each edge [128][157].  

4.4.1 Definition and designing a visibility-graph algorithm  

A visibility graph is defined as a graph whose nodes include the start location, the goal 

location, and the nodes of polygonal obstacles. Its edges are the edges joining all pairs of 

nodes that is mutually visible and the edges of the obstacles [157]. 

A Visibility-graph algorithm is designed by increasing a given undirected weighted graph G 

with an additional set of edges ( 𝐸௩௜௦ ), where:  𝐺௩௜௦௜௕௜௟௜௧௬ି௚௥  = (V, E, 𝑤ா ),  

𝐸௩௜௦ = {(𝑣௜, 𝑣௝) ∈ V × V | visibile (𝑣௜, 𝑣௝ , 𝐸௢௕௦)}   

Function visible (𝑣௜, 𝑣௝ , 𝐸௢௕௦ ) returns true if the edges in 𝐸௣ do not cut (does not intersect the 

presumptive) edge (𝑣௜ , 𝑣௝), or in other means (𝑣௜ , 𝑣௝) form an edge if it can go from 𝑣௜  to 

𝑣௝  without being hindered by any obstacle whatever (for every pair of vertices in V, an edge is 

added to 𝐸௩௜௦ that can see each other). E, the set of edges in graph G that is divided into 𝐸௩ the 

edges added via the visibility graph algorithm, and  𝐸௢௕௦ , the edges that shape the boundaries 

of the polygonal obstacles:  E = {𝐸௩௜௦  ∪ 𝐸௢௕௦} ;  𝑤ா: 𝐸 → 𝑅ା [10][128][151][157]. 
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Figure 4.1: A sample visibility graph 

Considering a set of polygonal obstacles (𝑂ଵ, 𝑂ଶ, … , 𝑂௡), the visibility graph 𝐺 = (𝑉, 𝐸, 𝑤), 

with the set of  vertices 𝑉 that are all “visible” convex  vertices from the corners of polygonal 

obstacles, and the start point and the end point, which is formed by connecting vertices via 

edges (E) [72][95][158][159][160]. Note, that a vertex of a polygon is a convex vertex if the 

interior of angle is exactly smaller than π radians while if the vertex has an inner angle larger 

than (π) then it is not a convex vertex. In addition, in a visibility graph, non-convex vertices of 

polygonal obstacles are not considered [95][158][159].  

4.4.2  Visibility-graph pseudo-algorithm 
Input: s start, g goal, polygonal obstacles. 

Output: Visibility Graph VG. 

1:          for every pair of vertices, vi, vj where i‚ j 

2:               for every obstacle O 

3:                   if segment (vi, vj) intersect O 

4:                        go to (1) 

5:             end if 

6:      end for 

7:                   Insert edge(𝑣𝑖, 𝑣𝑗) into VG  

8: end for 

 

4.4.3 Visibility graph method for the problem of finding the shortest path 

The shortest path in the graph G is the shortest distance between the source (start position) and 

the end point (target position) i.e., a path of minimal length, or in other words, the set of 

waypoints that connect the start position to goal position in a 2D workspace environment. The 
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Visibility-graph method is considered as one of the roadmaps towards the approach based on 

combinatorial optimisation, best suited to the problem of finding the shortest path in terms of 

distance. With this method, a minimum cost path will be found according to certain criteria 

among the start vertex (start position) and the end vertex (target position) of the robots. Hence, 

to find the shortest path in workspace, many obstacles require two key steps when solve the 

problem of finding the shortest path in the form of the visibility graph as above in section 

4.1.1):  

First: Create visibility-graph in workspace W = 2D. 

Second: to find the shortest path, an algorithm such as Dijkstra’s algorithm based on cost 

corresponding to each edge (distance between vertices) can be applied [157][160].  

The visibility graph method is considered one of the path planning concepts that producing the 

shortest path if it is combined with Dijkstra’s algorithm. In addition, when it is complete, it 

means that a path will be found if it is available [21][33]. This is the reason that the visibility 

graph method and Dijkstra’s algorithm are chosen for path planning.   

Note that: the commonly employed heuristic method in robot motion planning is the A* 

algorithm, where the heuristic methods use particular assumptions to minimise the complexity 

of an issue. These methods have a disadvantage in that they employ multiple variables and 

coefficients, which must be selected by the algorithm designer. In addition, there is no literature 

that determines a certain manner for variable selection and hence the consequences are not 

regular for different scenarios. As a result, heuristic methods do not make general solutions. 

For different cases, the variables of a heuristic algorithm might need modification [33]. In 

addition, as we mentioned in chapter 3, the A* algorithm searches a graph efficiently based on 

the chosen heuristic (with respect to a selected heuristic). If the heuristic is “good,” then the 

search is effective; if the heuristic is “un good,” even though the path will be found, the search 

will take longer time than probably required and may return a suboptimal path. This means ''If 

the heuristic is optimistic, then A* will result in an optimal path, where an optimistic, or 

admissible, heuristic always returns a value less than or equal to the cost of the shortest path 

from the present vertex to the target vertex inside the graph'' [161][162]. This may seem useful, 

but in some cases, it is impossible or difficult to find a heuristic that is efficient to evaluate and 

produces good search guidance. Thus, when h(n) becomes closer to g(n), and h(n) = 0, then A* 

degenerates to Dijkstra’s algorithm [151]. For this reason, A* search algorithm is not 

considered in our work, because if it is combined with the visibility graph method, the resultant 

path might not be optimal, as it is difficult to compute the heuristic of A*, where the heuristic 

value is normally a computation of what the straight-line distance to the target would be if there 
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are no obstacles. Therefore, there is no method to measure the cost of straight lines that connect 

vertices to the goal point (g) in an environment where the lines pass through obstacles. Also, if 

the heuristic cost is not admissible, i.e., higher than the real cost, the produced path may not be 

optimal in terms of the path length [21][35][118]. Accordingly, a multi- robot motion planning 

problem becomes the problem of finding the optimal (safe and shortest) paths on workspace 

for each robot which avoid collision with obstacles and with each other. Hence, based on these 

requirements of the problem it is important that the new created graph called a visibility graph 

algorithm covers well connectivity to avoid collision and calculated the optimal path as 

required [163].   

4.5  Connectivity 

The connectivity is critical for a team of multi robots, so, robustness connectivity must be 

established to distribute information effectively among a team of robots [163]. Maintaining 

connectivity, i.e., the possibility for robots to exchange information with each other is often an 

essential requirement, and inter-robot communication enables multi-robot systems to 

coordinate and execute complex missions efficiently. Besides, the quality and robustness of the 

connectivity have a high impact on the team’s capability to complete their tasks. Whenever 

increase the number of robots, the communication links increase, thus the number of possible 

configurations increases dramatically. Furthermore, connectivity maintenance is an important 

part to consider whilst controlling a multi-robot system; a multi-robot system must be 

connected to get to a certain common target. Here the tasks can represent objectives such as 

tracking a target, collisions avoidance and reaching a desired position [163][164]. Maintaining 

connectivity during the operation of an MRS can be executed utilising two approaches:(1) 

maintaining the local connectivity approach, and (2) maintaining the global connectivity 

approach [116], the last one is considered in this thesis. The global connectivity approach 

depended on mathematical formalism; in this, the communication network of an MRS is 

represented by utilising graph theory [116]. Any multi-robot formation can be represented as a 

communication graph where each robot in the formation is identical to a vertex, the capability 

to communicate among pairs of robots is identical to edges [163]. In addition, if an MRS is 

represented by an undirected weighted graph, then the algebraic connectivity of the graph 

Laplacian represents the measure of communication network connectivity, where maximising 

the algebraic connectivity in an undirected weighted graph gives rise to information flooding 

in the information exchange process [116].  
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 Let us consider a multi-robot system, which has a limited communication range model as 

undirected weighted graph  𝐺 =  (𝑉, 𝐸, 𝑤)  where  𝑉 = {1, . . , 𝑛} is the set of vertices 

representing the number of robots, 𝐸 ⊆  {𝑉 × 𝑉 }  is the set of edges representing paths 

between vertices, where  𝑒௜௝,𝑖 ≠ 𝑗. An edge exists between vertices if robot 𝑖 interacts with 

robot 𝑗,  this means two robots can communicate if and only if they are within the 

communication distance, also the presence of the edge 𝑒௜௝  implies to the presence of the 

edge 𝑒௝௜ because we use an undirected graph. 𝑤 is a function that assigns the weight (length 

path) to each edge in E.  𝑤 = {𝑤௜௝ | (𝑖, 𝑗)  ∈  𝑉 ×  𝑉}  is a set of weights so that  𝑤௜௝ =

 0 𝑖𝑓 (𝑖, 𝑗)  ∉  𝐸 and 𝑤௜௝  >  0 otherwise.  If we consider a team of N robots, we define the set 

of neighbours of the 𝑖-th robot as  𝑁௜  =  { 𝑗 ∈  𝑉 , 𝑗 ≠  𝑖 |𝑒௜,௝  ∈  𝐸}, which represent all the 

robots that can communicate with it. Hence, each robot is assumed to be able to interchange 

data with their neighbours,i.e., with all the robots that are in its neighbourhood [115][163][164]. 

One method to represent such an undirected weighted graph is by using the graph Laplacian L, 

and to use its algebraic connectivity as an indicator of the system connectivity. The algebraic 

connectivity is defined as the second smallest eigenvalue  𝜆ଶ(𝐿) of the graph Laplacian. Graph 

Laplacian 𝐿 ∈  𝑅௡×௡  be the princpil matrix, which combines the adjacency and the degree 

matrices:  L = D – A. The Adjacency matrix  𝐴 ∈  𝑅௡×௡ of the weighted graph G is defined by:  

  𝐴௜௝ =  𝑤௜௝ = ൜
𝑎௜௝  > 0   𝑖𝑓 𝑗 ∈ 𝑁௜ 

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (4.1) 

Each element  𝑎௜௝  is defined as the edge weight of 𝑒௜௝, where 𝑎௜௝ is a positive number, 𝑎௜௝ =

𝑎௝௜  ,   𝑎௜௜ = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. Here  𝐴௜௝ =  𝑤௜௝ ∈   𝑅௡×௡  is the weight function and can be seen as 

function of the distance between robots 𝑖 and 𝑗. The degree matrix  D ∈  R୬×୬ is a Diagonal 

matrix showing the number of edges connected to each vertex 𝑣௜ . and each element of the 

diagonal is equal to the  (𝑖, 𝑖) entry in D = diag (𝑑௜௜), given by [115][163][164]:  

                                                             𝑑௜௜ =  ∑ 𝑎௜௝
௡
௜ୀଵ                            (4.2) 

4.6 Measuring Connectivity with the algebraic connectivity 

The second smallest eigenvalue is called the algebraic connectivity value of the system. A 

significant property of  𝜆ଶ is that it does not only provides a measure (indicator) of whether the 

graph is connected, but it also provides a measure of how well-connected the graph is. The 

value of the algebraic connectivity equals to zero (𝜆ଶ = 0) if the graph has disconnected 

components, i.e., there is no paths among vertices, or the graph has two disconnected 

components. If 𝜆ଶ  is very small, this refers to the graph being nearly disconnected, that it has 
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two components that are not very connected to each other. Non-zero connectivity refers to a 

path that exists among every pair of vertices (robots in the system) in the graph. Higher 

connectivity refers to a more robust graph as a larger number of edges, i.e., 0 < 𝜆ଶ < 𝑁. In 

addition, connectivity refers to the number of vertices in the graph if the graph is completely 

connected, thus the maximum value of  𝜆ଶ = 𝑁, and it is obtained when the entries (𝑖, 𝑗) of the 

adjacency matrix are all equal to 1, which means all the possible edges are present in it 

[115][163][164].   

4.6.1 Algebraic connectivity and collision avoidance  
The relation between the connectivity of graph and 𝜆ଶ  can be used to control and maintain 

connectivity. In general,  𝜆ଶ  is a function of the state of the whole system, and it is an important 

parameter that affects the performance and robustness properties of dynamical systems 

working over an information network [115]. In addition, the algebraic connectivity maintains 

connectivity and determines its robustness between robots, which enables them to execute tasks 

whilst maintaining connectivity inside the system. In our approach, we considered a multi-

robot system as an undirected weighted graph. To control connectivity of the system, the 

connectivity modifies through choosing the best edges to add by measuring the second smallest 

eigenvalue of the Laplacian matrix to communicate the system robustness [115]. Hence, this 

enables the robots to obtain whole information about the workspace environment to achieve 

collision avoidance and to find the best safe paths, using the edges’ weights to control the 

motion time of robots, where edges’ weights are the functions of the inter-robot distances. In 

other words, algebraic connectivity introduces a type of continuous measure of how well a 

team of robots is connected while maintaining connectivity within the system. Indeed, the 

weight functions can be determined to make the inter-robot distances converge to a desirable 

value. In addition, the weight functions can be selected since collisions between the robots are 

always avoided. More specifically, the edge-weight functions are designed with the purpose of 

controlling the motion of robots while avoiding inter-robot collision [78].  

We consider a multi-robot system consisting of N mobile robots moving in a 2D space, and 

define the state vector of the multi-robot system 𝑝௜ = ൣ𝑝ଵ
் , 𝑝ଶ

் , … , 𝑃ே
்൧ ் ∈  𝑅௡ ,  𝑝௜  ∈  𝑅௡ to 

represent the position of robot 𝑖. The team of robots can be described by single integrator 

models as: 𝑝௜ = 𝑢௜ ,   where  𝑢௜ ⊂ 𝑈 ∈  𝑅௡   refers to the control input of the system:            

                                           𝑝௜ = 𝑢௜ = ∑ 𝑤௜௝൫𝑝௜ − 𝑝௝൯௝∈ே೔
                             (4.3) 
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We define the edge weights of the graph G as:  𝑎௜௝ = ൜ 𝑒ฮ௣೔ି௣ೕฮ     ௜௙ ௗ೔ೕ ஸ ோ 

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (4.4)          

where R > 0 is the communication range, and   𝑑௜௝ = ฮ𝑝௜ − 𝑝௝ฮ is the Euclidean distance 

between position of robot 𝑅௜ and robot  𝑅௝ [163][164]. In this system, the robots should avoid 

collisions with each other to stay safe during movement when performing their tasks. In the 

environment of the workspace, we assume that the obstacles are convex and static, and the 

distance among two obstacles is greater than the size of a robot. We will consider two sorts of 

collisions: one is a collision between an obstacle and a robot. The second is inter-robot 

collisions (i.e., collision among two robots). Each robot can determine the presence of an 

obstacle and measure its relative location and the distance from its boundary, within the 

communication range R > 0 [10]. Therefore, to solve the problem of a team of multi-robot, our 

aim is to maintain a certain value of the algebraic connectivity of the working of the MRS, of 

which an initial configuration where the team is connected (𝜆ଶ > 0), keeps connected, whilst 

being controlled to achieve the desirable objective of collision avoidance until reaching the 

target configuration. Collision avoidance mechanism is executed, that prevents robots from 

collision between each other with communication defined based on the edges’ weights (which 

defines the quality of the communication links between robots), and when 𝜆ଶ is away from zero, 

whilst every robot tracks their paths to reach the goal location [115][116][163][164]. 

Note that, in a connected component of an undirected weighted graph, with graph Laplacian 

(Laplacian matrix) L, if all edges weights are positive, the second smallest eigenvalue¸ 𝜆ଶ > 0. 

4.6.2 Example of an undirected weighted graph:  

This example will illustrate how to find the Laplacian matrix and the eigenvalues of the 

Laplacian matrix, especially the second smallest eigenvalue (  𝝀𝟐 ). Figure 4.2 shows the 

example of an undirected weighted graph: 𝑮 = ൫𝑽𝒊, 𝑬𝒋൯ where  𝒊 = 𝟏, … , 𝟏𝟔,   𝒋 = 𝟏, … , 𝟒𝟗. 
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                Figure 4.2: Example of an undirected weighted graph 

The vertices set of G is: (𝑉) = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝑣ହ, 𝑣଺, 𝑣଻, 𝑣଼, 𝑣ଽ, 𝑣ଵ଴, 𝑣ଵଵ, 𝑣ଵଶ, 𝑣ଵଷ, 𝑣ଵସ, 𝑣ଵହ, 𝑣ଵ଺}. 

The edge’s weights (E)= {𝑒ଵ, 𝑒ଶ,................, 𝑒ସଽ}, the number on the edges represents the 

weights of the edges (the distance between every two vertices). 

Table 4.1: Showing the edges set E of weighted graph G above is: 

𝑒ଵ= ( 𝑣ଵ, 𝑣ଶ)  𝑒ଶ= ( 𝑣ଵ, 𝑣ଷ) 𝑒ଷ= ( 𝑣ଵ, 𝑣ସ)  𝑒ସ= ( 𝑣ଵ, 𝑣ହ) 𝑒ହ= ( 𝑣ଵ, 𝑣଺) 

𝑒଺= ( 𝑣ଵ, 𝑣଻) 𝑒଻ = (𝑣ଶ, 𝑣ଷ) 𝑒଼= ( 𝑣ଶ, 𝑣ସ)  𝑒ଽ= ( 𝑣ଶ, 𝑣ହ) 𝑒ଵ଴ = (𝑣ଶ, 𝑣଻) 

𝑒ଵଵ = (𝑣ଷ, 𝑣ସ) 𝑒ଵ଴ = (𝑣ଷ, 𝑣ହ) 𝑒ଵଷ = (𝑣ଷ, 𝑣଺) 𝑒ଵସ = (𝑣ସ, 𝑣ହ) 𝑒ଵହ = (𝑣ସ, 𝑣଺) 

𝑒ଵ଺ = (𝑣ସ, 𝑣଻) 𝑒ଵ଻ = (𝑣ସ, 𝑣଼) 𝑒ଵ଼ = (𝑣ସ, 𝑣ଵଵ) 𝑒ଵଽ = (𝑣ହ, 𝑣଻) 𝑒ଶ଴ = (𝑣ହ, 𝑣ଽ) 

𝑒ଶଵ = (𝑣଺, 𝑣଼) 𝑒ଶଶ = (𝑣଺, 𝑣ଵ଴) 𝑒ଶଷ = (𝑣଺, 𝑣ଵଶ) 𝑒ଶସ = (𝑣଻, 𝑣଼) 𝑒ଶହ = (𝑣଻, 𝑣ଽ) 

𝑒ଶ଺ =  (𝑣଻, 𝑣ଵଵ) 𝑒ଶ଻ = (𝑣଻, 𝑣ଵଷ) 𝑒ଶ଼ = (𝑣଼, 𝑣ଽ) 𝑒ଶଽ = (𝑣଼, 𝑣ଵ଴) 
𝑒ଷ଴ =

(𝑣଼, 𝑣ଵଵ) 

𝑒ଷଵ = (𝑣଼, 𝑣ଵଶ) 𝑒ଷଶ = (𝑣଼, 𝑣ଵହ) 𝑒ଷଷ = (𝑣ଽ, 𝑣ଵଵ) 𝑒ଷସ = (𝑣ଽ, 𝑣ଵଷ) 
𝑒ଷହ =

(𝑣ଵ଴, 𝑣ଵଵ) 

𝑒ଷ଺ =

(𝑣ଵ଴, 𝑣ଵଶ) 
𝑒ଷ଻ = (𝑣ଵ଴, 𝑣ଵସ) 𝑒ଷ଼ = (𝑣ଵଵ, 𝑣ଵଶ) 𝑒ଷଽ = (𝑣ଵଵ, 𝑣ଵଷ) 

𝑒ସ଴ =

(𝑣ଵଵ, 𝑣ଵହ) 

𝑒ସଵ =

(𝑣ଵଵ, 𝑣ଵ଺) 
𝑒ସଶ = (𝑣ଵଶ, 𝑣ଵସ) 𝑒ସଷ = (𝑣ଵଶ, 𝑣ଵହ) 𝑒ସସ = (𝑣ଵଶ, 𝑣ଵ଺) 

𝑒ସହ =

(𝑣ଵଷ, 𝑣ଵହ) 

𝑒ସ଺ =

(𝑣ଵଷ, 𝑣ଵ଺) 
𝑒ସ଻ = (𝑣ଵସ, 𝑣ଵହ) 𝑒ସ଼ = (𝑣ଵସ, 𝑣ଵ଺) 𝑒ସଽ = (𝑣ଵହ, 𝑣ଵ଺) _ 
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The communication graph can be described by means of the adjacency matrix  A ∈  R୬×୬ of 

the weighted graph G defined by:  [A(t)]୧୨ = 𝑤(𝑡)௜௝ , as we mentioned in section 4.5 above. It 

is square and symmetric i.e., 𝐴 =  𝐴் (only for undirected graphs). Communications among 

robots i and j are possible if the (𝑖, 𝑗) entry in  𝐴(𝑎௜௝) has a value of one (1), however if the 

(𝑖, 𝑗) entry in  𝐴(𝑎௜௝) has a value of zero (0) then there are no connections between robot i and 

j. Here a graph is symmetric that means all connections exists in both directions and thus each 

robot i that can receive data from another robot j, can transmit the data back to that robot j. The 

Adjacency matrix corresponding to the undirected weighted graph in Figure 4.2 is given by: 

 

      [A(t)]୧୨  ୀ  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 8 7 3 9 6 8 0 0 0 0 0 0 0 0 0
8 0 7 9 7 0 2 0 0 0 0 0 0 0 0 0

7
3
9
6
8
0
0
0
0
0
0
0
0
0

7
9
7
0
2
0
0
0
0
0
0
0
0
0

0
8
9
1
0
0
0
0
0
0
0
0
0
0

8
0
5
8
6
7
0
0
4
0
0
0
0
0

9 1 0 0 0 0 0 0 0 0 0 0
5 8 6 7 0 0 4 0 0 0 0 0
0 0 6 0 7 0 0 0 0 0 0 0
0 0 0 8 0 9 0 6 0 0 0 0
6 0 0 4 8 5 8 0 3 0 0 0
0 8 4 0 9 4 8 7 0 0 6 0
7 0 8 9 0 0 3 0 8 0 0 0
0 9 5 4 0 0 3 5 0 7 0 0
0 0 8 8 3 3 0 4 8 0 6 3
0 6 0 7 0 5 4 0 0 5 7 3
0 0 3 0 8 0 8 0 0 0 8 5
0 0 0 0 0 7 0 5 0 0 9 7
0 0 0 6 0 0 6 7 8 9 0 6
0 0 0 0 0 0 3 3 5 7 6 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.5) 

The elements of the adjacency matrix represent a weight of the link between robots in network. 

As we can see, the columns and rows in above indicate the weight (distance) between two 

vertices, where if there is a path between two vertices it has a value D and if there is no path, 

it has a zero value. For example, in the first column and the first row there is a zero value 

(𝑎ଵଵ = 0), while  𝑎ଵଶ = 8 .  

Now, D(t) = diag (𝑑௜௜) = ∑ 𝑎௜௝ = 𝑤௜௝(𝑡)௡
௝ୀଵ ], where D is the Diagonal matrix of vertex degrees, 

the value of D is calculated based on how many edges are linked to that vertex. The Diagonal 

matrix corresponding to the undirected weighted graph in Figure 4.2, is given by: 
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      [D(t)]୧୨  ୀ  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
41 0 0  0   0   0 0 0 0 0 0 0 0 0 0   0
0 33  0  0   0  0 0 0 0 0 0 0 0 0 0 0 

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

32
0
0
0
0
0
0
0
0
0
0
0
0
0

0
50
0
0
0
0
0
0
0
0
0
0
0
0

0  0 0 0 0 0 0 0 0 0 0   0
0  0 0 0 0 0 0 0 0 0 0  0
43 0 0 0 0 0 0 0 0 0 0  0
0 38 0 0 0 0 0 0 0 0 0  0
0  0 50 0 0 0 0 0 0 0 0  0
 0 0  0 53 0 0 0 0 0 0 0  0
 0 0   0 0 35 0 0 0 0 0 0  0
0 0   0  0  0 33 0 0 0 0 0 0
0 0  0  0    0 0 47 0 0 0 0 0
 0  0  0 0 0 0   0 37 0 0 0 0
0 0 0 0 0 0  0  0 32 0 0 0
0 0 0  0 0  0 0 0 0 48 0  0
0 0  0 0 0 0 0 0 0 0 42 0
 0 0 0 0 0   0 0 0 0 0 0 24 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(4.6) 

 Note, for vertex 1, there are six edges connected from vertices 2, 3, 4,5,6 and 7. Thus, the 

degree of vertex 1 is:  𝑑௜௜ =  ∑ 𝑎௜௝ = 𝑤௜௝(𝑡)௡
௜ୀଵ    

                        𝑑ଵଵ =  ∑ 𝑎ଵଶ + 𝑎ଵଷ + 𝑎ଵସ + 𝑎ଵହ + 𝑎ଵ଺ + 𝑎ଵ଻ =௡
௜ୀଵ  8+7+3+9+6+8 = 41  

A matrix that plays a central role in many graph-theoretic treatments of MRSs is the Laplacian 

matrix, which defined by: 𝐿(𝑡) = 𝐷(𝑡) − 𝐴(𝑡), where D(t) is the Diagonal matrix and A(t) is 

the Adjacency matrix. The essential role of the Laplacian matrix is to measure the connectivity 

in the team of multiple robots. The biggest role is played via 𝜆ଶ  of the Laplacian matrix, if 

 𝜆ଶ > 0 then a graph is connected. It also means that robots have a stronger relationship to 

receive and share information with their neighbours. The Laplacian matrix corresponding to 

the undirected weighted graph in Figure 4.2 is given by: [L(t)]୧୨  ୀ 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

41 −8 −7 −3 −9 −6 −8 0 0 0 0 0 0 0 0 0                   
−8 33 −7 −9 −7 0 −2 0 0 0 0 0 0 0 0 0                      

−7
−3
−9
−6
−8
0
0
0
0
0
0
0
0
0

−7
−9
−7
0

−2
0
0
0
0
0
0
0
0
0

32
−8
−9
−1
0
0
0
0
0
0
0
0
0
0

−8
50
−5
−8
−6
−7
0
0

−4
0
0
0
0
0

−9 −1 0 0 0 0 0 0 0 0 0 0
−5 −8 −6 −7 0 0 −4 0 0 0 0 0 

43 0 −6 0 −7 0 0 0 0 0 0 0
0 38 0 −8 0 −9 0 −6 0 0 0 0
−6 0 50 −4 8 5 8 0 −3 0 0 0

0 8 −4 53 −9 −4 −8 −7 0 0 −6 0
−7 0 −8 −9 35 0 −3 0 −8 0 0 0

0 −9 −5 −4 0 33 −3 −5 0 −7 0 0
0 0 −8 −8 −3 −3 47 −4 −8 0 −6 −3

0 −6 0 −7 0 −5 −4 37 0 5 −7 −3
0 0 −3 0 −8 0 −8 0 32 0 8 −5          

0 0 0 0 0 −7 0 5 0 48 −9 −7
0 0 0 −6 0 0 −6 −7 8 9 42 −6

0 0 0 0 0 0 −3 −3 −5 −7 −6 24 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.7) 

The eigenvectors of the Laplacian matrix are { 𝜐పሬሬ⃗ , where  𝑖 = 1, . . . ,16 }, and eigenvalues are 

( 𝜆௜ ), where {  𝜆௜ ,  𝑖 = 2, . . . ,16}. The multiplication of eigenvalues in the formula of 
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 [L(t)]୧୨  𝑖𝑛  (4.7) starts with 𝜆ଶ. The smallest eigenvalue 𝜆ଵ is always zero (0) because of the 

construction of the Laplacian matrix we have zero row sums ∑ 𝐿௜௝ = 0௝ , thus, L(t)1= 0, which 

means that there is at least one eigenvalue 𝜆ଵ = 0 . In addition, if 𝜆ଵ  is a simple 

eigenvalue  (𝑖. 𝑒. 0 = 𝜆ଵ  < 𝜆ଶ) , then the graph is connected. Moreover, in this case, 

 𝑛𝑢𝑙𝑙(𝐿) =  𝑠𝑝𝑎𝑛 {1}, where  1ሬ⃗ =  [1 . . . 1]் 𝑎𝑛𝑑  0ሬ⃗  =  [0 . . . 0]் are vectors of N elements all 

equal to 1 and 0 respectively. This implies  𝐿1 =  0 [49][50][113]. Note that the 𝜆ଶ  of the 

Laplacian matrix given above has a value greater than zero. The advantage of this value is to 

measure connectivity of the associated graph, where in case of undirected weight graph 𝜆ଶ is 

larger in case of a highly connected graph. In addition, the connectivity between robots is 

measured by 𝜆ଶ, where the robots have perfect connectivity if 𝜆ଶ has a great value. So, this 

enables the robots to obtain all the information that they need to perform their tasks to the 

fullest. Table 4.2 represents the eigenvalues of the Laplacian matrix.   

Table 4.2: the eigenvalues of the Laplacian matrix   

     

 

 

 

 

 

 

 

 

 

 

 

Note: 𝜆ଶ= 7.6143, which means that the graph in Figure 4.2 is more connected than in other 

situations. If we delete the edges {𝑒 ସଵ, 𝑒ସସ, 𝑒ସ଺, 𝑒ସଽ} from the graph in Figure 4.2 then 𝜆ଶ= 

𝝀𝟐 7.6143 

𝝀𝟑 17.9264 

𝝀𝟒 21.3275 

𝝀𝟓 32.4816 

𝝀𝟔 35.0564 

𝝀𝟕 36.3646 

𝝀𝟖 38.8115 

𝝀𝟗 41.8012 

𝝀𝟏𝟎 43.7309 

𝝀𝟏𝟏 44.2198 

𝝀𝟏𝟐 50.8069   

𝝀𝟏𝟑 53.2039 

𝝀𝟏𝟒 58.0177 

𝝀𝟏𝟓 61.1491 

𝝀𝟏𝟔 65.4882 
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4.5747 the graph is connected because 𝜆ଶ >  0, but if we delete also the edges 

{𝑒 ସଵ, 𝑒ସସ, 𝑒ସ଺, 𝑒ସ଼, 𝑒ସଽ}, then the graph will be not connected, due to  𝜆ଶ = 0. The graph is 

connected if and only if 𝜆ଶ > 0. 

4.7 Definition (Pseudo-code) Dijkstra’s Algorithm 

Let us begin with some notes before explaining the details of the pseudo-code of Dijkstra’s 

algorithm, as it is important to understand how the algorithm works. As we mentioned 

previously, the algorithm is working via solving a sub-problem that calculates the shortest path 

from the source vertex to the nearest vertices. Besides that, for the algorithm to work, the graph 

must be a weighted graph, and all edges must have positive weights because the algorithm 

solves only the problems with positive weights or nonnegative costs. This means that: 

𝑐௜௝ ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∈  𝐸       (4.8) 

The following pseudo-code gives a summarised description work of Dijkstra’s algorithm 

[70][154]. 

4.7.1 Pseudo-code of Dijkstra’s algorithm  

Input: Dijkstra (weighted graph G, Source ( 𝑆௜ = 𝑅ଵ , 𝑅ଶ, 𝑅ଷ)𝑅𝑜𝑏𝑜𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, Target) 

Output: the set of visited vertices and distance values for each vertex in the graph G 

            // Initialisation of value of shortest path, not the path itself1: 

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑥𝑒 𝑣 𝑖𝑛 𝐺 ∶ 

2:        𝑑𝑖𝑠𝑡[𝑠] = 0  (distance to source vertex is zero) 

3: 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑣 ∈ 𝑉– {𝑠} 

4:        𝑑𝑜 𝑑𝑖𝑠𝑡 (𝑣) =  ∞ (Set all other distances to infinity) 

5:        S=∅ (S, the set of visited vertices is initially empty) 

6:        𝑄 = 𝑣 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝐺 

7: 𝒘𝒉𝒊𝒍𝒆 𝑄 ≠  ∅ 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 ∶ 

8: _       𝑓𝑖𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑢 𝑖𝑛 𝑄 𝑤𝑖𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡(𝑣) 

9:          S←S∪{u} (add u to list of visited vertices) 

10: for all v∈ neighbors [u] 

11: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒 𝑡𝑜 𝑣 𝑏𝑦 𝑎𝑛 𝑒𝑑𝑔𝑒 ∶ 

12: 𝒊𝒇 𝑑𝑖𝑠𝑡(𝑣)  >  𝑑𝑖𝑠𝑡(𝑢)  +  𝑤(𝑢; 𝑣) ∶ (if new shortest path found) 

13:       𝑑𝑖𝑠𝑡(𝑣) =  𝑑𝑖𝑠𝑡(𝑣) +  𝑤(𝑢; 𝑣) (Set new value of shortest path)  

14:       (𝑄)  =  𝑣 
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15: 𝒓𝒆𝒕𝒖𝒓𝒏  𝑑𝑖𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑣 

4.7.2  Flow Chart of Dijkstra’s algorithm 
In this work, MATLAB is being used to implement the Dijkstra's algorithm. Figure 4.3 

represents the flowchart that shows stages involved in the algorithm. 

 

Figure 4.3: Flow chart of Dijkstra's algorithm 

4.7.3 Techniques of Dijkstra's algorithm for the motion planning problem 

In the application field of motion planning or network analysis, a common problem is the 

computation of shortest paths in the workspace for a team of robots to perform their tasks to 

the fullest. One of the standards of path planning is to provide an optimal path which connects 

the first position 𝑠௦௧௔௥௧and the goal position  𝑔௚௢௔௟. A multi-robot system deployed in the work 

environment to accomplish robots’ tasks whilst following their respective optimal paths will 

obtain two properties: (1) minimum transit duration to reach the target; (2) the avoidance of 

collision. The visibility graph with Dijkstra’s algorithm is available to achieve this [21][165]. 

The algorithm is implemented to calculate the shortest distance between two places (vertices) 

in a network (graph) and takes into consideration the weights of edges which are positive values 

(cost or distance between two places or vertices). The importance of Dijkstra’s algorithm is 

measured by its ability to solve the shortest path problem, which makes this algorithm a 

powerful and general tool [21][165]. 
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4.7.4 Application of Dijkstra’s algorithm 

 The visibility graph has a purpose to determine the set of obstacles that will be utilised to 

calculate the path from the starting point to the target point based on Dijkstra’s algorithm. This 

path must be secure and satisfies three criteria such as path optimality, completeness, and 

computational efficiency. So, before designing path planning algorithms these criteria must be 

considered. To control a team of multiple robots in an environment of workspace, we first 

define the position for each robot and obstacle, the moving path for each robot, and target 

position. We assume that there are N robots 𝑅௜, 𝑖 = 1, … . , 𝑁, each situated in a 2D space. We 

associate an undirected weighted graph in Figure 4.2 above, G = (V, E), with the robots, where 

V represents the vertices: sets of robots and obstacles, E is the edge set that defines the 

communication (paths) between the robots (see Figure 4.4) below. An undirected graph means 

that if   𝐸 ⊆ 𝑉 × 𝑉, (𝑣௜, 𝑣௝) ∈ 𝐸 ⇔ (𝑣௝ , 𝑣௜) ∈ 𝐸 . A link (𝑣௜, 𝑣௝)  between robots 𝑅௜  and 𝑅௝ 

implies that robots can measure their relative positions, speed, and exchange or share 

information. In addition, we assume that the inter-robot distances are specified as a set of D, 

where 

𝐷 ൛𝑑௜௝  ∈  𝑅 ห𝑑௜௝ > 0, 𝑖, 𝑗 = 1, … … , 𝑁, 𝑖 ≠ 𝑗ൟ, 𝑑௜௝ = 𝑑௝௜  (4.9) 

 

Figure 4.4: Example of a team of robots represented as vertices of graph 

The graph 𝐺 = (𝑉, 𝐸)  consists of vertices  𝑉 = {𝑣ଵ, , 𝑣ଵ଺}  starting 

from(𝑆௜ = 𝑅𝑜𝑏𝑜𝑡ଵ, 𝑅𝑜𝑏𝑜𝑡ଶ, 𝑅𝑜𝑏𝑜𝑡ଷ), where 𝑅𝑜𝑏𝑜𝑡ଵ, 𝑅𝑜𝑏𝑜𝑡ଶ, 𝑅𝑜𝑏𝑜𝑡ଷ are indicated as ( 𝑣ଵ, 𝑣ଶ, 

𝑣ଷ) respectively, the goal is indicated as (g = 𝑣ଵ଺), E = {𝑒ଵ, . . . , 𝑒ସଽ}, and edge cost are the 

terms used for the distances between two vertices, such as the edge cost between  𝑅ଵ = 𝑣ଵ  and  

𝑣ସ of the weighted graph in Figure 4.2 is equal to 3. The graph has four polygonal (triangular) 
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obstacles (𝑂  = 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, 𝑂ସ), and three robots (𝑅ଵ, 𝑅ଶ, 𝑅ଷ) represented as vertices. Each robot 

has an initial position (𝑆௜) and the goal position (𝑔௜); in this graph the robots have the same 

target which is (𝑣ଵ଺). We aim at finding collision-free paths for robots to move from the starting 

point to reach the goal point. Dijkstra’s algorithm is applied to determine the optimal paths to 

move between vertices. The aim is to find the shortest paths from the original point (start 

point  𝑆௜) for each robot to all other vertices. The algorithm assigns zero to first vertex and 

vertices  𝑆௜=𝑅ଵ, 𝑅ଶ, 𝑅ଷ= 0, whilst assigns infinity to all other vertices which are not visited. 

Then, it will assign gradually a value to obtain the smallest value up to the target or (it will 

choose smallest value up to the target destination), which is the vertex g = 𝑣ଵ଺ . The algorithm 

processes each step taken and measures the distance from 𝑆௜ to g. To explain how this algorithm 

works, consider a scenario of an undirected weighted graph in Figure 4.2. 

First step: vertex (𝑆௜; 𝑅ଵ = 𝑣ଵ,  𝑅ଶ = 𝑣ଶ,  𝑅ଷ = 𝑣ଷ) is set to become the current vertex and put 

in the priority queue. Zero is assigned to vertex 𝑆௜ and infinity to all other vertices (See Figure 

4.3).  

 

Figure 4.5: First step of Dijkstra's algorithm 

    Second step:  The temporary distance is calculated by considering all unvisited adjacent 

vertices to the vertices (𝑅ଵ = 𝑣ଵ, 𝑅ଶ = 𝑣ଶ,  𝑅ଷ = 𝑣ଷ) , and the least distance is chosen. Then 

the previously registered value is replaced with a new value less than infinity. 

 

Figure 4.6: Second step of Dijkstra’s Algorithm 
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Third step: All neighbours of vertex  𝑆௜= (𝑅𝑜𝑏𝑜𝑡ଵ, 𝑅𝑜𝑏𝑜𝑡ଶ, 𝑅𝑜𝑏𝑜𝑡ଷ ) have been taken into 

consideration, they are denoted as visited and will not be examined again. The neighbours to 

vertices 𝑆௜ are vertices (𝑣ସ, 𝑣ହ, 𝑣଺, 𝑣଻). It is found that (𝑣ସ, 𝑣଺, 𝑣଻) have the least distance, i.e. 

(3, 1, 2). The vertices (𝑣ସ, 𝑣଺, 𝑣଻) now are marked as current vertices for each robot and are 

stored in the priority queue.  

 

Figure 4.7: Third step of Dijkstra’s Algorithm 

Fourth step: The neighbouring vertices of vertices   (𝑣ସ, 𝑣଺, 𝑣଻)  are 

vertices (𝑣଼, 𝑣ଽ, 𝑣ଵ଴, 𝑣ଵଵ, 𝑣ଵଶ, 𝑣ଵଷ). From these vertices, (𝑣ଵଵ, 𝑣ଵଶ, 𝑣ଵଷ) have the least distance, 

i.e. (7, 7, 7), thus they will be marked as current vertices and kept in the priority queue.  

 

 Figure 4.8: Fourth step of Dijkstra’s Algorithm  

Fifth step: Now vertices  (𝑣ଵଵ, 𝑣ଵଶ, 𝑣ଵଷ)  will be ‘expanded’ to their neighbours, i.e. 

vertices(𝑣ଵସ, 𝑣ଵହ, 𝑣ଵ଺),vertex(𝑣ଵ଺) has the least distance from these vertices (𝑣ଵଵ, 𝑣ଵଶ, 𝑣ଵଷ) and 

will place in the priority queue. Recall, that g = (𝑣ଵ଺) is the goal vertex. Since all the vertices 

have been visited, the shortest paths from vertices (𝑆௜ = 𝑅ଵ, 𝑅ଶ, 𝑅ଷ) to the goal vertex g = 𝑣ଵ଺ is 

found with the lowest distance, i.e., 10. 
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Figure 4.9: Fifth step of Dijkstra’s Algorithm 

 

Figure 4.10: Shortest paths by Dijkstra’s Algorithm 

4.8  Multi-Robot Path Planning Algorithm (MRPPA) 

To address the motion planning problem for a multi robot team, and to find collision-free 

optimal path the MRPPA based on visibility graph method has been proposed in this thesis. 

Our proposed roadmap algorithm includes the following main steps: 

 Establish a free space map. 

 The algorithm defines the start s and goal g positions for each robot, and obstacles 

vertices numbers and locations. 

 All obstacles in the map are modelled as polygons. The algorithm analyses the 

position of each obstacle’s vertices. The starts and goals positions of the robots are 

known relative to the obstacles in the surrounding environment. Each robot is 

considered a dynamic obstacle. 

 Use the constructed free space and visibility graph algorithm, through which the 

robots can navigate without colliding with obstacles. 

 The workspace environment is divided into two disconnected components of the 

undirected weighted graph. Then choosing the best edges to add between these two 

components of the graph to find paths for each robot, based on the measure value 



95 
 

of algebraic connectivity of graph Laplacian, which controls the inter-robot’s 

connectivity when it is greater than zero. 

 When planning a path for any robot, vertex weights are changed just as in the single-

robot path planning algorithm. The vertices’ weights of the graph are initialised 

with a maximum possible value ∞, whilst the start vertex is initialised by the start 

time value 𝑠௜ = 𝑤଴= 𝑡଴. According to known edge weights, Dijkstra's algorithm 

will be applied to find the shortest path based on cost corresponding to each edge 

(distance between vertices), where the shortest path is a path of minimal length, so 

it is required to find a vertex sequence (series waypoints), which denotes the 

shortest path from the starting point to the goal point. 

Note that, if Dijkstra's algorithm is used as a basis to find the shortest path, the path for robots 

can be changed based on distance, which corresponds to environment model correction. In 

addition, during path planning, vertices’ weights 𝑤௜ change and equate to the moments of time, 

at which the robot 𝑅௜ passes through these vertices [10]. 

                                     𝑤௝ = ቊ
𝑤௜ + 𝑤௜௝, 𝑖𝑓 (𝑤௜ + 𝑤௜௝) < 𝑤௝

           𝑤௝ , 𝑖𝑓 (𝑤௜ + 𝑤௜௝) ≥ 𝑤௝
                      (4.10)    

where 𝑤௜  is vertex weight, and 𝑤௜௝ is the edge weight of the graph that corresponds to motion 

time from vertex 𝑣௜ and vertex 𝑣௝ . This value is variable and can be changed during planning 

the path. In addition, it can have two different weights 𝑤௜௝  and 𝑤௝௜, which based on direction 

of motion among vertex 𝑣௜ and vertex 𝑣௝ .  Beside 𝑤௜௝, each edge of graph is characterized by 

distance ( 𝑑௜௝ = 𝑒௜௝ ) between vertex 𝑣௜ and vertex 𝑣௝.   

 To provide collision avoidance, the edges' weights can be modified during path 

planning, either by path correction, where a robot is not allowed to move on the edge 

that occupied by another robot or through control robot's motion time on some edges 

by controlling the distances between vertices to allow it to free up the way for others, 

the paths of which are planned earlier [10]. This means the increased time of the robot 

moves on the graph edge from vertex 𝑣௜ to 𝑣௝ . So, we have two principal conditions 

that must be considered for path correction, and the robot motion time needs be 

controlled to avoid collision. This is done through the following steps:  

First: it is not possible for two robots to pass crossroads simultaneously on the same vertex of 

a graph, thus if this happens, to avoid collisions, let  𝑇ோ೙
 be the arrival time: (i.e., a time when 

robot 𝑅௡ passes through the vertex 𝑣௜), and 𝑅௡ be robots, (𝑛 =  1,2, . . 𝑚 represent the number 

of robots), if   𝑇ோ೙
= 𝑤௜ + 𝑤௜௝ , we will assume that 𝜖 > 0  is a minimum value, which 
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determines the time interval among robots passing the same crossroads. Then  𝑤௜௝ = 𝑤௜௝ + 𝜖, 

it must provide a safe passage (safe distance) for robots when crossing the crossroads through 

increased weight edge (distance) on the graph from vertex 𝑣௜ to vertex 𝑣௝  to increase motion 

time of the robot on a graph edge by 𝜖 time units that correspond to its motion time change. 

Therefore 𝜖 is the safety value from which robots 𝑅௡ and 𝑅௠ will never collide, the weight 

𝑤௝of vertex 𝑣௝  is calculated according to formulae (4.10).  

Second: Two robots are not allowed to move together on the same edge in opposite directions 

(two different directions). Therefore, if two robots are moving in opposite directions on a graph 

edge (straight roads) at the same time. If (𝑤௜  >  𝑇ோ೙೔
) ^ [(𝑤௜ +  𝑤௜௝ )  >  𝑇ோ೙೔ೕ

], (𝑛 =

 1, 2, … , 𝑚), then 𝑇ோ೘
> 𝑇ோ೙

 and no collision happens. Due to the robot 𝑅௡ will pass through 

the edge before the robot 𝑅௠, whose path is being planned, and drives onto the edge. Hence in 

this case, the edge weight does not require changing. Then the vertex weight 𝑤௝ is calculated 

as (4.10).  

Note that, the time ( 𝑇ோ೙
) depended on the distance (𝑑௜௝ = 𝑤௜௝) between the edges in the graph. 

If  𝑇ோ೘
> 𝑇ோ೙

 , this means the distance travelled by the robot 𝑅௡  is less than the distance 

travelled by the robot 𝑅௠ , hence, the arrival time of robot 𝑅௡ is shorter than the arrival time 

of the robot 𝑅௠.   

On the other hand, if   𝑇ோ೘
< 𝑇ோ೙

^൤𝑇ோ೘
≤

௪೔൫்ೃ೙ି்ೃ೘൯ି்ೃ೘ .௪೔ೕ

்ೃ೙ି்ೃ೘ି௪೔ೕ
≤ 𝑇ோ೙

൨, then collision occurs 

because the robot 𝑅௡, whose path is being planned will follow robot 𝑅௠ on the edge and collide 

with it, due to  the distance travelled by it is short, so its arrival time is short. To avoid collision, 

it is important to modify the edge weight of the current robot (reduce the movement of this 

robot, which is being calculated). That means to increase its arrival time by increasing distance 

in this edge as 

                                               𝑤௜௝ =
(௪೔ି்ೃ೙ିఢ)(்ೃ೙ି்ೃ೘)

்ೃ೙ି்ೃ೘ିఢ
                                  (4.11) 

then the vertex weight 𝑤௝  is defined as in (4.10).  

In addition, if (𝑤௜  <  𝑇ோ೙೔
) ^ [(𝑤௜ +  𝑤௜௝ )  <  𝑇ோ೙೔ೕ

], (𝑛 =  1, 2, … , 𝑚), then 𝑇ோ೙
> 𝑇ோ೘

. This 

state occurs when two robots move in opposite directions and the robot 𝑅௠ whose path is being 

planned will cross through the edge earlier than robot 𝑅௡. There is no collision that occurs; 

thus, the edge weight does not need to change. The weight of the next vertex 𝑤௝ is calculated 

as (4.10).  
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In contrast, if  𝑇ோ೙
< 𝑇ோ೘

^൤𝑇ோ೙
≤

௪೔൫்ೃ೘ି்ೃ೙൯ି்ೃ೙ .௪೔ೕ

்ೃ೘ି்ೃ೘ି௪೔ೕ
≤ 𝑇ோ೘

൨, then the collision is possible: 

robot 𝑅௡ will follow the robot 𝑅௠,  of which its path is being planned, and collide it on the 

edge. To avoid collision, it is important to modify the edge weight of the current robot (i.e., 

changing the arrival time through increasing distance) according to (4.11), and then the vertex 

weight 𝑤௝  is defined as (4.10). In addition, , if  (𝑤௜  <  𝑇ோ௡೔
) ^ [(𝑤௜ +  𝑤௜௝  )  >  𝑇ோ௡௜ೕ

], (𝑖 =

 1, 2, … , 𝑛), then 𝑇ோ೙
< 𝑇ோ೘

, then the collision is possible: robot 𝑅௡ will follow and crash into 

the robot 𝑅௠, of which its path is being planned, before the crossroads. . To avoid collisions, 

the arrival time of the current robot must be increased. So, the edge weight must be changed 

based on (4.11), and then the vertex weight 𝑤௝ is calculated as (4.10) [10].  

4.8.1 MRPP Algorithm 
Inputs:  Start positions(S), goal positions (g), polygonal obstacles(O). 

Outputs: Visibility graph (VG), Optimal paths from s start to g goal 

Our algorithm mainly includes the following steps:  

1. Establish a free space map. 

2. Determine the start s and goal g positions for each robot, and obstacles’ vertices 
numbers and locations. 

3. Divide the workspace environment into two disconnected components of undirected 
weighted graphs{𝐺ଵ, 𝐺ଶ}.  

4. Select the best edges (𝑤௜௝) to add between these two components of the graph 

{𝐺ଵ, 𝐺ଶ} based on the measure value of algebraic connectivity of graph Laplacian (𝜆ଶ). 

5. Create the Visibility graph (VG). 

6. Find a vertex sequence (series waypoints) from start(s) to goal (g) by using Dijkstra’s 
algorithm, which denotes the shortest paths. 

7. End: paths calculated 𝑊෢ = {𝑤଴, . . . . . , 𝑤௡}, where 𝑤଴ = start point and 𝑤௡ = goal 
point. 
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4.11. The process of MRPP Algorithm 
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5 Implementation of the Multi-Robot Path Planning Algorithm 

5.1 Introduction 

The previous chapter has explained the proposed algorithm (MRPPA) in this thesis, which 

combines the advantages of the roadmap visibility graph approach with algebraic connectivity 

(second smallest eigenvalue) of the graph Laplacian, and Dijkstra’s algorithm for planning 

short and safe paths for a team of a multi-robot system in a two- dimensional workspace. 

 The proposed paths planned contain two main components: a global planner and path 

optimisation. The global planner gathers information about the surrounding environment such 

as the information about the robot’s positions and targets as well as all information about the 

obstacles. Depending on the analysis of the  Roadmap  to find the path with minimum cost. 

Where it finds the optimal path with a prior knowledge of the environment and static obstacles, 

so a collision-free optimal path is created before the robots start moving. All robots have prior 

information about their work environment such as location of the obstacles and targets. After 

that, it proceeds to generate sets of possible ways (visible) in which the robots can reach their 

targets by using a visibility graph. The MRPP Algorithm analyses all possible ways and 

chooses the most suitable path, based on the measure of algebraic connectivity, and the 

predefined weight evaluation function. It implies sequential path planning for each robot one 

by one (i.e., path by path), considering all already planned paths (i.e., when planning the path 

for the next robot it considers all the paths already planned to exclude collisions). Consequently, 

the first path in the sequence is planned for the first robot; the path of the second robot is 

planned with a concern of the first robot's path. While, when planning the path for the third 

robot, MRPPA will take into account the paths of the first and second robot. The algorithm 

provides the optimal paths for each robot. It means that the currently planned path is the optimal 

of all possible at this phase. The paths here, their lengths, and motion times are based on the 

order of planning. The choice of the right sequence for path planning of robots has a significant 

impact on the performance of the robot team. 

This chapter aims to produce optimal paths that connect the starting nodes to the target node 

for a team of multi-robots with collision avoidance. The robots that follow paths in the 

workspace environment to accomplish their missions will obtain the following benefits:  

•  Perform their tasks in a short time and reach their targets. This is because VG can 

calculate path with shortest length (the paths have the least distances because they contain a 
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set of vertices of obstacles). It is also complete which means it guarantees that the robot will 

find the shortest path to its target. 

• Maintain their energy and reduce their consumption. Due to that the VG has the 

ability of finding a path with the shortest distance if one exists. Thus, this makes robots take a 

short time to move and perform their tasks, and this will reduce their energy use. 

• Low exposure to a collision, because the visibility graphs methods can help the robots 

in the system move to the desired goal location while avoiding collisions.  VG considers 

obstacle vertices in the environment to be the vertices, through which the robots can arrive at 

their required locations. These visible vertices have the property that a straight line 

connecting them does not intersect the interior of obstacles. 

To achieve all these advantages, different scenarios of workspace environments for a team of 

a multi-robot system are given. 

5.2  Path Planning Using MRPP Algorithm 

To illustrate how the algorithm works, a scenario consisting of six obstacles where their sizes 

and positions are generated together with s start and g goal is considered as per depicted in 

Figure. 5.1. To control a team of multiple robots, we assume that there are N robots 𝑅௜, 𝑖 =

1, … . , 𝑁, each situated in a 2D space. Where the position for each robot, obstacles, the moving 

path for each robot, and target position are predefined. So if we consider the scenario in Figure 

5.1 the workspace consist of three robots (𝑆௜ = 𝑅𝑜𝑏𝑜𝑡ଵ, 𝑅𝑜𝑏𝑜𝑡ଶ, 𝑅𝑜𝑏𝑜𝑡ଷ) each one has starting 

positions indicated as red points, the green point denotes the goal position g, and six Obstacles 

(𝑂௜  ୀ 
𝑂ଵ, 𝑂ଶ, 𝑂ଷ, 𝑂ସ, 𝑂ହ, 𝑂଺ ) indicated as blue shapes.  

 

Figure 5.1: Scenario of workspace environment for path planning 
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If we created visibility graph according to the definition and algorithm as mentioned in the 

previous chapter, the environmental movement of the robot is viewed as an undirected 

weighted graph (𝐺) = (𝑉;  𝐸; 𝑤ா), where 𝑉 is a set of vertices corresponding to the position of 

the obstacles, and starting and the end points of which the robot should move from and to, 𝐸 a 

set of edges in the graph, which is the route surrounded by obstacles, and 𝑤ா is the weighted 

cost, value, or number associated with each edge. Where edge 𝑒௜  =  (𝑣௜, 𝑣௝)  ∈  𝐸, and the 

weight 𝑤(𝑒௜) is the distance from vertex 𝑣௜ to vertex 𝑣௝ , and all weights are nonnegative. Thus, 

the scenario of Figure 5.1 can be represented as a graph in Figure 5.2.  

 

Figure 5.2: Scenario of workspace environment represented as a graph. 

The graph(𝐺) = (𝑉;  𝐸; 𝑤ா) in Figure 5.2 has ten components that are not very connected to 

each other. The vertices 𝑉 = {𝑣ଵ, . . , 𝑣ଶ଼}, 𝑤ℎ𝑒𝑟𝑒 𝑣ଵ, 𝑣ଶ , 𝑣ଷ, and 𝑣ଶ଼are isolated vertices, and 

the edges set E = { 𝑒ଵ, . . . , 𝑒ଶସ }, the edges of obstacles. We will divide the workspace 

environment into two disconnected components of the undirected weighted graph by using 

visibility graph to add visible edges between vertices. This is because, if the graph has two 

disconnected components, 𝜆 ଶ = 0 . And if 𝜆 ଶ  is small, this suggests the graph is nearly 

disconnected, that it has two components that are not very connected to each other, such as in 

Figure 5.3. Now, will use algebraic connectivity to choose the best edges to add to find paths 

for each robot one by one. 
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Figure 5.3: Example of disconnected undirected weighted graph 

The graph 𝐺 = ൫𝑉௜, 𝐸௝൯  in Figure 5.3 contains vertices 𝑉 = {𝑣ଵ, . . , 𝑣ଶ଼}  marked from 

𝑆௜= ( 𝑣ଵ = 𝑅ଵ,  𝑣ଶ = 𝑅ଶ,  𝑣ଷ = 𝑅ଷ) to (𝑣ଶ଼ = 𝑔), E = {𝑒ଵ, … , 𝑒଺଻}, there are six (6) polygonal 

obstacles (𝑂௜ =  𝑂ଵ,  𝑂ଶ,  𝑂ଷ, 𝑂ସ,  𝑂ହ, 𝑂଺ ). Each robot has initial position (𝑆௜ ) and the goal 

position 𝑔, here we have just one goal for three robots. The second smallest eigenvalue of the 

graph in Figure 5.3 has zero value (  𝜆 ଶ = 0 ) because the graph has two disconnected 

components (the graph not connected). Note that, the (𝑅𝑜𝑏𝑜𝑡ଵ = 𝑣ଵ) can find way to reach the 

target because it is exists in the component that consists of vertices   

൛𝑣ଵ, 𝑣଻,  𝑣ଽ,,  𝑣ଵଵ, 𝑣ଵଷ,  𝑣ଵହ,,  𝑣ଵ଻, 𝑣ଵଽ,  𝑣ଶ଴,, 𝑣ଶଵ,  𝑣ଶଶ,,  𝑣ଶଷ, 𝑣ଶ଼ൟ , where (𝑣ଶ଼ = 𝑔 = Goal). 

Whilst  (𝑅𝑜𝑏𝑜𝑡ଶ = 𝑣ଶ ,  𝑅𝑜𝑏𝑜𝑡ଷ = 𝑣ଷ ) exist in the component that consists of 

vertices ൛𝑣ଶ, . 𝑣ଷ,  𝑣ସ, 𝑣ହ,  𝑣଺,,  𝑣଼, 𝑣ଵ଴,  𝑣ଵଶ,, 𝑣ଵସ,  𝑣ଵ଺,,  𝑣ଵ଼, 𝑣ଶସ,, 𝑣ଶହ,  𝑣ଶ଺,, 𝑣ଶ଻ൟ , which do not 

have paths to reach the target g. Therefore, if we add a bridge (edge) between vertices 𝑣ଵଶand 

𝑣ଶଶ to form a weak link between the two graphs,  𝜆 ଶ increases to 0.3128. But if we add a path 

between vertices 𝑣଼ and 𝑣ଶଵ instead of 𝑣ଵଶand 𝑣ଶଶ,  𝜆 ଶ increases to 0.3652, thus we create a 

good link between the components because vertices (𝑣଼, 𝑣ଶଵ ) have more connections in their 

respective components which enable robot two (𝑅𝑜𝑏𝑜𝑡ଶ = 𝑣ଶ) to find a path to reach the target 

g by using Dijkstra’s algorithm and it is shown in Figure 5.4.  

 

Figure 5.4: The path planned for robot two by using MRPPA.  
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In addition, if we add a bridge between vertices 𝑣଼ and 𝑣ଶଵ and vertices 𝑣ଵଶand 𝑣ଶଶ together 

(i.e., two paths),  𝜆 ଶ jumps to 0.8835. But if we exchange the vertices 𝑣ଶଶ and 𝑣ଶସ instead of 

the vertices 𝑣ଵଶand 𝑣ଶଶ,  𝜆 ଶ   jumps to 0.8987 because the vertices 𝑣ଶଶ  and 𝑣ଶସ  have more 

connections in their respective components. Thus, enables robot three (𝑅𝑜𝑏𝑜𝑡ଷ) find a path to 

reach the target g by using Dijkstra’s algorithm and it is shown in Fig. 5.5. 

 

Figure 5.5: The path planned for robot three by using MRPPA. 

Moreover, if we add a bridge between vertices 𝑣ଵ and 𝑣଺ and vertices 𝑣଺and 𝑣ଵଵ together (i.e. 

two paths),  𝜆 ଶ jumps to 1.7695, and this enables robot one (𝑅𝑜𝑏𝑜𝑡ଵ = 𝑣ଵ) to find a path to 

reach the target g by using Dijkstra’s algorithm and it is shown in Fig. 5.6.  

 

Figure 5.6: The path planned for robot one by using MRPPA. 

Although each robot gets a path to reach the target 𝜆ଶ  is still small which refers to two 

components not being very connected to each other. Thus, the communication is not enough to 

exchange and share all information between the robots to avoid collision. Therefore, the more 

paths we add between the vertices of the graph, the more the second smallest eigenvalue 

increases, and results in a more strongly connected graph, such as the graph shown in Figure 
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5.6, where   𝜆 ଶ = 3.1262. By using Dijkstra’s algorithm then, shortest paths are found, and it 

is shown in Fig. 5.7.  

 

Figure 5.7: The paths planned used MRPPA.  

Note that, the aim of adding paths between vertices is to illustrate the ability and impact of the 

algebraic connectivity on determining the best edges to add between vertices to find a path for 

each robot respectively, how controlled connectivity within the system to guidance each robot 

to avoid collision, and increase strength communication, which enables robots to obtain the 

whole knowledge of the environment to perform their tasks. In the scenario of the workspace 

in Figure 5.2, the algorithm has found a path for each robot one by one, it planned the first path 

for  𝑅𝑜𝑏𝑜𝑡ଶ, second path for 𝑅𝑜𝑏𝑜𝑡ଷ, and third (last) path for 𝑅𝑜𝑏𝑜𝑡ଵ. Each robot goes through 

a different path and in different directions that do not intersect with each other. Thus, there is 

no collision occurring because robots do not move together on the same edge in opposite 

directions, and do not pass crossroads simultaneously on the same graph vertex, and algebraic 

connectivity is away from zero (𝜆ଶ > 0). Let us consider the scenario of workspace environment 

in Figure 5.1 above with add three goals instead of one goal, to explain how the algorithm will 

work to avoid collision between robots, as represented in Figure 5.8. 

   

Figure 5.8: Scenario of workspace for path planning 
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In this scenario we have three robots and three goals; we will first divide the workspace into 

two disconnected components of undirected weighted graph by using visibility graph such as 

Figure 5.9. 

 

Figure 5.9: Example of two disconnected components undirected weighted graph 

The graph 𝐺 = ൫𝑉௜, 𝐸௝൯  in Figure 5.8 consist of vertices 𝑉 = {𝑣ଵ, . . , 𝑣ଷ଴}  marked from 

𝑆௜=(𝑣ଵ = 𝑅ଵ,   𝑣ଶ଼ = 𝑅ଶ =   𝑣ଷ =  𝑅ଷ) to ൫ 𝑔ଵ = 𝑣ଷ଴ = 𝑔ଶ =  𝑣ଶ = 𝑔ଷ, 𝑣ଶଽ൯, E = {𝑒ଵ, … , 𝑒଺ଽ}, 

and there are six (6) polygonal obstacles (𝑂௜ = 𝑂ଵ,  𝑂ଶ,  𝑂ଷ, 𝑂ସ,  𝑂ହ, 𝑂଺). Each robot has initial 

position (𝑆௜) and the goal position (𝑔௜), here we have three goals for three robots. The second 

smallest eigenvalue of the graph in Figure 5.9 has zero value ( 𝜆 ଶ = 0 ), which means the graph 

is disconnected and have two connected components.  The robots ( 𝑅ଵ = 𝑣ଵ,   𝑅ଶ = 𝑣ଶ଼, 𝑅ଷ =

𝑣ଷ) exist in the first component that contains vertices: 

 ൛𝑣ଵ, 𝑣ଷ, 𝑣଻,  𝑣ଽ,,  𝑣ଵଵ, 𝑣ଵଷ,  𝑣ଵହ,,  𝑣ଵ଻, 𝑣ଵଽ, 𝑣ଶ଼, 𝑣ଶଽൟ, where vertex ( 𝑣ଶଽ = 𝑔ଷ,) is a goal for robot 

three. Subsequently, robot three (𝑅ଷ) can find a way to reach its target, but robot one ( 𝑅ଵ)  and 

robot two (𝑅ଶ) do not have paths to reach their targets. Whilst the second component contains 

vertices:

൛𝑣ଶ,  𝑣ସ, 𝑣ହ,  𝑣଺,,  𝑣଼, 𝑣ଵ଴,  𝑣ଵଶ,, 𝑣ଵସ,  𝑣ଵ଺,,  𝑣ଵ଼,  𝑣ଶ଴,, 𝑣ଶଵ,  𝑣ଶଶ,,  𝑣ଶଷ, 𝑣ଶସ,, 𝑣ଶହ,  𝑣ଶ଺,, 𝑣ଶ଻, 𝑣ଷ଴ൟ,   

vertices ( 𝑣ଶ = 𝑔ଶ 
, 𝑣ଷ଴ = 𝑔ଵ) are goals for robot one and robot two. When adding an edge 

between vertex 𝑣଺ and vertex  𝑣ଵସ  ,  𝜆 ଶ increases to 0.0867, and this enables robot one (𝑅ଵ =

𝑣ଵ) to find path to reach its target (𝑔ଵ = 𝑣ଷ଴ ).Whereas if add two edges (𝑣଼, 𝑣ଵ଴) and (𝑣଼, 𝑣ଵ଻), 

 𝜆 ଶ increases to 0.1808, this allows robot three 𝑅ଷ = 𝑣ଷ to find a path to reach its target (𝑣ଶଽ =

𝑔ଷ ).  Furthermore, when adding three edges together {(𝑣ଶ, 𝑣ଵ଴), (𝑣଼, 𝑣ଶ଴), (𝑣ଶ௢ , 𝑣ଶ଼)} ,  𝜆 ଶ 

increases to  0.3472 and robot two  (𝑅ଶ = 𝑣ଶ଼) will find a path to reach its goal (𝑔ଶ = 𝑣ଶ), see 

Figure 5.10. 



107 
 

 

Figure 5.10: The path planned for robot one and two using MRPPA. 

If add all possible paths between the vertices of the graph, the second smallest eigenvalue 

increases, and this will create a strong connectivity in the graph, where   𝜆 ଶ =  6.3802. By 

using Dijkstra’s algorithm then, the safe shortest paths are found, and it is shown in Fig. 5.11.  

 

Figure 5.11: The shortest paths for three robots using Dijkstra’s algorithm. 

The MRPPA has planned a path for each robot, first path planned for 𝑅ଵ:{𝑅ଵ = 𝑣଺ → 𝑣ଵସ →

𝑣ଶହ →  𝑣ଵ଼ → 𝑣ଶସ → 𝑣ଷ଴}, second path for 𝑅ଷ :{𝑅ଷ = 𝑣ଷ → 𝑣ଵ଴ → 𝑣଼ →  𝑣ଵ଻ → 𝑣ଵଷ → 𝑣ଶଽ}, 

and third (last) path for 𝑅ଶ  :{  𝑅ଶ = 𝑣ଶ଼ → 𝑣ଶଵ → 𝑣଼ →  𝑣ଵ଴ → 𝑣ଶ} . Although there is 

intersection (crossroad) between the path planned of robot one (𝑅ଵ)  and the path planned of 

robot three (𝑅ଷ), and  also opposite directions on the graph edges (straight roads) between the 
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path planned of robot three (𝑅ଷ) and the path planned of robot two (𝑅ଶ), but no collision 

happens, because the algorithm has planned a path for each robot sequentially (one by one). 

Hence, when planning the next path, it considers all the paths that have already been planned 

to prevent collisions and keep  𝜆ଶ > 0. There is a crossroad when robot one (𝑅ଵ) will pass the 

edge (𝑣଺, 𝑣ଵସ), and robot three (𝑅ଷ) will pass the edge(𝑣ଵ଴, 𝑣଼), but no collision occurs because 

robot one will pass before robot three. The arrival time (𝑇ோ೙
= 𝑤௜ + 𝑤௜௝ ) of robot one when 

passed the vertex (𝑣଺ ) is: 𝑇ோభ
= 𝑤ଵ + 𝑤(ଵ,଺) = 2, and when passed the vertex (𝑣ଵସ ):  𝑇ோభ

=

𝑤଺ + 𝑤(଺,ଵସ) = 4. Whereas the arrival time of robot three when passed the vertex 

(𝑣ଵ଴ ) 𝑖𝑠: 𝑇ோయ
= 𝑤ଷ + 𝑤(ଷ,ଵ଴) = 4, and when passed the vertex (𝑣଼ ):  𝑇ோయ

= 𝑤ଵ଴ + 𝑤(ଵ଴,଼) = 7. 

Consequently, 𝑇ோభ
< 𝑇ோయ

(this means that the arrival time of robot one (𝑅ଵ ) to the vertex (𝑣ଵସ ) 

is shorter than the arrival time of robot three(𝑅ଷ ) to the vertex (𝑣଼ ), because the distance (edge 

weight) that robot one (𝑅ଵ)  has passed the vertex (𝑣଺ ) = 2  is less than the distance (edge 

weight) that robot three (𝑅ଷ) has passed the vertex (𝑣ଵ଴ ) = 4, thus when robot one arrived at 

the vertex (𝑣ଵସ ) = 4, robot three will arrive at  the vertex (𝑣ଵ଴ ), for this reason no collision 

occurs and change of the edge weight is not necessary. If  𝑇ோభ
> 𝑇ோయ

, then the collision is 

possible (i.e., if arrival time of robot one on the vertex (𝑣଺ ) = 4  ), then the change of the edge 

weight is necessary to avoid collision. Also, there are opposite directions (straight roads) on 

the edge (𝑣଼, 𝑣ଵ଴) between robot three (𝑅ଷ ) and robot two (𝑅ଶ ).  𝑅ଷ will pass the edge earlier 

than the 𝑅ଶ, where  𝑇ோయ
= ൛൫𝑤ଵ଴ + 𝑤ଵ଴,଼൯ = ( 4 + 3) = 7ൟ,  and  𝑇ோమ

= {(𝑤଼ + 𝑤଼,ଵ଴) = (9 +

3) = 12}. Thus, the arrival time of robot three when passed the edge (𝑣଼, 𝑣ଵ଴)shorter than the 

arrival time of robot two, due to the distance that robot three has passed to arrive at the vertex 

(𝑣଼ = 7) is less than the distance that robot two (𝑅ଶ)  has passed the vertex (𝑣଼ ) = 9. Thus, 

 (𝑤଼ < 𝑇ோమ
 ) ∧ ൫ 𝑤ଵ଴ + 𝑤(ଵ଴,଼) < 𝑇ோమ

൯, then 𝑇ோమ
> 𝑇ோయ

.  

In addition, there is a crossroad on the vertex ( 𝑣଼ ), where 𝑇ோయ
 = 𝑤ଵ଴ + 𝑤ଵ଴,଼ = 7 ,and 𝑇ோమ

 

= 𝑤ଶଵ + 𝑤ଶଵ,଼ = 9 , hence  𝑇ோయ
<  𝑇ோమ

 the arrival time of robot three to the vertex ( 𝑣଼ ) before 

the robot two. Accordingly, there is no need to change the edge weight since no collision occurs. 

If  𝑇ோయ
> 𝑇ோమ

, then the collision is happening, so the change of the edge weight is important to 

collision avoidance. 

Let us now change the workspace environment in Figure 5.1 to the simple workspace 

environment to see how the MRPPA will work to find the shortest safe paths for a team of 
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multi robots. Assume we have three robots and three goals in a simple workspace environment 

such as Figure 5. 12.  

 

Figure 5.12: Simple workspace environment3  

To apply the MRPPA, we will first represent the workspace as an undirected weighted graph, 

and then divide it into two disconnected components of undirected weighted graph by using a 

visibility graph such as Figure 5.13.  

.  

Figure 5.13: Two disconnected components undirected weighted graph 

The graph 𝐺 = ൫𝑉௜, 𝐸௝൯ in Figure 5.12 consists of vertices𝑉 = {𝑣ଵ, . . , 𝑣ଷଶ}, where 𝑆௜=(𝑅ଵ =

𝑣ଶସ,   𝑅ଶ = 𝑣ଵଽ =   𝑅ଷ =  𝑣ଷଵ) are robot initial positions,൫ 𝑔ଵ = 𝑣ଵଵ = 𝑔ଶ =  𝑣ଵ = 𝑔ଷ, 𝑣ଶ଴൯ are 

goals positions, E = { 𝑒ଵ, … , 𝑒଻଴ }, and there are five polygonal obstacles 

(𝑂௜ = 𝑂ଵ,  𝑂ଶ,  𝑂ଷ, 𝑂ସ,  𝑂ହ). The second smallest eigenvalue of the graph in Figure 5.12 has zero 

value ( 𝜆 ଶ = 0 ), because the graph has two disconnected components. The robots ( 𝑅ଵ = 𝑣ଶସ,  

 𝑅ଶ = 𝑣ଵଽ , 𝑅ଷ = 𝑣ଷଵ)  exist in the component that contains on the vertices 

൛𝑣ଶ, 𝑣ସ, 𝑣଺,  𝑣଼,,  𝑣ଵ଴, 𝑣ଵଶ,  𝑣ଵସ,,  𝑣ଵ଺, 𝑣ଵ଼, 𝑣ଵଽ, 𝑣ଶ଴, 𝑣ଶଶ, 𝑣ଶସ, 𝑣ଶ଺, 𝑣ଶ଻, 𝑣ଶ଼, 𝑣ଶଽ, 𝑣ଷ଴, 𝑣ଷଵ, 𝑣ଷଶൟ , 

vertex ( 𝑣ଶ଴ = 𝑔ଷ,) is a goal for robot three. Consequently, robot three (𝑅ଷ) has a path to reach 

 
3 The environments presented in this figure are part of MATLAB ‘exampleMaps’, https://www.mathworks.com  
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its target, whilst robot one ( 𝑅ଵ) and robot two (𝑅ଶ) have their targets in the second component, 

which consist of the vertices ൛𝑣ଵ, 𝑣ଷ, , 𝑣ହ, 𝑣଻,  𝑣ଽ,,  𝑣ଵଵ, 𝑣ଵଷ,  𝑣ଵହ,,  𝑣ଵ଻, 𝑣ଵଽ, 𝑣ଶଵ, 𝑣ଶହൟ , vertices 

( 𝑣ଵଵ = 𝑔ଵ 
, 𝑣ଵ = 𝑔ଶ) are goals for robot one and robot two. If add an edge between vertex 𝑣ଵ଴ 

and vertex  𝑣ଵହ  , then robot one (𝑅ଵ = 𝑣ଶସ) can find a path to reach its target (𝑔ଵ = 𝑣ଵଵ ), and 

from this   𝜆 ଶ increases to 0.5212. Also, if  add the edges (𝑣ଵ, 𝑣଼) , (𝑣଼, 𝑣ଵ଻), and(𝑣ଵ଻, 𝑣ଵଽ) this 

enables robot three (𝑅ଷୀ𝑣ଵଽ) to find a path to reach its target (𝑣ଵ = 𝑔ଶ ), and  𝜆 ଶ increases to 

1.2747, see Figure 5.14.  

 

Figure 5.14: Paths planned for each robot by using MRPPA. 

Additionally, when adding all possible edges between the vertices of the graph, this will create 

a strong connectivity in the graph, and   𝜆 ଶ jumps to 2.5907. By using Dijkstra’s algorithm 

then, shortest paths are found, and it is shown in Fig. 5.15.  
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Figure 5.15: The shortest paths for three robots by using Dijkstra’s algorithm. 

The MRPPA planned the first path for robot three (𝑅ଷ):{𝑅ଷ = 𝑣ଷଵ → 𝑣ଶ଼ → 𝑣ଵ଴ →  𝑣ଵ଺ →

𝑣ଶ଴}, second path for robot one (𝑅ଵ): {𝑅ଵ = 𝑣ଶସ → 𝑣ଵ଴ →  𝑣ଵହ → 𝑣ଵଵ}, and third path for robot 

two (𝑅ଶ):{ 𝑅ଶ = 𝑣ଵଽ → 𝑣ଵ଻ → 𝑣଼ →  𝑣ଵ}. There is obviously a crossroad between the robot one 

(𝑅ଵ) and the robot three (𝑅ଷ) when they passed the vertex(𝑣ଵ଴), but no collision happen since 

the robot one will pass earlier than the robot three, the arrival time of the robot one when passed 

the vertex (𝑣ଵ଴ ): 𝑇ோభ
= 𝑤ଶସ + 𝑤(ଶସ,ଵ଴) = 5. While the arrival time of the robot three when 

passed the vertex (𝑣ଵ଴ ):  𝑇ோయ
= 𝑤ଶ଼ + 𝑤(ଶ଼,ଵ଴) = 8. Accordingly, 𝑇ோయ

> 𝑇ோభ
(this means that 

the arrival time of robot one (𝑅ଵ ) to the vertex (𝑣ଵ଴ ) is shorter than the arrival time of the 

robot three(𝑅ଷ ) to the vertex (𝑣ଵ଴ ), because the distance (edge weight) that robot one has 

passed to the vertex (𝑣ଵ଴ ) = 5  less than the distance (edge weight) that robot three has passed 

to the vertex (𝑣ଵ଴ ) = 8, so robot one will leaved the vertex (𝑣ଵ଴ ) before robot three arrive to 

the vertex (𝑣ଵ଴ ), therefore no collision occurs and change of the edge weight is not necessary. 

Besides, there is intersection between a path planned of  robot one (𝑅ଵ) when passed the edge 

(𝑣ଵ଴ , 𝑣ଵହ) and a path planned of  robot two (𝑅ଶ) when passed the edge(𝑣ଵ଻ , 𝑣଼), in this robot 

two will arrived at the vertex  (𝑣଼) before robot one passed the edge  (𝑣ଵ଴ , 𝑣ଵହ), and   𝑇ோమ
=

𝑤ଵ଻ + 𝑤(ଵ଻,଼) = 5  and   𝑇ோభ
= 𝑤ଵ଴ + 𝑤(ଵ଴,ଵହ) = 10,  (𝑤ଵ଴ > 𝑇ோమ

 ) ∧ ൫ 𝑤ଵ଴ + 𝑤(ଵ଴,ଵହ) > 𝑇ோమ
൯,

then 𝑇ோభ
> 𝑇ோమ

. Hence, no collision occurs, because the algorithm has controlled the arrival 

time of each robot by controlling the edges weight (distance),and  keeping  𝜆ଶ > 0.  

5.3  Result discussion 

In the scenario of a workspace environment in the first scenario, the robot one (𝑅𝑜𝑏𝑜𝑡ଵ) has 

path to reach the goal(𝑅ଵ → 𝑉ଵହ → 𝑉ଵଷ → 𝑉ଵ଻ → 𝑉ଶ଼ ), and the total distance is (24). However, 

this path is not short and optimal, thus when we chose two edges between the components of 

graph the algorithm found the shortest and optimal path for robot one (𝑅𝑜𝑏𝑜𝑡ଵ: 𝑅ଵ → 𝑉଺ →
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𝑉ଵଵ → 𝑉ଵ଻ → 𝑉ଶ଼,), and the total distance is (20). This happen in the second scenario of work 

space, where robot three has way to reach its target: (𝑅ଷ → 𝑉ସ → 𝑉଻ →

𝑉ଶଽ ), and total distance is (20) but instead this path the algorithm find shortest and optimal 

path for  𝑅𝑜𝑏𝑜𝑡ଷ: 𝑅ଷ → 𝑉ଷ → 𝑉ଵ଴ → 𝑉 → 𝑉ଵ଻ → 𝑣ଵଷ → 𝑣ଶଽ , and total distance is (15). 

Accordingly, the MRPPA chooses path for each robot respectively to collisions avoidance. 

In addition, the visibility graph method considers obstacles vertices in the map to be the vertices 

through which the robots can reach their required positions. It precedes to link the vertices that 

are visible with each other, where the visible vertices are vertices with the property that a 

straight line (edge, bridge, path, etc.) connecting them does not intersect with any obstacles. 

Therefore, the calculated paths contain a set of waypoints (𝑊෡ ), which also has the shortest 

length. These waypoints (𝑊෡ ) are determined like a series of consecutive points which begin 

from the lowest number of the first point to the goal number, the waypoints are given by 𝑊෡ =

{𝑤଴, . . . . . , 𝑤௡}, where 𝑤଴ is the start point and 𝑤௡ is the goal point. Hence, waypoints are a set 

of vertices of obstacles. For this reason, the paths (path1, path2, path3) have the least distances 

because they contain a set of waypoints, which are a set of vertices of obstacles that are found 

by using a visibility graph with combination of Dijkstra’s algorithm in a C-space (2D 

environment), for more information see the tables 5.1, 5.3, and 5.5 below. Also, these 

waypoints do not include the start points (𝑅ଵ, 𝑅ଶ, 𝑅ଷ) and the goal point (g), so they are always 

at specific vertices of obstacles, thus they are able to produce the shortest paths in terms of the 

Euclidean distance, the important condition for a path to have a lower Euclidean distance from 

starting point to goal point in C-space, where each waypoint is a vertex of an obstacle (O) [21]. 

For more understanding we will give an example to explain it.  

Example: Suppose that a set of waypoints (𝑊෡ )  that contains on a sequence of point, which are 

not vertices of the obstacles in configuration space. Let 𝑉ଶ  be the first such point in the 

sequence. 𝑉ଵ and 𝑉ଷ are the points directly before and after 𝑉ଶ, respectively. the vertex 𝑉ଶ will 

not be on the straight line 𝑉ଵ𝑉ଷ, because otherwise 𝑉ଶ should not be a waypoint. Without losing 

generality, consider a path 𝑉ଵ𝑉ଶ + 𝑉ଶ𝑉ଷ created by vertices (𝑉ଵ, 𝑉ଶ, 𝑉ଷ) as illustrated in Figure 

5. 16, if there is no obstacle among 𝑉ଵ and 𝑉ଷ, then 𝑉ଷ must be the next waypoint after 𝑉ଵ. In 

addition, let we consider the vertices 𝑉଺  and 𝑉଻  in the sequence. It can be observed the 

following arguments from Figure 5.16.  
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  𝑉ଵ𝑉ଶ + 𝑉ଶ𝑉ଷ  =  𝑉ଵ𝑉ଶ + 𝑉ଶ𝑉଺ + 𝑉଺𝑉଻ + 𝑉଻𝑉ଷ  >  (𝑉ଵ𝑉ସ + 𝑉ସ𝑉଺) + 𝑉଺𝑉଻ + 𝑉଻𝑉ଷ

=  𝑉ଵ𝑉ସ + (𝑉ସ𝑉଺ + 𝑉଺𝑉଻) + 𝑉଻𝑉ଷ > 𝑉ଵ𝑉ସ + (𝑉ସ𝑉ହ + 𝑉ହ𝑉଻) + 𝑉଻𝑉ଷ  

=  𝑉ଵ𝑉ସ + 𝑉ସ𝑉ହ + (𝑉ହ𝑉଻ + 𝑉଻𝑉ଷ)  >  𝑉ଵ𝑉ସ + 𝑉ସ𝑉ହ + 𝑉ହ𝑉ଷ 

 

Figure 5.16: A scenario with two obstacles 

The above arguments illustrate that the path 𝑉ଵ𝑉ସ + 𝑉ସ𝑉ହ + 𝑉ହ𝑉ଷ  created by vertices 

(𝑉ଵ, 𝑉ସ, 𝑉ହ , 𝑉ଷ), since 𝑉ଵ, 𝑉ସ and 𝑉ହ are the vertices of the obstacles, is less than the paths that 

consist of vertices (points), which are in the sequence [21]. 

The tables below will summarise the details of the waypoints and the paths planned of each 

robot in different scenarios of the workspace environment in Figures 5.6, 5.11, and 5.15 

respectively. 

Table 5.1: The waypoints of the scenario of Figure 5.6 generated by MRPPA. 

waypoints 

(path1) 
x y 

waypoints 

(path2) 
x y 

waypoints 

(path3) 
x y 

𝑤଴ 8.7 0.3 𝑤଴ 11 1 𝑤଴ 2 1 

𝑤ଵ 7.8 4 𝑤ଵ 10 5 𝑤ଵ 4.5 4 

𝑤ଶ 5 6 𝑤ଶ 9 7.5 𝑤ଶ 3.3 7 

𝑤ଷ 4.5 12.6 𝑤ଷ 10 10 𝑤ଷ 3.2 9.5 

𝑤ସ 5 16 𝑤ସ 10.8 12.9 𝑤ସ 5 16 

- - - 𝑤ହ 5 16 − - - 

 

Figure 5.17 shown waypoints and paths planned of Figure 5.6. 
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Figure 5.17: Waypoints paths planned by MRPPA. 

Table 5.2: The calculated paths planned (path1, path2, path3) for each robot in Figure 5.6 

Initial and 

endpoint 
Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 𝑅ଵ → 𝑉଺ → 𝑉ଵଵ → 𝑉ଵ଻ → 𝑣ଶ଼ 𝑷𝟏=5+3+6+6 = 20 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑉ଵ଴ → 𝑉 → 𝑉ଶଵ → 𝑣ଶ଼ 𝑷𝟐=4+5+3+8=20 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଶହ → 𝑉ଵ଼ → 𝑉ଶସ → 𝑉ଶଶ → 𝑣ଶ଼ 𝑷𝟑=5+3+3=5+4=20 

 

Note that, the distance from 𝑅ଵ  → 𝑉଺ = 5, 𝑉଺  →  𝑉ଵଵ = 3,  𝑉ଵଵ → 𝑉ଵ଻ = 6, 𝑎𝑛𝑑 𝑉ଵ଻ →

𝑣ଶ଼ = 6. Thus, the total distance is 5+3+6+6 = 20 which is the shortest distance that found by 

Dijkstra’s algorithm. 

Table 5.3: The waypoints generated by MRPPA in Figure 5.11 

 

waypoints 

(path1) 

x y 

 

waypoints 

(path2) 

x y 

 

waypoints 

(path3) 

x y 

𝑤଴ 3 1 𝑤଴ 3.4 16 𝑤଴ 8.7 0.3 

𝑤ଵ 4.5 4 𝑤ଵ 4.5 12.6 𝑤ଵ 7.8 4 

𝑤ଶ 7.5 6 𝑤ଶ 5 6 𝑤ଶ 5 6 
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𝑤ଷ 10 5 𝑤ଷ 7.8 4 𝑤ଷ 3.2 9.5 

𝑤ସ 9 7.5 𝑤ସ 11 1 𝑤ସ 2 8.5 

𝑤ହ 10 10 − - - 𝑤ହ 0.5 9 

𝑤଺ 12 12.7 − - - − - - 

 

Figure 5.18 shown waypoints and paths planned in Figure 5.11. 

 

Figure 5.18: Waypoints paths planned by MRPPA. 

Table 5.4:  The calculated paths planned (path1, path2, path3) for each robot in Figure 5.11 

Initial and 

endpoint 
Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 
𝑅ଵ → 𝑉଺ → 𝑉ଵସ → 𝑉ଶହ → 𝑣ଵ଼ → 𝑣ଶସ

→ 𝑣ଷ଴ 
𝑷𝟏=2+2+3+2+4+5=18 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑉ଶଵ → 𝑉 → 𝑉ଵ଴ → 𝑣ଶ 𝑷𝟐=3+6+3+8=20 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଵ଴ → 𝑉 → 𝑉ଵ଻ → 𝑉ଵଷ → 𝑣ଶଽ 𝑷𝟑=4+3+5=2+1=15 

 

Table 5.5: The waypoints generated by MRPPA of simple workspace in Figure 5.15 

 

waypoints 

(path1) 

x y 

 

waypoints 

(path2) 

x y 

 

waypoints 

(path3) 

x y 
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𝑤଴ 6.20 1.38 𝑤଴ 10.6 4 𝑤଴ 9.50 11.44 

𝑤ଵ 10 3.5 𝑤ଵ 7 6.5 𝑤ଵ 6.80 9.500 

𝑤ଶ 7 6.5 𝑤ଶ 4.5 9.5 𝑤ଶ 5 6.5 

𝑤ଷ 10 6.5 𝑤ଷ 1.50 10.5 𝑤ଷ 1 3.51 

𝑤ସ 11.65 11.29 𝑤ସ - - − - - 

 

Figure 5.19 shown waypoints and paths planned in Figure 5.15. 

 

Figure 5.19: Waypoints paths planned by MRPPA. 

Table 5.6: The calculated paths planned (path1, path2, path3) for each robot in Figure 5.15 

Initial and endpoint Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 𝑅ଵ → 𝑉ଵ଴ → 𝑉ଵହ → 𝑉ଵଵ 𝑷𝟏=5+5+5=15 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑉ଵ଻ → 𝑉 → 𝑣ଵ 𝑷𝟐=3+2+9=14 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଶ଼ → 𝑉ଵ଴ → 𝑉ଵ଺ → 𝑣ଶ଴ 𝑷𝟑=3+5+4+3=15 

5.4 Advantages and Disadvantages of the Visibility graph method 

The advantage of the visibility graph method is that the calculated path has the shortest length 

(lowers distance) if it is coupled with Dijkstra’s algorithm. It is also complete which means it 

always produces a path if one exists. This feature is essential because it will guarantee that the 

robot will accomplish a task in a scenario where path creation is feasible (i.e., it guarantees that 

the robot will find the shortest path to its target). On the other hand, the Visibility Graph 
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produces paths that contain waypoints that pass during obstacles’ vertices. Thus, the drawback 

of this method is that it plans a path that forces the robots to cross and to move as near the 

obstacles. This is not safe and might lead to collisions among robots and obstacles. Besides, its 

calculation time increases dramatically with the growth of obstacles. To address these problems, 

an algorithm called the Central Algorithm has been designed. This algorithm can create paths 

relatively fast and is convenient for path planning applications in obstacle-rich environments 

because it is considered a narrow area towards the goals positions, for this reason, it uses a 

small set of obstacles and vertices when the paths are computed.  

5.5  Central Algorithm (CA)   

To use the Central algorithm, the robot’s initial and goals positions, and the number of obstacles 

vertices and position are given. The algorithm generates a straight line connecting the start 

position and target position that is called Central Baseline path (CB), which is a simple and 

short path between the two these positions. The Central Baseline is not collision-free, it pass-

through the obstacles, hence, the obstacles are defined based on the CB paths, and the 

intersection points among the obstacles and the Central Baseline paths [21][33]. The CA 

generates a set of waypoints in free C- space around obstacles, these waypoints generated from 

each vertex of each obstacle that intersect with the central baseline path (CB). Waypoints are 

used to establish a partial visibility graph network from a specific area of the configuration 

space. The waypoints compute so that the line connecting the waypoint and its corresponding 

intersection point (vertex of obstacle) is orthogonal to the original central baseline path. Each 

Central baseline path has two intersection points, and each point has two waypoints; hence the 

total number of computed waypoints is four. The part of the Visibility graph is established 

based on the waypoints that are defined by the central baseline paths, which joins the initial 

and goals positions. CB allows using less set of obstacles during the path computation rather 

than the entire obstacles (O) as used by VG. Sequential waypoints are linked together to create 

multiple possible collision-free paths for the robots around the obstacles. It then finds shortest 

paths by using Dijkstra’s algorithm. 
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5.5.1 CA Algorithm  
Inputs:  Start (S), goal (g), polygonal obstacles, Central Baseline CB 

Outputs: Waypoint 𝑊෡ , Visibility graph, VG 
Our algorithm mainly includes the following steps:   

1. Create a Central Baseline (CB) from starting point s to the goal point g. 

2. Determine the intersection points between the central baseline (CB) and 
obstacles. 

3. Construct a set of waypoints, from each vertex of each obstacle that intersect with 
the CB 

4. Calculate the waypoints for those intersection points from each obstacle that lies 
on the CB, and their extensions including s start and g goal. 

5. Establish the partial of the Visibility graph VG   based on the waypoints (𝑊෡ ) that 
are defined by the Central Baseline (CB) and obstacles (O). 

6. Find paths from start(s) to goal (g) by using Dijkstra’s algorithm. 

7. End: paths calculated 𝑊෢ = {𝑤଴, . . . . . , 𝑤௡}, where 𝑤଴ = start point and 𝑤௡ = goal 
point. 

  

 

Figure 5.20: The process of Central algorithm (CA) 

5.5.2 Path Planning Using CA 
To illustrate how the algorithm works, consider the previous scenario of Figure 5.11, that 

consists of three robots each one has start positions 𝑆௜=(𝑅ଵ,  𝑅ଶ,  𝑅ଷ), goals positions  𝑔௜ =

 ൫𝑔ଵ, 𝑔ଶ, 𝑔ଷ൯, and six (6) polygonal obstacles (𝑂௜ = 𝑂ଵ,  𝑂ଶ,  𝑂ଷ, 𝑂ସ,  𝑂ହ, 𝑂଺). ). First, we create 

the central baseline (CB) that are joining the start positions to the goal positions, which are 
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highlighted in red colour. Then the obstacles that overlap with CB are determined. As a result, 

the intersection points between the obstacles and the central baseline paths are known, which 

are also highlighted in grey colour, hence it is required to calculate the waypoints for those 

intersection points. The waypoints generated from each vertex of each obstacle intersect with 

the central baseline path (CB), calculated for each half of the map, and the lines linking 

waypoints and their intersection points (vertex of obstacle) are orthogonal to the original 

Central Baselines paths, as shown in Figure 5. 21. Since there are two intersection points lying 

along each CB path, each point having two waypoints in each half of the map, so the total of 

four waypoints are computed, which are marked in blue colour. Successive waypoints are 

connected with each other to create multiple possible collisions-free paths for robots around 

obstacles, see Figure 5.21.  

 

Figure 5.21: The steps of Central algorithm (CA) in workspace environment 

Note that, for each robot there are two possible collision free paths. Each path passes through 

two waypoints, as shown in Figure 5.21.  

 

Figure 5.22: Two possible paths for robots (1, 2, and 3) by Central algorithm 
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In addition, the CB those linking the start (𝑠௜) and goals (𝑔௜) positions intersect with some of 

the obstacles, which allows using less set of obstacles when the path computation rather than 

all obstacles (𝑂௜), and also that results in an even least number of vertices. Besides, the feature 

of this method is that the distance between the obstacles and the generated path can be 

controlled. It also allows robots to approach obstacles within an appointed and acceptable 

distance, whilst minimising the travelled paths based on the complexity of obstacles, and as 

well as the information about the robots' positions. Figure 5.23 illustrates waypoint calculation, 

where the Central Baseline joining the start point 𝑆 and goal point 𝑔 intersect an obstacle, and 

its edges are shown as dotted lines, at point  𝑢(𝑥, 𝑦) . It is required to calculate a point 

𝑢′(𝑥′, 𝑦′) that creates an orthogonal line to the Central Baseline at point 𝑢(𝑥, 𝑦). 

 

 Figure 5.23: Computation of waypoint (𝑢′(𝑥′, 𝑦′)) at an intersection point (𝑢(𝑥, 𝑦))
  

 
The normal distance between the point 𝑢′(𝑥ᇱ, 𝑦ᇱ) and the straight line must exceed the 

maximum distance 𝑚 between any node in that object and the Central Baseline (CB) by a 

safe distance(𝛿). The normal distance 𝑚 is computed as:   

𝑚 =  
|(௚ି௦)௑ (௦ି௩)|

|௚ି௦|
 , Or 

𝑚 = ฬ
𝑎𝑥 + 𝑏𝑦 + 𝑐

√𝑎ଶ + 𝑏ଶ
ฬ 

The waypoint 𝑢′ is computed on either side of the intersection point by given: 

𝑢ᇱ = 𝑢 ± (𝑚 + 𝛿) ൤ 
−𝑐𝑜𝑠(90 − 𝜑)

𝑠𝑖𝑛 (90 − 𝜑)
൨    

Or  ൤
𝑥′
𝑦′

൨ = ቂ
𝑥
𝑦ቃ ± (𝑚 + 𝛿) ൤ 

−𝑐𝑜𝑠(90 − 𝜑)

𝑠𝑖𝑛(90 − 𝜑)
൨ 
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In the given equations above  𝑢, 𝑢ᇱ, 𝑣, 𝑠, 𝑎𝑛𝑑 𝑔 are position vectors for the intersection point, 

waypoint, vertex, start, and goal locations.  Whereas a, b, and c are constants and x, y are 

variables. Also, the angle 𝜑 between (CB) and the positive 𝑥 − 𝑎𝑥𝑖𝑠  is acute, so sin 𝜑  is 

positive, where sin 𝜑 =
௢௣௣௢௦௜௧௘

௛௬௣௢௧௘௡௨௦௘
 , and  cos 𝜑 =

௔ௗ௝௔௖௘௡௧

௛௬௣௢௧௘௡௨௦௘
   

Angle 𝜑 is the inclination of the line with slope, and since the slope defines as: M 

= 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡⁄ , so tan 𝜑 =
௢௣௣௢௦௜௧௘

௔ௗ௝௔௖௘௡௧
= 𝑀 

 

Figure 5.24: Diagram illustrating tan 𝜑 = M 

Now after waypoints calculation, the part of the visibility graph is established based on the 

obstacles that are defined by CB. In the Figure 5.21 scenario the CB allows using three of 

obstacles during the path computation rather than six obstacles (O).  If we represent the scenario 

of Figure 5.21 as undirected weighted graph, the set of obstacles that lie along CB with vertices 

{4, 5,6 ,10}, {7,9,11,13}, and {8,12,14,16,18}, which will construct a visibility graph network 

around them. The resultant VG using CA is illustrated in Figure 5.25. There are several paths 

generated by the path planning part of the algorithm, which will evaluate based on the weight 

function.   

 

Figure 5.25: Visibility graph network created by Central algorithm. 
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Finally, the Dijkstra algorithm will be employed to find the safe and shortest paths that is 

referred to as the optimal paths, see Figure 5.25  

 

Figure 5.26: Shortest paths for three robots calculated by using Dijkstra’s algorithm 

The algorithm has find paths for each robot, where path of robot one ( 𝑅𝑜𝑏𝑜𝑡ଵ ):  {𝑅ଵ =

𝑣ଵ→𝑣ସ଴ → 𝑣ଷ଻ → 𝑣ଷଷ → 𝑣ଷ଴}, path for robot two (𝑅𝑜𝑏𝑜𝑡ଶ) :{𝑅ଶ = 𝑣ଶ଼ → 𝑣ଷସ → 𝑣ଷ଼ →  𝑣ଷ଻ →

𝑣ଶ} , and third (last) path for robot three (𝑅𝑜𝑏𝑜𝑡ଷ) :{ 𝑅ଷ = 𝑣ଷ → 𝑣ଷ଻ → 𝑣ଷ଼ →  𝑣ଷ଺ → 𝑣ଶଽ}. It 

clear that there is intersection (crossroad) between the path planned of robot one (𝑅ଵ)  and the 

path planned of robot three (𝑅ଷ), in the vertex (𝑣ଷ଻) but no collision occurs because the robot 

three (𝑅ଷ) will passes the vertex (𝑣ଷ଻) before  robot one (𝑅ଵ). The arrival time of the robot 

three when passed the vertex (𝑣ଷ଻ ):𝑇ோయ
= 𝑤ଷ + 𝑤(ଷ,ଷ଻) = 2, whereas, the arrival time of the 

robot one when passed the vertex (𝑣ଷ଻ ) :𝑇ோభ
= 𝑤ସ଴ + 𝑤(ସ଴,ଷ଻) = 5 . Consequently, 𝑇ோయ

>

𝑇ோభ
(this means that the arrival time of robot three (𝑅ଷ ) to the vertex (𝑣ଷ଻ ) is greater than the 

arrival time of the robot one (𝑅ଵ ),  so the distance (edge weight) that robot three (𝑅ଷ)  has 

passed to the vertex (𝑣ଷ଻ ) = 2  less than the distance (edge weight) that robot one (𝑅ଵ) has 

passed to the vertex (𝑣ଷ଻ ) = 5, thus when robot one arrived to the vertex (𝑣ଷ଻ ) = 4, the robot 

three already left the vertex (𝑣ଷ଻ ), for this reason no collision occurs and change of the edge 

weight is not necessary. Also, there is opposite directions (straight roads) on the edge (𝑣ଷ଻, 𝑣ଷ଼) 

between robot three (𝑅ଷ ) and robot two (𝑅ଶ ), the 𝑅ଷ will pass the edge earlier, than the 𝑅ଶ, 

where  𝑇ோయ
= ൛൫𝑤ଷ଻ + 𝑤ଷ଻,ଷ଼൯ = ( 2 + 2) = 4ൟ,  and  𝑇ோమ

= {(𝑤ଷ଼ + 𝑤ଷ଼,ଷ଻) = (6 + 2) = 8}, 

the arrival time of robot three when passed the edge faster than the arrival time of robot two, 

due to the distance that robot three has passed to arrival the vertex (𝑣ଷ଼ = 4) less than the 

distance that robot one  (𝑅ଶ)   has passed to the vertex ( 𝑣ଷ଼ ) = 6 , thus  (𝑤ଷ଼ > 𝑇ோయ
 ) ∧

൫ 𝑤ଷ଻ + 𝑤(ଷ଻,ଷ଼) > 𝑇ோమ
൯, hence  𝑇ோమ

> 𝑇ோయ
 the arrival time of robot three to the vertex ( 𝑣ଷ଼ ) 
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before the robot two. Therefore, it is not essential to change the edge weight since no collision 

happens. 

Table 5.7: The waypoints by the CA of workspace in Figure 5.26 

 

waypoints 

( path1) 

x y 

 

waypoints 

(path2) 

x y 

 

waypoints 

(path3) 

x y 

𝑤଴ 3.5 1 𝑤଴ 8 0.8 𝑤଴ 3.4 13 

𝑤ଵ 3.9 5.1 𝑤ଵ 7.3 4.7 𝑤ଵ 4.8 9 

𝑤ଶ 7.3 4.7 𝑤ଶ 4.90 5.90 𝑤ଶ 4.90 5.90 

𝑤ଷ 8.3 6.8 𝑤ଷ 3.6 7.4 𝑤ଷ 7.3 4.7 

𝑤ସ 10 11.5 𝑤ସ 1.9 9.7 𝑤ସ 8.6 2.5 

 

 

Figure 5.27: Waypoints paths planned by CA of workspace 

Table 5.8: The calculated paths planned (path1, path2, path3) for each robot in Figure 5.22 

Initial and endpoint Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 𝑅ଵ → 𝑣ସ଴ → 𝑣ଷ଻ → 𝑣ଷଷ → 𝑣ଷ଴ 𝑷𝟏=3+2+1+4=10 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑣ଷସ → 𝑣ଷ଼ → 𝑣ଷ଻ → 𝑣ଶ 𝑷𝟐=4+2+2+1= 9 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଷ଻ → 𝑣ଷ଼ → 𝑣ଷ଺ → 𝑣ଶଽ 𝑷𝟑=2+2+1+3= 8 
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Furthermore, we also applied the Central algorithm on the scenario of a simple workspace 

environment in Figure 5.12, to illustrate how the algorithm is worked and its impact on the 

different environments. We first created the Central Baseline for each robot from start points 

to goals points that were highlighted in red colour. Then we define the obstacles that overlap 

with CB, then the intersection points between the obstacles and the Central Baseline are 

determined, which are also highlighted in blue colour, hence it is required to calculate the 

waypoints for those intersection points, see Figure 5.28. 

 

Figure 5.28: Central algorithm in simple workspace environment 

Waypoints have been calculated and marked by small blue points; thus, the part of the visibility 

graph is established based on the obstacles that are defined by CB.  If we represent the scenario 

of Figure 5.28 as an undirected weighted graph, the set of obstacles that lie along CB with 

vertices {8, 10}, {15, 17}, and {16,22}. The resultant VG using CA is illustrated in Figure 5.29. 

There are several paths generated by the path planning part of the algorithm, which will 

evaluate based on the weight function. 

 

Figure 5.29: Visibility graph network created by CA  
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Finally, Dijkstra algorithm is employed to find the safe and shortest paths that referred to as 

the optimal paths, see Figure 5.30 

 

Figure 5.30: Shortest paths for three robots calculated by using Dijkstra’s algorithm 

Dijkstra's algorithm has found paths for each robot, where path of robot one (𝑅𝑜𝑏𝑜𝑡ଵ): {𝑅ଵ =

𝑣ଶସ →𝑣ଷହ → 𝑣ଷ଺ → 𝑣ଵଵ}, path for robot two (𝑅𝑜𝑏𝑜𝑡ଶ) :{𝑅ଶ = 𝑣ଵଽ → 𝑣ସ଴ → 𝑣ଷ଼ →  𝑣ଷଶ → 𝑣ଵ} , 

and third (last) path for robot three (𝑅𝑜𝑏𝑜𝑡ଷ) :{ 𝑅ଷ = 𝑣ଷଵ → 𝑣ଷଷ → 𝑣ଷ଻ →  𝑣ସସ → 𝑣ଶ଴}. It clear 

that there are intersections (crossroads) between the path planned of robot one (𝑅ଵ)  and the 

path planned of robot three (𝑅ଷ), and also between the path planned of robot one (𝑅ଵ)  and the 

path planned of robot two (𝑅ଶ) but no collision occurs; because the algorithm controlled the 

arrival time of each robot by controlling the edges weight (distances) to avoid collisions 

between robots.  

Table 5.9: The waypoints by the Central algorithm of simple workspace in Figure 5.30 

 

waypoints 

( path1) 

x y 

 

waypoints 

(path2) 

x y 

 

waypoints 

(path3) 

x y 

𝑤଴ 9.4 3.8 𝑤଴ 8.5 11.44 𝑤଴ 7.30 3 

𝑤ଵ 9.5 6.8 𝑤ଵ 7.9 9.5 𝑤ଵ 7.4 5 

𝑤ଶ 6.9 7.3 𝑤ଶ 6.3 9 𝑤ଶ 9.5 6.8 

𝑤ଷ 4.6 8.5 𝑤ଷ 4 6 𝑤ଷ 10.2 7.5 

𝑤ସ 3.5 10.5 𝑤ସ 3 3.51 𝑤ସ 11.65 10.29 
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Figure 5.31: Waypoints paths planned by CA 

Table 5.10: The calculated paths planned (path1, path2, path3) for each robot in Figure 5.25 

Initial and endpoint Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 𝑅ଵ → 𝑣ଷ଻ → 𝑣ଷହ → 𝑣ଷ଺ → 𝑣ଵଵ 𝑷𝟏=3+1+2+3= 9 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑣ସ଴ → 𝑣ଷ଼ → 𝑣ଷଶ → 𝑣ଵ 𝑷𝟐=1+1+2+3=7 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଷଷ → 𝑣ଷ଻ → 𝑣ସସ → 𝑣ଶ଴ 𝑷𝟑=4+3+1+2=10 

5.6 Performance Comparison 

 Comparison between the performance of VG and CA in terms of the resulting paths planned 

and computation time. As formerly mentioned, one drawback of the visibility graph method is 

that the calculation time is related to the number of obstacles. The greater number of obstacles 

in the C-space causes a longer time to find paths (i.e., the computation time increases 

dramatically with the growth of obstacles). For example, the scenario of workspace in Figures 

5.11, and 5.15 consists of (6 obstacles, and 99 edges), and (5 obstacles, and 85 edges) 

respectively. Whilst the scenario of workspace in Figures 5.26, and 5.30 considered just three 

obstacles and they contain 70, and 67 edges respectively. Accordingly, the calculation time to 

find the paths are less in figure 5.26 and 5.30 because it uses just three obstacles for computed 

paths. Whereas the calculation time to find paths in Figures 5.11, and 5.15 is great, due to the 

increased number of obstacles. Besides, CA in both scenarios of Figures 5.26 and 5.30 provides 

the shortest collision free paths while maintaining a safe distance from obstacles, whereas the 

paths planned by VG method in Figures 5.11, and 5.15, are close to the obstacles, see Figure 
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5.32, where the paths planned by CA highlighted as red while the paths planned by VG marked 

as orange colour. 

 

Figure 5.32: The paths planned by CA (red) and VG (orange) 

As a result, the main reason why the Central algorithm is more efficient than the conventional 

visibility graph method, resulting in general solutions for various scenarios and generates 

visibility lines (edges) for calculation of the paths because it uses a smaller number of obstacles 

during the calculation of the paths. It also provides the shortest collision-free paths whilst 

maintaining a safe distance from the obstacles. The shorter the paths, the safer the robots are 

from collisions. On the other hand, the algorithm has a drawback, that is:  it considers just the 

obstacles that intersect with the CB but ignores other obstacles in the workspace. In addition, 

the algorithm generates a collision free path based on the complexity of the obstacles and the 

confirmation of information about the obstacles and robots positions, hence may not generate 

free-collisions paths in other situations of different maps. For example, the algorithm has found 

the shortest safe paths around the obstacles as shown in Figures 5.26, and 5.30 whilst 

maintaining a safe distance away from the obstacles. If we add other obstacles to the scenario 

of workspace in Figure 5.26, the paths of robots will not change unless the added obstacle 

interferes with those paths, as shown in Figure 5.33 below. 
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Figure 5.33: The impact of placing obstacles on the generated paths 

The algorithm redirects the robots, when obstacles intersect the shortest collision free paths, to 

find the next shortest paths, see Figure 5.33. Both Figures 5.33 and 5.34 clarify the impact of 

adding other obstacles. 

 

Figure 5.34: The algorithm reroutes the robots for find next shortest paths. 

Consequently, the Central algorithm can be improved to address this problem. 

5.7  Optimisation Central algorithm (OCA) 

As has been demonstrated in Section 5.4, the Central algorithm is relatively faster in planning 

paths in comparison with the visibility graph method. This is since the CA uses a smaller 
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number of obstacles during calculation of the paths. To optimise the CA to generate planning 

paths which are safer and not close to the obstacles, an improvement to CA is proposed in this 

section. It has been formerly emphasised that the Central algorithm employs CB that joins the 

start locations to g goals locations to determine a set of obstacles for paths calculation in an 

environment with many obstacles. This makes CA insensitive to the number of obstacles in the 

workspace environment. Hence it may not generate collision-free paths in other situations or 

in different scenarios. To address this, we need to expand the size of obstacles in the workspace 

environment by a certain distance before the paths are planned, to provide a safe path and avoid 

collision near the obstacles. This distance is called the Safety Distance that could be used to 

remove the drawback of the Central algorithm.  

5.7.1  Safety Distance 
Safety distance (𝐷௦) is important for the safety of the robots to be capable of safely passing the 

planned paths without colliding with any obstacles in the C-space and to ensure these paths are 

safe for the robots so that they can traverse through the vertices of obstacles in different 

scenarios of workspaces, even with added new obstacles. A safe distance produces general 

solutions and acceptable results for different maps because it generates waypoints around 

obstacles in the C-space. To demonstrate the implementation of the safety distance in a path 

planning process, consider a scenario of 5.11 that consists of six obstacles as shown in Figure 

5.35. 

 

Figure 5.35: The obstacles in workspace with safety distance. 

Next, Figure 5.36 shows the expansion of the obstacle by using the safety distance ( 𝐷௦ ). 
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Figure 5.36: The expanded obstacle with safety distance 
 

The safety distance 𝐷௦ is calculated as follow: 

𝐷ௌ= 𝑃𝑄 = ඥ(𝑥ଵ − 𝑥଴)ଶ + (𝑦ଵ − 𝑦଴)ଶ 

Alternatively, the Cartesian coordinates (𝑥ଵ − 𝑥଴) and (𝑦ଵ − 𝑦଴)  can be converted to the 

polar coordinates r and 𝜃  using the trigonometric functions sine and cosine as Figure5.36. 

 

Figure 5.37: A diagram illustrating the relationship between polar and Cartesian coordinates. 

where    𝑟 = 𝑃𝑄 = ඥ(𝑥ଵ − 𝑥଴)ଶ + (𝑦ଵ − 𝑦଴)ଶ , so  (𝑥ଵ − 𝑥଴) = 𝑟𝑐𝑜𝑠𝜃 , and (𝑦ଵ − 𝑦଴) =

𝑟𝑠𝑖𝑛𝜃.  The safety distance is calculated as follow: 

𝑟 = ඥ(𝑥ଵ − 𝑥଴)ଶ + (𝑦ଵ − 𝑦଴)ଶ 

 𝑟 = ඥ(𝑟𝑐𝑜𝑠𝜃)ଶ + (𝑟𝑠𝑖𝑛𝜃)ଶ 
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5.7.2 Path Planning Using OCA 
The partial visibility graph sing the Optimisation Central algorithm is depicted in Figure 5.38. 

The path planning starts with calculating initial paths by using OCA as shown in red in Figure 

5.38, where the red point represents the starting positions whilst the green points denote the 

goals positions. 

 

Figure 5.38: The partial of visibility graph network by the OCA   

As demonstrated, the safety distance produces many safe paths for each robot. It is changing 

the paths from semi collision-free to fully collision-free. In addition, even if we add other 

obstacle, the paths of robots will not change, because with the Safety distance the placing of 

obstacles will not affect the generated paths. Finally, there are several paths generated by the 

path planning part of the algorithm, which will evaluate based on the weight function. Then, 

Dijkstra’s algorithm is used to find paths from the constructed network as shown in Figure 5.39. 

 

Figure 5.39: Paths planned and generated by the OC algorithm 

Dijkstra's algorithm has find paths for each robot, where path of robot one (𝑅𝑜𝑏𝑜𝑡ଵ): {𝑅ଵ =

𝑣଺→𝑣ଵଶ → 𝑣ଷ଴}, path for robot two (𝑅𝑜𝑏𝑜𝑡ଶ) :{𝑅ଶ = 𝑣ଵ଺ → 𝑣ଵ଼ → 𝑣ଶ} , and third (last) path 
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for robot three (𝑅𝑜𝑏𝑜𝑡ଷ) :{ 𝑅ଷ = 𝑣ଵ଴ → 𝑣଼ → 𝑣ଵଵ → 𝑣ଶଽ}. It clear that there are intersections 

(crossroads) between the path planned of robot one (𝑅ଵ)   and the path planned of robot 

three (𝑅ଷ), and also between the path planned of robot one (𝑅ଵ)  and the path planned of robot 

two (𝑅ଶ) but no collision occurs; because the algorithm controlled the arrival time of each 

robot by controlling the edges weight (distances) to avoid collisions between robots.  

Table 5.11: The waypoints by the Optimisation Central algorithm  

 

waypoints 

( path1) 

x y 

 

waypoints 

(path2) 

x y 

 

waypoints 

(path3) 

x y 

𝑤଴ 3.5 1 𝑤଴ 3.66 12.85 𝑤଴ 8.0 0.8 

𝑤ଵ 3.9 4.7 𝑤ଵ 6.8 9.5 𝑤ଵ 7.3 4.7 

𝑤ଶ 5.4 9.4 𝑤ଶ 8.3 7.5 𝑤ଶ 4.85 5.98 

𝑤ଷ 9.6 11.2 𝑤ଷ 8.6 2.5 𝑤ଷ 3.6 7.4 

𝑤ସ - - 𝑤ସ - - 𝑤ସ 2.3 9.87 

 

 

Figure 5.40: Waypoints paths planned by OCA 

Table 5.12: The calculated paths planned (path1, path2, path3) for each robot by OCA  
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Initial and endpoint Shortest Path Total distance 

𝑅𝑜𝑏𝑜𝑡ଵ to 𝐺𝑜𝑎𝑙 𝑅ଵ → 𝑣଺ → 𝑣ଵଶ → 𝑣ଷ଴ 𝑷𝟏=3+2+4= 9 

𝑅𝑜𝑏𝑜𝑡ଶ to 𝐺𝑜𝑎𝑙 𝑅ଶ → 𝑣ଵ଺ → 𝑣ଵ଼ → 𝑣ଶ 𝑷𝟐=3+1+3= 7 

𝑅𝑜𝑏𝑜𝑡ଷ to 𝐺𝑜𝑎𝑙 𝑅ଷ → 𝑣ଵ଴ → 𝑣଼ → 𝑣ଵଵ → 𝑣ଶଽ 𝑷𝟑=2+1+1+4= 8 

 

Note that: the paths planned generated by OCA are the shortest paths (i.e., have the least 

distances) in comparison with paths planned by visibility graph and are safer as well. 

In summary, the Optimisation Central algorithm provides the shortest collision-free paths while 

maintaining a safe distance from obstacles, which makes it safer. Also, it employs a smaller 

number of obstacles, and this reduces the computational complexity of roadmap approaches, 

which means the calculation time decreases when calculating paths. All these features make it 

more efficient than the visibility graph method. 

5.8 Conclusion 

We have proposed an MPP Algorithm for 2D path planning based on the advantages of one of 

the most commonly used roadmap algorithms, the visibility graph method that combines with 

algebraic connectivity of the graph Laplacian (second smallest eigenvalue) as well as Dijkstra’s 

algorithm to calculate (finding) the shortest safe paths for robots from the start positions to the 

goals positions consequently (one by one) to avoid collisions with each other. VG is a path 

planning method that can produce optimal paths if they exist, especially if it is combined with 

Dijkstra's algorithm. However, the paths planned by the visibility graph method may not be 

collision-free, because it is planning paths that pass through the vertices of obstacles, and it is 

also computationally expensive when the environments are obstacles-rich. So, this chapter has 

proposed an algorithm called the Central algorithm that has been designed for 2D path planning 

based on the visibility graph method. This algorithm is used to find new paths that will be re-

planned to collisions avoidance with obstacles. The algorithm can address the disadvantage of 

the visibility graph as it produces general solutions for different scenarios and plans collision-

free paths in a computationally tractable way. The proposed algorithm, CA, is employed to find 

paths from a set of obstacles that are defined by the so-called central baseline (CB). CB is a 

simple line that joins the starting points and the goal points. All obstacles that interfere with 
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CB are the set of obstacles that will be used for paths planning. As the set consists of a relatively 

small number of obstacles, the paths are fast computed. The idea behind this approach is to 

produce optimal shortest paths that direct robots safely away from obstacles. Also, it reduces 

the computational complexity of roadmap approaches, where a less set of obstacles is 

considered for path calculation. This makes CA insensitive to the number of obstacles in the 

environment, which is its main drawback because it just considers the obstacles that intersect 

with CB, whilst it neglects other obstacles that may cause a collision due to, they may be near 

to paths planned. In addition, the algorithm generates collision-free paths based on the 

complexity of the obstacles and the confirmation of information about the obstacles and robots’ 

positions, hence may not generate free-collisions paths in other situations of different scenarios 

or maps. Therefore, to ensure the completeness of the algorithm, an improvement to CA has 

been proposed to improve its performance to generate planning paths safer and not close to the 

obstacles. Another algorithm called Optimisation Central algorithm (OCA) has been proposed 

to address this problem, the size of obstacles has been expanded by a certain distance before 

the paths are planned. This distance is called the Safety Distance that could be used to optimize 

the drawback of the Central algorithm. Safety distance can produce general solutions and 

acceptable results for different maps, and it is planning safe paths for the robots in the C-space, 

so that they can traverse through the vertices of obstacles in different scenarios of workspaces 

without collisions, even with adding new obstacles. In addition, it uses a smaller number of 

obstacles, and this reduces the computational complexity when calculating paths in the 

environment workspace. All these advantages make the OCA more effective than the visibility 

graph method to reduce optimal and complete paths.  
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6 Simulations and Experiments  

6.1  Introduction 

This chapter describes a software package that has been developed in this project for robot path 

planning, which serves two purposes: first, it validates the effectiveness of the proposed control 

algorithms; second, it executes and displays the algorithms in an intuitive way using MATLAB. 

This software package contains two strategies; each one has its own objective. The first strategy 

is used to implement the Multi-Robot Path Planning Proposed Algorithm (MRPPA), while the 

second executes the CA and OCA algorithms for finding safe shortest paths for robots within 

the environment. We implement and provide simulations and experiments using the Visibility 

Graph method in conjunction with Dijkstra’s algorithm respectively. The chapter is arranged 

as follows. The software packages and their functionalities are introduced first in section 6.2 

to illustrate the method in which the path planning process in the 2D space is carried out based 

on the proposed algorithms to find paths in different random scenarios. Then, the 2D path 

planning process is demonstrated to find 2D paths through the application of MRPPA, CA, and 

OCA based on the VG method followed by Dijkstra's algorithm in sections 6.3, 6.4, and 6.5, 

respectively. Additionally, to explain that the designed software package has been developed 

to implement the process of path planning systematically and in an easy-to-use manner. 

6.2  Path Planning Software  

The proposed control algorithm has been validated for path planning by means of extensive 

MATLAB/Simulink simulations. In general, to find the shortest collision-free path in a 

workspace environment using path planning proposed algorithms requires many inputs such as 

starting points, number of obstacles, positions and dimensions, goal location, and speed of 

robots. The obstacles are defined as geometric shapes such as triangles, rectangles, squares, or 

zigzag lines, etc. All required inputs must be supplied in order to perform and complete the 

process of path planning. In addition, all these inputs must be in accordance with a specific 

logical order, for instance, it is important to determine all obstacles data in terms of their 

dimensions and spatial locations before setting the starting points and target points so that these 

points do not fall in the obstacles area, causing it not to complete the path planning process. 

Consequently, if any of the required inputs is not supplied, the path planning process cannot be 

implemented.  
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6.3   Path Planning Software using MRPPA based on VG 

It is important that before entering the process of explaining the simulation in detail, the main 

concepts that have been used at each stage should be presented. At the first stage, we defined 

a workspace for three robots to move with obstacles that have been placed on their paths based 

on the proposed 2D path planning algorithms. The robots move in an environment with six 

obstacles that are placed in the middle of the workspace in locations known and marked in blue 

with different labels. The position of each robot is marked by a red point and the target position 

is denoted by a green point. The environment is visualised using MATLAB, as shown in Figure 

6.1. 

 

Figure 6.1: Scenario of workspace environment for three robots with one goal 

Table 6.1. describe details of workspace information depicted in Figure 6.1 

>> Simulation workspace environment 

figure1 = Figure (1) with properties:                                             G = graph with properties: 

  Number: 1                                                                                   Edges: [24×1 table]                  

        Name: ''                                                                                     Nodes: [28×0 table] 

      Colour: [1 1 1]                                                                                             

    Position: [403 246 560 420] 

       Units: 'pixels'      

     Show all properties 
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At the second stage, the workspace environment is divided into two disconnected components 

by adding visible edges between vertices of obstacles such as in Figure 6.2. Then, the algorithm 

will choose the best edges sequentially to connected components of the workspace by 

measuring algebraic connectivity to create paths for each robot, see Figure 6.3. 

 

Figure 6.2: Divided workspace environment by MRPPA 

Table 6.2. describe details of workspace depicted in Figure 6.2 

>> path planned by MRPPA 

G = graph with properties: 

    Edges: [68×2 table] 

    Nodes: [28×0 table] 

The MRPPA will planned paths (path 1, path 2, and path 3) respectively for each robot (one 
by one), as shown in Figure 6.3. 



139 
 

 

 

 

Figure 6.3: Paths planned by MRPPA using MATLAB 

Table 6.3. describe details of workspace information depicted in Figure 6.3 
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>> Paths planned by MRPPA  

G = graph with properties: 

    Edges: [71×2 table] 

    Nodes: [28×0 table] 

After that, the algorithm determined and connects all possible visibility lines (visibility graph) 

from the start point to the target point. Finally, Dijkstra's Algorithm is applied to test and 

process each step taken and measured distance from start points to goal points to find the 

shortest path by using MATLAB (see the detailed explanation of the algorithmic procedure in 

Chapter 2). It marks every path that has the shortest distance for robot one ( 𝑅ଵ), robot two (𝑅ଶ), 

and robot three (𝑅ଷ) are marked with red. The algorithm determines the shortest path for each 

robot to reach its goal, as shown in the scenario Figure 6.4. 

 

Figure 6.4: Three shortest paths planned via Dijkstra’s algorithm by MATLAB 

Table 6.4. describe details of workspace information depicted in Figure 6.4 

>> Paths planned by MRPPA  

G = graph with properties:   

  Edges: [108×2 table] 

    Nodes: [28×0 table] 

path1 =    1     6    11    17    28            d = 20 

path2 =     2    10     8    21    28              d =   20 

path3 =    3    25    18    24    22    28        d = 20 
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Note: each calculated path is a series of consecutive waypoints starting from the first point to 

the target point. For example, the path1 for robot one from start point to the goal point is 𝑅ଵ →

𝑣଺ → 𝑣ଵଵ → 𝑣ଵ଻ → 𝑣ଶ଼ , and the distance from start point to the goal is D = 20 

 

Figure 6.5: Workspace details depicted in Figure 6.4 

The result of the simulation has shown that each robot has performed its tasks and reached its 

target required without collision with obstacles or with other robots. Although each robot has 

taken a different path and with different distances from other robots, they succeeded in reaching 

their goal, as shown in Figure 6.6. 

 

Figure 6.6: Robots reach the target point  

Table 6.5. describe the details of workspace information depicted in Figure 6.6. 
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>> Simulation Paths planned by MRPPA 

Robot1 =   3.00000    2.0000 

Robot2=   11.000 0   1.5000  

Robot3 =   12.2000    3.0000 

figure2 = Figure (2) with properties: 

      Number: 2 

        Name: '' 

       Colour: [1 1 1] 

    Position: [403 246 560 420] 

       Units: 'pixels' 

  Show all properties 

 

Figure 6.7: Workspace details depicted in Figure 6.6 

We re-simulated the scenario of workspace environment in Figure 6.1 but with change in the 

position of robots (𝑅ଵ, 𝑅ଶ,  𝑅ଷ) and we add three targets to test the effectiveness of algorithms. 

In this scenario, we first provide a simulation environment for a team of three robots that appear 

as three red points, moving in the environment between six obstacles highlighted as blue, and 

three goals represented with green points, as depicted in Figure 6.8. 
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Figure 6.8: Scenario of workspace environment for three robots with three goals  

Table 6.6. describe details of workspace information depicted in Figure 6.8. 

>> Simulation workspace environment 

figure1 = Figure (1) with properties:                                            G = graph with properties: 

  Number: 1                                                                                   Edges: [24×1 table]                  

        Name: ''                                                                                     Nodes: [30×0 table] 

      Colour: [1 1 1]                                                                                             

    Position: [403 246 560 420] 

       Units: 'pixels'      

     Show all properties 
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Secondly, the algorithm divided workspace environment into two disconnected components by 

adding visible edges between vertices of obstacles such as in Figure 6.8. Then, it is choosing 

the best edges to join the components of the workspace respectively via measuring algebraic 

connectivity to create path for each robot, see Figure 6.9. 

 

Figure 6.9: Divided workspace environment using MATLAB  

Table 6.7. describes details of workspace information depicted in Figure 6.9. 

>> Path planned MRPPA 

G = graph with properties: 

    Edges: [69×2 table] 

    Nodes: [30×0 table] 
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Figure 6.10:  Stapes of Paths planned by MRPPA using MATLAB 

Table 6.8. describes details of workspace information depicted in Figure 6.10. 

>> Paths planned by MRPPA  

G = graph with properties: 

   Edges: [74×2 table] 

    Nodes: [30×0 table] 

 

Next, the algorithm connects all possible visibility lines (visibility graph) from the start point 

to the target point. Lastly, Dijkstra's Algorithm begins processing each step that is taken and 

measures the distances from start to the goal to find the shortest safe path. The algorithm has 

marked each shortest path with a red colour, such as the shortest path of robot one (𝑅ଵ) is 
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marked with a red colour, the shortest path of robot two (𝑅ଶ) with red, and the shortest path of 

robot three (𝑅ଷ) is marked with red. The algorithm has determined the shortest path for each 

robot to reach its goals that are also coded with a green colour. Figure 6.11 shows the 

application of the Dijkstra's algorithm for finding shortest paths for three robots ( 𝑅ଵ,

𝑅ଶ,  𝑅ଷ) that reach their targets without collision. 

 

Figure 6.11: Application of the Dijkstra Algorithm for paths planned by using MATLAB 

Table 6.9. describes details of workspace information depicted in Figure 6.11. For example, 
the path3 for robot two from start point to the goal point is 𝑅ଶ = 𝑣ଶ଼ → 𝑣ଶଵ → 𝑣଼ → 𝑣ଵ଴ →

𝑣ଶ , and the distance from start point to the goal is d = 20 

>> Paths planned by MRPPA  

G =   graph with properties: 

    Edges: [99×2 table] 

    Nodes: [30×0 table] 

path1 = 1     6    14    25    18    24    30            d = 18 

path2 = 3    10     8    17    13    29                    d = 15 

path3 = 28    21     8    10     2                           d = 20 
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Figure 6.12: Workspace details depicted in Figure 6.11 

The result of the simulation shows that the robots succeeded to reach their targets even as 

their locations and goals changed, as shown in Figure 6.13. 

 

Figure 6.13:  Robots reach the target points  

Table 6.10. describes details of workspace information depicted in Figure 6.13, for example, 
Robot1 has the coordinate (3.000, 2.000). 

>> Simulation Paths planned by MRPPA 

Robot1 =   3.000    2.0000  

Robot2=   4.3000    15.0000  

Robot3 =   11.0000    1.890 0 

figure2 = Figure (2) with properties: 

      Number: 2 
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        Name: '' 

       Colour: [1 1 1] 

    Position: [403 246 560 420] 

       Units: 'pixels' 

Show all properties 

 

 

Figure 6.14: Workspace details depicted in Figure 6.13 

6.3.1 Path planning for simple maps by MRPPA 
To test the effectiveness of the proposed algorithm, we give a simulation of the simple 

workspace environment that has three robots highlighted in blue and three goals highlighted in 

green such as Figure 6. 15. 

 

Figure 6.15: Simple workspace environment with the use of  MATLAB 
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Table 6.10. describes details of workspace information depicted in Figure 6.15. 

>> Path planned MRPPA  

G = graph with properties: 

    Edges: [26×2 table] 

    Nodes: [32×0 table] 

 

 

Figure 6.16: Workspace details depicted in Figure 6.15 

Here, the algorithm will divide workspace environment into two disconnected components by 

adding visible edges between vertices of obstacles such as in Figure 6.17. In addition, it is 

choosing the best edges to connect the components of the workspace separately via measuring 

the second smallest eigenvalue to generate path for each robot. 
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Figure 6.17: Paths planned by MRPPA using MATLAB 

Table 6.11. describes details of workspace information depicted in Figure 6.17. 

>> Path planned MRPPA  

G = graph with properties: 

   Edges: [74×2 table] 

    Nodes: [32×0 table] 

 

The algorithm connects all possible visibility lines (visibility graph) from the start point to the 

target point. Then, Dijkstra's Algorithm is applied to test and process each step taken and 

measured distance from start to goal to find the shortest path by using MATLAB, as Figure 

6.18. 
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Figure 6.18: Paths planned by MRPPA using MATLAB 

Table 6.12. describes details of workspace information depicted in Figure 6.18. For example, 
the path3 for robot three from start point to the goal point is 𝑅ଷ = 𝑣ଷଵ → 𝑣ଵଷ → 𝑣ହ → 𝑣ଶ଴ , 
and the distance from start point to the goal is d = 19 

G = graph with properties: 

    Edges: [85×2 table] 

    Nodes: [32×0 table] 

path1 = 24    30    10    11                     d = 18 

path2 =  1     8    17    19                      d = 20 

path3 = 31    13     5    20                     d = 19 

 

Figure 6.19: Workspace details depicted in Figure 6.18 
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The result of the simulation has shown that each robot has reached its target without collision 

with other robots, see Figure 6.20. 

 

Figure 6.20: Robots successfully reach the target point  

Table 6.13: Details of the multi-robot paths depicted in Figure 6.18 

Robots Path waypoints Position [x; y; θ] Object 

𝑅𝑜𝑏𝑜𝑡ଵ [5 6.5;7 9.5] Pose1[2.5; 3.0 ; pi/2] [8.80, 12.25, 1.00 

𝑅𝑜𝑏𝑜𝑡ଶ [4.5 10;2.0 6.0] 

  

Pose2[5.81; 12.35; pi] 

 

[0.7, 3.6, 2.00] 

𝑅𝑜𝑏𝑜𝑡ଷ [10.0 3.0;7.0 6.50] Pose3[10.5; 2.5; 0] [2.18, 11.8, 3.00] 

 

6.4  Path planning Software by CA 

We demonstrate a scenario with six obstacles, three starting points, and three target points in a 

workspace that has been generated. The next step is to generate Central Baseline (CB) that 

linking the starts and target points as highlighted in red, which is a key step for path planning. 

The obstacles that overlap with CB have been determined, as a result, the waypoints generated 
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from each vertex of each obstacle that intersects with CB, and calculated for each half of the 

map, the lines linking waypoints, and their intersection points (vertex of obstacle) are 

orthogonal to the original CB marked as dashed blue lines, as shown in Figure 6.21. Since there 

are two intersection points that lie along each CB path, each point having two waypoints are in 

each half of the map, so the total of four waypoints are computed, which are marked in red. 

Successive waypoints are connected with each other's to create multiple possible collision-free 

paths for robots around obstacles, see Figure 6.21 

 

 

Figure 6.21: Application of the CA using MATLAB 

Table 6.14. describes details of workspace information depicted in Figure 6.21. 
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>> C Algorithm 

G =   graph with properties:                                   figure1 = Figure (1) with properties:           

    Edges: [45×1 table]                                              Number: 1 

    Nodes: [42×0 table]                                             Name: '' 

path1 = 1    30           d =   1                                    Colour: [1 1 1] 

path2 = 3    29           d = 1                                 Position: [403 246 560 420] 

path3 = 28     2          d =1                                        Units: 'pixels' 

                                                                               Show all properties 

 

 

Figure 6.22: Workspace details depicted in Figure 6.21 

After all the required inputs are keyed in, the part of the visibility graph is generated by the 

CA. The visibility graph of the previous scenario, generated from the waypoints is shown in 

Figure 6.23. Displaying the part of the visibility graph is beneficial because it reflects the 

number of obstacles involved in the calculation of the paths. 
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Figure 6.23: Visibility graph by CA using MATLAB 

Table 6.15. describes details of workspace information depicted in Figure 6.23. 

>> Visibility graph by CA 

G =   graph with properties: 

    Edges: [70×2 table] 

    Nodes: [42×0 table] 

 

 

Figure 6.24: Workspace details depicted in Figure 6.23 
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Now, after collecting all the important information and creating the VG, Dijkstra's algorithm 

finds collision-free paths for each robot in a 2D workspace environment as shown in Figure 

6.25 

.   

Figure 6.25: Paths planned by CA using MATLAB 

Table 6.16. describes details of workspace information depicted in Figure 6.25. For example, 
the path3 for robot two from start point to the goal point is 𝑅ଶ = 𝑣ଶ଼ → 𝑣ଷସ → 𝑣ଷ଼ → 𝑣ଷ଻ →

𝑣ଶ , and the distance from start point to the goal is d = 9. 

>> Simulation Paths planned by CA 

G =   graph with properties:                                            

    Edges: [70×2 table]                                                     

    Nodes: [42×0 table] 

path1 = 1    40    37    33    30                      d = 10 

path2 = 3    37    38    36    29                       d = 8 

path3 = 28    34    38    37     2                       d = 9 
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Figure 6.26: Workspace details depicted in Figure 6.25 

The result of the simulation shows that the robots succeeded to reach their targets, as shown 

in Figure 6.27. 

 

Figure 6.27: Robots reach the target points  

Table 6.17. describes details of workspace depicted in Figure 6.27. for example, Robot1 has 
the coordinate (3.000, 2.100). 
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>> Simulation Paths planned by CA 
Robot1 =   3.000    2.1000  
Robot2=   4.5000    13.5000  
Robot3 =   10.2000    2.3000  
figure2 = Figure (2) with properties: 
      Number: 2 
        Name: '' 
       Colour: [1 1 1] 
    Position: [403 246 560 420] 
       Units: 'pixels' 
Show all properties 

 

 

Figure 6.28: Workspace details depicted in Figure 6.27 

Moreover, we have simulated a scenario of a simple workspace environment using the Central 

algorithm to illustrate how it worked and its impact on the different environments. The 

workspace has three robots marked with blue colour, while the green points are the goals that 

robots must reach. Also, we defined the obstacles that overlap with CB, and waypoints that are 

generated by the algorithm are highlighted with red, as shown in Figure 6.29. 
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Figure 6.29: Waypoints generated by CA  

After created waypoints, the part of the visibility graph is generated. By ticking all the 

important information, Dijkstra's algorithm will find collision-free paths for each robot. The 

result of the simulation shows that the robots succeeded to reach their targets without collision 

with obstacles or with other robots, see Figure 6.30 

 

Figure 6.30: Robots successfully reach the target points  

Table 6.18. describes details of workspace depicted in Figure 6.30. 

>> Simulators  

s = struct with fields: 

         RobotPose: [0 0 0] 

    LookaheadPoint: [1.7964 3.3458] 
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Figure 6.31: Workspace details depicted in Figures 6.30  

Table 6.19: Details of paths depicted in Figures 6.30, and 6.31 

Robots Path waypoints Position [x; y; θ] Object 

𝑅𝑜𝑏𝑜𝑡ଵ [6.98 7.0; 4.7 8.78] Pose1[10.5;4.5;pi/2] [2.085, 10.64, 1.00] 

𝑅𝑜𝑏𝑜𝑡ଶ [8.46  9.46; 4.0 6.0] Pose2[9.72;10.44;-pi] [0.81, 3.51, 2.00] 

𝑅𝑜𝑏𝑜𝑡ଷ [9.62  6.6; 10.2 7.5] Pose3[7.6;2.38;0] [11.98, 11.29, 3.00] 

 

6.5  Path planning Software by OCA 

The package executes the OCA to find collisions-free paths in 2D environment. The algorithm 

considers the obstacles location with safe distance, the starting points and target points during 

the path calculation process, where the red points represent the starting positions whilst the 

green points denote the goals positions. See scenario of Figure 6.32.     
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Figure 6.32: Application of the OCA algorithm using MATLAB 

Table 6.20. describes details of workspace information depicted in Figure 6.32. 

>> OCA 

G =   graph with properties:                        figure1 = Figure (1) with 

properties:         

    Edges: [48×1 table]                                                       Number: 1     

    Nodes: [54×0 table]                                                       Name: '' 

                                                                 Colour: [1 1 1] 

                                                                                    Position: [403 246 560 420] 

                                                           Units: 'pixels' 

                                                                   Show all properties 
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Figure 6.33: Workspace details depicted in Figure 6.32 

The part of visibility graph generated after all the required inputs are keyed by using the OCA 

is depicted in Figure 6.34. The part of the visibility graph is useful because it determined the 

number of obstacles contributory in the calculation of the paths. 

 

Figure 6.34: Visibility graph by OCA using MATLAB 

Table 6.21. describes details of workspace information depicted in Figure 6.34. 
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>> VG by OCA 
G =   graph with properties: 
    Edges: [85×1 table] 
    Nodes: [54×0 table] 
 

 

The path planning starts with calculating initial paths by using Dijkstra's algorithm and finds 

collision-free paths for each robot in a 2D workspace environment as shown in red in Figure 

6.35. 

 

Figure 6.35: Paths planned by OCA using MATLAB 
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Table 6.22. describes details of workspace depicted in Figure 6.35, for example, the path3 for 
robot two from the start point to the goal point is 𝑅ଶ = 𝑣ଶ଼ → 𝑣ଷଶ → 𝑣ଷଵ → 𝑣ଶ , and the 
distance from start point to the goal is d = 7. 

>> Paths planned by OCA 

G =   graph with properties: 

    Edges: [85×2 table] 

    Nodes: [54×0 table] 

path1 =     1    40    34    30                  d =   9 

path2 =   3    37    38    36    29             d =   8 

path3 =    28    32    31     2                    d =   7 

 

 

Figure 6.36: Workspace details depicted in Figure 6.35 

The result of the simulation shows that the robots succeeded to reach their targets, as shown 

in Figure 6.37. 
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Figure 6.37: Robots reach the target points 

Table 6.23. describes details of workspace depicted in Figure 6.37, for example, Robot1 has 
the coordinate (3.000, 2.100). 

>> Simulation Paths planned by OCA 

Robot1 =   3.000    2.1000  

Robot2=   4.5000    13.5000  

Robot3 =   10.2000    2.3000  

figure2 = Figure (2) with properties: 

      Number: 2 

        Name: '' 

       Colour: [1 1 1] 

    Position: [403 246 560 420] 

       Units: 'pixels' 

  Show all properties 
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Figure 6.38: Workspace details depicted in Figure 6.37 

6.6 Conclusion 

The software package has been designed and developed to perform path planning to facilitate 

the process of finding paths for teams of multi-robots. The proposed algorithms have made 

finding shortest paths based on the Visibility Graph method with Dijkstra’s algorithm in the 

two-dimensional workspace in a simple way because the process of path planning is equipped 

with pre-calculated step-by-step instructions. The CA and OCA have been developed to 

address the drawback of the VG method. Both algorithms make pathfinding based on the VG 

easier as the path planning process has been done systematically. The purposes of the software 

package are to validate the effectiveness of the proposed algorithms and introduce them in an 

intuitive manner as the package was designed to be user easy. In addition, the software package 

has validated the effectiveness of the algorithms proposed through simulations experiments 

using the software/MATLAB. Simulations have been conducted to compare the performance 

of the presented algorithms, where we developed different experiments to test the algorithms. 

In each experiment, robots have successfully reached their target without collisions. This 

demonstrates the advantage of the method presented in this thesis comparing to the ones with 

classical methods in the literature.  Besides, a set of experiments demonstrated the effect of 

changing the safe distance on the planned paths. The results of the experiments are promising, 

as they illustrated the effectiveness, computational efficiency, and adaptability of the presented 

approach. 
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In summary, the simulation results confirmed that the CA and OCA based on the visibility 

graph followed by Dijkstra’s algorithm are computationally effective in creating collision-free 

paths for robots. Besides that, these paths were optimal (short and safe), complete, and have 

the lowest distance to reach the targets. 
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7 Conclusion and Future work 

7.1 Conclusion 

Nowadays, multi-robot systems (MRS) have widely spread, especially with continually 

improving technology. MRS focus on the control of a team of robots to accomplish tasks more 

effectively and with more robustness and/or in less time. A large amount of effort has been 

devoted in the scientific community to the field of multi-robot systems because they exhibit 

better fault-tolerance, flexibility, performance and are able to share information among their 

members in a fast and reliable manner. Besides that, it can often deal with tasks that are difficult 

to achieve using a single robot. Despite recent technology used in a multi-robot system, several 

problems still need to be addressed, for example, the motion planning problem that was tackled 

in this thesis.   

The main objective of this study is to demonstrate how path planning can be improved using 

graph theory.  By using methods from graph theory, path planning can be done more efficiently 

and robustly, as shown in the previous chapters. Employing the graph of the potential paths 

makes the designed algorithms of robots’ path planning correlated with the environment model, 

thus improving their application capability. The algorithms provide global optimality during 

path planning according to different given optimum criteria such as least paths length, safe 

paths, effectiveness, computational efficiency, etc. Briefly, path planning includes a problem 

of finding an optimal (short, and safe) path from a starting position to a goal position. In 

addition, there are three criteria for path planning which must be considered before designed 

any path planning algorithm, computational efficiency, path optimality and completeness. This 

chapter summarises the work done in the thesis on path planning for a multi-robot system, with 

consideration of all the above-mentioned criteria, also involving the developed path planning 

algorithms, path planning software packages, and possible extensions of the work that have 

been developed in this thesis.  

7.1.1 2D Path Planning Algorithm   

We have proposed a new method to design a roadmap-based path planning algorithm in 2D 

static environments, named the Multi-Robot Path Planning Algorithm (MRPPA), which 

assumes a-priori knowledge of robots' positions, their goals’ positions, and surrounding 

obstacles. The algorithm combines the visibility graph method with the algebraic connectivity 

(second smallest eigenvalue 𝜆ଶ) of graph Laplacian and the Dijkstra's algorithm. MRPPA 

provides robots collision avoidance because it is automatically planning safe paths that do not 
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intersect each other in the time-space continuum. The algorithm implies sequential path 

planning for each of robots (path by path) based on the value of algebraic connectivity of graph 

Laplacian, which controls the inter-robot’s connectivity when it is not zero and has a predefined 

weight evaluation function (edge weights). When planning the path of each robot, all the paths 

that have been already planned took into consideration potential collisions avoidance. For this 

reason, the algorithm provides optimality of all planned paths because the paths depend on the 

order of planning, so the choice of the right sequence for path planning of robots has significant 

impact on performance of the team and avoids collisions. In addition, visibility graph (VG) is 

a path planning method that can produce optimal paths if they exist especially when combined 

with Dijkstra's algorithm.  In addition, we have conducted several simulation experiments on 

different scenarios of workspaces to test performance of the algorithm. The results showed the 

influence of the algorithm in creating collision-free paths for robots, and visibility graph (VG) 

is capable of producing an optimal path if one exists. However, the paths planned by this VG 

method may not be collisions-free, because it is planning paths that passes through the vertices 

of obstacles, and it is also computationally expensive when the environments are obstacles-

rich.  Therefore, we have developed the Central Algorithm (CA) coupled with Optimisation 

Central Algorithm (OCA), which is based on the VG method. The main idea of these 

algorithms is that the obstacles associated with Central Baseline (CB) are only considered 

whilst the rest are discarded during the path calculation. Thus, it can create paths relatively fast 

and is convenient for path planning applications in obstacle-rich environments because it uses 

a small set of obstacles, whilst retaining the advantages of the VG. 

7.1.2 2D Path Planning Algorithms Based on Visibility Graph Method 

Two path planning algorithms in two-dimensional (2D) workspace environments have been 

designed in Chapter 5. The first one, Central algorithm (CA) is utilised to find a path that passes 

through a set of obstacles in the workspace environment represented by the configuration space 

(C-space). A Central Baseline (CB), which is determined in the Central algorithm, is a straight 

line that connects the starting location (s) and goal location(g). Its purpose is to define a set of 

obstacles (O), which will be employed for paths computation. The algorithms are 

computationally efficient because the number of obstacles that are used for path computation 

is relatively small. This means the algorithms find paths by decreasing the number of obstacles 

(as well as edges) to be taken into consideration, which reduces the calculation time contrary 

to the VG method. On the other hand, the algorithms hold the completeness criterion as they 

will generate a path if one exists, hence they solve the problem of the conventional VG method, 
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and they hold the completeness criterion. The outcome of the developed path planning 

algorithms is optimal (shortest) and collision-free (safe) paths that direct robots safely away 

from obstacles. In addition, they reduce the computational complexity of roadmap approaches 

and are also able to produce general solutions for different environments. The algorithms plan 

safe paths for the robots in the C-space; so that they can traverse through the vertices of 

obstacles in different scenarios of workspaces without collisions, even with added new 

obstacles. It is also worth emphasising that the algorithms possess the criteria of path planning 

and may be capable of finding a globally optimal path if the knowledge of the environment is 

fully and accurately known. Note, the optimal paths here mean the safe and shortest paths.  

7.1.2.1 Central Algorithm (CA) 
The CA generates a set of waypoints in free C- space around obstacles, and these waypoints 

are generated from each vertex of each obstacle that intersects with CB. Waypoints are used to 

establish a part of the visibility graph network from a specific area of the configuration space. 

As CA contains a relatively small number of obstacles, VG can be established in a relatively 

short time. The central algorithm then plans paths based on the VG method using Dijkstra’s 

algorithm. CA, however, provides paths that may not be collision-free because it just considers 

the obstacles that intersect with CB and neglects other obstacles that may be near the paths 

planned and causes collisions. Therefore, another algorithm called the Optimisation Central 

algorithm (OCA) had been proposed.   

7.1.2.2 Optimisation Central Algorithm (OCA) 
In fact, the Central algorithm is a part of OCA. To ensure the completeness of the OCA, an 

improvement to CA has been proposed to enhance its performance to generate safer paths and 

not too close to obstacles. Hence, to address this problem, the size of obstacles has been 

expanded by a certain distance before the paths are planned. This distance is called the Safety 

Distance, which could be used to optimise the drawback of the Central algorithm. Safety 

distance can produce general solutions and acceptable results for different workspaces because 

it generates waypoints around obstacles in the C-space. Thus, it is planning safe paths for the 

robots so that they can traverse through the vertices of obstacles in different scenarios of 

workspaces without collisions, even when new obstacles are added. After establishing the 

safety distance around obstacles by OCA, CA will be called to find CB from starting points to 

target (goal) points, which passes through a set of obstacles in the environment represented by 

the C-space. This procedure guarantees the use of a smaller number of obstacles and therefore 

reduces the computational complexity when calculating paths in the environment workspace 
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and provides a great extent of flexibility. Because of this, OCA will result in paths which are 

collision-free. OCA provides the shortest collision-free paths while maintaining a safe distance 

from obstacles, which makes it safer. Also, it employs a smaller number of obstacles, and this 

reduces the computational complexity of roadmap approaches, which means the calculation 

time decreases when calculating paths. All these advantages make OCA completely effective 

to produce optimal and complete paths, and it is more efficient than the visibility graph method.   

7.1.3 Software Package for 2D Path Planning environment  

A path planning software package has been introduced and developed in this project for multi-

robot path planning in Chapter 6. The main purpose of the package is to validate the 

effectiveness of the proposed control algorithms. Additional design intention includes execute 

and display the algorithms in an intuitive method and is designed to be user friendly using 

MATLAB. The software package contains two strategies, and each has its own objective. The 

first strategy is used to implement the Multi-robot Path Planning Proposed algorithm, while the 

second executes the CA and OCA. Simulations have been conducted to compare the 

performance of the presented algorithms, where we developed different experiments to test the 

algorithms. Simulation results demonstrated effectiveness of competed algorithms and 

confirmed that these algorithms are suitable to be implemented in creating collision-free paths, 

where the paths were optimal (short and safe), and complete.  Also, the results illustrated the 

effectiveness, computational efficiency, and adaptability of the presented approach. 

7.2 Future Work 

Although this thesis has demonstrated the potential of finding the optimal path in a workspace 

environment for a multi-robot system by advanced graph algorithms techniques, opportunities 

for extending the scope of this thesis remain. This section briefly presents the proposed future 

work.  

The 2D path planning graph algorithms have been successfully used to find the optimal paths 

for a team of multi robots. Whilst these paths satisfy required standards such as path optimality, 

completeness, and computational efficiency, nevertheless, improvements are possible. 

Currently, the MRPPA, CA, and OCA (explained in Chapters 4 and 5, respectively) assume 

that the workspace environment of starting positions, targets, and obstacles’ positions and sizes 

are accurately known in C-space. Future work must consider unknown environments, 

especially the positions and sizes of obstacles if applied in a real scenario in real robots’ 

environments. Since the VG based method generates paths through the obstacle’s vertices, the 

lack of accurate knowledge of the obstacles’ positions will pose a challenge. In addition, the 
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algorithms proposed have assumed that all obstacles in workspace are static. However, the 

obstacles may navigate from one place to another in real scenarios. Thus, future work should 

consider moving obstacles in the design of path planning algorithms. Furthermore, the 

proposed 2D path planning algorithms consider a multi-robot system because the tasks 

performed by MRS achieve better and faster results when compared to those performed by a 

single robot, if they are applied in real-time. Therefore, the current study could be extended to 

other graph algorithms and tested to find a solution for the problem of path planning which 

provide a comparison between results. This is potentially an important area of development in 

future work. Further research could investigate the different methods of graph theory and the 

algebraic graph theory since they have an important influence on the results obtained.  

Finally, the presented algorithms have shown promising characteristics, and generated better 

results to find optimal paths for a team of multi-robot in different experiments and scenarios. 

Therefore, further investigation is needed to improve the execution and lead to applications in 

the future. The presented work can also be further extended to be applied in different fields, 

especially since recent advances in robotics enabled more intensive interactions with people 

and support their daily activities [166]. Some possible environments for future work include 

warehouses, shopping malls, agricultural fields, and hospitals. Our work can be applied in 

shopping malls where each robot can interact with people to provide them information about 

shops and path guidance to facilitate the shopping process [166][167]. In [166] and [167], a 

robot has been developed to provide customers with shopping centre information, and it has 

shown its effectiveness in directing people and increasing their interest around the shopping 

centre [166][167][168]. In agriculture, agricultural robots can be developed to cooperate and 

perform missions in a simple and safe way rather than the heavy machinery and tractors that 

are used today. For example, a team of automated vehicles can operate to accomplish 

agricultural tasks under the supervision of farmers to shorten time and effort [169]. In 

warehouses, where the operation of warehouses is considered a complex mission that requires 

many staff to collect, sort, and deliver items, especially in large ones. A team of robots can be 

employed to perform this task quickly and efficiently [170]. In conjunction with what is 

happening today around the world from the spread of the coronavirus’s disease (COVID-19), 

our work can be applied in hospitals. For example, in the Department of Communicable 

Diseases and Epidemics, where the team of robots can help and perform some tasks that may 

be difficult to carry out or dangerous to the medical staff, especially in the presence of spreads 

of diseases and epidemics. The environment of the department is known (static obstacles, start 

point, and target direction), robots can contact patients and provide some necessary things such 
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delivery of food instead of staff to keep staff safe and reduce contact with them. For example, 

robots have been used for logistics services in China to protect workers and medical staff from 

the risk of infection of Coronavirus`s disease (Covid-19), such as medical transport, serving 

foods to patients, spray disinfectants and clean, transport medical samples, and perform 

diagnostics and thermal imaging [171].  
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8 Appendix [A] Important Concepts from Graph Theory 

This Appendix provides an overview of the basic concepts of graph theory and algebraic graph 

theory used in the thesis and emphasises their importance in strengthening the communication 

network between robots. It also presents a brief overview of Dijkstra's algorithm to provide the 

reader with the basic knowledge and information on how it works to find the shortest path to 

tackle the so-called problem of motion planning. Most of those definitions are standard, so they 

are not in quotes, but there are references to the related sources. 

8.1  Graph Theory 

A graph is a pair  𝐺 = (𝑉, 𝐸) that consists of a set of vertices  𝑉 = {𝑣ଵ, 𝑣ଶ, … . . 𝑣௡},  (sometimes 

referred to as nodes, or points), and a set of edges 𝐸 ⊆  𝑉 ×  𝑉, 𝐸 =  {𝑒ଵ, 𝑒ଶ, … . . 𝑒௡} (also 

referred to lines) between pairs of vertices. The quantities |V| (the number of vertices) and |E| 

(the number of edges) are, respectively, called the order and size of the graph [134].  

The Figure 8.1 is example of graph with the vertex set V = {A, B, C, D, E} and edge set E = 

{{A, B},{A,C},{A,E},{B,C},{B,E},{C,E},{E,D}} 

 

  

Figure 8.1: Example of a graph. The labelled circles represent the vertices vi,   

while the lines between them represent the edges. 

As we already mentioned in Chapter two a multi-robot system can be represented by a graph, 

the vertices are representing the robots (agents) and the edges represent the connections 

(possibility to communicate) between the robots. There are two different categories of graphs: 

directed graphs and undirected graphs. 

Directed Graph: G = (V, E)  consists of a vertex set (a finite set of elements) V =

{vଵ, vଶ, … . . , v୬} and an edge set (a subset of ordered pairs of  (𝑣௜, 𝑣௝) , the “2-element subsets” 

of  𝑉 . V × V =  ൛൫𝑣௜, 𝑣௝൯ൟ,   i =  1, . . . , n,   j =  1, . . . , m,   i ≠  j ,  E ⊆ V × V, (v୧, v୨) ∈ E ⇏

(v୨, v୧) ∈ E,   v ୧ ≠  v୨.                                            



176 
 

Here v୧  is the initial vertex and v୨  is the terminal vertex. The information interchange is 

unidirectional. These commonly exploited to model unidirectional communication between the 

robots, which possibly based on the pure sensing [71][144][155][172]. 

 Uundirected Graph: G = (V, E)  consists of a vertex set (a finite set of elements) 𝑉 =

{𝑣ଵ, 𝑣ଶ, … . . 𝑣௡} and an edge set (a subset of unordered pairs of  (𝑣௜ , 𝑣௝) , the “2-element subsets” 

of  𝑉 ).  V × V =  ൛൫𝑣௜ , 𝑣௝൯ൟ, i =  1, . . . , n, j =  1, . . . , m, i ≠ j  , E ⊆ V × V, (v୧, v୨) ∈ E ⇔

(v୨, v୧) ∈ E.  The information interchange is bidirectional. Therefore, it often exploited to 

model bidirectional communication between the robots [142][173][174][175][176]. 

 

 

 

Figure 8.2: Example of the directed and undirected graph.  

Two vertices are said to be adjacent and are neighbours if they are the endpoints of an 

edge in graph  𝐺 = (𝑉, 𝐸). If edge  𝑒௜ = {𝑣௜ , 𝑣௝  }  ∈  𝐸(𝐺), then 𝑣௜ and 𝑣௝  are adjacent 

or neighbours. 

 An independent set in a graph is a set of pairwise nonadjacent vertices.  

 A vertex v is incident with an edge e if  𝑣 ∈ 𝑒.  The degree  𝑑ீ(v) or (v) of a vertices v 

is the number |𝐸(𝑣)| of edges incident at v. The number  𝛿(G):= min{𝑑(𝑣)|𝑣 ∈ 𝑉}  is 

the minimum degree of G. The number  ∆(G) = max{(𝑣) |𝑣∈𝑉} is the maximum degree 

of G, see Figure 8.3 [173][174][175][176].  
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Figure 8.3: Example of degree of graph 

 A graph (G) is regular if  (G) = (G), Graph (G) is k-regular if the degree is deg (v) 

= k for all v ∈G; if graph (G) is 3-regular it is called cubic, see Figure 8.4.  

 

      

              Figure 8.4: Example of regular graph 

 

 A subgraph of a graph G is a graph H such that:  V(H) ⊆  V(G) and E(H)  ⊆ E(G), and 

the assignment of endpoints to edges in H is the same as in G. Figure 8.5 example of 

subgraph where:  H
1
, H

2
, and H

3
 are subgraphs of G [176]. 

         

                          Figure 8.5: Example of subgraph  
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 An induced subgraph: If G ⊆ G , and G, contains all the edges  𝑣௜𝑣௝  ∈ 𝐸  with 𝑣௜𝑣௝ ∈ 𝑉 ’ 

𝑉 ’ ⊂ V ,  then G , is an induced subgraph of G. A set S of vertices is an independent set 

if and only if the subgraph induced by it has no edges, see Figure 8.6 

[129][173][174][176]. 

 A spanning subgraph H of a graph G is a subgraph obtained by edge deletions only, in 

other words, a subgraph whose vertex set is the entire vertex set of G 

[117][173][174][176].  

 

 

             Figure 8.6: Example of induced subgraph and independent set  

𝐺ଵ is isomorphic to 𝐺ଶ, 𝐺ଵ    𝐺ଶ if there exists a bijection f:  V (𝐺ଵ) V (𝐺ଶ) such that: 

[ v୧v୨ E(𝐺ଵ) ⟺ f(v୧)f൫v୨൯ E(𝐺ଶ) for all v୍, v୨  ∈ V ] , see Figure 8.7, where  {[𝑓1:  𝑤 →

𝑐, 𝑥 → 𝑏, 𝑦 → 𝑑, 𝑧 → 𝑎], [𝑓2:  𝑤 → 𝑎, 𝑥 → 𝑑, 𝑦 → 𝑏, 𝑧 → 𝑐]}. 

 

 

                    Figure 8.7: Example of isomorphic subgraph   

 A path is a sequence or a list of adjacent vertices such that two consecutive vertices 

are adjacent  [90][129][174][176]. 

 𝑣 =  {𝑣ଵ, 𝑣ଶ, . . . , 𝑣௡}  𝑎𝑛𝑑 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡  𝐸 = {{𝑣ଵ, 𝑣ଶ} , {𝑣ଶ, 𝑣ଷ} , . . . , {𝑣௡, 𝑣௡ିଵ}}. 
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• A simple path is a path where the vertex is not used more than once.  

• A cycle is a simple closed path where the first vertex and last vertex are the same. See 

example in Figure 8.8 where: (a, d, c, b, e) is a path, and (a, d, c, b, e, a) is a cycle 

[90][129][174]176]. 

• The directed graph without cycles is called a directed acyclic graph 

[90][129][174]176]. 

 

 

         Figure 8.8: Example of a path and a cycle in a graph 

 

 A graph without cycles is called a forest, and a connected forest is called a tree. 

 A tree T is a connected graph that has no cycles and often has a pyramid shape or a 

hierarchical structure [90][174][176][177]. 

 A spanning tree for a graph is a subgraph of G which is a tree that includes every vertex 

of G [90][174][175][176], see Figure 8.9.  

 

       

             Figure 8.9: Example of forest, tree and spanning tree graph. 
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    Loop: An edge whose endpoints are equal.  

 Multigraphs are graphs that contain multiple edges.  

 A simple graph is the graphs without loops or multiple edges [90][174][176][177]. 

 

 

 

   Figure 8.10: Example of simple, multiple, and loop graph and cycle 

 A complete graph is a simple undirected graph in which every pair of distinct vertices 

is connected by a unique edge A complete subgraph in a graph, called a clique, is a set 

of pairwise adjacent vertices. 

 A weighted graph is defined as a graph  G =  (𝑉, 𝐸) where V is a set of vertices and E 

is a set of edges  𝐸 =  {൫𝑣௜, 𝑣௝൯|𝑣௜, 𝑣௝ ∈ 𝑉} associated with a weight function  𝑤: 𝐸 →

𝑅, where R denotes the set of all real numbers or weights that are assigned to each edge 

of the graph. Most of the times, the weight 𝑤௜௝  of the edge between nodes i and j 

indicates either distance (temporal geometric) or cost. In addition, the weight of the 

edge represents the relevance of the connection, and by that way, more information is 

linked to the graph G [90][174][176][177], see Figure 8.11. 

        

                  Figure 8.11: Example of a weighted graph  



181 
 

A graph is called connected if any two vertices are linked by a path or there is an edge from 

each vertex to every other vertex in graph G. 

 A maximal connected subgraph of G is called a component of G. 

 The distance between 𝑣௜  and 𝑣௝  in G, denoted by  𝑑𝐺(𝑣௜, 𝑣௝), is defined as the length 

of the shortest path between 𝑣௜  and 𝑣௝  contained in G; if no such path exists 

then  𝑑𝐺(𝑣௜, 𝑣௝)  =  ∞.   

 A graph G is called disconnected if there are non-connected parts of vertices and edges 

[90][170][174][176][177]. 

 

 

           Figure 8.12: Example of connected and disconnected graphs  

 A graph G is bipartite if V (G) is the union of two disjoint independent sets called partite 

sets of G [90] [173][174][178]. 

                   

Figure 8.13: Example of Bipartite graphs 

Weinstein, E. W. (2008). Complete Tripartite Graph. Available online at 

http://mathworld.wolfram.com/CompleteTripartiteGraph.html 

 Planar graphs: a graph that can be drawn on a plane without any lines crossing, or if it 

can be drawn on the plane so no edges intersect with each other (other than the endpoint), 

such as a graph A in Figure 8.14. 
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  A non-planar graph is a graph that has many overlapping links, or its edges intersect 

each other's, such as graph B in Figure 8.14 [174][176][177]. 

 

          

       Figure 8.14: Example of planar and nonplanar graphs 

             https://transportgeography.org/?page_id=6003. 

8.2 Graph Rigidity 

Graph rigidity: a graph is called rigid if there is an embedding of a graph in a Euclidean space 

that is structurally rigid. Also, a graph is rigid if the structure formed by replacing the edges by 

rigid rods and the vertices by flexible hinges is rigid such a cycle graph 𝐶ଷ. Whilst a graph that 

is not rigid is called flexible, such as a cycle graph 𝐶ସ  [179]. 

 On the other hand, "a framework (or graph) is rigid if the only allowed motions satisfying the 

constraints are those of the complete graph or if and only if the continuous motion of the points 

of the configuration maintaining the bar constraints comes from a family of motions of all 

Euclidean space which are distance-preserving" [179].  

A framework is rigid if there exists a neighborhood  𝑍 ⊂  𝑅ேௗ of p such that:  𝑔𝐺ିଵ(𝑔𝐺(𝑝) ∩

𝑍 = 𝑔𝑘ିଵ(𝑔𝐾(𝑝)) ∩ 𝑍  [176][178]. 

Bar-and-joint framework: A framework in Rୢ is a pair  (𝐺;  𝑝), where 𝐺 =  (𝑉, 𝐸) is a 

graph and   𝑃: 𝑉 → 𝑅ௗ  is a map from V to  Rୢ. We consider the framework to be a straight 

line embedding of 𝐺 in Rୢ in which the length of an edge  ൫𝑣௜ , 𝑣௝൯ ∈ 𝐸 is given by the 

Euclidean distance between points 𝑝(𝑣௜) and 𝑝(𝑣௝).  Let (𝐺, 𝑝ଵ) and (𝐺, 𝑝ଶ) be frameworks 

then [178] [180][181]: 

 Framework equivalency: two frameworks (𝐺, 𝑝ଵ) and (𝐺, 𝑝ଶ) are equivalent if they 

have the same edge lengths  𝑔𝐺(𝑝ଵ) = 𝑔𝐺(𝑝ଶ).   

 Framework congruency: two frameworks (𝐺, 𝑝ଵ) and (𝐺, 𝑝ଶ) are congruent if  
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|𝑝ଵ(𝑣ଵ) − 𝑝ଵ(𝑣ଶ)| = |𝑝ଶ(𝑣ଵ) − 𝑝ଶ(𝑣ଶ)| , for all 𝑣௜ , 𝑣௝ ∈ 𝑉 (the constraints are satisfied 

over all the possible edges [178] [180][181]. 

 (𝐺, 𝑝ଵ) is rigid if there exists an  𝜀 >  0 such that every framework (𝐺, 𝑝ଵ) which is 

equivalent to (𝐺, 𝑝ଶ) and satisfies  |𝑝ଵ(𝑣) − 𝑝ଶ(𝑣)|  <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈  𝑉, is congruent 

to (𝐺, 𝑝). 

 (𝐺, 𝑝ଵ) is globally rigid if every framework (𝐺, 𝑝ଶ) which is equivalent to (𝐺, 𝑝ଵ), is 

congruent to (𝐺, 𝑝ଶ) [178] [180]. 

Graph is minimally rigid if it is rigid and if no single edge can be removed without losing 

rigidity (minimally rigid= keep formation rigid with minimal number of edges), or a graph G 

is minimally rigid in  𝑅 ௗ  if G is rigid and  𝐺 − 𝑒 is not rigid for all  𝑒 ∈  𝐸 [178] [180][181]. 

 

 

Figure 8.15: Example of a rigid and a non-rigid graph 

http://slideplayer.com/slide/5019665/ 

8.3 Algebraic Graph Theory 

There are several matrices that can be associated with graphs, and many graph properties can 

be deduced from the associated matrices. The following algebraic tools are fundamental for 

linking graph theory to the study of multi-robot systems when they are viewed as collections 

of dynamical systems.  Given a graph  𝐺 =  (𝑉, 𝐸) we can assign two possible directions to 

each edges of graph, thus we can define the Incidence matrix over the edge set. The Incidence 

matrix  B(G)  ∈  R୬×୫ can be defined as: 

                                       B = ൫b୧୨൯ = ቐ
−1
1

if  e୧ = (𝑣௜ , 𝑣௝)

if  e୧ ୀ (𝑣௝ , 𝑣௜)

0 otherwise.

                           (8.1) 
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Where M is the cardinality of the edge set and  e୧ is the i-th edge of G. When the orientation 

map is not defined, a random orientation can be chosen [49][82][175][182][183]. The incidence 

matrix corresponding to the graph in Figure 8.1 is given by: 

                                          𝐵 =

⎣
⎢
⎢
⎢
⎡

 

−1
1
0
0
0

0
−1
1
0
0

0
0

−1
0
1

−1
0

−1
0
0

−1
0
0
0
1

0
−1
0
0

−1

0
0
0

−1
1

   

⎦
⎥
⎥
⎥
⎤

               (8.2) 

The communication graph can be described by means of the adjacency matrix  A ∈  R୬×୬ . 

Each element 𝑎௜௝ is defined as the weight of the edge between the i and the j robot and is a 

positive number if  j ∈  N୧, zero otherwise, [49][50][158][165]. 

                                            𝐴 = ൫𝑎௜௝൯ = ቄ
1     𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸,
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                (8.3) 

                                                    𝑎௜௝ = 𝑎௝௜  ,   𝑎௜௜ = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖.   

It is square and symmetric i.e., 𝐴 =  𝐴் (only for undirected graphs). Communications among 

robots i and j are possible if the (𝑖, 𝑗) entry in  𝐴(𝑎௜௝) has a value of one (1), however if the 

(𝑖, 𝑗) entry in  𝐴(𝑎௜௝) has a value of zero (0) then there are no connections between robot i and 

j. Here a graph is symmetric that means all connections exists in both directions and thus each 

robot i that can receive data from another robot j, can transmit the data back to that robot j 

[50][175][183][184]. The Adjacency matrix corresponding to Figure 8.1 is given by: 

                                                                𝐴 =

⎣
⎢
⎢
⎢
⎡
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
0 0 0 0 1
1 1 1 1 0

   

⎦
⎥
⎥
⎥
⎤

                                    (8.4) 

Notice that: the adjacency matrix can be computed numerically using MATLAB predefined 

codes. 
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Figure 8.16: Example of adjacency matrix 

The degree matrix  D ∈  R୬×୬ is a Diagonal matrix showing a number of edges connected to 

each vertex 𝑣௜ . the  (𝑖, 𝑖) entry in D (d୧୨) is given by:        

                                                                    𝑑௜ୀ ∑ 𝐴௜௝
௡
௜ୀଵ                                                        (8.5) 

As an example, the degree matrix corresponding to the graph in Figure 8.1 is given by: 

                                                           D =

⎣
⎢
⎢
⎢
⎡
3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 4

   

⎦
⎥
⎥
⎥
⎤

                              (8.6) 

A matrix that plays a central role in many graph-theoretic treatments of multi-robot systems 

(mobile robots) is the Laplacian matrix, which is defined as: 

                                                           L = D − A = or L =  𝐵𝐵்                              (8.7) 

The Laplacian matrix corresponding to the graph in Figure 8.1 is given by: 

                                           L =

⎣
⎢
⎢
⎢
⎡

  

3 −1 −1      0   −1
−1   3  −1      0   −1
−1
   0
−1

−1
 0

−1

  3     
  0     
−1    

0
1

−1

−1
−1
   4

    

⎦
⎥
⎥
⎥
⎤

                          (8.8) 

Note that all diagonal entries are non-negative while all off-diagonal entries are non-positive 

[49] [50][184]. The Laplacian matrix L exhibits some remarkable properties: 

1. L is positive semi-definite. 
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2. The eigenvalues of the Laplacian matrix are always non-negative. Moreover, they can 

always be ordered as follows [183][185]:     

eig(L)  =  {0 =  𝜆ଵ  ≤  λ ଶ ≤ . . . ≤  λ௡} 

3. If 𝜆ଵ  is a simple eigenvalue (𝑖. 𝑒. 0 = 𝜆ଵ  < 𝜆ଶ), then the graph is connected. Moreover, in 

this case,  𝑛𝑢𝑙𝑙(𝐿) =  𝑠𝑝𝑎𝑛 {1}, where  1ሬ⃗ =  [1 . . . 1]் 𝑎𝑛𝑑  0ሬ⃗  =  [0 . . . 0]்  are vectors of N 

elements all equal to 1 and 0 respectively. This implies  𝐿1 =  0, [49][50][183][185][186]. 

8.4 The importance of graphs in networks analysis 

To understand the basics of networks theory, how networks are composed, and what their 

relation to graphs is, we need to know the basic information about the basic elements and 

properties of different networks. All this can be achieved and realized via the concepts of 

graphs and their elements (vertices V, and edges E), where the description of the network 

analysis is based on the graph theory. In the domain of geography and colloquial language, is 

often used the term network for all types of graphs such the directed weighted graphs are called 

networks [46][187][188].  

8.4.1 The connectivity of the network (graph) 

The connectivity degree for the graph is measured via Beta index (𝛽 ) that measures the 

communication density, which is given by: =  
ா

௏
 , where V is the overall number of vertices in 

the network (graph) and E is the overall number of edges [142]. For example, in the Figure 

8.17 the number of connecting edges is increasing gradually from four edges to ten edges 

whereas the number of the vertices is staying fixed.  The connectivity between vertices rises 

with the increasing number of edges in the graph [142]. Also, the value of Beta index is 

changing by increasing the number of edges or vertices as follows: Graph (1) in Figure 

8.17,  𝛽 =  
ସ

ହ
= 0.8, while Graph (6) in Figure 8.17,  𝛽 =  

ଵ଴

ହ
= 2 
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Figure 8.17: Example of Beta index calculated for different graphs  

8.5 Connectivity in multi-robot networks 

Let  𝐺(𝑡)  =  (𝑉, 𝐸(𝑡), 𝑊(𝑡)) denote a graph on n vertices indexed by the set of mobile robots, 

where 𝑉 =  {1, … . , 𝑛}, 𝐸(𝑡)  ⊂ 𝑉 × 𝑉 is the set of edges at time t, and  𝑊(𝑡) =

{𝑤௜௝(𝑡) | (𝑖, 𝑗)  ∈  𝑉 ×  𝑉}  is a set of weights so that  𝑤௜௝(𝑡)  =  0 𝑖𝑓 (𝑖, 𝑗)  ∉  𝐸(𝑡)  and 

𝑤௜௝(𝑡)  >  0 otherwise. If  𝑤௜௝(𝑡)  =  𝑤௝௜(𝑡) for all pairs of vertices (v୧, v୨), then the weights 

are called symmetric, if a graph has symmetric weights, then it is also undirected; otherwise, it 

is called directed [89][90]. Also, the set of neighbours of node 𝑖 ∈  𝑉  is   𝑁௜(𝑡) = {𝑗 ∈

 𝑉 | (𝑖, 𝑗)  ∈  𝐸(𝑡)}. Consider a set of n robots in Rm and let  𝑥௜(𝑡)  ∈  𝑅௠denote the position of 

robot i at time t. The robots can be described by either single integrator models, or double 

integrator models. Single integrator is: 

                                    𝑥௜(𝑡) = 𝑣௜(𝑡)     𝑛 =  1, . . . , 𝑁                                         (8.9) 

Where  𝑣௜(𝑡) ∈  𝑅௠  refers to the control input to robot 𝑖 at time t, or double integrator 

models is:  

                    𝑥௜(𝑡) = 𝑢௜(𝑡)     𝑖 =  1, . . . , 𝑁                                        (8.10) 

                   𝑢௜(𝑡) = 𝑣௜(𝑡)     𝑖 =  1, . . . , 𝑁                                         (8.11) 

Where  𝑢௜(𝑡) ∈  𝑅௠  refers to the speed of robot 𝑖 at time t [89]. 

The weight function w ∈ Rm   assigned to each edge  𝑒௜௝, can be seen as a function of the distance 

between robots 𝑖 and 𝑗; such that 

 

                          𝑤௜௝(𝑡) =    𝑤௝௜(𝑡)  =  𝑓(𝑥௜(𝑡), 𝑥௝(𝑡))  =  𝑓(ฮ𝑑௜௝(𝑡)ฮ)               (8.12) 
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Where 𝑤௜௝(𝑡) are positive edge weight functions, xi (t) is the position corresponding to vertex 

vi at time t (the state of i-th agent at time t), 𝑑௜௝  is the Euclidean distance between 

vertices (𝑣௜, 𝑣௝)   given by 𝑑௜௝(𝑡) = ||𝑥𝑖(𝑡)  −  𝑥𝑗(𝑡)||, and the function f to be a decreasing 

function of the inter-robot distanced ฮ𝑑௜௝(𝑡)ฮ, [89][103] such that 

          
  0 ≤  𝑓൫ฮ𝑑௜௝(𝑡)ฮ൯ ≤ 1

 𝑓൫ฮ𝑑௜௝(𝑡)ฮ൯ = 0
     

 𝑖𝑓   ฮ𝑑௜௝(𝑡)ฮ ≤ 𝜌௘

 𝑖𝑓   ฮ𝑑௜௝(𝑡)ฮ > 𝜌௘

                               (8.13) 

8.6 Algebraic Connectivity of Graph 

The second smallest eigenvalue  𝜆ଶ(𝐿)  of the Laplacian matrix L ∈  R୬×୬  or the Fiedler 

eigenvalue plays an important role for network analysis and connectivity, where the graph is 

connected if and only if  𝜆ଶ(𝐿) >  0  [113]. Therefore,  𝜆ଶ(𝐿) also called algebraic connectivity 

value of network.  𝜆ଶ(𝐿) is a measure of the degree of connectivity in a graph. The larger its 

value, the “more connected” the graph is.  

 

Figure 8.18: Examples of connected graph 

In this work, we suppose that the communication topology in a team of multiple-robots can be 

described by an undirected weighted graph 𝐺 = (𝑉, 𝐸),where 𝑣௜ ∈ 𝑉, 𝑖 ∈ 𝑁, 𝑁 = {1, … , 𝑛} 

are vertices, 𝑒(𝑣௜, 𝑣௝) is an edge between vertices  𝑣୧  and v୨ equipped with the weight function 

𝑤: 𝐸 → 𝑅 that maps edges to real-valued weights w୧୨. That means that if the i-th robot can 

obtain data from the j-th one, the j-th robot can obtain data from the i-th one as well 

[89][176][183]. The Neighbours subset of the i-th agent (robot) is defined as: 

  𝑁௜  =  {∀𝑣௝  ∈  𝑉 ∶  (𝑣௜, 𝑣௝)  ∈  𝐸}, 

 Each robot is assumed to be able to interchange data with their neighbours,i.e. with all the 

agents that are in its neighbour subset. In many applications, the weight is a function of the 

distance between robots i and j. For the weight of the edge 𝑒(𝑣௜, 𝑣௝), we labelled the weight of 
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the edge  𝑒(𝑣௜, 𝑣௝) , either as   𝑤(𝑣௜, 𝑣௝ ) or w  (𝑒௜௝) . Interactions (e.g. communication links) 

among the robots are presented as weights of edges that can be defined by the Adjacency 

matrix A(t), where if the robot i and robot j are adjacent or neighbours in 𝐴൫𝑎௜௝൯ then the 

communication links among robots are possible and have positive values, while if the robot i 

and robot j in  𝐴(𝑎௜௝) are not adjacent, then there is no connection between them and it has a 

value of zero [183][189]. The Adjacency matrix  A(t) ∈  R୬×୬ of the weighted graph G which 

is defined by: 

                                                 [A(t)]୧୨ = 𝑤(𝑡)௜௝                                                       (8.14) 

While 𝐷(𝑡) = [𝑑𝑖𝑎𝑔 ∑ 𝑤௜௝(𝑡)௡
௝ୀଵ ]denotes the Diagonal matrix of degrees of the weighted 

graph G.  

The Laplacian matrix L(t) ∈  R୬×୬  of weighted graph G with entries is defined by: 

                                       [L(t)]୧୨ = ቊ
∑ 𝑤௜௝(𝑡)௡

௝ୀଵ 𝑖𝑓 𝑖 = 𝑗

−𝑤௜௝(𝑡) 𝑖𝑓 𝑖 ≠ 𝑗
                                     (8.15) 

Or the Laplacian matrix can be written as: 

                                         𝐿(𝑡) = 𝐷(𝑡) − 𝐴(𝑡)                                                     (8.16) 

The Laplacian matrix of weighted graph G with symmetric weights is always a symmetric 

positive semi definite matrix. The connectivity between robots is measured by the second 

smallest eigenvalue  𝜆ଶ(𝐿)  of the Laplacian matrix L (t), where the robots have perfect 

connectivity if  𝜆ଶ(𝐿) has a great value [189].  

8.7 Dijkstra's Algorithm 

Dijkstra’s algorithm is one of the most famous solutions for path planning problems. Many 

researchers have proposed different ways to develop the storage structure of the algorithm such 

as the vertex search way to improve the efficiency of the algorithm and an improvement to data 

storage structure. An approach to data storage structure has been applied to address the problem 

of large memory usage resulting from the adjacent matrix. The heap structure was adopted to 

store vertices based on the improved storage structure that can decrease the vertex finding time 

and reduce storage space. Furthermore, the improvement of conventional Dijkstra's algorithm 

has been considered in terms of storage structure and the search area in the planning of road 

networks methods [141][190]. On the other hand, using the Dijkstra algorithm it is possible to 

define the shortest distance (the lowest cost / or least effort) between a start vertex and any 

other vertex in a graph or from a single source vertex (S) to all other vertices (𝑣௜) for a weighted 

graph with nonnegative edge path costs. Edge Cost (e) is the distance between two vertices. If 

the edges have negative values, then the actual shortest path cannot be obtained. Besides, it 
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processes vertices in order of their distances from the source (which might be the starting point, 

or any other location indicated as a vertex) [191][192][193]. Moreover, it adopts to obtain a 

suitable path from source to reach the target and find out all the free lines that intersects the 

path at 𝑣௜, then connect vertices of obstacles corresponding to those lines, with initial and goal 

positions (𝑠, 𝑔). Through this method, we can get bounded area where the optimal path inside 

it. The path is a link of series of edges. The idea of the algorithm is to continuously compute 

the shortest distance starting from a beginning point and to exclude longer distances when 

making an update [141][190][191][192][193]. 

8.7.1 Description of Dijkstra’s algorithm  

Firstly: let start with the general description of the algorithm, suppose that we want to find the 

shortest path from a certain vertex v to other vertices in a network (one-to-all shortest path 

problem). Dijkstra’s algorithm solves this problem in a following way: The algorithm finds the 

shortest path from a certain vertex v to all other vertices in the network, and it finds the next 

nearest vertex through preserving the new border vertices in a priority queue. The vertex v is 

called a starting or an initial vertex [70][72][142][190].  

How does the algorithm operate? 

Dijkstra’s algorithm begins by assigning some initial (starting) values for the distances from 

vertex v and to each other vertex in the network. It is working on stages, where the algorithm 

improves the distance values in each stage. Also, at each stage, the shortest distance from vertex 

v to another vertex is determined [70][72] [191][194][195].  

How is the algorithm achieving this? 

The algorithm achieves this through maintaining the shortest distance of vertex v from the 

source in an array and the shortest distance from the source to itself is zero. In addition, the 

distance for all other vertices is set to infinity to refer to that those vertices are not processed 

yet. After the algorithm finishes processing the vertices, it will have the shortest distance of 

vertex v to w. Dijkstra’s algorithm works to calculate the shortest path from the source s to 

vertices w, between source s and vertex w there will be a set called frontier of x vertices which 

consist of the closest vertices to the source s, and the vertices that are located outside frontier 

will be calculated and placed in a set called the new frontier. The algorithm finds a next nearest 

vertex by keeping the new frontier vertices in a primary queue. The two sets are preserved of 

frontier and new frontier that help in the processing of the algorithm. The frontier has x vertices 
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that are nearest to the source, the algorithm will have calculated the shortest distances to these 

vertices, for restricted paths up to x vertices. [70][146]. 

Secondly: the formal description of the algorithm 

 Dijkstra's algorithm distinguishes each vertex via its case. The case of a vertex contains two 

features which are: case label of a vertex and distance value of a vertex. The case label of a 

vertex is an attribute that determines whether the distance value of a vertex is equal to the 

shortest distance to vertex v or not, and it is permanent if its distance value is equal to the 

shortest distance from vertex v. Otherwise, the case label of a vertex is temporary. Whereas the 

distance value of a vertex is a scalar that represents an estimate of its distance from vertex v. 

Furthermore, the algorithm maintains and step-by-step updates the cases of the vertices, where 

at each step, one vertex is set as a current vertex [70][193][191]. 

Note that: In the most studies, the general description of Dijkstra`s algorithm always uses the 

terms intersection, road, and map just for the ease of understanding. For example, how we can 

find the shortest path between two locations on a town map, a starting point, and a destination. 

However, these terms officially described as a graph, vertex, and edge, respectively 

[70][181][191]. 

8.7.2 Runtime of Dijkstra’s algorithm 

Normally, a runtime of the Dijkstra's algorithm relies on the data structure utilised to store the 

distance to each vertex.  The maximum bound of the running time of Dijkstra's algorithm can 

be expressed on a graph as a function of |𝐸| and |𝑉|. There exist three commonly used choices 

of the runtime of the algorithm [70][185][191]. One simple choice of Dijkstra's algorithm is to 

store the distances for vertices of set S in an array or ordinarily connected list and extract the 

least (minimum) one from S which obviously represents a linear search via all vertices in S, 

where  𝑉 =  {1, . . . , 𝑛} and the input distance [𝑖] stores the distance to vertex 𝑣. In this state, 

the running time is    𝑂(|𝐸| + |𝑉|ଶ]) = 𝑂(|𝑉|ଶ) . Also, point 8 in the pseudo-code of the 

algorithm in page 70 requires 𝑂 (𝑛) runtime every time it is performed. Since the while-loop 

runs n times, the runtime of Dijkstra’s algorithm using an array is 𝑂 (𝑛ଶ) 

[70][142][191][196][197]. 

Another selection is the priority queue that also utilises a data structure, where the least element 

is stored at the top of a binary heap for easy reaches. The least element can be removed in this 

data structure from Q in 𝑂 (𝑙𝑜𝑔 𝑛) time. However, the point 13 in the pseudo-code of the 
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algorithm in page 71, in order to maintain the priority queue correctly, 𝑂 (𝑙𝑜𝑔 𝑛) time also 

requires changing the value of an input of the queue for each operation 

[70][142][191][196][197].  

Note that there is a more progress data structure called a Fibonacci heap, where the runtime of 

Dijkstra’s algorithm becomes 𝑂 (𝑛 𝑙𝑜𝑔 𝑛 +  𝑚). This is not usually using in practice because 

of the complexity of the structure [70][142][191][196][197].  

 The graph G, its vertices, edges, edge weights, and the distance may have various meanings, 

as the path distance can be changed. Also, a priority queue can be maximum or minimum. As 

well as the relaxation operation can vary and require a various distance initialisation [198][199]. 

The algorithm above can be understood and explained completely by using the example in 

Figure 8.19, where it has shown an undirected Weighted Graph (G) and a vertex (v) to find the 

shortest path to all reachable vertices from the vertex (v). On the other hand, for a given vertex 

like the initial vertex S, the algorithm finds the shortest path to all other vertices if it is reachable 

from the vertex. The undirected graph 𝐺 = (𝑉, 𝐸), consists of six vertices and nine edges, 

where  

𝑣 = { 1,2,3,4,5,6}, 𝐸 = {(1,2), (1,3), (1,6), (2,3), (2,4), (3,4), (3,6), (4,5), (5,6)}. 

Notice that the graph should not contain a negative edge which means all edges must have a 

positive number in this graph, in the example of the graph (G) in Figure 8.19 each step that is 

taken is explained below, how distance is measured, and how to obtain the shortest path from 

start vertex one 1 to goal vertex 5. Dijkstra's algorithm is used in routing, and the images below 

illustrate the working of this algorithm. 
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.      
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Figure 8.19: Example of steps of Dijkstra's Algorithm 

http://www.programminggeek.in/2013/08/java-implementation-of-dijkstra-shortest-

path-algorithm-for-coursera-programming-assignment-5.html. 

Dijkstra's algorithm chooses the unvisited vertex with the least-distance, then calculates the 

distance through it to each unvisited neighbour, and updates the neighbour's distance if a new 

distance is  lower. Its marks visited vertices (set to red colour) when done with neighbours. In 

the second step in the example above, the algorithm picks vertex 3 because the distance from 

vertex 1 to vertex 3 is less than the distance to the vertex 2, this means {[𝑣ଵ + 𝑣ଷ] =  9 <

 [𝑣ଵ + 𝑣ଶ+ 𝑣ଷ} = 7 + 10 = 17},  then it chooses the vertex 6 instead of the vertex 4, because 

the distance from vertex 3 to vertex 6 is lower than the distance from vertex 3 to the vertex 4, 

which is equal to 11(eleven) { [𝑣ଷ + 𝑣଺] = 9 + 2 = 11<{𝑣ଷ + 𝑣ସ] = 9 + 11 = 20}. Finally, the 

algorithm picks the vertex 6 to reach the goal vertex 5, where {𝑣଺ + 𝑣ହ] = 11+ 9 = 20}. 

8.8 The shortest path 

The shortest path between two vertices is a path with the shortest length (least number of edges), 

also called the link distance. In undirected weighted graph   𝐺 = (𝑉, 𝐸) , with the weight 

function 𝑤: 𝐸 → 𝑅 mapping edges to real-valued weights w୧୨, if the weight of the edge  𝑒 =

(𝑣௜, 𝑣௝), we write either  𝑤(𝑣௜, 𝑣௝) for w(𝑒௜௝). The path of a robot can be described itself as a 

graph, and the length of a path 𝑝 =  〈𝑣ଵ, 𝑣ଶ, 𝑣ଷ, … . 𝑣௠〉, where 𝑣௜ a position of robot along its 

path, would be the sum of the weights of its constituent edges expressed as: The length of a 

path (𝑝)  = ∑ 𝑤(𝑣௜ିଵ, 𝑣௜)௠
ଵ .  The distance from 𝑣௜ to 𝑣௝ , denoted by 𝛿(𝑣௜, 𝑣௝), is the length of 

the minimum path if there exists a path from 𝑣௜  𝑡𝑜  𝑣௝; and ∞ is otherwise. To construct the 

shortest path: in each stage add a new one edge, corresponding to the built of the shortest path 

to the present new vertex. Where this is done in the following stages [72][131][132]: 

 Initialisation: Every vertex has its associated “distance”, representing to the length of 

the path to it, and all other vertices with “distance” values are set to "infinite", that is 
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each vertex is assigned as unvisited (a distance value is ∞), except the starting vertex s 

which is assigned a zero distance value (The case of vertex 𝑠 𝑖𝑠 𝑑 [𝑠] =  0,  and the case 

of all other vertices is [𝑣]  =  ∞). 

 Maintain an estimate [𝑣] of the length (𝑠, 𝑣) of the shortest path for each vertex v as 

follows. 

 Start with setting marks for the distance of the beginning vertex s, and label it as 

permanent, whereas all other vertices are labelling as temporarily.  

 Designate vertex s as the current vertex.  

 Assign an active start vertex, and compute the temporary distances of all neighbour 

vertices of the active vertex by summarizing the distance with the weights of the edges  

 If a computed distance of a vertex is smaller as the current one, update the distance and 

set the current vertex as predecessors. This stage is also called ‘update’, and its 

Dijkstra's central idea.  

 Set the vertex with the minimal temporary distance as active and mark its distance as 

permanent.  

 Repeat the steps until there no vertices are left with a permanent distance, where their 

neighbours still have temporary distances.  

 In each repetition, select the unvisited vertex with least distance indicated it as visited 

[72][131][132][142]. 

Note that: the algorithm finishes when the goal vertex is visited. Always 𝑑 [𝑣] ≥ (𝑠, 𝑣), for all 

v ∈ V and [𝑣] = ∞ if we have no path so far. The processed vertex’s estimate will be validated 

as being the least real distance, 𝑑 [𝑣] = (𝑠, 𝑣). The processing of the vertex 𝑣 consists of finding 

a new path and updating [𝑣] for all 𝑣 ∈ 𝑎𝑑𝑗 [𝑢] if needed. The process by which an estimate is 

updated is called relaxation. When all vertices are processed, 𝑑 [𝑣] = (𝑠, 𝑣) for all  𝑣.  Dijkstra's 

algorithm will find new paths when processing of the vertex v, after that it will test all vertices 

𝑣 ∈𝑎𝑑𝑗 [𝑢], for each vertex 𝑣 ∈ 𝑎𝑑𝑗 [𝑢], a new path from 𝑠 to 𝑣 is found (i.e., a path from s to 

𝑣 + new edge). In addition, the algorithm will do the relaxation If a new path from s to 𝑣 is the 

least or shorter than 𝑑 [𝑣], then update 𝑑 [𝑣] to the length of this new path. Also, whenever we 

assign 𝑑 [𝑣] to a limited value, there is a path of this length. So 𝑑 [𝑣] = (𝑠, 𝑣). Furthermore, if 

𝑑 [𝑣] = (𝑠, 𝑣), hence more relaxations cannot alter its value) [70][72][131][190][199]. 

Observation 1: The shortest path to the vertex does not pass twice the same vertex. 

     Proof: A path that passes twice the same vertex contains a cycle. Removing cycle gives a 

shorter path [191][194][200]. 
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Observation 2: Any sub-path from the shortest path must be also the shortest path.  

    Proof:  When we define the shortest path to the vertex 𝑣, then the paths that continue from 

𝑣 to each of its neighbours can be the shortest paths to each of those adjacent vertices. Which 

means, if the path ( 𝑃)  =  (𝑣ଵ , 𝑣ଶ , ⋯ , 𝑣௠)  is the shortest path from 𝑣ଵ to 𝑣௠ then the sub 

path from 𝑣ଵ to each of the vertices  𝑣௞ ∈ p (𝑣ଵ , 𝑣ଶ , ⋯ 𝑣௞  ) is also the shortest path, where      

P =  (𝑣ଵ , 𝑣ଶ , ⋯ 𝑣௞  ) ⊂ 𝑃 =  (𝑣ଵ , 𝑣ଶ , ⋯ , 𝑣௠). As we can see in the following example of the 

graph in Figure 8.20 the shortest path is (〈𝐴 , 𝐵 , 𝐶, 𝐸〉 ) and the sub path (〈𝐴 , 𝐵 , 𝐶〉) is the 

shortest path of the graph as well [70][191][201][202]. 

 

 

Figure 8.20: Example of the shortest path in graph 

 Observation (3): the shortest path from the vertex to any other vertex cannot contain any 

cycle.   

    Proof: Each edge in the graph has a positive weight [70][186]. 

In the example of the  graph above in Figure 8.19 Djikstra algorithm can be illustrated in how 

to find the shortest path between start vertex to all other vertices to get the goal destination, 

where Figure 8.19 depicts an undirected weighted graph G, this graph G consists of six vertices 

marked from one to six. The length between two adjacent vertices is indicated as edge cost 

which is the term used for the value between two vertices. For instance, the edge cost between 

vertices 1 and 2 is 7 [70][132][146]. As a result of the above considerations is shown in the 

example of in Figure 8.19, it has displayed how Dijkstra's algorithm works and how it is applied 

to the graph. What is more, how it has obtained the shortest path from the initial position to 

goal position as shown in Figure 8.21, whereas the algorithm starts with just the initial 

configuration (vertex one) in S. Then, it relaxes the neighbors of the set S by updating the 

shortest path if needed. After that, the configuration u in V with the shortest path is moved into 

S. This process continues even if there are no extra configurations inside the set V 

[69][132][141][146][201][202]. In this method, the algorithm not just finds the solution, but it 



197 
 

also finds the shortest path among the initial point and any other configuration to reach the 

target. The shortest path obtained from the example in Figure 8.19 above is visualised in Figure 

8.21 is:  { [𝑣ଵ + 𝑣ଷ+𝑣଺ + 𝑣ହ] = 9 + 2 + 9 = 20}. 

 

 

Figure 8.21: Example of shortest path in graph 
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9 Appendix [B] 

9.1 Program 1: 

This program for calculate the shortest paths using Visibility graph and Dijkstra's algorithm 

for multi-robots systems. This code is partially based on the codes: 

Cornell University 
%   MAE 4180/5180: Autonomous Mobile Robots 
%   Final Competition 
%   Pu, Kenneth (kp295)  
function [path,goal,gfound] = dijkstra(V,E,start,goals) 

% DIJKSTRA: Takes as input a graph represented by a set of nodes V and edges E, a start 

position, and a list of goal positions, then returns  

% the shortest path between start node and the closest goal node.  

%Uses  

% Dijkstra's algorithm 

% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns 

%the shortest path between a start and goal node given a set of nodes V and edges E 

%INPUTS 

      V Set of nodes in graph  

      E Set of edges in graph 

 start 1-by-2 array containing x/y coordinates of start node 

 goals N-by-2 array containing x/y coordinates of goal nodes 

%OUTPUTS 

%path N-by-2 array containing a series of points representing the shortest path connecting 

initial and closest goal points 

% goal  1-by-2 array containing x/y coordinates of closest goal node 

% gfound An integer denoting the number of goals found 

Examples demonstrate how to find shortest paths for three robots  

Example one 

Uses  

% Dijkstra's algorithm 

%   [PATH, GOAL, GFOUND] = DIJKSTRA (V, E, START, GOALS) returns 

% Adjust Properties of GraphPlot Object 

% Create a |GraphPlot| object, and then show how to adjust the properties 

% of the object to affect the output display. 
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% Create and plot a graph. 

% Copyright 2015 the MathWorks, Inc. 

s=[1 1 1  1 1 1 1  1  1 2 2 2 2  2  2   2  2  3  3  3  3  3  3  4 4 4 5   5 5   6 6 6 6  6  6  7  7  7  8  8  

8  8  8  8  8  9  9  9  9  10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 15 16 16 16 16 16  

15 17 17 17 17 17  17 18 18  19  20 4  4  5  6  8  8  12 14 16 19 19 20 20 21 21 22 22 22 23 

24 24 25 25 26 26]; t=[2 3 4  5 6 7 8  9 15 3 4 5 10 18 24  25 27 5  10 14 18 25 27 7 9 11 24 

25 27  7 8 9 11 14 17  9 13 15 9  10 11 15 17 19 21 11 12 20 21 14 18 25 12 13 15 17 20 21 

13 17 19 20 21 22 15 17 17 19 20 21 22 24  19 19 20 21 22 24  28 22 24  28  24 5  6 10 10 12 

14 16 18 18 21 23 21 22 23 28 23 24 28 28 25 26 18 27 27 22]; 

weights = [8 9 10 7 5 9 11 8 9 7 9 7 4 9 11 11 9 6 5 5 11 5 8 9 10 8 7   8 7 9 8 7 3 9 11 8  9  8 

7  5  10  7  6  8  3  5  7 10 12  8  9  7  8  4  7  6 11  5  8  6  5  7  9  7  3  6 9  10 7  6  9  7    8  9  

8  7  9  8 6  10  3  8   9 6  7  6  8  9  6  7  8  9  7  7  8  9  7  8  8  5  4  9 11  5  3  7  8  9]; 

G = graph(s,t,weights), 

Plot (G,'edge Label', G.Edges. Weight); 

x=[2 8.7 11  4.5 7.8  4.5  2    5  3.3  7.8  3.3  5.2  2   7.5  1   7.5   3.2    9  2.5  6.2  4.5   10.8    

7.2  10  10  11.5 11.5  5]; 

y=[1 0.3  1   2    2   4  2.5   6  4.8   4    7    9   8.5   6  10   9    9.5   7.5  13  12   12.6   12.9    

14   10  5   10    5  16]; 

p = plot (G,'XData',x,'YData',y,'edgeLabel',G.Edges.Weight); 

d = distances (G); 

Sources = [1 2 3]; 

Targets = [28]; 

d = distances (G,sources,targets) 

[path1,d] = shortestpath(G,2,28) 

[path2,d] = shortestpath(G,3,28) 

[path3,d] = shortestpath(G,1,28) 

highlight(p,path1,'EdgeColor','r','LineWidth',2) 

highlight(p,path2,'EdgeColor','r','LineWidth',2) 

highlight(p,path3,'EdgeColor','r','LineWidth',2) 

highlight(p,1,'NodeColor','red') 

highlight(p,2,'NodeColor','red') 

highlight(p,3,'NodeColor','red') 

highlight(p,28,'NodeColor','g') 

p.MarkerSize = 6; 
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A = adjacency(G) 

nn = numnodes(G); 

[s,t] = findedge(G); 

A = A +A' - diag(diag(A)); 

full(A) 

D = diag(sum(A)) 

full(D) 

 L = diag(sum(A)) - A 

 full(L) 

[V,D] = eig( full(L)) 

Example two 

%Uses  

% Dijkstra's algorithm 

% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns 

s= [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 6 6 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 10 

11 11 11 11 11 12 12 12 12 12 12 12 13 13 13 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 

18 18 19 19 19 20 20 21 21 22 22 22 23 23 24 24 24 25 26 26 27]; 

t= [3 4 5 6 7 9 3 10 14 18 25 27 4 5 10 18 24 25 5 6 7 9 10 7 8 9 10 11 14 17 21 9 13 15 29 9 

10 11 12 14 17 21 19 28 11 12 21 14 12 13 15 17 21 16 17 19 20 21 22 28 15 17 29 18 25 17 

19 28 29 18 20 21 22 24 19 21 28 29 24 25 21 23 28 21 22 23 28 23 24 30 28 30 25 26 30 27 

27 30 30]; 

weights = [9 5 11 2 6 8 8 8 9 11 3 8 5 9 4 9 12 8 6 7 6 9 8 3 9 7 8 9 2 10 12 9 9 8 9 9 3 7 9 6 5 

6 9 12 5 7 10 9 6 4 7 6 8 7 7 9 6 7 12 3 4 2 1 8 3 9 8 9 6 9 7 6 9 7 9 3 6 8 4 2 7 11 8 8 9 7 3 8 

5 2 8 9 11 5 5 7 8 9 12]; 

G = graph(s,t,weights), 

x=[3 11 8.7  4.5 7.8  4.5    2   5  3.3  7.8  3.3  5.2  2   7.5  1   7.5   3.2    9  2.5  6.2  4.5   10.8    

7.2  10  10  11.5 11.5  3.4  0.5  12]; 

y=[1 1  0.3   2    2   4    2.5  6  4.8   4    7    9   8.5   6  10   9    9.5   7.5  13  12   12.6   12.9    

14   10  5   10    5  16  9   12.7];Plot (G,'edge Label', G.Edges. Weight); 

x = [3 11 8.7  4.5  7.8  4.5  2.0  5.0 3.3 7.8  3.3 5.3  2.0 7.5  1  7.5  3.2 9.0  2.90  6.0  4.50 

10.8 7.0 10 10 12 12 5 0.5  12]; 

y = [1 1 0.3  2.0  2.0  4.0  2.5  6.0  5.0  4.0  7.0  9.0  8.5  6.0 10  9.0  9.5  7.5 12.9  12.3 12.6 

12.9 14.0 10 5 10 5 16 9  12.7];  

p = plot (G,'XData',x,'YData',y,'edgeLabel',G.Edges.Weight); 
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d = distances (G); 

Sources = [1  3 28]; 

Targets = [30 29 2]; 

d = distances (G,sources,targets) 

[path1,d] = shortestpath(G,1,30) 

[path2,d] = shortestpath(G,3,29) 

[path3,d] = shortestpath(G,28,2) 

highlight(p,path1,'EdgeColor','r','LineWidth',2) 

highlight(p,path2,'EdgeColor','r','LineWidth',2) 

highlight(p,path3,'EdgeColor','r','LineWidth',2) 

highlight(p,1,'NodeColor','red') 

highlight(p,3,'NodeColor','red') 

highlight(p,28,'NodeColor','red') 

highlight(p,30,'NodeColor','g') 

highlight(p,29,'NodeColor','g') 

highlight(p,2,'NodeColor','g') 

p.MarkerSize = 6; 

A = adjacency(G) 

nn = numnodes(G); 

[s,t] = findedge(G); 

A = sparse(s,t,G.Edges.Weight,nn,nn) 

A = A + A.' - diag(diag(A)); 

full(A) 

D = diag(sum(A)) 

full(D) 

 L = diag(sum(A)) - A 

 full(L) 

[V,D] = eig( full(L)) 

 

 Example three 

%Uses  

% Dijkstra's algorithm 

% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns 



202 
 

s= [1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5 5 6 6 7 7 7 7 7 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 

11 12 12 12 12 12 12 12 13 13 13 14 14 14 14 15 16 16 16 16 17 17 18 19 19 20 21 22 22 22 

23 24 24 24 26 27 27 28 28 29 29 30 30 31]; 

t= [2 3 4 5 8 4 5 32 4 5 9 5 6 8 6 7 8 13 15 7 8 9 11 13 15 17 10 17 11 13 17 12 15 16 19 20 

22 24 28 13 15 25 14 16 19 20 22 24 28 15 21 25 28 30 31 32 17 18 19 20 22 19 23 26 20 23 

23 25 24 26 28 25 26 27 28 27 28 29 30 31 30 31 31 32 32]; 

weights = [9 4 5 5 9 5 8 8 7 8 5 6 4 8 7 6 7 10 9 11 10 7 8 8 7 12 8 2 6 11 9 5 5 4 6 9 8 5 5 8 5 

10 7 8 9 10 7 6 8 7 5 6 9 12 7 12 9 9 6 3 6 3 11 5 6 4 8 9 4 6 6 8 6 7 3 8 8 5 7 3 9 10 6 8 4]; 

G = graph(s,t,weights), 

Plot (G,'edge Label', G.Edges. Weight); 

 x=[1.00 3.429 0.50 3.429 2.004 4.958 2.004 5.0 0.50  7.00 1.50 7.000 4.5  5.52  4.5 10.0 

6.80 12.0  9.500 11.65 6.401  10 6.80  10.6 6.401   12 12.0 10 12.00  10.00 6.20  5.501]; 

 y=[3.51 0.000 6.00 2.018 6.000 2.018 6.562 6.5 6.562 6.5  10.5 5.951 10.0 5.951 9.5  6.5 

9.500 6.50 11.44 11.29 10.00  6  12.00  4   12.00    6  3.5 3.5 2.962 2.962 1.38  0.000]; 

p = plot (G,'XData',x,'YData',y,'edgeLabel',G.Edges.Weight); 

d = distances (G); 

Sources = [24 19 31]; 

Targets = [11 1 20]; 

d = distances (G,sources,targets) 

[path1,d] = shortestpath(G,24,11) 

[path2,d] = shortestpath(G,19,1) 

[path3,d] = shortestpath(G,31,20) 

highlight(p,path1,'EdgeColor','r','LineWidth',2) 

highlight(p,path2,'EdgeColor','r','LineWidth',2) 

highlight(p,path3,'EdgeColor','r','LineWidth',2) 

highlight(p,24,'NodeColor','red') 

highlight(p,19,'NodeColor','red') 

highlight(p,31,'NodeColor','red') 

highlight(p,1,'NodeColor','g') 

highlight(p,20,'NodeColor','g') 

highlight(p,11,'NodeColor','g') 

p.MarkerSize = 5; 

A = adjacency(G) 
nn = numnodes(G); 
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[s,t] = findedge(G); 
A = sparse(s,t,G.Edges.Weight,nn,nn) 
A = A + A.' - diag(diag(A)); 
full(A) 
D = diag(sum(A)) 
full(D) 
 L = diag(sum(A)) - A 
 full(L) 
[V,D] = eig( full(L)) 
 
Example Four 

%Uses  

% Dijkstra's algorithm 

% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns 

s=[1 1  1  1  2   2  2  2  3  3   3 3  7 7  9   11  15 15 17  4 4 5  6  8  8  12  14 16 20 20 21 22  24 
24  25 26 28 28 28 28 28 29 29 29 30 30 30 30 31 31 32 32 33 33 33 34 34  34 35 35 35 36 
36 36 37 37 38 39 39 40]; t=[3 40 41 42 3  33 35 37 33 35  37 39 9 13 11  13  17 19 19  5 6 
10 10 12 14 16  18 18 21 22 23 23  25 26  27 27 31 32 34 36 38 34 36 42 31 32 33 35 32 33 
34 40 35 37 40 36 38  40 37 39 41 37 38 40 38 40 40 41 42 42]; 
weights = [9 3 6 4 3 6 4 1 11 6 2 1 8 9 5 4 9 8 9 6 7 6 8 9 6 7 8 9 8 9 7 8 11 5 7 8 9 8 4 9 8 4 3 
11 5 9 4 4 8 6 6 10 4 1 11 3 2 11 3 6 9  8  1  5  2  2  5  5  9  7]; 
G = graph(s,t,weights), 
x=[3.5 8.6  8.0  4.2  7.0  4.2  2.5  5.1  3.4  7.0  3.4  5.5  2.5   6.8  1.8   6.8  3.2  8.0  2.8   6.2  
4.5   10.3   7.2  9.9   9.9  11   11   3.4  1.9  10.0  7.8  6.00  8.3  4.8 8.8  3.6  7.3   4.90  6.5  3.9  
5.8 2.4]; 
y=[1   2.5  0.8  2.5  2.5  4.3  2.5  6.6  4.8  4.3   7    9   8.2   6.6  10.5   9   9.8  7.5  12.9   12  
12.8  12.9    14  9.7    4   9.7   4   13   9.7  11.5  9.5  10.9  6.8  9.0 4.8  7.4  4.7   5.90  0.5  5.1  
0.2 1.3]; 
p = plot (G,'XData',x,'YData',y,'edgeLabel',G.Edges.Weight); 

d = distances(G); 
sources = [1 28 3]; 
targets = [30 2 29]; 
d = distances(G,sources,targets) 
[path1,d] = shortestpath(G,1,30) 
[path2,d] = shortestpath(G,3,29) 
[path3,d] = shortestpath(G,28,2) 
highlight(p,path1,'EdgeColor','r','LineWidth',2) 

highlight(p,path2,'EdgeColor','r','LineWidth',2) 

highlight(p,path3,'EdgeColor','r','LineWidth',2) 

highlight(p,1,'NodeColor','red') 

highlight(p,28,'NodeColor','red') 

highlight(p,3,'NodeColor','red') 

highlight(p,2,'NodeColor','g') 

highlight(p,29,'NodeColor','g') 
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highlight(p,30,'NodeColor','g') 

p.MarkerSize = 6; 
A = adjacency(G) 
nn = numnodes(G); 
[s,t] = findedge(G); 
A = A - diag(diag(A)); 
full(A) 
D = diag(sum(A)) 
full(D) 
 L = diag(sum(A)) - A 
 full(L) 
[V,D] = eig( full(L)) 
 
Example Five 

%Uses  

% Dijkstra's algorithm 

% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns 

 s=[1 1  1  1  2 2  2  2  2  3  3  3 3  7 7  9   11  15 15 17  4 4 5  6  8  8  12  14 16 20 20 21 22  
24 24  25 26 28 28 28 28 28 29 29 29 30 30 30 31 31 31 32  33 33 33 34 34 34 35 35  36 36 
36 37 37 37 38 39 39 40 40 40 41 42 44 44 45 47 47 48 49 51 51 52 53]; t=[3 40 41 42 3 30 
31 33 37 30 31 37 39 9 13 11  13  17 19 19 5 6 10 10 12 14 16  18 18 21 22 23  23 25 26  27 
27 30 32 34 36 38 34 36 42 31 32 34 32 33 37 34  37 38 40 36 38 40 36 42  38 40 43 38 39 
40 40 41 42 41 42 43 42 43 45 46 46 48 49 50 50 52 53 54 54]; 
weights = [9 3 2  4  3  9  3  6  1 9 7 2  1 8  9  5   4   9  8  9  6 7  6  8  9  6  7 8  9  8  9  7   8  11 
5   7  8  7  3  4  9  8  4  4 11  5  9  4  1  6  4  6   1  9 11  3  2  2  4  9   1  5  5  1  7  2  5  5  9  6  
7  5  6  5  9  8  9  5  9  7  8 11  5  7 8]; 
G = graph(s,t,weights), 
x=[3.5 8.6  8.0  4.2  7.0  4.2  2.6  5.1  3.4  7.0  3.4  5.5  2.7   6.8  2.1   6.8  3.0  8.0  2.7   6.2   
5.10  9.6  7.2  9.9 9.9  11  11 3.66  2.3  9.6  8.3 6.8  6.8   5.4 2.4  3.6  7.3   4.85  7.3  3.9  3.9 
2.4 3.6 1.8  3.2  2.8 6.2 4.5  10.3  7.2    9.7  9.7   11.3  11.3]; 
y=[1   2.5  0.8  2.5  2.5  4.3  2.5  6.6  4.8  4.3   7    9   8.2   6.6  10.9   9   10.6 7.5  12.5  12.55 
12.8  12.9 13.7 9.7 4.0  9.7 4  12.35 9.87 11.2 7.5 9.5  5.96  9.4 9.0  7.4  4.7   5.98  1.9  4.7  
1.9 1.3 4.7 10.7 10.2 13.2 12.2 12.8 12.9  14.0 10.0 3.6   10 3.6]; 
p = plot (G,'XData',x,'YData',y,'edgeLabel',G.Edges.Weight); 

sources = [1 28 3];  
targets = [30 2 29]; 
d = distances(G,sources,targets) 
[path1,d] = shortestpath(G,1,30) 
[path2,d] = shortestpath(G,3,29) 
[path3,d] = shortestpath(G,28,2) 
highlight(p,path1,'EdgeColor','r','LineWidth',2) 

highlight(p,path2,'EdgeColor','r','LineWidth',2) 

highlight(p,path3,'EdgeColor','r','LineWidth',2) 

highlight(p,1,'NodeColor','red') 

highlight(p,28,'NodeColor','red') 
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highlight(p,3,'NodeColor','red') 

highlight(p,2,'NodeColor','g') 

highlight(p,29,'NodeColor','g') 

highlight(p,30,'NodeColor','g') 

p.MarkerSize = 5; 
A = adjacency(G) 
nn = numnodes(G); 
[s,t] = findedge(G); 
A = A - diag(diag(A)); 
full(A) 
D = diag(sum(A)) 
full(D) 
 L = diag(sum(A)) - A 
 full(L) 
[V,D] = eig( full(L)) 
 
 
https://github.com/kennethpu/iRoombot/blob/172347c1be1d87b6e4138d1dfc848abff899af38

/dijkstra.m 

https://uk.mathworks.com/help/matlab/ref/graph.shortestpath.html  
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10 Appendix [C] 

10.1 Program 2: 

This Program is to calculate Path following for Differential Drive robot. 

This example demonstrates how to control a robot to follow the desired path using a Robot 

Simulator. The example uses the Pure Pursuit path following controller to drive a simulated 

robot along a predetermined path. The desired path is a set of waypoints defined explicitly or 

computed  

using a path planner (referto<docid:robotics_examples.examplePathPlanningExample>). 

The Pure Pursuit path following controller for a simulated differential drive robot is created 

and computes the control commands to follow a given path. The computed control commands 

are used to drive the simulated robot along the desired trajectory to follow the desired path 

based on the Pure Pursuit controller. 

Note: Starting in R2016b, instead of using the step method to perform the operation defined by 

the System object, you can call the object with arguments, as if it were a function. For example, 

|y = step (obj,x)| and |y = obj(x)| perform equivalent operations. 

% Copyright 2014-2016 The MathWorks, Inc. 

 

Example one 

load exampleMaps.mat 

prmSimple = mobileRobotPRM(map,32); 

show(prmSimple) 

path1 = [2.50 3;5 6.5;7 9.5;8.80 12.25]; 

path2 = [5.81 12.35;4.5 10;2.0 6.0;0.7 3.6]; 

path3 = [10.5 2.50;10.0 3.0;7.0 6.50; 2.18 11.8]; 

show(prmSimple) 

figure (1)  

title(' Paths planned by proposed algorithm') 

hold on 

path = findpath(prm, path1(:,1),path1(:,2),'k--d',path2(:,1),path2(:,2),'k--d',path3(:,1), 

path3(:,2),'k--d') 

hold of 

%% Create sensors 

sensor1 = MultiRobotLidarSensor; 
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sensor1.robotIdx = 1; 

sensor1.sensorOffset = [0,0]; 

sensor1.scanAngles = linspace(-pi/2,pi/2,9); 

sensor1.maxRange = 3; 

attachLidarSensor(env,sensor1); 

  

sensor2 = ObjectDetector; 

sensor2.fieldOfView = pi/4; 

attachObjectDetector(env,2,sensor2); 

sensor3 = MultiRobotLidarSensor; 

sensor3.robotIdx = 3; 

sensor3.sensorOffset = [0,0]; 

sensor3.scanAngles = linspace(-pi/4,pi/4,10); 

sensor3.maxRange = 10; 

attachLidarSensor(env,sensor3); 

%% Define waypoints, objects, and initial poses 

waypoints = [5.00  6.50;2.0 6.00;7.0 6.50;  

             10.00 3.0; 7.00  9.50;4.50 10.00]; 

objects = [8.80, 12.25, 1; 

          0.7, 3.6, 2.00; 

          2.18, 11.8, 3.00]; 

env.objectColors = [0 1 0;0 1 0;0 1 0]; 

env.objectMarkers = 'so^'; 

pose1 = [2.5;3;pi/2]; 

pose2 = [5.81;12.35;pi]; 

pose3 = [10.5;2.5;0]; 

env.Poses = [pose1 pose2 pose3]; 
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%% Now loop through the animation 

for idx = 1:100 

    % Step the sensors 

    ranges1     = sensor1(); 

    detections2 = sensor2(pose2,objects); 

    ranges3     = sensor3(); 

    % Step the visualizer 

    % In multiple commands 

  % env(1,pose1, waypoints, ranges1, objects); 

    % env(2,pose2, waypoints, [], objects); 

    % env(3,pose3, waypoints, ranges3,  objects); 

    % In single command   

 env([1,2,3],[pose1,pose2,pose3],waypoints,{ranges1,[],ranges3},objects) 

    % Update poses 

    pose1 = pose1 + [0.066;0.095;pi/25]; 

    pose2 = pose2 +[-0.054;-0.09;pi/20]; 

    pose3 = pose3 + [-0.085;0.095;pi/35]; 

     figure(2) 

 title('Multi-Robot path planned by proposed algorithm') 

 end 

 

 

Example two 

load exampleMaps.mat 

map = binaryOccupancyMap(simpleMap,2); 

prmSimple = mobileRobotPRM(map,67); 

show(prmSimple) 

path1 = [10.5 4.5;8.8 5.7;6.12 7.64;4.03 9.33;2.085 10.64]; 

path2 = [9.72  10.44;8.1 9.11;6.12 7.64;3.69 5.75; 0.81 3.51]; 

path3 = [7.6 2.38;8.8 5.7;9.9 7.8; 10.8 9.6;11.89 11.29]; 

show(prmSimple) 

figure (1)  

title(' VG and Paths planned by CA algorithm') 
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hold on 

path=findpath(prm,path1(:,1),path1(:,2),'k--d',path2(:,1),path2(:,2),'k--d',path3(:,1), 

path3(:,2),'k--d') 

hold of 

%% Path planner parameters 

prmConnectionDistance = 3; 

prmNumNodes = 200; 

prmMaxWaypoints = 12; 

%create a multi robot environment 

numRobots = 3; 

env = MultiRobotEnv(numRobots); 

env.robotRadius = [0,0,0]; 

env.showTrajectory = [true;true;true]; 

env.hasWaypoints = true; 

load exampleMap 

env.mapName = 'map'; 

%% Create sensors 

sensor1 = MultiRobotLidarSensor; 

sensor1.robotIdx = 1; 

sensor1.sensorOffset = [0,0]; 

sensor1.scanAngles = linspace(-pi/2,pi/2,9); 

sensor1.maxRange = 3; 

attachLidarSensor(env,sensor1); 

 

sensor2 = ObjectDetector; 

sensor2.fieldOfView = pi/4; 

attachObjectDetector(env,2,sensor2); 

  

sensor3 = MultiRobotLidarSensor; 

sensor3.robotIdx = 3; 

sensor3.sensorOffset = [0,0]; 

sensor3.scanAngles = linspace(-pi/4,pi/4,10); 

sensor3.maxRange = 10; 

attachLidarSensor(env,sensor3); 
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%% Define waypoints, objects, and initial poses 

waypoints = [6.98 7.0;4.7 8.78;5.501 7.000;11.8 4.99;11 4.80;4.3 10.4; 

           8.46 9.46;6.3 9;4 6;7.4 5; 9.62 6.6;10.2 7.5]; 

       objects = [ 2.085, 10.64, 1; 

           0.81, 3.51, 2.00; 

           11.89, 11.29, 3.00]; 

env.objectColors = [0 1 0;0 1 0;0 1 0]; 

env.objectMarkers = 'so^'; 

pose1 = [10.5;4.5;pi/2]; 

pose2 = [9.72;10.44;-pi]; 

pose3 = [7.6;2.38;0]; 

env.Poses = [pose1 pose2 pose3]; 

%% Now loop through the animation 

for idx = 1:100 

    % Step the sensors 

    ranges1     = sensor1(); 

    detections2 = sensor2(pose2,objects); 

    ranges3     = sensor3(); 

    % Step the visualizer 

    % In multiple commands 

    % env(1,pose1, waypoints, ranges1, objects); 

    % env(2,pose2, waypoints, [], objects); 

    % env(3,pose3, waypoints, ranges3,  objects); 

    % In single command 

env([1,2,3],[pose1,pose2,pose3],waypoints,{ranges1,[],ranges3},objects) 

   % Update poses 

pose1 = pose1 + [-0.085;0.062;pi/85]; 

    pose2 = pose2 + [-0.09;-0.07;pi/85]; 

    pose3 = pose3 + [0.045;0.09;pi/75]; 

    figure(2) 

title('Multi-Robot path planning by CA algorithm') 

end 

 

%% Multi-Robot Sensor Example 
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% Copyright 2018-2019 The MathWorks, Inc. 

https://uk.mathworks.com/matlabcentral/fileexchange/66586-mobile-robotics-simulation-

toolbox 

https://github.com/mathworks-robotics/mobile-robotics-simulation-toolbox 

https://viewer.mathworks.com/?viewer=plain_code&url=https%3A%2F%2Fuk.mathworks.c

om%2Fmatlabcentral%2Fmlc-downloads%2Fdownloads%2F33cfee76-0bb0-42ce-a1bc-

46cc156d43f7%2F701dee20-fdf5-4012-aea5 

b7b75748cfe0%2Ffiles%2Fexamples%2Fmatlab%2Fmultirobot%2FmrsMultiRobotSensors.

m&embed=web 
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11 Appendix [D] 

11.1 Program 3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 %%%% Robot_Environment4 Code %%%%                          %%%           

 %%% Alex Littler - 20035222  %%%                                      %%% 

 %%% Edited from code provided %%%                                    %%% 

 %%% by Dr. Lyuba Alboul 2014 %%%                                     %%% 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Positions of obstacles and goals 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

close all; 

clf; 

%Obstacle 1 

K1=0.55; 

Obs1=[2  6.5 ]; 

%Obstacle 2 

K2=0.35, 

Obs2=[2,5 12]; 

close all; 

clf; 

%Obstacle 3 

K3=0.50; 

Obs3=[4.5  2]; 

%Obstacle 4 

K4=0.65; 

Obs4=[8.1  9]; 

close all; 

clf; 

%Obstacle 5 

K5=0.50; 

Obs3=[10.2 13.9]; 

%Obstacle 6 

K6=0.65; 

Obs4=[10 10]; 
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%Goal 1 

Kg1=0.11; 

Goal1=[11.8  3]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Initial positions of robots 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Robot 1 

Robot1=[3 2.1]; 

%Robot 2 

Robot2=[4.5 13.5]; 

%Robot 3 

Robot3=[10.2 2.3]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% The Robot's starting environment 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% example of an environment 

clf % clear  

figure1 = figure('Color', 'w');  

axis ([0 16 0 16]) 

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[5,3,4,2],'Curvature', [0,0], 'LineWidth', 4), hold on 

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[13,5,2,5],'Curvature', [0,0], 'LineWidth', 4), hold on 

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'),hold on  

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[ 0.9,3.7,2,5],'Curvature', [0,0], 'LineWidth', 4), hold on 

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'),hold on 

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[ 7.2,12.7,5,2],'Curvature', [0,0], 'LineWidth', 4), hold on 

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'),hold on 

plot(3,2.1,'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r')  

plot(4.5,15.5, 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r') 

plot(10.2,2.3, 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r') 

plot(11.8, 4,'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r') 



214 
 

circleBlue(Obs2(1),Obs2(2),2,4); %plot obstacle 2 

title('Multi Robot Workspace Environment') 

hold on 

axis([0 16 0 16]); 

grid on; 

Example two 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Position of the robot, obstacles and goals  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

close all; 

clf; 

%Obstacle 1 

K1=0.55; 

Obs1=[2  6.5 ]; 

%Obstacle 2 

K2=0.35; 

Obs2=[2.5 12]; 

close all; 

clf; 

%Obstacle 3 

K3=0.5; 

Obs3=[4.5 2]; 

%Obstacle 4 

K4=0.65; 

Obs4=[8.1 9]; 

%Obstacle 5 

K5=0.5; 
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Obs5=[10.2 13.9]; 

clf; 

%Obstacle 6 

K6=0.65; 

Obs6=[10 10]; 

%Goal 1 

Goal1=[12.7 12]; 

%Goal 2 

Goal2=[11.8 3 ]; 

%Goal 3 

Goal3=[1.2 10]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Initial positions of robots  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Robot1 

Robot1=[3 2.1]; 

%Robot2 

Robot2=[4.5 13.5]; 

%Robot3 

Robot3=[10.2 2.3]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Original Robot Environment 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure1 = figure('Color', 'w') ; 

axis([0 16 0 16]);  

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[5,3,4,2],'Curvature', [0,0], 'LineWidth', 4), hold on 
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rectangle('Position',[0,0,16,16],'Curvature', [0,0],  'LineWidth', 2), hold on 

rectangle ('Position',[13,5,2,5],'Curvature', [0,0], 'LineWidth', 4), hold on 

rectangle ('Position',[0.9,3.7,2,5],'Curvature', [0,0], 'LineWidth', 4), hold on 

rectangle ('Position',[7.2,12.7,5,2],'Curvature', [0,0], 'LineWidth', 4), hold on 

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

%rectangle ('Position', [3, 2, 1,1],'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

plot(3,2.1,'ro', 'MarkerSize', 6,'MarkerFaceColor', 'r') 

plot(4.5,13.5,'ro', 'MarkerSize', 6,'MarkerFaceColor', 'r') 

plot(10.2,2.3,'ro','MarkerSize', 6,'MarkerFaceColor', 'r')  

plot(12.7,12,'go','MarkerSize', 6,'MarkerFaceColor', 'g')  

plot(11.8,4,'go','MarkerSize', 6,'MarkerFaceColor', 'g')  

plot(1.2,10,'go','MarkerSize', 6,'MarkerFaceColor','g')  

circleBlue(Obs2(1),Obs2(2),2,4); %plot obstacle 2 

title('Multi Robot Workspace Environment') 

hold on 

axis([0 16 0 16]); 

grid on; 

 

Example three 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Positions of obstacles and goals  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clf; 

%Obstacle 1 

K1=0.55; 
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Obs1=[2 8.5]; 

%Obstacle 2 

K2=0.35; 

Obs2=[2.5 12]; 

%Obstacle 3 

K3=0.5; 

Obs3=[4.5 2]; 

%Obstacle 4 

K4=0.65; 

Obs4=[7.8 9]; 

%Obstacle 5 

K5=0.65; 

Obs5=[10.2 12.9]; 

%Obstacle 6 

K6=0.65; 

Obs6=[10 10]; 

%Goal 1 

Kg1=0.11; 

Goal1=[12 12.7]; 

%Goal 2 

Kg2=0.11; 

Goal2=[12  4 ]; 

%Goal 3 

Kg3=0.11; 

Goal3=[1.0 10]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Initial positions of robots  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Robot 1 

Robot1=[3 2.1]; 

%Robot 2 

Robot2=[4.5 13.5]; 

%Robot 3 

Robot3=[10.2 2.3]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Initial positions of waypoints  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%waypoint 1 

waypoint1=[1 2]; 

%waypoint 2 

waypoint2=[4.3 5.5]; 

%waypoint 3 

waypoint3=[6 1.5]; 

%waypoint 4 

waypoint4=[8 1.4]; 

%waypoint 5 

waypoint5=[4.8 1]; 

%waypoint 6 

waypoint6=[9.7 5.5]; 

%waypoint 7 

waypoint7=[9.5 6.2]; 

%waypoint 8 
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waypoint8=[12.1 6]; 

%waypoint 9 

waypoint9=[11.8 7.8]; 

%waypoint 10 

waypoint10=[5 10]; 

%waypoint 11 

waypoint11=[7 11.5]; 

%waypoint 12 

waypoint12=[10 10]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Original Robot Environment 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure1 = figure('Color', 'w') ; 

axis([0 16 0 16]);  

rectangle('Position',[0,0,16,16],'Curvature', [0,0], 'LineWidth', 6), hold on 

rectangle ('Position',[5,3,4,2],'Curvature', [0,0], 'LineWidth', 4), hold on 

rectangle ('Position',[0,0,16,16], 'Curvature', [0,0], 'LineWidth', 2), hold on 

rectangle ('Position',[13,5,2,5], 'Curvature', [0,0], 'LineWidth', 4), hold on 

rectangle ('Position',[0.9,3.7,2,5], 'Curvature', [0,0], 'LineWidth', 4), hold on 

rectangle ('Position',[7.2,12.7,5,2], 'Curvature', [0,0], 'LineWidth', 4), hold on  

% rectangle ('Position', [3, 2, 1,1], 'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

% rectangle ('Position', [3, 2, 1,1], 'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

%rectangle ('Position', [3, 2, 1,1], 'Curvature', [1,1], 'LineWidth', 3, 'EdgeColor', 'b'), hold on  

plot(3,2,'ro', 'MarkerSize', 6,'MarkerFaceColor', 'r') 

plot(4.5,13, 'ro', 'MarkerSize', 6,'MarkerFaceColor', 'r') 

plot(10.2, 2.3, 'ro', 'MarkerSize', 6,'MarkerFaceColor', 'r') 
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plot(15,12.7, 'go', 'MarkerSize', 6,'MarkerFaceColor', 'g') 

plot(12,4, 'go', 'MarkerSize', 6,'MarkerFaceColor', 'g') 

plot(1.0,10, 'go', 'MarkerSize', 6,'MarkerFaceColor', 'g') 

plot(1,2, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(4.3,5.5, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(6,1.5, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(8,1.4, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(4,8.1, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(9.7,5.5, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(5.9,6.2, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(12.1,6, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(11.8,7.8, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(5,10, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(7,11.5, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

plot(10,10, 'bo', 'MarkerSize', 6,'MarkerFaceColor', 'b') 

circleBlue(Obs2(1),Obs2(2),2,4);  %obstacle 2 

title('Multi Robot Workspace Environment') 

hold on 

axis([0 16 0 16]); 

grid on;  
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