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Abstract: Energy systems around the world are going through tremendous transformations, mainly
driven by carbon footprint reductions and related policy imperatives and low-carbon technological
development. These transformations pose unprecedented technical challenges to the energy sector,
but they also bring opportunities for energy systems to develop, adapt, and evolve. With rising
complexity and increased digitalization, there has been significant growth in the amount of data
in the power/energy sector (data ranging from power grid to household levels). Utilization of this
large data (or “big data”), along with the use of proper data analytics, will allow for useful insights
to be drawn that will help energy systems to deliver an increased amount of technical, operational,
economic, and environmental benefits. This paper reviews various categories of data available in
the current and future energy systems and the potential benefits of utilizing those data categories
in energy system planning and operation. This paper also discusses the Big Data Analytics (BDA)
that can be used to process/analyze the data and extract useful information that can be integrated
and used in energy systems. More specifically, this paper discusses typical applications of BDA in
energy systems, including how BDA can be used to resolve the critical issues faced by the current and
future energy network operations and how BDA contributes to the development of smarter and more
flexible energy systems. Combining data characterization and analysis methods, this review paper
presents BDA as a powerful tool for making electrical energy systems smarter, more responsive, and
more resilient to changes in operations.

Keywords: big data analytics; network planning and operation; smart electrical energy systems;
demand side management; artificial neural networks; low-carbon technologies

1. Introduction

With increased digitalization in power grids, a large amount of data (or “big data”)
will be generated and stored for current or future use. As the number of data sources
increases, effective acquisition and processing of the data—gathered in large quantities via
those sources individually and/or collectively—is of great importance to ensure reliability
of the insights drawn from that data [1]. Characterized by the five V’s of big data [2], Big
Data Analytics (BDA) in power systems draws data from various data sources and types to
enable faster analyses of large quantities of that data. Data considered for BDA purposes
can include typical power system measurements [3] as well as nontraditional data drawn
from sources not intended for use in the power sector [4].

With the availability of big data in power grids, the usefulness of that data (typically
raw data) to draw useful insights via BDA—with powerful big data processing capabilities—
has attracted great interest among both academia and industry. Given the large amount
of raw data to handle, the choice of applied BDA method for that data is important,
as the benefits realized will significantly depend on the selected BDA method. Various
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BDA methods have been developed, including artificial neural networks, deep learning,
reinforcement learning, etc. [5,6].

As the operation and management of electrical energy systems grow more complex, it
becomes more financially and functionally beneficial to utilize the new pool of ever-growing
data sources and analysis methods. With applications across industries, BDA is presented
in this paper as a powerful tool for power system operation and management. BDA’s
capabilities in working with vast datasets make its use in smart electrical energy systems
an important industry development that will aid in the current and future transformations
facing the grid. As such, discussions on BDA for smart electrical energy systems are timely
and relevant to the evolution of smart energy systems.

With powerful capabilities of BDA in processing data, BDA presents great potential
to assist in the planning and operation aspects of energy systems, particularly in the
context of the great challenge current and future energy systems face in their transition to
a net-zero future. Much of the Low Carbon Technology (LCT)-based equipment will be
connected to, distributed across, and operating in modern power grids. Among LCTs, a
significant number of electricity-based loads, including Electric Vehicles (EV) and electrical
heat pumps, will be integrated into power systems in the very near future [7]. At the
same time, conventional power generators, with large system inertia, are shutting down
and are being replaced with small-system-inertia, LCT, and intermittent-energy-based
generation systems. Driven by carbon footprint reduction goals and related policies,
various sectors, including heavy industries, are increasingly becoming electrified, leading
to an increased load burden and reliance on the current and future power systems for
energy supply. Furthermore, due to increased electrification, including for transport
via EVs, and increased generation from intermittent, LCT-based energy resources, large
variations in system power flows, including conditions leading to thermal constraints,
could be expected—such operations could exacerbate the already aging power system
infrastructure, leading to increased system failures and faults. On the other hand, these
LCTs are typically interfaced with power systems via power electronic systems, which
have high controllability. Thus, these network changes allow for a high degree of flexibility
to support effective network management and operation. In current power systems,
flexibility resources (such as controllable loads, renewable energy generation, batteries,
etc.) have been developed and are purchased to tackle issues that would otherwise require
expensive, traditional network reinforcement methods. However, as flexibility resources
are increasing in number, existing systems are not able to manage this large amount of
flexibility resources and related data efficiently or optimally. In this regard, BDA plays an
important role in supporting flexible resource management and smart system operation.
BDA has been used to forecast load consumption and renewable energy generation under
different network operating scenarios [8,9]. With an accurate forecast of system operation
conditions, system operators can better understand their networks’ operating conditions
and develop effective strategies to optimally manage the available network resources or
optimally purchase the required flexibility resources to achieve greater techno-economic
benefits. BDA has been applied to resolve other critical issues, such as estimation and
fault diagnosis, to ensure the power systems’ stability [10].

This paper presents an overview of the data available from power systems and the
potential analysis of that data, via BDA, to draw useful insights. In terms of big data
characteristics and collection methods, previous reviews have differed in categorization
and application. Detailed reviews of big data concepts have addressed data categorization
and analysis methods across various applicable industries. Those regarding power systems
have discussed an overview of data collection and its uses. This study details the BDA
process through the expanded definition of data categorization for BDA purposes, the
preprocessing methods that bridge data collection with analysis, and the complex technical
analysis methods to provide a more detailed review of BDA’s value specifically for power
systems. Different from other review papers, this paper not only presents the state-of-
the-art in BDA that can be applied in the electrical energy sector but also provides key
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techniques that can be used to integrate BDA for power system applications. The techniques
that are especially designed to tailor BDA for power contexts are critical for a successful
application. The paper discusses the capabilities/benefits of using BDA to address critical
issues, such as load forecasting, fault diagnosis, sag estimation, etc., faced by the current
and future power systems as well as the potential barriers to full implementation of BDA
and its benefits. This review paper consists of three sections that address data, BDA, and
its applications, respectively. Section 2 introduces the data that are available in electrical
energy systems. Section 3 introduces the BDA techniques that have great potential in power
system applications; Section 4 presents several typical BDA applications that bring both
data and BDA in the power system context, presenting the potential benefits it can bring to
electrical energy systems.

2. Data in Electrical Energy Systems

Data are essential for modern power systems to function properly and for system
planners and operators to complete critical functions. Modern data collection in a power
system primarily comprises data from customer meters, Phasor Measurement Units (PMUs),
utility Supervisory Control and Data Acquisition (SCADA) systems, etc. This data can be
utilized to gather the real-time state of the grid as well as allow for formulating effective
responses to managing system events or faults. As the number of data sources grows,
effective acquisition and processing of large quantities of data becomes imperative for a
reliable gathering of insights and for decision making [1].

When applying big data processes, nearly all data are considered useful, since complex
analyses can quickly derive valuable insights from large amounts of varied inputs and data
types. Therefore, data utilized for big data analysis range extensively, from real-time power
system measurements to social media and user traffic as inputs [4]. Although there are
no clear boundaries on what data can be utilized for big data in power systems, specific
examples of data sources are further discussed in the later sections of this paper.

2.1. V’s of Big Data

Big data are not inherently defined as large quantities of data but rather the distinct
processes of extracting meaningful information from those large quantities [11]. In formal
definitions, information associated with big data carries with it three key characteristics, the
three V’s of big data: volume, velocity, and variety [2]. The addition of the characteristics
of veracity and value is a much-discussed modification to the formal definition [12]. As
data collection equipment carries an inherent assumption of non-zero error that can affect
function, both veracity and value are considered here as important factors for managing
big data in a power system context.

2.1.1. Volume

The first V, volume, comprises the amount of data that is collected and analyzed. In
typical big data applications, information is defined in the order of terabytes and petabytes,
constituting massive quantities of data points that require advanced processing and storage
capabilities [4]. Smart meters installed in homes are just one example of the data sources
and the scale of data collection that such devices entail, generating about 120 GB of data
points per day per meter [11]. The UK grid alone has almost 18 million smart or advanced
electricity meters and has seen an average increase of over 2 million meters per year over
the last five years [13]. Although much of the data available from meters and sensors
is deleted locally if no significant event is detected [4], the potential applications of this
information in BDA warrant greater storage capabilities.

While not all collected data can be stored and utilized due to the sheer volume and
space constraints, the ability to store greater amounts of data enables greater pattern recog-
nition and analytics. Therefore, the more data, the better. Research into data storage and
processing capabilities seeks to address this disparity through some methods of paring
down storage requirements, either by distributed data storage systems that use digital
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networks to spread the load [3] or by processing collected information using data com-
pression [14]. Regardless of the storage methods, the sheer quantity of data available from
power system measurements, consumption patterns, and even weather forecasts contribute
greatly to the applications of results drawn from BDA.

2.1.2. Velocity

The second V, velocity, comprises the speed of data generation and transmission of that
data. The frequency of data collection directly affects the volume of data that is collected
and that needs to be stored. Metering units and sensors have varying sampling rates, which
range from readings at near-constant frequency to event-triggered readings, although much
of the data are deleted locally if not immediately utilized [4]. Utility devices such as PMUs
have sampling rates as high as 240 samples per second, while smart meters and satellite
weather data can take as long as 15 min between measurements [11].

Since the conclusions reached by BDA are more effective with a greater quantity of
data points, ideal data sources would sample more frequently, thus reducing the need for
interpolation and estimation. However, while continuous data streams leave fewer gaps
between points, the challenge of processing the data fast enough to warrant its collection
begins to arise [11]. Various data optimization, compression, and searching methods for
more advanced data analyses are crucial for enabling higher collection rates [12]. Once the
data is collected, parsing through it quickly to classify and identify meaningful data among
the collected data falls into the realm of advanced data mining processes [15].

2.1.3. Variety

The third V, variety, refers to the range of data that are collected and utilized. Historical
power system data exist in a structured format and come directly from metering units
and measurements [3]. However, BDA in a power system context relies heavily on the
variety of data sources and types of data. Utility devices like smart meters and digital fault
recorders source data alongside consumption trends and even satellite images [11]. As
different measuring units and sources record data in various formats, big data processes
can make use of collected information regardless of data structure [16]. Collected data are
either structured, semistructured, or unstructured [17]. These data structures are explained
further in later sections of this paper.

As collection systems and sources continue to evolve, the amount of semistructured
and unstructured data is growing. Most notably, the use of information from sources not
specific to or intended for use in the power sector is driving the rise in unstructured data [4].
While greater variety of data facilitates greater meaning, processing this semistructured
and unstructured data is challenging for systems and methods historically reliant on the
rigidity of structured data [11]. All information collected under various formats must be
sorted and converted to usable structures for processing [16]. Preprocessing stages and
methods are detailed in later sections of this paper.

2.1.4. Veracity

Although not included in the widely considered formal definition of big data, veracity
is included as the fourth V in a power system context. Veracity refers to the accuracy and
reliability of the data. As data collected from various sources carry with it the potential
for error, veracity in data processing is imperative for extracting meaningful information.
Large collections of data have great potential for inaccuracies due to measuring errors,
equipment tolerances, or transmission noise [3]. For example, smart meters, relied upon for
providing a detailed look at local metering points, have as much as a 2.5% measurement
error [11]. While this alone is not a particularly high error, a system reliant on the readings
of millions of smart meters, each with a 2.5% error, may not be able to optimally process
and then respond to network states. Updates to both software and hardware to ensure
accuracy will be essential as data sources become more varied [16].
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2.1.5. Value

As with veracity, the fifth V, value, is added for consideration in a power system
context, although its inclusion is not exclusive to BDA for smart energy systems. Value
emphasizes the importance of extracting meaningful information from the collected data
and is made possible by a large amount of data (volume) from a range of sources (variety)
that is analyzed quickly (velocity) and accurately (veracity) [2]. As such, the value of
the data is derived from the other four Vs’s and is specific to the applications of what
power system operators seek to optimize: generation mixes, load forecasting, economic
constraints, energy consumption, etc. [11].

2.2. Data Types

Information collected and processed under the umbrella of BDA is categorized in the
literature into two prevailing types: domain and off-domain data [4]. These two fields
demonstrate a broad range of potential data sources that BDA can handle, reiterating the
argument that there is no limit on useful data for BDA.

2.2.1. Domain Data

Domain data are defined as information specific to the power sector. In many cases,
this data come directly from utility measurements and power systems’ hardware: SCADA
data as a near-continuous stream of information on the local grid states; consumption and
usage patterns from smart meters; and graphical information from synchro-phasors. The
information from utility measurements can be further broken down into operational and
nonoperational data, classifying the purpose and end user of the collected data points [18].
Equally important domain data are that pertaining to economic dispatch, electricity markets,
and pricing datasets [4]. Collectively, domain data constitute the whole of the power sector,
with data sources ranging from generation to day-ahead market pricing.

In real-world applications, domain data are already in use for operational purposes
and grid maintenance. SCADA data have been utilized in planning strategies for wind
turbine maintenance and fault diagnosis [19]. Historically, domain data have been the
standard source of meaningful information about the state of a power system.

2.2.2. Off-Domain Data

Off-domain data are defined as the information that is not specific to the power sector.
Often, this data were not intended for use in the power industry, and they come from a
wide range of sources nontraditionally utilized for energy management purposes. This
can include information from social media, including videos and images, weather data,
geographic information, traffic, and water usage [4]. Off-domain data can also be drawn
from economic indicators outside of electricity markets.

The use of off-domain data in BDA for power systems is relatively new. Case studies
have sought to demonstrate how these nontraditional data sources can be meaningful in
curating valuable insights, including from the use of social media and online engagement,
for smart energy systems and optimization of those systems [20,21]. Much of what consti-
tutes off-domain data are considered mined data that arise from alternative networks and
sources [4].

2.3. Data Structures

Due to a variety of data sources and formats, data systems must cope with data of
varying types: structured, semistructured, and unstructured. While a majority of data
are structured [4], the proliferation of nontraditional sensors and measurements drives an
increase in alternative data structures, creating challenges for systems that reliably process
structured data.



Energies 2023, 16, 3581 6 of 19

2.3.1. Structured

Structured data make up most data in power systems. Although structured data can
come from either domain or off-domain sources, they are characteristically tabular- or
database-driven. That is, structured data take the form of traditionally defined numeric
datasets and have long been the cornerstone of data analytics [17]. In smart energy systems,
structured data may be collected in the form of a table of continuously measured SCADA
values and can include data on equipment, such as parameters, load control, distribution
management, etc. [3].

2.3.2. Semistructured

Semistructured data are rising in prevalence in data analytics. Often in the form of
XML or a similar format, these data lie at the edge between human and computer readability.
They can also include information from legacy sources and equipment [17]. Therefore,
semistructured data can take the form of load monitoring, power quality measurements,
web data, geographical information, etc. [3].

2.3.3. Unstructured

Unstructured data greatly add to the complexity of data analytics and can be in the
form of information with text, audio, or video [4]. Text mining is often used to convert
the information into structured data that are more easily analyzed and processed [17].
In a power system context, this data may be collected from meteorological information,
customer service interactions, etc. [3].

2.4. Data Preprocessing

As discussed in previous sections, the sheer volume of data sources and, consequently,
data points presents great opportunities for BDA applications and the meaning derived
from those analyses. Data collected from these various sources in raw form can be utilized
for analysis. However, raw data are riddled with inconsistencies (redundancies, outliers,
missing data points, etc.) that obscure meaningful data and decrease the accuracy of
forecasting. To ensure maximum derived value from BDA methods, data preprocessing
must be carried out [22]. Through preprocessing methods, datasets are clarified and
reduced for more effective analysis.

Data analysis typically undergoes two major stages: acquisition and integration [22].
Additional preprocessing steps carried out before BDA analysis methods can aid in achiev-
ing more consistent and usable data and, therefore, greater derived meaning. This section
combines typical data analysis stages and additional preprocessing steps to detail how raw
data are modified for analysis.

2.4.1. Data Acquisition

Data acquisition refers to the gathering of data from their various available sources [22].
These sources are discussed in greater detail in the above sections. Acquired data are
imperfect and carry with them an inherent nonzero error in the form of missing points,
incorrect values, repeated measurements, outliers, etc. Data clean-up is carried out through
data reduction and data cleansing.

Data reduction transforms vast datasets into a form that retains accurate values in
a simplified structure [23]. Work in [24] demonstrates a filtering approach for selecting
data points with relevant features and [25] describes an outlier rejection algorithm for
identifying outlier values that may otherwise skew analysis. The removal of extreme
or repeated values results in a reduced dataset that may be more easily and effectively
analyzed via BDA methods.

Data cleansing identifies incorrect values in a dataset [26]. Unlike data reduction,
data cleansing involves modifying existing data that may be inaccurate or corrupt. Data
cleansing can be carried out by inserting data points where they are missing due to mea-
surement or storage errors, but it can also be done to replace outlier values with more
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stable values [22]. Filling in missing or outlier values can be completed using regression or
imputation methods [22]. Additionally, a variety of filtering methods are utilized to cleanse
signals and datasets of noise that may be present. By replacing inaccurate or problematic
values, datasets become cleaner and more consistent for analysis purposes.

2.4.2. Data Integration

Data integration refers to the combining of data from multiple sources [22]. The
variety of available sources is discussed in detail in the above sections. Data from various
physical sources are stored in files and databases, which must then be integrated into single
sources. While integration is necessary to combine disparate datasets, doing so increases
the complexity, thus requiring the use of data reduction techniques [22].

Central to data integration is the process of data transformation in which data struc-
tures are modified to achieve greater comparability and, therefore, integration. Data
transformation ensures that datasets are usable in future analyses without modifying the
nature of the original data [22]. Normalization is one method of data transformation that
commonly utilizes standard deviation and mean values to reliably standardize datasets
with varying scales. The result of data integration and transformation is a consistent single
source of values that can be easily analyzed via BDA methods.

3. Big Data Analytics in a Power System Context

BDA is a class of techniques used for processing data and performing functions such as
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), etc. BDA
has been widely applied in solving various complex problems, including problems such as
classification, clustering, pattern recognition, predictive analysis, data forecasting, statistical
analysis, natural language processing, etc. This section will introduce several key BDA
techniques that have great application potential in a power system context.

3.1. Big Data Analytics
3.1.1. Artificial Neural Network (ANN)

ANN is among the most popular Artificial Intelligence (AI) approaches that was
inspired by biological nervous systems, consisting of neurons and a web of their inter-
connections. Simple processing elements, emulating a typical biological neuron, and a
network of those interconnected elements allow for identification of complex patterns
within a set of data, provided as an input, and for storage and quick application of those
identified patterns for future use. ANN is usually made of three layers, namely the input
layer, output layer, and hidden layer. The input layer takes the data from the network and
is connected to the hidden layer and then the output layer. Based on the interconnection
of nodes and data movement between the layers, ANN can be classified into two basic
categories: the feedforward ANN and the recurrent ANN. In the feedforward ANN, the
information moves from input layer to output layer in one direction. The recurrent ANN
allows some of the information to move in the opposite direction as well. Figure 1 presents
a simplified structure of an ANN that consists of hidden and output layers. Each layer has
a set of weights (W) to be assigned and to be applied to the input vector (p); then, a bias
vector (b) is added upon the weighted input vector before it is fed into a transfer function
(f ) for further processing. The output of the transfer function, f, in the hidden layer serves
as an input to the output layer; the results generated from the transfer function, f, in the
output layer will be the final outputs of an ANN network. The ANN parameters, including
weights and biases, are determined by training the ANN, involving a set of data (including
both inputs and the expected outputs) fed as an input to the ANN and adjusting the ANN
parameters until the ANN outputs match the outputs of the training dataset to a certain
desired accuracy [5].
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ANN has been widely used for various applications in power systems that require
identification of a hidden relationship between the known input–output datasets and
then applying that identified relationship to an input dataset—with unknown outputs—
to quickly predict outputs. With its merit of powerful data analytics, it has been also
investigated for the applications of load forecasting, economic dispatch, fault diagnosis,
harmonic analyzing, and system security assessment [27].

The ANN structure, such as the network size (e.g., the sizes for the input/output
neurons) or the choice of transfer function, is not universal for all applications. The ANN
structure should be selected and optimized for the needs of the specific application. With its
merits of prediction accuracy and high adaptation, beyond applications in power systems,
ANN has also attracted great attention in a wide range of applications in the areas of
prediction, clustering, curve fitting, etc.

3.1.2. Deep Learning Techniques

Deep learning techniques have attracted a great deal of attention in the past decade [28]
due to their promising results and great accuracy in large-scale pattern recognition, es-
pecially in solving visual recognition problems [6]. Deep learning techniques include
Multilayer Perceptrons (MLPs), autoencoders, Convolutional Neural Networks (CNNs),
LSTM, Recurrent Neural Networks (RNNs), etc.

MLP, as one of the early developed deep learning techniques, is a feedforward neural
network with multiple perceptron layers equipped with activation functions. Both input
layers and output layers in MLPs are Fully-Connected (FC). MLPs have been popularly
applied to image and speech recognition problems.

Autoencoders mainly consist of three components: encoder, coder, and decoder. They
are a specific type of feedforward neural network that have identical inputs and outputs.
They have been mainly used for image processing, popularity prediction, etc.

CNNs consist of convolution layers that have a set of learnable filters/kernels that
slide through input data to extract patterns in the data. Following the convolution layers,
an FC neural network is used for classification. In both convolutional layers and neural
network layers, multiple layers are typically used to model the complexity of patterns in
large data. As one of the most popular deep learning techniques, CNN is popularly used
for image recognition. RNNs, which have connections that form directed cycles, allow
the outputs to be fed into hidden state as inputs, allowing for the previous inputs to be
memorized. RNNs are commonly used for time-series analysis and for natural-language
processing problems.

It has been found that deep learning techniques typically perform better than gen-
eral neural networks, especially in solving multiple data class problems and machine
learning applications with complex data structures. To cope with a large amount of
data and to facilitate the extraction of more informative features [29], deep learning
techniques usually require a relatively large number of hierarchical layers, suggest-
ing the need for a large computational effort [30]. Deep learning techniques, due to
the development in high-performance hardware, sometimes specifically designed for
faster execution of those techniques, are becoming increasingly popular in various
practical applications.
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With its powerful pattern recognition capabilities and great accuracy in exacting in-
formation from complex data structure (formed by measurements collected from various
locations and devices with different sampling frequency), deep learning has great potential
in solving various power system problems. For instance, the unsupervised deep learn-
ing approach auto-encoder has been applied for load profile classification [31]. CNNs
have been used to estimate the state–action value function for controlling residential load
control [32], although its application at a system level is limited. Further exploration
is needed to fully exploit the powerful capabilities of CNNs in pattern recognition and
estimation applications.

3.2. Approaches to Integrate BDA in a Power System Context

Due to the large scale of actual power system/networks, it is impractical, if not
impossible, or cost ineffective to have measurements at all desired locations. On the other
hand, not all measurement data are useful to achieve a desired application’s objective.
Variables/parameters in BDA, therefore, should be carefully selected and processed to
ensure usefulness of the collected data specific to a selected or prevailing system scenario.

Furthermore, power system performance highly depends on the topologies and operat-
ing conditions that vary constantly. It is desirable that the topology/configuration of power
systems can be embedded in the input matrices of the BDA learning mechanisms. Per [33],
the System Area Mapping process of feature extraction from the input data matrix was
analyzed from a power system configuration perspective. The input matrix was arranged
in a way that a patch in the input matrix summarizes the topology information of the
corresponding area in the considered power system. Taking a 24-bus test network (given in
Figure 2) as an example, different square patches in the input matrix map corresponding
areas in the considered power system. Later, by sliding the kernels through these square
patches, the features/characteristics in the local area can be extracted and integrated into
a higher level in the feature map. Usually, many different kernels will be used in order
to extract information from different aspects, capturing a varied set of characteristics and
patterns that exist in a considered power system. Through this large set of kernels and
through a number of feature extraction layers, useful information captured at a local area
will eventually be summarized and integrated into a global area. These approaches should
be tailored from a power system context, particularly where the performance of a consid-
ered technique as part of the BDA is greatly dependent on the considered power system,
its configuration/topology, and its operating conditions.
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4. BDA Applications in Smart Power/Energy Systems

Traditional power system analysis and the related methodology development were
mainly based on model-based analysis. With the fast Information Technology (IT) de-
velopment and the development of powerful BDA and related tools, the integration of
data-driven approaches started to attract great attention in both academia and industry.



Energies 2023, 16, 3581 10 of 19

A multidisciplinary approach of a hybrid of data-driven and model-based approaches is
acknowledged to be the most effective way to resolve many power/energy issues [4].

Different power system applications have their unique characteristics. Depending on
the nature of the applications, BDA cannot be transferred directly from one application to
another, and it needs to be tailored and redesigned to adapt to the different applications that
have different data sources, data structures, and objectives to achieve. Especially for the
hybrid data-driven and model-based approach, the corresponding BDA solution/methods
require a higher level of customization to adapt to applications.

A wide range of network issues can be resolved using BDA. In [34], large-scale Electric
Vehicle (EV) charging management and operation in a grid environment, vehicle-to-grid
(V2G), has been implemented using various BDA techniques, including DNN, LSTM, etc.
Here, in [34], several typical power network problems are listed that can be successfully
resolved to acceptable tolerances in industry.

4.1. Load Forecasting

Power system operation requires accurate prediction of future load demands
(e.g., hourly, daily, etc. projections) to develop a better operating strategy to manage
the system at that predicted time. With an accurate load forecast, the system operating
condition will be known in advance, and a corresponding developed strategy can be used
to optimally utilize the available resources in the system at the future time. In this way, the
operation cost can be greatly reduced. In some cases, power system operators require a
long-term load forecast that can assist with the long-term system planning process and
allow for the determination of an optimal action plan and the required investment to
accommodate the predicted load and/or generation growth at different locations in the
system. Additionally, both active and reactive powers can be predicted to gather a more
thorough understanding of the future network operating conditions, although the current
interest has been focused more on the real power prediction alone.

Apart from forecasting the electrical power, in some applications, the expected load
characteristics are also required. Based on different load characteristics, those loads can
be classified into different categories (such as controllable or uncontrollable loads, from
a load-controllability perspective). Furthermore, it will be beneficial for operators to
receive information, such as the percentage of different load types (i.e., disaggregation
of loads). This information will enable a better understanding of the load profiles and
can be utilized to develop a better operating strategy. This detailed information on loads
can be used in Demand Side Management (DSM) applications, which are increasingly
used to support power systems’ peak shaving applications. Figure 3 shows an example
of the use of load forecasting in a DSM application. With a strategic operational plan, it
helps system operators to put mechanisms in place for a stable power system during a
DSM operation.

To resolve these forecast issues, various BDA methods have been proposed as follows:
ANN [8,9], multiple regression [35], etc. The feasibility of ANN-based approaches for load
forecasting has been validated via a few industrial applications. For example, in [36,37],
an ANN-based approach has been used for reactive power prediction. The BDA-based
method developed in [8,9,38] has been widely used for short-term load forecasting, with
the mean forecast errors around 2% to 5%. The ANN-based approach proposed in [39] was
able to achieve mean absolute percentage errors between 1% and 4%. The wavelet-based
neural network developed in [40] has been used to forecast commercial loads (mainly
focusing on short-term load forecasting), with the mean absolute percentage errors between
0% and 5%. The neural network proposed in [41] has been used to predict the load one
or a few days ahead, with the mean error ranging between 1.5% and 3%. Based on the
accuracy requirement, appropriate BDA methods can be selected and tailored for the
specific application.
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4.2. Fault or Outage Detection and Diagnosis

Fault diagnosis—due to the complexities of faults and their attributes (such as fault
types, fault location, fault impedance, etc.) and together with the uncertainties of the
resulting phenomena due to varying operating conditions—is among the most challenging
issues in power systems.

ANN can be used to associate the network faults with the measured voltages at
monitored buses. In this way, the faults can be identified once the measurements are
received. In [10], ANN was applied to register faults, following the procedure detailed in
Figure 4. As part of fault identification, the fault indices are, typically, arbitrarily given
and they generally do not have a logical connection to faults. A choice of fault indexing
system can affect the outputs of fault diagnostics. Thus, an optimal index allocation should
be adopted to ensure accurate fault diagnostics and related outputs. In ANN applications,
the neural network is trained to adapt to the training data given and fault indices (part
of the training data) are fixed and not updated during training. In [10], an innovative
approach has been proposed to choose the optimal strategy of fault indexing during
training. In other words, both the neural networks and training data (fault indices) are
updated simultaneously during the training procedure. It can be seen in Step 5, Figure 4
that the fault indices are renumbered based on the ranking of outputs in an ascending order.
This way, the fault indices are renumbered by considering the magnitude of the simulated
output of the trained neural network. This ensures the use of optimal fault indices and
improves the final detection results. Even when limited monitored data are given, the
approach in [10] is able to identify the faults accurately.
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4.3. Voltage Sag Estimation

Voltage sags—due to their impact on both customers and utilities leading to significant
financial losses—have attracted increased attention in both academia and industry. Voltage
sags are known to cause frequent disruption to industrial processes and even damage
machines with accumulated effect [42]. Accurate voltage sag estimation at the buses of
interest, be they monitored or not, is critical, and it can be used to assist with the voltage
sag mitigation planning aspects to avoid or reduce the unnecessary financial losses.

Voltage Sag Estimation (VSE) is complex, and it depends on several factors with
uncertainties including system operating conditions with uncertain generation outputs
from intermittent renewable energy-based generation resources, uncertainties associated
with varying load demands, uncertainties associated with system faults, etc. A power
system’s voltage sag performance can be established reasonably accurately via long-term
monitoring at enough locations within the grid and the application of statistical analysis
on the monitored data. The widely used System Average RMS Variation Frequency Index
(SARFI) to evaluate a system’s voltage sag performance can be estimated using a filtering
method [43]. Although such an approach provides a relatively accurate VSE of a system
using the actual voltage sag records [44], the approach is highly reliant on the availability
of historical voltage sag measurement data and it does not provide adequate details on the
estimated voltage sag performance. In this case, a hybrid data-driven and model-based
approach can be used in cases where the voltage sag-related historical data are not sufficient.
Analysis can be implemented using a classical state estimation formulation, combined with
a historical record of voltage sag measurements [45].
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For the scenario mentioned above, VSE was carried out based on the measure-
ments/data at buses where the monitors are equipped. In practice, there may be no
monitored data for a majority of the buses in a practical power system. Estimating the
voltage sag performances at these unmonitored buses is a more complex problem than the
general VSE mentioned above. For these estimation problems, the estimation can be derived
from the historical data at the monitored buses using a measurement matrix [46]. There
are also other ways to achieve the goal of estimating the sag performance at unmonitored
buses; these include VSE based on fault location or BDA- or AI-based methods [10].

VSE based on fault location: Events that lead to voltage sags in the network include
system faults, equipment (such as transformers, reactors, etc.) energization, load ener-
gization, etc. If the voltage sag occurrence is not captured during the faults, the voltage
sag performance can be obtained through equipment fault rates. As part of system relia-
bility management, system equipment failure rates, affecting system faults, are generally
recorded [47]. With this information, the voltage sag performance can be estimated using a
probabilistic assessment approach, together with a Monte Carlo simulation on the given
fault rates [48]. As these methods are probability-based analyses, they are not designed to
locate the exact fault location [49]. However, if the locations of faults can be localized via
the monitoring system, more detailed profiles of the voltage sags can be estimated. Using
these approaches, the voltage sag performance at various system buses can be generated
once the faults are identified [50]. These approaches are known as fault position-based sag
estimation, which involves the procedure of identifying a fault location that produces the
profiles (of voltages and currents) that match the measurements received from a limited
set of network monitors [51]. If faults of different types are considered, each type of fault
can be identified separately first, and then can be combined using an array of monitors
covering different scenarios. In [52], it identified the fault areas first and later identified
the faulted lines from fault simulations. Monitor Reach Area (MRA) method is widely
used for voltage sag registration based on faults [53]. It defines the region of the network
where the voltage sags (caused by the system faults) can be registered by the monitors. The
MRA matrix is built for each type of fault, and many MRA matrices can be built to cover
various fault scenarios. These approaches depend on the comparison between the actual
voltages and the defined voltage thresholds. In this case, the effectiveness of the estimation
is greatly dependent on the voltage thresholds. Thus, the selection of appropriate voltage
thresholds is essential to ensure an accurate VSE. Otherwise, the information derived from
comparing the fixed voltage thresholds may lead to misleading results or inaccuracies in
the VSE. The issue is more severe with the presence of uncertainties in measurements, and
measurement uncertainties exist and are prevalent in real-world systems. To resolve these
issues, Ref. [10] presents a fault position-based VSE using an ANN. With a limited set of
measurements, the ANN was able to accurately identify the faults. Then, based on those
identified faults, the voltage sags were estimated at the unmonitored buses. This approach
avoids the step of setting fixed voltage thresholds, which was used in MRA-based methods.
This approach (the fault location-based estimation, together with the use of an ANN, used
to estimate the fault location) is robust to uncertainties in system measurements.

VSE based on direct AI application: In the literature, usually the VSE based on a
fault location (introduced earlier) requires several subprocesses, such as fault analysis
(fault identification and classification) and fault simulation, followed by a VSE. To avoid
these subprocesses, the hidden connection between the voltages at the monitored and
unmonitored buses can be identified using various AI techniques directly, based on
which, then, the voltage sag performance at the unmonitored buses can be estimated
without performing simulations [54]. However, the AI model should be pretrained to
generate real-time estimation of voltage sag performance. In [33], the connection between
the monitored and unmonitored buses are learned using deep learning models. The
models should be properly designed according to a specific problem, as the selected
designs will significantly impact the VSE accuracy. Figure 5 illustrates an example deep
learning model used for a VSE application. If sufficient training data were used, the
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integrated deep learning models have the capability to capture the relationship between
the measurement (inputs) and the voltage sag performance (outputs), and may account for
any uncertainties in the network operating conditions. Once a proper learning model is
trained well, the voltage sag performance results can be almost instantaneously generated
when the measurement data are fed into the trained model. Different from the fault
simulation-based approaches, the AI-based approaches can produce the results using
a limited amount of measurements as inputs, and it can generate the results almost
instantaneously without the need for other simulation or analysis steps. Another big
advantage of these approaches is that the voltage sag performance can be accurately
estimated regardless of the uncertain operating conditions, such as the uncertainty of
renewable energy outputs, load consumption, etc.
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4.4. BDA Applications in Power System Management

While BDA plays a significant role in load forecasting, fault detection, and voltage
sag estimation, all meaningful processes in power system operation, there is additional
potential for BDA usage in management applications. These applications utilize BDA
techniques to discuss methods of energy security, infrastructure maintenance, renewable
energy forecasting, etc. [55].

Stable grid operation relies not only on power quality and transmission but also on
the status of the electrical equipment. In this way, BDA creates great opportunities for
predictive maintenance. SCADA and advanced metering infrastructure (AMI) data record
the functional status of devices and equipment so authorities can preemptively schedule
maintenance and the necessary operational changes [55]. For example, BDA techniques
can carry out rapid fault detection in renewable energy sources, alerting operators and
allowing for more responsive repair times [56]. Predictive maintenance facilitated by BDA
techniques presents opportunities for cost-effective infrastructure upgrades.

Electricity theft is considered the top cause of nontechnical energy loss [55]. Therefore,
preventative measures and detection methods are of great interest to utilities and grid oper-
ators. BDA techniques can be utilized to compare standard usage patterns for customers
with current measured data [55]. Trained models are able to identify energy profiles for
industrial and commercial customers to differentiate between typical usage and potential
theft [57]. Ref. [58] details a novel energy theft detector that predicts consumption patterns.
BDA techniques are demonstrated to contribute greatly to a significant source of energy
loss in power systems.

Load forecasting is often discussed in the literature and represents one part of fore-
casting for more effective management. Another side of forecasting is renewable energy
forecasting which is essential for avoiding expensive and disruptive mismatches between
generation and demand [55]. Renewable energy sources are intermittent and reliant on
uncontrollable factors like weather, climate, etc. BDA techniques can identify patterns in
this fluctuating data and preemptively predict renewable energy generation [59].

4.5. Future Implementation Opportunities and Barriers

BDA has the potential to transform current and future power systems by providing
utilities with the insights those utilities need to empower their flexible, efficient, and
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resilient digital grids, while also operating those grids cost effectively and with improved
customer satisfaction. BDA demonstrates great potential in current and future applications
in different areas of power systems. The key references for different aspects in this paper
have been summarized and listed in Table 1.

Table 1. A list of key references in the paper.

Topics References

Big Data Characteristics [11–22]

BDA techniques ANN [5,8,9,27]; Deep Learning [28,30–32]

BDA applications
Load Forecasting [8,9,38,40,41]; Fault or Outage Detection and
Diagnosis [10]; Voltage Sag Estimation [43–46]; Power System
Management [55–59]

In future implementation, BDA can be used to support grid management and control.
BDA can be used to optimize the operation of power grids, improve energy efficiency, and
reduce carbon emissions. By collecting and analyzing large amounts of data from smart
meters, sensors, and other grid devices, utilities can gain insights into energy consumption
patterns, identify areas of congestion or overload, and predict equipment failures before
they occur. This allows utilities to take proactive measures to maintain grid stability and
improve the overall reliability of their grids.

BDA can play a critical role in the integration of renewable energy sources, such as
wind and solar power into the grid. By analyzing weather data and other environmental
factors, utilities can predict the output of renewable energy sources and adjust their opera-
tions accordingly, a process which operates similarly to load forecasting. This can help to
reduce generation curtailment and ensure a stable supply of electricity for end users.

BDA can also be used to improve customer engagement and satisfaction [60]. By ana-
lyzing customer data, such as energy usage patterns, preferences, and feedback, utilities can
personalize their services and offer customized energy-saving solutions to their customers.
This can help to improve customer loyalty and reduce churn.

While BDA has the potential to make great contributions to the management and
operation of electrical energy systems, the collection and use of such complex data face
major challenges. Data/asset management is one of the main challenges in current BDA
applications [61]. Without sufficient good data (with good quality and representation con-
sidering different scenarios), the performance of BDA cannot be guaranteed. The literature
identifies six areas to be addressed in the development and implementation of BDA for
smart energy systems: IT infrastructure, data collection and governance, data integration
and sharing, data processing and analysis, security and privacy, and professionals in BDA
and smart energy management [62]. Effective data storage and computational capabilities
are at the forefront of BDA technology requirements, but even as what constitutes useful
data continue to grow, so too do concerns for privacy and security. Prevailing barriers
to BDA implementation outside of technical requirements hinge on industry structures
and organizational changes that are not designed to optimally process the influx of data
sources and possible derived value that comes with BDA [63]. From both a technical and
management perspective, the value created by BDA implementation is limited only by
the ability to store, process, and derive meaning from disparate datasets. Apart from
gathering the good quantity and quality of the training data, appropriate BDA can be
designed/tailored to address specific problems in various applications.

5. Conclusions

Despite infrastructure barriers (both technological and managerial), with the continu-
ous development of digitalization in the power/energy sector and the further improvement
of BDA implementation in the real world, BDA will continue to revolutionize the way
electricity is generated, distributed, and consumed. BDA for smart energy systems draws
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data from a large variety of sources and has the potential to vastly improve power system
operations. This paper provides a detailed overview of data sources and cutting-edge BDA
research that has the potential to be used in power grid related applications. The paper
introduces the techniques to integrate the BDA into a power system context and presents
the capabilities of BDA in processing complex power system data to extract useful infor-
mation that can be used to assist in power system operations. This paper also especially
discusses typical applications of BDA in energy systems, including load forecasting, fault
diagnosis, and voltage sag estimation, which are critical functions needed by the system
operators to plan and operate the power system securely and optimally. The paper has
also identified the potential BDA applications in power systems; in conclusion to these
applications, BDA has presented its capability in supporting power system operation and
planning and can be applied in the cases where unknown conditions can be estimated,
forecasted, or identified based on what is known, even when the relationships between
them are not straightforward. These BDA applications will pave the way for more complex
applications that can contribute to the development of smart and flexible power grids.
Furthermore, BDA will bring more benefits to the energy evolution, such as improved
grid efficiency, active engagement from customers in supporting grid operation, and an
enhanced power supply with greener energy and high-quality power.
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
BDA Big Data Analytics
CNN Convolutional Neural Network
DNN Deep Neural Networks
DSM Demand Side Management
DT Decision Tree
EV Electric Vehicle
FC Fully Connected
IT Information Technology
KNN K-Nearest Neighbors
LCT Low Carbon Technology
LSTM Long Short-Term Memory
MLP Multilayer Perceptrons
MRA Monitor Reach Area
PMU Phasor Measurement Unit
RF Random Forest
RNN Recurrent Neural Network
SAFRI System Average RMS Variation Frequency Index
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machine
V2G Vehicle-To-Grid
VSE Voltage Sag Estimation
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