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Simple Summary: Wildlife are important reservoirs of bacterial pathogens associated with human
diseases. Campylobacteriosis is a relevant gastrointestinal disease in humans and is caused principally
by Campylobacter jejuni and Campylobacter coli. This review compiles the current knowledge of the
potential for wildlife to carry and spread Campylobacter spp.

Abstract: Campylobacter spp. are important zoonotic pathogens and can cause one of the main
bacterial diarrheal diseases worldwide. Research in the context of infection arising from transmission
from other humans and other vertebrates has been extensive. A large fraction of these investigations
has focused on domestic animals; however, there are also a number of publications which either totally,
or at least in part, consider the role of wild or feral animals as carriers or spreaders of Campylobacter
spp. Here, we carry out a systematic review to explore the role played by wild vertebrates as sources
of Campylobacter spp. with a compilation of prevalence data for more than 150 species including
reptiles, mammals and birds. We found that numerous vertebrate species can act as carriers of
Campylobacter species, but we also found that some host specificity may exist, reducing the risk of
spread from wildlife to domestic animals or humans.

Keywords: Campylobacter; wildlife; sources

1. Introduction

Bacterial species of the genus Campylobacter include zoonotic pathogens, some of
which can be emergent and highly pathogenic [1]. Human campylobacteriosis, the infection
caused by members of the genus Campylobacter, manifests as gastroenteritis and is one of
the four leading causes of diarrheal diseases worldwide [2]. Also, severe neuropathological
disorders Guillain–Barré syndrome (GBS) and Miller Fisher syndrome (MFS), and reactive
arthritis have been associated with Campylobacter [3].

Despite human campylobacteriosis mainly being caused by Campylobacter jejuni and
Campylobacter coli [4], a broad range of other Campylobacter spp. have also been isolated from
human clinical samples including: Campylobacter lari, Campylobacter fetus, Campylobacter
concisus, Campylobacter rectus, Campylobacter mucosalis, and Campylobacter upsaliensis [5,6].

Domestic and companion animals, livestock, and several species of laboratory animals
can also become infected with Campylobacter spp. [7–14]. In addition, Campylobacter spp.
have been isolated from the intestinal tracts of a wide variety of healthy and diseased
mammals and birds, including poultry, ruminants, and swine [15–20]. Therefore, animals
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are considered as reservoirs of these bacteria because zoonotic transmission of Campylobacter
is thought to occur predominantly from contact with infected livestock and poultry [21–23].
However, wildlife can be reservoirs, sources or amplifying hosts [24], in that they provide a
high pathogen-shedding capacity and may play an important role in the transmission of
zoonotic pathogens. While there are several reports of the presence of Campylobacter species
in wild mammals, many of these reports act as individual papers, almost in the form of
case studies, or have concentrated on their impact on domesticated animals with a view to
a potential impact on human populations. Here, we draw together data from these papers
to systematically evaluate the diversity of vertebrate species, with an emphasis on those
found in the wild, which have been shown to have been infected by Campylobacter with
the objective of giving a more complete understanding of the range of vertebrate species
known to have been identified as being infected by Campylobacter.

2. Campylobacter-Associated Pathogenesis in Humans

Campylobacter spp. are part of the Campylobacteriaceae family. These bacteria are
Gram-negative rods, small (0.2–0.9µm wide and 0.2–5.0µm long), spirally curved, and
do not form spores. They move in a way that resembles a corkscrew [25–27] and are
chemoorganotrophs and obtain their energy sources from amino acids or tricarboxylic acid
cycle intermediates [28]. The genus Campylobacter consists of 32 officially described species
and 9 subspecies [29].

Campylobacter is the most reported cause of bacterial infectious gastrointestinal disease.
However, systematic disease surveillance programs, which include campylobacteriosis, are
largely limited to industrialized countries, such as the United States and member states of the
European Union, because in non-industrialized countries they are either scarce or have a lower
incidence [26,30]. Campylobacter infections in humans principally cause diarrhea; however, the
severe neuropathological disorders Guillain–Barré syndrome (GBS) and Miller Fisher syndrome
(MFS), and reactive arthritis have been associated with Campylobacter infections [3,31].

C. jejuni was first identified as a human diarrheal pathogen in 1973 [32]. The major
relevance of campylobacters as a main cause of human disease was just uncovered in the
early 1980s. The pathogenesis of C. jejuni infection involves both host- and pathogen-specific
factors [32]. This bacterium can affect people of all ages but with distinctive bimodal distribution,
affecting children aged <4 years and people aged 15–44 years, also individuals with AIDS [26].

Campylobacteriosis is the most common disease caused by Campylobacter spp. These
bacteria have a worldwide distribution and a wide host variability. Food-producing animals
such as cattle, sheep, swine, and poultry commonly harbor Campylobacter spp. in their
gastrointestinal tracts [17,33,34] and represent an important route through which organisms
could enter the food chain.

Aquatic birds are reservoirs of many Campylobacter spp. such as C. jejuni and C. coli [35].
However, it has also been suggested that wild birds are carriers of Campylobacter spp. and a
source of infection for other species of animals and humans [36]. Kwan et al. [37] reported
molecular evidence, MLST among C. jejuni isolates (n = 130; 59 from humans, 40 from raw
peas, and 31 from wild birds) of an outbreak, and demonstrated the association of many more
human C. jejuni infections associated with the outbreak than with raw peas or wild bird feces.

On the other hand, the pattern and distribution of C. jejuni infection differs from wild
free-ranging animals to domestic ones [38]. A study identified 443 isolates of C. jejuni and
C. coli in stools of 2031 domestic animals such as cattle, sheep, and pigs, as well as birds
and pets [39]. The prevalence was generally between 22 and 28%, and there was a higher
prevalence in poultry (41%) than in cats and dogs (<5%). Moreover, using MLST, it was
demonstrated that there is a host specificity for infection [39].

Various routes of transmission of Campylobacter spp. have been described. One such
example is that it has been suggested that the supply of water is a determining factor in
transmission, as Shrestha et al. [40] showed that Campylobacter spp. have been isolated from
recreational rivers. The strains isolated were generally associated with wild birds but also
occasionally associated with human diseases.
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Other authors have studied the presence and diversity of virulence-associated genes
among Campylobacter strains isolated from wild birds as complementary evidence to their
role in the epidemiology of human campylobacteriosis. DNA extraction and amplifica-
tion have targeted several virulence-associated genes including those related to adhe-
sion and colonization (cadF), invasion (ciaB, virB11, htrA, and hcp), cytolethal distend-
ing toxin (cdtA, cdtB, cdtC), and flagellin (flaA and flaB) genes [41–43]. Additionally, the
ability to invade human colonic epithelial cells has been tested through the gentamicin
protection assay [42].

3. Literature on Wildlife Carriers of Campylobacter spp.

Literature was searched on the ISI—Web of Science and PubMed databases on Septem-
ber 26, 2022, using the terms: (Campylobacter*) AND (wildlife OR amphibian* OR* fish
OR reptile* OR bird* OR mammal*) AND (reservoir OR prevalence OR maintenance).
This systematic review followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. Journal articles or short communications were
selected with no restriction on the publication date, while books and book chapters were
excluded since they were unlikely to be primary research publications.

All duplicate reports were removed. The title and abstract from selected reports were
scanned and these were included if: (i) they reported information on free-living wildlife
or individuals captured or recently admitted to rehabilitation centers, (ii) documented
findings on any Campylobacter species, (iii) data were obtained through an observational
study. Papers were excluded if: (i) they only reported information on domestic or captive
animals unless they were to be included for the purposes of illustrating that infection had
been reported in that species, (ii) data were obtained through experimentation, or (iii) they
were summaries, reviews, or meta-analyses, or (iv) full text was not available. After this first
round of selection, we carried out a second round based on a full reading of the articles. This
resulted in the dismissal of additional reports whose selection was not straightforward based
on title and abstract screening. Using this web-based review search, 245 papers in Web of
Science and 199 in PubMed were identified. Four publications were excluded, because they
were not scientific articles. Once the results were pooled and duplicates were eliminated,
306 unique publications ranging from the years 1981 to 2022 remained. Initial scanning
of the title and abstract showed that 118 articles did not meet the inclusion criteria. Five
articles were excluded because neither the abstract nor the full text were available. Also,
five articles were dismissed, because they analyzed data reported in previous publications
that were selected in this review. Full reading of the text resulted in the dismissal of twelve
articles based on them not providing any new information in the context of the purpose of
this review. A final selection of 166 articles remained for comprehensive revision.

4. Wildlife Sources of Campylobacter Species

The degree of similarity between Campylobacter isolates found in infected humans and
wild birds is a widely studied topic. Studies aimed to discriminate among isolates from wild
birds and humans have included samples from water, soil, and, to a lesser extent, poultry
samples. However, in terms of the current paper, we list below some of the methods which
have been used as an approach to confirming the presence of Campylobacter spp. in samples.

Campylobacter spp. can be isolated from several samples including stools, rectal,
and blood samples [26], using either selective or nonselective medium followed by an
incubation period in a microaerobic atmosphere. Antibiotics may be used to suppress other
microbiota growth [44,45]. Furthermore, microscopic examination of colonies requires
Gram staining, a motility test, and an oxidase test [26]. Serological methods, such as passive
hemagglutination and latex agglutination, are used to detect Campylobacter spp. [46,47].
However, molecular typing methods have largely replaced serological ones due to their
increased availability and discriminatory power. Such methods have been employed
in source attribution, isolates discrimination [6,48,49], and in the control of foodborne
pathogens interventions [50].
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Most of the molecular analytical tools have been developed for work with either medical
reasons or for work with domesticated animals. For example, C. jejuni and C. coli isolates
from poultry, cattle, and humans have been studied using different approaches, including
both pulsed-field gel electrophoresis (PFGE) and PCR of candidate marker genes [51,52]. In
addition, multiplex PCR has been used for identification and differentiation of the thermophilic
species C. jejuni and C. coli, principally in poultry samples [53] although, Backhans et al. [54]
used the same primers for detection in wild rodents, meaning that although this approach was
developed for domesticated animals, it has been shown to be equally useful in wild animals.
Furthermore, multilocus sequence typing (MLST), a technique that determines the sequence
diversity of multiple loci which characterize isolates of microbial species using the DNA
sequences of internal fragments of multiple housekeeping genes, has been employed, e.g., flaA
SVR typing [55] and the ST-45 and ST-677 complexes [56]. With regards to Campylobacter,
this technique has been used initially to determine sequences of C. coli in pig liver, as well
as human, poultry, and bovine isolates [55,56]. In the wildlife context, this approach has
been used to detect C. jejuni isolates in wild birds and rabbits [36,37]. Also, using MLST
and phylogenetic analysis has provided evidence that some strains isolated from wild birds
can be shared with humans, domesticated birds in the form of poultry, and livestock, while
other strains detected form separate groups, because they differ to a larger extent from strains
isolated from humans and domestic animals [41,49].

5. Wildlife Carriers of Campylobacter Species

Data from the articles reviewed showed that at least twelve Campylobacter species have been de-
tected in wild animals in 36 countries and the Antarctica Peninsula [15,16,38,40–43,46,48–50,57–148]
(Figure 1). Details of the animal species involved are found in Table S1 in the supplementary
data. The most commonly detected species was C. jejuni, followed by C. coli and C. lari.
However, other species, C. fetus, Campylobacter helveticus, C. upsaliensis, Campylobacter hyoin-
testinalis, Campylobacter sputorum, Campylobacter canadensis, Campylobacter hepaticus, Campy-
lobacter subantarcticus, and Campylobacter volucris have also been sporadically detected in
wildlife. Prevalence estimates for reptiles, mammals, and birds species are presented in Table S1,
and this includes information for Campylobacter, C. jejuni, C. coli, and C. lari when available.
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5.1. Fish, Amphibians, and Reptiles

In general, most people consider Campylobacter infections as being a problem associated
with homeotherms due to their body temperature being maintained at a level which is
conducive to the growth of Campylobacter spp. However, there are several examples of
Campylobacter infections being documented in other vertebrate species. Campylobacter have
been described more widely in a range of different Squamates, as reviewed previously [150].

The species identified in squamates have included two subspecies of C. fetus (C. fetus
subspecies fetus and C. fetus subspecies testudinum), C. jejuni, and Campylobacter iguaniorum.
These have all been seen in reptiles; primarily lizards such as geckos and iguanas, and also
in some species of snakes [151]. Examples of lizards with infections have been seen in both
Europe [152] and Australia [153]. The work of Gilbert et al. [152] included detection of
C. fetus, C. hyointestinalis, and Campylobacter spp. by both cultivation and PCR approaches.
In each case, the PCR approach had a higher detection rate than that using cultivation as
follows: lizards (62% versus 11%), snakes (32% versus 3%), and turtles (93% versus 39%). It
is also worth noting that turtles also had the highest infection rates for two other genera of
bacteria: Arcobacter and Helicobacter.

A study in Taiwan detected C. fetus in both wild and domesticated reptiles [150], with
C. fetus a species which was also shown to be able to cross into the human population [154].
Although C. fetus has been described in both reptiles and mammals, there appears to be host
dichotomy between species, with genetic divergence between the lineages in mammals and
reptiles [155]. Although Campylobacter infections in reptiles have primarily been described
in squamates, there are also examples of infection in other reptiles, such as chelonians.
One such example is from red-footed tortoises (Chelonoidis carbonaria) in captivity [155]
with other reports in turtles [151]. However, no evidence of Campylobacter infection was
found in European pond turtle (Emys orbicularis) and read eared slider (Trachemys scripta
elegans) [156].

There are also examples of Campylobacter infections in fish. For example, C. cryaerophila
has been isolated from rainbow trout (Oncorhynchus mykiss) [157] and also a study using
other freshwater fish (Capoeta capoeta capoeta, Capoeta trutta, Alburnoides bipunctatus, and
Leuciscus cephalus) [158]. However, as reported by Loewenhwerz-Lüning et al. [159], the
incidence of infection was much lower in fish than that seen in homeotherms, with many in-
vestigations failing to either cultivate Campylobacter from fish samples or to detect members
of this genus by PCR.

In the remaining class of non-homeothermic vertebrates (amphibians), reports de-
tecting Campylobacter are scarce in the literature. The reports do exist, such as when
Campylobacter-like bacteria were described in frogs in the early 1980s [160], and there has
been a C. fetus infection arising from meals which included consumption of frog meat [158].
However, in several other pieces of work, it was not possible to detect Campylobacter by
either culturing methods or using PCR (e.g., Martel et al. [161]).

5.2. Birds

Despite much of the research carried out on Campylobacter species involving mammals,
the importance of infection in birds cannot be underestimated. Much of this is down to the
fact that they have a body temperature which is ideal for Campylobacter to proliferate [162].
This is true for both domesticated poultry [163] and also wild birds [162,163]. Particularly
in the case of wild birds, this is problematic as their ability to fly means that they have the
potential to spread Campylobacter, as well as other zoonotic organisms, by crossing over
geographical barriers [164].

In a study of microbial infection in several vertebrate species [165], it was shown that
17% of cloacal samples collected from wild birds were positive for Campylobacter, but <1%
of racing pigeons were infected. This was the converse of observations for Salmonella, where
<1% of the wild birds were infected, but 5% of the racing pigeons were infected. This may
suggest that different enteropathogens are more prevalent in the wild population relative
to those in captivity.
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However, there can be considerable variation in terms of the levels of infection ob-
served, even within a single country. For example, in Scotland pheasants are often bred in
captivity prior to being released into the wild for sporting purposes. There they will come
into contact with a population of wild pheasants (Phasianus colchicus) which is present as
well. Thus, the Scottish pheasant population can be thought of as being both wild and also
semiferal. Based on previous work [143,166–169], Seguino et al. [170] predicted that around
a quarter of wild pheasants would be infected with at least one species of Campylobacter.
However, after sampling from 5 different parts of Scotland, it was found that over 36% of
the birds were positive, ranging from 50% in the Borders to only 6.8% in the Southwest
of the country. When data were examined for each individual estate sampled, there was
even greater variation, with one estate in the Borders having 73.3% infection, and one of
the estates in the Glasgow area having no infections detected, reiterating the point that
there can be considerable geographical variation, even for samples collected relatively
close together.

Detection of prevalence estimates are commonly reported for single species. How-
ever, Konicek et al. [143] presented the percentage of birds positive for Campylobacter for
each order of birds, even though sample size was extremely uneven across orders. The
largest proportions of positive samples were detected for Anseriformes, Passeriformes,
Charadriiformes, Gruiformes, and Columbiformes.

Several studies have addressed Campylobacter prevalence in bird species whose ecologi-
cal habitats increase their infection risk and transmission potential [35,48,140]. Species such
as herring gulls (Larus argentatus), rock pigeons (Columba livia), American crows (Corvus
spp.), and European starlings (Sturnus vulgaris) have repeatedly been monitored due to
their feeding habits and their close contact with human populations. For example, herring
gulls, which are opportunistic scavengers, can use human waste as food, while European
starlings and American crows can forage and roost in agricultural and urban areas.

Irrefutable data are not available to support the hypothesized role of synanthropic
birds as relevant Campylobacter sources for transmission to humans. However, studies
focusing on pigeons and doves showed that a large number of the birds sampled tested
negative without evidence of infection, ranging between 75% (18/24) and 91% (98/107)
being negative [42,140].

Current information shows that the prevalence of Campylobacter in crows can vary
widely, and, more importantly, it suggests that crows are frequently infected with Campylobac-
ter. Prevalence data are available for Campylobacter macrorhynchos (19.4%, 27/139), Campy-
lobacter brachyrhynchos (66.9%, 85/127), and Campylobacter monedula (100%, 4/4) [62–64].
Results published therein indicate a sharp predominance of C. jejuni among the isolates
(above 90% in all cases).

As mentioned earlier, geographical barriers can pose less of a challenge to birds,
relative to other animals. This is particularly true for migratory species, with many species
migrating thousands of miles twice a year. Specifically, for those which migrate longer
distances, there are often key stopping off points during their migration for resting, feeding,
etc. In many species, this happens in countries which have a border with the Mediterranean
Sea. These provide biannual areas where migrant birds can either infect, or become infected
by, the resident population. One such country is Turkey, which is a key stopping point
for many species of birds and provided a site for a recent survey of infection of birds by
Campylobacter [35]. In this work, three of the five species (turtle doves (Streptopelia turtur),
red-crested pochards (Netta rufina), and quails (Coturnix coturnix)) which were sampled
failed to have any Campylobacter detected, while the other two species showed widely
different infection levels (93% in coots (Fulica atra) but only 5.2% in song thrushes (Turdus
philomelos). This suggests that landing in this area has the potential to expose migratory
birds to other infected species of birds, but that there is great interspecies variation in the
infection rates. Therefore, bird migratory behavior is potentially considered a relevant
factor in the spread of Campylobacter and other pathogenic microorganisms over large
distances due to carriage by a suitable host. This issue has been addressed with some
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groups such as shorebirds, gulls, ducks, rails, raptors, and songbirds [64,141,171]. For
example, Ryu et al. [141] identified high numbers of Campylobacter, including C. lari. This
work involved stool samples collected from examples of the shorebird species red knot
(Calidris canutus), semipalmated sandpiper (Calidris pusilla), and ruddy turnstone (Arenaria
interpres) which showed the presence of Campylobacter. However, neither C. jejuni nor C. coli
were detected, but, rather, Campylobacter lari was present [167]. In contrast, C. jejuni was the
predominant species in samples obtained from migratory passerines of the Paleartic (36/39
of samples positive for Campylobacter) [64]. Overall prevalence of Campylobacter was low
to moderate in this group since prevalence for long-distance migrants and short-distance
migrants was 17.2% (17/99) and 31.5% (22/70), respectively. Therefore, birds must be
treated as important potential spreaders of Campylobacter infection, particularly due to the
ability of birds to cross geographical barriers, although sampling sites and species sampled
play an important role in analysis.

Overall, Campylobacter isolates from wild birds harbor major virulence-associated
genes [172]. However, not all bird species and isolated strains seem to play a signifi-
cant role in human infection because of the low prevalence of virulence-associated genes.
Weis et al. [41] reported the presence of the CDT (cytolethal distending toxin) gene clus-
ter in 20% of the C. jejuni isolates obtained from crows, while Iglesias-Torrens et al. [49]
found that 46% of the wild bird strains, including storks, ravens, pigeons, and gulls, tested
negative for at least one of the cdt genes. In the case of C. jejuni isolates obtained from
crows, Weis et al. [41] reported the presence of the CDT gene cluster in 20% of the samples.
The same gene cluster was present in 92% and 100% of the crow isolates obtained from
Washington, USA, and Kolkata, India, respectively [158]. However, these isolates had a
truncated gene cluster, meaning that these bacteria could not produce a functional toxin
protein. Shyaka et al. [42] scanned isolates from different species, including crows and
pigeons, for the presence of 7 virulence-associated genes. Only 21% (7/33) of the samples
harbored all the genes studied, while 75% (25/33) of crow and Eurasian tree sparrow (Passer
montanus) isolates were positive for all the genes tested other than cdtA.

In addition to direct transmission between, and within, species of birds, there are
reports of house flies (Musca domestica) being possible vectors for the spread of Campylobac-
ter, with flies which had become inoculated having live Campylobacter for up to 24 h after
inoculation. Interestingly, the bacteria which were still viable after 24 h were the ones in
flies which were kept at 15 ◦C, whereas those which were in flies at typical temperatures
seen in homotherms such as birds could rarely, if ever, be detected after 24 h [173].

Thus, birds not only provide a potential for transmission of Campylobacter directly in
the wildlife and domestic animals but may also allow for indirect transmission via flies as
an intermediate. In addition, work with Campylobacter has been used as a model system in
the endangered New Zealand bird species; the takahe (Porphyrio hochstetteri) [174]. In this
species, it has been shown that 99% of the birds harbored one or more species. In addition
to C. jenuni (present in 38% of the birds examined) and C. coli (24%), there was also around
90% prevalence of Campylobacter sp. nova 1, which has only been detected in New Zealand.
Thus, this has been proposed as a model for the interaction between hosts and pathogens
in an isolated population.

Potential Role of Birds in Spreading Antibiotic Resistance via Campylobacter spp.

The ability for birds to spread Campylobacter becomes even more of a concern when
it is noted that this can include strains which have antibiotic resistance genes [175]. In a
recent survey [162] of cloacal swabs, it was found that almost a third of wild waterfowl
were carriers of Campylobacter species, with four of the five species harboring C. jejuni
and mallards also carrying C. coli. All 30 samples tested positive for several different
virulence genes, with 11 of them also having one or more genes for antibiotic resistance
present. Given that these waterfowl species are often found on farmland, or water which
runs through farmland, they pose a risk to farm animals, both in terms of the spread of
Campylobacter per se, but also the spread of antibiotic resistance genes.
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By way of further illustrating this, it is worth noting that Sippy et al. [176] reported
that birds play an important role in the epidemiology of pathogenic Campylobacter and can
act as a reservoir for antibiotic-resistant Campylobacter which can infect livestock. Overall,
Campylobacter spp. prevalence was 4.79% (9/188), and of the 9 isolates, 22.2% were C.
coli and 77.7% were C. jejuni, and most Campylobacter isolations (5/9; 55.6%) were from
white-throated sparrows (Zonotrichia albicollis).

As already noted, Campylobacter were found in all crows studied in one particular
study [43] but were absent from gulls in another study [49]. These are birds which have a
reputation as scavengers and so will be likely to be exposed to a range of different food
sources. However, they are not counted as being at the apex of the food pyramid. In the
case of birds of prey such as young Bonelli’s eagles (Aquila fasciata), there was evidence of
Campylobacter detected in the nest [126] in around 11% of samples—together with Salmonella
at around three times this level. Potentially worryingly, this included strains which showed
antibiotic resistance.

5.3. Mammals

Domestic mammals have been described as a reservoir of Campylobacter spp. [17,20,177].
For example, C. jejuni and C. coli have been isolated from fecal samples of dogs and cats.
Depending on the study, some examples show a higher prevalence as being described in
dogs [178], but others show a higher value in cats [179]. C. upsaliensis has been found with
a higher prevalence in dogs, principally in puppyhood and adolescent periods [180]. While
the purpose of this paper is not to investigate domesticated species, they are mentioned
here since feral dogs and cats have been shown to be infected in Australia, with principally
C. upsaliensis and C. jejuni having been found in 11% and 4% of cats, respectively, whereas
34% of dogs carried C upsaliesis, 7% carried C jejuni, and 2% carried C. coli [181]. Moreover,
it should be noted that even animals which are still pets are often not restricted to houses. In
particular, cats are often allowed to roam freely in many countries and, although technically
domesticated, have a number of similarities with those which are feral.

Rodents are another potential host group that can spread Campylobacter spp. Olkkola et al. [84]
demonstrated that the highest prevalence occurred in yellow-necked mice (Apodemus
flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and
63.9% of the samples collected from these wild animals on farms and 41.5 and 24.4% of
animals trapped from natural habitats, respectively. Kim et al. [81], in Korea over a 2-year
period, captured house mice (Mus musculus) and harvest mice (Micromys minutus) which
did not have any clinical symptoms. C. jejuni was only isolated from M. minutus (42/66,
63.6%). A single clone (MLST ST-8388) was found in all 42 C. jejuni isolates, and all isolates
had the same virulence/survival-factor profile, except for the plasmid-mediated virB11
gene. However, Sippy et al. [176] sampled voles (Microtus spp.), deer mice (Peromyscus
spp.), house mice (M. musculus), brown rats (Rattus norvegicus), short-tailed shrews (Blarina
brevicauda), least shrews (Cryptotis parva), eastern moles (Scalopus aquaticus), and other small
mammals, but did not find any Campylobacter spp. in their samples.

Bats have been detected as carriers of several zoonoses microorganisms. Adesiyun et al. [73]
detected Salmonella spp. and E. coli in bats’ gastrointestinal tracts; however, Campylobacter
was not present. Nevertheless, Hatta et al. [79] detected C. jejuni and C. coli, C. helveticus,
Campylobacter peloridis, Campylobacter insulaenigrae subantarcticus, and C. volucris in Geof-
froy’s Rousette (Rousettus amplexicaudatus) using high-throughput sequencing in rectal
swab samples, suggesting that bats can be potential carriers of C. jejuni.

Other mammals have been considered as sources for infection. Mutschall et al. [83]
identified raccoons (Procyon lotor) as ideal subjects for exploring the potential role that they
play in the epidemiology of campylobacteriosis, because racoons can adapt to different
environments, and live at the interface of rural, urban, and more natural environments.
Briefly, in their study, they captured raccoons on five swine farms and five conservation
areas in southwest Ontario, Canada. It was found that the prevalence of Campylobacter spp.
in raccoon fecal samples was 46.3% (508/1096). Among the Campylobacter-positive raccoon
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samples, 502 (98.8%) were positive for C. jejuni, six (1.2%) for Campylobacter spp. (uniden-
tified Campylobacter species), and one for C. coli. This suggested that raccoons may act
as vectors in the transmission of clinically relevant C. jejuni subtypes at the interface of
rural, urban, and more natural environments. Moreover, De Witte et al. [182] collected fecal
samples of terrestrial zoo mammals from 6 different zoos in Belgium and observed both
Helicobacter spp and unknown Campylobacter.

On the other hand, a cross-sectional study of the molecular epidemiology of C. jejuni
in a dairy farmland environment [46] showed that 73.7% of wild rabbits (Oryctolagus
cuniculus) can keep a similar genotype in cattle (the ST-21 complex), which is relevant to
human infection. Rhynd et al. [85] demonstrated that asian mongooses (Herpestes javanicus)
are carriers and shedders of Salmonella and Campylobacter spp. Moreover, Medley et al. [66]
sampled fecal samples in humans, free-ranging banded mongooses (Mungos mungo) surface
water, and river sediment samples in northern Botswana and reported Campylobacter spp.
and C. jejuni as the main bacterium free-ranging banded mongooses (M. mungo). Also,
Campylobacter spp. was widespread in humans with infections dominantly associated
with C. jejuni; however, Campylobacter spp. was rare or absent in environmental samples,
but half of the mongooses sampled tested positive (56%). The authors suggested that
pathogen circulation and transmission in urbanizing wildlife reservoirs may increase
human vulnerability to infection.

In marine mammals, the prevalence of Campylobacter spp. has been described in
captive and wild marine animals. De Witte et al. [182] isolated C. insulaenigrae in 1/11 seals
and 3/6 sea lions in Belgian zoos. Greig et al. [78] detected Campylobacter spp. in 22/241
(9.1%) of harbor seals (Phoca vitulina), which included both wild and those caught after
being stranded in Central California, USA. Meanwhile, Fooster et al. [183] detected C. jejuni,
C. coli, C. lari, and Campylobacter insulaenigrae from 3 free-ranging harbor seals (P. vitulina)
in Scotland, and Stoddard et al. [184] isolated C. jejuni (17/165, 10.3%), C. lari (5/165, 3%),
and an unknown Campylobacter sp. (1/165, 0.6%) in elephant seals (Mirounga angustirostris)
from Central California, USA. Moreover, Stoddard et al. [185] characterized 72 presumptive
C. lari and unknown Campylobacter species strains using standard phenotypic methods,
16S rRNA PCR, and multilocus sequence typing (MLST). Baily et al. [75] isolated C. jejuni
in wild-caught live grey seals (Halichoerus grypus), 24/50 dead and 46/90 live in the
breeding colony on the Isle of May (Scotland). However, returning yearling animals (19/19)
were negative for C. jejuni, suggesting the clearance of infection while away from the
localized colony infection source. In addition, genome sequence was carried out, using
a whole-genome multilocus sequence typing (MLST) as an approach to make a model of
the genotype–host association. They demonstrated the spread of a human pathogen to a
sentinel marine mammal species inhabiting a national nature reserve, probably through
fecal contamination from agricultural land or human sewage [186].

6. Summary/Conclusions

It is clear that Campylobacter spp. can exist in domestic animals and the routes of the
disease transmission have been described, although, for the purposes of this paper, they are
only considered in the context of domesticated species which are existing as a feral lifestyle.
Cumulatively, the various studies have led to an improvement in the understanding of the
epidemiology using molecular approaches. Nevertheless, the dynamics of transmission
between wildlife, domestic animals, and humans are still not fully clear yet. Moreover,
the analytical approach (e.g., molecular versus cultural approaches) can lead to different
infection levels being reported. For this reason, we have tended to place the emphasis on
reporting species which can be infected, whilst trying to maintain an indication of the levels
of infection. The level of disease present in wild populations is difficult to assess due to
problems associated with finding diseased animals in the wild, as opposed to those either
in captivity or those which have been domesticated.
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This review has shown that wildlife can act as an important Campylobacter spp. reser-
voir, with several studies described in birds and mammals, but less in amphibians, reptiles,
and fish. Although most Campylobacter studies have been carried out with either humans or
domesticated animals, there are a number of studies which describe the potential roles of
wildlife and the environment as a source of C. jejuni infection. In fact, not all studies have
been related to human outbreaks with wildlife sources using whole-genome multilocus
sequence typing (MLST).

Fragmentation of landscape may influence human and animal exposure and Campy-
lobacter infection dynamics, because anthropogenic resources can alter host–pathogen
interactions, leading to either increased or decreased infection risk for wildlife and humans
depending on the nature of provisioning and the particular host–pathogen interaction [23].
hen, it is necessary to understand the human-domestic animal–wildlife-environment inter-
face. We have also included data on the relative level of incidence in different species, and
this serves to demonstrate that different values were observed in different geographical
areas. How much these differences vary may be down to the methods which were used to
make assessments, geographical differences, or even temporal variation. Thus, the major
purpose of this work was to identify the range of species in which members of the genus
Campylobacter has been described.

In conclusion, wildlife animals such as birds, mammals, and reptiles can act as reser-
voirs of Campylobacter spp., and they play an important role in the transmission of these
bacteria. However, a few studies have shown evidence that Campylobacter can either be
transmitted to humans or animals can be an important host to transmission. It is important
to carry out more studies of the role played by wildlife, mainly birds, as well as other wild
animals and the interface with domestic animals and humans. This is particularly true
given the number of countries where no research has been carried out on the presence of
Campylobacter spp. in wild, or even feral, vertebrate species. However, we anticipate that
as the number of species investigated increases, the true extent of infection will become
even clearer.

Supplementary Materials: The following supporting information can be downloaded at: https://
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out with Campylobacter spp.
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