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Abstract—Cybersecurity for the Internet of Medical Things
(IoMT) is a very concerning issue because of emerging cyber
threats and security incidents targeting IoMT devices all over
the world. The healthcare system has near-zero tolerance for
inexplicability. In this paper, we propose a machine learning-
based anomaly detection for the IoMT and evaluate the perfor-
mance using a realistic public dataset. We implement various
machine learning algorithms: Random Forest, Decision Tree,
Logistic Regression, Support Vector Machine, and K-Nearest
Neighbor with TON IoT dataset. Two types of classifications
are implemented: binary and categorical. In the categorical
classification, evaluation for nine attack scenarios (Scanning, DoS,
password cracking attack, and Man-in-The-Middle (MITM)) are
performed. The test results demonstrate that Support Vector
Machine models produce better performance compared to the
other models.

Index Terms—Cybersecurity, Intrusion Detection, IoMT

I. INTRODUCTION

As the adoption of the Internet of Things (IoT) is growing
significantly in diverse fields including healthcare, in such
scenarios achieving robust security in IoT is becoming increas-
ingly challenging. Due to its benefits and advantages, the adop-
tion of IoT devices in healthcare organizations has reached
70% with increasing reliance in such organizations on the
Internet of Medical Things (IoMT). The COVID-19 pandemic
increased the adoption of the IoMT to reduce the risks of
getting infected while treating patients. It is expected that the
global IoT in the healthcare market will reach USD 290 billion
by 2028 from USD 128 billion in 2023. However, we also
see increasing cyber-attacks during the pandemic where cyber
criminals and Advanced Persistent Threat (APT) groups have
taken advantage of targeting vulnerable people and systems
[1]. The IoMT refers to the interconnected network of medical
devices, sensors, and software that enable the exchange of data
for various healthcare purposes. However, with the increase in
connectivity also comes an increase in the risk of security

breaches and cyber-attacks. Hackers may target IoMT devices
to access sensitive patient data or disrupt critical medical
processes. Therefore, it is essential to develop effective in-
trusion detection systems (IDSs) to protect the IoMT from
cyber threats. One promising approach to intrusion detection in
the IoMT is the use of machine learning algorithms. Machine
learning allows for the automated analysis of large amounts
of data, enabling the identification of patterns and anomalies
that may indicate an intrusion. In this paper, we propose a
machine learning-based intrusion detection for the IoMT and
evaluate the performance using a realistic public dataset.

The remainder of this paper is arranged as follows: Section
II presents the related work on anomaly detection for IoMT.
Section III describes the methods used in the study such as
the dataset and data pre-processing. Our experimental results
are discussed and analyzed in Section IV Finally, Section V
draws the conclusion.

II. RELATED WORK

Anomaly detection (often referred to as intrusion detection)
is considered one effective method to detect cyber-attacks in
IoMT networks. In [2], a novel approach to detect malicious
network traffic using artificial neural networks (ANNs) is
presented for use in deep packet inspection-based IDS. Under
repeated 10-fold cross-validation, the authors obtained an
average accuracy of 98% and an average false positive rate of
less than 2% using a range of real-world shell-code exploits
and benign network traffic.

Thamilarasu et al. developed a Machine Learning-based IDS
for IoMT networks using autonomous mobile agents [3]. The
study used its own generated dataset. The study showed that
the proposed IDS is able to detect attacks with high accuracy
with minimal energy consumption overhead. However, the
dataset used and produced in this study does not reflect the
complete range of cyber-attacks at IoMT networks.



Zachos et al. proposed an anomaly-based intrusion detection
system (AIDS) for IoMT networks [4]. The AIDS has a set
of distributed monitoring and data acquisition (MDA) compo-
nents running on each IoMT device, and a central detection
(CD) component running on the gateway. The proposed study
used six machine learning (ML) algorithms: Decision Tree,
Naive Bayes, Logistic Regression, Random Forest, Support
Vector Machine, and K-Nearest Neighbor and considered
computational costs in detecting abnormal data traffic and
identifying malicious traffic in the IoMT network. The paper
used the TON IoT dataset for training and evaluation [5]. The
study showed that the Naive Bayes algorithm produces better
results compared to other ML algorithms.

A method to detect attack traffic using a deep neural
network in the IoMT-Blockchain environment is proposed
in [6]. The study used a multi-model autoencoder (MMAE)
to effectively learn the fusion of low-dimensional feature
representations between different features from the original
data. The paper used two self-made datasets (TADA and
TADB) collected in the IoMT-Blockchain network. TADA
has DoS, Probe, R2L, PortScan, SSH, and U2R. TADB
has Backdoor, DoS, Exploit, Analysis, Fuzers, and Worms.
The paper claimed that the anomaly detection performance
obtained by their method is relatively good.

The Duo-Secure IoMT framework using multi-modal sen-
sory signal data to differentiate attack patterns and routing
IoMT devices’ data is proposed in [7]. The study used a
combination of methods such as dynamic Fuzzy C-Means
clustering with Bi-LSTM. The study used the WUSTL-EHMS
dataset and their performance evaluation showed that the
proposed method achieved 92.95% accuracy in identifying
network malware.

III. METHODOLOGY

In this section, the details methodology used in this study
is discussed. This includes the dataset used, pre-processing
methods, and performance evaluation metrics.

A. Dataset

The use of IoT-related datasets that reflect real-world IoT
applications plays an essential role in evaluating the accuracy
as well as the efficiency of the intrusion detection models.
However, there is a lack of availability of real-world datasets
among the research community as most of the companies that
deal with IoT devices are reluctant to share their log details due
to privacy concerns. This creates an obstacle in the creation of
intrusion detection models tailored to IoT, IoMT, or Industrial
IoT (IIoT) applications.

One of the few publicly available datasets for research pur-
poses is called the TON IoT network dataset [5] (Telemetry
data, Operating systems’ data, and Network data) and is used
in this research to develop the supervised machine learning
models. The TON IoT dataset contains major real-world threat
vectors in IoT and IoMT networks.

The dataset files available in TON IoT repository were
generated by simulating nine varieties of attack scenarios

(scanning, DoS, DDoS, ransomware, backdoor, data injection,
cross-site scripting (XSS), password cracking attacks, and
Man-In-The-Middle (MITM) attacks) against different IoT
and IIoT devices to collect the data. The dataset includes
heterogeneous data sources collected from Telemetry datasets
of IoT and IIoT sensors, Windows 7/10 and Ubuntu 14/18 LTS
operating system datasets, and IoT network traffic datasets.
The ToN IoT dataset combines four different data types:
packet capture, Bro logs, sensor data, and OS logs.

In this work, we are using the training and testing split
of the TON IoT dataset (as used by the authors of [5] for
evaluating the accuracy and efficiency of various machine
learning algorithms). This processed dataset has 45 features
and is divided into four components:

(i) Network dataset: contains the traffic data that passed
through the entire testbed.

(ii) IoT dataset: contains the data related to various IoT/IIoT
sensors simulated in the testbed.

(iii) Linux dataset: contains data connected to the Ubuntu
systems.

(iv) Windows dataset: contains data connected to the Win-
dows systems.

B. Pre-processing

The dataset available in CSV format was imported to
the MATLAB environment using the import tool. Since the
standard features in ‘Train Test datasets’ were found as a
mix of both numerical and categorical values, all the features
were imported as categorical variables to MATLAB in .mat
file format and then each feature was separately converted
into numerical values using the ‘unique’ function to facilitate
their use in ML algorithms. For example, consider the feature
’proto’ containing the categories of “tcp”, “udp” and “icmp”.
While converting this categorical feature, the categories “tcp”,
“udp” and “icmp” is converted into numerical values “0”, “1”,
and “2” respectively.

Furthermore, the dataset feature size was reduced from 45
to 44 by omitting the ‘ts’ feature, as this feature might lead
some ML algorithms to overfit to the training data. Since the
ML models take a significant amount of time to train and test
the entire dataset, only 50% of the imported dataset was used
in this study. The “normalize” function with normalization
method “range” and “scale” were used to create two datasets:
normalized dataset and standardized dataset respectively.

Each dataset was then sent to the classification learner app,
which separates the data for training, validation, and testing
purposes. In this study, 20% of the preprocessed data was
assigned for testing, the remaining 80% was used for training
the model. Validation prevents overfitting by estimating model
performance on new data compared to training data and
assisting in the selection of the optimal model. To validate
the machine learning model, 25% of the training data was
separated using the holdout approach. Before beginning the
session, the necessary predictors and response attributes were
chosen.



C. Evaluation Metrics

The machine learning models are evaluated using standard
performance metrics: accuracy, precision, recall, and F1-score
(see Table I) [8]. In Table I, true positive (TP) means anoma-
lous traffic correctly identified, true negative (TN) means
normal traffic correctly identified, false positive (FP) means
normal traffic incorrectly identified as anomalous, and false
negative (FN) means anomalous traffic incorrectly identified
as normal.

TABLE I
PERFORMANCE METRICS

Performance Metric Definition
Accuracy (TP+TN)

(TP+TN+FP+FN)

Precision TP
(TP+FP )

Recall TP
(TP+FN)

F1-Score (2×Precision×Recall)
(Precision+Recall)

IV. RESULTS

This section evaluates the test results of different algorithms
with the standardized and normalized datasets and analyses
their performance. The algorithms used in this study are:
Decision Tree (DT), Random Forest (RF), Logistic Regres-
sion (LR), Support Vector Machine (SVM), and K-Nearest
Neighbor (KNN). A robust set of default hyperparameters
from the classification learner app in MATLAB are used in
this work. The binary and multi-categorical classification in
features ‘label’ and ‘type’ will be discussed separately.

A. Binary Classification

The response attribute set for this ML model will be the
‘label’ attribute which tells us if a network intrusion is detected
or not.

1) Normalized dataset: The accuracy, precision, recall, and
F1-score test results of different ML models trained with the
normalized train-test network dataset are shown in Table II.
From the given data, we can see that the LR provides the worst
performance, with an accuracy of 82.2% and an F1-score of
76.5%. The best results were obtained from the DT algorithm
with an accuracy of 99.96% and an F1-score of 99.94%.

TABLE II
TEST RESULTS FOR BINARY CLASSIFICATION USING THE NORMALIZED

DATASET

DT RF LR SVM KNN
TP 16055 16058 13336 15720 15972
TN 30031 29658 24571 29769 29912
FP 12 385 5472 274 131
FN 6 3 2725 341 89

Accuracy 99.96 99.16 82.22 98.67 99.52
Precision 99.93 97.66 70.91 98.29 99.19

Recall 99.96 99.98 83.03 97.88 99.45
F1-Score 99.94 98.81 76.49 98.08 99.32

Figure 1 compares the accuracy and F1-score for different
ML models. While all other ML algorithms except LR show

excellent accuracy (between 98% and 100%), LR shows
comparatively worse performance (<85% accuracy and <75%
F1-score).

Fig. 1. Accuracy and F1-score for different algorithms while testing on the
normalized dataset

2) Standardized dataset: Table III shows the test results
obtained by different ML algorithms trained with the stan-
dardized dataset. Like the normalized dataset results, LR again
gives the worst performance with an accuracy of 76.6% and
an F1-score of 72.8%. Here, the SVM model performs best,
with an accuracy of 99.6% and an F1-score of 99.4%. Both
DT and RF obtain very similar results which could be due to
the tree-base structure of their design.

TABLE III
TEST RESULTS FOR BINARY CLASSIFICATION USING THE STANDARDIZED

DATASET

DT RF LR SVM KNN
TP 16059 16059 14419 15984 15747
TN 29660 29660 20899 29920 29776
FP 383 383 9144 123 267
FN 2 2 1642 77 314

Accuracy 99.16 99.16 76.61 99.57 98.74
Precision 97.67 97.67 61.19 99.24 98.33

Recall 99.99 99.99 89.78 99.52 98.04
F1-Score 98.82 98.82 72.78 99.38 98.19

The accuracy and F1-score results are plotted in Figure 2
to increase readability. While the F1-score is lower compared
to accuracy, the model trained with SVM gives a fairly equal
response. Again, all the ML models except the LR algorithm
gives out a good result between 98% and 100%, whereas LR
shows a comparatively worse performance (between 61.19%
and 89.78%).

The models that give the best results while trained with
both the normalized and standardized datasets are compared
in Figure 3. From the chart, we can firmly understood that
the ML model trained with DT algorithm and the normalized
dataset performs better compared to the other algorithms.



Fig. 2. Accuracy and F1-score for different algorithms while testing on the
standardized dataset

Fig. 3. Chart comparing best models from the normalized and standardized
datasets for binary classification

B. Categorical Classification

Here, the ‘type’ attribute from “Train Test datasets” is used
as the response attribute to train the network. There will be a
total of 10 categories including 9 attack types and a normal
type data which needs to be distinguished by the ML models.

1) Normalized dataset: Table IV shows the full results for
the three ML algorithms used for categorical classification
using the normalized dataset. The RF classifier produces TP
and FP values of zero for some of the attack types which
means precision and F1-Score are therefore undefined. The
RF algorithm performs well in classifying normal, backdoor,
and DoS data with an F1-score of 99.45%, 98.13%, and
96.57% respectively; however, it performs poorly for the other
attack types. The SVM algorithm shows good performance for
classifying most of the attack types - giving an F1-score of
above 94% for most attacks. At the same time, the algorithm
struggles in predicting the MITM network attack - giving an
F1-score of 43.17%. Overall, the SVM model gives an average
F1-score of 91.89%. Similarly, the KNN algorithm also gives a
good categorical classification, classifying 6 of the categories
with an F1-score of above 95%. As we have seen with the

SVM model, KNN also performs worst in classifying MITM
network attacks, but gives a better performance than SVM with
an F1-score of 45.5% compared to 43.2% for the SVM model.
The KNN model also gives an average F1-score of 91.13%.

Table V gives an overall comparison of the performance
of different algorithms to classify different network category
attacks using the normalized dataset. From the table we can
see that the SVM model gives a better accuracy of 99.65%
and F1-score of 91.89% as compared to the KNN model with
accuracy and F1-score of 99.64% and 91.13% respectively.

2) Standardized dataset: Now, let us look at the perfor-
mance of different algorithms to the standardized dataset in
classifying different types of network anomalies.

Table VI shows the full results for the three ML algo-
rithms used for categorical classification using the standard-
ized dataset. Again, the RF classifier produces TP and FP
values of zero for some of the attack types which means
precision and F1-Score are therefore undefined. Even though
the algorithm gives a good F1-score of 99.45% for predicting
normal network traffic, it gives the worst performance for
the ransomware category with F1-score of only 1.18%. The
SVM algorithm shows better performance, with 8 out of 10
categories giving an F1-score of above 95%. The algorithm
performs very well in classifying the backdoor network attack,
whereas it again struggles in classifying the MITM attack. The
SVM algorithm also gives an average F1-score of 91.83%. The
KNN algorithm also performs well in predicting the categories
using the standardized dataset, with 6 out of 10 categories
having an F1-score above 95%. As we have seen before,
the MITM attack was classified with the least performance,
achieving an F1-score of 46.3%. The KNN model also gives
an average accuracy and F1 score of 99.52% and 90.07%
respectively.

The comparison of the overall performance of the different
algorithms we tested in classifying different network category
attacks using the standardized dataset is shown in Table VII.
From the table, we can see that the SVM model gives better
accuracy of 99.66% and F1-score of 91.83% as compared to
the KNN model with accuracy and F1-score of 99.52% and
90.07% respectively. This may be partly explained by SVMs
being particularly good at dealing with high dimensional
datasets with limited numbers of samples [9].

Figure 4 plots the results of the best-performing algorithms
while using the normalized and standardized datasets. Even
though both the models exhibit a very similar response, the
models trained with normalized dataset provide a slightly
better F1-score of 91.89% as compared to the 91.83% provided
by the models trained with standardized dataset. On the other
hand, the models trained with standardized dataset provides a
slightly better accuracy of 99.66% as compared to the 99.65%
provided by the models trained with normalized dataset.

Considering the score difference between the accuracy of
the models as much less compared to F1-score, and preferring
F1-score as a better metric to evaluate the model performance,
this study infers that the TON IoT dataset pre-processed with



TABLE IV
TESTING RESULTS FOR CATEGORICAL CLASSIFICATION USING THE NORMALIZED DATASET

ML algorithm Category TP TN FP FN Accuracy Precision Recall F1-Score Support

RF

Backdoor 1968 44061 51 24 99.84 97.47 98.80 98.13 1992
DDoS 0 44111 0 1993 95.68 – 0.00 – 1993
DoS 1858 44114 0 132 99.71 100.00 93.37 96.57 1990

Injection 0 44128 0 1976 95.71 – 0.00 – 1976
MITM 0 45998 0 106 99.77 – 0.00 – 106
Normal 30026 15744 318 16 99.28 98.95 99.95 99.45 30042

Password 2007 37623 6474 0 85.96 23.66 100.00 38.27 2007
Ransomware 8 44080 10 2006 95.63 44.44 0.40 0.79 2014

Scanning 1756 42469 1628 251 95.92 51.89 87.49 65.15 2007
XSS 0 44127 0 1977 95.71 – 0.00 – 1977

Total / Average 37623 406455 8481 8481 96.32 – 48.00 – 46104

SVM

Backdoor 1968 44111 1 6 99.98 99.95 99.70 99.82 1992
DDoS 1917 44083 27 77 99.77 98.61 96.14 97.36 1994
DoS 1838 44109 6 151 99.66 99.67 92.41 95.90 1989

Injection 1811 44071 57 165 99.52 96.95 91.65 94.22 1976
MITM 30 45995 3 76 99.83 90.91 28.30 43.17 106
Normal 29984 15485 576 59 98.62 98.12 99.80 98.95 30043

Password 1966 44083 13 42 99.88 99.34 97.91 98.62 2008
Ransomware 1899 44022 68 115 99.60 96.54 94.29 95.40 2014

Scanning 1993 44045 53 13 99.86 96.41 99.35 98.37 2006
XSS 1870 44122 6 106 99.76 99.68 94.64 97.09 1976

Total / Average 45294 414126 810 810 99.65 97.72 89.42 91.13 46104

KNN

Backdoor 1988 44111 1 4 99.99 99.95 99.80 99.87 1992
DDoS 1895 44055 56 98 99.67 97.13 95.08 96.10 1993
DoS 1926 44039 75 64 99.70 96.25 96.78 96.52 1990

Injection 1837 43879 249 139 99.16 88.06 92.97 90.45 1976
MITM 43 45958 40 63 99.78 51.81 40.57 45.50 106
Normal 29945 15970 92 97 99.59 99.69 99.68 99.69 30042

Password 1830 44028 69 177 99.47 96.37 91.18 93.70 2007
Ransomware 2002 44043 47 12 99.87 97.71 99.40 98.55 2014

Scanning 1969 44026 71 38 99.76 96.52 98.11 97.31 2007
XSS 1847 44005 122 130 99.45 93.80 93.42 93.61 1977

Total / Average 45282 414114 822 822 99.64 91.73 90.70 91.13 46104

TABLE V
COMPARISON OF DIFFERENT ML ALGORITHMS FOR CATEGORICAL

CLASSIFICATION USING NORMALIZED DATASET

Accuracy Precision Recall F1-Score
RF 96.32 – 48.00 –
SVM 99.65 97.72 89.42 91.89
KNN 99.64 91.73 90.70 91.13

Fig. 4. Chart comparing best models from the normalized and standardized
datasets for categorical classification

the normalization technique and classified with the SVM
algorithm shows the best performance.

This study was conducted with only 50% of the original
train test split of the network dataset due to computational
constraints - with the large dataset size increasing the training
time beyond what was manageable with limited resources. It
was noted that the feature selection option can considerably
reduce the training time as compared to the model trained
without feature selection. During the study, one of the models
that trained without feature selection took five minutes to com-
plete training whereas the same model with feature selection
took only three minutes. This suggests that 40% of the training
time can be saved by using the feature selection method at a
cost of a very small reduction in model performance.

V. CONCLUSION

In this paper, we propose a machine learning-based network
anomaly detection system for the IoMT and evaluate the
performance using a realistic public dataset. We implement
various machine learning algorithms: Random Forest (RF),
Decision Tree (DT), Logistic Regression (LR), Support Vector
Machine (SVM), and K-Nearest Neighbor (KNN) with the
TON IoT dataset. Two types of classifications are imple-
mented: binary and categorical. In the categorical classifi-
cation, evaluation for nine attack scenarios (scanning, DoS,



TABLE VI
TESTING RESULTS FOR CATEGORICAL CLASSIFICATION USING THE STANDARDIZED DATASET

ML algorithm Category TP TN FP FN Accuracy Precision Recall F1-Score Support

RF

Backdoor 1967 44055 57 25 99.82 97.18 98.74 97.96 1992
DDoS 0 44110 0 1994 95.67 – 0.00 – 1994
DoS 1829 44115 0 160 99.65 100.00 91.96 95.81 1989

Injection 0 44128 0 1976 95.71 – 0.00 – 1976
MITM 0 45998 0 106 99.77 – 0.00 – 106
Normal 30017 15755 306 26 99.28 98.99 99.91 99.45 30043

Password 2008 37567 6529 0 85.84 23.52 100.00 38.08 2008
Ransomware 12 44083 7 2002 95.64 63.16 0.60 1.18 2014

Scanning 1743 42469 1629 263 95.90 51.69 86.89 64.82 2006
XSS 0 44128 0 1976 95.71 – 0.00 – 1976

Total / Average 37576 406408 8528 8528 96.32 – 47.81 – 46104

SVM

Backdoor 1990 44111 0 3 99.99 100.0 99.85 99.92 1993
DDoS 1939 44078 32 55 99.81 98.38 97.24 97.81 1994
DoS 1858 44099 15 132 99.68 99.20 93.37 96.19 1990

Injection 1808 44084 44 168 99.54 97.62 91.50 94.46 1976
MITM 30 45990 8 76 99.82 78.95 28.30 41.67 106
Normal 29987 15491 571 55 98.64 98.13 99.82 98.97 30042

Password 1963 44086 11 44 99.88 99.44 97.81 98.62 2007
Ransomware 1888 44027 63 265 99.59 96.77 93.74 95.23 2014

Scanning 1973 44055 43 33 99.84 97.87 98.35 98.11 2006
XSS 1876 44123 5 100 99.77 99.73 94.94 97.28 1976

Total / Average 45312 414144 792 792 99.66 96.61 89.49 91.83 46104

KNN

Backdoor 1988 44104 8 4 99.97 99.60 99.80 99.70 1992
DDoS 1867 44058 52 127 99.61 97.29 93.63 95.43 1994
DoS 1895 44041 74 94 99.64 96.24 95.27 95.76 1989

Injection 1830 43753 375 146 98.87 82.99 92.61 87.54 1976
MITM 41 45968 30 65 99.79 57.75 38.68 46.33 106
Normal 29871 15934 127 172 99.35 99.58 99.43 99.50 30043

Password 1734 44000 96 274 99.20 94.75 86.35 90.36 2008
Ransomware 2002 43999 91 12 99.78 95.65 99.40 97.49 2014

Scanning 1976 44021 77 30 99.76 96.25 98.50 97.36 2006
XSS 1800 43958 170 176 99.25 91.37 91.09 91.23 1976

Total / Average 45004 413836 1100 1100 99.52 91.15 89.48 90.07 46104

TABLE VII
COMPARISON OF DIFFERENT ML ALGORITHMS FOR CATEGORICAL

CLASSIFICATION USING NORMALIZED DATASET

Accuracy Precision Recall F1-Score
RF 96.32 – 48.00 –
SVM 99.65 97.72 89.42 91.89
KNN 99.64 91.73 90.70 91.13

DDoS, ransomware, backdoor, data injection, cross-site script-
ing (XSS), password cracking attack, and Man-in-The-Middle
(MITM)) are performed. Our experiments show that in binary
classification for the normalized dataset, DT provides the best
results with an accuracy of 99.96% and F1-score of 99.94%.
In binary classification for the standardized dataset, SVM
gives the highest performance with an accuracy of 99.6%
and F1-score of 99.4%. In categorical classification using the
normalized dataset, the SVM model gives the best accuracy of
99.65% and F1-score of 91.89%. In categorical classification
for the standardized dataset, again the SVM model gives the
highest accuracy of 99.66% and F1-score of 91.83%.
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