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MOLECULAR DYNAMICS SIMULATIONS OF CALAMITIC AND
DISCOTIC LIQUID CRYSTALS

ABSTRACT

Significant progress has been made in recent years in modelling liquid crystal
phases using the Monte Carlo and molecular dynamics simulation techniques.
We describe the technique of molecular dynamics in the microcanonical
ensemble that we have used in simulations of liquid crystal systems. A review
and discussion of some of the important simulations that have been performed to
date on non-spherical hard particle models, soft anisotropic single site models,
and realistic atom-atom based models is presented.

We report the results of molecular dynamics simulation studies of a system of
particles interacting via an anisotropic potential proposed by Luckhurst and
Romano, scaled by part of the well depth formulation employed by Gay and
Berne. The resultant hybrid Gay-Berne Luckhurst-Romano (HGBLR) potential
has an approximately spherical hard core with anisotropic long range attractive
interactions with a dependency on the intermolecular vector joining a pair of
sites. =~ The spherical hard core nature of individual HGBLR centres
notwithstanding we have parameterised single-site HGBLR centres to represent
both calamitic and discotic mesogens. Both systems are shown to exhibit a range
of mesophases on cooling from the isotropic liquid to form a crystal, including
uniaxial-nematic and columnar-like phases. Unlike previous hard particle studies
these ordered phases obtain because of the presence of the long range attractive
interactions. A comparison between the different structures formed with the two
different parameterisations is presented including graphical representations of the
simulation cell .

In order to more closely represent the short range anisotropic interactions of real
mesogens, a 3-HGBLR-site model has been parameterised to represent the
mesogen para-terphenyl. Details of the parameterisation are discussed. Two
versions of this model, a twisted central site 3-HGBLR-site site model obtained
from a molecular mechanics minimum energy conformation of para-terphenyl,
and an all coplanar 3-HGBLR-site site model have been studied using the
molecular dynamics technique. The resultant models are found to be biaxial
unlike previous anisotropic single site studies utilising soft potentials. Both
models appear to exhibit a variety of uniaxial and biaxial mesophases but
inclusion of the twisted site appears to promote the formation of biaxial phases.
A comparison of the two models is made.
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CHAPTER1
INTRODUCTION

The term liquid crystal is commonly used to describe a number of different states
of matter that lie intermediate between normal crystalline solids and isotropic
liquids. The component molecules of such states of matter posses some degree of
long range orientational and often additionally, partial translational order, but in
all cases the substance remains fluid albeit quite viscous at times. In the
macroscopic regime the long range order manifests itself in the anisotropic
behaviour of the bulk properties of a liquid crystal sample. These bulk properties

are exploited in the many technological applications of liquid crystals.

In order to appreciate the potential range of applications [1] of liquid crystals it is
necessary to arrive at a comprehensive understanding of the thermodynamic
processes driving the underlying ordering phenomena. Additionally, such an
understanding is of importance in its own righf. This may be achieved through

computer simulation techniques - at least for idealised models of liquid crystals.

This thesis will concern us with the particular technique of molecular dynamics
(MD). Presently the limitations in performance of computer technology allow us
to gain insight into the formation of liquid crystal mesophases through simplified
models of mesogens as a collection of site-site and single-site anisotropic
potentials interacting in a pair-wise fashion. It is the aim of this study to
investigate the properties of a system of particles interacting via an anisotropic

pair potential which is characterised by orientational dependant terms with



respect to the particles themselves and with respect to the intermolecular vector
separating them. Accordingly, we have taken a potential proposed by Luckhurst
and Romano [2] and modified it by part of the well depth scaling term employed
by Gay and Berne [3]: the hybrid Gay-Berne Luckhurst-Romano potential. This
potential has the property of a spherical hard core for a given orientation of a pair
of molecules, together with a long range anisotropic attractive region. As such it
is possible to parameterise the potential to represent a rod-like mesogen favouring
side-by-side alignment or as a disc-like mesogen favouring end-to-end alignment.
Despite the spherical nature of the HGBLR hard core, the model is found to
exhibit a range of mesophases. We present the results of molecular dynamics
simulations in the microcanonical ensemble of systems of single-site HGBLR
particles parameterised to represent both calamitic and discotic mesogens in

chapter IV.

The spherical hard core of the HGBLR model is unrealistic as real mesogens
must necessarily deviate from spherical symmetry. Thus in an attempt to more
accurately model a real liquid crystal forming compound, we have rigidly joined
three such sites with discotic parameterisation to represent the mesogen para-
terphenyl. In chapter V we propose a tractable methodology for parameterising
this new model based on comparison with a Lennard-Jones atom-atom
representation of para-terphenyl. The resultant 3-HGBLR-site site model is
biaxial and this model too has been studied using molecular dynamics. We
present results for two models: an all coplanar site model and a model with the
central site twisted about the molecular long axis with respect to the coplanar end

rings.



Since the first MD experiments of Alder and Wainwright [4], significant
advances have been made in simulation technique. Chapter II provides an
introduction to the general molecular dynamics technique followed by details of
the Hybrid Gay-Berne Luckhurst-Romano potential. The origins of the potential
are clearly presented together with a brief history of single site anisotropic
potentials. Specific methods that we have employed in our simulations, for
example the methods used in integrating the equations of motion, or in

subsequent analysis of the data produced are explained later in this chapter.

Today, there is a vast amount of literature available on computer simulation of

liquid crystals. Previous work can be divided broadly into four categories:

Hard Particle Models;
Soft Particle Models;
Lattice Models;
Realistic Models.

In chapter III we present a review of some of these models that have been studied
pointing out some of the surprising results obtained from simple models. The
different models each are seen to provide particular features to simulations which
have helped our understanding, through comparison with either real experiments
on liquid crystals, or, comparison with theory or indeed other simulations, of the
formation of liquid crystal phases. Both single-site hard particle and single-site
soft particle models have been used extensively due to their relative
computational simplicity. However, it is clear that in order to simulate the

subtleties of real mesogens realistic models will have to be used. Evidence is



presented that these realistic atom-atom and united atom models are just

becoming computationally feasible with today's resources.

For the rest of this chapter we shall briefly mention, as an introduction, the
structure of a few liquid crystal mesophases that have been reported in the
simulation literature and are exhibited by real liquid crystal systems.

L2 Liquid Crystal Mesophases

Liquid crystal mesophases represent a number of different states of matter which
are characterised by the partial orientational and sometimes additionally
translational ordering of their constituent molecules. Liquid crystalline materials
were first observed in the late nineteenth century [5]. It is not intended to give a
detailed discussion on liquid crystal mesophases in this introduction as many
excellent publications and reviews exist to serve this purpose (see section 1.3): a
brief introduction describing the various types of mesophase will be provided

instead.

Liquid crystals can be divided into two distinct groups differentiated by the way
in which their respective liquid crystal phases are formed [6]. Lyotropic liquid
crystals composed of amphiphilic organic molecules such as soaps and detergents
form mesophases which incorporate water into their structure. The type of
mesophase expressed is dependent on the relative concentration of amphiphile to

solvent and to some extent on the relative temperature [7].

Thermotropic mesophases are temperature dependent states that do not require
the action of a solvent in their formation [8,9]. It is models of this group of liquid

crystals that we have investigated in this study. It is necessary for liquid crystal



molecules to deviate from spherical symmetry in order to exhibit orientationally
ordered phases [10]. Thus many liquid crystal molecules have elongated rod-like
or more recently discovered flattened disc-like shapes [11]. Thermotropic liquid
crystals may exhibit many mesophases over a range of temperatures, a
phenomenon known as polymorphism. Generally the phases described become
more ordered as the temperature is lowered, although it is possible to experience
re-entrant phenomena where some previously observed phase reappears again at
lower temperature. Some of these phases have been previously classified based
on symmetry considerations alone [12,13] leading to the now familiar nematic
and smectic phases, although with the advent of discotic mesophases different

phase symmetries have had to be considered [9,14].

L.2.1 Calamitic Mesophases

For our purposes here it is sufficient to describe just two types of calamitic
mesophase, namely, the nematic and the smectic. In a uniaxial nematic liquid
crystal long range orientational order exists between the principle symmetry axes
of the constituent molecules: they tend to be aligned along a given direction
labelled by a unit vector, the director, i. The uniaxial nematic phases possess
D symmetry in Schoenflies notation. Other symmetries exist, for example in a
biaxial nematic orientational ordering of the remaining molecular semi-axes is
present additionally leading to D,;. The component molecules of a nematic
phase show no translational order at long range and the phase remains quite fluid
and exhibits structural features typical of a dense liquid. The nematic phase is
the lowest class of liquid crystal in terms of symmetry breaking operations

necessary to form it from an isotropic phase.



Nematic phases are formed from achiral molecules or racemic mixtures of
optically active species. Nematic-like ordered phases formed by non-racemic
mixtures of chiral molecules display a helical distribution of the components of i
such that:

n, = cos(goz+ @) [1.5]
ny = sin(goz +¢) [1.4]
n,=0 [1.3]

where g, is a constant and ¢ is an arbitrary phase angle. Thus the sense of @
rotates in the plane perpendicular to n, on moving along n,. Such phases are

called cholesterics after such behaviour was identified for pure cholesterol esters.

Smectic phases possess at least one degree of translational order in addition to the
orientational order exhibited by nematic mesophases at long range. The
translational order manifests itself as a layered structure. In the smectic-A phase
for example, the constituent molecules are still aligned along the director, ii, but
additionally these molecules are confined to a series of layers lying perpendicular
to the director. The molecules remain translationally disordered within the layers
which themselves slide easily over each other maintaining the fluidity of the
phase. Because of this smectic phases are often described as two-dimensional

liquids.

Other types of smectic exist. In the smectic-C phase the constituent molecules
are tilted with respect to the layer planes. In this case both a nematic director and
smectic layer direction can be identified. The tilt angle is often seen to vary with

temperature and tilt angles of up to 45° between these directions have been



observed. Once again there is no translational ordering of molecules within the
smectic-C layers. If component molecules of a smectic-C phase are optically
active then the direction of tilt describes a precession in a helical fashion moving

along the layer normal and a smectic-C* phase results.

Some more ordered smectic phases exist. The particles consisting a smectic-B
phase do exhibit orientational order and are arranged in layers perpendicular to
. Additionally though the molecules are distributed on a quasi-triangular lattice
within the layers. The molecular positional order does not extend to great
distances but the bond orientational order of the quasi-lattice is preserved over
macroscopic distances. Such phases characterised by Dg;, point group symmetry
are called hexatic smectic-B and differ from crystal-B phases (see below) in
which both the bond orientational order and positional order of the molecules is
preserved at long range. Hexatic smectic-B phases consisting of tilted molecules
exist and are denoted smectic-F and smectic-I depending on the direction of tilt.

Other smectic phases exist and are denoted S, Sgs Sg Spp S; and S,.. However,
these are in fact all crystals exhibiting long range positional order. Generally
they have a 3-dimensional structure consisting of layers stacked upon each other
in a similar fashion as graphite. The forces between the layers are weak leading

to these crystalline phases resembling true smectics in some experiments.

L.2.1 Discotic Mesophases

Discotic mesophases here refer to those phases formed by disc-like mesogenic
molecules. The discotic nematic phase has all the properties of the previously

described calamitic nematic (see above): the principal symmetry axis, now the



molecular short axis of the disc-like particles, tend to align along a common

direciton ii.

Some disc-like mesogens form columnar phases whereby the discs assemble
themselves in columns, often parallel to fi. The centres of the columns are
usually arranged on a triangular lattice. Within the columns the discoid
molecules are irregularly spaced, with positional correlations existing over short
range only and diffusion occurs parallel to the column axis, leading these phases
to have been termed one-dimensional liquids. Indeed an interesting potential
application of columnar systems as molecular wires, with electrical conductivity
occurring along the columns only is presently being investigated [15].
Sometimes the discoid molecules are tilted with respect to the columnar axis and
this often leads to the columns themselves being distributed on a rectangular

lattice.
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CHAPTER II

THE HYBRID GAY-BERNE LUCKHURST-ROMANO POTENTIAL
AND THE MOLECULAR DYNAMICS METHOD

I1.1 Introduction

This chapter describes the technique of molecular dynamics (MD) that we have
used in carrying out simulations of calamitic and discotic liquid crystals. An MD
simulation involves solving Newton's classical equations of motion for a system
of particles interaéting through a prescribed potential function. At a given time,
with knowledge of the positions and orientations of the particles with respect to
each other we may calculate the forces acting on the particles using the potential
of interaction. Newton's second law allows direct computation of the
acceleration on individual particles. Knowing therefore, the positions and
accelerations of individual particles, we may use Newton's equations of motion to
estimate the positions of the all particles (i.e. the new configuration of the
system) at a small time interval in the future. Repeating this process allows us to
calculate the time evolution of the system. This is the essence of molecular

dynamics.

We have developed an original potential of interaction to model both calamitic
and discotic liquid crystal systems. This potential is a hybrid model formed by
scaling the Luckhurst-Romano [1] potential by the energy well depth expression
of the Gay-Berne [2] potential. Accordingly it is called the "hybrid Gay-Berne
Luckhurst-Romano potential". In this chapter we shall begin with a discussion of

the basic form of the potential that has been used in MD simulations, illustrating

11



its origins in earlier work. Next a brief description of the standard techniques of
MD that we have incorporated into our programs is provided. The molecular
dynamics code was written as an original piece of source code, incorporating
some available routines in common use [3], together with wholly original code
for analysis; for example, calculating directionally resolved order parameters.
Such routines that are in standard use are not explained in detail, and references
to the original work are provided where appropriate. However the different
methods which we have used in solving the equations of motion are detailed, as
are the analytical calculation of order parameters and directionally resolved
structural features. These are the relevant tools which when combined with MD
allow us to gain insight into the phase behaviour of our liquid crystal models.

I1.2 The Interaction Potential
The microscopic configuration of the classical system at any given time is
completely described by specifying a set of generalised coordinates q and

generalised momenta p conjugate to q such that for a system of N particles:

q9=1{9:,92,93,----qn } [IL.1]
p= {p19p2’p3""spN}- [HZ]

If we assume that the Born-Oppenheimer approximation [4] is valid for the
description of the constituent particles, then the Hamiltonian of the system may
be written as the sum of kinetic energy and potential energy, components K and V'

respectively as so [3];

H(q,p) = K(p) +V(q). [IL.3]

12



Note that in equation [II.3] the kinetic energy appears only as a function of the
momenta p, and the potential energy appears only as a function of the particle
positions q. The sets p and q are sets of vectors, thus for a molecular system an
element of q, q; say, would consist of three coordinates describing the position
vector of the centre of mass of the molecule, and three coordinates describing the

orientation of a vector fixed in the molecule with respect to some axis system.

The total kinetic energy and total potential energy may be obtained from [I1.4]
and [II.5] respectively:

K= sz /2m;; [IL.4]

V= Zvl(ql)+zzv2(ql’qj)+zz ZV3(qzaqjaqk)+ [HS]

i=1 j>i i=1 j>i k>j>i

where m; is the mass of particle .. The terms v,,v,,... in [IL.5] above represent
contributions to the potential energy from pairwise, three body, and higher
interactions respectively. The term v, is a single particle interaction term which
represents the effect of an external field on the system. The notation on the
summation signs is arranged so that account is taken of distinct combinations of 7,
J and k only, avoiding zero contributions from particle self interactions. In the
simulations which we have carried out and are reported herein there are no
external effects (such as external fields, or container walls due to implementation
of periodic boundary conditions), and so v,=0. The second term is called the pair
potential and dominates the remaining terms. It describes the interaction energy
between a pair of particles each specified by the generalised configurational

coordinates ¢, and q; Higher order terms become less significant and can be
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non-additive, [5] although the term v, is likely to have a reasonable contribution
to V for densities typical of liquids. For example, estimates have shown that in
the case of the lattice energy of argon an approximate 10% contribution comes
from terms of higher order than v, [3]. It is thought that terms higher than v, are

small compared to v, and v, .

As can be seen in equation [I1.5] calculation of three body terms involves a triple
sum over the particle indices 7, j and k. Calculation of the potential energy of
interaction and subsequent forces between particles is the most expensive part of
an MD simulation. Thus despite the magnitude of the contribution from the v,
term it is seldom included. Instead an effective pair potential is used such that

equation [II.5] becomes;

N N N N
V=22 vT(a,q;)=). D V(4:q)), [1L.6]

i=1 j>i i=1 j>i

where vzeff is an effective pair potential that takes into account average non-
additive higher body effects in [I.5]. This is the form the potential energy will
take in all the simulations reported here. It should be noted though that some
workers [e.g. 6] assert that the assumptions implicit in the effective pair potential
may be an important source of error in computer simulations. The error may be
more severe in the simulation of liquid crystals which can have many condensed
phases. However we are restricted in our choice here not only because of the
expense involved in their computation, but by the lack of quantitative

experimental data on the effects of higher body interactions.
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I1.2.1 Hard Particle Potentials

Historically some of the first experiments looking at the behaviour of the
individual particles of a liquid were performed using identical coins placed on a
table and pushed together or aggregates of marbles or ball bearings which were
shaken up and down in some container of sorts [see for example 7]. Such
experiments provided remarkably good models of the structure of dense liquids at
low temperatures. Similarly when liquid behaviour was first investigated in 2- [8]
and 3-dimensions [9] using an electronic computer, hard discs and hard spheres
were chosen to represent the constituent particles of the liquid. The hard sphere

potential has the following discontinuous properties;

0 (r<o)
Vas = {0 (c<r) [T7]

The form of equation [II.7] is shown in figure II.1, clearly two hard spheres
approaching each other experience no interaction until a critical distance r=c is
reached. For separations less than ¢ the pair potential energy between the two
hard spheres becomes infinite. This is the unphysical case when the two hard
spheres are actually overlapping and clearly should not be allowed. For this
reason the dynamics of hard spheres (at liquid or gas densities) is characterised
by relatively long periods of free flight interspersed with elastic collisions when
any pair of particles becomes separated by the hard sphere radius distance of
closest approach 7=c. The hard sphere potential, although quite unrealistic is of
great importance as a reference system whose behaviour is well known, from

which perturbation theories may be developed.

15



More complicated anisometric hard particle potentials such as platelets,
ellipsoids, spherocylinders and cut spheres have been used in the simulation of
liquid crystals and these will be discussed in chapter III. Not all shapes of hard
particle can be easily used in a computer simulation. The problem of hard
particle interactions reduces to one of being able to determine whether, at any
given time, two particles are in contact. This involves evaluation of a so called
contact function. The contact function expression has been elucidated for only a

few geometric shapes, where it takes a relatively simple form.

I1.2.2 Soft Particle Potentials

The second class of so called soft interaction pair potentials does not contain
discontinuities that characterise the hard particle potentials. Rather, these decay
asymptotically to zero as the interparticle separation is increased. The soft

sphere potential has the form,;

Vs(r)=¢(c/r)". [IL.8]

The parameter v governs the rate of decay of the soft sphere potential. Two
examples of [II.8] with repulsion parameters v=6 and v=12 are shown in figure
II.2. The repulsion parameter v can take any real positive value. However for
these rather idealised soft sphere potentials v is often chosen to be a positive
integer [3]. Figure I1.2 clearly shows that the larger the (positive) value of v, the
more severe the repulsive interaction up to the limit of the hard sphere case where

v=00,

None of the pair potentials considered so far have any attractive component. In

an attempt to explain why real gases did not obey the ideal gas law, van der
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Figure I1.1
The hard sphere potential V' * = Vj;g of equation [Il.7]. o is the hard sphere radius.
100 T

80

60 |

V*

40 1

20 1

0 5 10 15 20
¥/nm

Figure 11.2

The soft sphere potential V* = Vg, equation [I1.8]. Solid line corresponds to repulsion

parameter v = 6, dashed line corresponds to repulsion‘ parameter v=12, ¢ = 10nm
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Waals first considered the idea of attractive intermolecular forces [10] by adding
an attractive term to the pressure of the equation of state of an ideal gas. In 1903
Mie proposed a phenomenological pair potential with an attractive component of

the form;

Vsmie =—A/r"+B/r™, [11.9]

where »n and m are attractive and repulsive parameters respectively.

In reality, in the case of neutral atoms at large separation the dominant attractive
term in the interatomic potential comes from dipole-induced dipole interactions
which vary as »=® [11]. Higher order induced multipole interactions exist, but
they are small in comparison to the leading dipole-induced dipole interactions.
These dispersive interactions are always attractive [12], since a change in the
electronic charge distributions of one atom, simply causes an appropriate change
in the induced multipole of another atom. For molecular systems, there may well
be additional contributions from permanent-permanent, permanent-induced, etc.,

electric multipole interactions

At short separations the atoms experience a repulsive interaction. As they
approach closely their electronic charge distributions begin to overlap causing a
strong repulsion between the similarly charged atomic nuclei, because of a
reduction in the electrostatic screening effects normally present at larger
distances. Further their electron clouds begin to distort in order to satisfy the
requirements of the Pauli exclusion principle, this distortion manifests itself as a
strong repulsion between the two atoms. Calculation of the form of the repulsive

interaction is difficult. For example, it is not pairwise additive as the dispersion
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forces (approximately) are. The influence of a third atom in the vicinity of a
close pair modifies the interaction between the pair [13]. Fortunately, because it
is so rapidly varying, it is not necessary to specify the precise form of the short
range repulsion. Thus this short range component of the interatomic potential is
often described as ™", with » in the range 9 <n <15 [11]. Choosing n=12 [14]
and appropriate values of the constants 4 and B (4 =4ec'? and B = 4ec®), and

keeping m = 6 leads to a particular form of the Mie potential;

VL,<,)=48[(g)“-(g)“]_ m10]

Equation [II.10] is the Lennard-Jones 12-6 potential, which has been used
extensively in "realistic" computer simulations of monatomic fluids such as liquid
argon [see for example 3]. Figure II.3 illustrates the form of [II.10] which
clearly, qualitatively, has the form we require for describing the pair potential

energy between two isolated atoms.

Adopting a convention that an attractive force is indicated by a negative sign the
force acting between two atoms moving in the potential [II.10] may be obtained
by the gradient of the potential with respect to pair separation;

F(r)=-V,V(r), [IL.11]

and is illustrated in figure II.4. The force curve of figure 1.4, has qualitatively

the same form as the potential energy curve illustrated in figure II.3.
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Figure I1.3
The Lennard-Jones 12-6 potential, equation [Il.10], parameterised as for argon with

0=0-34Inm and £=119-8kgK [3]. The potential is expressed in terms of

reduced units. The kpy is the Boltzmann constant.
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Figure 11.4
The behaviour of the force between two atoms interacting via the Lennard-Jones 12-6

potential parameterised for argon (see figure I.3).
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11.2.3 Anisotropic Soft Pair Potentials and the Origin of the HGBLR
Potential

The potentials just described possess spherical symmetry, and are therefore not
suitable for the simulation of liquid crystals. In order to arrive at a model
suitable for describing (microscopically or phenomenologically) liquid crystals
we necessarily must include an anisotropic component in the intermolecular pair
potential. Based upon calculations of the second virial coefficient of cylindrical
molecules, Corner [15] proposed a general form of potential for such molecules

as;

Veomer = S(Q)f(o_(rg)) [(1L.12]

The potential [II.12] depends on the relative orientations of the two molecules
which is introduced through the parameter Q. For fixed Q however [I1.12]
remains spherically symmetric. As with the Lennard-Jones potential when
written in the form of [I1.10], € is a function that scales the energy well depth and
f is a function depending on molecular separation », but now both € and f

depend additionally on the relative orientation of the particles.

Several potentials having the analytical form of [I.12] have been used in
computer simulations of liquid crystals. By envisaging molecules represented as
the rigid union of a set of ellipsoids, Berne and Pechukas [16] developed a soft
non-spherical potential based on the Gaussian overlap model. The overlap

integral of two Gaussian ellipsoids may be represented as;

Igp(fiy,i;,r) = Soﬁl(ﬁl,ﬁz)exp[—rz /02(ﬁ19ﬁ29f)]- [11.13]
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The unit vectors Ui; represent the orientation of the principle symmetry axis of
each ellipsoid of revolution, and r is vector joining their centres. By analogy
with equation [II.12] we see that &,(ii;,ii,) and o(d;,fi,,F) represent strength
and range parameters respectively with f taking an exponential form. The unit
vectors Wi; represent the orientation of the principle symmetry axis of each
ellipsoid of revolution. For constant orientation of ; [II.13] generates a series of
ellipsoidal equipotentials in r. Berne and Pechukas obtained expressions for the

strength and range parameters:

o

g9 (, ;) = 80[1—X2(ﬁ1 'ﬁz)z] ; [1I.14]

-1
(-, 26, (f"ﬁl—f'-ﬁz)z}] . ms)

o(l;,d,,f)=cy| 1-1 — —
b2 0( 2%{ 1+ (8 -6;)  1-x(d;-d,)
The terms €, and o, are strength and range constants and % represents the

anisotropy of the ellipsoids;
x=(o‘|2 —cf_)/(of +0'i), : [11.16]

where o) and o, are the major and minor axes of the ellipsoidal Gaussians.
Equations [II.14] and [I1.15] give an expression for the extent of overlap between
two ellipsoidal Gaussians with respect to their relative orientations In fact, as
Berne and Pechukas state [16], the overlap model gives an expression for the
orientational dependence of molecular interactions, but it does not accurately
reproduce the distance dependence. In order to achieve this, the authors suggest
that the strength and range parameters of the Gaussian overlap model are used as

the strength and range parameters of a simple atomic potential. For example
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incorporation into the Lennard-Jones 12-6 potential, leading to the overlap

potential of Berne and Pechukas;

r r

. (o, )Y ((o(dy,b,,#)Y
VBP(“I9“2,r)=481(u1,u2) —_— - — .
[I.17]

Equation [II.17] represents the interaction between two molecules represented as
ellipsoids of revolution [16]. One graphical way of illustrating the behaviour of
[11.17], is to plot the distance dependence of the potential energy for a few select
orientations. Common configurations include parallel end-end and side-side, X
and T [17]. The distance dependence of the Berne-Pechukas potential for these

four basic configurations is shown in figure [I1.5].

Equation [II.17] has certain characteristics that make it particularly amenable to
computer simulation studies [18]. It is a relatively simple function dependent on
only three parameters, allowing for relative ease of calculation of the potential
energy. Further the function is readily differentiable facilitating analytical
computation of the forces and torques of a system of Berne-Pechukas particles.
Variation of the parameter ) (equation 11.16) allows a range of molecular

eccentricities, from very long prolate to flat oblate to be studied.
The Berne-Pechukas potential (equation [II.17]) was first used in computer

simulations investigating the stability of the nematic phase and co-operative re-

orientation effects. For more details see chapter III.
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As can be seen in figure [I.5], the well depths of parallel configurations of
Berne-Pechukas particles have equal magnitude. For prolate systems we would
expect the side-side configurations of molecules to be favoured over end-end
configurations. This is suggested by considering the potential energy curves
exhibited by a linear array of Lennard-Jones centres [2] having an axial ratio of

3:1.

Subsequently, modifications of the Berne-Pechukas potential have been
suggested [2, 18, 19] There are two principle changes. The first involves scaling
the existing strength parameter with an additional function dependent on the

intermolecular separation vector r;
S(ﬁlsﬁZ’f-)=SOSY(ﬁI’ﬁZ)Sg(ﬁIaﬁZsf')' [HlS]

The scaling function €, (ii;,d,,#) has the form of o(ii;,di,,#)/ o¢; the exponents
v and p are treated as adjustable parameters that influence the relative well

depths of different configurations (see for example Luckhurst and Simmonds, ref.

[21D.

Secondly (as can be seen in figure [IL.5]), the Berne-Pechukas potential has the
unrealistic feature that the well width is larger for end-end configurations, with
respect to side-side configurations. This property is not exhibited by a four site
linear Lennard-Jones array [2]. Gay and Berne suggested a shifted form of the
range parameter for use within the Lennard-Jones function, yielding the Gay-

Berne potential;
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Vop(iy, iip,r) =

12 6
4g.¢'(ii.. B 4. §. %o - % ’
€08 (“b“z)gz(“1’“2’r){(r—G(ﬁl,ﬁz,f‘)+00) ("“G(ﬁbﬁz»f')*’co) }

This is illustrated in figure II.6. As can be seen in figure 1.6, sliding the Gay-
Berne potential minimum position, rather than a simple scaling with
intermolecular distance, removes the dilatory effect on the well depth width.
Thus the well depth widths for both end-end and side-side configurations of Gay-

Berne particles are now equal.

The Gay-Berne particles have been shown to provide a rich degree of
polymorphism. They have been used successfully in simulations of calamitic and
discotic liquid crystals by a number of workers, notably Luckhurst and co-
workers [21], and Rull and co-workers [22]. These simulations are discussed

more fully in chapter III.

The Luckhurst-Romano potential is the sum of a simple anisotropic and a scalar

pair potential, having the following form;
ViR =Vo+Vy, [11.20]

where ¥} is the Lennard-Jones 12-6 potential and;

v, =—4sx{(%)12 +(§)6}Pz(cos(ﬁy)), [11.21]
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Figure IL.S
Distance dependence of the Berne-Pechukas potential, equation 11.17 parameterised

with 6p=1, gp=1 and o)/, =3. The different symbols correspond to the
configurations: closed squares, side-side; open squares, X-configuration; closed

diamonds, T-configuration; open diamonds, end-end.
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Figure I1.6
Distance dependence of the Gay-Berne potential, equation 1l.19 parameterised with
oo=1,¢ =1, 64/0,=3 and g;/€, =5 with v=1 and pn=2. For a key to the

configurations see figure I1.5.
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where f; is the angle between the principle symmetry axes of two rod-like
particles, and B is the second Legendre polynomial. The anisotropic term is
simple and has the same form as that used in the Maier-Saupe mean field theory
of nematics [23, 24]. In an earlier form, this potential was used in a simulation of
rod-like particles confined to the sites of a lattice [25], More recently the ¥, has
been used in simulations were the particles were not restricted to a lattice [26].
Although lattice models cannot hope, truly to closely represent a fluid phase,
because of the obvious restriction of no translational motion, it is sometimes
convenient to turn one's attention to a small part of an altogether wider problem.
In the case of lattice models, detailed studies of the effects of particle
reorientation could be made. The Luckhurst-Romano potential was successfully
used in an off lattice simulation of simple cylindrically symmetric particles [26]
and more recently in an Monte Carlo simulation of a siloxane cyclic polymer

system [27]. Again these are discussed more fully in chapter III.

For the simulations reported herein, we have used a modified form of the
Luckhurst-Romano potential, formed by scaling it with part of the anisotropic
well depth expression of Gay and Berne. The result is a fairly simple anisotropic

pair potential, the hybrid Gay-Berne Luckhurst-Romano potential (HGBLR)

which has the following form;
Vaoarr (1,85, 1) = &5 (8, b, )V (r) + V4 (), 6,7)}. [11.22]

Where:

Vo(r)=4s{(%)u ~(§)6}; [11.23]
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V4 (y,8,,7) = —4sx{(§)12 + (%)6}15(1‘11 “ip); [[.24]

82(ﬁ13ﬁ2’f') = 1_%{

; [11.25]

(F-dy +£-ii,)° (f-ﬁl—f'-ﬁz)z}

1+y'(i;-d)  1-x'(d-d;)

and;
v'={l-¢,/e,}/{1+¢,/€}. [11.26]

The HGBLR potential has a number of characteristics which may make it

extremely useful in the task of simulating mesogens.

The inclusion of the part well depth scaling function of the Gay-Berne potential
introduces a dependence on the intermolecular vector. Thus the HGBLR
potential, in contrast to the Luckhurst-Romano potential correctly distinguishes

between the parallel configurations, for example end-end and side-side.

The HGBLR potential has the advantage over the Gay-Berne potential of
computational simplicity and therefore speed. In a comparative test with the
Gay-Berne potential, the HGBLR potential was found to be an order of
magnitude faster on a scalar processor [28]. This provides some motivation for

developing the HGBLR potential as later several HGBLR sites would be joined

together to provide more realistic models of mesogens.

The HGBLR potential with a disc-like and rod-like parameterisation is presented
in two-dimensions in figures IV.2 and IV.3 respectively. Inspection of these
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figures reveals that the potential has a spherical hard core surrounded by an
anisotropic attractive region. This is unrealistic for liquid-crystal forming
molecules, which must necessarily deviate from spherical symmetry. Therefore
in the simulation of single HGBLR centres, any observed liquid crystal phases
would be due solely to the attractive anisotropic component in the potential, as
we know that hard spheres do not form a liquid crystal phase. Later simulations,
involving multiple HGBLR centres will provide a non-spherical hard core

through the geometrical disposition of their centres.

The anisotropy parameter ' which represents the relative ratio of the side-side to
end-end interactions can take a range of values, including negative values,
enabling the anisotropic attractive part of individual HGBLR centres to be

representative of disc-like or rod-like mesogens equally well.

The HGBLR potential has formed the basis of the MD simulations reported in
chapters IV and V. As preliminary work, systems of individual HGBLR centres
have been simulated, with calamitic and discotic parameterisations. This work is
presented in chapter IV. Subsequently HGBLR sites have been rigidly joined to
form multisite models of calamitic mesogens; the results of MD simulations of

these models are presented in chapter V.

The remainder of this chapter will be concerned with carrying out the MD

simulations and extracting useful information from them.
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I1.3 Computational Techniques in Molecular Dynamics

With a knowledge of the forces and torques acting on a system of particles, we
may apply the rules of classical mechanics to compute the classical trajectories of
the individual particles. In this way we may calculate the time evolution of such

a system of particles: these are the basic principles of molecular dynamics.

In what follows we shall talk generally about molecules. In the case of atoms
there may be no need to consider their orientations due to symmetry effects, and

the situation is simplified.

We shall consider a system of particles which interact through a continuous
potential. The special techniques which apply to MD of particles which interact
through a discontinuous potential will be mentioned briefly at the end of this

section.

We do not consider the continuous classical trajectories of the particles in an MD
simulation. Instead we have a complete description of the particle positions and
momenta in a series of chronologically ordered system configurations. Typically
the time interval 3t is chosen so that a particle will not travel further than half its
own diameter in this time interval [3]. Further restrictions may be imposed on
the choice of &t through the method chosen to solve the equations of motion of

the particles [29].

This is not the case in a Monte Carlo [30, 31] (MC) simulation, where
configurations are generated randomly; the probability of a configuration
occurring depends only on the previous configuration, and not on the past history

of the system. MD has a distinct advantage over MC in this respect as we may
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use the former to study the dynamical or time evolution of a system of interest.
This is important in the study of liquid crystals. If the molecules can be shown to
posses self-particle diffusion and yet also posses a degree of orientational order
then these provide strong evidence for the existence of a liquid crystal
mesophase, as opposed to a plastic crystal, genuine crystal or an ordered glass
phase. The choice of molecular dynamics over MC techniques allows us to

collect data on particle self-diffusion.

IL.3.1 Periodic Boundary Conditions and the Minimum Image

Convention

In our MD simulations we wish to examine a liquid crystal in bulk. A standard
method of removing surface effects is the use of periodic boundary conditions
(PBCs). The central simulation box and contents are effectively completely
surrounded by an infinite number of replicas in all coordinate directions. This
has the effect of producing an infinite number of particles from the given finite
number contained in the central simulation box. When considering particle pairs,
A and B say, with the minimum image convention we only consider a finite
number (typically only one) of the replicas of particle B when computing the
interactions between A and the Bs. These replicas of B are those that have the
shortest interparticle separations between A and replicas of B. Because the
interparticle potential is relatively short ranged with respect to the large distances
out to the majority of the replicas of B, there are only significant contributions to
the potential energy of the system from short range interactions: the closest

replicas of B

Of course it is not possible to store an infinite number of particle coordinates. In

practice therefore, when using the minimum image convention on just one
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particle replica B, PBCs are implemented using the following technique.
Whenever a particle travels through one of the simulation box "walls" it

reappears entering the simulation box through the opposite "wall".

There are several problems which are introduced with the implementation of
PBCs. For molecular systems a particle leaving a face of the central simulation
box, to reappear at the opposite face will generally have a different orientation
with respect to a given molecule. The change in orientation causes a jump
discontinuity in the potential energy of the system. In the microcanonical
ensemble, used exclusively in these studies, this can lead to energy conservation
problems such as energy pumping. The effect is however, generally absorbed by

the allowed fluctuations in the total energy of the system.

If external effects are to be included in the simulation they must have the same
periodicity as the simulation box [3]. An example of an external effect might be
the imposition of an electric or magnetic ordering field on a liquid crystal. In all

of the studies reported here, we do not consider external effects.

Interparticle correlations may only be calculated up to a maximum of half the box
length when PBCs are applied. This is necessary to avoid spurious contributions
to distribution functions from particles interacting with themselves or with

multiple replicas of particle B.

More recently a different approach towards boundary conditions has been
attempted. Radial boundary conditions have been used in the simulation of
nematic droplets [32]. However the technique has not been fully extended to
deal with bulk liquid crystals.
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I1.3.2 Finite Size Effects
In the microcanonical ensemble the density of a simulation dictates the length of
the side of the simulation box for a given number of particles N. For example for

a cubic simulation box the length of a side of the cube L, is given by;
L=(c/N)13, [11.27]

It is crucial that L is longer than the distance at which the interparticle potential is
significant. For the intermolecular potentials considered in this work, which
decay as  this is not a problem for the number of particles 108, 256 and 500
that we have considered. However in the simulation of other systems, for
example of electrostatic charge-charge interactions and dipole-dipole interactions
which decay as 7! and 7 respectively, special techniques (see [3] and references
therein) are required for small numbers of particles as the potential may still be

significant over the range of the box.

Ideally we would wish to simulate a macroscopic number of particles.
Unfortunately this is infeasible, and so in practice PBCs are employed together
with the minimum image convention on typically 10 to 10* particles. It is
important to ask whether the simulation of a relatively small number of particles
in PBCs is a good representation of the macroscopic system it is supposed to
correspond to? For example the use of PBCs with cubic simulation cell of length
L implies that the maximum correlation distance that may be investigated is L/2.
Such a simulation will be insensitive to fluctuations with wavelength longer than
L. This may have severe consequences, especially near phase transitions where
long ranged fluctuations often characterise a transition: some observed transitions

tend to exhibit properties typical of higher order transitions [3]. Thus the nematic
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to isotropic transition which is described as weakly first order (i.e. a first order
phase transition with a small latent heat [33]) may in fact be observed as an

essentially continuous transition [34].

I1.3.3 Simulation Box Geometry

If periodic boundary conditions are to be applied, the geometry of the simulation
box must be space filling, so that the box can be effectively repeated in all
directions. Several space filling simulation boxes have been used in the past, a
regular cube, cuboids, the rhombic dodecahedron and the truncated octahedron
[3]. The cubic simulation box is most frequently chosen, no doubt because of its
geometrical simplicity. In all the simulations reported herein we have used the

cubic simulation box. PBCs are easy to code in the cubic simulation box.

The cuboid simulation box geometry has been used extensively by Frenkel and
co-workers (see for example [35]). It is useful in simulations of ordered liquid
crystals such as parallel spherocylinders. Parallel spherocylinders may be packed
into a cuboid with relative ease if their principle molecular symmetry axes are

aligned with the irregular side of the cuboid.

However the geometry of the simulation box may impose a degree of order or
preferred orientation with observed liquid crystal or solid phases. For example
when the formation of smectic phases has been observed in simulation boxes of
cubic symmetry, the director of the system is found to align parallel to the box
diagonal [17]. It is thought that this is the orientation that the system must take in
order to fit in an integer number of smectic layers commensurate with the images
created by the periodic boundary conditions. For this reason it may be preferable

to use a simulation box geometry possessing a higher degree of symmetry when
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simulating liquid crystals, such as the rhombic dodecahedron. Or, perhaps,
performing MD at constant pressure [36] which enables changes 1n the box size
and shape. To our knowledge a comprehensive comparison of simulation box
geometries on the influence of the orientation of a liquid crystal phase with

respect to the simulation box edges has not been performed.

I1.3.4 Potential Truncation

The most time consuming part of an MD simulation is in the calculation of the
pairwise potential and its derivatives. Since the largest contribution to the
potential energy of a system comes from particles closest to the one of immediate
concern, interactions from particles further than a prescribed cutoff distance may
be considered negligible. Thus it is common practice to disregard interactions
between particles separated by more than the cutoff distance. This procedure
necessarily introduces a discontinuity into the potential function at the cutoff
distance which can lead to stability problems [3]. Thus often an additional small
linear term is added to the potential so that it goes smoothly to zero at the cutoff;

the so called cut and shifted potential.

Long range corrections can be applied to cut and shifted potentials, by assuming
that the particles outside the cutoff are approximately uniformly distributed as in
an ideal gas: such that the radial distribution function g(r)»1. The minimum
length of the cutoff must be such that the approximation g(r)~1 is valid, and an
upper limit is imposed if PBCs and the minimum image convention are in use as
the cutoff cannot be greater than some fraction of L: %L for a cubic simulation

box.

35



Obviously the implementation of a cutoff excludes information contributed to the
system from the long ranged part of the potential. This information can be
recovered however. For the systems here studied it would be sufficient to show
that g(r)~1 at %L to apply long range corrections to recover thermodynamic
information contributed from the long range part of the potential. However, as
no critical comparison with real substances was made with the results of these

simulations it was not necessary to apply long range corrections.

I1.3.S Initial Conditions

Our MD simulations are started from a face centred cubic lattice [3]. The
molecular symmetry vectors are either all aligned along a given direction, or the
directions of alignment are distributed such that the system (PZ) = 0. This is not
a necessity and other lattices or random distributions may be used. The problem
here is that at typical liquid densities assigning random coordinates within the
confines of the box will inevitably lead to significant particle overlaps. If not
identified this will cause computational difficulties, or in the case of hard
particles, physical impossibilities where one hard particle is positioned so as to
penetrate another. The simulations carried out in this work all have their origins
on an a-fcc lattice. This has either been constructed at the density of interest, or
at some other density from which the system has been either expanded or
compressed to the density of interest through a simple scaling of the centre of

mass coordinates followed by a period of equilibration.

The particles are assigned random translational velocities, acting on their centres
of mass, chosen from a Gaussian distribution centred at the appropriate reduced
temperature. Similarly the angular velocities of molecules about their centres of

mass are chosen based on the appropriate temperature. The net linear momentum
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of the complete system remains constant throughout the simulation (it is
impossible to detect whether the simulation box is at rest or in uniform
translational motion). Thus it is common practice to set this quantity to zero.
Because of the box geometry, the net angular momentum of the whole system is -
not conserved however. Of course for linear molecules it is important that the
components of angular velocity are chosen perpendicular to the principle

molecular symmetry axis.

For molecules it is further necessary to specify their initial orientation.
Sometimes an ordered configuration is chosen, in other instances the system may
be initiated from a disordered state. Either way in every case reported herein the
system is started at a high enough temperature and appropriate density that the
initial lattice melts rapidly, and the orientations of the molecules become
randomly distributed, resulting in an isotropic liquid phase. This is checked by
monitoring a translational order parameter, which measures the persistence of the
lattice, and the orientational pair correlation function (Gz), and nematic order

parameter (B,) (see section I1.6.2).

I1.3.6 Integrating the Equations of Motion

In this section we shall restrict our discussion to particles that move with

continuous trajectories.

Generally after computing the potential energy and hence the total force on the
centre of mass, and total torque about the centre of mass of each particle, it is a
relatively simple matter to compute the motion of each particle. Chasles' theorem
states that, "Any general displacement of a rigid body can be represented by a

translation plus a rotation" [37]. If we choose the origin of the body as the centre
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of mass, then the motion of the body may be described as a single translation of
the centre of mass, and a single rotation about the centre of mass. It is
appropriate for us to identify with this natural separation and thus the evaluations
of these two quantities are handled separately. Indeed, with multisite models,
forces and torques acting on individual sites are accumulated for each molecule
to yield the overall force on the centre of mass and torque about the centre of

mass of the whole molecule; directly applying Chasles' theorem.

For continuous potentials the particle trajectories are in principle exactly solvable
within the limitations of the finite arithmetic used. However this is not actually
the case for atomic or molecular liquids. With the exception of harmonic and
weakly anharmonic systems, two initially close classical trajectories will
eventually diverge exponentially from one another [38]. The equations of motion
of our systems of particles contain a Lyapunov instability [39]. This manifests
itself in a deviation of the particle trajectory from the classically exact trajectory
after a finite length of time. However this should not necessarily be considered a
problem. The primary requirement of an MD algorithm is stability [40].
Algorithms which allow the use of a large time step provide a more efficient
sampling of phase space for a given amount of processing time. With the
microcanonical ensemble it is far more important that the particle trajectories in
phase space stay on the relevant constant energy hypersurface otherwise the
microcanonical ensemble will not be sampled correctly, leading to erroneous
ensemble averages [3]. This aspect is of greater importance than the accuracy
with which the algorithm reproduces the correct classical trajectory. More
surprisingly the existence of the Lyapunov instability promotes an efficient
sampling of phase space reducing the chances of simulating a non-ergodic system

(see section I1.6).
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I1.3.6.1 Translational Equations of Motion
Firstly we shall start with the equation of motion of a particle itself. Consider the

centre of mass acceleration of a particle. In Cartesian coordinates, using
Newton's second law, the force on the centre of mass of a particle may be

written;
mi=f,. [11.28]

If the particle moves in a potential which is independent of velocity and time then
the Hamiltonian of a system of such particles is equal to the total energy [3].
Equation [I1.28] may then be recast as two first order differential equations:

r=p/m; [11.29]
p=-VJV=f. [11.30]

In order to solve equation [II.28] or equations [I1.29] and [I1.30], we make use of
finite difference methods frequently used in the solution of ordinary differential
equations. Two distinct schemes are in common use, the n-order predictor-
corrector schemes of the type of Gear [41] and the many forms of the Verlet
algorithm [42]. We have used the half step leap-frog version of the Verlet
algorithm [3 and references therein], which is briefly detailed below.

In this scheme an estimate for the particle velocities at the next half time step is
made with [II.31] below, which is used to solve [II.32], advancing the particles a
full time step. The particle velocities, in order to calculate the kinetic energy, are

obtained from [I1.33]:
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v(t+180) = v(t - 15t) + bra; [.31]
r(t +8) = r(t) + dtv(t + 1 81); [.32]

v(t) = %(v(t +18) +v(r - 181)). [11.33]

In the above equations, a, v, and r are acceleration, velocity and position vectors

respectively and Ot is the length of one time step.

I1.3.6.2 Rotational Equations of Motion
Although a general technique for solving the rotational motion of an arbitrary

shaped molecule would suffice for all MD simulations, there are some
simplifications that may be adopted when dealing with cylindrically symmetric
molecules. Consequently we have used two techniques in our simulations

reported herein.

11.3.6.2.1 Rotational Equations of Motion for Cylindrically Symmetric

Molecules

Because of symmetry considerations, rotation of a cylindrically symmetric
molecule about the principle symmetry axis is undetectable. Consequently we
may use a constraint method based on the leap-frog Verlet algorithm [42] to solve
the rotational equations of motion [17, 43-45]. The method we have used is

outlined below.

The torque on a molecule perpendicular to the symmetry axis i may be written;

T=lixg=dxg, [11.34]

where if necessary g, the perpendicular force component may be obtained from;
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gt =g—(g-i)i. [11.35]

The rotational equation of motion of the molecular symmetry axis may be written

in terms of the second time derivative of a unit vector i as so;

i=L 1. [11.36]

Equation [I1.36] may be thought of as an expression for the acceleration of the
vector @i. / stands for the moment of inertia of the molecule and A is a Lagrange
multiplier which constrains the symmetry vector to remain a unit vector; hence no
hat on u in the second term of [II.36]. Actually there is no reason for the
symmetry vector to be a unit vector, this is chosen merely for convenience.
However whatever length is chosen for the symmetry vector, this length must
remain constant. To solve [I1.36] we need an expression for A at time ¢

Consider a first order estimate for a half time step advance of the vector i [46];

() = l;i(t—-%ﬁt)+%5t|:gl1(t) +7L(t)u(t)]. [I1.37]

An expression for A is obtained by taking the scalar product of each side with @
and using the facts that gL - =0, i-@ =1 and @i = 0 (this last condition is due
to the constraint any change in @i must be perpendicular to g, thus @ and ii are

orthogonal), giving;

—2dlr -18¢)-
A1) = 2ii(z 82tSt) u(t). [1L38]
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Note that the hat has been removed from @(#) again in both [I1.37] and [I1.38]; it
is lambda that constrains u to be a unit vector. Substitution of A into [I1.36] leads

to an expression for i;
. L .
drii(t) = ﬁtg_lﬂ - 2[ﬁ(t —181)- ﬁ(t)]ﬁ. [11.39]

Two half step Taylor series expansions may then be combined to obtain an

expression advancing i a full time step:

i+ L51) = fir) + -;—Sti'i(t) +%5t’ﬁ'(t)+...; [I.40]

iz - Lo1) = (o) —%Sti'i(t) +%5t'ﬁ'(t)—..., [M.41]
which are combined, truncating after the third order derivative to give;
i +18¢) = fi(r - 16¢) + 8rii (1), [I1.42]

from which the new direction of @ may be calculated using [11.43];
(¢ +8¢) = () + (¢ + 1 6¢). [1.43]

Finally the angular velocity necessary to compute the rotational kinetic energy

may be calculated from;
0 (t) = = (6(f - 18¢) + iz +151)). [IL.44]

1
20t
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I1.3.6.2.2 Rotational Equations of Motion for Arbitrarily Shaped

Molecules
In later simulations where the molecules do not posses cylindrical symmetry, we
have used the method of quaternions [47]. A quaternion is a set of four

parameters [I1.45] (three of which are independent), satisfying the constraint
[11.46]:

q4=1{490-91,92,93}; [11.45]
qg +q12 +q§ +q32 =1. [11.46]

The orientation of a vector fixed in the molecule @° is related to its

corresponding space fixed coordinates @®° through rotation matrix R:
i® = R(q)i"; [1L.47]

da+qt-92-q? 2(q192 +9093)  2(q193 —9092)
R=| 2(q192—9093) 492-97+93-9> 2(q295+qoq1) |  [11.48]
2(q193 +9092)  2(9293 —90q1) 92 —q? —q3 +42

After Fincham [40] the method of quaternions that we have used is briefly
described below. Quaternion parameters are assigned to each molecule based on

the Euler angle convention of Goldstein [37], thus [3];

go = cos30cos (¢ +y);
g1 =sin16cost (¢ - y);
g, =sin10sin (¢ - y);
g3 = cos10sinl (o + ). [11.49]
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The quaternion parameters satisfy the following equations of motion [3];

do 9 0 ~% - Ob
q_1la1 9 -9 %@ |9
| 1 50
2| 22 a3 g0 -a@ ‘”B [11.50]
93 3 92 @1 9o Jod

In matrix notation the form of [II.50], with the time at which these quantities are

known stated explicitly, may be written;

. 1 T
Q) =5Q0[0.0°®)] . [1.51]
The motion of the vector i is dictated by the torque on the molecule calculated in

the force loop. An estimate for the on-step angular momentum is made through a

first order expansion over half a time step;
F0) = (- §81) + 28050, [.52]

Rotating this to the body-fixed system, by analogy with equation [I1.47] allows
calculation of the body-fixed angular velocity through equation [II.54];

PO =R@)j*®); [1.53]
o’ =I7j*(@), [11.54]

where I is the body fixed diagonal moment of inertia tensor and is constant;
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I=|0 I, 0| [I.55]

I.x,1,, and I, are the principle moments of inertia. Thus [II.54] simplifies to a

set of three equations, each describing the angular velocity of the molecule in the

three orthogonal coordinate directions;
©2 (1) = Ioo j2(2); 0 =x,),2. [11.56]

We have arrived at values for the components of body-fixed angular velocity at

the on-step, i.e. at time ¢ and may evaluate the kinetic energy of rotation for each

molecule thus;

1

K = E(Iﬂmg + 1,02 + L0?). [1L.57]

To advance the equations of motion a first order estimate for Q(¢ +3:5¢) is made

with [I1.58];

Q(t+181)=Q(r) +%8tQ(t). [1L.58]

The rotation matrix R(q(z + 6¢)) may then be reassembled according to [11.48]
using the updated values. Application of [I.47] regains the necessary space-

fixed vectors as;

’

i =R T(q(z + &1))i". [11.59]
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In the computer algorithm of this scheme the quaternions are renormalised after
their updated values are calculated, i.e. after [I1.50]. In the face of the machine

finite arithmetic this guarantees that the constraint [I1.46] is preserved.

I1.3.7 Hard Particle Dynamics

Particles interacting with discontinuous so called hard particle pair potentials

move with straight line trajectories between impulsive collisions. The above
algorithms cannot therefore be used for the solution of hard particle dynamics.

Instead a new approach is adopted.

Consider a simulation in progress. The next colliding pair of particles and the
time of collision are identified. This typically involves solving a quadratic
equation in time [48]: the next collision can be identified by the use of the
contact condition or contact function. The simulation is then "fast forwarded" to
this point. At the collision the dynamics of the colliding pair are computed using
the laws of conservation of (in general), translational kinetic, rotational kinetic
and potential energy and conservation of (in general), linear and angular
momentum. For some systems one or more of the components of energy or
momentum may be absent. For example "smooth" hard spheres possess no
potential energy, no rotational kinetic energy and no angular momentum,
particles interacting via the square well potential may possess potential energy,

but again do not possess rotational kinetic energy or angular momentum.

Just after a collision has occurred the system is in a new configuration and

thermodynamic and dynamical observables of interest and correlation functions
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of interest are collected for later averaging before repeating the cycle, looking

firstly to locate the next collision.

For non-spherical systems evaluation of the contact function in order to locate the
next collision can be very complex. Only simple anisometric hard particle
potentials such as hard ellipsoids, cut spheres, rigid and flexible chains of hard
spheres and spherocylinders have been simulated using molecular dynamics (see
chapter IlI). One solution suggested for complicated contact functions is to use a
step by step approach to solve the equations of motion as for continuous
potentials [49]. The problem here though is that a collision may take place in
between time steps putting a large restriction on the choice of 67. A method of
handling collisions thait occur between time steps has been devised [50] to handle
this problem. For these reasons Monte Carlo simulation of anisometric hard
particles is much easier. After an attempted move the contact function for the
moved particle and its neighbours (within a known maximum displacement) may
be relatively easily evaluated. If an overlap is found to exist, the configuration is

simply rejected. There is no requirement to locate the next collision.

I1.4 Simulation Averages

Now we shall turn our attention to the output of a simulation and to statistical
mechanics required to convert this very detailed information into macroscopic
"experimentally observable" properties. As the system evolves in time it follows
a continuous trajectory in multidimensional phase space. We assume that the

potential energy of the system contains no explicitly time dependant terms and is

described completely by the configuration of the system. If I'(¢) is a point on
this trajectory, then the average of an observable 4, sampled over a series

discrete intervals,T = 1 = T, may be obtained from;
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1 Tobs

D AT (x)). [M.61]

Tobs 1=l

Agps = (AT (1)) =

In an MD simulation where successive configurations are time ordered, the angle
brackets (...) refer to a time average in addition to an average over all the particles
of the system. Thus if we ensure that 7 _is sufficiently large we should be able

to arrive at a reasonable approximation for 4 , .

In a truly ergodic system the phase space trajectory visits all the accessible points
in phase space before returning to an already visited point. Generally a proof of
ergodicity does not exist [38]. Fortunately the Lyapunov instability introduces a
degree of chaos into our simulations which can only help prevent the system

becoming trapped in a non-ergodic region of phase space.

The observable 4 , - can take many forms. In the next two sections we shall look
at the thermodynamic and dynamic observables which we compute in the
simulations, together with the order parameters and distribution functions which

are invaluable in identifying and distinguishing liquid crystalline phéses.
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I1.4.1 Thermodynamic and Dynamic Averages

In this section we shall describe some of the thermodynamic averages that we can

obtain from our simulations in the microcanonical ensemble. The total energy of
the system is simply the Hamiltonian A which we may now write as the sum of

the averaged kinetic and potential terms;
E=(H)=(K)+ (V). [1.62]

The notation () represents an ensemble average, i.e. an average over all

particles and all configurations. The potential energy for a given configuration is
directly obtained from the pair potential. The total kinetic energy is the sum of
the translational and rotational kinetic energies. In terms of the particle momenta

for a system of N particles we may write;

(K) =%<Z:;|p,-|2 /m,-> = 2 Nik(T). [IL63]

Equation [IL.63] is a statement of the equipartition principle. In simulations of
molecular systems, the kinetic energy of translation and rotation are evaluated
separately in order to check they are apportioned correctly according to the
theory: %kBT per degree of freedom. Equation [I.63] clearly allows us to

calculate the average thermodynamic temperature also;

1 N
(T)=2(K)/3Nkg = m;‘,lpﬂz I m;. [11.64]
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Molecular dynamics allows the calculation of dynamical information about the
system of interest. When studying liquid crystals it is important to be able to
characterise the phase as still being fluid. The degree of fluidity of a phase may
be established by calculating the particle self diffusion coefficient. This is
related to the mean square displacement of particles from their starting positions
at some given time via the Einstein relation valid at long time [51]. Taken as an

average over the whole system this may be written;
<|r(t) - r(0)|2> - 6Dt +C. [IL65]

The diffusion coefficient can be obtained from the gradient of a plot of [I1.65] at
long times. Of course in the evaluation of [II.65] it is a prerequisite that the
effects of the periodic boundary conditions have been removed. For this reason
the true particle trajectories are stored from a simulation. However, assuming the
particles do not travel more than half the box length in an interval between stored
time steps Mot¢, (M is a positive integer), it is possible to recover the proper
particle trajectories from those that have been subject to PBCs [3]. Further the

particle mean square displacement is resolved into its components parallel and

perpendicular to the instantaneous nematic director fi(z):

(n®-nOf )= e -r)-aP):

(rn®-r.@f)=(e©-r@)xa6)). [I.66]

These two components enable us to acquire valuable information about

anisotropic diffusion present in the system. Anisotropic diffusion is a property of
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all liquid crystal systems and information about the components of particle self

diffusion as described above can assist greatly in identifying a phase.

11.4.2 Distribution Functions and Order Parameters

Distribution functions are vital in identifying the type of phase present in a
simulation. For liquid crystals there are several spatial and orientational
distribution functions which when considered collectively may uniquely

characterise a phase.

One of the most fundamental distribution functions is the pair distribution
function g,(r;,r;). For isotropic homogeneous systems this function depends
only on the interparticle separation r; = |rj - r,-l, and is referred to as the radial
distribution function, denoted g() [11]. A definition convenient for use in

computer simulations is given by Allen and Tildesley [3];

g(r) —@5<226(r r,,)> [IL67]

i=1 j>i

where Vol is the volume of the system.

The radial distribution function represents the probability of finding a particle a
given distance away from a specified particle with respect to that same
probability in an ideal gas. Thus, in a hypothetical pure solid at absolute zero for
example, a plot of g(r) would consist of a series of infinitely tall vertical lines
(representing the 6 functions of [IL.67]), corresponding to the location of the
lattice sites, in all directions with respect to a given site. In reality, however

these delta functions would be broadened due to thermal excitation, into sharply
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peaked Gaussians about a mean corresponding to the lattice site location [33].
The peaks in a liquid are even more diffuse and overlap because of the
continuous relatively large scale motion of the particles with respect to one
another. However structure should still »be present in g(r) at short range
representing the shells of nearest neighbours surrounding each particle. At long
range this order diminishes and the radial distribution function converges to the
ideal gas value of 1. This will not of course occur for the solid since the
periodicity of the lattice sites will manifest itself as a continuously oscillating

g(r) even at long range.

The distribution function g(r) is related to experimental structure characterisation
techniques such as X-ray diffraction and neutron scattering. [12]. Like the mean
square particle displacement, the g(r) can yield valuable anisotropic information
about a phase when resolved into components parallel and perpendicular to the

instantaneous system director A(¢):

N N
g.op—M<zzs<r<r)-ﬁ<t>—r,-,-(r)-ﬁ(t»>;

i=1 j>i

gi(r)= (VOI) : <228(r(t) x 8(2) — 1 () n(t))> [11.68]

i=1 j>i

The components of g(r) are important in distinguishing between an
orientationally ordered phase such as the nematic phase, and a higher additionally
translationally ordered phase, for example a smectic-A phase is characterised by
the existence a one dimensional density wave parallel to the director. The
function gj(7) is particularly sensitive to this density wave. Additionally any

evidence of structure in g, (r,) may indicate the onset of two-dimensional
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translational order, such as in a columnar liquid crystal, or it may indicate that the

system has indeed formed a genuine crystal.

A quantitative measure of angular correlations is provided by the second rank

orientational correlation coefficient G,(r) [33, 52];
G () = (B -u;(n)), [11.69]

where P, is the second Legendre polynomial. G,(r) shows very short ranged
order in the isotropic phase of a molecular fluid, quickly decaying to zero after a
few molecular separations. In an orientationally ordered phase though, G,(r)
decays to a limiting value equal to the square of the second rank orientational

order parameter (P2)2 (see below) [33, 52].

The calculation of an order parameter is essential in quantitatively classifying and
identifying phases and phase transitions in many materials [53]. The order
parameter may take many different forms. For example the magnetisation in a
ferromagnetic material or the electric polarisation in a Ferroelectric [53]. The
lowest category of liquid crystal, in terms of degree of symmetry breaking from
the isotropic phase is the uniaxial nematic. In the nematic phase molecules tend
to align themselves with a preferred direction; the nematic director ii and the
phase has point symmetry group D,;. Thus in our simulations it is convenient to

identify with a single molecule potential matrix property A, say, defined as [52];

A=i,®i, [I.70]
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where 1, is a unit vector parallel to the molecular symmetry axis, i.e.

i = (0,0,1), and thus;

Ab [I.71]

I
oS © O
o O O
_—o O

In space-fixed coordinates the average components of A are given by;

1 &
(A;B)=W;{;;(&)aa.(A,-b)a.p'(zq-T)w}, [11.72]
where o, B and o, B' range over the space-fixed (non primed) and body fixed
(primed) Cartesian indices x, y and z, and the R, are the components of the
rotation matrix that rotates A® into the space-fixed frame. The right hand side of

{I1.72] is non-zero only when a'= B'= z, thus [I1.72] reduces to;

(4ip) = (RozRa:) = Oug +%5aa- [L.73)

Equation [II.73] defines the components of the ordering matrix, the so called Q
tensor [33], d is the Kronecker 8. The rotation matrix that diagonalises Q leads
to a symmetric and traceless tensor that defines the director frame. Q has three
real eigenvalues denoted A, A, and . Normally the largest eigenvalue, A, is
taken to be the value of (B). The corresponding eigenvector yields the direction
of the system director i in the laboratory fixed frame. The remaining

eigenvalues are small and of opposite sign and correspond to the degree of
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biaxiality present in the phase. This particular method only allows 1= (5)>0,
because the largest positive value, A, is always chosen as the eigenvalue to
represent the magnitude of the order parameter. The order parameter (Pz) can
take values 0>(B)>-0-5 however, which correspond to the principle
symmetry axes of the particles tending to lie orthogonal to the system director on
average. Thus some workers have chosen to call (P2) the eigenvalue most
different from the other two. There are some problems associated with this
method applied to disordered phases. When the eigenvalues are small and
approximately equal, a consistent choice of the eigenvalue corresponding to (Pz)
is difficult to make [54]. However, with small values of (B), indicating that a
system is not orientationally ordered, the director of the phase has no meaning,

and it is therefore not appropriate to identify the corresponding eigenvalue.

In later simulations involving multisitt HGBLR models we have found it useful
to monitor the orientational ordering of three mutually perpendicular axes fixed
in the molecule. This facilitates the identification of a phase where the principle
molecular symmetry axes are found to be lying in a plane orthogonal to the
director thereby eliminating the problem of consistently choosing a positive

eigenvalue in assigning the director. More details are to be found in chapter V.
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CHAPTER 11

COMPUTER SIMULATION OF LIQUID CRYSTALS

II1.1 Introduction

The first statistical mechanical computer simulations of model liquids were
performed in the early 1950s on the MANIAC computer at Los Alamos, New
Mexico, USA. This was the pioneering work of Metropolis et al [1] which
established a version of the standard Monte Carlo method for solving many
dimensional integrals [2]. The time saving technique used importance sampling
and allowed for a simulation of 2-dimensional hard spheres [1], with Rosenbluth
and Rosenbluth [3] continuing the work to look at hard spheres in three
dimensions. Later in that decade, the molecular dynamics technique of Alder and
Wainwright [4] was used to simulate hard spheres. Evaluation, discussion and
comparison of the two simulation methodologies began immediately [see for
example 5; 6]. Many rudimentary techniques introduced in this period are still in

use today and some of these have been described in chapter II.

Both Metropolis Monte Carlo (MC) and molecular dynamics (MD) provided
physicists and chemists with powerful tools with which to probe the liquid state
at the microscopic lével. These were a great asset because unlike the harmonic
theory of solids, and the ideal gas law, there is no effective reference starting
point in a general theory of fluids. Hard and soft sphere fluids were studied
extensively [6]; nevertheless, at least fifteen years elapsed before the first

attempts by Veilliard-Baron [7] at simulating non-spherical hard convex bodies.
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In this chapter we shall discuss some of the important simulations that have been
performed to date employing the anisotropic potentials necessary to describe
liquid crystalline phases. Early simulators were plagued initially by (a),
mathematical problems, e.g. trying to find an effective way to compute the
contact function of two hard bodies, and (b), by practical problems, e.g. low
speed and small memory of early computers. Progress in both these areas has
been made over the last four decades and in this chapter we shall detail some of
the simulations of liquid crystals performed to date. These simulations can be

roughly divided into four main categories:

hard particle models;
continuous potential models;
lattice models;

realistic atom-atom potential models.

For our purposes here we shall divide the following sections broadly according to
the classification above. The order above does not represent any prejudice on the
importance of these models. Most simulations, however have been performed on
hard particle models, so we shall begin with these. A review of single site soft
particle models follows. Although there are no other published works relating to
the hybrid Gay-Berne Luckhurst-Romano (HGBLR) potential with the exception
of those subsequently reported herein [8], this section is particularly important as
it most closely relates to the HGBLR potential. We mention lattice models only
briefly. As the computational power of modern computers rapidly increases,
simulations of realistic models of liquid crystals are perhaps just becoming

attainable. We present a review of the realistic simulations performed to date.

61



As will be seen, each of the above have their particular uses, either in providing
insight into real liquid crystal mechanisms, or providing a test of theoretical
approaches. Before we begin examining the results of computer simulations we
shall begin with a brief discussion of two contrasting theories ascribing the
formation of orientationally ordered phases to (a), geometric effects and (b), long
range anisotropic dispersion forces respectively. Comparison of theories, with
computer experiments and with experiments on real liquid crystals have enabled

us to gain valuable insight into the formation of liquid crystal phases.

II1.2 Anisotropic Repulsive Forces vs Anisotropic Attractive

Dispersion Forces.
At the time of the first simulations of liquid crystals the nature of the isotropic-

nematic phase transition had, on the one hand, been hypothesised to be strongly
dependant on geometric effects as first described by Onsager [9]. In attempting
to describe the formation of lyotropic liquid crystal phases in suspensions of
anisometric particles, Onsager had developed a theory which attributed the
formation of the nematic phase of a system of long hard rods to excluded volume
effects alone. Onsager calculated the first two virial coefficients for a system of
long rods which he considered to be made up of many groups of rods, each group
with a specific orientation. By minimising the available free energy of the
system, Onsager arrived at a distribution function describing the orientations of
the molecular long axes. He further showed that if the system was compressed to
a sufficiently high density a transition to an orientationally ordered phase occurs.
Isihara [10], applied the Onsager theory to rigid molecules of different shapes,
including ellipsoidal and cylindrical molecules. Zwanzig [11] extended
Onsager's rod work to include higher order terms in the virial expansion of the

equation of state of a system of rectangular parallelepipeds length /, and square
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base of side d. In the limit that / — o, and d — 0, and with the constraint
I2d = constant, Zwanzig compilted, exactly, the first seven virial coefficients for
a srhall number of specific orientations of the parallelepipeds (Onsager theory
was originally based on a continuous distribution of the orientations of the rods
considered there). Zwanzig's analysis showed that at every order of the virial
expansion considered, the system exhibited a van der Waals loop, associated with
an order-disorder phase transition, at an appropriate density. A comparison with
the Onsager work showed differences in the properties of the isotropic phase, but
calculations truncated at the second virial coefficient were within 10% to 20% of
those evaluated by Zwanzig (however, it should be noted that the third virial
coefficient for an isotropic system of long thin rods is negligible [9]). This
suggested that merely a second virial coefficient treatment may be sufficient to
yield some valuable approximations when more complicated systems of rods are
considered, e.g. the effects of external fields or the effects of allowing attractive

forces to act between the rods [11].

At the same time, and on the other hand, Maier and Saupe [12] had demonstrated
within the mean field approximation the existence of an orientational order-
disorder transition in a system of cylindrically symmetric rigid molecules,
dependent only on long range anisotropic attractive components of the pair
potential. Maier and Saupe solved their system within the molecular field
approximation. In these so called mean field theories the equilibrium
configurational partition function is reduced to a product of single particle
partition functions, one for each molecule each of which necessarily only
depends on the coordinates of the molecule. This is the case for an ideal gas
where the molecules of the gas may be considered to act independently of each

other. The interaction of a molecule within the mean field is represented by a
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pseudo-potential which is an effective one particle potential. There are many
ways of arriving at a description of the pseudo-potential, and Luckhurst has listed
some of these and also presents a derivation based on a hierarchy of molecular

distribution functions [13].

In the Maier-Saupe theory the effective singlet orientational potential is;
Vaas(cos8) = (v, ) Po) Py (cosb), [I.1]

contributions from spatial coordinates are scalar functions and need not be

considered.

In equation [IIL.1], 6 is the angle between the director and the molecular
symmetry axis of the molecule, P (cos6) is the second Legendre polynomial, v,,
is an unknown that represents averaged anisotropic interaction parameters [14],
and (...) represents an ensemble average (see section IL4). The behaviour of the
order parameter (P) for the classic Maier Saupe theory may be obtained by
solving a single self consistent equation. Above a certain reduced temperature,
kgT / vy =0-222, the value (Pz) =0 is found corresponding to an orientationally
disordered phase. However in the range 0-195< k3T /v, <0-222 two non-zero
solutions are consistently obtained for (Pz) both indicative of a nematic
mesophase. The solutions that correspond to stable thermodynamic equilibrium
phases may be identified by computing the excess orientational free energy [13],
the other solutions corresponding to metastable phases. Below kg7 /v, =0-195
only a single positive solution for (Pz) is found; that of the low temperature

nematic.
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Thus we seem to have two conflicting theories about the nature of the nematic-
isotropic transition, (a), that it is effected by excluded volume effects alone, or,
(b), that it is the long range anisotropic dispersion forces that are responsible. In
the light of these findings, computer simulations have been performed using
many theoretical potential models to test the various aspects of these two
viewpoints. It is to be noted, of course, in real systems, that it is a combination
of the above effects (a) and (b) that is likely to determine whether a given

molecule may form stable liquid crystalline phases.

I11.3 Hard Particle Liquid Crystal Simulations

There have probably been more simulations performed on hard particle models of
liquid crystals than any other type of model. The results of these have been of
significance in trying to differentiate between the roles played by short-range
excluded volume effects, and long-range attractive interactions in the formation
of liquid crystals, as exemplified by hard-particle and the Maier-Saupe theories

respectively.

It had been known for many years, that the structure of simple liquids could be
explained by considering short range repulsive interactions alone [15]. The
reasoning here is that most of the liquid part of a phase diagram of an atomic
fluid say, is confined to the high density region. The high density region is
defined as where (p*)?<n, (p*= po;, ©p is the Lennard-Jones range
parameter such that V;;(r = 6¢) = 0), 1 being the location of the minimum in the
pair potential. For a small displacement about the minimum of the pair potential
it is the repulsive component of the pair potential that is most rapidly varying. In
comparison the fluctuations in energy due to contributions from the attractive

component of the pair potential will be small. There are some exceptions to this,
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a notable one is liquid water. The hydrogen bonding that occurs between water

molecules is a rapidly varying attractive interaction [15].

Thus as we have seen, the hard sphere model is a good representation of simple
atomic fluids. We may be able to use this as a starting point for models of liquid
crystals. [Early simulations on simple hard core fluids indicated solid-liquid
coexistence at densities p > %pc, where p, is the density of regular close packing.
There is the possibility therefore, that liquid-liquid coexistence between
orientationally disordered and ordered phases obtains for suitably anisometric
hard particles. Thus simulations of liquid crystals with somewhat idealised
anisometric hard particle models have been attempted. Some of the results turned

out to be rather surprising as we shall see below.

Hard core models fall into specific categories and it will be convenient to split
the following subsections according to these models. We shall begin with not the
simplest model, but rather the one that was used in the first attempts at simulating
liquid crystals; hard ellipses moving on to infinitely thin hard platelets and

subsequently full three-dimensional models.

II1.3.1 Hard Particle Models: Hard Ellipses

The first attempted simulation of a liquid crystal with translational freedom can

be ascribed to Vieillard-Baron [7]. Vieillard-Baron appreciated the limitations of
the Zwanzig model. The fact that in the limit of / — o and d — 0, the volume of
each parallelepiped is zero, led him to describe the system as artificial. Further in
the Zwanzig model the density at which the orientation-disorientation transition
occurs was found to be strongly dependant on the point at which the terms

considered in the virial series expansion were truncated. In this vein, Vieillard-
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Baron proposed a model for a more realistic liquid crystal, which consisted of a
system of hard ellipses, and used canonical MC to study the system. In order to
evaluate whether two ellipses were in a condition of overlap, Vieillard-Baron
introduced the contact function Weyipses(r,ii;,{i;,) which was dependent on the
orientation of the major axes u; and @, of a pair ellipses and the vector
describing their separation r: Wejipses =0 When the ellipses are tangential and
takes a non-zero value at other times. Evaluation of the contact function ¥
provides a decision criterion when updating attempted MC moves, and enables
the pressure of the hard particle system to be computed. Further, Vieillard-Baron
showed that a comparison with the contact function of hard discs leads to an
inequality which simplifies the calculation of the pressure within the system. The
evaluation of the contact function of hard particle models often presents great
difficulty, and it is for this reason that only geometrically simple hard particle

models are considered in simulations.

In a study of N =170 ellipses with axial ratio minor/major axes a/b=1/6,
Vieillard-Baron observed two first-order phase transitions. If a close-packed
system of ellipses is expanded from the close-packed area (the equivalent
parameter is the density in three-dimensions), 4, then it undergoes a melting
transition at 4,, / 4, >1 (A4, being the area occupied by the system at the melting
transition), which Vieillard-Baron described as an increasing function of
increasing axial ratio a/b. Initially the ellipses are oriented in a particular
direction on the close-packed lattice. At the melting transition it is the centres of
mass of the ellipses that first become translationally uncorrelated in the
a/b=1/6 system, the ellipses maintaining their orientations. This is identified

as the nematic phase, characterised by the directional order parameter M;
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M= <§%cos(29,- ~20 j)>, [IIL.2]

)
N \iT 5

where 0 is the angle between the major axis of an ellipse with a given fixed
direction (chosen by Vieillard-Baron as the original direction of the ellipses'
symmetry axes at the beginnjhg of the simulation). M is a positive rotationally
invariant quantity. Clearly for all ellipses pointing along the same direction
M =1; for a random orientation of the ellipses major symmetry axes M ~1/N.
The directional order parameter is an example of a simple order parameter that
may be used to quantify the degree of orientational order in the liquid crystal
phase. The directional order parameter does not however give any information

about the director orientation of the system.

In the absence of any precise information Vieillard-Baron speculated that the
melting transition of the system of ellipses occurred at area 4,/ 4y <1-15. This
compares to the hard disc melting transition at area A4,/ A4y <1:266. The
difference between these two transition densities may be due to the effective
single degree of translational freedom available to the ellipses in the dense
nematic phase that contributes to the entropy of the phase, compared to the two-
dimensional translational disorder of the hard disc system at the melting

transition.

At a specific area of 4/ Ay =1-40, Vieillard-Baron observed M =0-7+0-1.
For larger ratios the directional order parameter decays smoothly. A
disorientation transition is indicated at A;/ Ay=1-775£0-025, with a
corresponding entropy change 0-05< AS/ Nkg <0-12, which as pointed out by

Vieillard-Baron is much smaller than the entropy change associated with the
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melting transition of hard discs; AS/ Nkg =0-36 [4]. Again the disorientation
transition only effects the one degree of orientational freedom, and as such the
nematic and isotropic branches of the isotherms are close and exhibit a large

coexistence region.

Hard ellipses have been studied again more recently [16]. Constant-pressure MC
simulations have been performed on a system of hard ellipses with aspect ratios
k=2, 4 and 6. Both latter systems exhibit three phases, isotropic, nematic and
solid. No nematic phase is indicated for ellipses of aspect ratio k=2.
Interestingly, while the isotropic-nematic phase transition appears first order for
the k =4 ellipse system, it appears to be continuous for the more eccentric £ =6.
It should be noted however that in most cases only a system of approximately
N =200 ellipses is simulated and so the order of phase transition observed may

suffer from small system size effects.

I11.3.2 Hard Particle Models: Infinitely Thin Hard Platelets

Frenkel and Eppenga [17] examined, in detail, a system of thin discs in what was
the first numerical determination of a thermodynamic isotropic-nematic transition
in a system with full three-dimensional translational and orientational' motion.
Infinitely thin hard discs were chosen because, having zero volume they cannot
freeze. However, the excluded volume of two non-parallel discs is non-zero, and
so orientational ordering can occur and in fact the system is guaranteed to exhibit
a nematic phase at a sufficiently high density. The infinitely thin hard disc model
does offer further significant advantages [17]. As with the hard sphere model
there is only one independent thermodynamic parameter that describes the
system; the scaled density p* = po?, & is the diameter of the hard discs. Thus the

hard platelet fluid could be made to act as a reference system for discotic
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mesogens, in a similar way that the hard sphere fluid has been valuable as a
reference system for atomic fluids. Moreover, the authors point out that the hard
disc system provides for a direct comparison with Onsager theory. For a system
of hard discs, unlike rods, virial coefficients higher than the second are non-
negligible. Thus a study of the hard discs system enables one to assess the
severity of truncating the virial series at the second virial coefficient in Onsager

theory.

Virial coefficients up to the fifth were calculated via diagrammatic techniques
and via constant pressure MC simulation for comparison. The fifth virial
coefficient is found to be negative, indicating that five particle platelet

interactions actually decrease the pressure in the platelet fluid.

The Onsager theory has yielded a numerical solution which predicts a strong first
order phase transition at a reduced pressure P =22-89. The change in density at
the transition is of the order 26% with pjstropic = 5-334 and premaric = 6-846 [18].

At the transition the nematic order parameter defined as;

N
S= %ZPZ(ui ‘n), [1I1.3]
i=1

(where the symbols have their meanings as defined in chapter II), changes

discontinuously from zero in the isotropic phase to S = 0-784.
The results of the simulations indicated a small change in the system density

suggestive of a weakly first order phase transition at P = 14 -25; much lower than

that predicted by Onsager theory. The location of the phase transition was
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computed by comparing the excess chemical potential obtained from the particle
insertion method [19] and that obtained from the relation ou/oP=1/p*
Similarly the estimated change in density - which was found to be strongly
system size dependent, for example with a system of N =50 particles it is non-
existent - occurs at a much lower density and the density change itself is lower;
Pisotropic = 378 and  Ppematic =4-07 for N =400 particles, a jump of
Ap*/p*~ 8% Furthermore, at the transition the order parameter S of equation
[II1.3] changes to S =~ 0-37 at the isotropic-nematic transition; again much lower

than that predicted by Onsager theory.

Thus we see that Onsager theory overestimates the pressure, density and change
in density at the isotropic-nematic transition in a system of infinitely thin hard
platelets. As discussed above, this is due to the neglect of Onsager theory to
consider virial coefficients higher than B,. Consequently Onsager theory is not
capable of predicting the location of the isotropic-nematic transition for this
system. This indicates the severity of truncating the virial series early, retaining
just a few coefficients for systems which do not have vanishing higher order
coefficients. System size effects are manifest in these simulations, with the
change in density at the transition disappearing for N =50. The effects of
system size was also apparent in the fluctuations of the order parameter S close to

the transition [17].
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I11.3.3 Hard Particle Models: Spherocylinders

Of course, systems of two-dimensional ellipses and platelets are rather idealised.
Thus Vieillard-Baron turned his attention to a three-dimensional system of
spherocylinders [20]. These are right cylinders of length /, diameter d capped at
each end with a hemisphere. Spherocylinders were chosen for their geometrical
simplicity. Detailed information about the form of a nematogenic intermolecular
potential was not available. Vieillard-Baron thought that the spherocylinder
provided a realistic model for mesogens so long as the molecules were not too
long so that the effects of molecular flexibility could be ignored. He had
previously worked out a scheme for computing the overlap function of a pair of
spherocylinders [7], so the functional form of Wpperocytinders Was already known.
Further, even if realistic nematogens do not possess cylindrical symmetry [13]
the well ordered nematic phase does possess symmetry D,;, which may be

obtained from assemblies of particles themselves possessing symmetry Dyy.

Vieillard-Baron used the MC technique described by Wood and Parker [21],
attributed to Metropolis et al [1] in a simulation of 244 spherocylinders of length
to breadth ratio L/ D=2 and 616 spherocylinders of L/ D = 3. Introduced into
this simulation was the calculation of the Q orientation tensor (see section 11.4.2),
attributed to de Gennes for the calculation of orientational order parameters. The

orientational order parameter may be re-expressed in terms of the Q tensor as;
M=3(Tr(Q?)), [IIL.4]

where the trace Tr of Q? is defined;
3 3

Tr(Q*) =YY" 0upGho» [IIL.5]

a=1p=1
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and a component of Q is;

1 & 3uqu — 8
O D [IL6]
i=

In equations [111.5] and [III.6] above, u;, is the o component of the ith molecule's
principle symmetry vector described by ii;, o and B take the range 1<a,p <3.
Diagonalisation of the Q tensor leads to the order parameter (B). Vieillard-
Baron consistently chose the highest eigenvalue of the diagonalised Q tensor to
represent (B), the second rank orientational order parameter with the
corresponding eigenvector being the orientation of the system director ii. More
recently different choices for the eigenvalue of Q that correspond to the second
rank orientational order parameter have been discussed, see section I1.4.2 for

these and a description of the behaviour of (B).

Vieillard-Baron describes experiencing "great numerical difficulties”, which
required the generation of a large number of configurations to melt and then
equilibrate the systems at high packing fraction n=0-55, where the packing
fraction is given by n = pv;: where v; is the volume of one spherocylinder, and p
is the number density. Note 1 is a function of L/D. Thus the packing fraction
was reduced to n=0-54, and additionally another system was studied at
N =0-50. None of these systems was found to exhibit a nematic-isotropic phase
transition. Comparisons of the isotropic spherocylinders were made with both
the Scaled Particle Theory (SPT), and Onsager theory. At high densities up to
n = 0-54 the spherocylinder system is always disordered in contradiction to the
predictions of the SPT. However at lower densities away from the possible

existence of a nematic phase, Vieillard-Baron concluded that SPT was rather
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good at predicting the appropriate value of the pressure for the spherocylinder

system.

In order to try and simulate a nematic phase Vieillard-Baron finally tried a
system of 2392 spherocylinders with L/ D=6 and n = 0-54, but this proved to
be far too time consuming and the calculation had to be abandoned. Vieillard-
Baron decided that, despite the apparent simplicity of the spherocylinder model,
it would hardly be useful as a reference system for the study of the nematic
phase. This was not the case though as we shall see shortly. In fact Vieillard-
Baron should only have observed liquid crystalline phase formation for the
spherocylinders of length to breadth ratio 6. Veerman and Frenkel have shown
that only an isotropic and normal crystal phase can exist for freely rotating

spherocylinders with L/ D <3 [22]

The work of Vieillard-Baron proved inconclusive. This may well have been due
to a lack of resources and given more time the isotropic-nematic phase transition
of a system of spherocylinders may have been located. However, it was almost a
decade before comprehensive simulations were performed on hard convex body

fluids namely infinitely thin platelets [17].

Puzzled by the formation of translationally ordered phases in colloidal solutions
of rigid rod-like particles, e.g. the tobacco mosaic virus, Frenkel and co-workers
set out to investigate the phase behaviour of hard spherocylinders after Vieillard-
Baron. Successful simulations of spherocylinders had been performed by 1986
[23]. Initially simulations were performed on a system of hard parallel
spherocylinders, i.e. the spherocylinders are constrained to lie with their long

axes perfectly aligned along a given director fi(z), say. Thus even at low
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densities the resulting phase is a nematic gas or liquid. Although rather artificial,
the system could be used to model the behaviour of nematic particles that are
aligned in a magnetic field for example. Simulations of non-spherical potentials
constrained to lie in a particular direction do have further practical advantages. It
is not necessary to locate the director for example. The time dependence of i
disappears, such that time dependent functions resolved with respect to fi do not

suffer from inaccuracies due to fluctuations in ().

To obtain the equation of state constant-pressure and constant-stress MC
simulations were carried out in the fluid and solid phases respectively, on system
sizes of between 90 to 1080 particles of varying length to width ratios:
L/D=0-25, 0-5, 1, 2, 3 and 5 [24]. The latter constant-stress simulations
allowing a change in all sample box dimensions to accommodate the crystal in a
minimum equilibrium state. This circumvents spurious contributions to the free
energy that may arise from residual stresses formed in a crystal forced to adopt a
specific unit cell due to a fixed simulation box geometry. In order to locate phase
transitions precisely the absolute (Helmholtz) free energy of the solid was
calculated with reference to the appropriate Einstein crystal [25]. The absolute
free energy of the isotropic liquid can be computed with respect to the dilute gas
phase. It is not possible however, to construct a reversible thermodynamic path
connecting the nematic phase with a reference phase of known free energy
without crossing a phase transition. A solution has been proposed however [26].
If a strong enough magnetic field is applied to a nematic fluid, it is possible to
expand the fluid to the low density limit (in this case a nematic gas) without it
undergoing an orientational order-disorder phase transition. Knowledge of the
free energy of the applied magnetic field allows the absolute free energy of the

nematic fluid to be computed with respect to the low density gas limit.
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Subsequent knowledge of the solid-fluid coexistence points enables
determination of the melting points of the range of parallel spherocylinders.
However, simulation results indicated a discontinuity in the equation of state at a
density lower than the computed melting density for all but the L/D=0-25
systems. Thus in order to investigate this behaviour further Stroobants et al [23]
looked at the components of the radial distribution function; the transverse
component, g, (x,y) and the longitudinal component, g(z) along the director.
The results indicated smectic ordering with g, (x,y) being liquid like while gj(z)
exhibited a strong periodic density wave. Further demonstrations of the smectic

ordering was offered through "snapshots" of the systems at different densities.

For sufficiently long parallel spherocylinders with L/ D> 3 an additional phase
was observed at densities in-between the smectic and crystalline phases. For this
phase the g, (x,y) describe translational order within a plane perpendicular to the
director, whereas the g(z) support translational disorder along the director.
Information afforded by radial distribution functions does not however provide
any knowledge of the fluidity of the system: an amorphous disordered solid
would present a liquid like g(r), but the phase is characterised as possessing an
infinite viscosity. Liquid crystal phases by definition must posses molecular
centre of mass diffusion. So, it is important to provide a check for this. As MC
calculations cannot offer any direct dynamical information on the spherocylinder
system, Stroobants et al [24] further performed MD simulations. Examination of
the components of diffusion D) and D, both showed liquid like behaviour in the
smectic region indicative of fluidity and the phase was consequently identified as
a columnar phase.  The different mesophases observed for parallel

spherocylinders are indicated schematically in figure III.1.
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' Thus Stroobants et al had found a smectic phase for parallel spherocylinders with
L/D=0-5. The authors looked for evidence of bond orientational order, and
finding none, identified the phase as smectic A. It is important to note that these
simulations of hard parallel spherocylinders provide unequivocal evidence that
mesophases other than the nematic phase, in this case smectic and columnar
phases, can be formed solely by anisometric hard particles. On the other hand
however, using an extension of the Maier-Saupe theory of nematics [12],
McMillan has proposed a smectic A phase formed from long ranged attractive

interactions in the mean field approximation [27].

In addition this was the first instance of the absence of a change in density at the
transition. Observation of strong pretransitional fluctuations identified the

transition as being continuous.

Later, Frenkel et al looked at freely rotating spherocylinders with aspect ratio
L/ D =35 which provided a rich polymorphism. Eventually the phase diagram for
hard spherocylinders in the range 0<L/D<o was established through
simulation of freely rotating spherocylinders of L/ D=0, 1,3 and 5; (L/ D=0
is the hard sphere case [28]) [16]. Veerman and Frenkel performed free energy
calculations in order to distinguish the thermodynamically stable phase from
several coexisting mechanically stable phases at different densities. It is possible
to create a mechanically stable smectic phase with spherocylinders of L/D =3,
This phase is however, found subsequently to be thermodynamically unstable
with respect to the isotropic liquid and the solid. Thus no mesophases are
observed for freely rotating spherocylinders with L/D<3. Although the
spherocylinders studied here prevent an exact calculation of the aspect ratio

above which a stable smectic phase exists, it is thought to be just above L/ D=3
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[16]. Thus there is an isotropic-smectic-solid triple point for L/D=~3 at a
certain density. Veerman and Frenkel further predict a second triple point, where
a nematic phase stabilises at a slightly higher aspect ratio. This information
allows a rough sketch of a tentative phase diagram in the range 0< L/ D<6.

This is shown in figure II1.2.

An important observation made on this system of hard spherocylinders is that of
increasing collective orientational fluctuations on approach to the nematic phase
from the isotropic phase. These fluctuations may be observed in the decay of
certain particle correlation functions. Specifically Veerman and Frenkel [16]
looked at the single particle correlation function of equation [II1.7], the collective

particle correlation function of [III.8] and the static orientational correlation

factor given by [II1.9]:
G5 = (B(a(0)-8()); [111.7]
N N
G5 =22 (B (8,0)-8;()); [IIL.8]
i=1 j>i

g = if(&(ﬁf ) [IIL9]

i=1 j>i

In order to study dynamical processes, of course, MD simulations must be
performed. This work highlights the advantage of combining appropriate
ensemble MC calculations to arrive at a desired state point, then continuing the

simulation employing MD to extract the desired dynamic data.
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Figure II1.1

Schematic phase diagram of paraliel hard spherocylinders shown in the range
0< L/D<6. Phase regions are as indicated. Approximate coexsitence regions are
bounded by straight lines. The dotted line indicates the nematic-smectic boundary.
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Figure II1.2
Schematic phase diagram of the freely rotating hard spherocylinder system shown

between 0< L/D < 6. The reduced density p* = P/ pgp is the density relative to the
density of close packing. Phase regions are as indicated. The approximate locations
of the predicted [V+F 90] isotropic-smectic-solid triple point and isotropic-nematic-
smectic triple point are arrowed. The isotropic liquid-solid and smectic-solid
coexistence region is that region enclosed by the continuous black lines. These data

are taken from the following papers: (a) L/ D=0, [28]; (b) L/ D=1, 3, 5, [16].
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I11.3.4 Hard Particle Models: Cut Spheres

Another hard convex body for which the contact function can be evaluated

relatively straight forwardly [29] is the cut sphere. Cut spheres are hard spheres
that have had two slices removed above and below the equator, parallel to the
equatorial plane and at an equal distance normal to it. Once again this model
ﬁlay be specified by the ratio of two parameters: the diameter of the sphere D and
the distance between the cut planes L (L < D necessarily). With the aspect ratio
L/D=1, the cut sphere model reverts to the hard sphere model. Thus once
again there exists a reference system which can be used as a check on simulation
conditions and provides known results for the hard sphere solid-isotropic liquid

phase transition; useful for commencing a phase diagram of a model system.

Frenkel and co-workers have studied the behaviour of the cut sphere model.
Initially cut spheres with L/D=0-1 were simulated in the canonical MC
ensemble [29]. On compression at reduced density p* = 0-35 (p*=p/p,, where
Pep is the denisty of regular close packing), the system spontaneously forms a

discotic nematic phase with orientational order parameter S =0-73+0-02.

Later nematic phases, were prepared pre-aligned along the edge of the simulation
box. This fixes the director, and it is then no longer necessary to diagonalise the
Q tensor. Upon further compression increased local ordering is noticed until at
approximately p*=0-45 the system appears to form a columnar phase. The
columns are arranged on a regular hexagonal array. Investigation of the
longitudinal distribution function shows that the cut spheres themselves are
disordered within the columns. Columnar phases formed in this way exhibited
appreciable disorder. Thus well ordered and defect free columnar phases were

prepared by expanding a regular crystalline phase. It is found, therefore, that cut-
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spheres with L/D=0-1 can form four distinct phases; isotropic, nematic,

columnar and crystal.

Thereafter, more comprehensive simulations enabled a more precise location of
the isotropic-nematic transition: in the nematic branch p*y;=0-335+0-005,
and in the isotropic branch p*. =0-330+£0-005 [30]. As noted by the authors

the density change at the transition is quite small, ~1%.

Frenkel and Veerman studied cut discs of different axial ratios than described
above [30]. The results were found to be quite surprising. For cut spheres with
L/D=0-2 no stable nematic phase is observed. Instead at densities above
p*~ 0-55 compression of the isotropic phase leads to the appearance of a novel
phase. Termed "cubatic" by the authors this phase is characterised by small
stacks of discs forming short columns. The columns themselves appear to be
disordered. The authors investigated higher order orientational correlation

functions g;(r), where;

gi(r) = (B(a(0)-a(r))). [111.10]

In equation [I1.10] P is the /! Legendre polynomial. These order parameters
give a quantitative measure of different types of ordering which may be present.
The orientational correlation function g,(r), is sensitive to nematic ordering as
has already been described in chapter II. The higher order orientational
correlation functions g4(r) and gg(r) are sensitive to cubic orientational order. It
is an investigation of these higher order orientational correlation functions that

reveals the nature of the cubatic phase. Whereas g»(r) and g¢(r) are found to
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decay rapidly within one molecular diameter, by contrast with increasing density

g4(r) and gg(r) decay progressively more slowly.

A snapshot of a typical configuration shown in the original publication helps to
clarify the situation [30]. The cut spheres appear to be stacked in short columns
as suggested earlier. It is clear though that these short stacks have cubic

orientational symmetry with respect to neighbouring columns. This is the origin

of the g4(r) and gg(r) behaviours.

There is the possibility that the apparent cubic orientational order of the short
stacks of discs in the cubatic phase originates somehow in the cubic periodic
boundary conditions of the simulation box. This possibility is correctly
eliminated by the authors in their observations of the higher order orientational

correlation functions. Any such periodic effects will manifest themselves as a

significantly non zero value in g;(r) with / >4 at a distance » > L/2 where L is

the box length. The absence of any such behaviour in gg(r) provides the

necessary evidence.

As the density is increased further the short stacks increase in length until at
approximately p*~ 0-60 they become of order L. At this point it observed that

the columns tend to align themselves along the simulation box and a true

columnar phase is formed.
Cut spheres with a more extreme axial ratio L/D=0-3, yielded yet more

surprises [30]. In this case it is found that the cubatic phase is absent in favour of

the thermodynamically stable solid phase.
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Thus we find that cut spheres of various aspect ratios exhibit a rich and varied

phase diagram.

I11.3.5 Hard Particle Models: Ellipsoids of Revolution

To investigate how far a molecule must deviate from sphericity before

orientational ordering will stabilise in the liquid phase before freezing occurs,
Frenkel and co-workers [26, 31] examined a system of hard ellipsoids of axial
ratio 3> x >1/3, using the contact function devised earlier by Vieillard-Baron
[7]. At about the same time Perram et al were also investigating ellipsoids of
axial ratio x =2, 3, 3-5 [32] using a previously developed contact function [33]..
If an ellipse is rotated about its principal symmetry axis, a say, the resultant shape
mapped out in three-dimensions is the hard ellipsoid. These are characterised by
their axial ratio x = (a/b): ais the length of the principal symmetry axis and b is
the length of the two mutually perpendicular axes themselves being perpendicular
to a. Both prolate x — o and oblate x — 0 ellipsoids are possible. Once again
with x =1 the hard sphere reference model is obtained. In the study [26] specific
axial ratios of x = 3, 2.75, 2, 1-25, 0-8, 0-5, 1/2-75 and 1/3 were investigated.

It is found that for the more spherical ellipsoids, 1-252 x >0-8 a rotationally
disordered plastic solid phase exists. The molecules are centred on lattice sites
but their molecular orientation does not align along any preferred direction. At
more extreme axial ratios an orientationally ordered crystal phase is observed.

These solid phases are formed directly from the isotropic liquid
At sufficient axial ratios 2-75<x<1/2-75 the ellipsoids form an orientational

ordered fluid at sufficiently high density (although see below). The nematic fluid

is seen to form spontaneously on compressing the isotropic liquid.
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Figure II1.3 is a schematic of the phase diagram of hard ellipsoids. There are
several things to note about this figure. Firstly it appears remarkably symmetrical
under the oblate <> prolate transformation. This can be understood at lower
densities because the second virial coefficients are equal under such a
transformation. However, higher order terms are not and so this symmetry is not
expected to persist at higher densities, indeed why such symmetry should persist
at all at high density is unclear [34] although it could be a fortuitous result when

higher oblate ellipsoid virial coefficients are taken into account.

Closer examination of figure III.3 reveals that the nematic phase of oblate
ellipsoids is stable at lower densities than that of prolate ellipsoids of inverse
axial ratio. However, theoretical calculations at axial ratios, x =00 or x = 0 that
do not distinguish between the two extremes predict equal low coexistence
densities at the freezing transition, thus the symmetry of the phase diagram is
seen to reappear [35]. Still this symmetry cannot be exact because in the limit
that the oblate ellipsoids become infinitely thin the higher order virial coefficients

do not vanish as they do in the case of infinitely long ellipsoidal needles.

Subsequently, additional ellipsoids of more extreme axial ratio, x =10, 5, 1/5 and
1/10, have been studied together with a re-examination of the x=3 and x=1/3
systems [36]. It is found that the oblate ellipsoids are more aligned than the

respective prolate ellipsoids at a given density.

Zarragoicoechea et al [37, 38] have investigated the behaviour of hard ellipsoids
of axial ratio a/b=3 with the addition of a permanent dipole moment
0<p*<3-5 orientated along the principal symmetry axis. With a zero value

dipole moment this work allows comparison with previous simulations performed
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Figure II1.3
Approximate schematic phase diagram of the hard ellipsoid-of-revolution system. The

axial ratio is plotted as log;o{x} written above as Ig{x} to show the approximate
symmetry between oblate and prolate ellipsoids. Coexistence regions are shown
bounded by solid straight lines. The indicated phases are as follows: |, isotropic
liquid; N, nematic liquid crystal; S, solid phase; PS, orientationally disordered
plastic solid phase. These data are taken from the following papers: (a)

logio{x}=0 (i.e. x=1),[28]; (b) the remaining points [26].
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at the same axial ratio [26]. Presently simulations with N =108 and N =256
[38] have shown significant system size dependence. The original simulations
considered N =90 and N =108 (with a/b=3) particles and no system size
effects were observed. In both sets of simulations identical results within the
statistical error are obtained and appear to indicate the presence of a stable
nematic phase at p* ~ 0-36 (here p* = Nb3/V). However, latterly by increasing
the number of particles within the simulation box to N =256, the pressure of the
system is found to increase by approximately 30% and the eigenvalues of the Q
tensor take on values of an isotropic phase. Further if an aligned simulation is
prepared with p*<0-36 and N =256 it is found to systematically evolve
towards the isotropic phase with sufficient attempted particles moves. Of course
away from the previously proposed region of nematic stability this is to be

expected. However close to p*~ 0-36 this should not be the case.

Zarragoicoechea et al suggest that this effect is due to a system size dependence
[38] as they found no difference between simulations performed using different
simulation box geometries. However there is a further difference between the
two sets of simulations in the choice of overlap criterion used. In their original
study Frenkel and Mulder used the Wjpsoias Overlap criterion previously
proposed by Vieillard-Baron [7]. More recently Zarragoicoechea et al have used
an alternative criterion [38]. No exhaustive comparison between the overlap
criteria has been performed. However the similarity of the results obtained for
the N =108 system tends to discount this possibility. It is of course still a
possibility that the nematic phase of hard ellipsoids of axial ratio a/b =3 exists
in a very narrow density range close to the freezing transition that is
imperceptible to the current simulation technique using a significant number of

particles.
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With a view to the above statements Mason and Allen [39] have repeated the
work of Frenkel and Mulder [26] and additionally used MD to simulate the
system of a /b = 3 hard ellipsoids. They too have seen spontaneous formation of

the nematic phase.

The dynamics of hard ellipsoids on approach to the isotropic-nematic transition
have been observed using (necessarily) molecular dynamics [40]. It is found that
the collective reorientation decreases linearly to zero at the transition point.
Similar effects are observed before the freezing transition of hard ellipsoids with
a/b=2 which do not form a nematic phase. More recently the dynamics of the

isotropic phase of hard ellipsoids has been examined in greater detail [41].

Simulations with a finite dipole moment p* =0 proved to differ only slightly
from those with u*=0. Specifically, no stable nematic phase is observed over
the range of densities studied and the pressure remains comparable with that
observed in the isotropic regime. With increasing dipole moment a tendency to
increased anti-parallel short ranged order between nearest neighbour ellipsoids is

observed contrary to that observed for dipolar hard spheres.

The comparisons of the work described above indicates the sensitivity of
computer simulation methods to system size and box geometry effects
particularly at phase transitions. These can often conceal the true nature of a
phase transition. It is therefore important wherever possible to study the
constraints imposed by such effects. However, with computationally demanding

simulations sufficient resources are often unavailable for a detailed investigation.
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I11.3.6 Hard Particle Models: Spheroids
Spheroids form the more general class that ellipsoids belong to but generally they

have non-equal axial ratios: a # b# c. These have been used in an attempt to
simulate a biaxial liquid crystalline phase [36; 42]. In this study the three semi-
axes were chosen such that abc=1, ¢/a =10 and b/ a ranged between 1 and 10.
For axial ratios close to the self conjugate value b = \ac a stable biaxial phase is
seen to form directly from the compression of the isotropic liquid. Away from
these axial ratios either a discotic nematic or calamitic nematic, respectively, is
identified. The biaxial phase is seen to form at densities at least one-and-a-half
times higher than the nematic phase in uniaxial systems. The phase diagram is
found to be approximately symmetrical under the transformation
{a,b,c} & {a‘l,b‘l,c‘l} about b=+/ac, though there are some systematic
differences [42]. As has been observed in hard ellipsoid systems [26; 36] oblate
uniaxial spheroids are found to be more aligned at slightly lower densities than
the complementary prolate spheroids. Real liquid crystals are biaxial and so
simulations of biaxial models represent an improvement over the usual

axisymmetric hard particle models.

II1.3.7 Hard Particle Models: Rigid and Semi-flexible Hard

Sphere Chains
Simulations of rigid fused [43] and tangential [44; 45] hard sphere models have

been performed. Although the tangential hard spheres were not studied at
sufficient elongations to form liquid crystal phases, fused spheres with a length to
width ratio of 5-2 composed of eight equally spaced fused spheres were observed
to spontaneously form a nematic phase at sufficient density. The introduction of
flexibility into a seven sphere tangentially bonded molecule results in the

formation of smectic, nematic and isotropic phase [46,47]. In an MD simulation
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the hard spheres of a molecule were allowed to rattle within internal constraining
square wells thus producing the required flexibility. Interestingly a preference
for linear chains is seen in the nematic phase albeit within the narrow range of
flexibility included in‘ the model. In contrast no nematic phase but a metastable
smectic phase which eventually converts to the isotropic liquid is observed for a
similar five tangential rattling sphere model [48]. This model clearly
demonstrates how molecular flexibility may be incorporated into hard sphere
models. It will most likely prove to be of great use in simulating the flexible

alkyl chains common to liquid crystal molecules.

An alternative approach due to Nicklas et al makes use of the so called rigid-
flexible-rigid (rfr) model of liquid crystal dimers [49]. A model is constructed
which consists of two rigid spherocylinders connected by a flexible alkyl chain.
The spherocylinders are each formed from a rigid linear array of ten methylene
type united atom sites. These are joined by 4, 5, 6 or 7 similar sites separated by
the same inter-site spacing but having flexible bond angles and torsion angles.
The model interacts via a MM2 [50] type force field which only considers
repulsive interactions. Extensive MD simulations reveal a striking odd-even
dependence of the stability of smectic and nematic liquid crystal phases and of
the nematic order parameter on the number of methylene groups in the flexible

linkage in qualitative agreement with observations on real rfr dimers.

II1.4_Single-Site Soft Potential Simulations
Soft potentials vary smoothly with distance. They may be simply repulsive such

as the soft sphere potential (see figure I1.2), or they may have additional attractive
components as in the Lennard-Jones 12-6 potential (see figure II.3) for example.

The origins of soft potentials have already been outlined in chépter II and so in
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this section we will concentrate on the simulations that have been performed to

date.

Single site soft potentials used in liquid crystal simulation must necessarily have
an orientational dependent term and as such are all types of Corner potential [51].
Anisotropic soft potentials based on the Lennard-Jones 12-6 potential are used

[36].

A continuous potential may be formed from the scalar Lennard-Jones plus a
suitable anisotropic component. Luckhurst and Romano have investigated the

behaviour of a system interacting via the potential;

Vir =V +Va. [II.11]

A Lennard-Jones 12-6 form is chosen for V. Assuming the particles are rigid
and cylindrically symmetric the anisotropic potential V,, describing the
interaction of these particles, may be expanded in a series of spherical harmonics.
It should be noted that real mesogens do not possess such cylindrical symmetry
however, this may not be a serious approximation. From a molecular cluster
viewpoint, clusters of molecules are less anisometric than individual molecules.
If the clusters are preserved at the transition then the shorter range anisotropic
forces of individual molecules may not be so important in nematic phase

formation. Truncating this expansion at the second-rank terms yields;

Va = uy(n2) B (cosByp). [1I1.12]
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In [III.12] P, is once again the second Legendre polynomial and B, is the angle
between the symmetry axes of two particles. In essentially an extension of a
previous simulation [52] that was confined to a lattice and considered only

nearest neighbour interactions the scaling term w,(r,) is chosen to take one of

two forms;

' Gy 6
uz("lz)=—47~80(—); [IL13]

'y (n2)=—4x80((ﬂ)n —(ﬂﬂ. [IIL.14]

In the expressions [III.13] and [III.14] o, and g, are the Lennard-Jones strength
and range parameters and rj, is the particle separation. The parameter A is used
to control the anisotropy and was given the value A =0-15 selected after
preliminary simulations: smaller values of A were not found to exhibit a liquid
crystal phase above the melting point and additionally larger values of A gave
orientationally ordered phases that were found to be stable right up to the boiling
point. Results using the pair potentials of [III.13] and [III.14] were found to be
qualitatively similar and to be in reasonable accord with the nematogen 4,4'-

dimethoxyazoxybenzene.

In the first simulation of a single-site soft potential with substantial anisotropy
Kushick and Berne [53] used the Gaussian overlap model proposed by Berne and
Pechukas [54] (see chapter II) in a simulation of 144 ellipses of axial ratios 2-to-1
and 3-to-1. At the start of the simulation the principle axes of the ellipses are

orientated by the action of a magnetic field. Thereafter the field is switched off
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and the system is allowed to relax. An order parameter given by equation [III.15]
is monitored to see if the induced orientational order is destroyed at various

densities. In two dimensions;

18, a2 1
C2—dimensions = WZ((“: 'n)2 - '2') . [II.15]

i=1

In expression [III.15] the ii; and i represent the directions of the principle axis of
each ellipse and the direction of the director respectively. It is to be noted that
the average is taken over all the particles of the last configuration only. This
necessarily leaves the results susceptible to the inherent fluctuations in the degree
of alignment of the particles of an orientationally ordered phase. This effect
would be further enhanced close to phase transitions. Nevertheless the results for
the ellipses indicated a persistence of orientational ordering in a system at
p/pg=0-75 with £=0-83. With knowledge of the solid-nematic transition
observed by Vieillard-Baron [7] occurring at p/py =0-87 for hard ellipses of
axial ratio 6-to-1, together with the observed melting density of hard discs (axial
ratio 1) known to be p/py=0-79 the authors assumed, quite reasonably, that
they had achieved stable rotational ordering below the density at which the solid
is expected to form. By contrast an orientationally ordered state was observed
for ellipses with axial ratio 2-to-1 at p/ py = 0-90 but this was not sustained at a
density of p/py=0-80. The higher density is thought to correspond to an

ordered solid phase.

The authors further report that they had also observed stable nematic ordering

with soft ellipsoids in three-dimensions with the parameters a=3-5, p/py=0-71
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and € = 0-85 using an appropriate expression for { valid in three-dimensions that

is in fact;

N
6= B@6). [IIL.16]

i=1

These were important results because they demonstrated the usefulness of the
Gaussian overlap model in simulating orientationally ordered phases. However,
these were preliminary experiments. Only a small number of particles were
simulated at any time. Problems were encountered whereby the system would
enter a long-lived metastable state or configurational phase-space bottleneck from

which it was difficult to escape.

Tsykalo and Bagmet [55] studied the nematic phase of the Berne-Pechukas
potential and of two modifications of the potential; a WCA [56] type split of the
potential and a version of the potential scaled by a function dependent on the

orientation of the particles with respect to the intermolecular vector. Thus;

(DBP
A A A\?
(i, i, F)

[II.17].

Dcaled BP =

where o(d;,li,,F) is the range function of the Berne-Pechukas potential (see

equation [II.15]). A potential of the form of [III.17] does indeed introduce the
necessary intermolecular vector dependency but the well depth anisotropy is
necessarily controlled by the shape anisotropy parameter . Ideally a parameter
independent of % which may be adjusted to vary the well depth anisotropy is

preferred. These systems were studied over a range of shape anisotropy in the
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side-to-side end-to-end interaction ratio; 3-520,/0,22-0 at a variety of
packing fractions; 0-50<m <0-55, for only 1000 time steps after equilibrium.
At sufficiently high packing fraction and shape anisotropy each system was found
to possess residual nematic order after equilibration. The simulation results
reported here cannot be considered accurate as only residual order is observed in
systems that have been allowed to relax. Given sufficient length of run the
residual order may eventually make way for a more stable thermodynamic phase
with a different or perhaps even negligible degree of orientational ordering.
Spontaneous order is not observed in this work, the importance of the work of
Tsykalo and Bagmet therefore, lies in demonstrating the possibility of simulating
anisotropic liquid crystalline phases using continuous potentials. Furthermore,
although not elaborated on by the authors, the idea of including a well depth
scaling term based on the relative orientation of the particles with respect to the
intermolecular vector is introduced; an idea later expanded upon by Gay and

Berne [57].

A nematic-isotropic transition was reported for a system of Berne-Pechukas
centres [58] although in these studies again only a small number of particles were
simulated with ensemble averages being collected only over the final 1000
simulation time steps after equilibrium had been attained. More recently the
importance of large particle systems and long simulation runs over which the
ensemble averaging is performed has been recognised. The results reported in
the above publication are in qualitative agreement with experimental results and
the tacit discrepancies reported therein are probably due to the aforementioned

factors of system size and ensemble averaging.
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In fact more recently it has been found that the nematic phase of the Berne-
Pechukas potential is not thermodynamically stable. After extensive simulations

it returns to the isotropic liquid phase [59].

Subsequently, several unrealistic features in the Berne-Pechukas potential were
identified and in an attempt to correct for these undesirable features a cut and
shifted rather than a simply scaled potential was employed by Gay and Berne
[57]. The details of this Gay-Berne potential can be found in chapter II (see
section II.2.3) where we have described the origins of the hybrid Gay-Berne
Luckhurst-Romano potential which we have used in simulations of single-site
calamitic and discotic liquid crystals and in a more ambitious multisite study of a
calamitic mesogen; a discussion of some of the simulations to date using the Gay-
Berne potential will suffice here.
|

The first successful simulation of a Gay-Berne fluid may be attributed to Adams
et al [59]. Simulations were performed using the original parameterisation of
Gay and Berne [57]; thus v=1, p=2, 6,/0. =3 and €,/€,=5. These values
are chosen to fit the Gay-Berne potential to a linear array of 4-Lennard-Jones
centres each separated by 26 /3. In these preliminary simulations an isotropic
to nematic transition is identified and the approximate transition temperature
located, the nematic phase becoming stable at T*<1.-7 for p*=0-32,

(p*=poj/m, o, is the Lennard-Jones range parameter, m is the mass of the

particle).
Luckhurst ef al undertook more extensive simulations using a slightly differently

parameterised version of the Gay-Berne. In particular the exponents v and p

were exchanged so that the values v=2 and p =1 were employed. This change
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does not effect the relative well depth minima for the side-by-side and end-to-end
configurations, but it does help to stabilise the side-by-side configuration with
respect to the X and T configurations. Thus it is thought that this
parameterisation would be more likely to induce liquid crystal formation. The
range and strength parameters, ¥ and y' respectively, retain their previous values:
thus o;/0.=3 and /g, =5. MD simulations performed with the above
parameterisation demonstrate that the Gay-Berne model mesogen exhibits a
diverse range of mesophases. In systems of N =256 particles Luckhurst et al
[60] identify nematic, smectic A, smectic B and a crystal phase in addition to the
isotropic liquid in simulations performed at a density p*=0-30, with the aid of

distribution functions and computer graphics.

Visualisation of the shape of the Gay-Berne potential obtained by plotting the
contour corresponding to Ugg(ii;,1i,,r)=0 [60] shows that it is ellipsoidal in
shape. It is therefore perhaps surprising that the Gay-Berne potential forms
smectic liquid crystal phases because of the scaling arguments introduced by
Frenkel [29]. However the argument proposed by Frenkel refers to hard particles
only. It is therefore the long ranged anisotropic part of the Gay-Berne potential
that is responsible for the formation of the observed more highly ordered
mesophases. It should be noted that there is an internal well depth minimum in
the Gay-Berne particle. This was also recognised by Gay and Berne [57].
However this is unlikely to cause problems in simulations of Gay-Berne particles
since it is separated from the external potential minimum by an infinite potential

barrier.

Extensive simulations of the Gay-Berne fluid have been performed by de Miguel
and co-workers [61-67]. In particular the phase diagram of the Gay-Berne fluid
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parameterised according to the original prescription of Gay and Berne [57] has
been sketched out. With this parameterisation isotropic, nematic, smectic-B and
a transition to a tilted smectic-B phase in addition to the crystalline phase are
identified [64]. A smectic-A phase is not observed, although a density wave
indicative of smectic-A layer structure was observed but found not to be
stationary throughout the simulation. After sufficiently long runs the phase was
in fact identified as smectic-B. Interestingly no smectic phase is observed along
compression of an isotherm at 7%= 1-25. This is thought to be due to the system
becoming trapped in a metastable region of phase space preventing the onset of
one-dimensional spatial order, as subsequent simulations along isochores [65]
show that the smectic-B phase is stable at higher temperatures. Along isotherms
T*<0-80 the isotropic phase is seen to evolve directly into the smectic-B on

compression of the system.

The observation of a tilted smectic-B phase [64] may be an artefact of
compressing the system. In previous simulations of smectic-A and B phases the
system director was always found to be aligned along the cubic simulation box
diagonal [60]. It has been argued by Luckhurst et al that a diagonal orientation of
the director allows the constraint that smectic layers must be commensurate with
system periodic images to be more easily satisfied. It is quite possible therefore
that once the director has been pinned in a certain direction say in a smectic-B
phase further compression of the system may result in the observed tilted
smectic-B phase, the director being unable to rotate in order to contain the correct
number of layers composed of molecules normal to the layer surfaces
commensurate with the system periodic images. However the observed tilt
transition does appear to be weakly first order and has been observed in

experimental systems [64].
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In addition de Miguel et al have performed simulations on a WCA [56] split of
the Gay-Berne potential [64]. The results indicated that the long range
anisotropic attractive part of the potential does stabilise the onset on orientational
order. For example along the isotherm 7* = 0-95 the isotropic-nematic transition
is identified at the following reduced densities: full Gay-Berne potential,
p*=0-315; WCA Gay-Berne, p*=0-335. However with the WCA Gay-Berne
potential no smectic phases are observed indicating that the long range

anisotropic attractive forces are vital to the formation of the smectic phase.

The same conclusions are reached in a study of the Gay-Berne mesogen
parameterised to represent a real nematogen [68]. A methodology for projecting
out the biaxiality of typical mesogens by performing Boltzmann weighted

averages of the form;

21 2

J.o Jo nVu exp(—Wy / kgT )do,doy
21 27

J;) jo exp(—Vy / kgT)do,doi,

,»  [IL18]

I/av(ﬁl:vﬁ2sr) =

where the V1; are provided by the sum of Lennard-Jones site-site terms and the
o; are rotation angles about the molecular long axes of a pair of molecules in an
energy minimised conformation is presented. Parameters are then chosen to fit
the ellipsoidal Gay-Berne potential to the Lennard-Jones site-site representation.
Note the temperature dependency of [III.18]. Appropriately the known isotropic-
nematic transition temperature for the real mesogen may be used. However in
the case of para-terphenyl a number of Lennard-Jones site-site configurations

have large Boltzmann contributions at the virtual nematic-isotropic transition
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temperature. This leads to a complicated form for the potential energy surface
Ve (i, li5,r) not in keeping with the smooth energy contours of the Gay-Berne
potential. Consequently a higher temperature is used in the averaging process
and this is not thought to significantly alter the qualitative appearance of the
potential energy surface. This procedure will however decrease the predominant

attractive features of the Lennard-Jones site-site representation.

To represent the nematogen para-terphenyl the following parameters are selected
for the Gay-Berne model: v=0-74, n=0-8, o./0,=4-4, and g,/€, =39-6.
These values differ from those of the original Gay-Berne potential [57] but the
most significant departure is seen in the value of the well depth anisotropy.
Using this parameter set, at appropriate densities isotropic, nematic and smectic
phases are identified. The isotropic-nematic phase transition is found to lie close
to the nematic and isotropic coexistence regions of hard ellipsoids of
corresponding axial ratio. It is reasonable, therefore to infer that the nematic

phase of Gay-Berne particles is dominated by excluded volume effects [68].

In contrast an investigation into the phases observed with respect to the well
depth anisotropy showed that below what appears to be a critical value of

€s/ €. =5 smectic phases are not formed with this shape anisotropy. Such an
observation substantiates the role of attractive forces in stabilising the formation

of smectic phases.

Because of the small system sizes studied [60; 64] it is difficult to decide whether
the observed smectic-B phase is in fact a crystal-B phase, characterised by the
persistence of three-dimensional positional and bond orientational order at long

range, or a hexatic-B phase which is characterised by long ranged bond
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orientational order but only short ranged positional ordering. However the
diffusion coefficients observed in the smectic phase of de Miguel et al [64]
indicated a fluid rather than a crystal phase.

More recently Hashim et al [69] have performed constant pressure simulations of
an originally parameterised Gay-Berne potential in order to investigate the nature
of the smectic-B phase in greater detail. In these simulations results analogous to
those of constant volume simulations are found. The smectic-B layer normal is
found to orient itself along the simulation box diagonal. When it is artificially
rotated to be aligned parallel to the simulation box edge it remains there.
Smectic-B phases aligned along both of these directions were found to be
equivalent In particular the smectic-B layers are found to have a rippled structure
with interdigitation of molecules from one smectic layer into the next as has been
observed previously. It is suggested [69] that the tilted smectic-B phase observed
by de Miguel et al [64] is in fact part of the rippled structure which was
unobservable due to the small system size (N =256 compared with N =500 in
this latest study). On the question of the type of smectic-B phase, positional
correlations between particles in the same smectic layers were found to be weak.
Thus the Gay-Berne smectic-B phase is identified as an hexatic-B phase rather

than a crystal-B phase, at least with this parameterisation.

Because experiments on mesogens are generally performed under conditions of
constant pressure such simulations are amenable to direct comparison with
experiment. Indeed Hashim e al find reasonable agreement between their
simulations and the mesogen 4,4'-dimethoxyazoxybenzene and some other

mesogens where a direct comparison was unavailable.
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Simulations of a Gay-Berne discogen have been attempted [70]. Using the
parameterisation o;/c6. =0-345 g,/€.,=1/5 and v=2 and p=1. The well
depth ratio was selected having been originally reduced from a value
€s/ €¢ =1/9 which was assumed to be responsible for the observed formation of
cavities within the simulation box. It is quite possible however that the cavities
are formed when the system enters a liquid-vapour coexistence region at the
given density and temperature. It is therefore also possible that simulations of the
Gay-Berne discogen at higher densities would not have yielded such cavities,
although the simulation density in this study was chosen to be around the
nematic-isotropic transition density for the same shape hard ellipsoids [34], with
which comparissons of the Gay-Berne discogen were subsequently made [70].
The Gay-Berne discogen is found to exhibit isotropic, discotic nematic, and two
types of columnar phase depending on the density. At p*=3-0 the columnar
phase exhibits rectangular symmetry which is suggested to be due to the
interdigitated nature of the columns. This view is supported by the fact that at a

lower density of p* =2-5 the column arrays are observed to possess the expected

hexagonal symmetry.

System size effects on the behaviour of the Gay-Berne fluid have been
investigated [65; 71]. Tn a comparative study of N =256, N =500 and N = 864
Gay-Berne particles [65], no appreciable system size dependence was found
away from the transition. However results indicated that the transition itself
becomes more weakly first order with increasing N. Hysteresis effects were
noticeable in this study [65]. For example it was found that the nematic phase
could be expanded considerably past the transition point before disordering to the
isotropic phase. Conversely, the isotropic phase could be compressed only

slightly past the transition to the nematic phase. A reduction in hysteresis effects
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at the transition are seen with increasing N. Once again a region of phase space
entrapment may have been located. Compression of the nematic phase along the
isotherm T*=1-8 failed to yield any smectic phase, yet simulation along an

isochore p* = 0-38 does exhibit a stable smectic-B phase at 7*=1-8

A detailed study of the Gay-Berne fluid with the strength parameters v=3 and
p =1 has been undertaken using system sizes of N =512 and N =1000 particles
[72]. Interestingly with these larger systems there was practically no hysteresis
in contrast to that observed by Chalam et al [65]. Comparison of this model with
previous Gay-Berne studies indicate that the properties of Gay-Berne particles
with the same shape and energy anisotropies are markedly affected by a change
in the change parameters v and p. Intensive studies, such as the work of Beradi
et al [72] indicate the lengths of runs and rates of cooling and heating etc.,
required for even, what is considered to be relatively simple models, to yield

accurate data in the vicinity of phase transitions.

As an interesting variation Chalam et al [65] have investigated the behaviour of
the Gay-Berne fluid confined between two walls. At the wall fluid interface the
potential takes the form;

V(2,0) = AV(z)(l+§Pz(cos9)), [IL.19]

where;

V(z) = ew((gzi)g - ("Z—wn [TI1.20]
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10\/2
aw=(—) TEQYPSTy.- [111.21]

For positive values of the constants 4 and B the function [III.19] tends to align
the particles normal to the wall: homeotropic alignment. The parameters o,, and
€,, are the usual Lennard-Jones range and strength parameters but here they apply
between the wall boundary and a given molecule. The strength parameter is a

function of p; which is the number density of molecules at the wall.

Choosing values of 4= B =1, the well depth for homeotropic wall alignment
was found to be lower than that for side-by-side alignment of Gay-Berne
particles. The system, studied via NVT-MD (constant number density, volume
and temperature), was equilibrated by studying the constancy of order parameter
and density profiles within the pore. It was found that the pore stabilised
mesophase formation with respect to the bulk fluid. For example, compression
along an isotherm 7* = 0-65 yielded isotropic, nematic and smectic phase in the
centre of the pore away from the homeotropic alignment found at the walls. In
comparison, compression along the same isotherm in the bulk fluid yields the
smectic-B phase directly from the isotropic phase. Compression along higher

isotherms did not yield any orientationally ordered phases within the pore.
More recently computer simulations have been performed on a chiral-type Gay-
Berne model [73]. For reasons of computational simplicity the chiral potential

takes the form of an additive term to the normal Gay-Berne model. Thus;

Venira B = @V, (1, 82,1) + ¢V, (i, 85,1), [1I1.22]
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where V,(ii;,#,,r) is the ordinary Gay-Berne model and the additional chiral

term is given by;

7
A A A A A G A A A A A
VC(ul’uz’r)=48(“1’u2’r)(1’—0(ﬁ1,ﬁz,f')+GoJ [(@y x @) #](d, - ).

[01.23]

Once again the dependency of the 7 term is chosen to take the same form as the
Gay-Berne potential for reasons of computational simplicity. Similar results are

obtained for an 71! dependency of V,(d;,ii,,r) but it is known that an r~’

dependency arises from the multipole expansion of the interaction energy of two
chiral molecules. Using the same parameters as Luckhurst et al [60] two types of
simulation were performed: (a) variation of the chirality parameter along an
isotherm 7*=1-5 from ¢=0 to ¢=2-0, and (b) a second set of simulations
performed by reducing the temperature along an isochiral ¢=0-8 from 7*=3-0
to 7*=0-25.

The results from (a) indicate a change from the infinitely pitched nematic to a
cholesteric phase somewhere in the range 0-6<¢<0-7. On further increasing
the chirality parameter a second blue phase resembling BP II [74] occurs in the
region 1-0<c<1-1. With the second set of simulations (b) as the temperature is
reduced ordering perpendicular to the director becomes manifest. It should be
noted that through positional correlations occurring in g(r*) the phase is

identified as a chiral smectic-A¥*.

In all chiral phases observed only half the pitch of the helix is formed within the

simulation box and the helical axis is always formed parallel to one of the
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simulation box faces. These effects are almost certainly due to constraints
imposed by the periodic boundary conditions. In an analogous argument to that
presented by Luckhurst et al [60] for achiral smectic phases, to be commensurate
with its periodic images a repeatable part of the helix must occur within the

simulation box. This condition is satisfied if;
L=n(p/2), [II1.24]

where 7 is an integer and p is the pitch of the helix. As observed by Memmer et
al [73], this requirement creates a threshold value for the chirality parameter; as
soon as the chirality parameter can produce a system that, to a good
approximation satisfies [II.24], then a chiral phase may be formed. In order to
alleviate these restraints larger systems (here N =256) may be simulated
allowing a larger value of » in [II1.24]. Alternatively, as suggested for achiral
smectic phases, constant pressure simulations may allow the chiral phase to adopt
an unrestricted pitch. The use of a special type of twisted simulation cell has also

been suggested [75].

Molecular dynamics simulations can provide detailed knowledge of individual
particle dynamics which are not normally available from experiments. Indeed
this is one of the advantages of MD over the Monte Carlo simulation technique.
MD has been used to investigate the single particle translational and rotational
dynamics of the Gay-Berne fluid [67]. Particle auto correlation functions take

the form;

(A(to)-Alto +1))
(A(to)-Alzo)) ~

4(t)= [I1.25]
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where A(z) is a classical dynamical property of molecule i evaluated at time ¢.

The self particle reorientational correlation functions are defined by;
61(2) = (B(0(t0) - ii(2o +1))). [111.26]

In [II1.26] B is a Legendre polynomial of order / and d(¢) is the usual unit vector

representing the symmetry axis of molecule i. With a given correlation function

the associated correlation time is defined by;

T, = j:¢ L)dt. [IIL.27]

The main results indicated that the particles undergo diffusion along a cylindrical
cage. Further, an increased velocity auto correlation function close to the
isotropic-nematic transition is observed as a pre-transitional effect. Diffusion
coefficients calculated from auto correlation functions and from the slope of plots
of the molecular mean square displacements were found to be in excellent

agreement.

In another study only accomplishable using MD, the dynamics of heat flow in
nematic liquid crystals has been investigated using a modified version of the Gay-
Berne potential; v=1 and p =1 [76] and in order to reduce to computational
effort a WCA-type [56] both prolate and oblate Gay-Berne potentials [77]. The
main results are that in the prolate nematic fluid the thermal conductivity along
the director is approximately twice that observed perpendicular to the director.
For the oblate fluid the reciprocal relationship is observed. These results are in

accord with the observation that in the calamitic nematic phase diffusion is
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greater along the director, and in the discotic nematic diffusion is observed

greatest perpendicular to the director.

It is interesting to note that simulations of the 4 linear Lennard-Jones centres with
which Gay and Berne originally parameterised their potential [57] do not exhibit
any liquid crystalline phases [see 68]. It is thought that an increase in the axial
ratio of linear Lennard-Jones site molecules may encourage liquid crystalline
behaviour [68]. However, in order to keep the undulations manifest in the
repulsive hard core of these systems to a minimum, this will only be possible
with an increase in the number of sites, incurring a corresponding increase in
simulation time. Indeed this is found to be the case when a linear model of 11
rigidly joined centres interacting with just the repulsive component of the
Lennard-Jones potential is considered [78]. A site-site separation of Go/2 is
employed making the model geometry similar to that of a prolate spherocylinder
with axial ratio L/ D~ 5. Using fixed temperature and pressure MD techniques
[78] which allow changes in box geometry as well as volume, a system of
N =600 particles is first equilibrated at low temperature which results in a
curious herringbone-like orientation of the particles in layers. As the system is
gradually heated it is seen to pass through slightly tilted-smectic, nematic and
isotropic phases. The observations result from heating the system only.
Allowing for the order present in the original configuration it is possible that the
system may enter a metastable state from which it cannot escape given the
available kinetic energy and length of simulation run using the MD technique.
This may occur particularly on heating MD runs: previously orientationally
ordered particles must attain sufficient orientational kinetic energy to break free
of the potential well they find themselves in. It is likely therefore, that until the

requisite energy is available the system will find itself trapped in a metastable
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extension of corresponding branch of the equation of state. Such a situation is
less likely, although not impossible, to arise in MC simulations. Because there is
a finite chance of accepting a move which increases the overall energy of the
system, it is possible that given sufficiently long runs a path from the metastable
to a lower energy state may eventually be found. It is therefore vital that
observations of different phases made by heating a model liquid crystal system
are also confirmed by subsequently cooling said system from a well equilibrated
isotropic state. In order to explore this possibility a little, the authors did perform

one cooling simulation successfully reversing the smectic-nematic transition.

Very recently de Miguel et al have performed a series of MD simulations in an
attempt to investigate the effect of varying the strength of the attractive
interactions for a system of prolate Gay-Berne particles with y =3 [85]. The
main results indicate that smectic order is favoured at lower densities for high
values of the molecular attractive interaction. As y'is lowered the smectic phase
is preempted by an increasingly stable nematic region at lower temperatures.
Once again these results emphasise the importance of the role played by

attractive forces in stabilising the smectic phase.

Recently two adaptations to generalise the Gay-Berne potential have been
suggested. One considers an extension of the Gay-Berne in order to cope with
biaxial molecules [80], while the second allows additionally for interactions
between heterogeneous uniaxial or biaxial Gay-Berne particles [81]. This latter
so called generalised Gay-Berne (GGB) potential has been used in an MD
simulation of a bi-disperse liquid crystal mixture of Gay-Berne particles with

axial ratios 3-5:1 and 3:1 in the microcanonical ensemble [82]. The results
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indicate an extension of the nematic phase range due to the postponement of

semectic ordering compared to the single component 3:1 Gay-Berne systems.

Bemrose et al [83] further studied the effect of concentration on the phase
behaviour of the GGB potential necessarily involving the use of the isothermal-
isobaric ensemble because the effective volume of a Gay-Berne particle becomes
ambiguous at differing concentrations thus preventing the use of constant volume

simulations providing a meaningful density for the Gay-Berne mixture.

Previously a simulation of a two component Gay-Berne mixture has been
performed using MC based on Lorentz-Berthelot mixing rules [84]. However the
use of this technique for the simulation of mixtures fails to correctly differentiate

between all the T-configurations available in the system [82, 83].

These two modifications are of significant importance for the following reasons.
Real mesogens are not uniaxial and therefore the inclusion of molecular
biaxiality is an essential component in order to gain an accurate understanding of
real mesophases. Indeed, in order to investigate the behaviour of biaxial single-
site phases it is of course necessary to include a biaxial component in the
intermolecular pair potential. Secondly, there is a great deal of interest in the
study of mixtures of liquid crystal molecules. Mixtures of different liquid
crystals and of liquid crystal forming molecules dissolved in non-liquid
crystalline solvents have been shown to alter the range and stability of the
nematic-isotropic transition. These effects are of particular technological

importance in display technology for example.
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It is clear that the Gay-Berne potential has been of great use in simulating liquid
crystal phases and dynamical processes. It is anticipated that the above
extensions and generalisations will encourage the continued use of the Gay-Berne

potential to further our understanding of mesogenic systems.

1.5 Lattice Models

Some simulations of the orientational ordering in liquid crystals have been

performed on particles whose centres of mass are restricted to lie on a lattice.
These simulations, although missing an essential element that characterises liquid
crystals, that is the fact that liquid crystal mesophases are fluid, have provided
valuable insight into the effects of long ranged attractive dispersion forces in the
formation of nematics. Because of their relative computational simplicity lattice
models consisting of a large number of particles are possible, yielding detailed
information about orientational phase transitions, which are directly comparable
with theory [86]. Here though we shall just provide an introduction to lattice
models. Lebwohl and Lasher [87, 88] performed MC simulations on a simple
cubic lattice of rod-like particles interacting via the following orientational pair

potential;
V;YL-L = _8yL_L‘P2(COSBﬁ)9 []]1'28]

where B;; is the angle between the principle symmetry axes of particles / and j,
and g;; , >0 if the particles are nearest neighbours, otherwise €;  =0. In a
first investigation Lasher investigated this model whereby the particle symmetry
axes had a distribution restricted to 12 directions distributed symmetrically over a
sphere [87], the results indicating that a first order phase transition occurs for this

system. A later investigation allowed the particle symmetry axes a full spherical
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distribution [88]. In this latter work a first order phase transition was identified
as well. However there were found to be significant differences between both
lattice models. For example, the spontaneous order at the transition was found to
be almost two-and-a-half times greater in the model with restricted orientational
freedom. Additionally, the transition temperature of the non-restricted model
was found to be higher than that of the original.

The Lebwohl-Lasher model has also been investigated by other workers [89, 90,
91]. In particular it has been used in an investigation of thin liquid crystal films

[92] indicating a critical layer thickness below which no transition is observed.

Luckhurst [93] has examined the Lebwohl-Lasher model in detail using a cubic
lattice of 20x20x20 particles, comparing the results with those simulations
undertaken previously. A detailed study using a larger 30x30x30 has been
performed concentrating in the region of the nematic-isotropic phase transition

[94], accurately locating the transition temperature.

II1.6 Realistic Models

Hard and soft potential models have been useful in furthering our understanding

of the formation of liquid crystal phases. However, because of their relative
simplicity they cannot hope to model the molecular subtleties of a real liquid
crystal. These are known to be important in the formation and stabilisation of
liquid crystal mesophases. Taking the hexa-n-alkoxybenzoates of triphenylene as
an example, it is found that the presence of the alkyl chains are essential to the
formation of a discotic-nematic phase, and the length of the alkyl chains is found

to effect the transition temperature [95]. More recently it has been demonstrated
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that if the benzoate groups are methylated, then the phase behaviour is found to

be critically dependent on the position of methylation [96].

In performing simulations of realistic mesogens it is hoped that such molecular
intricacies may be incorporated into a liquid crystal model. It would be very
beneficial to be able to include such things as molecular shape and flexibility,
electronic charge distribution responsible for electrostatic multipole interactions
and molecular polarisability anisotropy: all considered to influence the formation
of mesophases [36]. Such a model would prove to be extremely useful in
molecular engineering applications, having the ability to predict appropriate
phase properties before the molecule is even synthesised. Furthermore, a model
from which the above features could be successfully decoupled could be used in
a systematic investigation into their relative influence. Further realistic models

provide a simultaneous simulation of both the molecular and phase structure [97].

Nevertheless, because of the inherent complexity of realistic models, say for
example, site-site models based on the Lennard-Jones 12-6 potential, there have
not been many simulations using these models performed to date. This is

because of the immense amount of CPU time required to solve the models.

Presently this rather unfortunate situation notwithstanding there have been
attempts at a preliminary survey in this area. A first foray by Picken et al [98]
investigated the effects of including a point molecular charge distribution over
the cyanobiphenyl group of 4-n-pentyl-4'-cyanobiphenyl (5CB). MD simulations
of realistic 19-site united atom model with and without the partial charges,
obtained from ab initio calculations were compared. Only N = 64 molecules of

5CB could be studied, however the authors believed that within the limited time
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scale available they were able to qualitatively predict the influence of the

resulting dipole moment.

The nematogen 5CB has been simulated more recently using the united atom
approach and using a full atom-atom model explicitly including the hydrogen
atoms [99]. Despite an incorrect prediction of the experimental torsion angle
distribution of the phenyl rings, the results of the united atom model compared
favourably with those where all atoms were considered explicitly. Analysis of
the results of these SCB simulations has been provided in part by the calculation
and visualisation of two-dimensional distribution functions [100]. These so
called cylindrical distribution functions may be appropriate for visualising pair
distributions in the nematic phase, but they should be interpreted cautiously when

used to investigate phases that do not possess cylindrical symmetry.

More notably Wilson and Allen have performed a simulation of the nematogen
trans-4-(trans-4-n-pentylcyclohexyl)cyclohexylcarbonitrile (CCH5) using a 19-
site combined atom model. The sites were located at the centres of mass of the
carbon and nitrogen atoms obtained from the crystal structure data. Associated

with each site is the following potential energy function;

Eota1 = zKr(r_req)2+ Zl{e(e_eeq)2

bonds angles
V. aqa: A. C:
+ Y 7”(1 +cos(nd —v))+ Z (_q},eq] +—— —%—] [111.29]
dihedrals i<j y if R,‘j

In equation [III.29] the first three terms have force constants K,, Ky and V,
associated with bond stretching, bond bending and bond twisting respectively.

Bond lengths are represented by », bond bending angles by 0, and in the torsional
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term ¢ represents the dihedral angle with the parameters » and y being defined by
the valency of the bonded atoms. Often due to the high frequency nature of bond
vibrations, constraints removing velocity components in the direction of bonds
are applied. A typical method is by use of the SHAKE algorithm [101]. The last
term incorporates the non-bonded interactions between individual sites: 4 a/nd

C; incorporate the Lennard-Jones constants gy, and oqy, (specifically

A4; =4gy 612 and C; = 4g( 6% ) where in the case of interaction between two
y i 0y y i~ 0y

different species the Lorentz-Berthelot mixing rules (see chapter V) [5] may be
used to calculate appropriate values of &g, and oy, the g; refer to partial charges
on the specific (combined) atoms i and j. Expression [III.29] is typical of the

type of force fields used to represent realistic mesogens.

Initial simulations showed that a system of 64 and 128 molecules exhibit a stable
nematic phase [102]. However only three state points could be simulated with
the given resources and so the results are somewhat tentative. Using a technique
whereby each molecule was ascribed a spheroid constructed from principle
components of the diagonalised moment of inertia tensor it was found that in the
nematic phase the molecules were elongated in shape compared to those in the
corresponding isotropic phase. Furthermore it was also possible to examine the
CCHS molecular conformation in the different phases simulated. Analysis of the
dihedral angles in the alkyl chain of CCHS found a preference for an all #rans
conformation in the nematic phase, thus stretching the molecule out along the

principle symmetry axis [103].
A realistic study of the liquid crystal 4-ethoxybenzylidene-4'-n-butylaniline

(EBBA) has also been carried out by Komolkin et a/ [97]. In this work the

authors identified minimum energy conformations of EBBA using a similar atom-
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atom potential as equation [III.29] but neglecting any electrostatic terms. These
comprised 72 conformers to which an additional 120 higher energy conformers
were added, resulting in a set of 192 possible molecular conformations. The
simulation was performed on 60 EBBA molecules using Metropolis MC. Here a
single MC step consisted of varying the molecular centres of gravity, the
molecular orientation vectors (represented here as Euler angles), the box volume

and the conformer of the molecule under consideration.

As with the work of Allen and Wilson co-operative effects between conformers
of the nematic phase were identified. However it appears that only one state
point was studied. This had an initial order parameter (1’2) ~0-3 which was
found to settle at an equilibrated value of (B,)=0-68; certainly indicative of
nematic-like orientational ordering. Evidence of molecular biaxial ordering was
also sought but was not found. The simulation box edge was found not to change
significantly from its initial value thus implying no change in the system density.
This is hardly surprising because the system was started so close to the nematic

phase anyway.

Because of the complexity of realistic models and the associated resources
necessary to solve them, some workers have taken to simulating semi-realistic
models. In these, certain structural elements of a mesogen may be represented as
a single interaction site in the model, similar to the united-atom approach already
in widespread use. For example Cross and Fung [104] have used this approach in
a simulation of the mesogen 5CB. A pseudo potential which retains the
important aspects of the structural anisotropy is substituted for the real atom-
atom potential. Specifically the benzene rings of 5CB are treated as extended

spherical atoms. Such a treatment is justified through the rapid rotation of the
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two-fold biphenyl axis at temperatures typical of mesophase formation. The
realistic models using the united atom approach has 19 individual sites. Use of
the pseudo potential reduces this to only 9 sites, with a corresponding saving in
computation effort: the pseudo potential model is found to be four times quicker
than the realistic model. Even so in this study the system size was restricted to
N = 80 molecules. Comparison between the two models validates the use of the

pseudo potential approach for simulating realistic mesogens.

The use of realistic models allows for a detailed examination of the behaviour of
the individual mesogen constituents, i.e. the rigid core, flexible spacer, alkyl
chain etc. Indeed detailed studies of the conformation of 4-n-octyl-4'-
cyanobiphenyl adsorbed on to graphite have been possible [105, 106]. It is found
that there is a significant difference in the behaviour of adsorbed monolayers
compared to the bulk liquid crystal phase. Models of liquid crystals adsorbed on
to substrates could prove technologically very useful as many display devices
rely on fixing the director orientation through surface treatments of the substrate.
It is obvious though that only a detailed atomistic model will suffice in these

cascs.

1.7 Summary

We have seen that a variety of different models have been used in computer
experiments of liquid crystal phases. Lattice simulations, although unrealistic,
provide a valuable comparison with available lattice theories. However, perhaps
it is the results of hard particle models that have led to the greatest surprises, for
example, showing that smectic phases can be formed through excluded volume
effects alone. Yet, on the other hand, it is the long range attractive forces of the
soft single site models that are responsible for stabilising the smectic phase of the

Gay-Berne fluid, for example. Single site hard and soft particle models have
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provided a useful contrasting réle in this respect. Extensions to multisite models

may prove fruitful but it is clear, though, that in order to model accurately the

subtleties of mesogenic molecules realistic models will have to be adopted. At

present the simulation of a few realistic models is just possible. In the meantime

continued development and extension of single site models appears to be a

profitable alternative in furthering our understanding of liquid crystal phases.
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CHAPTER 1V

MOLECULAR DYNAMICS SIMULATIONS OF CALAMITIC AND
DISCOTIC SINGLE-SITE HYBRID GAY-BERNE LUCKHURST-
ROMANO POTENTIAL

IV.1 Introduction

The hybrid Gay-Berne Luckhurst-Romano (HGBLR) potential allows us to
model both disc-like and rod-like interactions with comparative ease. The
anisotropy in the attractive part of the HGBLR potential is determined by the
anisotropy parameter %'. By varying %', we have used molecular dynamics (MD)
to simulate single HGBLR centres, parameterised to represent (a) disc-like and
(b) rod-like interactions. The simulations were undertaken as a preliminary
investigation of the properties of the HGBLR particles. Of particular interest was
whether single-sitt HGBLR centres were capable of exhibiting mesogenic
behaviour. Similar simulations were run on both systems in order to facilitate a
ready comparison of disc-like and rod-like parameterised HGBLR centres. If
single-site HGBLR particles are found to exhibit liquid crystalline behaviour,
then the use of HGBLR centres in multisite models could prove very promising

as models for simple liquid crystals.

It is found that despite the spherical hard core of the HGBLR centres, the
anisotropic attractive region of the potential is sufficient to form a variety of
mesophases. In this chapter therefore, we present details of the simulations of
calamitic and discotic single-sitt HGBLR centres. Emphasis is placed upon

structural features of the mesophases formed, rather than on extracting
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thermodynamic information from the simulations. A brief summary of
characteristics of the observed mesophases of each system is provided after a
presentation of the simulation results. Finally we compare and contrast the

calamitic and discotic systems highlighting their differences and similarities.

IV.2 Parameterisation of a single HGBLR centre
The HGBLR potential has a spherical hard core for a given fixed orientation of a

pair of HGBLR centres with respect to their site symmetry vectors: the radius of
the spherical hard core depending on the relative orientation of site symmetry
vectors. Hard spheres do not of course exhibit liquid crystalline properties. In -
this respect therefore, single sitt HGBLR centres ignore the significant shape
anisotropy of real liquid crystal molecules. The dispersive anisotropy in the
potential is created by part of the Gay-Berne type energy scaling function
g,(ii;,@i,,#) [1]. This function is dependent on the relative orientation of a pair
of HGBLR centres with respect to the intermolecular vector joining their centres
(see figure IV.1). Thus for constant relative orientation of two HGBLR site
symmetry vectors ii; and i, the angles 6; of figure IV.1, can take all values in
the range 0°— 360°. The ratio of end-end:side-side strength interactions €, /€

determines %' thus:

xv'=(01-¢,/¢5)/(1+¢g, /) [IV.1]

We have parameterised the HGBLR centres as (a) disc-like particles which
favour interaction with the site symmetry vectors aligned end-end using a value
€./ € =5 (i.e. the end-end interaction is five times as strong as the side-side
interaction), and (b) as a system of rod-like particles with €,/€;=0-2. These

values were chosen after studies of Gay-Berne particles with these same €, / €
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Figure IV.1

A schematic diagram illustrating the construction of the intermolecular vector between

two site symmetry vectors of the HGBLR potential.
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were shown to exhibit calamitic and discotic mesophases [2, 3]. For preliminary
studies in both cases a value of A=0-15, determined from earlier work with the

Luckhurst-Romano potential was used [4].

Table IV.1 shows the values the function €,(ii;,ii,,F) takes for a few selected
orientations. Clearly we can see that the energy scaling part of the Gay-Berne
potential distinguishes between end-end and side-side interactions. Interestingly
we note that the function &, (#i;,1,,F) does not itself differentiate between side-
side and X interactions. The HGBLR potential does discriminate between all
four chosen idealised configurations as shown in figures IV.2 and IV.3 which
illustrate the distance dependence of the HGBLR potential when parameterised
with disc-like and rod-like interactions respectively. The distinction between
side-side and X configurations now obtains because of the i, -1i, dependence of
the Legendre B term in the Luékhurst-Romano potential. It is not sufficient
therefore, to merely scale a Lennard-Jones potential by g,(fi;,ii,,F) as
dependence on the relative orientation of the intermolecular vector with respect
to the site symmetry vector is clearly not enough to differentiate between the four

chosen side-side, end-end, X and T configurations.

Examination of figures IV.2 and IV.3 shows that the HGBLR potential clearly
distinguishes between rod-like and disc-like interactions. We note that in figure
IV.3, the energy well depth minimum for the most favoured configuration is only
1/5 that for the most favoured end-end configuration of the disc like
parameterisation, figure IV.2. This effect can also been seen in table IV.1, after
taking account of the fact that the most favoured orientations, side-side and end-
end are exchanged. Thus we would expect mesophases exhibited by the disc-like

HGBLR centres to be more stable at higher temperatures than those formed from
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Configuration -1, g, (i, d,,F) g,/8,= g, /e,=0-2
end-end 1 € /& 5.0 0-2
side-side 1 1 1-0 1-0

X 0 1 1-0 1-0
T 0 2/(1+e./85)  5.03.0 1-0/3-0
Table IV.1

Values of the function €, (il;,1i,,T) for a few selected orientations of HGBLR centres

parameterised as disc-like (g,/€;=5) and rod-like (g,/g&;=0-2).

The angle

between the two site symmetry vectors of HGBLR particles is represented by the dot

product @ -ui,. Explicit values for the two parameterizations are given in the final two

columns.
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Figure 1V.2
Distance dependence of the disc-like HGBLR potential parameterised with €, /€, =5

and A =0-15. The Lennard-Jones parameters o, and g, take the value unity.
Symbols: closed squares, end-end; open squares, side-side; closed diamonds, T-

configuration; open diamonds, X-configuration.

0.9 1.1 1.3 1.5 1.7

Figure IV.3
Distance dependence of the rod-like HGBLR potential. The parameters are as above

(figure IV.2) but €,/€;, =0-2. Symbols: closed squares, end-end; open squares, T-

configuration; closed diamonds, side-side; open diamonds, X-configuration.
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rod-like parameterised centres. Further, the minimum of the potential energy
occurs at the same separation in both cases. Changing the parameterisation
through changing %', does not alter the position of the minimum well depth.
Clearly this is the case as &,(ii;,li;,f) is not a function dependent on the

intermolecular separation r.

Figures IV.4 and IV.5, show energy contour plots for a pair of HGBLR centres,
one rotated around the other in the same plane with site symmetry vectors
constrained to be parallel. The inner most contour in each case represents the
hard core of the molecule: defined at » =o(. This is spherical for constant
relative orientation of the #;. Clearly the surrounding attractive region is
anisotropic. For the disc-like parameterised HGBLR particle the deepest well
depths occur above and below the site centre along the direction of the site
symmetry vector. Figure IV.5, shows that the rod-like parameterised centre has a
deep well outside the hard core region around the site symmetry vector. Figure
IV.6 and figure IV.7 further show the HGBLR sites presented in a topographical

form depicting the potential energy surface in isometric projection.
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Figure IV.4

A two dimensional representation of the field of potential energy between a pair of

disc-like HGBLR centres orientated as in the small schematic diagram. The centre

with symmetry vector 4, is fixed at the origin, while the second centre is rotated
around the first on the same plane: fhe plane of the paper. The u; remain constant
and only the I-ii; and the intermolecular separation r* are allowed to vary. The
potential energy has been truncated at V* =0. The contours are plotted at intervals
of V' =0-2. The spherical hard core extending to a radius 6, =1 is clearly visible.

The other parameters are g, =1, y'=-2/3 corresponding to €,/€; =35, and

A =0-15.
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Figure IV.S

A two dimensional representation of the field of potential energy between a pair of
rod-like HGBLR centres orientated as in the small schematic diagram. The centre
with symmetry vector i1, is fixed at the origin, while the second centre is rotated
around the first on the same plane: the plane of the paper. The #; remain constant
and only the f-ii; and the intermolecular separation r* are allowed to vary. The
potential energy has been truncated at ¥ = 0. The contours are plotted at intervals
of V" =0-1. The spherical hard core extending to a radius 6y =1 is clearly visible.
The other parameters are €3 =1, y'=2/3, corresponding to €,/€;,=0-2 and
A =0-15. The rod like nature of the parameterisation is clearly distinguishable from
the form of figure IV.4. Note in this figure the contours are plotted twice as frequently
as in figure IV.4 demonstrating the reduced strength of the rod-rod interaction

compared with that of the discs.
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Figure 1V.6

A three dimensional orthographic representation of the contour plot of figure IV.4

See figure IV.4 for details of the orientation and parameterisation of the HGBLR
centres.
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Figure 1V.7

A three dimensional orthographic representation of the contour plot of figure IV.5.
See figure IV.5 for details of the orientation and parameterisation of the HGBLR

centres.
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IV.3 Discotic HGBLR Simulations
IV.3.1 Details of the Discotic Simulations

With the parameters x'=-2/3 and oy =1, 256 particles were simulated in a

cubic box in the microcanonical or constant NVE ensemble, i.e. particle number,
volume and total internal energy. Full periodic boundary conditions (see section
I1.5.1) were implemented. The translational equations of motion were solved

using the method of section I1.5.6.3.

For ease of calculation and subsequent comparison with the calamitic results, the
particles were taken to have unit mass m*=1 and unit moment of inertia
magnitude. Consequently these values did not have to be included in the
simulation.  Such values enabled rapid system equilibration to obtain

equipartition of the kinetic energies of rotation and translation.

As the aim of these preliminary calculations was to see if the HGBLR centres
were capable of exhibiting liquid crystalline behaviour, results presented here
concentrate on the structure and order parameters measured of the system.
Discontinuities in the behaviour of the reduced potential energy (¥ *), often more
usefully presented as (V */N), the ensemble average of the reduced potential
energy per particle, can be indicative of phase transitions occurring, so the
behaviour of this variable is presented together with (Pz), the second rank order
parameter, G,(r*), the second rank orientational pair correlation function,
g(r*), the radial distribution function and (|r*(t)—r*(0)

particle displacement. The two latter functions are also resolved into their

), the mean square

components parallel and perpendicular to the nematic director.

135



The following should be stressed, as it is a point that often causes a degree of
confusion in the literature. Within this report, when a function is presented
resolved with respect to system director, it is the instantaneous director fi(z) that
is referred to. For a given configuration B (an average over particles only, and
not an ensemble average here) is taken to be the largest eigenvalue of the
diagonalised Q tensor, and the corresponding eigenvector is taken as the direction
of fi(t) [5]. Whenever components of a function resolved parallel and
perpendicular to the system director for a given configuration are computed, it is
the direction of the director of the same given configuration that is considered.
Functions are not resolved with respect to an average director direction over the
whole run. This method is chosen as in high temperature nematic phases the ()

have been observed to reorientate continuously.

At each state point, simulation runs consisted of typically 30,000 equilibration
steps followed by 30,000 production run steps (where the data for ensemble
averaging are collected). The length of a time step in conventional seconds then
becomes 3-7x10"2? seconds; choosing unity for the fundamental parameters of
length and mass and choosing € =1/kg. The large equilibration times were
chosen to ensure that the system had evolved to a suitable point from which
ensemble averages could later be safely computed for the number of particles
considered. This was monitored by observing the equipartition of rotational and
translational kinetic energy: a ratio 3:2 obtains as there are three degrees of
translational freedom, but only two degrees of rotational freedom: the
cylindrically symmetric HGBLR centres being rotationally invariant about their
principle symmetry axis. Typically this was achieved after only a few thousand
time steps. This is not, though, a guarantee that equilibrium has been reached

and we shall return to this point a little later (see section IV.4.2). Nevertheless,
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because the single-sitt HGBLR is a relatively computationally inexpensive
potential is was decided to continue the equilibration runs up to 30,000 steps in

total.

During the production stage of the simulation, instantaneous configurations and
relevant thermodynamic quantities such as (E*), (V*) and (K*) etc.,
(previously defined in section IT) were output at intervals of every 100 time steps.
As successive system configurations do not change significantly from one to the
next, it is statistically more efficient to sample from configurations at larger
intervals. The correlation length of statistically significant configurations of a
system of Lennard-Jones 12-6 centres with a time step of 0.0015 seconds (the
smallest used here), was found to be approximately 80 configurations, using the
method described in reference [6]. Whilst there is no reason to suppose a system
of HGBLR centres would exhibit exactly the same correlation length, one would
not expect the correlation length to vary tremendously. Without a full analysis
therefore, a sampling interval of every 100 configurations was adopted. This was
achieved by filing available thermodynamic data from the simulation, together
with the vectors describing each particle's position, principle symmetry axis
orientation, velocity, and angular velocity. These data were subsequently
analysed to provide structural parameters. For example, the Q tensor was
assembled and diagonalised to calculate (Pz) and fi(z) from the stored ; and
likewise, (lr*(t)—r*(O)l) and g(r*) were computed from the stored r;; the
position vectors of the HGBLR centres with respect to the system origin. The
particle velocity vectors and angular velocity vectors were stored for possible

future analysis.
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The system was initially started with a reduced density of p*=0-84 at high
temperature on an a-fcc lattice. In the absence of further information the system
density was chosen to be close to that of the triple point of liquid argon, which
has been previously simulated using a Lennard-Jones potential [6]. Observation
of the translational order parameter indicated that this structure rapidly melted.
Additional analyses of (B) and g(r*) indicated an isotropic liquid phase.
However, visualisation of the contents of the simulation cell through the use of
computer graphics revealed, that at lower temperatures cavities had formed in the
system. Further investigations at higher densities showed that a value of p*=1-1
allowed equilibration of the system at all temperatures without cavities being

formed.

The final configuration of a single state point simulation was taken as the input to
the next state point simulation. The translational velocities were scaled by a
factor of 0-8: the rotational velocities were left unchanged resulting in an overall
kinetic energy scaling factor 0-88. During the equilibration cycle of the
simulations, equipartition of the kinetic energy was restored once again. In this
manner, the system was cooled from a reduced temperature of (T*)=10-0 to

(T#~0-3.

IV.3.2 Discotic Simulation Results

IV.3.2.1 Energy Fluctuations, Potential Energy and the Second Rank
Orientational Order Parameter

Table IV.2 shows the values of reduced potential energy per particle (V*/ N )
and order parameter (PZ) for the state points simulated over the range
10-02(T*)20-3. In the higher temperature region a time step of Ar*=0-005

was employed, giving acceptable energy conservation. The fluctuations in the
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total energy of the system, (E *)=(V *)+(K*), were observed at better than 1
part in 1000. However as (P ) began to rise at (T*) ~ 6, large fluctuations in the
total energy began to appear. Acceptable energy conservation, according to the
above criterion, was once more achieved by reducing the time step to
Ar*=0-0015. Clearly this means that the simulations are no longer of equal
time length. Close to subsequently observed phase transitions therefore,

simulations were extended at appropriate state points for a further 150,000 steps.

Over such large runs, drifts in energy beyond the adopted criterion were
observed. After much investigation, unacceptable drifts in energy were
eventually eliminated by substituting a full-step Verlet for the half-step Verlet
algorithm to solve the rotational equations of motion within the constraint
method. The reason why this should be the case is not quite clear. In the full
step Verlet algorithm, emphasis is placed on predicting new particle positions
using previous positions and current accelerations derived in the force loop.
With the half step Verlet, it is particle (angular) velocities from the previous half
step that are used in conjunction with the present accelerations to predict future
half step velocities, from which positions may be subsequently calculated.
However, both algorithms are algebraically equivalent. This suggests that it is
possibly a rounding error that was causing the energy instabilities observed. If
the rounding error is caused by the addition of a small number to a large number
(which may often cause errors in numerical computing), then it is, however, the

full step Verlet that is most likely to suffer from such effects [6].
It is also possible that the use of angular velocities in the half step Verlet

algorithm causes the calculation of particle orientations to depart from their true

values. One could imagine such a situation obtaining if the angular velocities
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(T*) (V*/N) (B)
10-0+0-2 -1-3£0:6 0:07+0-03
8-5+0-2 -2-7+0-5 0-08+0-03
7-3+0-2 -4-:3+0-4 0:09+0-04
6-3£0-1 -5-7+0-4 0-12+0-05
5-5+0-2 -7-0+0-4 0-18+0:06
5-7+0-2 -7-6+0-4 0-31+0-06
5-1+0-2 -9-1+0-4 0-35+0-07
5-1+0-2 -12-1+0-4 0-64+0-03
4-7+0-1 -13-6+:0-4 0-71+0-02
4-2+0-1 -15-2+0-3 0-76+0-02
3-9+0-1 -16-6+0-3 0-82+0-01
3-5+0-1 -17-8+0-3 0-85+0-01
3-19+0-09 -18-8+0-2 0-869+0-008
2:90+0-09 -19-8+0-2 0-893+0-006
2:61+0-08 -20:6+0-2 0-903%£0-007
2:57+0-08 -21-9+0-2 0-908+0-007
2:59+0-07 -22:0+0-2 0-909+0-006
2:324+0-07 -22-7+0-2 0:923+0-004
2:09+0-06 -23-3+0-1 0-931+0-005
1-88+0-05 -23-9+0-1 0-939+0-003
1-68+0-05 -24-4+0-1 0-948+0-003
1-51+0-05 -24-8+0-1 0-955+0-003
1-:34+0-04 -25:2+0°1 0-959+0-003
1-34+0-04 -25-24+0-1 0-962+0-003
1-20+0-04 -25-59+0-09 0:965+0-002
1-06+0-03 -25-92+0-07 0-969+0-002
0:94+0-03 -26-20+0-06 0-972+0-001
0-84+0-02 -26:44+0-06 0-977+0-:001
0-75+£0:02 -26:69+0-06 0-980+0-001
0:67+0-02 -26-87+0-05 0-982+0-001
0-59+0-02 -27-06+0-05 0-983+0-001
0-53+0-01 -27-22+0-04 0-986+0-001
0-47+0-01 -27-34+0-03 0-987+0-001
0-42+0-01 -27-48+0-03 0-989+0-001
Table IV.2

Average temperature (T*), average potential energy per particle (¥ */N) and

second rank order parameter (Pz) for the disc-like HGBLR centres parameterised as

described in the text. Errors are +1 standard deviation of the arithmetic mean.
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were rapidly varying functions of time. Trying different length time steps did not
improve the energy stability though. A smaller time step should stabilise the
simulation eventually. But from another point of view, it is clear that the use of
an estimator to calculate the kinetic energy of the form of equation II.44 is
adequate to provide acceptable energy conservation in both cases, implying that

the calculation of (angular) velocities is in fact sufficiently accurate.

The results of these extended runs are presented in table IV.3. Figure IV.8 and
figure IV.9 illustrate the behaviour of the second rank order parameter (Pz) and
the potential energy per particle (¥ */N), respectively. The latter shows that the
system is orientationally disordered at temperatures (T*)>6; although (B)
maintains a value greater than zero due to the finite size of the system and the
averaging of a positive quantity (see section I1.4.2). We interpret these data as
describing an isotropic system. As the system is cooled further (B ) begins to
rise, sharply, over a short temperature range of about 5-5>(T*)25-0 to obtain-
(B)=0-64. Thereafter (B,) tends, more slowly, to a value of unity. In the
former figure, we note that as the temperature begins to fall the potential energy
becomes increasingly negative, as one would expect. A change in the behaviour

of the potential energy of the system is observed in the same temperature range.

A further change is observed at a lower temperature also. Immediately after the
simulated state points at (T*)=5-3+0-2 and (T*)=2-77+0-09, a sudden fall
in potential energy over a short temperature range in observed. Such
discontinuities in the behaviour of the potential energy indicate that a change of

phase may be occurring in the system.
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(7%) (7*/N) (B)

5-:3+0-2 -9-7+0-5 0-49+0-06

5:0+0-2 -11-7+0-4 0-62+0-03
2-88+0-08 -19-8+0-2 0-889+0-008
2-77+0-09 -21-1+0-2 0-901+0-007
2-58+0-07 -21-9+0-2 0-911+0-007

Table IV.3
Simulation averages of temperature (T*), internal potential energy per particle

(V*/N) and order parameter (P;) obtained for the extended runs of the system of

HGBLR centres parameterised as discs. Errors are quoted to plus or minus one

standard deviation of the respective ensemble average.
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Figure IV.8

Average reduced potential energy per particle (V*/ N ) against reduced temperature
(T *) for disc-like HGBLR centres parameterised as in the text. Additional values

obtained from the extended runs are indicated with open squares.
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Figure IV.9

Order parameter (B ) against reduced temperature for the system of disc-like HGBLR
centres parameterised as described in the text. The results obtained from extended

runs are indicated with open squares.
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It is possible to obtain an estimate of the change in entropy at the indicated
temperatures, by approximating the curve of figure IV.8 to three straight lines.
The change in entropy, from one branch to another was estimated at
A(V*/N)/{(T*)=0-6 in each case. In order to further our knowledge of what
was happening to the system of HGBLR centres exhibiting such behaviour, we
turned our attention to the radial distribution function g(r *).

IV.3.2.2 Radial Distribution Function and Second Rank Orientational
Correlation Coefficient

Figures IV.10a to IV.10c shon examples of the radial distribution function
computed at three state points during the disc cooling runs. In these figures the
radial distribution function is also presented resolved parallel and perpendicular
with respect to the system director fi(¢). Figure IV.10a illustrates the behaviour
of g(r*) after the first transition at a reduced temperature of (T *) =5-0. Here
g(r*) has the typical form expected of a liquid like structure. Further there
appears to be no translational ordering of the HGBLR centres from the resolved
components g(r*) and g, (r, *). Considering the large value of (R)=0-64,

these data are indicative of a discotic nematic phase.

The figure IV.10b obtained at a reduced temperature of (T*) =2-77 shows that
g(r*) again possesses a liquid like structure. The intensity of the peaks have
increased implying a structure that is more regularly ordered, than that of figure
IV.10a. It is, further, probable that this ordering persists at greater distances thén
in the system of figure IV.10a: the larger oscillations in g(r *) requiring a longer
length before decaying to the ideal gas limit of g(r*)=1 This latter point is not
verifiable though, because in all figures g(r*) and its components are only

meaningful when considered at distances somewhat less than half the simulation
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The radial distribution function and components resolved parallel and perpendicular to
the director for HGBLR discs at reduced temperature (7*) = 5-0. The symbols have
the following meanings: closed squares, g(r *); open squares, g|(r| *); closed

diamonds, g, (r *)

145



< g
5 .S
go
5 8
e
g8
g 2
Qr
g8
otl)
o 3

3.5

Figure IV.10b
As figure IV.10a at reduced temperature (T *) =2-77. Lines joining data points have
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Figure IV.10c
As figure IV.10a at reduced temperature (T *) =(0-47. Lines joining data points have

been introduced as a guide to the eye.
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box length. For a given simulation density, this upper limit on g(r *) etc., may
be overcome by simulating more particles or by changing the simulation box
geometry. However, for the 256 particles that we have simulated, a maximum
length of »*=3-0 (just under half the box length to avoid spurious contributions
from particle self interactions), is sufficient for our purposes here, where we are
only trying to identify the phases present in the simulations and not perform any

quantitative analysis of the radial distribution function or its components.

Turning now to the resolved components of figure IV.10b, the function g (r| *)
exhibits a one dimensional density wave parallel to the system director. This
result may be explained in terms of disc-like parameterised HGBLR centres
tending to stack up in a regular layer like structure. The function g, (, *) is also
beginning to show the presence of some structure perpendicular to the system
director. The first meaningful maximum in g (r] *) occurs at n*~0-9 compared
with the minimum in the disc-like pair potential which occurs at r* slightly
greater than 1 (see figure IV.2). This indicates that the HGBLR centres are
closely stacked in the layered arrangement and indeed this may be the required
arrangement at the relatively high reduced density of p*=1-1. At first sight this
would seem a reasonable argument, but examination of figure IV.2 shows that the
disc-like HGBLR potential is a rapidly varying function around »* = 0-9, making
it unlikely to find that the HGBLR particles have a spatial distribution such that
nearest neighbours are peaked at r*=0-9. It is important to consider the
evidence afforded through resolved components of structural order functions
carefully. Although figure IV.10b presents strong evidence for HGBLR centres
separated on average by r* = 0-9 along the direction of the director, these centres

may be far apart in the direction of planes perpendicular to the director. Because
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of this we can only be sure that the first peak of the unresolved radial distribution

function comes from nearest neighbour contributions.

An interesting feature of figure IV.10b is that as »* increases, the amplitude of
oscillations in gl(’l *) also increases. This would imply that at longer range
HGBLR centres separated along the direction of the director are more correlated
than near neighbour centres separated in the same direction. An effect like this
intuitively seems most unlikely. Incorrect normalisation of the curves of g (r| *)
and g,(r. *) could help explain the unexpected increasing amplitudes of
oscillations; especially with the former curve. The normalising function for
g|(7| *) consists of computing the volume of equal volume pairs of successive
slices of a sphere, stepping from the equator to the poles. Close to the equator
the slices are of relatively large volume. However the slice volume rapidly
decreases as one moves towards the poles of the sphere, making an accurate
calculation of the volume of a slice difficult. In the case of g,(r, *) the
normalising volume is a series of cylinders with hemispherical caps, whose radii
increase (as one looks out further along planes perpendicular to the director),
while they progressively shrink in length. However these corrections should be

minimal, and we should look to other explanations of this effect.

When calculating the normalisation function for the g(r*) we have tacitly
assumed a continuous particle distribution function: appropriate for liquids and
gases. It is possible that particularly ordered arrangements, such as columns of
disk-like particles do not suit such an interpretation. To illustrate this consider
the schematic figure IV.11. Disc-like particles are represented as shaded ovals.
The discs are arranged in columns with their principle symmetry axes coincident

with the column axis indicated by the vertical straight lines. A circle is drawn
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which represents the cross section of a sphere within which g(r*) is considered.
The projection of three interparticle vectors on to the system director is
represented by line segments labelled y and ry; 7y =0. By examining the
number of discs that contribute to the longitudinal distribution function at the
selected values of 7, considering the top right hand quadrant only, we find,
g(rql) = g(rll) =3 and g('ﬁn) =2. The first two separations #; which are
significantly different have the same number of particle contributions to the
longitudinal distribution function. However at the larger separation of ry a
smaller normalising factor applies. Thus the contribution to the longitudinal
distribution function at this separation tends to be overestimated after
normalisation. In actuality many such separations are considered in calculating
g (r| *), shifting the origin to the centre of a particle resulting in the same view of
the system each time. Unless the system has formed a perfectly ordered crystal
such an arrangement as described in figure IV.11 would not exist; disorder and

thermal motion notwithstanding the effect will still be manifest though.

Figure IV.10c shows the radial distribution function and its resolved components
at the very low reduced temperature of (T*)=0-47. All curves exhibit well
defined translational order characterised by sharp peaks separated by low or zero
value minima. We note that increasing magnitude of the oscillations of gl('l *)

are once again present.

In order to investigate the nature of the relative orientations of HGBLR centres
we may examine the behaviour of the second rank pair correlation function
Gy(r*). Figure IV.12 shows G,(r*) at (T*)=5-0 and (T*)=2-77 (the same
values of temperature at which figures IV.10a and IV.10b are presented). At both
temperatures G,(r *) exhibits a peak around *=0-8. The initial peak of each
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Figure 1V.11

A schematic diagram illustrating how an example configuration of disc-like HGBLR

centres may cause difficulties in the calculation of gl(r] *). See text for explanation.
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Figure 1V.12
The second rank pair orientational correlation function G,(r*) for disc-like

parameterised HGBLR centres as described in the text. Closed squares (T *) =5-0;

open squares (T*)=2-77.
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curve of the function G,(r*) provides an estimator for nearest neighbour
HGBLR centres possessing the same orientation. However with the low
temperature curve G,(r*) quickly decays to a limiting value of approximately
G,(r *) = 0-4 over a range of about 0-37*. At long range G,(r *) should adopt a
limiting value of (P, )2 (see section 11.6.2). For the state point simulated here the
corresponding value of (P)=0-62 such that (P;)* = 0-38 and the agreement is
excellent. The higher temperature curve illustrates that at short range HGBLR
centres are highly likely to be orientationally correlated. This correlation decays
very quickly over a short range to attain a plateau indicating the persistence of
orientational order even at long range. At the lower temperature the orientational
pair correlation function tends to G,(r*)~0-8 indicating the presence of a

highly orientated phase at long range.

IV.3.2.3 Preliminary Identification of Phases
With the information contained in figures IV.10a-c, together with the quantitative

values of the second rank orientational order parameter (B ), internal potential
energy per particle (V*/ N ), and pair orientational correlation function we may
provisionally identify four different phases for the system of HGBLR discs.

These may be summarised as follows:

(T*) 255 isotropic
5-52(T*)>2-8 discotic-nematic
2-82(T* 226 highly ordered

(T%)<2-6 crystal
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1V.3.2.4 Mean _Square Particle Displacement and _Diffusion

Coefficients

For the study of liquid crystal phases it is important to be able to check on the
fluidity of a phase. Herein lies the advantage in carrying out MD simulations
which allow us to examine some of the dynamic properties of the systems under
study. The mean square particle displacement provides a measure of the particle
self diffusion within a simulation. The gradient of a graph of mean square
particle displacement against time ¢ relates to the Einstein expression for the
diffusion coefficient of molecules at long times (see section II.6.1, equation
I1.65). Results of the diffusion coefficients and their components resolved
parallel and perpendicular to the director calculated by considering only the last
two thirds of the extended runs are presented in table IV.4. In addition figures
IV.13a and IV.13b illustrate the behaviour of the mean square displacement
observed for the extended simulations (the whole run) recorded at the reduced

temperatures (T*)=5-0 and (T*)=2-77.

In both figures the unresolved mean square diffusion shows a straight line
behaviour at long time. This is characteristic of liquid like diffusion. In figure
IV.13a recorded from a run with ensemble average (Pz) =0-62 (well into the
nematic phase) there does not appear to be a difference between the curves of
mean square displacement resolved with respect to the system director. This is
reflected in table IV.4 which shows that the particle self diffusion coefficients
Dy* and D, * at this temperature is equal. At the lower temperature there is an
obvious difference between the behaviour of the resolved components of the
mean square displacement. The gradient of the component perpendicular to the
director is greater than that parallel. Reference to table IV.4 reveals that the

particle self diffusion coefficient in a direction perpendicular to the director is
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(7*) 6D* (B).

5:3+0-2 57-84+0-02 0-49::0-06
5-0+0-2 51-7420-02 0-62+0-02
2-88+0-08 19-30+0-02 0-889+0-008
2:77+0-09 5-36+0-01 0-9010-007
2-58+0-07 0-6620-001 0-911+0-007
(T*) 6D, * 6D, * Dy*/Dy *
5:3+0-2 19-440-05 19-20+0-02 1-01
5-0+0-2 17-90+0-03 16:92+0-02 1-06
2-88+0-08 6-15+0-02 6-67+0-02 0-92
2-77+0-09 1-301+0-004 2-028+0-004 0-64
2-58+0-07 0-1106:0-0002 0-2757+0-0009 0-40
Table IV .4

The reduced diffusion coefficients D* and components resolved parallel and
perpendicular to the system director for the extended runs of disc-like parameterised
single HGBLR centres. The fifth column presents the ratio of the parallel to
perpendicular diffusion coefficients. The ensemble averaged order parameter (Pz)

calculated for each run is also indicated.
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approximately one-and-a-half times greater than that parallel to the director. This
indicates that the molecules move further and hence more freely in a direction

perpendicular to the system director at this temperature.

Previous simulations of rod-like and disc-like mesogens have shown further
displacement of the particles parallel and perpendicular to the director
respectively, compared to other directions. Sometimes the coefficient of
diffusion in the preferred direction is actually higher than for the isotropic phase

just after the transition [7]. On moving through the isotropic-nematic phase
transition we would expect mean particle displacement perpendicular to the
director to be greater than that parallel to the director. This obtains because in
the discotic nematic phase an arbitrary mesogen may move more easily
perpendicular to the director as on average there is less likelihood of it
encountering further discogens possessing an orientation perpendicular to itself
impeding further motion in that direction. However in an isotropic phase there is
an equal probability of all molecular orientations and thus an equal chance of
other discogens presenting a large molecular surface to impede further
displacement. Hence in the isotropic phase there is no preferred direction of

displacement

However as clearly illustrated in figure IV.13a, there is no difference between the
resolved components of mean square displacement in the nematic phase of
HGBLR centres. This can be explained by taking into account the spherical hard
core of the HGBLR centres. Mesogens are prevented from diffusing further
when they encounter the repulsive hard core of another mesogen. If we assume,

in the nematic phase, that the longer range dispersive forces play no role in the
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Total and resolved components with respect to the system director of particle mean
square displacement for the extended runs of the system of disc-like HGBLR centres
at (T *) =5-0. The resolved components are indicated, the unlabelled curve

corresponds to the total mean square particle displacement.
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Figure IV.13b
As figure IV.13a but recorded at (7*)=2-77
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particle self diffusion process, then the orientated anisotropic attractive regions of
HGBLR centres will not influence the diffusion process. The spherical hard core
(for a fixed orientation of two HGBLR centres) then presents itself as an equal
restriction to diffusion in all directions. Thus diffusion behaviour in the nematic
phase is qualitatively the same as that expressed in the isotropic phase. We do
observe an overall decrease in the magnitude of diffusion coefficient as the

temperature is lowered.

As previously stated the radius of the spherical hard core depends on the fixed
orientation of the HGBLR centres. However the difference between the
minimum hard core radius and the maximum is small (see figures IV.2 and IV.3).
Components of mean square displacement resolved with respect to the system
director in the nematic phase essentially compare the ease of diffusion between
side-side and end-end oriented centres. Examination of figures IV.2 and IV.3
shows that the HGBLR potential has the same hard core radius for these two
orientations. Thus disc-like HGBLR centres trying to diffuse perpendicular to
their symmetry axes would experience the same hard core radii presented by the
surrounding molecules as they would experience trying to diffuse parallel to their

symmetry axes.

A difference between the diffusion coefficients parallel and perpendicular to the
director does emerge as the system enters the more highly ordered phase. This
may be explained in terms of the environment that each particle finds itself. In
the nematic phase each particle can be considered to be in identical surroundings
as its neighbours: there is no positional ordering of the centres of mass, and on
average the particles posses the same orientation. However when the particles

enter the more highly ordered columnar phase, there is a distinction between
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neighbours that belong to the same column and those that do not. Discs within
columns are prevented from moving along the column axis because of the co-
operative motion that would be required from the discs above and below. It is far

easier for the discs to diffuse perpendicular to the director.

This observation is in contrast to what is seen in experimental columnar systems.
These have been described as orientated one-dimensional liquids [8]. The
translational disorder of the molecules occurs within the columns themselves.
However, high resolution X-ray studies on columnar systems have shown
although the flat discotic cores are orientated with respect to each other, the
hydrocarbon chains surrounding the cores exhibit practically isotropic scattering
patterns. A detailed model of discotic liquid crystals would necessarily have to
include the conformational degrees of freedom of the hydrocarbon chains [8].
Consideration of these effects may yield a model that more appropriately

describes columnar discotic systems.

IV.3.2.5 Graphical Representations of Discotic HGBLR Centres
Computer graphics has been employed to capture "snapshots" from typical

configurations in order to represent the molecular arrangement. Figures IV.14a-
IV.14f are examples of these. With the exception of figure IV.14f in each figure
each disc-like HGBLR centre is represented by a line indicating the position and
orientation of the site symmetry vector and a disc drawn perpendicular to this
indicating the position and orientation of the site equatorial plane. For the sake
of clarity in the diagrams the discs are drawn with a radius that is approximately
half that of the average hard core radius and the site symmetry vectors are drawn
with unit magnitude. In the case of figure IV.14f, only the centres of mass of the

HGBLR centres are drawn. In all cases the direction of the instantaneous
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director i(¢) of each configuration is described by thick line running through the

centre of the box.

Figures IV.14a and IV.14b are two snapshots taken from a configuration in the
nematic phase for which P =0-67 (note this is no longer an ensemble averaged
B). Figure IV.14a shows a view approximately perpendicular to the system
director whilst figure IV.14b shows a view looking down the director. With
regard to figure IV.14b it is clear that the majority of discs have their equatorial
plane approximately perpendicular to the director. It is interesting to note that
although the order parameter measured for this snapshot is relatively high, it is
clear from figure IV.14a that the order within the system does not resemble the
idealised representations of nematic liquid crystals so often presented in text

books etc.

Figures IV.14c and IV.14d illustrate a snapshot of the system taken at the much
higher order parameter of B, =0-91. Compared with figures IV.14a and IV.14b
the increase in ordering is apparent. Looking perpendicular to the director (figure
IV.14c) there is not much evidence for the layered structure suggested by the
density wave observed for gl('l *) at low temperature. Looking down the
director, it does not appear as though the HGBLR centres are organised in a
regular columnar structure, as one may expect of a discotic mesogen as has been

observed in previous simulations of soft discotic particles [3].

Figures IV.14e and IV.14f show two snapshots taken at the low reduced
temperature of (T *)=0-47 and the configuration shown has an order parameter
corresponding to the previously identified crystal phase. Although not perfect, it

is clear from these figures that three dimensional positional ordering is present
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- Figure 1V.14a (top), figure I'V.14b (bottom

Two views of a discotic nematic configuration. Figure IV.14a is a view perpendicular
to the director f(¢), figure IV.14b is a view looking down the director. Each HGBLR
disc is represented by a unit vector parallel to the site symmetry axis and a circle of
radius approximately 50% of the hard core radius drawn in the disc equatorial plane.
The system director is indicated as a thick line drawn through the box. The measured

order parameter for both configurations is 2 = 0-67.
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Figure IV.14c (top), fisure IV.14d (bottom

Two views of a highly ordered phase. Figure IV.14c is a view perpendicular to the
director fi(z), figure IV.14d is a view looking down the director. Each HGBLR disc is
represented by a unit vector parallel to the site symmetry axis and a circle of radius
approximately 50% of the hard core radius drawn in the disc equatorial plane. The
system director is indicated as a thick line drawn through the box. The measured

order parameter for both configurations is 5 =0-91.
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Figure IV.14e (top), figure IV.14f (bottom)

Two views of a crystal phase. Figure IV.14e is a view perpendicular to the director
fi(z). Each HGBLR disc is represented by a unit vector paralle! to the site symmetry
axis and a circle approximately 50% of the hard core radius drawn in the equatorial
plane. Figure IV.14f is a view looking down the director; the centres of mass of the
HGBLR discs represented as dots The director is shown as a thick line drawn through

the box. The measured order parameter for both configurations is B, = 0-99.
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Figure IV.14g
An enlarged view of the highly ordered system of figures IV.14c and IV.14d, exhibiting

examples of short stacks of discs. Each HGBLR disc is represented by a unit vector
parallel to the site symmetry axis and a circle of radius approximately 50% of the hard
core radius drawn in the disc equatorial plane. The system director is indicated as a

thick line drawn through the box. The order parameter £ =0-91.
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here. The disc-like HGBLR centres are stacked in columns. The crystal appears
to have a non close packed honeycomb structure with hexagonal symmetry. This
may indicate that the system is stable at densities higher than p*=1-1, where a
close packed structure may be realised. What is surprising in figure IV.14¢ is
that we can see the HGBLR centres appear to be tilted with respect to the column

axes.

The symmetry of the HGBLR potential does not at first sight appear to favour a
tilted arrangement of discs in columns. Columns of tilted discs have not been
observed before in computer simulations, although they have been observed in
experimental systems [9]; the columns exhibiting a rectangular array where
molecules in adjacent columns have alternate tilt, or a square array where the
molecules are consistently tilted in the same direction. Calamitic Gay-Berne
particles have been observed to form a tilted smectic B phase [10]. In previous
simulations of discogens the resultant crystal phase has exhibited rectangular and
hexagonal arrays: the rectangular array occurring at high density where discs in
columns are staggered and interdigitated with respect to those in neighbouring

columns [11].

1V.3.2.6 Discotic HGBLR Centres: Brief Summary

From analyses of the data presented thus far, we have evidence that the system of
disc-like HGBLR centres exhibits three phases on cooling from an isotropic
liquid. A discotic nematic phase forms after a sharp transition from the isotropic
liquid. There is no distinction between the coefficients of diffusion resolved with
respect to the director in the nematic phase. The discotic nematic phase is stable
over a relatively large reduced temperature range but subsequent cooling yields a

highly orientationally ordered phase, itself stable over only a relatively short
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temperature range. This highly ordered phase is characterised by a one
dimensional density wave running through the simulation box parallel to the
system director fi(z). This latter observation is consistent with the disc-like
HGBLR centres arranging themselves in a layered structure. Figure IV.14g
presents another enlarged view of the system of figures IV.14c¢ and IV.14d:
examples of the highly ordered phase. Close examination reveals the existence
of short stacks of HGBLR discs. It is these short stacks that may be responsible
for the density wave described by gl(r| *) In this respect the phase presents a
degree of translational order, demonstrating some columnar features. This highly
ordered phase remains fluid and is thus distinct from the crystal phase. We note
that there is a greater tendency for the centres to diffuse perpendicular to the
system director than parallel to it. Finally the diffusion of particles essentially
ceases. A three dimensionally ordered, but non-close packed crystal phase
results. In both the highly ordered phase and the crystal phase the constituent

discs appear to be tilted within the columns.
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IV.4 Calamitic HGBLR Simulations

IV.4.1 Details of the Calamitic Simulations

For the rod-like parameterised HGBLR centres the well depth anisotropy was
chosen as €,/€;,=0-2 thus favouring a side-side interaction. In order to
facilitate a ready comparison between the discotic and calamitic simulations the
same reduced density of p*=1-1 was chosen. Results are presented here for 256
and 500 particles simulated in the microcanonical ensemble. The simulations
were basically performed using the same methods outlined in section IV.3.1

above. There are some subtle differences and these are detailed below.

In order to investigate the possibility of hysteresis existing at phase transitions,
both a series of cooling and a series of heating runs were performed with the
N =256 system. Firstly a system of rod-like HGBLR centres was cooled, by
scaling just the translational velocities by a factor 0-8: the same method as
employed for the discs, described in section IV.3.1. The final coolest
configuration generated from these runs was then taken as the starting
configuration for a series of heating runs, in which the particle translational
velocities were scaled by a factor 1-2 between each simulated state point. At
each state point the simulation consisted of an equilibration run of 15,000 steps
followed by a production run of a further 15,000 steps employing a time step of
At*=0-003 for both the heating and cooling runs; twice the value of
At*=0-0015 used for the disc-like HGBLR centres.

It was possible to employ a higher time step with the rods whilst still maintaining
fluctuations in the total energy of the systems at better than one part in 1000.
The reason for this may be illustrated by considering figures IV.2 and IV.3. The

rod-like parameterised HGBLR potential is less rapidly varying at its minimum
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compared to the disc-like parameterised potential. Within the microcanonical
ensemble, fluctuations in the total potential energy of the system necessarily
produce opposing fluctuations in the total kinetic energy under the constraint that
the total energy must remain constant. With a less rapidly varying potential
function and therefore smaller fluctuations in kinetic energy, it is possible to
employ a larger time step in solving the equations of motion without harming

energy conservation.

Thermodynamic variables and instantaneous configurations were stored from the
production runs every 50 steps. In this manner the rod-like systems were run for
the same total length as the non-extended disc-like simulations, the subsequent
ensemble averages being calculated 6ver the same size interval as for the disc-
like systems. The results from N =256 disc-like HGBLR centres and N =256

rod-like centres are thus directly comparable.

Further a series of cooling runs were performed with a similar system of rod-like
HGBLR centres but with an increased system size of N =500. These latter
simulations were performed in an attempt to qualitatively estimate the effect of

finite system sizes with small particle numbers.

The cooling simulations (256 and 500 particles) were started from an a-fcc lattice
at high temperature. The particles were simulated in a cubic box with full
periodic boundary conditions. Close to subsequently identified phase transitions

some of the simulations were extended.
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IV.4.2 Calamitic Simulation Results
IV.4.2.1 Energy Fluctuations, Potential Energy and the Second Rank

Orientational Order Parameter

Values of the average potential energy per particle, (¥ */N) and the second rank
order parameter (B) for the both the cooling and heating N =256 and N = 500
systems are presented in tables IV.5, IV.6 and IV.7 respectively. Figure IV.15a
shows the behaviour of the potential energy as the smaller system is firstly cooled
from (T*) ~3-1to (T*)=0-34. The final configuration of the cooling runs was
taken as the input to a series of heating runs. The behaviour of the potential
energy therefore, from (7*)=0-34 to (T*)=5-5 for the N =256 system is
presented in figure IV.15b (some higher temperature data are not presented in this
figure, in order to improve the scale, but are included in table IV.6). Both these
figures appear to show two discontinuities in the behaviour of the potential
energy, although this is clearer in the figure IV.15a. As has been observed in the
case of the disc-like simulations as the temperature moves to lower values the
potential energy becomes increasingly negative. The decrease in potential energy
seems to occur in three distinct phases. Up to and including (T*)=1-71 the
potential energy is decreasing with a relatively shallow gradient. A discontinuity
in the behaviour of (¥ */N) is evidenced through an increasing (negative)
gradient until about (7*) = 0-88 where there is a second discontinuity occurs and

(V */N) continues to tend to lower values but less steeply.

By fitting straight lines to the branches of figure IV.15a, the entropy of observed
transitions was estimated to be A(V'*/N)/(T*)~0-5 each, using a method
outlined in section IV.3.2.1. This is slightly less than was observed for the disc-

like HGBLR centres where A(V */N)/(T*) ~ 0-6 was estimated.
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(7%) (V*/N) (B)
3:14+0-07 -0-8+0-2 0-08+0-03
3-16+0-06 -0-9+0-2 0-07+0-02
2-66+0-06 -1-4+0-1 0-08+0-03
2-28+0-05 -1-8+0-1 0-08+0-03
1-98+0-04 -2:240-1 0-12+0-03
1-71+0-04 -2:7+0-1 0-16+0-05
1-60+0-04 -3-3+0-1 0-44+0-04
1-50+0-05 -3-9+0-1 0-58+0-03
1-39+£0-04 -4-5+0-1 0-67+0-03
1-29+0-04 -4-9+0-09 0-73+£0-02
1-18+0-03 -5:32+0-08 0-78+0-02
1-08+0-03 -5-71+£0-08 0-81+0-01
0-97+0-03 -6-02+0-08 0-85+0-01
0-87+0-02 -6:32+0-06 0-874+0-008
0-88+0-02 -6:79+0-06 0-883+0-007
0-78+0-02 -7-02+0-06 0-894+0-006
0-70+0-02 -7-25+0-05 0-911+0-007
0-62+0-02 -7-45+0-04 0-922+0-005
0-55+0-02 -7-61+0-04 0-935+0-003
0-49+0-01 -7-76+0-03 0-941+0-004
0-43+0-01 -7-91+0-03 0-947+0-004
0-38+0-01 -8:02+0-03 0-954+0-002
0-34+0-01 -8:12+0-02 0-961+0-002

Table IV.5

Average temperature (T*), average potential energy per particle (¥ */N) and
second rank order parameter (Pz) for the cooling runs with N =256 rod-like HGBLR
centres parameterised as described in the text. Errors are indicated to +1 standard

deviation of the arithmetic mean.
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(7*) (V*/N) (B)
0-341+0-009 -8:12+0-02 0-962+0-002
0-40+0-01 -7-99+0-03 0-953+0-002
0-46+0-01 -7-83+0-03 0-943+0-003
0-54:+0-01 -7-65+0-04 0-934+0-004
0-63+0-02 -7-42+0-05 0-919+0-004
0-74+0-02 -7-15+0-06 0-904+0-006
0-84+0-02 -6-83+0-06 0-881+0-008
0-99+0-03 -6-40+0-07 0-84+0-01
1-12+0-04 -5-91+0-09 0-82+0-01
1-22+0-04 -5-17+0-09 0-76+0-02
1-39+0-04 -4-5+0-1 0-69+0-02
1-53+£0-05 -3-8+0-1 0-54+0-04
1-64+0-05 -2-8+0-1 0-18+0-06
1-95+0-05 -2-:3+0-1 0-12+0-04
2-41+0-06 -1-7+0-1 0-09+0-03
2:92+0-06 -1-0+0-2 0-07+0-03
3-60+0-08 -0-4+0-2 0-07+0-03
4-48+0-09 0-4+0-2 0-06+0-02
5:5+0-1 1-3+0-3 0-06+0-02

Table IV.6

Average temperature (T*), average potential energy per particle (¥ */N) and

second rank order parameter (PZ) for the heating runs with N =256 rod-like HGBLR

centres. Errors are indicated to +1 standard deviation of the arithmetic mean.
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(7*) (7*/N) (B)
2:11£0-03 -2:10+0-09 0-07+0-02
1-84+0-03 -2:52+0-08 0-10+£0-04
1-61+0-03 -2:99+0-08 0-17+0-05
1-56+0-04 -3-75+0-09 0-51+0-04
1-44+0-03 -4-30+0-08 0-62+0-02
1-33+0-03 -4-82+0-07 0-70+0-02
1-22+0-03 -5-24+0-07 0-76+0-01
1-12+0-02 -5:63+0-06 0-807+0-009
1-01£0-02 -5:95+0-05 0-832+0-007
0-92+0-02 -6-23+0-05 0-855+0-006
0-83+0-02 -6:51+0-04 0-881+0-004
0-75+0-02 -6-75+0-04 0-896+0-004
0-74+0-02 -7-16+0-04 0-899+0-005
0-67+0-01 -7-38+0-04 0-913+0-004
0-60+0-01 -7:56+0-03 0-922+0-004
0-54+0-01 -7-73+0-02 0-933+0-003
0-48+0-01 -7-87+0-08 0-944+0-003

0-429+0-008 -7-99+0-02 0-949+0-003
0-383+0-008 -8:10+0-02 0-952+0-002

Table IV.7

Average temperature (T*), average potential energy per particle (¥ */N) and

second rank order parameter (Pz) for the cooling runs of N =500 rod-like HGBLR
centres parameterised as described in the text. Errors are indicated to +1 standard

deviation of the arithmetic mean.
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The system of N =500 HGBLR centres was cooled from (T*)=2-1 to
(T*)=0-38 in the light of knowledge acquired from the smaller system. Figure
IV.15c shows the potential energy per particle against temperature curve for the
larger system. Again the same qualitative behaviour enables us to identify three

distinct phases.

An easy comparison between the heating and cooling runs and between the
different size cooling runs is afforded by figures IV.15d and IV.15e respectively,
presenting the relevant data on the same axes. Close inspection of these figures
reveals that the the curves are not coincident over their entire lengths. Close to
the discontinuities in (V*/ N) especially at the lower temperature there is
evidence of hysteresis between the two cooling runs. Further, we note the

evidence for system size effects presented by figure IV.15e¢.

It is possible that hysteresis may occur as a natural consequence of a phase
transition. For example, a first order phase transition may exhibit a degree of
hysteresis around the transition temperature depending from which side the
transition is approached. However, it is likely when simulating small systems,
that first order phase transitions will manifest themselves as weak or higher order

transitions [12].

Hysteresis would also be present should the systems have not been equilibrated
properly. But, as stated before in all cases equipartition of the kinetic energies of
translation and rotation was observed for all runs. However this is not proof that
sufficient equilibration had been achieved. @ Of course thermodynamic
equilibrium of any system, real or simulated, is only closely approached after

very long time. The problem of incomplete equilibration has often plagued

172



<V*N>
A
n
| ]

<T*>

Figure 1V.15a

Average potential energy per particle (V' */N) against reduced temperature for the

system of N =256 rod-like parameterised HGBLR centres on cooling.
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Figure IV.15b
As for figure IV.15a but for the heating runs. N =256
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Figure IV.15¢

As figure IV.15a but with system size N = 500.
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Figure 1V.15d

Average internal energy per particle (V*/N ) against reduced temperature (T *}: a

combination of results plotted on the same axes for ease of comparison of the heating

and cooloing systems: closed squares, N =256 cooling runs; open squares,

N =256 heating runs.
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Figure 1V.15¢

Average internal energy per particle (V*/ N ) against reduced temperature (T *): a
combination of results plotted on the same axes for ease of comparison of the
different size systems: closed squares, N =256 cooling runs; open squares,

N =500 cooling runs.
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simulators. It is a factor that can only be truly overcome with long expensive

simulations.

Simulation of a non-ergodic system can also cause hysteresis between successive
"identical" runs to arise should the simulations become caught in cyclic regions
of phase space, unable to sample different areas of phase space resulting in poor

ensemble averaging.

Results of (V */N) against (T *) for the N =500 system, excepting points where
hysteresis is apparent, are consistently lower compared to both the N =256
simulations. In order to quantify finite size effects, a detailed study of different
size systems would have to be undertaken. If enough information can be
obtained, it may be possible to correct results from small systems by
extrapolating to infinite system size. This however would be quite a time
consuming process, especially at large system sizes, and this is not our aim nor

desire here.

There is evidence therefore, that the simulated HGBLR centres exhibit a finite
system size dependence. Hysteresis is present between cooling and heating runs
of identical systems. However, such effects are small with the most likely
consequences being a shifting of transition temperatures. They are not expected

to affect the type of mesophases observed.

Figures IV.16a and IV.16b show the (B ) behaviour of the N =256 system. The
results of the N =500 system are presented in figure IV.16c (some high
temperature data have been left off this graph in order to enhance the detail in the
transition region, although these data are included in table IV.6). Once again for
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ease of comparison figure IV.16d and figure IV.16e respectively, present
combined on the same axes, the results of the N =256 heating and cooling runs

and the different system size runs.

Consider figure IV.16a. We see that at high temperature above (T*)=1-71, (B)
describes an orientationally disordered isotropic phase. As in the case of the
disc-like HGBLR centres, (1’2) retains a finite value due to the small size of the
system under investigation. Below (7*)=1-71, (B) rapidly rises to a value of
(R,)=0-44 indicating the onset of an orientationally ordered phase. (B)
continues rising less rapidly at first, before eventually tending to one, as the
temperature is lowered. The same qualitative behaviour is observed for the

heating runs, displayed in figure IV.16b.

Figure IV.16d shows that between the heating and cooling runs there is little
evidence for significant hysteresis. A close examination of figure IV.16¢
presents evidence of some system size effects. Figure IV.16e shows that at high
temperatures ((T*)>1-7), (B,) obtains a value closer to zero for the N =500
system compared to the N =256 particle system. Naturally we would expect
(B)— 0 as N —  in the isotropic regime.

From our experience with the disc-like HGBLR centres there are two possible
phase transitions present in both simulations, evidenced by the discontinuities in
(V *IN ), occurring at lower temperatures than those seen in the system of disc-
like HGBLR centres. This was anticipated in section IV.1, where the disc-like
HGBLR centres were found to have a minimum energy well depth approximately

five times deeper than the rod-like centres.
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Figure 1V.16a

Order parameter (P, ) against reduced temperature (7'*) for the cooling runs of the

rod-like HGBLR centres parameterised as described in the text. N =256.
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Figure IV.16b
Second rank order parameter (P;) against reduced temperature (7'*) for the heating

runs of rod-like HGBLR centres parameterised as described in the text. N = 256.
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Figure IV.16¢
As for the cooling runs of figure IV.16a but with system size N = 500.
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Figure 1V.16d

Second rank order parameter (P, ) against reduced temperature (7'*) plotted on the
same axes for two systems of rod-like HGBLR centres considered for ease of
comparison of heating and cooling systems. Closed squares, N =256 cooling runs;

open squares, N =256 heating runs.
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Figure IV.16e

Second rank order parameter (P,) against reduced temperature (T'*) plotted on the
same axes for two systems of rod-ike HGBLR centres considered for ease of
comparison of the different system sizes. Closed squares, N =256 cooling runs;

open squares, N = 500 cooling runs.
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As was undertaken for the disc-like HGBLR centres, six state points chosen close
to the probable phase transitions were continued from the unscaled previous state
points obtained from the N =256 cooling runs, for an additional 60,000 steps
recording thermodynamic data and configurations every 100 steps.

In the absence of a significant difference between the N =500 and N =256
cooling simulations it was decided to concentrate on the N = 256 cooling system.
In order to better investigate the behaviour of the mean square displacement of
the system of rod-like HGBLR centres it was decided at a later date to further
extend three runs of the original N =256 cooling simulations. Table IV.8
presents the (T*), (V*/N) and (B) results from these extended runs.
Thereafter these extended runs were themselves extended for an additional
60,000 steps, together with three simulation state points in the vicinity of the
higher temperature transition which were continued from the original N =256
cooling runs. The ensemble averages from these simulations are presented in
table IV.9. Generally these latter data are used for the presentation of the
structural and dynamic information which follows.

IV.4.2.2 Radial Distribution Function and Second Rank Orientational
Correlation Coefficient

With the exception of the low temperature crystal phase, presentation of the
radial distribution function together with resolved components and the second
rank orientational correlation function, are based on data obtained from the runs
presented in table IV.9. From the series of cooling runs with N =256 the radial
distribution function g(r*) and the components g(n*) and g, (r *) are

presented in figures IV.17 for a few judiciously chosen temperatures.
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(7%) (V*/N) (B)

0-93+0-03 -6-46+0-07 0-863+0-008
0-84+0-03 -6:69+0-07 0-884+0-008
0-78+0-02 -7-02+0-06 0-889+0-:007

Table 1V.8
Temperature (T*), potential energy per particle (¥ */N) and second rank order
parameter (B) for three simulations of table IV.5, close to the second transition

extended for a further 45,000 steps. Errors are quoted to +1 standard deviation.

(7*) (y*/N) (B)
1-98+0-05 -2:3£0-1 0-12+0-04
1-72+0-05 -2-7+0-1 0-19+0-07
1-57+0-06 -3-3+0-2 0-38+0-08
0-93+0-03 -6-47+0-07 0-861+0-009
0-84+0-02 -6-71+0:06 0-879+0-009
0-78+0-02 -7-03+£0-06 0-897+0-007

Table IV.9

Temperature (T*), potential energy per particle (¥ */N) and second rank order
parameter (B) for the six runs close to observed transitions. The three higher
temperature runs are continuations of state points of table IV.5, the later three are
continued from table IV.8. Simulations runs were of length 60,000 steps. Errors are

quoted to +1 standard deviation.
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Figure IV.17a illustrates the radial distribution function and the components
g(n*) and g, (r *), corresponding to the extended run at (T*)=1-57 and
ensemble average (Pz) =0-38; just after the sudden rise in order parameter
shown in figure IV.16a. According to the value of (B) the system is a low
ordered nematic phase. This is corroborated by figure IV.17a which shows

typical liquid like behavior for g(r *) and its components.

Figure IV.17b was computed from a run with ensemble averages (7*) = 0-93 and
(Pz) =0-861 just before the second lower temperature transition occurs. In
contrast the following figure IV.17¢c, comes from a simulation just after the
transition: (T*)=0-84 and (B,)=0-879. The function g(r*) of figure IV.17b
again displays behaviour typical of a liquid. The initial peak and subsequent
oscillations have increased indicative of a more ordered short range structure
present at the lower temperature. More interestingly the component g, (r, *)
shows the presence of a one dimensional density wave perpendicular to the
direction of the director. This is consistent with the rod like particles exhibiting
short range order perpendicular to the molecular symmetry axis. Apart from a
slight increase in the final peak magnitude perhaps due to incorrect normalisation
as suggested in section IV.3.2.2, compared with figure IV.10b of the disc-like
HGBLR simulations, the oscillations die away in the simulation box with
increasing 7, * as one would expect. The first significant peak of g, (. *) occurs
at r,*=1-0 compared to *=0-9 for the analogous function g,(rl *) in the case
of the disc-like HGBLR centres. Subsequent peaks occur at distances somewhat
less than 7, *=1-0. There appears to be no evidence for structure in the g; (4 *)
function indicating that the HGBLR rods are uniformly distributed along the

direction of the director.
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component of radial
distribution function

Figure IV.17a

The radial distribution function and components resolved paralle! and perpendicular to
the director for rod-like HGBLR centres at (T *) =1.57. Symbols: closed squares,

g(r*); open squares, g|(1] *); closed diamonds, g, (r, *).
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Figure 1V.17b

As figure IV.17a but at temperature (T *) =0-93. Lines have been introduced where

it was thought appropriate as a guide to the eye.
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Figure IV.17¢
As figure IV.17a but at temperature (T*)=0-84. Lines have been introduced where

it was thought appropriate as a guide to the eye.

component of radial
distribution function

Figure 1V.17d
As figure IV.17a but at temperature (T *) =(0-34. Lines have been introduced where

it was thought appropriate as a guide to the eye.
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The functions g(r*) and g, (r, *) of figure IV.17c¢ at a slightly lower temperature
exhibit a behaviour similar to that seen in figure IV.17b. The height of the peaks
of both functions have increased. This is very apparent with the initial peaks,
indicating an increased positional correlation between nearest neighbours. The
resolved component g (r] *) now begins to exhibit a series of gentle oscillations
with increasing r * implying a degree of order beginning to develop in planes

lying parallel to the director @(z).

Figure IV.17d shows the behaviour of g(r*), g (r] *) and g, (r, *) for the lowest
temperature run of table IV.5. Here (T*)=0-34 and (B) = 0-961; a very highly

ordered system. Structure is present in all the functions shown.

Figure IV.18 shows the behaviour of the second rank orientational correlation
function for the same four simulation runs considered in the previous section.
The higher temperature curve displays a peak at about G,(r*)=0-8 at around
r*=0-8 then quickly decays to attain a limiting value of G,(r*)~ 0-14. Note
that the function does not decay to zero and indeed (G,(r*)) ~ (B, )2 =0-37 in
agreement with our observation of a nematic phase at (T*)=1-57. At higher
temperatures G, (r *) exhibits a higher initial peak and subsequently attains a

limiting value describing a highly orientationally ordered state.

IV.4.2.3 Mean _Square Particle Displacement and Diffusion

Coefficients

The mean square particle displacements have been calculated for the extended
runs and are presented in figures IV.19. Figure IV.19a shows the behaviour of
the extended run of 60,000 steps reported in table IV.9, just after the first
transition at (7*)=1-57 into the nematic phase. We note that the mean square
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particle displacement exhibits straight line liquid like behaviour.  The
components of mean square displacement parallel and perpendicular to the
system director, both exhibit straight line behaviour also. There appears to be no

difference between the resolved displacement components.

The mean square displacement behaviour shown in figure IV.19b was recorded
over 105,000 steps at the reduced temperature (7*)=0-93 and consists of the
combined runs of tables IV.8 and IV.9. This system state point is well into the
nematic phase with an order parameter (B )~ 0-86. The unresolved component
shows liquid like behaviour once again. Yet even with such a high value of the
second rank order parameter both the resolved components show the same
behaviour. In the case of HGBLR centres though the absence of a preferred
direction of diffusion in the nematic phase is attributed to the spherical hard core

and has been discussed in section IV.3.2.4.

Figure IV.19c¢ presents the same information as IV.19b but at the lower reduced
temperature (7*)=0-84 corresponding to the state point simulated just after the
second transition between two highly orientationally ordered systems. Liquid
like displacement is present at long time confirming the phase remains fluid.
Moreover, in the same time interval the particles have moved further at the lower
temperature then during the previous state point simulation. Compare the scales

of figures IV.19b and IV.19c.

Table IV.10 presents values of the diffusion coefficients obtained from the
gradients of mean square displacement curves for the simulations listed in table
IV.9. Diffusion coefficients are calculated from a least squares regression fit to

the last 30,000 steps of the resolved and unresolved mean square displacements
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Figure IV.18

The second rank orientational correlation function G,(r*) for the system of rod like
HGBLR centres. Simulation runs are chosen to be the same as those represented in
figures IV.17. Symbols correspond to the following ensemble averages: closed
squares, (T*)=1-57 and (PR)=0-38; open squares, (T*)=0-93 and
(B)=0-861; closed diamonds, (T*)=0-84 and (P,)=0-879; open diamonds,
(T*)=0-34 and (B,)=0-961.
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Figure 1V.19a

Mean square displacement components, total and resolved with respect to the director
for the 60,000 extended run of rod-like HGBLR centres as described in the text.
(T*)=1-57 and (B)=0-38. The resolved components are indicated, the

unlabelled curve corresponds to the total mean square displacement.
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Figure IV.19b
As for figure IV.19a, but recorded over 105,000 steps, (T*)=O-93 and

(R)=0-861.
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Figure IV.19¢
As for figure IV.19a, but recorded over 105,000 steps, (T*)=0-84 and

(B)=0-879.
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(T*) 6D* (R)
1-98+0-05 0-3523+0-0003 0-12+0-04
1-72+0-05 0-323+0-0004 0-18+0-07
1-57+0-06 0-2399+0-0003 0-38+0-08
0-93+0-03 0-0195+0-00003 0-861+0-009
0-84+0-02 0-02384+0-00004 0-879+0-009

(T*) 6D * 6D, * Dy*/Dy *
1-98+0-05 0-1176+0-0004 0-1173+0-0003 1-00
1-72+0-05 0-108+0-0005 0-1075+0-0002 1-00
1-57+0-06 0-08+0-0003 0-08+0-0002 1-00
0-93+0-03 0-00637+0-00002  0-00657+0-00001 0-97
0-84+0-02 0-00932+0-00002  0-00726+0-00001 1-28

Table IV.10

Diffusion coefficients D* and diffusion coefficients resolved parallel Dj*, and
perpendicular D; * to the system director fi(¢), for the extended runs as detailed in
the text. The coefficients for the higher three temperatures were calculated from a
least squares regression fit to the last 30,000 steps of a 60,000 step simulation. The
lower two temperatures correspond to a similar analysis performed on the last 30,000

steps of a 105,000 step simulation.
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of the 60,000 or 105,000 step simulations. An increase in diffusion coefficient
on transforming to the highly ordered phase is apparent from table IV.10 which
shows a higher coefficient of diffusion, 6D* = 0-02384 at (T *) = 0-84 compared
to only 6D*=0-0195 at (T*)=0-93: an increase of 22%. It is not known how
long this effect persists as the temperature is lowered in the highly ordered phase.
An increased coefficient of diffusion on entering a nematic phase from the

isotropic liquid has been previously observed in simulations of hard ellipsoids

[71.

Clearly we can see from table IV.10 that the resolved co;fﬁcicnts of diffusion are
equal for the first three entries in the table. We note that the director does not
have much meaning in the isotropic phases included in table IV.10. The

direction of the director fi(¢) is most likely influenced by transient correlations

that occur in small systems.

Interestingly for the simulation at (T *)=0-93 just before the observed transition
to the more highly ordered phase, D, * takes a value slightly higher than D, *.
This is in contrast to the result from the following simulation, after the transition,
where the diffusion coefficient parallel it the director then takes a value
approximately 30% higher than D, *. This could be the result of precursor
effects, especially if the simulation at (7*)=0-93 is very close to the actual
transition temperature. We do note however the inconsistency of this
observation. Perhaps one would expect such precursory fluctuations to provide

for an increase in D *.

Below (T*)~ 0-8 mean particle displacement virtually ceases. Certainly liquid
like behaviour is not exhibited. Thus below (T *)~ 0-8 the system is solid like.
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1V.4.2.4 Preliminary Identification of Phases

With the information from the previous sections IV.4.2 we may attempt a
preliminary identification of the phases exhibited by a system of rod-like
parameterised HGBLR centres. We identify four distinct phases:

(T*)>1-57 isotropic liquid
1-572(T*)>0-93 calamitic nematic
0-932(T*)>0-80 highly ordered columnar/smectic

(T*)<0-80 crystal

Although the phases transition temperatures are not necessarily precise, a
limitation of the NVE ensemble, it is clear that the highly ordered phase persists

for only a short range of reduced temperature.

I1V.4.2.5 Graphical Representation of Calamitic HGBLR Centres.

Figures IV.20 comprise a series of snapshots taken at different temperatures from
the non-extended N =256 cooling runs. The molecules are represented in two
different ways in the diagrams. In some figures dots are used to represent to
centres of mass of the HGBLR particles, whilst in other figures the HGBLR
particles are represented by a line segment of correct relative orientation @ and
length of unity i.e. 3. The thick line running through the centre of the box

represents the orientation of the director.
Figure IV.20a shows a view looking down the director of the nematic phase;

(T*)=1-29 and for this configuration B, =0-71. Figure IV.20b shows a view

of the same system looking perpendicular to the director. The nematic like
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arrangement of the symmetry axes of the HGBLR centres is clearly visible in
figures IV.20b and IV.20a. The particles are shown to be aligned along the
director with no apparent ordering perpendicular to this direction. One again we
note that at even this relatively high value of the second rank order parameter, the
system does not reflect the often rather idealised representations of the nematic

phase that are presented in text books.

Figure IV.20c shows the centre of mass positions of the HGBLR rods at the
lower temperature of (T *)=0-88 with a corresponding B, =0-90 in the highly
ordered phase, looking almost down the director. The centres of mass of the
HGBLR particles appear to be approximately ordered with hexagonal symmetry.
Figure IV.20d shows the same configuration but looking perpendicular to the
director. The centres of mass are distributed in layers consistent with the
HGBLR rods adopting a smectic phase but with a degree of positional ordering
within the smectic layers. At this temperature the phase is still fluid. Figure
IV.20e shows a similar view to that of figure IV.20d, but this time the
orientations of the particles are demonstrated. From the radial distribution
function of figure IV.17b it is clear that the appearance of a density wave
perpendicular to the director precedes the formation of order parallel to the
director. However it is clear that long range correlations parallel to the director
begin to develop at lower temperatures. Thus it seems that the particles firstly
tend to arrange into columns; the particles themselves being disordered within
these columns. The arrangement of columns exhibits hexagonal symmetry, but
this is not perfect due to the fluidity of the phase. The view of figure IV.20c is
equivalent to projecting the centres of mass of the HGBLR particles on to a

single plane. It is apparent that the best view of the approximate hexagonal
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symmetry is obtained when this plane is not perpendicular to the director. Thus

the columnar axes are not coincident with the director.

The final three figures IV.20f, g and h are similar representations as the previous
three but at the lower temperature of (T *)=0-34 and these views have
B =0-96. Figure IV.20f shows a view looking down the system director. The
hexagonal symmetry of the solid phase is clearly visible. The tilt of the columnar
axes with respect to the system director has disappeared. Figure IV.20g shows a
view of the centres of mass looking perpendicular to the director. Clearly the
particles are arranged in layers lying parallel to the director. There is also
ordering visible in planes running perpendicular to the director. Figure IV.20h is
a similar view as figure IV.20g. but includes the orientation of the particles and
confirms that the columns are now aligned along the direction of the director.

IV.4.2.6 Calamitic HGBLR Centres: Brief Summary
We identify four distinct phases formed by the system of rod-like HGBLR

centres. As with the disc-like centres, cooling from the isotropic liquid yields a
nematic phase, although this forms at a lower reduced temperature than for the
former. The nematic phase is stable over a relatively large temperature range as
seen for the disc-like centres. Similarly, subsequent cooling yields a highly
orientationally ordered phase which also exhibits a degree of translational order,
though it remains fluid. It appears that the rod-like particles initially form a
columnar type structure, but as the rods within columns become more regularly
ordered a layer like smectic phase develops. Eventually a crystal phase is formed

which has hexagonal symmetry.
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Figure IV.20a (top) and Figure IV.20b (bottom

Two views of a nematic configuration. Figure IV.20a shows a view looking down the
director fi(z), whereas figure IV.20b shows a view looking perpendicular to the
director. The rod-like HGBLR centres a represented by a line segment of length unity.
The director is indicated as a thick line drawn through the simualtion box. The

measured order parameter for both configurations; A, =0-71.
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Figure 1V.20c (top) and Figure 1V.20d (bottom)

Two views of the centre of mass positions of the rod-like HGBLR centres in the highly
ordered phase. Figure IV.20c shows a view looking down the columnar axes. Figure
IV.20d shows a view approximately perpendicular to the director, showing the particles
exhibiting a degree of positional ordering within the columns. Particles are
represented by a line segment of length unity. The director is indicated as the thick

line drawn through the simulation box. B = 0-90 for both configurations.
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Figure 1V.20e (top) and figure IV.20f (bottom)

Figure IV.20e presents the same view as figure IV.20d, but on this occasion the rod-
like HGBLR centres are represented as line segemnt of length unity. Figure IV.20f
shows a view of the crystal phase looking down the director. The centres of mass of
the HGBLR centres are represented as dots. The hexagonal symmetry of the crystal

is clearly visible. For this snapshot B, =0-96
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Figure IV.20g (top) and figure IV.20h (bottom)

Two views of the crystal phase seen perpendicular to the nematic director. Figure
IV.20g shows the centres of mass of the HGBLR particles. Figure IV.20h shows the
same view but this time the HGBLR rods are represented by line segements of length

unity.
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IV.S Summary Comparison of Discotic and Calamitic HGBLR Centres

IV.5.1 Phase Transition Temperatures
Both the disc-like and rod-like single-site HGBLR centres showed four distinct

phases. The approximate transition temperatures of these on cooling form the

isotropic liquid are shown below.

Discs Rods
isotropic isotropic
V(T*)=5-5V V(T*) =157V
discotic nematic calamitic nematic
V(T*)=2-8¥ v (T*%)=0-93V
highly ordered/columnar highly ordered columnar/smectic
V(T¥)=2-6 ¥ Vv (T*)=0-80 ¥

non-close packed honeycomb crystal crystal with hexagonal symmetry

It is immediately obvious that the mesophases formed by the disc-like centres are
stable at higher temperatures than the rod-like particles. The was anticipated
from the observation that the well depth of the disc-like HGBLR potential is five
times deeper than that of the rod-like potential for the deepest well depth in each
case. Both systems show the same qualitative behaviour of a relatively stable
nematic, followed by a highly ordered fluid phase stable over a short temperature

range before a crystal forms.

IV.5.2 Anisotropic Diffusion Effects

It is clear that in the nematic phases that no distinction exists between the
coefficients of diffusion resolved parallel and perpendicular with respect to the

nematic director ii(¢), contrary to what is observed in real liquid crystal systems.
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This effect is attributed to the spherical hard core nature of the HGBLR centres.
On entering more highly ordered phases a distinction does arise. The coefficient
of diffusion perpendicular to the site symmetry axis is shown to be greatest in the
case of disc-like parameterised centres, whereas it is the component parallel to
the director which is enhanced in rod-like centres. This effect emerges due to the
environment that the constituent particles find themselves in the highly ordered

phases.

IV.5.3 Structural Effects
Both systems exhibit a true nematic phase characterised by long range

orientational order in the absence of any translational order.

The onset of positional correlations in the disc-like system is characterised by a
one dimensional density wave forming parallel to the director, indicative of discs
stacking in columns. The discs are tilted within the columns To a lesser degree
positional ordering is also apparent perpendicular to the director. Nevertheless,
the highly ordered phase remains fluid. In the eventual crystal phase the discs

remain tilted with respect to the columnar axes.

Rod-like parameterised centres appear to order themselves firstly into columns;
the rods being disordered within the columns and slightly tilted with respect to
the columnar axis. With subsequent cooling the rods become organised within
the columns to form a structure that resembles a smectic phase. The highly
ordered phase is fluid. On further cooling a crystal phase forms. Within the
crystal phase the initial tilt of the particles with respect to columnar axes has

disappeared.

201



IV.6_Concluding Remarks
We have shown that the single sitt HGBLR centres are capable of exhibiting

liquid crystal mesophases. As the HGBLR centres are characterised by a
spherical hard core (for constant relative site orientation), the mesophases must
be a consequence of the surrounding anisotropic attractive region. Thus we have
shown that anisotropic dispersive forces are sufficient to form a variety of
mesophases. This is most interesting, because it has also been shown that solely
anisotropic repulsive interactions are capable of forming a variety of liquid
crystalline phases [13]. It has been argued that the formation of real liquid
crystal phases is due to a combination of these effects, and this view is enhanced

by the evidence presented by this work.

Previous simulations of hard spheres with off-centre square well attractive
regions have been attempted in order to investigate associating fluids [14], but no
'liquid crystal phases were observed. This is the first time simulations have been
performed using a soft potential possessing a spherical hard core region but an

anisotropic repulsive region.

The single-site HGBLR potential is of great interest from a theoretical point of
view, and as such merits further investigation. However in the course of these
studies it has not been possible to pursue such an inquiry. Rather, we have
incorporated HGBLR centres into a rigid multisite model, thus recovering the
shape anisotropy of real liquid crystals. The details of the molecular shape and
the simulations performed on this model are presented in the following section;

chapter V.
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CHAPTER V

SIMULATION OF THE NEMATOGEN PARA-TERPHENYL USING
A MULTI-HYBRID-GAY-BERNE-LUCKHURST-ROMANO-SITE
SITE POTENTIAL

V.1 Introduction

In this chapter we describe a methodology which may be suitable for
parameterising a multi-HGBLR-site site potential to represent a realistic
nematogen via comparison with a realistic atom-atom model. We have chosen a
3-HGBLR-site site potential to represent the nematogen para-terphenyl and in
this chapter we legitimise this choice. Suitable parameters are selected and

justification of the choice of these parameters is discussed.

Results are subsequently presented from molecular dynamics simulations of two
models: (a) a 3-HGBLR-site site model in which the central HGBLR site is
twisted about the molecular long axis with respect to the coplanar end sites in
accord with a minimum energy conformation of the benzene rings of para-

terphenyl; and (b) an all coplanar 3-HGBLR-site site model.

V.2 A 32-Lennard-Jones-Site Site Represention of an_ Energy
Minimised Conformer of the Nematogen Para-Terphenyl.

Para-terphenyl has been chosen as this will allow comparison with results of an

earlier study [1] in which a single-site Gay-Berne potential was parameterised to
represent para-terphenyl. In this original study para-terphenyl was chosen

because of its rigidity and non-polar nature. Furthermore a virtual nematic-
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isotropic phase transition has been located for para-terphenyl at 360+3K, and is

referenced in this work [1].

The energy minimised conformer of the para-terphenyl molecule has been
calculated using the MMX [2] force field in the molecular mechanics package
PCMODEL [3]. The ground state configuration has the two end benzene rings
coplanar, with the central ring twisted through a dihedral angle of 39°. This
compares favourably with the result of Luckhurst and Simmonds [1], who
obtained the centre benzene ring twisted through 36° with respect to the coplanar
end rings using a different software package. In this study we aim to consider
two representations of para-terphenyl. One representation with the centre
benzene ring twisted through 39° and another where all three benzene rings are
coplanar. The parameters of the 3-HGBLR-site model to be used will be those
selected to represent the twisted ring model of para-terphenyl in each case, i.e.
the only difference between the two models will be a twist of the centre ring.
This will allow us to compare the effects of the two models with respect to the

location, stability and types of mesophase they may exhibit.

In order to obtain a function with which we may fit the multi-HGBLR-site
potential, a para-terphenyl molecule was represented as a collection of 32
Lennard-Jones 12-6 sites. Three views of this molecule are shown in figure V.1.
The sites were placed at the atomic centre of mass positions of the ground state
para-terphenyl molecule as calculated using MMX above. The Lennard-Jones
parameters oy and €17 were given the values opyc =3-35A, oy =2-81A and
epjc =51-2kgK, €15y =8-6kgK for the carbon and hydrogen atomic sites
respectively (kg is the Boltzmann constant) [4]. Pair interactions between like

atoms are easily calculated using the above parameters.  Approximate
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Figure V.1a
32-Lennard-Jones-site representation of the nematogen para-terphenyl.  The

molecule is shown in the y-, z-plane with the coplanar benzene ring symmetry vectors
coming out of the page as indicated by the sense of the dart symbol. Solid black
squares indicate carbon atoms, open squares represent hydrogen atoms. Where
visible, atomic bonds have been represented as thin lines to guide the eye. The
Cartesian convention established in this figure will be subsequently used when

refering to the para-terphenyl molecule throughout this chapter.
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Figure V.1b

32-Lennard-Jones-site representation of the nematogen para-terphenyl.  The
molecule is shown in the x-, z-plane. The sense of the y-direction is as indicated. For

key see figure V.1a.
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Figure V.1c

32-Lennard-Jones-site representation of the nematogen para-terphenyl. The

molecule is shown in the x-, y-plane. The sense of the z-direction is as indicated. For

key see figure V.1a.
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interactions between unlike atoms, provided they do not greatly differ in

electronegativity, may be evaluated using the Lorentz-Berthelot mixing rules:

1
OLicH =§[UUC +toynl; - [V.1]

evch = [ELiceLm]’?; [V.2]

yielding the results o1 ycy = 3-08A and €50y = 21-0kgK for the pair interactions
between hydrogen and carbon atoms. The pair potential between two 32-
Lennard-Jones-site para-terphenyl molecules was calculated for four different
parallel configurations: a, side by side where the benzene rings lie one on top of
each other; b, side by side in a T configuration in which one molecule has been
rotated by 90° about its molecular long axis; ¢, side by side where the benzene
rings lie in the same plane; d, an end to end configuration. These configurations

are presented schematically in figure V.2.

It is necessary to consider separately the a, b and ¢ side by side configurations
because of the biaxiality of the para-terphenyl molecule. These parallel
configurations have been chosen because of their importance in the formation of
a nematic phase where molecules tend on average to orientate themselves with
their principle symmetry axes parallel. At the virtual nematic-isotropic phase
transition molecular conformations other than the ground state will be thermally
accessible. However it is for the sake of simplicity that we only consider the
ground state here. The form of the 32-Lennard-Jones-site site representation is
shown in figure V.3 for the four configurations considered. We shall return to
this figure shortly.
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Figure V.2a

Two schematic drawings illustrating the difference between an 'on top' and a 'T' side

by side configuration (configurations a and b). The circles represent the locations of
the three benzene rings of each para-terphenyl molecule. The arrow serves to
represent the orientation of the benzene rings and coincides with the principle
symmetry axis of each individual benzene ring. A twisted benzene ring is represented
by a reduction in the length of the arrow. The sense of the arrow shows the direction
of twist. Dots in the centre of rings represent the benzene ring principle symmetry
axis pointing straight up through the page, and thus the ring lies in the plane of the
page. Cartesian coordinates are shown on the axes with respect to the orientation of
molecule 1, as an aid to distinguishing the different configurations. These coordinates
are chosen consistent with the coplanar rings of molecule 1 lying in the x-, y-plane,
with the molecular long axis parallel to the z-direction as in the convention of figure

AR
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Figure V.2b

Schematic representations of configurations ¢ and d. For a key to the meaning of the

scheme see figure V.2a.
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V.3 Choosing the Number of Sites and Type of Site Parameterisation of
the Multi-HGBLR-Site Site Model of Para-Terphenyl

A rigid 3-HGBLR-site model will be used to represent each para-terphenyl

molecule. The reasoning here is that each site will represent a single benzene
ring. With three sites we hope to closely reproduce the structure of para-
terphenyl using a minimum number of sites. The computational effort required
for a multisite model interacting in a pairwise manner scales as #n*N(N -1),
where N is the number of molecules consisting of # sites. Clearly an increase in
n causes a significant increase in the amount of time required to solve a given

model.

Using three rigidly joined HGBLR sites to preserve the rigidity of the para-
terphenyl molecule we must further decide how to; (a) parameterise the
individual sites, as rods, discs or a combination of the two and (b) how we

arrange the sites constituting the whole molecule.

If three rod parameterised sites are used with the site symmetry vectors pointing
along the molecular long axis of para-terphenyl, then this model will not
distinguish between configuration a and configuration ¢ for an all coplanar three
sitt model. In this case the scalar products of the HGBLR potential are
i;-i, =1 and F-ii; =r-d, =0 for both these configurations. An alternative
approach would be to have the (rod parameterised) site symmetry vectors
perpendicular to the para-terphenyl long axis in the plane of the benzene rings.
However such a rod parameterisation would be unrepresentative of para-
terphenyl as the energy well depth minima would occur at the ends of the

molecule and in between the ring systems.
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Fortunately a 3-HGBLR-site disc parameterisation with the site symmetry axes
perpendicular to the plane of the benzene rings does indeed distinguish between
all the considered configurations a, b, ¢ and d. Furthermore a disc-like
parameterisation of the individual HGBLR sites seems a natural choice to

represent the benzene rings.

Presently the possibility of using a combination of rod-like and disc-like
parameterised sites complicates the model. A cross interaction between two
differently parameterised sites would have to be identified within the force loop
computation. Once identified the interaction would have to be characterised and
the appropriate potential energy function calculated together with the
corresponding derivative terms. In future however, more complex models may
incorporate such cross interactions, perhaps together with an elegant method of
solution. Very recently such a generalisation of the Gay-Berne potential function

has been proposed [5].

With 3-HGBLR-sites parameterised as discs we may easily model a twisted
centre ring by rotating its site symmetry vector about the molecular long axis. It
is sufficient that an individual para-terphenyl molecule is represented by a
position vector to the centre of mass and a unit vector describing the relative
orientation of the molecular long axis, with respect to the laboratory axis system.
The position of the individual sites may then be located through simple geometric
translations along the direction of the unit vector. The centre site is identified
and in addition it is rotated through 39° about the molecular long axis (z-direction

according to the convention used in figure V.1).
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Thus we shall choose to use three disc-like parameterised HGBLR sites to model
para-terphenyl. A linear arrangement of the three HGBLR sites with the site
centres coinciding with the benzene ring centres seems an appropriate starting
point at which to begin to parameterise our model. Such an arrangement

correctly represents the geometry of the para-terphenyl molecule.

Figure V.3 shows the behaviour of two 32-Lennard-Jones-site representations of
para-terphenyl as they approach each other according to the configurations a, b,
¢ and d. Inspection of figure V.3 shows that it is the side by side on top dimer
configuration a that is the most favoured. In this configuration the benzene rings
coincide leading to a very deep minimum in the potential energy at a distance of
approach of 3:9A. In the side by side configuration ¢ the distance of closest
approach is hindered by the hydrogens which stick out in the plane of the
benzene rings and the energy well minimum is found at 6-9A. The T-
configuration, b, obtains a well depth minimum at a separation of 5-4A.
Because of the spherically symmetric hard core nature of individual HGBLR sites
however, the distance of closest approach of 3-HGBLR-site side by side
configurations are governed by the parameter o for given values of A and 7.
With the HGBLR potential we may therefore choose only one 6, which will
necessarily dictate the distance of closest approach of all side by side
configurations. Further we note that the end to end configuration achieves a well
depth minimum at 16-2A. The values of the minimum well depths and the

separations at which they occur are listed in table V.1
At the virtual nematic-isotropic transition temperature of 360K, the molecules

will posses a degree of rotational motion. Rotation about the molecular long axis

(which has a correspondingly relatively low principle moment of inertia /,, see
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section V.5) will lead to a cylindrically symmetric time averaged volume for each
para-terphenyl molecule. This suggests the use of the larger of the side by side
separation as the choice for the distance of closest approach in the 3-HGBLR-site
model. Further, the distance of closest approach of the a configuration as
represented by the 32-Lennard-Jones-site model is likely to be in error. Such a
model does not take into consideration the large quadrupole moment associated
with the delocalized conjugated n-electron systems perpendicular to the plane of
the benzene rings [6]. For such a configuration the real distance of closest
approach is likely to be greater than that predicted by the 32-Lennard-Jones-site
site model for configuration a, and may favour the T-type b configuration as in
the crystalline form of triphenylene which has a large delocalised conjugated -
electron system [7] Again this suggests the choice of the larger of the two
distances of closest approach in order that we may assign a value to o for our

model.

Although the inclusion of the three quadrupoles may result in a more correct
description of the interaction of the 32-Lennard-Jones-site site pair potential such
a representation of para-terphenyl was not used to parameterise the 3-HGBLR-
site potential model owing to the following points. Originally para-terphenyl
was chosen to allow comparison with the work of Luckhurst and Simmonds [1].
They fitted their Gay-Berne overlap model using a 32-Lennard-Jones-site site
representation of para-terphenyl without a quadrupole term. It was necessary in
this case however to project out the biaxiality of the of the 32-Lennard-Jones-site
site model in order to fit the cylindrically symmetric Gay-Berne overlap model.

The choice of oy in the 3-HGBLR-site site model necessarily restricts the

distance of closest approach of the HGBLR sites. This reflects the increased
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Figure V.3

A 32-Lennard-Jones-site site representation of para-terphenyl. Four configurations
are shown. The legend corresponds to the configurations illustrated in figure V.2 For

the sake of clarity values of V > 100 have been truncated to V' = 100.

32-Lennard- twisted central all coplanar 3-
Jones-site site site 3-HGBLR- HGBLR-site site
site site

configuration  Vpw/ksK /Ay /kgK r/A ¥V /kgk rlA

a -6122 3-9 -6121 6-9 -8166 6-8

b —2921 5-4 —2443 6-5 -2281 6-5

c -1260 6-9 -1692 6-8 —888 6-8

d ~205 16-2 -200 16-2 -198 16-2
Table V.1

A comparison of the locations and values of the energy well depth minimum in the pair
potential between the 32-Lennard-Jones-site site model and the two 3-HGBLR-site

site models for the four considered configurations of figure V.2.
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distance of closest approach to be expected from benzene rings possessing a
quadrupole moment in a side by side on top configuration. So a contribution to
this effect is already included although it is to be noted that the position of the
reduced attractive well depth minimum in this configuration expected from the

inclusion of the quadrupole moment may not be well represented.

V.4 Parameterisation of a 3-HGBLR-Site Site model of Para-
Terphenyl
Having decided which version of the 32-Lennard-Jones-site site model to use, we

shall now attempt to fit the remaining parameters. By calculating the ratio of
minimum well depths for the four selected configurations of the 3-HGBLR-site
site model we may compare these with the ratios obtained from the 32-Lennard-
Jones-site site model. For the 32-Lennard-Jones-site site model these are,

corresponding to configurations a:b:c:d, equivalent to 30-0:19-5:6-2:1-0.

The interdependency of A and y' of the 3-HGBLR-site site model is not a priori
obvious. A preliminary investigation into the behaviour of A and y' revealed that
the positions of the well depth minimum for the considered configurations a, b,
¢ and d varies depending on the values of A and %' (see appendix B.1). Thus it
was important to adopt a tractable method for deciding on an initial value of .
In order to accomplish this the following procedure was employed. The three
HGBLR sites were originally located at the site centres of the benzene rings of
the 32-Lennard-Jones-site representation of para-terphenyl. In this case the
centres of the coplanar rings are located in linear array 4-3A either side of the
centre of the twisted central ring. Having established the site-site separation an
initial value of o, consistent with the value of the zero crossing of the 32-
Lennard-Jones-site site configuration ¢ was chosen yielding 6y =6-6A. These

values were used in an exploratory search of the available A and y' parameter
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space. The results of which are presented in appendix B.1 A schematic
representation of the 3-HGBLR-site model where the site separation is less than

O is presented in figure V.4.

In order to parameterise the HGBLR potential as a disc —-1:0<%'<0-0, and
lambda is free to take the range —1-0<A <1-0. When A or x' take extreme
values such as A > 0-9 or %'<—0-9 the function is no longer well behaved. Thus
the ranges of A and ' considered were altered to -1-0<A<0-9 and
-0-9<%'<0-0. Both A and %' were incremented in steps of 0-1 yielding what is
effectively a coarse grid search over the available parameter space. For every
combination of the parameters A and y' the potential energy function for each
considered configuration was computed over a range of values of separation
0 <r<30A in steps of 0-1A. The numerical values of the location and value of
the minimum well depth energy and the ratio of well depth minimum for
configurations a, b and ¢ with respect to that of configuration d are listed in
appendix B.1 These data were subsequently used to create the contour plots of

figure V.5.

Examination of figure V.5, the contour map corresponding to the configuration d
(see figure V.5d) shows the value of the well depth minimum is constant for a
given value of A and does not depend on %'. For all other configurations

considered A and %' do not have such a simple relationship.

A closer inspection identifies a range of values A which appear promising,
namely, —0-2<A <0-2, with ' ranging —-0-902>%'>-0-80. Two further
similar searches were performed with A taking the above range of values with

resolution AL =0-1 and y' taking the above range with resolution Ayx'=0-01.
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d*

Figure V.4

A schematic representation of the 3-HGBLR-site model. The sites are arranged in
linear array, each represented by a circle here. This diagram illustrates the axial ratio

of the 3-HGBLR-site model where the sites are separated such that d* < .
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Figure V.5a

A contour map showing contours of constant well depth minimum for configuration a
of figure V.2. The map is drawn in the A, x' plane. The minimum contour value
plotted is V*=—1825 and the maximum is V' * = 0; contours are plotted at intervals

AV*=5.
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Figure V.5b
A contour map showing contours of constant well depth minimum for configuration b

of figure V.2. The map is drawn in the A, ¥' plane. The minimum contour value
plotted is 7*=—-30 and the maximum is ¥*=0; contours are plotted at intervals

AV*=1.
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Figure V.Sc
A contour map showing contours of constant well depth minimum for configuration ¢

of figure V.2. The map is drawn in the A, %' plane. The minimum contour value
plotted is ¥*=-370 and the maximum is V*=0; contours are plotted at intervals

AV*=2,
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Figure V.5d
A contour map showing contours of constant well depth minimum for configuration d

of figure V.2. The map is drawn in the A, ' plane. The minimum contour value
plotted is V*=—38 and the maximum is V*=0; contours are plotted at intervals

AV*=1.
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Each search is discriminated according to the value of A investigated. The site-
site separation between HGBLR centres is chosen to be consistent with the
distance of the energy well depth minimum in the end to end separation
(configuration d) of 16-2A obtained from the 32-Lennard-Jones-site model
because it is not affected by A over the reduced range of ' investigated. This
yields a site site separation value d =4-65A. Subsequently the value of 6y was
adjusted to bring the most favoured configuration, a, to the adopted distance of
closest approach accepted for the 32-Lennard-Jones-site site model due to the
arguments presented in section V.3, viz. 6-9A, according to the value of A

investigated.

The ratios of these well depth minima and the positions at which they occur have
been similarly calculated as before and are presented in appendix B.2. Through
inspection values of A =—-0-1 and x'=—-0-83 were selected; the corresponding
minimum well depth ratios being 30-6:12-2:8-5:1-0 for configurations a:b:c:d
occuring at separations 6-9A, 6-5A, 6-8A and 16-2A respectively and the
single site hard core radius taking a value 6y = 6-0A. This potential is illustrated

in figure V.6, and was the parameterisation used in the ensuing simulations.

Finally, the last parameter to be fitted is the well depth parameter €,. This
simply scales the well depths linearly. Thus it is a simple matter to choose a
value €9 =219-0 kK, leading to a minimum well depth of /'* = 6121 comparing
very favourably with that of the 32-Lennard-Jones-site site (see table V.1) for the

prefered configuration a.

The potential function for the four considered configurations of the 3-HGBLR-

site site potential with the parameters we have found above is shown in figure
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Figure V.6
A 3-HGBLR-site site representation of para-terphenyl as employed in the simulation:

6o =1-0and gy =1-0. The configurations identified in the legend correspond to the

configurations described in the text and illustrated in figure V.2.

1000

1 Oog @«ﬁﬁfm}}ﬁmﬁm&m;“”’”“"”’”””"" O a

-2000 | —*—b

¥ -3000 | B

-4000 1 ¢
-5000 |

-6000 { d
-7000 L

0 5 10 15 20 25

Figure V.7
A 3-HGBLR-site representation of para-terphenyl. The parameters used in this model

are those as described in the text. For the sake of clarity values of ¥ >100 have

been truncated to ¥ =100. For a key to the orientations see figure V.6 above.
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V.7 Comparison of figure V.3 with figure V.7 shows that with the exception of
the ¢ configuration, after correcting for location, the well depth minima compare
very favourably with those of the 32-Lennard-Jones-site site model. On closer
inspection it is clear that the well widths though, are not in such good agreement.
The HGBLR potential well widths are wider than those for the 32-Lennard-
Jones-site model. There are several approaches that we may try to compensate

for this discrepancy.

One approach may be to include a power term v in the scaling function €', as is
included in the Gay-Berne potential [10], such that the modified HGBLR

potential becomes;

Vinodified HGBLR (U1, 8, F,r) = €'Y (111, 85, F) (Vo (r) + V4 (liy, 82,7)}.  [V.6]

Here altering the valué of v again has an effect on the well widths, but when the
well depth is corrected the width returns to its original value. So it appears that

such an approach to scaling the well widths is fruitless.

Secondly, in the original Lennard-Jones 12-6 potential the energy well width may
be modified by the distance of closest approach o, for constant €;. In the case
of the HGBLR model for para-terphenyl the value of 6, has already been

chosen, so we do not have the freedom to reassign a value to o here.
For constant 6y and constant €, in a Lennard-Jones type potential, the well width

results from competition between the short range repulsive and long range

attractive components. A Lennard-Jones type potential may be written;

225



Vi = 430{(‘;—0)v - ("7)”} [V.7]

The repulsive part of the potential becomes progressively harder as the power v
in V.7 is raised. The long range attractive tail becomes progressively longer as
the index p is lowered. A degree of control over the potential energy well width
may therefore be exercised through a judicious choice of the parameters v and p.
However, for historical reasons the values v=12 and p =6 have been used and

are those we have used in the HGBLR potential.

More significantly perhaps, with the above parameters the length to breadth ratio
of the 3-HGBLR-site molecule is merely 2-2 to 1 compared to an axial ratio of
4-4 to 1 obtained for the Gay-Berne representation of para-terphenyl [1]. Both
with hard and soft ellipsoids it is generally considered the repulsive core of these
potentials should have an axial ratio of at least 3 to 1 before mesogenic ordering
is observed [11, 12]. It will be seen that the shape of the 3-HGBLR-site site
model hard core is spherocylindrical. Hard core models of unconstrained
spherocylinders do not exhibit any orientationally ordered phases unless they
have an axial ratio of L/ D >3 [13]. Thus we may at first suppose it unlikely
that we would observe liquid crystal phases with the 3-HGBLR-site site model.
This of course would be an unwise conclusion. Indeed, we have shown through
earlier simulations that both single site rod-like and disc-like HGBLR centres

(with an aspect ratio close to unity) form orientationally ordered phases.
Thus we have presented a tractable methodical approach which we have used to

parameterise the 3-HGBLR-site site model to represent the 32-Lennard-Jones site

model of para-terphenyl. It may be possible to arrive at a better parameter set
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using say, the method of least squares but this has not been attempted.
Alternatively a simple approach which yields not altogether unreasonable well
depth minima and locations has been employed. The following values are
obtained:
oo =6-0A;
site-site separation d = 4-65A;

A=-0-1;
x'=-0-83;

g9 =219-0 kK;

where k; is the Boltzmann constant and the other symbols have their usual
meaning. The equivalent reduced site-site separation is d*=0-775. The same
parameter set has been employed in both simulations i.e. (a) with the twisted
central site with respect to the coplanar end sites, and (b), the all coplanar site
model. It is interesting to see what difference removing the twist of the central
site has on the potential function. These differences may be illustrated by
comparing figures in the range of V.6 to V.15 and additionally a numerical

comparison of the well depth minima and locations is provided in table V.1.

Examining table V.1 reveals that only the location of the well depth minimum of
the prefered configuration a is displaced by having an all coplanar site
configuration, with a slightly reduced distance of closest approach of 6-8A. We
may have anticipated this result, because the HGBLR potential has the smallest
hard core radius when the site symmetry vectors and intermolecular vector scalar
products all take the value unity. This situation obtains for configuration a of an
all coplanar model. However, inclusion of the twisted site destroys the higher

symmetry of the 3-HGBLR-site model causing some scalar products to take
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values other then unity, thus increasing the effective hard core radius of these

interactions.

The values of the well depth minima have altered in all cases. The prefered
configuration a has a well depth minimum 33% deeper than that of the twisted
site model. Interestingly, for the remaining configurations the well depth of the
all coplanar model is not less than that of the twisted central site model. For
configuration b, the well depth minimum is almost 7% greater, for configuration
¢ it is almost 48% greater than that of the twisted central site model, there only
being a small difference between the two configurations d.

Figures V.6 and V.7 show graphs of potential energy against distance for the
twisted central site model in terms of the reduced units actually employed in the
simulations and for the same fully parametersied model respectively. Figures V.8
and V.9 show similar graphs for the all coplanar site model. The deeper well
depth of the all coplanar configuration as expressed in table V.1 is clearly visible
in figures V.8 and V.9.

In order to examine the shape of the hard core of the two 3-HGBLR-site site
models we have plotted their potential of interaction in terms of a contour map
both in the y-, z-planes and x-, y-planes using the Cartesian convention adopted
in figure V.1. These plots can be found as figures V.10-V.13. Furthermore, we
have also visualized each potential as a three dimensional orthographic

projection; figures V.14 and V.15.
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Figure V.8
As for figure V.6 but the potential displayed is a representation of the all coplanar 3-

HGBLR-site site model.
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Figure V.9
As for figure V.7 but the potential displayed is a representation of the all coplanar 3-

HGBLR-site site model.
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Figure V.10
A contour map of the field of potential energy between a pair of 3-HGBLR-site

molecules, with the central site twisted with respect to the coplanar end sites, as
described in the text. The contours are drawn in the y-, z-plane, using the Cartesian
convention applied in figure V.1, and the x-direction out of the paper as indicated.
One molecule is held with its centre of mass fixed at the origin while the other is
rotated around the former in the plane of the paper as indicated by the small
schematic diagram. Contours are drawn at intervals of AV*=0-3 in the range
V*=-4-0to V*=-0-1. The parameters are those described in the text and used
in the 3-HGBLR-site site simulation. Knowing that individual HGBLR centres have an
approximately spherical hard core, the spherocylindrical shape of the 3-HGBLR-site

hard core is apparent in this contour plot.
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Figure V.11
A contour map of the field of potential energy between a pair of 3-HGBLR-site

molecules, with the central site twisted with respect to the coplanar end sites, as
described in the text. The contours are drawn in the x-, y-plane, using the Cartesian
convention applied in figure V.1, and the z-direction is out of the paper is indicated.
One molecule is held with its centre of mass fixed at the origin while the other is
rotated around the former's molecular long axis as indicated in the small schematic
diagram. In this schematic diagram the sense of the coplanar (only) HGBLR site
symmetry axes are denoted X; for molecules 1 and 2 respectively, according to the
adopted convention, to aid visualisation of the molecular configuration. Contours are
drawn at intervals of AV*=3-0 in the range V*=-27-0 to V*=0-0. The
parameters are those described in the text and used in the 3-HGBLR-site site
simulation. The approximately spherical hard core of the HGBLR single site model is

clearly seen extending to a radius of 6y =1-0.
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Figure V.12
A contour map similar to figure V.10 but with all the HGBLR sites oriented coplanar.

Contours are drawn at intervals of AV*=0-5 in the range V*=-7-5to V*=-0-5.
For an explanation of the small schematic diagram and axes convention see figure

V.10.
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Figure V.13

A contour map similar to figure V.11 but with all 3-HGBLR-sites per molecule oriented
coplanar Contours are drawn at intervals of AV*=3-0 in the range V*=-33-0 to
V*=0-0. For an explanation of the small schematic diagram and axes convention

see figure V.11.
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Figure V.14
A three dimensional orthographic representation of figure V.10. See figure V.10 for

details of the orientation and parameterisation of the 3-HGBLR-site site model.
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Figure V.15
A three dimensional orthographic representation of figure V.12. See figure V.12 for

details of the orientation and parameterisation of the 3-HGBLR-site site model.
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V.S Calculating the Reduced Moment of Inertia Tensor

In order that we may represent the dynamics of a para-terphenyl molecule

correctly by our 3-HGBLR-site potential, we need to know its moment of inertia

tensor I given by equation [V.8] below;

Ip Ly I
1=|1, I, I.| [V.8]
Iy I, I

If we use the following notation convention:

X=X
Y= X,
zZ—> X3, [V.9]

then the components of a general rigid body expressed with respect to a fixed

Cartesian reference frame within the body may be denoted;

Iy = jVOIumep(r)(rZS it — %% )dVolume, [V.10]

where p is the density of the rigid body as a function of the position vector r and
d is the Kronecker delta function. For our 32-Lennard-Jones-site representation
if we represent the carbon and hydrogen atoms as discrete mass entities at the

atomic centre of mass positions equation [V.7] reduces to;

Ijp = ch(rzﬁjk—xjxk)+ th(rzﬁjk—xjxk), [V.11]
carbons hydrogens

where m, and mj, are the mass of carbon and hydrogen atoms respectively and

take the values m, =12-0 umu and »7, =1-0 umu. Similarly the mass of the 32-
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Lennard-Jones site model of para-terphenyl may be readily computed from the

expression;

m= ch+ th. | [V.12]
carbons hydrogens
The initials "umu" stand for unified mass units. A conversion to SI units is

provided by the relationship;
lumu =1-66x10%"kg. [V.13]

Using equations [V.12] and [V.13] the mass of the 32-Lennard-Jones-site
representation of para-terphenyl is found to be m=3-82x10%kg. Using a
Cartesian coordinate reference frame equivalent to that of figure V.1 applying
equation [V.11], the moment of inertia tensor corresponding to the 32-Lennard-

Jones-site para-terphenyl molecule was found to be;

3281-30 46-52 0
I=| 46-52 3083-27 0 umu A2, [V.14]
0 0  273-35

Clearly the moment of inertia tensor in this reference frame is not diagonal. For
ease of calculating the angular velocities from angular momenta it is convenient
to have the moment of inertia tensor in a diagonal form. This corresponds to
rotating the reference frame used in the calculation of [V.11] to one in which the
products of inertia (the off diagonal components of [V.8]) vanish. Diagonalising
the inertia tensor and computing the respective eigenvectors of the solution is
found to correspond to a rotation of the original reference frame of 12-5° about

the molecular long or z-axis. This now becomes the body fixed axes system for
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the representation of the para-terphenyl molecules with respect to the original
reference frame of figure V.1. Molecules represented in this manner have the

diagonal inertia tensor;

3291-68 0 0
I'=| 0 3072-89 0 | umuAZ [V.15]
0 0 273.35

The equivalent reduced moment of inertia may be calculated from the

relationship;
I*; =1y /mo?. .16]
y UJ o

Using [V.16] the reduced moment of inertia tensor in diagonal form is found to

be;

0-366 0 0
I*=| 0 0332 0 | [V.17]
0 0 0-030

Thus the principle moments of inertia of the 32-Lennard-Jones-site model are
found to be I,, =0-366, I,, =0-342 and I,, =0-030. These values have been
used in both 3-HGBLR-site site simulations in solving the rotational equations of

motion.
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V.6 Preliminary Simulation of the 3-HGBLR-Site Representation of
Para-Terphenyl.

Preliminary simulations were performed with N =108 particles in order to find

an appropriate density where, at low temperature, cavities did not form in the
simulation box. Both the 3-HGBLR-site models were simulated using the
method of Price et al [14]. Mathematical details specific to the HGBLR potential
are explicated in appendix A. The other simulation techniques used were those
as described in section II for molecules of arbitrary symmetry. Both models were
parameterised as described in section V.4. Some further details of the

simulations are described in the subsections below.

V.6.1 Implementation of a Cutoff

In order to save time it was decided to implement a cutoff in the multisite
simulations: the multisite simulations were run on scalar machines. It is
necessary to apply the cutoff to the central site in deciding whether to include a
molecule in a calculation or not. If a cutoff is simply applied to all sites there is a
chance that the molecular separation will allow some sites to be encompassed
within the cutoff, while others of the same molecule are not. Subsequent
application of the PBCs and nearest image convention (see section I1.3.1) may
cause some molecules to become fragmented, sometimes resulting in non-bonded
sites being mapped quite close to each other leading to high contributions to the

potential energy or alternatively incorrect forces and torques being calculated.

For the reasons outlined in section II.3.4, the cutoff was chosen to be half the

simulation box edge and the potential was shifted to 7 * = 0 at the cutoff.
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V.6.2 Choice of Time Step

At high temperatures with the initial chosen time step of As*=0-001 the system
did not stay on the same constant energy hypersurface. Consequently the time
step was reduced to Ar*=0-00075 equivalent to a real time of ¢ = 5-06x10s.
This was found to give tolerable energy conservation based on a criterion of
fluctuations of not more than 1 part in 1000 of the total energy being considered
acceptable away from phase transitions. We note that this value is half the
previous lowest time step used for the single-site simulations: the moment of
inertia about the molecular long axis will allow rapid rotation of this axis, the

correspondingly high angular velocities will require a shorter time step in order to

solve the finite difference equations of motion to sufficient accuracy.

V.6.3 Choice of Density

It was necessary to run some preliminary simulations to arrive at a reasonable

density at which to simulate the system. As before with the single-site
simulations a density too low resulted in cavities being formed in the simulation
box when the system had been cooled sufficiently. Alternatively, and not
observed in the single-site simulations, at a density too high, the system was
found to have an unacceptably high (B) order parameter (the simulations were
started from an ordered system, see section V.7), even at high temperature.
These systems were not found to exhibit an isotropic phase. Therefore an
intermediate density was selected; p* = 0-33 which is equivalent to 584 kgm'3.
This is somewhat less than the density at which typical calamitic mesophases
form [15]. However, at this simulation density, even at low temperatures cavities

were not observed forming in the simulation box.
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Interestingly the value of the density selected for the 3-HGBLR-site site model is
very nearly one third of that used for a single-site model. While we would expect

the value to be lower, being close to a third is almost certainly fortuitous.

V.7 Details of of Para-Terphenyl Simulations

After identifying a suitable simulation parameter set: p*=0-33; As*=0-00075;
equivalent simulations of N =256 particles with (a), a system with the central
HGBLR site twisted as described in section V.2 and (b), an all coplanar ring
system were performed in the microcanonical ensemble. The simulations were
each run for a total of 40,000 steps during which simulation averages were

collected every 100 steps for the final 20,000 steps.

The simulations were started from an fcc lattice with each particle orientated at
20° to the simulation cell z-direction by rotating the space fixed molecular x- and
z-axes according to the Cartesian convention adopted in figure V.1. The tilt was
applied in order to start the simulation at the appropriate density. With long
molecules it is found that the system can be started at the density of interest by
inclining the molecules to the simulation box edge, thus eliminating the need to
scale the system density followed by a necessary equilibration period. The
simulations were started from an ordered system so that the subsequent evolution
of the system to an isotropic phase could be confirmed. The particles were given
sufficient translational and angular velocity (not constrained perpendicular to the

molecular long axis in this case) that the original lattice rapidly melted.
The output of one simulation was used as the input to another after the

translational velocities, only, had been scaled by a factor 0-9, using the same

method as described in section IV.3.1 Scaling the translational velocities alone
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allows identification of the re-attainment of equipartition of the kinetic energies
of rotation and translation, providing a guide to the state of equilibration of the

system.

In the following sections we present the results of these simulations, paying
particular attention to the structure of the phases observed. Specifically we have
individually calculated the degree of ordering of all three molecular semi-axes as
defined in the convention adopted in figure V.1, i.e. (Pz (x; )) where x; represents
the z-, X- or y-molecular semi-axes. Additionally when presenting the structural
distribution functions based on g(r *) we have resolved these with respect to the
average molecular semi-axes directions. We shall denote these functions
g(r*(d(x;))) for g(r*) resolved parallel with respect to the directions ii(z),
fi(x) and fi(y). The reasons behind such a detailed investigation of the structural
distribution functions and mean square displacements shall become apparent as

we examine the results of the simulations in sections V.8 and V.9 following.
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V.8 Para-Terphenyl Simulation Results: Comparison of the Twisted
Central Site and All Coplanar Site 3-HGBLR-Site Site models.

V.8.1 Potential Energy and the Second Rank Orientational Order

Parameter

Values of the average potential energy per particle, (V *IN ) and the second rank
orientational order parameter, <Pz (x; )) (as a function of each of the three
orthogonal molecular semi-axes), for the twisted central site and all coplanar site

3-HGBLR-site site models are presented in tables V.2 and V.3 respectively.

Figures V.16 and V.17 illustrate the behaviour of (V' */N ) with respect to the
reduced temperature of each system. Figure V.16 presents evidence for a strong
first order phase transition in the discontinuity of the potential energy curve. The
potential energy function decays approximately linearly from high temperature
until (T*) ~4-5. Thereafter there occurs a sharp discontinuity with evidence of
hysteresis effects until (T *) =4-0. Examination of table V.2 and figure V.16
shows that after cooling to (T*)=4-5 at the onset of the transition the
temperature is seen to rise again despite a continuing decrease in the potential
energy. After the transition period (¥ */N) continues to decay in a linear

fashion as the temperature is reduced.

Figure V.17 shows that for the all coplanar site model from high temperature
(V*IN) decays approximately linearly until (T*)~6-3. At lower temperatures
strong evidence for a first order type phase transition is presented via the van der
Waals loop exhibited by the variation of (V' */N) against (T*). After the
transition, (V' */N) appears to decrease approximately linearly once again upon

further cooling below (T*)~ 6-0.
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(T*) (v */N) (B(2)) (B(x)) (B(y))
10-0+0-2 -28-9+£0-6 0-060-02 0-06+0-02 0-05+0-02
9.54+0-2 -29-9+0-6 0-070-02 0-060-02 0-06+0-02
8-9+0-2 -30-6+0-5 0-05+0-02 0-06:0-02 0-05+0-02
8-340-1 -31-4+0-4 0-08+0-03 0-07£0-03 0-06+0-02
7-8+0-2 -32:2+0-5 0-07£0-02 0-07£0-02 0-06+0-02
7-3+0-2 -33-3£0-5 0-06+0-02 0-07::0-02 0-05+0-02
6-9+0-1 -33-8+0-4 0-08+0-03 0-07£0-02 0-06:0-02
6-5+0-1 -34-50-4 0-09::0-03 0-080-03 0-06+0-02
6-10-2 -35-3+0-5 0-10+0-03 0-09::0-03 0-06£0-02
5.7+0-1 -36-0+0-4 0-08+0-03 0-10:0-03 0-07+0-02
5-420-1 -36-7+0-4 0-09::0-03 0-12:£0-04 0-06+0-02
5-2+0-1 -37-3+0-4 0-10::0-03 0-12::0-04 0-07+0-03
4-9+0-1 -37-9+0-4 0-10:0-04 0-110-04 0-07+0-02
4-70-1 -38-7+£0-4 0-14+0-05 0-20£0-07 © 0-08+0-03
4-5£0-1 -39-2+0-4 0-11+0-04 0-18+0-06 0-08+0-03
4-5+0-1 -40-6+0-4 0-18+0-02 0-37+0-05 0-12+0-03
4-6+0-2 422405 0-23+0-03 0-53+0-04 0-17+0-03
4-6+0-1 -43-4+0-4 0-26+0-05 0-59:£0-03 0-20+0-03
4-3+0-1 -44-0+0-4 0-27::0-05 0-60-:0-03 0-22+0-03
4-4+0-1 -45.3+0-4 0-34:£0-04 0-67+0-02 0-29+0-04
4-3+0-1 -46-3+0-4 0-27+0-03 0-72::0-02 0-23+0-02
4-3£0-1 -47-5+0-4 0-28:+0-03 0-76+0-03 0-24+0-03
4-3+0-1 -48-7+0-3 0-36+0-04 0-79::0-02 0-31+0-03
4-3+0-1 -50-0::0-4 0-38+0-04 0-82::0-02 0-33+0-04
4-2+0-1 -50-8+0-3 0-43+0-03 0-85+0-01 0-38+0-03
4-2+0-1 -52-1+0-4 0-57+0-03 0-86+0-01 0-51+0-03
4-24+0-1 -53-4+0-4 0-69:0-02 0-87+0-01 0-62+0-02

Table V.2

Average temperature (T*), average potential energy per particle (V*/N) and

molecular axes order parameters <Pz(z)), (1’2(x)) and (1’2 (y)) for the rotated central

site 3-HGBLR-site site model (continued overleaf).
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(7%) (7*/N) (B(2)) (B(x)) (B)
4-3+0-1 -54-6+0-4 0-81+0-01 0-88+0-01 0-73+0-02
4-3+0-1 -55-5+0-3 0-83+0-01 0-89+0-01 0-76+0-01
4-0£0-1 -56-2+0-3 0-83+0-01 0-896+0-009 0-77+0-01
3-8+0-1 -57-0+0-3 0-86+0-01 0-90+0-01 0-80+0-01
3-7+0-09 -57-6+0-3 0-871+0-007  0-910+0-007  0-814+0-009

3-58+0-09 -58-2+0-3 0-876+0-005  0-920+0-006  0-823+0-008
3-39+0-08 -58-8+0-2 0-877+0-004  0-924+0-007  0-828+0-007
3-25+0-08 -59-3+0-2 0-877+0-004  0-930+0-005  0-833+0-005
3-10+0-08 -59-8+0-2 0-880+0-004  0-932+0-006  0-835+0-007
2-95+0-08 -60-2+0-2 0-880+0-004  0-937+0-005  0-840+0-006
2-83+0-07 -60-6+0-2 0-884+0-004  0-940+0-005  0-845+0-006
2-70+0-07 -61-0+0-2 0-883£0-003  0-943+0-004  0-846+0-005
2-60+0-07 -61-4+0-2 0-883£0-003  0-948+0-005  0-850+0-005
2-47+0-06 -61-8+0-2 0-886+0-004  0-951+0-004  0-855+0-005
2-35+0-06 -62-1+0-2 0-882+0-003  0-954+0-004  0-852+0-004
2-29+0-06 -62-5+0-2 0-887+0-003  0-955+£0-004  0-858+0-005
2-19+0-06 -62-8+0-2 0-886+0-003  0-957+0-004  0-859+0-004
2-13+0-06 -63-2+0-2 0-884+0-003  0-958+0-004  0-857+0-005
2-03+0-05 -63-6+0-2 0-885+0-003  0-961+0-003  0-860+0-004
2-32+0-07 -63-8+0-2 0-886+0-003  0-964+0-004 0-863+0-004
1-95+0-05 -63-9+0-2 0-885+0-003  0-963+0-003  0-861+0-004
1-87+0-05 -64-2+0-1 0-886+0-003  0-964+0-003  0-862+0-004
1-79+0-05 -64-5+0-1 0-885+0-002  0-996+0-003  0-863+0-004

Table V.2 (continued)

245



(7*) (7*/N) (B(2)) (B(x) (BG)
9-9+0-2 -29-9+0-6 0-06+0-03 0-07+0-02 0-06+0-02
9-4+0-2 -30-8+0-6 0-07+0-02 0-07+0-02 0-06+0-02
8-7+0-2 -31-6+0-6 0-07+0-03 0-08+0-03 0-06+0-02
8-3+0-2 -32-7+£0-5 0-07+0-02 0-07+0-02 0-06+0-02
7-8+0-2 -33-5+0-5 0-07+0-02 0-08+0-03 0-06+0-02
7-4+0-2 -34-5£0-5 0-06+0-02 0-08+0-03 0-07+0-02
7-0+0-2 -35-5+0-5 0-08+0-03 0-10+0-03 0-07+0-03
6-7£0-2 -36-3+0-5 0-09+0-02 0-14+0-06 0-08+0-03
6-3+0-2 -37-2+0-5 0-09+0-03 0-11+0-04 0-07+0-03
6-2+0-2 -38-4+0-5 0-11+0-03 0-23+0-05 0-10+0-03
6-3£0-3 -40=x1 0-16+0-03 0-4+0-1 0-13+0-03
6-3+0-2 -42-0£0-7 0-18+0-03 0-49+0-05 0-17+0-03
6-4+0-3 -44-4+0-8 0-21+0-04 0-60+0-05 0-20+0-03
6-5+0-2 -46-7+0-7 0-26+0-04 0-68+0-03 0-24+0-04
6-4+0-2 -48-0+0-7 0-22+0-02 0-71£0-03 0-21+0-03
6-7+0-2 -50-7£0-7 0-28+0-03 0-79+0-02 0-27+0-03
6-6+0-2 -52-2+0-7 0-29+0-02 0-82+0-02 0-27+0-02
6-6+0-2 -53-9+0-7 0-28+0-03 0-85+0-02 0-27+0-03
6-6+0-2 -35-9+0-6 0-29+0-02 0-88+0-01 0-27+0-02
6-5+0-2 -57-4+0-6 0-29+0-03 0-91+0-01 0-27+0-02
6-3+0-2 -58-6+0-6 0-29+0-02 0-92+0-01 0-28+0-02
6-1+0-2 -59-7+£0-6 0-28+0-02 0-927+0-009 0-27+0-02
6-0+0-2 -61-0+0-5 0-36+0-04 0-941+0-006 0-35+£0-04
5-8+0-2 -61-9+0-5 0-35+0-04 0-945+0-006 0-33+0-04
5-7£0-2 -63-1+0-5 0-46+0-03 0-947+0-006 0-44+0-03
5-5£0-1 -64-1+0-4 0-29+0-02 0-955+0-004 0-28+0-02
5-3+0-1 -64-9+0-4 0-32+0-04 0-960+0-004 0-31+0-03

Table V.3

Average temperature (T*) average potential energy per particle (V*/N) and
molecular axes order parameters (Pz (z)), (1’2(x)> and (Pz(y)) for the all coplanar 3-

HGBLR-site site model (continued overleaf).
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(T*) {7*/N) (B(2)) (B(x)) (By)
5-1+0-1 -65-7+0-4 0-36+0-02 0-963+0-003 0-35+0-02
4.8+0-1 -67-3+£0-4 0-31+0-03 0-966+0-003 0-30+0-03
4-7+0-1 -67-1+0-4 0-33+0-03 0-968+0-003 0-32+0-03
4-6+0-1 -68-1+0-4 0-42+0-02 0-968+0-003 0-41+0-02
4-5+0-1 -69-0+0-3 0-40+0-02 0-971+0-002 0-39+0-02
4-4+0-1 -69-9+0-3 0-36+0-01 0-971+0-002 0-36+0-01
4-2+0-1 -70-6:0-4 0-37+0-02 0-973%0-002 0-36:0-02
4-0£0-1 -71-2+0-3 0-40+0-03 0-975+0-002 0-40+0-03
3-9+0-1 -71-8+0-3 0-46+0-01 0-976+0-002 0-45+0-01
3-7+0-1 -72-4+0-3 0-501+£0-009  0-978+0-002  0-495+0-009

3-51+0-09 -72-9+0-3 0-50+0-01 0-979+0-002 0-50+0-01

3-38+0-09 ~73-4+0-3 0-468+0-006  0-980+0-002  0-463+0-006
3-24+0-09 -73:9+0-3 0-50+0-02 0-981+0-002 0-50+0-02

3-17+0-09 -74-7+0-3 0-51+0-01 0-982+0-001 0-51+0-01

3-06+0-09 -75-1+0-3 0-515+0-007  0-983+0-001  0-511+0-007
2-99+0-08 -75-7+0-2 0-517+£0-005  0-984+0-001  0-512+0-005
2-82+0-08 -76-0+0-2 0-515+0-004  0-985+0-001  0-511+0-004
2-76x+0-07 -76-6+0-2 0-527+0-007  0-985+£0-001  0-524+0-007
2-67+0-08 -77-1+0-2 0-534+0-008  0-986+0-001  0-530+0-009
2-55+0-06 -77-5+0-2 0-530+0-006  0-986+0-001  0-526+0-006
2-47+0-07 -78-0+0-2 0-535+0-005  0-988+0-001  0-532+0-005
2-37+0-07 -78-3+0-2 0-532+0-005  0-988+0-001  0-529+0-005
2-28+0-05 -78-7+0-2 0-538+0-006  0-988+0-001  0-535+0-006

Table V.3 (continued)
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Figure V.16
Average reduced energy per particle (V* /N ) against reduced temperature for the

twisted central site system of N =256 3-HGBLR-site site particles on cooling.
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Figure V.17
Average reduced energy per particle (V*/ N ) against reduced temperature for the all

coplanar site system of N =256 3-HGBLR-site site particles on cooling.
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Figures V.18 and V.19 illustrate the behaviour of the (B;(x;)) against (T*) on
cooling for both systems studied. Examining both figures V.18 and V.19 we note
that initially at high temperature there is no ordering of the average molecular
semi-axes directions apart from a small residual value due to system size effects

and the averaging of a positive quantity (see section I1.4.2).

Examining figure V.18 we observe, that around the same temperature of the
indicated transition in figure V.16, all the (B (x;)) begin to rise rapidly. The
change is first observed in the ordering of (P2 (x)). Examination of table V.2
indicates a degree of hysteresis with (1’2 (x)) fluctuating between approximately
(Pz(x)) =0-2 and <I’2(x)) =0-6 over the temperature range 4-62>(T*)24-5.
Thereafter as the potential energy of the system is lowered (Pz (x)) rises more
slowly but consistently to obtain a value <P2(x)> ~0-9 at (T *) =4-3. Similar
behaviour is indicated for <P2 (z)) and <P2(y)>, the onset of ordering occurring at

lower temperatures.

At first sight it may seem quite disturbing that the degree of ordering of each
molecular semi-axis is different at many state points. As the three semi-axes are
mutually orthogonal a degree of redundancy is provided by the third semi-axis.
We would therefore expect two coplanar semi-axes to show identical ordering
results. However this is not observed in figure V.18. This is because of the way
in which the ordering of each of the semi-axes is calculated. The direction of
each molecular semi-axis is known at the initial configuration. Subsequently,
coordinates describing the evolution of the orientation of each molecular semi-
axis vector are recorded at regular intervals (every 100A¢). A separate Q tensor
is then constructed for each semi-axis at each saved configuration. It is the

average of the largest eigenvalues of each of these Q tensors per average semi-
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Figure V.18
Second rank orientational order parameter applied to the molecular long axis and both
orthogonal molecular semi-axes for the twisted central site system of N =256 3-
HGBLR-site site particles. The following key applies: closed squares, (Pz(z)); open

squares, (Pz(x)>; open diamonds, (1’2(y)> according to the Cartesian convention of

figure V.1.
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Figure V.19
As figure V.18 but for the all coplanar 3-HGBLR-site site system. For legend see

figure V.18.
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axis direction over the entire state point simulation run that provides the semi-
axis order parameter (I’Z(xi)). The observed differences between the degree of
ordering of each molecular semi-axis can be explained according to the statistical
nature of each measurement. Although the three semi-axes are orthogonal in an
individual molecule, there is no requirement for the three rotations yielding the
semi-axes directors fi(z), A(x) and A(y) to be orthogonal. Indeed, except in
highly ordered systems, the effective averaging performed over all molecules for
each separate semi-axis makes this unlikely. In fact, it can be seen from figure
V.18 that as the system becomes more ordered (Pz(y)) - (Pz (z)); <P2(x))

however always remains more ordered.

Similarly near to the approximate transition temperature indicated in figure V.17,
we observe fluctuations in the behaviour of (Pz (x)) in figure V.19, closely
followed by fluctuations in (I’2 (z)) and <P2 (y)) as the system is cooled. Into the
indicated transition the nature of the van der Waals loop leads to an erratic
temperature behaviour of the system as the potential energy is reduced as can be
seen from table V.3. The second rank order parameter (Pz (ﬁ(x))) rises abruptly
over a very small temperature range with evidence of hysteresis consistent with
the van der Waals loop exhibited in the behaviour of (V' */N). Afier this rapid
rise in (1’2 (ﬁ(x))) the function then tends more slowly towards a value
(B(A(x)))=1-0. In stark contrast to that observed with the twisted central site
model, ordering of the HGBLR site symmetry axes clearly dominates the
ordering of the other molecular semi-axes. (Pz(ﬁ(z))) and (1’2(ﬁ(y))> behave
very erratically at the transition temperature and thereafter for a range of (T*) ~ 3
on cooling. These latter two axes have an average degree of equivalent order at

all temperatures converging on a maximum value of (B ) ~ 0-54.
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It appears therefore that in both cases we have evidence for a phase transition
from an orientationally disordered to ordered phase. It is difficult to identify the
precise transition temperature when employing the microcanonical ensemble for
reasons outlined in chapter IV. However, it is clear from the data presented in
table V.2 and figure V.16 that the transition occurs in the range 4-0 < (T*) <5-0
for the twisted central site model. Despite lacking a precise location of the phase
transition we may make a rough estimate of the entropy of transition. By
approximating straight lines to the potential energy curve we estimate the entropy
of transition to be approximately A(V */N)/(T*)~4-4 taking the transition
temperature as (T *)=4-5.

For the all coplanar model we note that a transition is indicated in the range
6-0<(T*)<7-0. Applying the same method as above, taking the transition
temperature as (7*) = 6-5, estimated at the centre of the van der Waals loop, we

find A(V'*/N)/(T*)~3-5 for the all coplanar site model.

With the information presented above we may begin to point out some
differences between the two models investigated. Firstly, the transition
temperature of (T*)~4-5 for the twisted central site model compared to
(T *) ~ 6-5. Looking at the evidence provided by table V.1 we might expect the
onset of ordering to occur at a higher temperature for the all coplanar site model
due to the magnitude of the well depth minimum, of molecules approaching in

configuration a, compared to the twisted central site model.
Additionally, a comparison of the entropies of transition of each system may be

made. However, these results are only very approximate. A strong first order

transition is indicated by the van der Waals loop of figure V.17 and the entropy

252



of transition is estimated as A(V */N)/(T*)~3-5 for the all coplanar system
compared to A(V*/N)/(T*)~4-4 for the twisted central site system which
does not appear to exhibit the van der Waals loop. It is clear though, that in both

cases we are looking at a first order transition.

Perhaps the most striking difference between the two systems is recorded in the
behaviour of the molecular semi-axes order parameters (Pz(x,-)) as a comparison
of figures V.18 and V.19 clearly illustrates. In order to investigate the
differences between the structure of the two ordered systems we have eval;lated
the radial distribution function and the second rank orientational correlation

coefficients. These are presented, for selected state points, in the next section.

V.8.2 Radial Distribution Function and Second Rank Orientational

Correlation Coefficient

Due to fluctuations in the temperature it is not possible to obtain a precise
measurement of this variable as an inspection of tables V.2 and V.3 reveals.
Where two similar state points with respect to temperature are concerned
therefore, the potential energy per particle is additionally quoted in order to

remove any ambiguity about the state point under consideration.

Figure V.20 shows examples of the radial distribution function at (7*)=4-7 and
(T*Y=4-2 (F*/N)=-52-1) and (T*)=1-79. Note in both figures V.20 and
V.21 the first peak in g(r*) recorded at the lowest temperature has been
truncated so that detailed structure is not swamped due to an inappropriate choice

of scale.
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Curves recorded at (T*)=4-7 and (T*)=4-2 ((*/N)=-52-1) both exhibit
liquid-like behaviour. The first peak in these curves occurring at r*=~ oy
corresponds to the first shell of nearest neighbours surrounding a given molecule.
On decreasing the temperature the first peak in all g(r*) of figure V.20 is seen to
increase. At the highest temperature there appears to be a weak second peak
occurring just before r*=2c0,. The origins of this peak are not quite clear.
However, the peak is not strong and may be due to a tendency towards weak
hexagonal ordering whereby a second shell of nearest neighbours would form at a
distance 1-730y. Little further structure is to be seen in g(r*) recorded at
(T*)=4-7. At (T*)=4-2 (P */N)=-52-1) the second peak in g(r*) at
r¥<2o0y is seen to disappear as the temperature is lowered. The g(r*) now
takes on a regular decaying periodic wave structure characteristic of a dense
liquid. A second peak is now seen to form at 7* ~ 230y which may be due to a
second shell of nearest neighbours, but contributions to this peak may also come
from molecules arranged in an end-to-end configuration. For molecules close

packed in this configuration a peak at close to r* =2-2 0y is to be expected.

Certainly at (T *) =1-79 a sharp peak is observed at r*~2-20, and most
probably corresponds to molecules in an end-to-end configuration. At this lowest
temperature g(r*) now begins to show detailed structure. Interestingly the
original second peak in the high temperature g(r*) occurring at »* <20y, has
been replaced by a deep trough which has been displaced to higher »* at lower
temperature. It may be that the likelihood of molecules adopting this separation
at low temperature is small for an ordered system. This behaviour also occurs for

the all coplanar model as evidenced by figure V.21.
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Figure V.21 illustrates the behaviour of g(r*) recorded for the all coplanar
system at temperatures (T*)=6-3 ((V'*/N)=-37-2), (T*)=5-3 and
(T*)=2-28. The same behaviour observed for the two highest temperatures
(T*)=4-7 and (T*)=4-2 ((V */N)=-52-1) of figure V.20, described above is
seen for the g(r*) recorded at (T*)=6-3 ((V */N)=-37-2) and (T*)=5-3 in
figure V.21 respectively.

Differences between the two models are seen in the detail recorded in the g(r *)
at low temperature. Peaks at longer range than those corresponding to the first
three or so shells of nearest neighbours of molecules in g(r*) are difficult to
assign and may be composed of contributions from many different arrangements
of molecules. Comparing the low temperature g(r*) of figures V.20 and V.21
however, we can observe that the all coplanar model displays fine structure at
long range compared to the twisted central site model. Qualitatively, though, the
short range structure up to r*=~2-6, is noticeably similar in both figures,
although the first trough occurring in g(r*) at (T*)=1-79 is broader than that
occurring in the low temperature g(r*) of figure V.21, and additionally the
second peak of these respective curves is broader in figure V.21 than in figure

V.20.

In order to compare the structure exhibited by the two models further we have
examined components of the radial distribution function resolved along the
average semi-axes directions fi(z), fi(x) and fi(y). Figures V.22 and V.23
present the resolved functions gj(n*(fi(x;))) at temperatures (T*)=4-7 and
(T*)=6-3 ((F*/N)=-37-2) for the twisted central site and all coplanar site
models respectively. Clearly little structure is presented parallel to the average

molecular semi-axes directions at high temperature. However, this is not so
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g(r*)

Figure V.20
Radial distribution function, g(r *) for the twisted central site 3-HGBLR-site site model

at selected temperatures: open squares, (T*)=4-7; open diamonds, (T*)=4-2

(V */N)=-52-1); closed diamonds, (T*)=1-79.

Figure V.21
Radial distribution function, g(r*) for the all coplanar 3-HGBLR-site site model at

selected temperatures: open squares, (T*)=6-3 ((V'*/N)=-37-2); open
diamonds, (T *) = 5-3; closed diamonds, (T *) = 2-28.
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surprising when the average directions i(z), A(x) and A(y) are not well defined
we would expect to see little structure in functions resolved along these

directions. These figures are included here for completeness.

Figure V.24 illustrates the behaviour of the gl(q *(ﬁ(x,-))) at lower temperature
when (Pz(x)> =0-60 for the twisted central site system. Examination of figure
V.24 reveals the appearance of small oscillations in all the g(s*(f(x;))). The
effect is most pronounced in the average direction parallel to the site symmetry
axes which has the highest degree of order; (Pz(z)> =0-27 and (Pz(y)) =0-22.
The oscillations are weak in amplitude ranging approximately 0-9 < gj(r*)<1-1,
with the exception of the final peaks. These are of increased magnitude and one
possible reason for this anomaly has been put forward in chapter IV, section
IV.3.2.2. The oscillations in the g(f*(x;)) indicate the development of a
layered structure along all the directions fi(z), fi(x) and fi(y). We note that this
ordering is most apparent along the direction fi(x) and less intense along ii(y)
and then fi(z) respectively. It would seem reasonable to expect a more well
defined layered structure parallel to those directions that exhibit a higher degree
of order. However, figure V.24 reveals that g (r] * (ii(y))) seems to be exhibiting
a more well defined layer structure than g (n*(fi(z))). It should be stressed that
the interpretation of figure V.24 is that it shows only a tendency for the system to
form layers over the duration of the simulation run. The apparent layers
illustrated in the figure are weak. Due to the large value of (Pz(x)> =0-60, on
average the site symmetry axes are orientated with a degree of order typical of a
nematic liquid crystal, whereas the order along the remaining molecular semi-
axes, although not zero, is very small. This phase most closely resembles that of
a uniaxial discotic nematic. Indeed in a larger system values the (Pz(z)> and

(Pz (y)) would take values closer to zero.
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Figure V.23

Components of the radial distribution function for the all coplanar model at

temperature (T*)=6-3 ((V" */N)=-37-2). For legend see figure V.22.
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As the system is cooled still further the g (q *(x; )) confirm the appearance of a
layered stfucture with greater amplitude well defined oscillations as exhibited in
figure V.25. The strength of definition order of the layers is not maintained; and
now layers parallel to fi(x) are more defined than those parallel fi(z) which in
turn are more defined than those parallel to fi(y). Looking at the information
provided in table V.2 we see that at this state point we have the following values
for the (Pz(x,-»; (1’2(x)) =0-86, (Pz(z)) =0-57 and <Pz(y)> =0-51, the values
being ordered in the same way as we find the evidence for layers appearing in the
gln*(x )) . The value of (I’2 (x; )) reflects the number of molecules, on average,
adopting an orientation such that the molecular semi-axis x; is aligned along the
direction fi(x;). A relatively lower value for (Pz(x,- )) implies that the direction
i(x;) is not so well defined as for higher values (Pz (x; )). Or rather, distribution
properties resolved along these fi(x;) are subject to a more diffuse directional
interpretation. This is what we are observing in figure V.25 and to a lesser extent

in figure V.24 where the directions fi(z) and fi(y) are not so well defined.

The separation between the layers is found to be a little over o in all directions.
The turning points of all curves occur at the same locations. Such a periodicity in
g7 *(f(x;))) is easily comprehended parallel to the directions i(x) and f(y) if
we are observing a discotic nematic phase where the coplanar site symmetry axes
are tending to align. However in terms of alignment of the z-molecular semi-axes
we would expect the function g (11 *(ﬁ(z))) to have a minimum periodicity of
about 2-20y, assuming the molecular hard cores do not overlap significantly.
Each density wave appears to indicate the existence of four layers across half the

box in the directions fi(x;).
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Components of the radial distribution function for the twisted central site model at
reduced temperature (T*)=4-3 ((F*/N)=-44-0). closed squares,
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Figure V.25

Components of the radial distribution function for the twisted central site model at

reduced temperature (T*)=4-2 (V' */N)=-52-1). Forlegend see figure V.24.
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Turning to the all coplanar site model figure V.26 illustrates the behaviour of the
gl(q *(x;)) when the molecular semi-axes are ordered with (Pz(x)> =0-85,
(Pz(z)> =0-28 and (Pz(y)> =0-27 with the higher temperature (7*)=6-6 but
with lower potential energy (V' */N)=-53-9 than those presented in figure
V.23. In this figure we can see the emergence of structure parallel to the average
direction of the HGBLR site symmetry axes. We note that this is qualitatively
similar to that observed for gj(n *(fi(x))) with the twisted central site model in
figure V.24. However, we do not observe any ordering parallel to the other
molecular semi-axes in figure V.26 yet these semi-axes are ordered with values

comparable to those presented in figure V.24.

At lower temperature, (T*)=5-3 (corresponding to (V' */N)=-64-9), figure
V.27 we note enhanced layering parallel to the average HGBLR site symmetry
axes direction but in stark contrast to the twisted central site model, there is no
structure to gy *(fi(z))) and g,(rl *(ii(y))) at all. The structure described by
g(n * (i(x))) is similar to that presented in figure V.26, but here the density wave
is much stronger with zero minima appearing between the peaks which are

separated by ~ 1-10y.

It is clear that the structures described by figure V.24 and V.25 are different from
those described by figures V.26 and V.27.

Once again with figure V.26 and to a lesser extent with figure V.27 we note the

increasing amplitude of oscillations of gj(s *(fi(x))) parallel to the direction fi(x)

with increasing 7 * and allude to the explanation offered in section IV.3.2.2.
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Components of the radial distribution function for the all coplanar site model at

temperature (T*) = 5-3. For legend see figure V.26.
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In order to probe the structure of these two different models as the temperature is
reduced further we have cﬁosen to examine the gj(n*(x;)) from two further state
points for each model. Figure V.28 illustrates the behaviour exhibited for the
twisted central site model at the temperature (T*)=4-2, with (V */N)=-53-4,
the state point simulated just after that of figure V.26 on cooling the system.
Comparing the two figures we note that the oscillations in g *(ii(x))) are now
of increased magnitude in the latter figure, though they still occupy the same
locations. Moreover the oscillations in g(5*(#(z))) and g#*(ii(y))) have all
but disappeared. Clearly there are some correlations at the end of the range scale,
these however, are most likely caused by the reasons explained in section

Iv3.2.2.

At the lower temperature of (T*)=1-79, exhibited in figure V.29, the
oscillations in g (r] *(ii(x))) have increased in magnitude so that they now have
zero minima. Furthermore we see the positive reintroduction of structure in the
distribution functions resolved along the directions fi(z) and A(y). This time
however, the structure is not as was previously observed in figure V.25 and to a
lesser extent in figure V.24. The maxima and minima in gl(;] *(ﬁ(z))) appear
more erratic in amplitude. They appear to be weaker, equally spaced with shorter
period; there are five periods observed in figure V.29 compared to just four in

figure V.25.

Such a change in structure is not displayed by the all coplanar site model. Figure
V.30 presents the behaviour of the components gy(n*(x;)) for this model
recorded at temperature (T *) =5-1, and figure V.31 presents the behaviour of
those components recorded at (T *) =2-28. We note there appears to be little

evidence for the development of structure present along the directions ii(z) and
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i(y). Parallel to fi(x) however, the evidence of a layered structure remains. The
density wave along fi(x) in both figures have zero value minima as observed in
figure V.27. This is typical of a well ordered layered structure with spaces in
between the layers not filled with molecules. As the temperature is lowered
further, the density wave becomes more distinct, the intensities of the maxima
grow and the ranges of the minima become larger in figure V.31 indicating the

presence of a more ordered layer structure parallel to fi(x).

We note further that the layered structures exhibited by both models parallel to
ii(x) display the same periodicity of ~ 1-10y which is just slightly larger than the
HGBLR hard core radius of oy.

Turning to the second rank orientational correlation coefficients, G,(r *), these
have been recorded with respect to the molecular long axis. The results for both
the twisted central site and all coplanar site model are presented in figures V.32
and V.33 respectively at a variety of temperatures. Examination of figure V.32
reveals that at (T*)=4-7 G,(r*) quickly decays to zero, indicating no long
range ordering of the molecular long axes. However, at all other temperatures

presented in figure V.32 G, (r *) decays to some finite value at long range.

Similar behaviour is found for the all coplanar model presented in figure V.33.

A comparison of the two figures reveals a distinct difference between the degree
of ordering of the molecular long axes of both models. As the temperature is
reduced, the long range behaviour of G,(r*) decays to a higher value for the

twisted central site model as evidenced in figure V.33.
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Components of the radial distribution function for the twisted central site model at
reduced temperature (T*)=4-2 ((V*/N)=-53-4): closed squares,
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Figure V.29

Components of the radial distribution function for the twisted central site model at

reduced temperature (T*)=1-79. For legend see figure V.28.

265



4.0 7

35+ Mg
;g g 23 * %
& 5 304 % o . e
*
o & 2.5 o . oo .
* *
t 8§ 201e . . .
Q .= *
o = * ¢ <
') S 15+ * L4
Q..!'Q * * .
g E 1.0 1
o .2 . . .
OT 05+ . . . . *
: S : . : . * . : *
0.0 L S SN, A Yaen? A W, L
0 1 2 3 4 5
¥

Figure V.30

Components of the radial distribution function for the all coplanar site model at
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Components of the radial distribution function for the all coplanar site model at

reduced temperature (T *)=2-28. For legend see figure V.31.
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The values obtained at long range for G,(r *) are consistent with (Pz(z)>2 for the

temperatures indicated and indeed provide a check on the second rank order
parameter for these temperatures. For the all coplanar model, though, the second
rank orientational correlation coefficient tends towards a limiting value such that
Gy(r*)—>0-3. Once again this is entirely consistent with the behaviour
exhibited by the second rank order parameter of this system, illustrated in figure
V.19.

V.8.3 Meim Square Particle Displacement
Although the behaviour exhibited by the radial distribution functions at higher

temperatures are typical of liquid-like behaviour they do not confirm it: it is
possible to observe similar behaviour in a glass, say. Thus it is instructive to
examine the behaviour of the mean square particle displacement from initial
positions. The behaviour of the mean square displacement for the twisted central
site model is illustrated at four state points in figure V.34. All but the curve
recorded at (T*)=1-79 exhibit straight line liquid-like behaviour at the
temperatures investigated. Thus we can be sure that down to (T*)=4-2 the
twisted central site system remains fluid. We note that the gradient of each curve
decreases indicating a reduction in particle self diffusion with decreasing

temperature.

Similar behaviour is indicated for the all coplanar model in figure V.35, and here
we can be sure that down to (T *) = 4-6 that this system also remains fluid.
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Figure V.32

Gy(r*) for the twisted central site model: closed squares, (T*)=4-7; open
squares, (T*)=4-3 ((V*/N)=-44-0); closed diamonds, (T*)=4-2
(V */N)=-52-1); open diamonds, (T*)=4-2 ((V*/N)=-53-4), closed
triangles, (T*) = 3-8.
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Figure V.33
Gy(r*) for the all coplanar site model:  closed squares, (T*)=6-3

(V' */N)=-37-2); open squares, (T*)=6-6 ((V*/N)=-53-9); closed
diamonds, (T *) =5-3 ; open diamonds, (T *) =5-1; closed triangles, (T *) =4-6.
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Mean square displacement for the twisted central site model: closed squares, '
(T*)=4-7; open squares, (T*)=4-3 ((V'*/N)=-44-0); closed diamonds,
(T*) =4.2 ((V*/N) =-52-1); open diamonds,(T*) =1-79.
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Figure V.35

Mean square displacement for the all coplanar site model: closed squares,
(T*)=6-3 ((V*/N)=-37-2); open squares, (T*)=6-6 ((V*/N)=-53-9);
closed diamonds, (T *) =4-6; open diamonds, (T *) =2-28.
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V.8.4 Graphical Representations

We have used computer graphics to capture snapshots from system
configurations in an attempt to complement the data provided from structural and
orientational correlation functions to provide a comprehensive picture of the
phases of the 3-HGBLR-site site models we have investigated. Figures V.36 and
V.37 present a series of images taken from configurations of the twisted central
site and all coplanar site models respectively. In these figures single molecules
are represented by coplanar squares in linear array along the molecular long
axis.The squares are centred on the HGBLR site centres. They are drawn with
correct orientation in the y-, z-planes of each molecule indicating the position and
orientation of the site equatorial planes in accord with the convention adopted in
figure V.1. The twisted central site is not represented in figure V.36 as it is
found that this obscures the visual information presented by images of highly
ordered phases. The side of each square is 0-7c(; the molecules being drawn
somewhat smaller than their actual size to facilitate viewing the images. In some
images it is possible to see a black line drawn through the simulation box
representing the director fi(x,?): the average direction of the coplanar HGBLR

site symmetry axes for that single configuration.

Figure V.36a represents a snapshot taken from the simulation with average
temperature (T*)=4-7 and average molecular order parameters
B(ii(z),t) = 0-07, B(i(x),£)=0-16 and B(fi(y),z)=0-08. Clearly the system

appears to lack any orientational order and corresponds to an isotropic phase.
Figures V.36b and V.36¢c correspond to two images captured from the

simulations with (T*=4-3 ((V*/N)=-44-0). In these views
B (ii(z),r) =0-30, B(ii(x),t)=0-62 and B(ii(y),r)=0-25. Figure V.36b
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illustrates the ordering of the coplanar HGBLR site symmetry axes along Ai(x,?)
clearly visible through the white space observed in the figure. There does not
appear to be any layering of the molecules although we know from figure V.24
that over the entire simulation slightly rippled density waves exist parallel to all
three molecular semi-axes directions to a small extent. Of course, the
information presented by the structural order parameters is a time average over
the simulation state point, whereas the snapshots simply refer to a single time
step. We might therefore only expect to see a well defined layered structure
presented in snapshots of well ordered low temperature state points. Looking
approximately along the direction i(x,#) we note that many of the HGBLR sites
are orientated with their site symmetry axes pointing out of the plane of the page.
We note further that the molecular long axes are essentially disordered. The
phase is fluid at this temperature and is identified as a discotic nematic. The
molecules have their site symmetry axes ordered with P (ﬁ(x),t) =(-62 which is
typical of such an order parameter for a discotic nematic. Further there appears
to be a little evidence of layering along the direction Ai(x,#) and this is consistent

with the evidence afforded by figure V.24.

When the system has been cooled to (T*)=4-2 ((V*/N)=-52-1), figure
V.36d exhibits a; degree of layering perpendicular to i(x,7): B(ii(z),z)=0-52,
B(i(x),£)=0-87 and B(i(y),r)=0-48. The layers are diffuse with some
molecules appearing in-between layers. Figure V.36e shows a view of the same
system looking approximately along the direction fi(x,7). Clearly many of the
coplanar HGBLR site planes lie approximately in the plane of the paper. Closer
inspection of figure V.36e reveals the orientational correlation of the molecular
long axes visible at the top and bottom simulation box faces with relatively few

molecules protruding through the side faces of the simulation box.
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Once the system has been cooled to (T *) = 3-8 as illustrated in figures V.36f and
V.36g possessing molecular semi-axes order parameters B (ii(z),?)=0-84,
B (i(x),) = 0-91 and B, (i(y),) = 0-79 we can see the high order present in the
system. The layering along fi(x,?) is very well defined as exhibited in figure
V.36f. In figure V.36f there do not appear to be any particles positioned in-
between layers. However over the course of the simulation molecules may move
into the interlayer spaces: particle mean square displacements indicate that
molecular diffusion does occur at this temperature but it is of relatively low
magnitude. The HGBLR site symmetry axes are now highly ordered as shown in
figure V.36g. Close inspection of figure V.36g reveals that the HGBLR sites are
stacked on top of each other to some extent. The system resembles that of a
discotic-columnar phase. The positions of the individual columns are restricted
by the rigid nature of the 3-HGBLR-site molecules. Due to the layered structure
and high degree of ordering of the molecular semi-axes <P2 (z)) and (Pz (y)) this

phase is perhaps more correctly described as a biaxial smectic with defects.

For completeness images of the low temperature simulation are presented in
figures V.36h and V.36i. Molecular diffusion has ceased at (T*)=1-79 (see
figure V.34) and this system is highly ordered with B(fi(z),z)=0-88,
B(ii(x),)=0-96 and B(i(y),r)=0-86. Figure V.36h illustrates the very
regular layers along fi(x). Examination of figure V.36i reveals an additional
layer like ordering along fi(z), and this reflects the behaviour of gj(# *(f(z))) of
figure V.29. This system is certainly a crystal due to the high degree of ordering
and lack of diffusion present.
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Figure V.36a

A view of an isotropic system from the simulation with average temperature
(T *)=4-7 and molecular semi-axes order parameters Pz(ﬁ(z),t) =0-07,
B(i(z),t)=0-16 and B(ii(z),r)=0-08. Individual sites are represented as
squares of side 0-7c centred on the site symmetry axes and drawn in linear array

with the same orientation as the molecular coplanar sites.
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Figure V.36b (top) and V.36¢ (bottom)

Two views taken from the simulation with average temperature (T *)=4-3

((V*/ N ) = —44-0) with molecular semi-axes order parameters B (fi(z),#) = 0-30,
B(fi(x),)=0-62 and B(i(y),1)=0-25. For a key to the molecular

representation see figure V.36a and the main text.

274



Figure V.36d (top) and V.36e (bottom)

Two views taken from the simulation with average temperature (T*)=4:2
((V*/N ) =—52-1) with molecular semi-axes order parameters B (fi(z),) =0-52,
B (fi(x),r)=0-87 and B(ii(y),r)=0-48. For a key to the molecular

representation see figure V.36a and the main text.
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Figure V.36f (top) and V.36g (bottom
Two views taken from the simulation with average temperature (T7*)=3-8 with
molecular semi-axes order parameters B (fi(z),) =0-84, B (fi(x),#)=0-91 and

B (ii(y),#) =0-79. For a key to the molecular representation see figure V.36a and

the main text.
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Figure V.36h (top) and V.36i (bottom)

Two views taken from the simulation with average temperature (T *)= 1-79 with

molecular semi-axes order parameters B (fi(z),7) =0-88, B (#i(x),r)=0-96 and

P (ii(y),)=0-86. For a key to the molecular representation see figure V.36a and

the main text.
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Graphical representations of the all coplanar site model are presented in figure
V.37. Figure V.37arepresents a snapshot taken from the simulation with average
temperature (T*)=6-3 ((V*/N)=-37-2) and the corresponding instantaneous
order  parameters are  B(ii(z),1)=0-09, B(i(x),s)=0-17 and
Pﬁ(ﬁ(y),t) =0-07. Examination of figure V.37a reveals an essentially
disordered phase and the magnitude of the order parameters identify the phase as

isotropic.

Figures V.37b and V.37c represent two images recorded from the simulation with
average temperature (T *)=6~6 ((V*/N )=—53~9). Although this average
temperature is higher than that of the simulation from which figure V.50a is
presented, the average potential energy per particle is less. The molecules
forming the images of figures V.37b and V.37c lead to instantaneous order
parameters of B (ii(z),r)=0-22, B(fi(x),1)=0-84 and B(i(y),t)=0-22.
Clearly the HGBLR site symmetry axes are highly ordered whereas the degree of
orientational ordering of the remaining molecular semi-axes is minimal. There
appears to be little layering of the molecules as evidenced in figure V.50b.
However the orientational ordering of the HGBLR site symmetry axes is clearly
apparent on comparing figures V.37b and V.37c illustrated approximately
perpendicular to the direction fi(x,?) and approximately parallel to that direction
respectively. The component of the radial distribution function gl(q(ﬁ(x)))
presented in figure V.26 does show a tendency for the molecules to prefer a
weakly layered structure over the length of the simulation although the density
wave does not afford particularly strong oscillations. Despite this tendency for a
small degree of layering the phase more closely resembles a uniaxial discotic

nematic.
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Snapshots taken from the simulation with lower average temperature (T *) =53
with B, (i(z),1) = 0-26, B(f(x),r)=0-95 and B, (i(y),z)=0-26 are presented
as figures V.37d and V.37e. Figure V.37d now clearly illustrates the layered
structure along fi(x,#) suggested by figure V.27. The increased orientational
ordering of the site symmetry axes over those illustrated in figure V.37b is
apparent. Figure V.37e presented looking approximately along the direction
fi(x,#) shows little evidence of orientational ordering of the z- and y-molecular
semi-axes. The phase resembles a discotic-smectic with each smectic layer

possessing uniaxial symmetry about fi(x).

Figures V.37f and V.37g provide two images taken from the simulation with
average temperature (T*)=4-6 illustrating the molecular ordering with semi-
axes order parameters B(fi(z),1)=0-42, B(f(x),)=0-97 and
B(ii(y),t)=0-42. Clearly the increased orientatioﬂal ordering of the molecular
z- and y- semi-axes over figures V.37d and V.37e is apparent. Interestingly,
figure V.37d shows one molecule, close to the line representing the site
symmetry director, Ai(x,7), which is not consistent with the general ordering
observed amongst the remaining molecules. However, this is not suprising for a
liquid phase. Although the mean square particle displacement recorded
throughout the duration of the simulation run at (T *) =4-6 is small it is not zero,
as illustrated in figure V.37. Consequently we may expect the action of
molecular diffusion to cause the odd molecule to orient itself against the
prevailing trend. Indeed, such a phenomenon has been recently suggested as a
reorientation mechanism for the liquid crystal [16]. Through examination of
figure V.37g it appears that there may be a tendency for the moelcules to arrange

themselves in a rough herringbone type pattern although this is not conclusive.
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Once again two views of the low temperature crystal phase are presented as
figures V.37h and V.37i: (T*)=2-28; B (ii(z),z) = 0-54, B (ii(x),r)=0-99 and
Pz(ﬁ(y),t) =0-54. Clearly the phase is highly ordered. The layering along the
direction of the site symmetry axes is particularly apprent in figure V.37i. Figure
V.37h shows evidence for strong correlations between the site symmetry axes of
molecules from neighbouring layers, although this is not complete and the

occasional approximate 90° angle can be observed.

V.9 Conclusions

We have performed MD simulations of two rigid 3-HGBLR-site site models, the
two models differing only in the orientation of the central site with respect to the
two coplanar end sites. At sufficiently low temperature both models exhibit
orientationally ordered phases at the density investigated. It appears that the
structure of the ordered phases differs for each model. The twisted central site
model indicates a transition to an orientationally ordered phase at (T*)~4-5
whereas for the all coplanar site model this transition is indicated at (T *) ~6-5,
corresponding to 7' = 986K and T =1424K respectively, taking €y =219. These
temperatures are somewhat higher than the virtual isotropic-nematic transition
temperature of para-terphenyl of 7= 360K [1]. In an earlier study a Gay-Berne
representation of para-terphenyl exhibited a transition to a nematic phase at
T =4300K although the phase behaviour of this system was found to be very
sensitive to p*, and for other Gay-Berne systems the temperature of the
isotropic-nematic transition is found to decrease rapidly with decreasing number
density [1]. It is likely that simulations of 3-HGBLR-site site models at different

number density will be similarly affected.
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Figure V.37a

A view of an isotropic system from the simulation with average temperature
(T *) =6-3 ((V*/N ) =-37-2), and molecular semi-axes order parameters
B(ii(z),r) = 0-09, B(fi(z),z)=0-17 and B (ii(z),z)=0-07. Individual sites are
represented as squares of side 0-7c centred on the site symmetry axes and drawn

in linear array with the same orientation as the molecular coplanar sites.
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Figure V.37b (top) and V.37¢c (bottom)

Two views taken from the simulation with average temperature (T *) =6-6
((V*/N ) =~53-9) with molecular semi-axes order parameters B, (fi(z),?) = 0-22,
B (i(x),1)=0-84 and B (i(y),r)=0-22. For a key to the molecular

representation see figure V.37a and the main text.
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Figure V.37d (top) and V.37e (bottom)

Two views taken from the simulation with average temperature (T *)=5-3 with
molecular semi-axes order parameters B (ii(z),7) = 0-26, B (f(x),z)=0-95 and
B (ii(y),t) = 0-26. For a key to the molecular representation see figure V.37a and

the main text.
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Figure V.37f (top) and V.37g (bottom)

Two views taken from the simulation with average temperature (T*)=4-6 with

molecular semi-axes order parameters B (ii(z),7) =0-42, B (#i(x),7)=0-97 and
B (ii(y),?) = 0-42. For a key to the molecular representation see figure V.37a and

the main text.
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Figure V.37h (top) and V.37i (bottom)

Two views taken from the simulation with average temperature (7*)=2-28 with
molecular semi-axes order parameters B, (fi(z),?) =0-54, B (fi(x),#)=0-99 and
B (ii(y),f) = 0-54. For a key to the molecular representation see figure V.37a and

the main text.
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We may tentatively identify five phases for the twisted central site model on
cooling from (T*)~10: isotropic — uniaxial nematic — biaxial nematic —
biaxial smectic — crystal. Similarly we identify five phases for the all coplanar
model on cooling from approximately the same temperature: isotropic —
uniaxial nematic — uniaxial smectic — biaxial smectic — crystal. Inclusion of
the twisted central site, which reduces the well depth of the most favoured
configuration, appears to promote the formation of biaxial phases. In both cases
the isotropic to uniaxial-nematic phase transition appears to be strongly first
order. It is stressed however, that some of the phases identified above may not be
thermodynamically stable and it is possible that the simulation results have been
obtained from a metastable region of the phase diagram that would evolve to an

alternative preferred state given sufficient length of simulation.

Luckhurst and Simmonds identify isotropic, nematic and smectic phases for their
Gay-Berne model of para-terphenyl [1]. The formation of the smectic phase is
found to be critically dependent on the long range anisotropic interactions,
whereas the structure of the nematic and isotropic phases is dominated by
excluded volume effects. The 3-HGBLR-site site models differ from single site
HGBLR models in having anisotropic short range interactions provided by the
geometrical disposition of the individual sites. The hard cores of both 3-
HGBLR-site site models are spherocylindrical in shape and do not differ greatly.
It is clear though, that the longer range anisotropic interactions do have an
influence on the formation of the nematic phase as indicated by the different
transition temperatures for each model. Similarly for the single site HGBLR
centres it is the long range anisotropic interactions that allow the formation of the

nematic phase.
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It appears that immediately after the transition on cooling, the nematic phase
exhibited by both models posses uniaxial symmetry. Further cooling of the
twisted central site model introduces a degree of ordering of the z- and y-
molecular semi-axes. Owing to the large values of (Pz (x,-)) at (T*)=4-2
((V*/N )= -52-1), this phase may be more correctly described as a biaxial
nematic. Biaxial nematic phases have been simulated before using hard particles
[17]. With the all coplanar site model a significant degree of ordering of the z-
and y-molecular semi-axes does not occur until well defined layers appear in the
system. It may be possible that a biaxial nematic phase does not exist for this
system, but instead the deep attractive well of configuration a enables the
formation of a layered system along fi(x) to pre-empt significant ordering of the
molecular z- and y-semi-axes directions. On further cooling these axes do order
but do not attain the same degree of ordering as those of twisted central site
model. It seems that incorporation of the twisted central site delays the onset of

smectic-like layering and allows the biaxial nematic to form.

Alternatively, the biaxial nematic phase may not be thermodynamically stable
and given sufficient length of simulation may resort to a uniaxial nematic or to
the smectic-like layered system that occurs on further cooling. Apart from the
differing transition temperatures it is the potential formation of the biaxial
nematic phase and the structure of the final crystal phase that distinguishes the

twisted central site model from the all coplanar site model.

Both 3-HGBLR-site site models exhibit a layered structure. This structure is
closely similar to the smectic-A mesophase of calamitic mesogens but the
constituent molecules have the coplanar HGBLR site symmetry axes lying

perpendicular to the plane of the smectic layers. In this respect the phase also
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resembles that of a discotic lamellar phase. Indeed attempts at modelling such
phases have been tried before using the Gay-Berne potential parameterised as a
disc to favour edge-to-edge alignment [18]. However, the resultant highly
ordered phase formed was columnar and no evidence of a lamellar phase was

found.

The layered structure exhibited by the twisted central site model also exhibits a
degree of ordering of the z- and y-molecular semi-axes. In this respect the
system forms a biaxial smectic phase. The smectic-like phase presented by the
all coplanar model does not display the same degree of ordering of the z- and y-
molecular semi-axes, although these semi-axes are not completely disordered. It
appears, therefore, that inclusion of the twisted central site promotes the

formation of biaxial phases.
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CHAPTER VI

SUMMARY AND FUTURE WORK

We have developed a single-site soft potential based upon a potential proposed
by Luckhurst and Romano and scaled by part of the well depth formalism
employed in the Gay-Berne potential: The ‘hybrid Gay-Berne Luckhurst-Romano
(HGBLR) potential. The HGBLR potential is characterised by an approximately
spherical hard core surrounded by a longer range anisotropic attractive region.
by varying the anisotropy parameter %' the anisotropic attractive region can be
~ made to represent discotic mesogens which favour an end-to-end alignment or
calamitic mesogens favouring side-by-side alignment. Changing ' allows a
smooth change from discotic to calamitic mesogen to be accomplished. We have
chosen values for ' that have been used previously in simulations of discotic and

calamitic Gay-Berne particles.

The single-site HGBLR model is an easily differentiable anisotropic potential and
has the advantage of computational simplicity. In order to be able to model the
subtleties of real liquid crystal mesogens realistic models incorporating such
factors as molecular flexibility and electronic charge distribution will have to be
considered. Presently, such models may be just within reach of today's
computational resources. In the light of this the HGBLR potential provides a
convenient alternative which may be readily used in liquid crystal simulations

with current resources.

We have performed molecular dynamics simulations in the microcanonical

ensemble on single-site HGBLR centres. The model has been shown to exhibit a
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range of mesophases when parameterised to represent calamitic and discotic
mesogens. The single-sitt HGBLR particles have been shown to exhibit
orientationally ordered phases despite their spherical hard core.  The
orientationally ordered phases formed therefore, are due to the anisotropic long
range attractive forces in the potential. In contrast to hard particle models and the
Gay-Berne potential, the nematic phases exhibited by single-site HGBLR centres
are not due to excluded volume effects. In real liquid crystals it is expected that
both short range repulsive and long range attractive forces influence the
formation of mesophases. Simulations of single-site HGBLR centres are
therefore of interest in their own right for the information that they can provide
on the importance of anisotropic dispersion forces in the formation of liquid
crystal phases. A return to single-site simulations would be beneficial, enabling
different parameterisations of HGBLR centres to be investigated. It would be of
interest to discover how anisotropic the attractive forces surrounding HGBLR
centres have to be in order to observe orientationally ordered phases.
Investigations into the effects of varying A and ' are required if we are to gain an

understanding of the role these parameters play in the HGBLR model.

Previous simulations of Gay-Berne particles have shown the systems to be
critically dependent on the choice of number density. The indications from
preliminary simulations show that the HGBLR potential may be similarly
affected. A study of similarly parameterised single-sitt HGBLR centres at
differing densities would lead to a phase diagram so that we could investigate the

influence of density.

Real mesogenic molecules do not have a spherical shape and by rigidly joining
HGBLR centres a more realistic model of a liquid crystal mesophase may be

constructed. This is not without complications as has been encountered in the 3-
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HGBLR-site site model. Because the sites were arranged in linear array a
restriction was placed on the distance of closest approach that two side-by-side
molecules may achieve. This restriction may be overcome by employing a
greater number of sites, however this is expensive computationally. Further, in
the model of para-terphenyl each site was chosen to represent a benzene ring in
the original molecule. The use of a greater number of sites may not be desirable
where there is a natural mapping of HGBLR sites to represent components of
mesogenic molecules. For longer molecules this restriction is not so severe and

multisite-HGBLR-site site models may be more adept at simulating such systems.

A tractable approach to parameterising a multisite HGBLR model by comparison
with an atom-atom Lennard-Jones representation has been presented. The
distance of closest approach restriction notwithstanding, this provides an
accessible method for arriving at parameters to represent real mesogens.
Construction of the 3-HGBLR-site site model resulted in a multi-site soft biaxial
model of a liquid crystal. This model was subsequently shown to exhibit biaxial
mesophases. It is proposed that a thorough investigation of the nature of biaxial
phases formed by these type of models be undertaken. Such an investigation may
involve the application of novel structural distribution functions in order to probe

thoroughly the biaxial phase.

Most liquid crystal forming molecules are not uniaxial, yet more often the phases
they exhibit are. This requires a comprehensive investigation and the multi-site
biaxial HGBLR models could realistically act as a starting point in looking at

such systems.

Due to the lack of computational resources the systems simulated in this project

have been relatively small in size. Simulations of larger systems, perhaps with
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longer run times would be welcome. In the case of the biaxial phases identified
with the 3-HGBLR-site site models, prolonged simulation in the region of the
phase transitions would be desirable in order to identify metastable phases.
Ensembles such as the isothermal-isobaric ensemble allow for changes in the
volume of the system being investigated and thus the systems are less likely to
become trapped in a metastable region of a first order phase transition. The use
of such an ensemble in the simulation of the 3-HGBLR-site site models may help
to clarify the nature of the transitions and perhaps enable a more precise location

of the transition temperatures.

To investigate the usefulness of the multisite HGBLR models they should be
employed in further simulations perhaps representing other real mesogens. It is
proposed that several HGBLR centres be rigidly joined together to represent a
discogen, such as a derivative of triphenylene. It is known that the long alkyl
chains of such derivatives are important in the formation of liquid crystal phases
as triphenylene itself is not a mesogen. Such an investigation would prove to be
of great interest and may shed further light on our understanding of the formation

of liquid crystal phases.
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APPENDIX A

SINGLE-SITE AND MULTI-SITE HGBLR DERIVATIONS

This appendix contains details of the mathematics employed to implement both
the single-HGBLR-site potential and the multi-HGBLR-site potential. It is

broken down into the two following subsections:

Appendix A.1
This section contains details of the derivation of the HGBLR potential so that it

can be used in the MD simulations of single-site HGBLR particles detailed in
chapter IV

Appendix A.2

This section describes the mathematics necessary to implement the multi-

HGBLR-site models using the method of Price et al described in chapter V and
Price, S. L., Stone, A. J., and Alderton, M, 1984, Molecular Physics, 52, 987-
1001.
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Appendix A.1 Derivation of the Single-Site HGBLR potential

In chapter II the HGBLR potential was written as follows:

Vucarr (1,85,1) = €5 (i, 8,,8)(V (r) + V4 (8, 85,7)) [A.1.1]

Where in expression A.1.1 the terms have the following meanings

Vo(r) =4s[(%)]2 —(%)6) [A.1.2]
V (i, 0i,7) = —487\{(%)]2 + [g)éja(ﬁl,-ﬁz); [A.1.3]

R r-u;+r-u r-u—-r-u
Sz(uhuz’r)ﬂ_%(( i) (i =)

T+y'(8,-b;)  1-%'(f;-d,)

J [A.1.4]

We now obtain the spatial partial derivative of this potential with respect to say,

the x-direction.

ov _ 0[NP +V0)] _ e2(x)0Wo+Vs) | (Vo +Va)Pea(x)

B B B B [A.1.5]
Taking the V;, + V4 terms first,
vV _, [-12032 608 \or
'—67—480( r13 + r7 E [A'1'6]
But;
1
r=(x2 +y2+zz)2 [A.1.7]
'.Q=l(x2+y2 +22)_;2x [A.1.8]
vt 1.
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ie.;

0

5%% [A.1.9]
Thus;

v, -126"2  60°

—0 —4¢ + . A.1.10

Ox ( it r g [ :
Similarly;

v, 1262 60°

—A =4rel =———— [xPy(u, ' m Al.1l

PY ( 1 8 2( 1 2) [ ]
Thus,

o[V +V4] -126"2 66° (126" 60°
L0 "Al_4ye + +A - Blu,-u,) Ix A.1.12
Ox r14 rs r14 rg 2( 1 2) [ ]

Now for the anisotropic well depth term. Making this term explicitly dependent
on the separationr: f=r/r.

( A A A A A A A A \

(r-ul+r-u2)2(6[r-u1]+6[r'u2])+(r-ul—r-u2)2(a[r-ul]_a[r-uz])

de, —y 1+x'(8,-6,) | or ox 1-y¢'(6;-8,) | ox o

ox r2 +£L'" (r-ﬁ1+r-ﬁ2)2+(r‘ﬁ1-—l‘-ﬁ2)2
L P ey a,) 0 1-y(d-dy)

[A.1.13]

We note;
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6;c =@ [A.1.14]
Q(La‘xﬁ_z)z . [A.1.15]

as for example;
r-i; =rday_+ ryﬁly +riy, [A.1.16]

where #;_ stands for the x-component of the orientational unit vector. So finally;

\

((r-ﬁ1+r.ﬁ2)2(A ) (r-ﬁl—r-ﬁz)z(ﬁ %)
1+x'(d, -d,) e 1-x'(d; -d,) s
ox +xX' (r-ﬁ]+r-ﬁ2)2+(r-ﬁ1—r-ﬁ2)2

P 1y (8, -d,)  1-x'(d,-d,)

)

[A.1.17]

\

Similar terms obtain for the partial derivatives with respect to 0y and Oz.
Turning now to the orientation dependent terms. Consider the derivative of the
HGBLR potential with respect to, say, the x-component of the orientational unit
vector; '

ov__ 0ea[(X)Vo +V.)] _ &2 (0)0(Wo +V4) , (Vo +V,4)0e2 (1)

oa, - om, oa, o, [A-1.18]
The Lennard-Jones potential is not orientationally dependent, thus;

oV _

o, 0. [A.1.19]
But;

12 6 ol B, - b
OV =-4xe[(§) +(3) ]————[ 3(8,-8,)] [A.1.20]
Ol r r Otly_
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AP 82)] 1 0 e w2 Q_aa o
on,  20m, [3(“1'“2) —l]—3(“1'“2)u2x [A.1.21]
as
iy 2] 8 [a n n s aon A
oly,  om, (i, + By + i, | =, [A.1.22]
Thus

AT (o) wn

Turning to the original definition of the orientational dependent well depth
scaling term equation [A.1.4] this may be re-written in terms of the products;

2
[A.1.24]
leading to;
f(z(f  +#-8,) 2(F-,-F ﬁz))f )
5 o Ut n(Ey-ay) o 1-x(dy-d,) )7
o X
Y, [82(u19u2=r)]=—— Y Y
U, 2 (F-a,-#-8,)° 2(f-d;+F-d,) ' A
+ )2 e (K
\ (1-x(8,-8,) (1428, -,)) ),
[A.1.25]
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fa 1. D Tan s an s
o] = o [7a, +Fu, + 7y | =1, [A.1.26]

——[#-1,]=0 [A.1.27]

Similar terms obtain for the partial derivatives with respect to ﬁly and #;_. The

partial derivatives of the energy well depth scaling terms with respect to i,
involves a subtle change of sign due to the preceding negative in the second

(r- ﬁz) term. The correct expression is given in equation [A.1.29]:

2(f-a, +£-@,) 2(f~-ﬁl—f--ﬁ2)); )

Q»
~ N\
N
[
+ [
x-
—_i
=
=
[ &)
~— |
[S—y
|
=
—_
=
=
N
~—

N I/
-A— 8 (ll ,u ,r) =
o, [2 1> 42 ] 2 +{ (f"ﬁl_f"ﬁz)z 2(f'.ﬁ1+f'-ﬁ2)2] N
lx
\

(1 - X'(ﬁ1 : ﬁz))z ) (1 + X'(ﬁl . ﬁz))z
[A.1.29]
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Appendix A.2 Derivation of the Multi-Site HGBLR Potential

Consider two molecules with centre of mass position vectors A for molecule 1
and B for molecule 2, as illustrated in figure A.2.1. Each molecule has an
additional vector a and b respectively which describes the location of a site on
that molecule with respect to the centre of mass. The molecules have arbitrary
orientation x, y and z as shown by the sense of the dotted lines in figure A.2.1.

molecule 1
LY,
r=B+b-A-a

Figure A.2.1

The intersite vector r is given by the expression r=B+b—-A—a. Then the
force on the centre of mass of the molecule at B is denoted F, = —-VgV where V'
is the potential of interaction. This can be re-expressed in terms of scalar
products of r by invocation of the chain rule for partial derivatives:

F, = —Z VB (s-r) [A.2.1]

The notation Z indicates that this expression is evaluated and summed for all

172

scalar products of r that occur in the potential ¥, including r = (r-r)"°. We seek

to find an expressions for ZVB (s-r):
S
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Vg(s-r)=Vg[s-(B+b-A-a)]=s; [A2.2]

Vgr=Vg(r-r)"? = Vg[(B+b-A-a)-(B+b-A-a)]”; [A23]

Vgr = %[((B+b— A-a)-(B+b-A-a)) '2(B+b-A-a). [A24]

Thus,

Ver=rr [A.2.5]
Generally;

Vgr” = m" WVgr = mr*1 (r‘lr) =nr"2r. | [A.2.6]

Thus for the a multisite-HGBLR potential the force on the centre of mass of
molecule 2 arising from a site-site interaction at site b is given by the expression;

~F, = Vg[e,(V5 + V4 )] =&,V (Vo + V4 )+ (7 + V4 ) Ve, [A2.7]

172

But (V; + V4 )has only one scalar product with r: (r-r) ", thus:

~1262  6c° -1262 60°) _,. .
VB(VO+VA)=48H e +r8 -2 e +r8 B(d,-d,) |r.

[A.2.8]

The &' term has three scalar products to contend with

oe
; o(s .2r)VB (s-r)=

Og,
a(r . r)1/2

Og,

ofr-a,)"

Og,

— %2 __ vy (ri,)"?
a(r-ﬁz)m B( 2)

VB(r-r)U2 + VB(r-ﬁl)ll2 +

[A.2.9]
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Now

- 0Osy V2 _ X' (r-ﬁl+r-ﬁ2)2 (l"ﬁl—l"ﬁz)z
77 Va(r-r) _ 20 L 28 L [A2.10]
o(r-r) 1+x'(d;-6,)  1-x'(d;-d,)

and

682 12 0g, a2
— %2 __y (r-a)?+—%2 __vy =

+ii,)+

—x'{2(l‘-ﬁ1+r-ﬁ2)(ﬁl

27'2 1+X'(ﬁl’ﬁ2)

2r-,-r-8,),. . }
1“%'(“1'“2) ( : 2)
[A.2.11]

Collecting the terms together gives minus the force on the centre of mass of
molecule 2, due to the interaction of the sites at A+a and B-+b which is in fact the
force on the centre of mass of the molecule at A, i. €.,

F, =-VgV =-F, [A.2.12]

Now we turn our attention to calculating the torques. The torque is expressed in
the potential in terms of scalar products of vectors which are either fixed in a
direction in space, s, or rotate with the molecule t: (s-t). If both are fixed or
both are rotating then the scalar product is independent of orientation and does
not contribute to the torque. For example in the determination of the torque on
molecule 1 the vectors X, ¥, and z, and the site vector a all rotate while X,%’ Yy Z,
b, and B — A (the centre of mass intermolecular vector) remain fixed. If G is the
differential operator that yields the torques then invocation of the chain rule
similar to equation [A.2.1] yields:

Gy = Z o ‘(s t). [A.2.13]
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The expression can be calculated directly by differentiating the potential.

oV
O(s-t)
What we require here is an expression for G(s-t). Writing the dot product in
terms of the elements of a transformation matrix T which rotates a vector in the
molecular frame to the space fixed frame we may say,

s-t= SaI:th'B [A.2. 14]

If the molecular frame is defined by the unit vectors X, y, and z then we have
simply,

T=(x y z) [A.2.15]
Consider an infinitesimal rotation of the molecule 3y about the z axis thus,
T+8T=(x+ydy y-x8y z) [A.2.16]

So that the change in T due to &y becomes,

Z—::(y -X O)=(zxx ZXy zxz) [A.2.17]

The z component of the torque in the molecular frame is then given,
-0
Ey—(s- t)=—8-Zx t=~5,E05 T 1, . [A.2.18]

Dealing with other components similarly yields,
G's (8-t) = 5o py Tty (8% 1), T [A.2.19]

Because T is the transformation matrix from the space fixed frame to the
molecular frame the torque in the space fixed frame is given by,
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G(s-t)=(sxt). [A.2.20]

And thus equation A.2.13 becomes

Gy = Zm—sx t [A.2.21]

Where the notation refers to a sum of the contributions of all scalar products
formed from a vector that is fixed in space, s, and another that rotates with the
molecule, t, the result is the torque about the centre of mass. There are four
different combinations to consider, and we shall now evaluate these expressions

for the torque on molecule 2. In this case only vector b on molecule 2 rotates.

Consider two vectors fixed in the molecular frame, x; on molecule 1 and z, on
molecule 2 say;

Gy (x1°2,) =X, X 2,. [A.2.22]

Consider the scalar product with the intersite vector:

Gy(r-t)=G,[(B+b-A-a)-t]
=(B-A-a)xt
=(r-b)xt. [A.2.23]

Consider;

G,y(s-r)= éz[s°(B+b—A—a)]
—sxb. [A.2.24]

And;

éz(r~r)=é2[(B+b—A—a)-(B +b-A—a)]
=2(B-A—-2a)xb
= 2(rxb). [A.2.25]
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Generally then;

Gor" = Gy(r-r)"?

= %n(r )" 12(r xb)
=nr"2(r xb). [A.2.26]

The torque on molecule 1 is not (necessarily) the same as that on molecule 2.
Here then we simply reconsider the above four conditions, [A.2.22] to [A.2.26].
Now though t is a vector rotating with molecule 1, thus;

Gi(s-t)=sxt. [A.2.27]
Remembering it is molecule 1 which is rotating:

Gi(x1-2,) =12, x x;. [A.2.28]
And for the other terms;

Gi(r-t)=G,[(B+b-A-a)-t]

=(B+b-—A)xt

=(r+a)xt; [A.2.29]
Gi(s'r)=Gy[s-(B+b-A-a)]

=sx-—a
=-sxa; [A.2.30]

Gi(r-r)=G,[(B+b-A-a)-(B+b-A-a)]
=2(B+b—A)xb
=2(rx-a)
=-2(rxa). [A.2.31]

Generally then;

G = Gy(r-r)™?
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- %n(r . l')71/2—1 _ 2(!’ % a)

=-nr"2(rxa). [A.2.32]

The whole expression for the torque about the centre of mass owing to a site on
molecule 2 due to another site on molecule 1 is then given by:

o

> 500" Sz{%(w’“w(ﬁ, Xﬁz)}"‘_

o(d, - ;)

O 08 (a Oy
[K)_'_VA]{_a_(?%;)_(rxb)_i_a_(;._::l.l_).(ulXb)+’a—(m(r b)xu2+ ( 2)( )}
[A.2.33]

The equivalent expression for the similar torque on molecule 1 due to a site on
molecule 2 is given;

ov _ [V, +7V4] NVo+Val/n "
?_:,t o, t)(SXt)—Sz{—“a( ) (-rxa)+ ——6(1';)1-ﬁ2A) (d, “1)}"‘

[Vo + VA]{E%(—r x a)+5(%(r+ a)x i, +_6%3—27(_ﬁ2 xa) +W£8‘—2§2—)(ﬁ2 X ﬁl)}

[A.2.34]

So for the HGBLR potential, consider the torque on molecule 2 caused by a site

on molecule 1. There are four scalar products to consider (i -, ), (r-d,),
(r-ii,) and (r-r) for which we now know the answer when these are operated on

by é2, the differential operator that yields the torque. Remember molecule 1
remains stationary and molecule 2 rotates.

G, (6, -fi,) = i x ,; [A.2.35]
Gy(r-ii,) = (r-b)x iiy; [A.2.36]
G,(r-i;)=G,(&,-r)=1d, xb; (i, remains fixed) [A.2.37]
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G, (r“lz) =-12r%(r xb);

f}z(r'G) =—-6r°(r xb).

And so we may write:

Vo +V4]
o(r-r)

(rxr)=

r

212012 6c° 1262 60° .
48[{ T + 8}(rxb)—7\.{ 8 (rxb)A

6

5[V0+VA](1 i,)= 4xe{ o> 0—6}3(ﬁ1'ﬁ2)(ﬁ1><ﬁz)

5(61 ‘ﬁz)

% 1y p) L. (B8, +£-8,)°  (F-8-F-d,)’
a(r-r) Holrx (e -a,)  1-x'(a; -6,
ot - 2 + 2 i

2 (rxul)— X( (" -l 1‘“2) ( “'1A
a(r-i,) 2 1+x' (&, - llz) 1-x'(d; -
Og, N
a(r'ﬁz)(rxu )—
—x'(2(F- 8, +#-8,) 2(F-d;-F-i,) (c—b)x
2r?( 1+x'(8;-8,) 1-%'(d,-8,) 2
682 ( A
=2 (i, x ii,)=
a(“1'“2) .

—x'| —(F-8,+F-4 £-a;,-f-d AR
X[(( 1 2) G 2) J(“lxuz)

1+'(8, ‘ﬁz))2 (1-x'(a, ‘ﬁz))z

[A.2.38]

[A.2.39]

[A.2.40]

[A.2.41]

[A.2.42]

[A.2.43]

[A.2.44]

[A.2.45]
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And similarly, consider the torque on molecule 1 caused by a site on molecule 2.
This time molecule 1 rotates and molecule 2 remains stationary. The solutions
for the differential operator that we require are:

G, (i, -i,)= i, x i, [A.2.46]
G,(r-i,)=(r+a)xi, [A.2.47]
G,(r-i,)=G,(d, r)=—ii, xa [A.2.48]
G,(r2) =12r%(r xa) [A.2.49]
G,(r®)=6r"3(rxa) [A.2.50]
Thus

Vo +7a] _

) (rxr)

_19a12 6 ~12612
48“ 1212 +6(§ }(rxa)—k{ 121? & }( rxb)B(d,;- “2)J [A.2.51]
r r r rt

12 6
Ao+l (5, ) = -red S+ S Va(a, -,)(a, ) [A2.52]
o(d; -i,) rer
oe, o 66y +£-0,)  (f-8,-¢-0,)
_X + A.2.53
o) <" ﬁ[ gy ) ) A
0g, A
ooy
—xz' (2(]‘ ll'l ;l'l' Auz) _ 2(f u'l :r AuZ)](r +a)x i, [A.2.54]
2r 1+X(u1‘u2) 1_X.(“l u2)

J(ﬁ2 xa) [A.2.55]

308



[A.2.56]
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APPENDIX B

A AND y' PARAMETER SPACE OF THE 3-HGBLR-SITE SITE
MODEL

Appendix B.1

Numerical results of the coarse grid search over the ranges —-1-0<A <0-9 and
—0-9<%'<0-0 with resolutions AA=0-1 and Ay'=0-1 for the values of well
depth minimum (denoted V*min), and location of the minimum (denoted 1/A),
for each of the configurations a, b, ¢ and d of figure V.2, together with the

values of the well depth minima ratios for configurations: a/d, b/d and c/d.

Appendix B.2
Numerical results of the finer grid search in the range —0-90 < %'< —0-80 with

resolution Ay'=0-01 at selected values of A for the values of well depth
minimum (denoted V*min), and location of the minimum (denoted 1/A), for each
of the configurations a, b, ¢ and d of figure V.2, together with the values of the
well depth minima ratios for configurations: a/d, b/d and ¢/d. The hard core
radii chosen to fit configuration d to the 32-Lennard-Jones-site site model for the

selected values A, are as follows: -

table B.2.1 cp=5-8A
table B.2.2 o =6-0A
table B.2.3 0y =6-2A
table B.2.4 op=6-4A
table B.2.5 o9 =6-6A
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config..a confie., b config..c config., d

ratios:
A ¥  1/A V¥min /A V*min r/A V*min /A V*min a/d b/d c/d
400 -090 1170 060 620 -3313 1110 -026 2020 -002 3623 19957 1546
100 080 1110 063 620 -3088 1050 -029 2020 -002 3769 18662 17.73
400 -070 1080 -057 620 -2000 1030 -030 2020 -002 3457 17469 18.11
400 -060 1060 -051 620 -27.14 1020 -030 2020 -002 3081 16347 17.93
400 -050 1040 045 620 -2536 1020 -029 2020 -002 2725 1527.7 1757
400 -040 1040 040 620 -2364 1010 -028 2020 -0.02 2411 14244 17.14
400 030 1030 036 620 -21.98 1010 -028 2020 -002 2139 13239 1667
400 020 1020 032 620 -2035 1010 -027 2020 -002 1901 12256 1617
400 010 1020 -028 620 -1874 1010 -026 2020 -002 1691 11290 1565
400 000 1010 -025 620 -17.16 1010 -025 2020 -002 1509 10337 15.09
09 09 1060 -172 630 -2951 1030 -055 1920 -004 4337 74341 1392
090 -080 1030 -136 630 -2753 990 -054 1920 -004 3430 69346 1368
09 070 1010 -113 630 -2573 980 -053 1920 -004 2841 647.98 1327
090 -060 1000 -095 630 -2404 970 051 1920 -004 2397 60561 12.84
090 -050 990 -082 630 2245 970 -049 1920 -004 2053 56548 1242
09 -040 98 071 630 2092 960 048 1920 -004 1777 527.00 12.04
090 030 970 -061 630 -1944 060 -046 1920 -004 1549 48976 11.68
090 020 970 054 630 -1800 960 -045 1920 -004 1360 45347 11.32
09 -010 960 -048 630 -1659 960 -044 1920 -004 1198 41792 1097
090 000 960 -042 630 -1520 960 -042 1920 -004 1061 38293 1061
080 -090 990 -352 640 -2646 970 -099 1850 -008 4607 34636 12.99
080 080 970 -244 640 -2462 940 -089 1850 -008 31.99 3227 11.63
080 070 960 -191 640 -2296 930 -083 1850 -008 2501 30059 1091
080 060 950 -156 640 -2144 930 -079 1850 -0.08 2046 28056 10.39
080 050 940 -131 640 -2000 920 076 1850 -008 17.16 26174 997
080 040 940 -112 640 -1863 920 074 1850 -0.08 1462 24380 962
080 -030 930 -096 640 -1731 920 071 1850 -008 1263 22653  9.31
080 -020 930 -084 640 -1603 920 -069 1850 -008 1089 20977  9.02
080 010 920 074 640 -1478 920 -067 1850 -008 063 19340 875
080 000 920 -065 640 -1355 920 -065 1850 -008 848 177.34 848
070 090 940 -611 650 -2385 920 -1.60 1800 -013 47.39 18507 1241
070 080 920 -392 650 -2214 910 -1.35 1800 -013 3043 17176 10.46
070 070 910 296 650 2061 900 -124 1800 -013 2296 15090 958
070 060 910 237 650 -1921 890 -1.16 1800 -013 1839 14905 9.02
070 050 900 -1.96 650 -1791 890 -111 1800 -013 1521 13892 860
070 040 900 -166 650 -1667 890 -1.07 1800 -013 1284 12033 827
070 030 890 -142 650 -1549 890 -1.03 1800 -0.13 1099 12014 7.98
070 020 890 -123 650 -1434 890 -1.00 1800 -013 952 11126 773
070 010 890 -1.07 650 -1323 880 -097 1800 -013 830 10261 7.50
070 000 88 094 650 -1214 880 -094 1800 -013 727 9415 727
060 -090 900 -962 660 -2161 890 -241 1760 -020 4802 10781 1201
060 -080 890 -58 660 2000 870 -1.94 1760 -020 2032 9980 968
060 -070 880 -432 660 -1858 870 -1.75 1760 -020 2157 0273 871
060 060 870 -341 660 -1730 860 -163 1760 -020 1700 8631 813
060 050 870 279 660 -1611 860 -1.55 1760 -020 1393 8037 7.71
060 040 870 -234 660 -1499 860 -148 1760 -020 1167 7478 7.39
060 -030 860 -199 660 -1392 860 -143 1760 020 094 6944 7.3
060 020 860 -1.72 660 -1289 860 -1.38 1760 -020 856 6431 690
060 -010 860 -149 660 -11.89 860 -1.34 1760 -020 744 5934 669
060 000 850 -130 660 -1092 850 -1.30 1760 -020 650 5448 650
050 -090 870 -1423 670 -1964 850 -345 1720 -029 4834 6674 11.71
050 -080 860 -838 670 -1814 840 -269 1720 -020 2847 6162 9.14
050 070 850 -605 670 -1682 840 -239 1720 -029 2057 57.14  8.11
050 -060 840 -472 670 -1563 830 221 1720 029 1602 5312  7.51
050 -050 840 -38 670 -1454 830 209 1720 -020 1302 4941  7.10
050 -040 840 -319 670 -1352 830 -200 1720 -029 1085 4594 6.79
050 -030 840 -271 670 -1255 830 -1.93 1720 -029 919 4265 654
050 -020 830 -232 670 -1163 830 -1.86 1720 -029 790 3950 6.33
050 -010 830 -201 670 -1073 830 -1.81 1720 -029 684 3645 6.14
050 000 830 -1.76 670 -98 830 -1.76 1720 -029 597 3349 597
040 -090 830 2015 680 -17.92 830 -477 1690 -042 4849 4312 11.49




config., a config..b config.. ¢

config.. d

ratios:

Ay /A V*min /A V*min /A V*min /A V*min a/d b/d c/d
040 -080 830 -11.56 6.80 -16.50 820 -362 1690 -042 2782 39.70 8.72
040 -0.70 820 -8.23 6.80 -1527 810 318 1690 -042 1980 36.75 7.66
040 -060 820 -6.35 6.80 -14.17 810 -293 1690 042 1529 34.11 7.05
040 -050 810 -512 6.80 -13.17 810 -276 1690 042 1233 31.69 6.64
040 -040 810 425 6.80 -12.24 810 -263 1690 -042 1023 2945 6.33
040 -0.30 8.10 -3.59 6.80 -11.36 800 -253 1690 -042 865 27.33 6.10
040 -020 8.10 -3.07 6.80 -10.52 800 -245 1690 -042 740 2531 5.90
040 -0.10 810 -266 680 -9.71 800 -238 1690 -042 6.39 2337 6.72
040 0.00 800 231 6.80 -8.92 800 -231 1690 -042 556 2148 5.56
030 -0.90 8.10 -27.71 6.90 -16.38 800 645 1660 -0.57 4867 2878 11.33
030 -080 8.00 -15.55 6.90 -15.06 790 479 1660 057 2731 2643 8.42
030 -0.70 8.00 -10.92 6.90 -13.90 790 416 1660 -057 1919 24.41 7.31
030 -060 790 -838 6.90 -12.88 780 -381 1660 057 1472 2262 6.69
030 -0.50 790 673 6.90 -11.96 780 -358 1660 -057 1182 21.00 6.29
030 -040 790 -556 6.90 -11.10 780 -341 1660 -057 976 19.50 6.00
030 -0.30 790 -468 6.90 -10.30 780 -328 1660 -0.57 822 18.09 5.77
030 -0.20 780 399 690 -9.54 780 -317 1660 -057 701 16.75 5.57
030 -0.10 780 -345 690 -881 780 -308 1660 -0.57 6.05 1547 5.41
-0.30 0.00 780 -299 6.90 -8.10 780 -299 1660 -0.57 526 1423 5.26
020 -0.90 780 -37.25 7.00 -15.01 780 -854 1640 076 4871 1963 11.17
-020 -0.80 7.80 -20.52 7.00 -13.75 770 624 1640 -076 2683 17.98 8.15
020 -070 7.70 -14.29 7.00 -12.68 760 537 1640 -076 1869 16.58 7.02
020 -060 7.70 -10.89 700 -11.73 760 -490 1640 -0.76 1424 1534 6.41
020 -050 770 -8.70 7.00 -10.88 760 459 1640 -076 1138 14.22 6.01
020 -0.40 770 -7.16 7.00 -10.09 760 437 1640 -076 936 13.20 571
020 -0.30 760 -6.01 700 -9.36 760 420 1640 -0.76 786 1224 5.49
020 -020 760 -513 700 867 760 406 1640 -0.76 6.70 11.33 5.30
020 -0.10 760 441 700 -8.00 760 -394 1640 -0.76 577 1046 5.15
-0.20 0.00 760 -3.83 700 -7.36 760 -383 1640 -0.76 5.01 9.63 5.01
-0.10 -0.90 760 -49.29 710 -13.78 750 -1119 1610 -1.01 4874 1363 11.06
010 -0.80 750 -26.77 710 -1259 750 802 1610 -1.01 2647 1245 7.93
010 -0.70 750 -1849 710 -11.58 740 687 1610 -1.01 1828 1146 6.79
-0.10 -0.60 750 -14.00 7.10 -10.70 740 624 1610 -1.01 1384 10.58 6.17
010 -0.50 750 -11.13 710 -9.91 740 -584 1610 -1.01 11.01 9.80 5.77
0.10 -040 740 -9.14 710 -9.19 740 -554 1610 -1.01 9.04 9.09 5.48
010 <030 740 -7.67 710 -8.52 740 532 1610 -1.01 7.58 8.42 5.26
010 -020 740 -6.52 710 -7.89 740 514 1610 -1.01 6.45 7.80 5.08
010 -0.10 740 -560 710 -7.28 740 499 1610 -1.01 554 7.20 493
-0.10 0.00 740 485 710 6.70 740 485 1610 -1.01 4.80 6.63 4.80
0.00 -0.90 730 -64.56 7.20 -1267 730 -1452 1590 -133 4868 956 10.95
000 -0.80 730 -3464 720 -11.85 720 -1026 1590 -133 26.12 8.71 7.74
000 -0.70 7.30 -23.72 7.20 -10.60 720 873 1590 -133 17.89 7.99 6.59
0.00 -0.60 730 -17.87 720 -9.78 720 -790 1590 -133 1348 7.37 5.96
000 -0.50 720 -14.18 720 -9.04 720 -7.37 1590 -133 1069 6.82 5.56
0.00 -040 720 -11.61 720 -8.38 720 -700 1590 -133 8.76 6.32 5.28
0.00 -0.30 720 -9.71 720 -7.76 720 671 1590 -133 7.32 5.85 5.06
000 -0.20 720 -8.24 720 -719 720 -648 1590 -1.33 6.22 5.42 4.88
000 -0.10 720 -7.07 720 664 720 628 1590 -133 533 5.01 474
0.00 0.00 720 -6.11 720 -6.11 720 611 1590 -1.33 461 461 461
0.10 -0.90 710 -84.18 720 -11.67 710 -1874 1570 -1.73 48.72 6.76 10.85
010 -0.80 710 -44.60 7.30 -10.60 700 -13.09 1570 -1.73 2581 6.13 7.58
010 -070 740 -30.33 730 9.7 700 -11.07 1670 173 17.55 562 6.41
010 -060 7.00 -22.76 730 -8.94 700 998 1570 -1.73 1317 5.17 5.78
0.10 -0.50 7.00 -18.01 730 -8.26 700 929 15670 -1.73 1042 478 5.38
010 -0.40 7.00 -14.71 730 -765 700 -881 15670 -1.73 8.51 443 5.10
010 -0.30 700 -12.27 730 -7.08 700 -84 1570 -1.73 7.10 410 4.88
010 -0.20 7.00 -10.40 730 -6.55 700 -814 1570 -1.73 6.02 3.79 4.7
010 -0.10 700 -8.90 730 -6.05 700 -790 1570 -1.73 5.15 3.50 4.57
0.10 0.00 700 -7.69 730 -558 700 -769 1570 -1.73 445 323 4.45
020 -0.90 6.90 -109.57 730 -10.77 680 -2418 1550 -225 4874 479 10.76
020 -0.80 6.90 -57.40 730 -9.75 680 -1672 1550 -225 2553 4.34 7.44




config., a config..b config.,c config., d ratios:
A ¥ A V*min /A V*min /A V*min /A V*min a/d b/d c/d
020 -0.70 6.80 -38.83 730 -890 680 -1404 1550 -225 17.28 3.96 6.25
020 -060 680 2903 740 -818 680 -1263 1550 225 1292 364 562
020 050 680 2289 740 -755 680 -1173 1550 -225 1018 336 522
020 -040 680 -1864 740 698 680 -11.10 1550 225 829 341 494
020 030 680 -1552 740 646 680 -1063 1550 -225 691 288 473
020 -020 680 -1313 740 -598 680 -1025 1550 -225 584 266 4.5
020 010 680 -1122 740 -552 680 -094 1550 -225 499 246 442
0.20 0.00 680 -9.68 730 -5.09 680 -968 1550 -225 4.30 227 4.30
030 -0.90 6.60 -143.02 740 -995 660 -3142 1520 -295 4856 338 1067
030 -0.80 660 -74.35 740 -898 660 -21.44 1520 -295 2525 3.05 7.28
030 -070 660 -5000 740 -818 660 -17.90 1520 295 1698 278 6.8
030 -0.60 660 -37.22 740 -7.50 660 -16.04 1520 -295 1264 2.55 545
030 -050 660 -2024 740 691 660 -1487 1520 295 993 235 505
030 -040 660 -2376 740 -638 660 -1406 1520 295 807 217 477
030 -0.30 660 -19.74 740 -590 660 -1345 1520 -295 6.70 2.00 4.57
030 020 660 -1666 740 -546 660 -1297 1520 295 566 185 440
030 -010 660 -1422 740 -505 650 -1258 1520 295 48 171 427
030 000 650 -1224 740 -466 650 -1224 1520 -295 416 158  4.16
040 090 640 18922 750 -9.19 640 -41.19 1500 -389 4859 236 1058
040 -080 640 -97.32 750 -827 640 -27.76 1500 -389 2499 212 7.13
040 070 640 6502 7.50 751 640 -2304 1500 -389 1670 193 592
040 -060 640 4817 750 -688 630 -2060 1500 -389 1237 177 529
040 -050 640 -37.72 750 633 630 -1907 1500 389 969 162 490
040 -040 640 -30.56 750 -5.84 630 -1801 1500 -3.89 7.85 1.50 463
040 -030 630 2533 750 -540 630 -1723 1500 389 650 139 442
040 020 630 2138 750 499 630 -1661 1500 -389 549 128 427
040 010 630 -1822 750 -462 630 -1611 1500 -389 468 119 414
040 000 630 -1568 750 426 630 -1568 1500 389 403 109 403
050 -090 620 25412 760 -849 610 5494 1470 525 4844 162 1047
050 -080 610 12053 760 762 610 3667 1470 525 2469 145 699
050 -070 610 8609 760 691 610 3029 1470 525 1641 132 577
050 -0.60 6.10 -63.56 760 -6.31 610 -26.98 1470 -526 1212 1.20 5.14
050 -0.50 6.10 -49.64 760 -5.80 6.10 -2492 1470 -525 9.46 1.10 475
050 -0.40 6.10 -40.14 760 -534 6.10 -2350 1470 -525 7.65 1.02 448
050 -0.30 6.10 -33.22 760 -4.94 6.10 -2245 1470 -525 6.33 0.94 428
050 -020 610 -27.94 760 457 610 2164 1470 525 533 087 412
050 010 610 2378 760 422 610 2097 1470 -525 453 080 4.00
050 000 610 -2041 760 -390 610 -2041 1470 525 389 074 389
060 -090 590 35348 760 -7.85 590 -7564 1440 -720 4848 108 1037
060 -080 590 17822 7.70 -7.02 580 4980 1440 729 2444 096 683
060 -070 59 11760 770 635 580 4090 1440 729 1613 087 561
060 -080 590 -8637 770 579 580 -3631 1440 729 1185 079 498
060 -050 580 67.19 770 531 580 -3347 1440 729 922 073 459
060 -040 580 5419 770 489 580 -3153 1440 729 743 067 432
060 -030 580 4475 770 451 580 3010 1440 729 614 062 413
060 020 58 3757 770 417 580 2899 1440 729 515 057 398
060 -010 580 -31.92 770 -38 580 -28610 1440 -720 433 053 385
060 000 580 -27.35 770 -356 580 2735 1440 729 375 049 375
070 -090 550 51855 7.70 727 550 -10995 1410 -1075 4822 068 1022
070 -080 550 25885 7.80 647 550 -7151 1410 -1075 2407 060 665
070 -070 550 16972 780 583 550 5831 1410 -1075 1578 054 542
070 -060 550 12409 780 531 550 5154 1410 -1075 1154 049 479
070 -0.50 550 -96.19 780 -4.86 550 4738 14.10 -10.75 8.94 045 4.41
070 -040 550 7720 780 447 550 4455 1410 -1075 719 042 414
070 030 550 6362 7.80 413 550 4248 1410 -1075 5% 038 395
070 -020 550 -5326 780 381 550 4080 1410 -1075 495 035 3.80
070 010 550 4512 7.80 -352 550 -3962 1410 -1075 420 033 368
070 000 550 -385 7.80 326 550 -3856 1410 -1075 359 030 359
080 090 510 84919 7.80 673 510 -177.47 1370 -1766 4808 033 10.05
080 -080 510 41847 780 597 510 -11356 1370 -1766 2369 034 643
080 -070 510 27202 790 536 510 -91.79 1370 -1766 1540 030 5.0




config.,a config..b config..c config.,d

ratios:

Ay /A V*mir/A V*mirt/A  V*mirr/A  V*mira/d b/d c/d
080 -060 510 -19761 790 487 510 -80.71 1370 -17.66 1119 028 457
080 -050 510 -15238 790 445 510 -7396 1370 -17.66 863 025 419
080 -040 510 -121.90 790 409 510 -6940 1370 -17.66 690 023 393
080 -030 510 -9984 7.90 377 510 6608 1370 -17.66 566 021 374
080 -020 510 -8334 790 -348 510 6355 1370 -17.66 472 020 360
080 -010 510 -7035 790 -322 510 -61.54 1370 -1766 398 018 348
080 000 510 -5989 790 -297 510 -59.89 1370 -17.66 339 0.7 339
090 -090 450 -18200 7.90 -623 460 -37352 1310 -3821 47.85 016 978
090 -080 450 -88654 7.90 -551 460 23400 1310 -3821 2320 014 6.2
090 -070 450 -56961 7.90 -493 460 -18693 1310 -3821 1491 013 489
090 -060 460 41009 800 446 460 -163.18 1310 -3821 1073 012 427
090 -050 460 -31391 800 -407 460 -14883 1310 3821 822 0.1 389
090 -040 460 24947 800 -374 460 -139.19 1310 -3821 653 010 364
090 -030 460 20325 800 -344 460 -13226 1310 -3821 532 009 346
090 -020 460 -16846 800 -318 460 -127.01 1310 -3821 441 008 332
090 -010 460 -141.32 800 294 460 -12289 1310 -3821 370 008 322
090 000 460 -11955 800 271 460 -11955 1310 -3821 313 007 313
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A

x!

config., a config.. b config.c config.d

/A V*min /A V*min /A V*min /A V*min a/d

ratio:

bd c/d

-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20

-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80

6.90 -33.42
6.90 -30.68
6.90 -28.37
6.90 -26.40
6.90 -24.69
6.90 -23.20
6.90 -21.89
6.90 -20.72
6.90 -19.67
6.90 -18.72
6.90 -17.86

6.20 -12.65
6.20 -12.55
6.20 -12.45
6.20 -12.35
6.20 -12.25
6.20 -12.16
6.20 -12.06
6.20 -11.97
6.20 -11.87
6.20 -11.78
6.20 -11.69

-7.62
-7.22
-6.89
-6.61
-6.36
6.156
-5.96
-5.79
-5.64
-5.51
-5.38

6.90
6.80
6.80
6.80
6.80
6.80
6.80
6.80
6.80
6.80
6.80

-0.67
-0.67
-0.67
-0.67
-0.67
-0.67
-0.67
-0.67
-0.67
-0.67
-0.67

16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20

49.80
45.71
42.27
39.33
36.79
34.57
32.61
30.87
29.30
27.89
26.61

11.35
10.76
10.27
9.85
9.48
9.16
8.88
8.63
8.41
8.20
8.02

18.85
18.70
18.55
18.40
18.25
18.11
17.97
17.83
17.69
17.55
17.42

Table B.2.1

A

x'

a
/A V*min

b
/A V*min

[
/A V*min

d
/A V*min

bd c/d

-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10

-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80

6.90 -45.36
6.90 41.59
6.90 -38.42
6.90 -35.72
6.90 -33.39
6.90 -31.35
6.90 -29.55
6.90 -27.95
6.90 -26.51
6.90 -25.22
6.90 -24.05

6.50 -11.83
6.50 -11.73
6.50 -11.63
6.50 -11.53
6.50 -11.43
6.50 -11.34
6.50 -11.25
6.50 -11.15
6.50 -11.06
6.50 -10.98
6.50 -10.89

6.90 -10.25
6.90 -9.69
6.90 -9.23
6.80 -8.84
6.80 -8.51
6.80 -8.21
6.80 -7.96
6.80 -7.73
6.80 -7.52
6.80 -7.33
6.80 -7.17

16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20

-0.91
-0.91
-0.91
-0.91
-0.91
-0.91
-0.91
-0.91
-0.91
-0.91
-0.91

49.60
45.48
42.02
39.07
36.51
34.28
32.31
30.56
29.00
27.58
26.30

11.20
10.60
10.10
9.67
9.30
8.98
8.70
8.45
8.22
8.02
7.84

12.94
12.83
12.72
12.61
12.50
12.40
12.30
12.20
12.10
12.00
11.91

Table B.2.2

A

x’

a
/A V*min

b
/A V*min

c
/A V*min

d
/A V*min

bd c/d

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80

6.90 -60.69
6.90 -55.60
6.90 -51.32
6.90 -47.68
6.90 44.53
6.90 -41.78
6.90 -39.35
6.90 -37.20
6.90 -35.27
6.90 -33.53
6.90 -31.96

6.80 -11.11
6.80 -11.01
6.80 -10.91
6.80 -10.82
6.80 -10.72
6.80 -10.63
6.80 -10.54
6.80 -10.45
6.80 -10.36
6.80 -10.27
6.80 -10.19

6.90 -13.60
6.90 -12.85
6.90 -12.23
6.90 -11.69
6.90 -11.23
6.80 -10.84
6.80 -10.49
6.80 -10.18
6.80 -9.90
6.80 -9.65
6.80 -9.43

16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20

-1.23
-1.23
-1.23
-1.23
-1.23
-1.23
-1.23
-1.23
-1.23
-1.23
-1.23

49.43
45.28
41.79
38.83
36.26
34.02
32.05
30.29
28.72
27.31
26.02

11.07
10.46
9.96
9.52
9.15
8.83
8.54
8.29
8.06
7.86
7.68

9.05
8.97
8.89
8.81
8.73
8.66
8.58
8.51
8.44
8.37
8.30

Table B.2.3
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A

X

a
/A V*min

b
/A V*min

c

d

r/_A V*min r/j& V*min a/d b/d c/d

0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10

-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80

6.90 -80.52
6.90 -73.70
6.90 -67.98
6.90 -63.10
6.90 -58.89
6.90 -55.22
6.90 -51.98
6.90 -49.11
6.90 -46.53
6.90 -44.22
6.90 42.12

7.10 -10.48
7.10 -10.38
7.10 -10.29
7.10 -10.19
7.10 -10.10
7.10 -10.01
7.10 -9.92
7.10 -9.83
710 -9.74
7.10 -9.66
7.10 -9.57

6.90 -17.89
6.90 -16.90
6.90 -16.06
6.90 -15.35
6.90 -14.73
6.80 -14.20
6.80 -13.74
6.80 -13.32
6.80 -12.95
6.80 -12.62
6.80 -12.31

16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20

-1.63
-1.63
-1.63
-1.63
-1.63
-1.63
-1.63
-1.63
-1.63
-1.63
-1.63

49.26
45.09
41.58
38.60
36.03
33.78
31.80
30.04
28.47
27.05
25.76

6.41
6.35
6.29
6.23
6.18
6.12
6.07
6.01
5.96
5.91
5.85

10.85
10.34
9.83
9.39
9.01
8.69
8.40
8.15
7.92
7.72
7.53

Table B.2.4

A

xl

a
/A V*min

b
/A V*min

c
t/A V*min

d
/A V*min

b/d

c/d

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80

6.90 -106.4
6.90 -97.33
6.90 -89.70
6.90 -83.20
6.90 -77.59
6.90 -72.70
6.90 -68.40
6.90 -64.58
6.90 -61.16
6.90 -58.08
6.90 -55.30

7.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40

-9.93
-9.83
-9.73
-9.64
-9.54
-9.45
-9.36
-9.28
-9.19
-9.11
-9.02

6.90 -23.47
6.90 -22.14
6.80 -21.03
6.80 -20.09
6.80 -19.28
6.80 -18.57
6.80 -17.95
6.80 -17.40
6.80 -16.90
6.80 -16.46
6.80 -16.05

-2.17
-2.17
-2.17
-2.17
=217
-2.17
217
-2.17
-2.17
-2.17
-2.17

16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20
16.20

49.11
44.91
41.39
38.39
35.80
33.55
31.56
29.80
28.22
26.80
25.52

4.58
4.54
4.49
4.45
4.40
4.36
4.32
4.28
4.24
4.20
4.16

10.83
10.21
9.70
9.27
8.90
8.57
8.28
8.03
7.80
7.59
7.41

Table B.2.5
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Molecular dynamics simulations of discotic liquid crystals
using a hybrid Gay-Berne Luckhurst-Romano potential

by M. D. DE LUCA{, M. P. NEAL*#} and C. M. CARE§

Sheffield Hallam University, City Campus,
Pond Street, Sheffield S1 1WB, England

(Received 5 April 1993; accepted 12 July 1993)

We report the results of the computer simulation of a collection of particles
interacting via an anisotropic potential proposed by Luckhurst and Romano and
modified by scaling with part of the anisotropic well depth formalism employed by
Gay-Berne. Using the molecular dynamics technique for 256 particles in the NVE
ensemble, the system is shown to exhibit a variety of mesophases, as the temperature
is lowered, and these are provisionally identified as isotropic, discotic nematic, a
highly ordered fluid phase with some columnar features and a crystal.

1. Introduction
Significant progress has been made in recent years in modelling liquid crystal
phases using hard non-spherical models, soft non-spherical models and realistic atom—
atom potentials. Orientationally ordered mesophases have been simulated using non-
spherical rod-like and disc-like hard-core mesogens [1-3], but longer range attractive
forces are expected to influence the formation of mesophases, as well as short range
repulsive forces. Luckhurst and Romano [4] represented cylindrically symmetric
particles by a Lennard—Jones 12-6 potential, ¥, together with an additional anisotropic
term V,
V=V,+V, ‘ (Y]

w=le) G »
12 6 .
V,,=—4Ae{(§) +(§) }Pz(cos(ﬁu» C)

and B,, is the angle between the particle symmetry axes. They demonstrated a weak
first order transition from a nematic to an isotropic phase using a value of =015
determined by preliminary calculations. ‘

Everitt and Care [5] carried out a Monte Carlo simulation of a siloxane ring system
using the Luckhurst and Romano potential given by equation (1) to represent the
mesogenic units attached to the ring. The system exhibited a transition from calamitic
ordering to discotic ordering as the ring-mesogen bond varied from fully rigid to fully
flexible. '

where

* Author for correspondence.

1 Division of Applied Physics. _

1 Present address, School of Mathematics and Computing, University of Derby, Derby
DE22 1GB. :

§ Materials Research Institute.
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Berne and Pechukas [6] developed a soft non-spherical single site potential based
on the Gaussian overlap model. The original potential had several unrealistic features
and was modified [7] by obtaining a function which gave the best fit to the potential
described by a linear array of four equidistant Lennard-Jones centres. This potential
has been used extensively by Luckhurst and co-workers, for example, [8,9] and by de
Miguel and Rull [10] with rod-like parameterization to simulate nematic, smectic A
and smectic B phases, and by Emerson and Luckhurst [11] with disc-like parameteriz-
ation to simulate discotic nematic and discotic columnar phases. The Gay-Berne
potential is a single site potential so that a smooth transition in shape is obtained as the
parameterization is varied from the rod-like to the disc-like form. To model the
complex spectrum of molecular interactions of rods and discs more realistically, we
propose in future work to rigidly join together soft anisotropic potentials in a variety of
geometries. Such simulations are computationally very expensive, so in a bid to reduce
the time required, we have investigated a modified form of potential (1) [12]. The pair
potential is scaled by part of the well depth formalism employed to fit the Gay-Berne
potential [7], where

@

#-a,+¢-0,)2 (F-G,—1-0,)°
8’(ﬁ1,ﬁ2,r)=1—£{( 1 2) ( 1) 2) }

2 (1+4x(@0,-0)  1—y(@,-a,)

so that the potential becomes
V=e(0,, 0, )V, + V). 5)

The orientation of the molecule is specified by the unit vector & and the intermolecular
vector by the unit vector . The parameter y’ determines the relative ratio of the end to
end and side to side interactions and is given by

X, = (1 - 8c/£s)/(1 + ge/Ss)’ (6)

where ¢ /¢, is the ratio of end to end and side to side potential well depths [8]. The
original potential (1) is dependent on the relative orientation of the intermolecular axes
and so favours end to end (e) and side to side (s) configurations compared to cross (X)
and tee (T) configurations, but does not distinguish between side-side and end—end or
between X and T. It should be noted however that the nicdified potential given by
equation (5) does distinguish between s and e and between X and T, as shown in table 1.
The modified potential (5) requires one tenth the CPU time of the Gay-Berne on an
iPSC860 processor. Further it has the advantage that the effect of ¢ alone can be
investigated by varying ¢/e,. Extensive studies of the Gay-Berne fluid have used values
of 5-0 to represent a disc-like potential and 0-2 or less [11] to represent a rod-like
potential as part of the parameterization. Setting the ratio equal to 1 removes the effect
of ¢. We present preliminary results for potential (5) with A=0-15 and ¢_/¢, equal to 50
so that the end to end interaction is favoured as shown in figure 1.

Table 1. Values of (6, ,,r) (4), for different configurations.

Configuration  ¢/e,=02 ¢./e,=50 B, £,y

end-end 02 50 0° EefEs
side-side 1-0 1-0 0° |
- X 1-0 1-0 90° 1

T 1030 50/30 90°  2/(1+efe)
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10 . '
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\\ end-end

. 5 side-side
> ——
3 T configuration
2 \ —
(;‘; 0 — X configuration
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©
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reduced separation r*

Figure 1. The distance dependence of the potential energy calculated from the modified
anisotropic potential for particular orientations of the molecules with respect to one
another and to the intermolecular vector. The parameterization of the potential is that
used in the molecular dynamics simulation and described in the text.

2. Molecular dynamics simulation

Our primary aim was to see if potential (5) could be used to model discotic liquid
crystals, and to compare the phase temperatures with those obtained for the Gay-
Berne fluid. We have performed molecular dynamics simulations (MD) for 256
particles in the NVE ensemble in a cubic box, employing periodic boundary conditions.
No cut off was used as this did not aid the vectorization, and one time step in the
simulation required 0-03 s of CPU time on an Amdahl VP1200 supercomputer. The
translational equations cf motion were solved numerically using a Verlet half-step
leapfrog algorithm [13 14], and the rotational equations of motion were solved in a
similar manner using a constraint method [15]. Preliminary calculations were
performed with a variety of number densities and at low temperatures. At values close
to that of liquid argon near the triple point, cavities formed in the box. Results are
presented for a reduced number density p*=1-1 which enabled equilibration of the
system at low temperatures without cavity formation. The particles are axially
symmetric about the vector & with a spherical repulsive core surrounded by a non-
spherical attractive region, equivalent to a disc-like moment of inertia. A reduced
moment of inertia of I* = 1-00 (I* = I/(mo?)) was employed to provide a reasonable rate
of equilibration between translational and rotational energy. From the simulation, the
following quantities were calculated: the pressure P*=Pg’[e, temperature T* = Tky/e,
the root mean square displacement {|r*(t) — r*(0)|2)!/2 and its components parallel and
perpendicular to the director, the total internal energy per particle E*=E/e, the
potential and the kinetic energy per particle U* and K*, the order parameter {P,) and
the director of the phase fi. The second rank order parameter { P, ) was evaluated using
the tensor Q defined by

‘ 3uba — Oy
~——————2 .

-

Qzli (7)
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where 1! is the a-component of the unit vector along the symmetry axis of the molecule
i. (P,)> was defined as the ensemble average of the largest eigenvalue of the Q-tensor,
and the director as the corresponding eigenvector [16] and these were calculated every
100 steps. Additionally the second rank orientational correlation function G,,

G, ={Pycos ﬂij(r*))> ®)

the radial distribution function g(r) together with the longitudinal and transverse pair
correlation functions g(r¥) and g,(r}) were calculated.

The first simulation was started from an a-fcc crystal with kinetic and rotational
energy such that the initial lattice melted. The system was allowed to equilibrate over
30000 steps, equipartition between translational and rotational energy being observed,
and production runs of 30000 step were employed. The temperature was reduced by
scaling the linear velocities and allowing the system to equilibrate for 30000 steps
between each production run. The reduced time step At* =(¢/ma?)!/>At was adjusted to
give acceptable energy conservation for each state point; fluctuations of less than 1 part
in 1000 of the total energy were observed for all runs except one just before the region
identified as the isotropic-nematic transition in which the energy fluctuated by 1 part in
100. A valued of At* =0-005 was employed in the isotropic region, but this was lowered
to 0-0015 in regions where the second rank order parameter (P, rose indicating the
onset of order.

3. Results
The variation of (P, ) as the system was cooled is shown in figure 2. We see that the
system is isotropic at a reduced temperature of ( T*) = 10-0 and remains orientation-
ally disordered until the temperature is lowered to about {T*)»=5-5, although finite
size fluctuations in evaluating Q lead to a small non-zero value for (P, ). In the reduced
temperature range of {(T*)>=5-5 to {T*) =50, the order parameter rapidly rises to
about {(P,)»=0-64. It then slowly tends to 1-0 as the system is cooled further. Figure 3
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Figure 2. The variation of the second rank orientational order parameter { P,) as a function of
' reduced temperature.
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Figure 3. The variation of the potential energy (U*) as a function of reduced temperature.

shows the change of the potential energy with temperature. At reduced temperatures of
53402 and 2:7+0-1, a fall in potential energy is seen while the temperature remains
constant, indicating the presence of two phase transitions. The entropy of transition
A{U*H[{T*) was estimated to be 0-6 in each case. The mean square displacement was
monitored during each production run and the diffusion coefficient calculated from its
gradient with respect to time as a check on the fluidity of the phase. Simulation runs
near phase transitions were extended a further 150000 steps and the diffusion
coefficients D* and its components D} and D} parallel and perpendicular to the
director obtained from the gradient of these curves which relate to the Einstéin relation
[17], valid at long times, were calculated by considering the final two-thirds of the
simulation only. These results are presented in table 2. In these extended runs it was
found that close to the nematic—isotropic transition, the system was subject to large
energy fluctuations. This problem was resolved by substituting a full step Verlet
algorithm to solve the rotational equations of motion [9].

Figure 4(a) shows that diffusion in a direction parallel and perpendlcular to the
director is equal at a reduced temperature of {T*»=5-0. This is not observed in
simulations of a Gay-Berne discotic nematic fluid [11]. This effect is attributed to the
fact that the modified potential has a spherical repulsive core, whereas the repulsive

Table 2. Reduced diffusion coefficients, mean order parameters and mean temperatures.

<T*> b*  Dj Dt (P2
53+02 578 194 192 0-49+006
50+02 517 179 169 0624002
288+£008 193 62 66 08890008
2774009 54 13 20 0901+0007
258+007 07 01 03~ 091140007
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core of the Gay-Berne potential possesses ellipsoidal symmetry. By the time the system
has cooled to a reduced temperature of (T*)=2-77, initially coincident curves,
describing the components of diffusion with respect to the director, diverge at long
time, although the total mean square displacement still exhibits liquid like behaviour,
see figure 4 (b). This reduction in diffusion parallel to the director below {T*>=2-8is
further evidence for a transition to a highly ordered, possibly columnar fluid phase. At
reduced temperatures lower than {T*) =26, diffusion in all directions has virtually
ceased, indicating the presence of a solid like phase. '
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Figure 6. Three pairs of snapshots from typical configurations at instantaneous values of the
order parameter {P,) of (a) 0:67, (b) 091 and (c) 0:99. The thick line in the box represents
the direction of the director of the phase. The second snapshot is shown looking down the
director for (a) and (b). In (c) the second snapshot shows the centres of mass of the
molecules orthogonal to the column axes.

Figure 7. An enlarged snapshot of the configuration in figure 6 (b) at an instantaneous value of
the order parameter {P,) of 0-91, exhibiting examples of short stacks of discs.

Figures 5 (a) and (b) show the radial distribution function together with transverse
and longitudinal correlation functions at temperatures of {T*» =50 and (T*) =2-77,
respectively. Figure 5(a) demonstrates that there is no discernible change from liquid-
like structure as the phase changes from isotropic to discotic nematic, but figure 5 (b)
exhibits a one-dimensional density oscillation parallel to the director, consistent with
the molecules being arranged in columns or layers with a separation r*=0-96,
coincident with the energy minimum in the pair potential. At the same temperatures,
the transverse pair correlation function also begins to indicate the presence of structure -
with peaks occurring that become much more enhanced in the crystal phase as shown
in figure 5(c) at a reduced temperature of (T*) =0-47.
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The second rank orientational correlation function, G,(r*), exhibited a peak close
to a reduced separation r*=0-7 in all cases. In the isotropic phase, G,(r*) quickly
decayed to a limiting value close to zero, indicating the absence of any long range order.
In the nematic and higher order phases, G,(r*) attains a limiting value of approximately
{P,>? indicative of the persistence of orientational order at long range in these phases.

Figure 6 represents ‘snapshots’ of sample configurations taken during production
runs at reduced temperatures of {T*» =50, {T*) =2-8 and {T*) =0-47 correspond-
ing to instantaneous values of the order parameter (P,)>=067, (P,>=091 and
{P,>=099. In each case, two views of the same configuration are presented parallel
and perpendicular to the director. Figure 6 (a) illustrates the discotic nematic phase. In
figure 6 (b) we present two views of the higher order phase. Although these snapshots do
not appear to exhibit a full discotic columnar phase, there is evidence of short stacks of
discs as shown in figure 7. This short range columnar order is supported by the density
oscillation in the longitudinal distribution function parallel to the director. Frenkel [ 1],
in simulations of cut spheres, observed highly ordered short range stacks, but in this
case the oscillations in the longitudinal distribution function died away within the
simulation box. It is interesting to note that in figure 6 (c) and to a lesser extent in figure
6 (b), the molecules appear tilted within the columns. A similar effect was observed in
the liquid crystal phase diagram of the Gay-Berne fluid [10] as a smectic B phase was
compressed. Finally figure 6 (c) shows a crystal phase. The crystal shows a honeycomb
structure with hexagonal symmetry, but not close packing. Other simulations of
discotics using the Gay-Berne potential have yielded a final crystal with rectangular
symmetry [11].

4. Conclusion

We have used molecular dynamics to simulate a system of discs interacting by a
modified Luckhurst-Romano potential scaled by part of the well depth anisotropy
term of the Gay-Berne potential. We have identified a phase transition from an
isotropic liquid to a discotic nematic at a reduced temperature of {(T*)»=5-5. The
discotic nematic phase is stable over a range of about three reduced temperature units,
subsequently undergoing a further transition to a higher ordered phase at {(T*) = 2-7.
The higher order phase is observed cver a small reduced temperature range, with a
transition to a crystal phase possessing hexagonal symmetry at {T*)=2-6. These
results are similar to those of Emerson [11] for the Gay-Berne potential which
provisionally identified nematic discotic and columnar discotic phase transitions at
reduced temperatures of {(T*» =~ 11-0 and {T*) ~4-0 respectively, at a reduced density
of g*=3-0, the Gay—Berne crystal showing rectangular symmetry. The reduced CPU
time required for the modified potential (5) will allow multi-site versions of the potential
with difiering geometries to be used to simulate discotic liquid crystals more
realistically, allowing investigation of the effect of variable bond lengths, and more
direct comparison with the Gay—Berne fluid.

We wish to acknowledge the award of a research studentship to MDD from the
Science and Engineering Research Council (RS Quota Award ref. No. 9031742X0), plus
a grant of CPU time on the Manchester Computing Centie Amdahl VP1200 vector
processor (Award ref. GR/H55994).
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Computer modelling of discotic liquid crystals {
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The majority of liquid crystals are based on elongated molecules that form
so-called calamitic phases. In the late 1970s liquid crystals based on flat disc-
shaped molecules were first synthesized. These molecular systems are known as
discotics, and most exhibit two kinds of structure: nematic and columnar. An
understanding of the molecular structure and interaction potentials of these
molecules allows us to gain insight into the alignment of discotic materials. We
review here the use of hard and soft potentials to undertake molecular dynamics
and Monte Carlo simulations of discotics, with particular reference to the phases
obtained from these models. We also discuss the possibility of using realistic
models for specific liquid crystal systems.

1. Introduction

The first computer models of liquids were developed in the early 1950s (for
reviews see Allen and Tildesley 1987, Ciccotti et al. 1987). Since this pioneering
work, many advances have been made both in the techniques for carrying out
simulations and in the theories of liquid structure. There are also continuous
improvements in the associated computer hardware. Simulations of the anisotropic
fluids which form liquid crystal (LC) phases are now readily undertaken. These
computer simulations give an improved understanding of the way in which intermo-
lecular interactions affect the observed LC phases and the form of the molecular
ordering in these phases. This understanding is of use in the development and
synthesis of new materials. In this paper we review the progress that has been made
in the use of Monte Carlo (MC) and molecular dynamics (MD) techniques to
simulate discotic liquid crystals.

The unique properties of liquid crystals lead to a variety of applications. Liquid
crystal materials are used in a wide range of low-power display devices. (Scheuble
1989) and rapid switching, high-definition, flat television screens are just coming on
to the market. The use of liquid crystals for optical data storage devices is being
investigated (e.g. Meier et al. 1975, Gray 1987). Interest in discotic liquid crystals has
been growing since the discovery that derivatives of benzene and derivatives of
triphenylene form thermodynamically stable liquid crystalline phases (Chandrasek-
har et al. 1977, Billard 1978). One possible application of discotic liquid crystals as
‘molecular wires’ is currently being investigated (Boden er al. 1993).
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31 August to 3 September 1993. :
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In the following, we describe the computer simulations that have been carried
out on discotic systems. It is convenient to break the discussion into three separate
parts; hard particle potentials, soft anisotropic potentials and multisite potentials.

2. Hard particle potentials

Much of the early work on simulating fluids has been undertaken on hard
particle models because the results can be used to test the quality of analytical
approximations within the theory of the liquid state. The work also allows a study of
the interactions which are necessary to induce LC behaviour.

Although the first LC simulations were attempted in the early 1970s (Vieillard-
Baron 1972, 1974) the first numerical determination of the thermodynamic isotropic-
nematic transition in a system of three-dimensional particles was achieved for
discotic type particles by Frenkel and Eppenga (1982) and Eppenga and Frenkel
(1984) who studied a system of infinitely thin hard circular platelets of diameter ¢.
Such a system has only one parameter, the reduced (scaled) density p* = po>, making
the system similar in this respect to the hard-sphere fluid. Indeed, the motivation for
choosing the hard-platelet fluid is that it forms a reference system that may be used
to model disc-like nematogens (discogens). The results of these simulations were
compared with a five-term virial equation of state, the Onsager (1949) theory and a
version of the scaled particle theory (Savithramma and Madhusudana 1981).
Frenkel and Eppenga pointed out that comparison of their work with Onsager
theory would be particularly interesting because any discrepancy between it and
their MC results would be due solely to the higher order virial coefficients. The
Onsager theory was consistently found to yield pressures that were too low in the
isotropic regime. In conclusion, they found that none of the theories was fully
satisfactory in describing the equation of state over the complete isotropic regime.

Hard ellipsoids of revolution have been studied extensively (Frenkel et al. 1984,
Frenkel and Mulder 1985, Talbot et al. 1990). These simulations are characterized by
the number density and axial ratio, e=a/b where a is the length of the major
symmetry axis and b is the length of the two equal corresponding minor perpendicu-
lar axes. Hard ellipsoids with axial ratios e=3, 2-75, 2, 1-25 (prolate) and e=1/1-25,
1/2, 1/2-75, 1/3 (oblate), were studied via MC simulation. Four distinct phases are
identified at various reduced densities and axial ratios; isotropic liquid, nematic
liquid, ordered solid and plastic solid. The plastic solid (sometimes called a plastic
crystal) is a phase where the constituent particles possess long-range translational
order but are orientationally disordered at long range. First-order phase transitions
are located between solid and fluid, and between isotropic liquid and nematic liquid
phases by computing the absolute free energy of the coexisting phases. The nematic
phase is found to exist only in the range 1/2-75 > ¢ >2-75. With this informtion, and
existing data on the hard sphere. e=1, system (Hoover and Ree 1968), a phase
diagram of the hard ellipsoids of revolution may be constructed with the reduced
density (packing fraction) and axial ratio ¢ as independent variables (see Fig. 1).
Such a phase diagram shows remarkable symmetry undér the e« 1/e transformtion.
.~ However, this symmetry cannot be exact because, in the limit that the oblate
ellipsoids become infinitely thin, higher order virial coefficients do not vanish. With -
ellipsoids of axial ratio in the approximate range 1/1-5 to 1-5 a plastic crystal phase is
formed on compressing the orientationally ordered fluid. In this case the order
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Figure 1. The phase diagram for hard ellipsoids of revolution. Axial ratio a/b is plotted
against the scaled density p*. Open circles indicate observed isotropic-to-nematic
transitions. Black squares are the values for the coexistence densities of the hard-sphere
liquid obtained by Hoover and Ree (1968). Shading denotes coexisting phases. The
following phases are identified: I—isotropic liquid; N—nematic liquid crystal; P—
plastic crystal; S—solid. [Diagram reproduced from Frenkel et al. 1984.]

parameter decays to zero continuously, with no discontinuous changes in density
indicating a higher order (or possibly weakly first-order) phase transition.

More recently, ellipsoids of more extreme axial ratios have been examined via
MD simulations (Allen and Wilson 1989) and there are seen to be systematic
differences between the prolate and oblate ellipsoids; the oblate ellipsoids are more
aligned at a given density than the respective prolate ellipsoids.

Ellipsoids with non-equal axial ratios, a#b#c, have been used to simulate a
biaxial liquid crystalline phase (Allen 1990). The three distinct semi-axes were chosen
such that abc=1, c/a=10 ard b/a ranged between 1 and 10. The phase diagram
obtained is found to be approximately symmetrical under the transformation
{a,b,c}>{a"1, b7, ¢}, as for the axially symmetric hard ellipsoids. For axial -
ratios equivalent to the self-conjugate value (b=,/ac) the most stable biaxial phase is
formed directly on compression from the isotropic phase. Away from these axial
ratios, a discotic nematic or calamitic nematic, respectively, is identified.

The hard ellipsoid models only show the nematic and biaxial LC phases and
hence work has also been undertaken on cut-sphere, hard particle, models. The cut-
sphere is formed by removing two slices from a hard sphere above and below the
equator, parallel to the equatorial plane and at an equal distance normal to it. Such
a model is specified by the diameter of the sphere D and the perpendicular distance
between the cut planes L(L<D). Unlike oblate (or prolate) ellipsoids, perfectly
aligned cut-spheres cannot be mapped on to the hard-sphere model by scaling
arguments (Frenkel 1989, Veerman and Frenkel 1992) and thus it is possible that
they may show additional liquid crystal phases. A further advantage of the cut-
sphere model is that, with the ratio L/D =1, we once again retrieve the hard sphere
reference system, which is always useful as a check on the simulation conditions and
for pinning the solid-isotropic liquid transition on any derived phase diagrams.
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Cut-sphere systems with ratio L/D=0-1, 0-2, 0-3 have been studied extensively by
MC techniques (Veerman aud Frenkel 1992) and the simulations have shown cut-
spheres exhibit a range of interesting phases. For L/D=0-1, a total of four
thermodynamically stable phases are identified as isotropic liquid, discotic nematic,
discotic columnar and a solid phase. Simulations with L/D=0-2 turned out to
exhibit solid, columnar and isotropic phases but with no apparent stable nematic
phase. Instead, a novel phase (cubatic) consisting of short stacks of cut spheres
arranged with cubic orientational order between the isotropic and discotic columnar
phases was observed. For cut-spheres of ratio L/D=0-3 a columnar phase is not
observed, and instead a strong first-order phase transition from isotropic liquid
direct to a crystalline solid exists. An MC simulation on cut-spheres constrained to
be oriented parallel to each other does not exhibit a columnar phase at all for L/
D=0-1 (Azzouz et al. 1992). In this case, the low density nematic undergoes a phase
transition to a discotic smectic where the parallel cut-spheres lie in layers parallel to
the system director but with no ordering within these layers.

Recently, MC simulations have been performed on a model of cut-spheres,
L/D=0-1 with an imposed permanent dipole moment u*, either parallel to the
molecular symmetry axis or perpendicular to it (Weis er al. 1992, Zarragoicoechea
etal. 1991, 1993). Motivation for these simulations comes from experimental
evidence that compounds with strong permanent dipoles exhibit unusual properties
different from the usual liquid crystal phases (Weber er al. 1987; Palffy-Muhoray et
al. 1988). It was found in this work that, with a dipole moment, the isotropic and
nematic phases are not altered qualitatively with respect to non-polar cut spheres.
However, increasing the dipole moment of a pre-existing nematic phase to u*=0-5,
induces a phase transition to a columnar configuration.

- 3. Single-site soft potentials

A number of soft, single-site potentials have been developed to represent
calamitic nematogens (e.g. Gay and Berne 1981, Luckhurst and Romano 1980). The
calamitic form of the Gay-Berne potential has been studied extensively (Adams et
al. 1987, Luckhurst et al. 1990, 1993, Chalam et al. 1991, de Miguel et al. 1990,
1991a, 1991b, 1991c, 1992).

We begin by examining the results of a parametrization of the Gay-Berne
potential to represent a discotic liquid crystal, and then describe simulation studies
that have been performed by the authors of this paper on a hybrid Gay- Beme
Luckhurst-Romano potential.

Berne and Pechukas (1972) developed a gaussian overlap model to represent
calamitic nematogens. Gay and Berne (1981) improved the original model by
removing unrealistic features that would not be present in the interaction potential
between two real liquid crystal mesogens. Emerson (1991) suggested a parametriza-
tion of the Gay-Berne potential to make it represent a discotic mesogen and
examined this system in some detail using MD. Four liquid crystal phases were
identified; isotropic liquid, discotic nematic, discotic columnar and crystal. The use
of MD simulations made it possible to obtain particle self-diffusion in the liquid
crystal phases and an investigation of the particle distribution functions showed that
the orientationally disordered isotropic phase possesses a liquid-like structure which
remains through' the discotic nematic phase.
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In the discotic nematic phase the Gay-Berne discs possess a higher diffusion
coefficient compared with the isotropic regime, despite being at a lower temperature.
This may be explained because in the nematic phase the molecules possess a higher
degree of translational freedom (due to the reduction in possible reorientation of the
discs). Resolving the components of mean square particle displacements shows that
molecular translational motion is greater perpendicular to the director than parallel
to it. In the columnar phase this remains the case, although the overall magnitude of
mean square displacement is much reduced.

Turning our attention to the columnar phase, as the discotic nematic is cooled
further, the distribution functions indicate that long-range positional ordering sets in
and this is consistent with the molecules being arranged in stacks parallel to the
director. Values for the mean square particle displacement, and snapshots from the
simulation confirm that this is a fluid phase, in the form of a columnar phase with a
rectangular arrangement of columns that are intercalated. As the system is cooled
further a solid crystal phase is formed.

The authors of this article have recently carried out a MD study of a single site
potential (De Luca et al. 1994) which is a hybrid Gay-Berne, Luckhurst-Romano
potential (HGBLR). The potential has the form
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The above variables take the following meanings: 4, and &, are unit vectors
describing the orientation of the principal symmetry axis of molecules 1 and 2
respectively; # is the intermolecular unit vector and r=|r|, is the intermolecular
separation. The anisotropy parameter, y', in the strength of the potential is
calculated from the relative potential well depths for side-by-side (¢,), and end-to-end
(¢.) configurations of molecules. The parameters ¢ and ¢ are the usual Lennard-
Jones parameters. The scaling factor 2 takes the value 0-15 determined from
preliminary calculations (Luckhurst and Romano 1980), and P, is the second
Legendre polynomial. :
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The potential is characterized by a hard core which is spherically symmetrical for
a fixed orientation between the two molecules. This core is surrounded by an
anisotropic attractive region. Such a potential allows us to study the effects of
anisotropic dispersion forces on the formation of liquid crystal phases.

Performing MD simulations with the HGBLR potential parametrized as a disc,
we have obtained four distinct phases: isotropic liquid, discotic nematic, a highly
ordered fluid phase with some columnar characteristics and a crystal. As the system
is cooled it undergoes a first-order phase transition to a discotic nematic phase at
about T*=5-5. If we examine the components of diffusion resolved with respect to
the nematic director, we do not find a separation of the components of the mean
square particle displacement parallel and perpendicular to the director, in contrast to
that observed by Emerson (1991). This is attributed to the fact that the HGBLR
potential has a spherically symmetric hard-core repulsive region.

If the system is cooled further, a second phase transition to a higher ordered fluid
phase occurs. This phase is characterized by a strong one-dimensional density wave
along the direction of the director. Structure perpendicular to the system director is
also present, suggestive of a columnar phase. Instantaneous snapshots of our system
are shown in Fig. 2. In the higher ordered fluid phase, the plane of the discs is seen to
be tilted with respect to the column axis. Columnar structures consisting of columns
of tilted molecules have been observed experimentally (Chandrasekhar 1983), with a
rectangular arrangement of columns. In this phase we find that there is much more
translation of the discs perpendicular to the director compared with parallel to it.
Cooling the system even further yields a crystal that has a honeycomb structure.

The HGBLR will be used as a basis for multi-site simulations, as described in the -
next sections. Its principal advantage is that it is an order of magnitude faster than
the Gay-Berne potential. A multisite version of the HGBLR potential is currently
being used in a simulation of triphenylene derivatives.

4. Combined site potentials

Although the hard and soft potential models have made some progress in our
understanding of the formation of liquid crystals, these models do not have the
ability to describe specific molecular systems. In the case of the hexa-n-
alkoxybenzoates of triphenylene, the presence of the alkyl chains is essential in order
for the system to form a liquid crystal; the temperature for the isotropic-nematic
transition is found to increase as the alkyl chain length is reduced (Chandrasekhar
1983). It has also been demonstrated that the methylation of the benzoate groups
leads to a reduction in the phase transition temperatures. The phase behaviour is
critically dependent on the position of methylation (Philips ef al. 1993). A challenge
to a simulator is to attempt to model the subtleties in a particular molecular system.

A realistic simulation of a complicated system, based on a quantum mechanical
approach is not yet feasible. It is still a major feat to undeitake a simulation of
triphenylene derivatives by representing each atomic site by a simple potential and to
include sufficient molecules to obtain thermodynamically significant results. Thus
Wilson and Allen (1991, 1992) attempted a detailed simulation of the mesogen rrans-
4-(trans-4-n-pentylcyclohexyl) cyclohexylcarbonitrile (CCHS). Here, atomic sites are
represented by a Lennard-Jones and a coulombic potential and extra potential terms
are included to model bond stretching, bending and torsional interactions. Some
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)

Figure 2. Six snapshots of typical configurations from a simulation of a discotic parametri-
zation of the hybrid Luckhurst-Romano Gay-Berne potential exhibiting various
phases: (a) istotropic phase from a simulation with order parameter {P,»=0-08; (&) a
view of a nematic phase taken. from a simulation with (P,)=0-64. The thick line
through the simulation box represents the orientation of the system director; (c) as (b)
but looking down the director: (¢) a view of a highly ordered phase showing molecules
stacked in columns with the molecular axis tilted with respect to the columnar axis.
For this simulation {P,»=091; (e) as for (d) but showing only the centres of mass of
the molecules looking down the columns; (f) a view of the crystal phase looking down
the director, exhibiting the honeycomb structure (here {P,»=0-99).
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atomic carbon and non-electronegative hydrogen sites are combined to achieve
computational efficiency. For a relatively small system of 128 CCHS molecules, in
excess of 800 hours was required on an IBM 3090-VF to simulate three state points.
This work indicates the possibility of predicting the properties of a given mesogen
prior to its synthesis.

Komolkin et al. (1989) have attempted a Monte Carlo simulation of 4-
ethoxybenzylidene-4-n-butylaniline (EBBA). Seventy EBBA molecules are simulated
in the isobaric-isothermal ensemble. In common with Allen and Wilson this
simulation uses Lennard-Jones atom-atom potentials with an extra term to take
account of torsional interactions. The simulation approach here has two stages; the
atom-atom potentials are first used to calculate the conformational energy of an
isolated molecule. In the second stage the molecular structure and bulk phase
structure are modelled simultaneously using the Monte Carlo technique. From this
approach it is clear that the liquid crystal environment has a significant effect on the
molecular conformation. The main computational difficulty with this approach is
the limited number of molecules that may be studied.

The correct simulation of benzene will be an important first step in the modelling
of molecular systems that contain aromatic hydrocarbons. The unified atom
approach has been employed in the simulation of benzene using both molecular
dynamics and Monte Carlo techniques. A Monte Carlo approach was used by Evans
and Watts (1976) with a six-site Lennard-Jones potential. This model gives sensible
agreement with the structure of liquid benzene and the model can also predict the
unit cell structure of solid benzene. Claessens ef al. (1983), performed a molecular
dynamics simulation with a six-site Lennard-Jones model that features a quadrupole
term placed at the centre of the ring, which improves the prediction for the lattice
parameters of solid benzene. It is also possible to simulate benzene by using a
quadrupole potential and single site gaussian overlap model (Berne and Pechukas
1972). When parametrized correctly these models (Gupta et al. 1988) give good
agreement with the six-site potential models. For large molecules it is clear that a
site-site simulation approach becomes computationally expensive. The success of the
gaussian overlap potential in modelling the behaviour of benzene suggests the
possibility of describing more complex molecules by making use of multisite
anisotropic pair potentials. A two-site gaussian overlap potential has been used to
model naphthalene (Sediawan et al. 1989). Such an approach has also been
suggested by Stone and co-workers (Price and Stone 1984, Rodger et al. 1988). The
agreement of this simulation with the experimental data for liquid naphthalene
indicates the important role of molecular shape in modelling a fluid. Everitt and
Care (1987) have made a study of siloxane ring polymers with attached side chain
mesogens. An MC simulation in the NVT ensemble was performed in which the
attached mesogens were represented by anisotropic Luckhurst-Romano (1980)
potentials and the sites were flexibly attached to a ring. A phase diagram was
obtained which demonstrated the relationship between the discotic and calamitic
phases for a given flexibility.

Multisite anisotropic potential models unite the use of isotropic site-site models
and explicit orientation dependent potentials. This leads to the possibility of
modelling more complex molecular fluids. However, a number of problems remain,
such as a systematic method of parametrization and the inclusion of flexibility. bond
stretching and charge distributions.
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5. Conclusions

Hard-particle models have proved particularly useful in extending our know-
ledge of the formation of orientationally ordered and, in some cases, one-
dimensional translationally ordered discotic phases through excluded volume effects.
The importance of hard-particle reference systems in the development of perturba-
tive theories of the formation of liquid crystal phases cannot be underestimated and,
indeed, attention has been turned to two-dimensional models in order to investigate
further the effects of dimensionality on liquid crystalline transitions (Cuesta and
Frenkel 1990).

Anisotropic attractions (dispersive interactions) also influence the formation of
real mesophases. With this in mind, soft models based on the Lennard-Jones 12-6
potentials have been devised and shown to exhibit a rich polymorphism.

To date, there are no published results on full site-site potentials of specific
discotic mesogens. This is not surprising when we consider the complexity of discotic
systems such as the triphenylene derivatives and the difficulties of simulating CCHS
and EBBA. Success with the simulation of benzene and naphthalene introduces the
idea of modelling discotics by making use of multisite anisotropic potentials.

In conclusion, it is clear that the use of computer simulations will form an
important tool in the future development of materials such as discotic liquid crystals,
particularly as the power of computer hardware increases.
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We report a molecular dynamics simulation study of a system of particles interacting via an anisotropic
potential proposed by Luckhurst and Romano and modified by scaling with part of the well depth formalism
employed by Gay-Berne. Parameters are selected to model calamitic mesogens and the system exhibits
a variety of mesophases as the temperature is lowered. The phases are provisionally identified as isotropic,
nematic, a highly ordered fluid with some smectic features and crystal. Comparison is made with a previous
study with the same potential parameterised to model discotic mesogens.
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1 INTRODUCTION

Computer models of the liquid crystal phases of rod-like and disc-like molecules,
calamitics and discotics, employing anisotropic potentials have led to an improved
understanding of the way in which the intermolecular interactions between anisotropic
molecules affect the observed liquid crystal phases. ’

Hard non-spherical molecules e.g. [1,2,3] have proved successful in simulating
a variety of mesophases and are important as hard particle reference systems by
comparison with theoretical studies [4]. A simulation [5] of a biaxial hard-ellipsoid
fluid with three distinct semi-axes has been undertaken and found to be in semi-
quantitative agreement with recent theories. A computer study of a calamitic me-
sogenic molecule has been undertaken [6] for three state points using realistic
atom-atom potentials modelled by a standard empirical force field and building in
realistic features such as molecular flexibility, complicated structural anisotropy and
electrostatic forces. It provided predictions for phase behaviour and ordering that are
in good agreement with experiment but suggested such simulations are currently
beyond the range of modern computers. '

* Author for correspondence

245



246 M.P.NEAL et al.

Single site phenomenological anisotropic potentials describing both short range
repulsive and long rang attractive contributions to the potential have been developed
in an attempt to provide computationally simple potentials for complex liquid crystal
molecules and have proved valuable in simulating a variety of mesophases of calamitic
and discotic mesogens [7, 8, 9] using adjustable parameters. Berne and Pechukas [10]
proposed a gaussian overlap potential mode! to simulate liquid crystal behaviour. The
original model suffered from several unrealistic features which would not be present in
the pair potential between two liquid crystal mesogens and Gay and Berne [11]
modified the potential by obtaining a function which gave the best fit to a linear array of
four equi-distant Lennard-Jones centres. Real mesogenic molecules are biaxial and the
Gay-Berne potential which is cylindrically symmetric provides an over- idealised
model. Recently [12] a study has been undertaken of the Gay-Berne fluid using realistic
molecule-molecule parameter values estimated for p-terphenyl from a total potential
constructed from atom-atom terms with the biaxially projected out. The molecule
p-terphenyl was chosen because of its rigidity and non-polar character.

Making the simplifying assumption of a rigid model we are in current work
modelling p-terphenyl by a more realistic rigid biaxial three-site model in which the
central site is twisted through an angle with respect to each to the end sites; each site
interacts via an anisotropic potential which is a hybrid Gay-Berne Luckhurst- Romano
potential (HGBLR).

Luckhurst and Romano [13] represented cylindrically symmetric particles by
a Lennard-Jones 12-6 potential V¥, together with an additional anisotropic term V,

V= V0+ Va (1)

The Luckhurst Romano pair potential is scaled by part of the well depth formalism
employed to fit the Gay-Berne so that the hybrid Gay-Berne Luckhurst-Romano
potential becomes:

V=e0,,0,,0{V,+ ¥} ' @
where
G 12 o 6
VF‘”K?) ‘(7” ®
and o
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The orientation of the molecules is specified by the unit vector ii and the intermolecular
vector by the unit vector f. The parameter y' determines the relative ratio of the
end-to-end and side-to-side interactions and is given by

X = —e/e)l+e,/e) : (6):
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where ¢, /g is the ratio of the end-to-end and side-to-side potential well depths. The
parameters ¢ and ¢ are the usual Lennard-Jones parameters. The scalling factor / takes
the value 0.15 determined from preliminary calculations [13] and P, is the second
Legendre polynomial.

The HGBLR potential is shown Figure 1 and as can be seen from equations (2) to (5)
is characterised by a hard core which has spherical symmetry for a fixed orientation.
The core is surrounded by an anisotropic attractive region. Such a potential allows us
to study the effects of anisotropic dispersive forces upon the formation of liquid crystal
phases by investigating the effect of &’ alone by varying ¢, /.. Prior to undertaking
a multi-site simulation the authors [14] have recently undertaken a molecular dynami-
cs (MD) study of a single-site HGBLR potential parameterised in a disc-like form
following previous work [9] so that ¢, /¢  takes the value 5.0 and favours the end-to-end
interaction i.e. a discotic mesogen. We present here results for a single site HGBLR
potential with &,/ set to 0.2 favouring the side-to-side interaction ie. a calamitic
mesogen.

2 MOLECULAR DYNAMICS SIMULATION

We have performed MD simulations for 256 and 500 particles in a cubic box with the
usual periodic boundary conditions. No cut off was used as this did not aid vector-

2.0

end-end

—

side-side

T configuration
—>¢—

X configuration

0.0

reduced potential energy V*
- 5

'2-0 Ll T v T : T T T - T
09 10 11 12 13 14 15 16 17 18
reduced separation r*

Figure 1 The distance dependence of the potential energy calculated from the hybrid Gay-Berne Luck-
hurst-Romano Potential for particular orientations of the particles with respect to one another and tc the
intermolecular vector. The parameterisation of the potential is that used in the molecular dynamics
simulation, and described in the test.
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isation. A more detailed description of the method is given in [14]. The results are
presented for a reduced number density of p* = 1.1 which enables equilibration of the
system at low temperatures without cavity formation. The particles are axially symmet-
ric about & with a spherical repulsive core surrounded by a non-spherical attractive
region equivalent to arod. A reduced moment of inertia of I* = 1.00, (I* = I/(mg?)) was
chosen to ensure a reasonable rate of equilibration between translational and rota-
tional kinetic energy. The first simulation was started from an a-fcc crystal with kinetic
energy such that the lattice method. The system was allowed to equilibrate over 15,000
steps, equipartition between translational and rotational energy being observed, and
production runs of 15,000 steps were employed. The temperature was reduced by
scaling the linear velocities and allowing the system to equilibrate for 15,000 steps
between each production run. To provide acceptable energy conservation for each state
point a value of reduced time step At* = (¢/ms?)'/? At of 0.003 was employed and
fluctuations of less than 1 part in 1000 of the total energy were observed for all state
points except one just before the region identified as the isotropic-nematic transition in
which the energy fluctuated by 1 part in 100. The following reduced quantities were
calculated from the simulation: the pressure P* = Pg*/e, temperature T* = Tkpy/e, the
total internal energy per particle E* = E/e the potential and kinetic energy per particle,
V* and K*, the mean square displacement, {|r*(t) —r*(0)|*>> and its components
parallel and perpendicular to the director, the order parameter { P, > and the director of
the phase fi. The second rank order parameter (P, ) was evaluated using the Q tensor
defined by

1 N

Qaﬁ='ﬁ Z

i=1

3uluh — .
2

where u! is the a-component of the unit vector along the symmetry axis of the molecule
i. (P, was defined as the ensemble average of the largest eigenvalue for the Q tensor,
and the director as the corresponding eigenvector [15] and were calculated every 100
steps.

Additionally the second rank orientation correlation function G, (r*) = (P, (i, .4,)),
the radial distribution function g(z* together with the longitudinal and transverse pair
correlation functions gi(r{') and g, (rT) were calculated.

3 RESULTS

The variations with temperatures of the second rank order parameter (P, ) for the
cooiing runs for systems of 256 and 500 particles are shown in Figure 2. We see that the
system is isotropic at reduced temperatures above (T*)» = 1.6 although finite size
fluctuationsin evaluating the Q tensor lead to a small non-zero value for (P, >. Cooling
the system below { T* > = 1.6 causes the order parameter to rise rapidly to about 0.5. It
then tends slowly to 1.0 as the system is cooled further. The internal energy also shows
a transition at {(T*) = 1.65 4 0.05 as shown in Figure 3; however there is a further
significant decrease in internal energy at { T*» = 0.88 £ 0.03 indicating the presence of
a second phase transition between two highly ordered systems. The cooling runs were

repeated for a system of 500 particles to investigate the effect of box size upon the phase
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diagram but no appreciable system size dependence was noted in the nematic region
although the nematic isotropic transition region seemed somewhat affected by system
size, as can be seen in Figures 2 and 3. Theentropy of transition A(V*>/{T*) was
estimated to be 0.5 for each transition. The two mesophase transitions that were
identified for the disc-like parameterisation [14] were relatively sharper with an
estimated entropy of transition of 0.6.

Simulation runs near the transition at { T* ) = 1.6 were extended to 60,000 steps and
near the transition at ( T*) = 0.88 were extended to 120,000 steps for the system of 256
particles. The diffusion coefficients D* and its components D} and D%, parallel and
perpendicular to the director were calculated from the Einstein relation valid at long
times [16] by considering the final 30,000 and 35,000 steps of the simulation respective-
ly as shown in Table 1.

Plots of the mean square displacement with time are shown in Figures 4(a), (b) and (c)
for reduced temperatures of {T*) = 1.57, 0.93 and 0.84 respectively and are straight

Table1 Reduced diffusion coefficients, mean order parameter and mean
temperature for the system of 256 particles.

(T* D* Dy Dy <Py

1.98 +0.05 0.360 0.108 0.126 0.12+0.05

1.72£0.05 0.340 0.115 0.13 0.18+0.17

1.57+0.07 0.220 0079 0071 0.38 +0.08

0.93 +0.03 00156  0.0041 00057 0.861 +0.009

0.84 £ 0.02 00182  0.0067 00057  0.878+0.009
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Figure 4 Mean square displacement versus time resolved with respect to the system director at reduced
temperatures of (a) (T*) = 1.57(b) {T*» =093 and (c) {T* ) =0.84.
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Figure 4 (Continued)

lines exhibiting liquid-like diffusion; below (T*) ~0.8 the diffusion virtually ceases
indicating a solid phase. As Table 1 shows, the diffusion coefficient reduces as the
temperature is lowered until (T* > = 0.93, and then shows an increase at { T* > = 0.84.
This increase is due to an increase in diffusion parallel to the director, showing motion
is less hindered parallel to the director although both values are very low ‘at this
temperature. This increase in diffusion parallel to the director is indicative of the onset
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of a smectic phase. We note however that at {T*) =0.93 the diffusion coefficient is
greater perpendicular to the director than parallel to it. Figures 5(a), 5(b), 5(c) and 5(d)
show the radial distribution function g(r*) together with the longitudinal and trans-
verse correlation functions g, (rf) and g, (r) at temperatures of { T* ) = 1.57,0.93,0.88

3
g(r*)
25 —_
\ a(r)
N
t 2 o(ry)
S
g 15
c
[]
g WW m
£ 1 @
) \/
0.5
c T T N ¥ T T T
0 0.5 1 15 2 25 3 3.5
(a) component of r*
3.5
A a(r*)
3T —
as a(rf)
\ | ||

N ]

\/j S T

0 05 1 15 2 25 3 35
(b) ) component of r*

component of g(r*)

Figure 5 The radial distribution function g(r*) and the longitudinal and transverse pair correlation
functions g,(r) and g, (r}) resolved with respect to the system director as a function of scaled separation r*
simulated for the hybrid Gay-Berne Luckhurst-Romano potential at a series of reduced temperatures
(@) (T*>=157(b) {T*)»=093 (T*)> =084 and (D) (T*) =0.34.
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Figure 5 (Continued)

and 0.34 respectively. Figure 5(a) demonstrates that there is no discernible change from
liquid-like behaviour at { T*)» = 1.57 so that this phase is identified as nematic. Figure
5(b) exhibits a strong l-dimensional oscillation in the pair correlation function
perpendicular to the director and a weak oscillation in the pair correlation function
parallel to the director. Figure 5(c) and 5(d) demonstrate that both these oscillations
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increase in magnitude progressively as the temperature is reduced to {( T* ) = 0.84 and
to the solid phase at { T* ) = 0.34. Figure 6 represents “snapshots” of sample configur-
ations taken during runs at (T*) =1.29,{T*)» =0.88 and {T*) = 0.34 correspond-
ing to instantaneous values of the order parameter of (P, =0.71, 0.90 and 0.96
respectively; the orientation of a particle is represented by a line pointing along the
vector it and the position of the centre of mass by a dot. In Figure 6(a) illustrating the
nematic phase two views of the same configuration are presented perpendicular and
parallel to the director. In Figure 6(c) two views are presented parallel to the director,

(i)

Figure 6a <P> =071 . <T*> =129

Figure6 Three sets of snapshots from typical configurations at instantaneous values of the order parameter
(P, of (a) 0.71 (b) 0.90 and (c) 0.96.
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Figure 6 (Continued)

and one perpendicular to the director; showing a structure with hexagonal symmetry,
the intercalation of the rows accounting for the periodicity in of g,(r) in Figures 5(c)and
(d). Figure 6(b) shows an ordered phase with more clearly delineated columns than rows
indicated by the greater order shown in 6(i) than in 6(ii). Together with the larger diffusion
coefficient perpendicular to the director at this temperature it appears the particles
diffuse first into columns then into rows as temperature is reduced. Stroobants et al.
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Figure 6 (Continued)

[17] observed a columnar phase at densities intermediate between the smectic and
crystalline phases for a system of hard parallel spherocylinders with length to width
ratios of greater than 3. : ,

The second rank orientational correlation function G,(r*) exhibited a peak close to
a reduced separation of r* =0.7 in all cases. In the isotropic phase G,(r*) quickly
decayed to a limiting value close to zero, indicating the absence of any long range order.
In the nematic and highly ordered phases G,(r*) attains a limiting value of approxi-



MOLECULAR DYNAMICS OF LIQUID CRYSTALS 257

mately (P, >? indicative of the persistence of long range orientational order in this
phases.

Performing MD simulations with the HGBLR potential parameterised as a disc we
have obtained four distinct phases; isotropic liquid, discotic nematic, a highly ordered
phase with some columnar characteristics and a crystal with honeycomb symmetry.
The diffusion in a direction parallel and perpendicular to the director is approximately
equal in the nematic phase but the diffusion coefficient perpendicular-to the director is
significantly greater in the columnar-type phase. In the highly ordered phase the plane
of the discs is seen to be tilted with respect to the column axis. Columnar structures
consisting of columns of tilted molecules have been observed experimentally [ 18], with
a rectangular arrangement of columns.

4 CONCLUSIONS

We have used molecular dynamics simulations to simulate systems of rod-like particles
interacting via an anisotropic potential proposed by Luckhurst and Romano and
scaled by part of the well depth formalism employed by Gay-Berne. The potential has
proved successful in simulating a wide variety of mesophases. We have identified
a phase transition from an isotropic liquid to a nematic at a reduced temperature of
{T*) =~ 1.6. The calamitic nematic phase is stable until the temperature is lowered to
{ T*) ~0.88 and subsequently undergoes a transition through a short-lived columnar
phase to a smectic phase, before cooling to a crystal with hexagonal symmetry. The
reduced cpu time required for the HGBLR potential will allow simulation studies of
biaxial models of liquid crystals to be undertaken. :
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