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Summary: Genes required for an organism to develop to
maturity (for which no other gene can compensate) are
considered essential. The continuing functional annota-
tion of the mouse genome has enabled the identification
of many essential genes required for specific develop-
mental processes including cardiac development. Pat-
terns are now emerging regarding the functional nature
of genes required at specific points throughout gesta-
tion. Essential genes required for development beyond
cardiac progenitor cell migration and induction include a
small and functionally homogenous group encoding
transcription factors, ligands and receptors. Actions of
core cardiogenic transcription factors from the Gata,
Nkx, Mef, Hand, and Tbx families trigger a marked
expansion in the functional diversity of essential genes
from midgestation onwards. As the embryo grows in size
and complexity, genes required to maintain a functional
heartbeat and to provide muscular strength and regulate
blood flow are well represented. These essential genes
regulate further specialization and polarization of cell
types along with proliferative, migratory, adhesive, con-
tractile, and structural processes. The identification of
patterns regarding the functional nature of essential
genes across numerous developmental systems may aid
prediction of further essential genes and those important
to development and/or progression of disease. genesis
52:713–737, 2014. VC 2014 The Authors. Genesis Published

by Wiley Periodicals, Inc.
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INTRODUCTION

Alteration or deletion of genes is a valuable methodol-
ogy to determine gene function. The tools available to

modern molecular biologists have rendered the removal
of genes a systematic process as reflected by the cur-
rent availability of increasing numbers of targeted dele-
tions and conditional alleles (Dolgin, 2011; Skarnes
et al., 2011). Additionally, chemical mutagenesis partic-
ularly in combination with modern sequencing
approaches continues to provide an invaluable resource
in attempts to complete the functional annotation of
the genome (Arnold et al., 2011; Brown et al., 2013;
Gondo et al., 2010; Kile et al., 2003; Oliver and Davies,
2012; Probst and Justice, 2010). The ease of performing
genetic manipulations in the mouse and the early avail-
ability of its genomic sequence led to its emergence as
the mammalian model of choice for functional studies
(Waterston et al., 2002). As functional data accumu-
lates, it is now possible to identify which individual
genes and biological functions are indispensible for the
progression of specific processes. Genes absolutely
required for an organism to develop to maturity and for
which there is no compensation for critical aspects of
their function are considered essential. The proportion
of all mouse genes that are essential for embryonic
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development as well as their genomic distribution/den-
sity and the roles of their human orthologs in human
diseases are among questions that are being actively
pursued (Dickerson et al., 2011; Georgi et al., 2013;
Hentges et al., 2007; Wilson et al., 2005). Less consider-
ation has been paid to the functional diversity of genes
that are essential to specific developmental processes
and the temporal requirements for differential func-
tions. We argue that at different timepoints in cardiac
specification, the functional diversity of essential genes
changes, with different functions becoming more or
less represented in cardiac essential genes.

Many genes involved in mammalian cardiac develop-
ment are essential, due to the requirement for cardiac
function in utero early during gestation. Cardiac devel-
opment involves the spatially and temporally coordi-
nated actions of individual cells, tissues, and regulated
gene expression for cell recruitment, differentiation,
and organ morphogenesis (Bruneau, 2002; Buckingham
et al., 2005; Conway et al., 2003; DeRuiter et al., 1992;
Dunwoodie, 2007; Vincent and Buckingham, 2010;
Wagner and Siddiqui, 2007a, 2007b; Zaffran and Frasch,
2002). Embryonic lethality has been shown to result
from the altered function of a wide range of genes con-
tributing to cardiac development. In this review, cardiac
development will be analyzed from a temporal and

structural perspective. Examples of genes essential to
cardiac development at different stages or in specific
processes will be detailed, and their roles analyzed to
present a composite of the functional diversity of car-
diac essential genes. Some of the processes required in
cardiogenesis are needed in embryogenesis in general,
so cardiac essential genes may also affect the develop-
ment of the early embryo or other organ systems. This
review predominantly covers genes and genetic path-
ways specific to cardiogenesis.

CARDIAC INDUCTION AND MIGRATION

During the first stages of cardiac development, after gas-
trulation, at embryonic day (E) 6.5–7.5, cardiac progeni-
tors from the anterior mesodermal primitive streak
migrate anteriorly and laterally on either side of the
embryonic midline (Fig. 1A) (Tam and Behringer, 1997;
Tam et al., 1997); primary heart field (PHF) cells are
derived from these cells. The PHF cells then migrate
medially, form the epithelial cardiac crescent (Fig. 1B)
and begin to differentiate in situ before fusing to form
the linear heart tube (Fig. 1C) (Bruneau, 2002; Bucking-
ham et al., 2005; Dunwoodie, 2007; Wagner and Siddi-
qui, 2007b; Zaffran and Frasch, 2002). In addition to
intrinsic signals from within the primitive streak,

FIG. 1. An overview of cardiac development. Cardiac development progresses from the specification of cardiac progenitor cells (a) to the
migration of these cells towards the midline to form the cardiac crescent (b). The developing heart then forms a linear tube (c), which under-
goes dextral looping to acquire the appropriate left–right asymmetry (d). The heart tube is further subdivided into the four chambers (e), and
the maturation of the endocardial cushions into the valves and development of the great vessels provides for unidirectional blood flow
through the chambers (f). Adapted from (Buckingham et al., 2005). A 5 Anterior, Ao 5 Aorta, CPC 5 Cardiac Precursor Cells,
IVS 5 Interventricular septum, L 5 Left, LA 5 Left Atrium, LV 5 Left Ventricle, ML 5 Midline, OFT 5 Outflow Tract, P 5 Posterior, PHF 5

Primary Heart Field, PLA 5 Primitive Left Atrium, PRA 5 Primitive Right Atrium, PS 5 Primitive Streak, PT 5 Pulmonary Trunk, R 5 Right,
RA 5 Right Atrium, RV 5 Right Ventricle, SHF 5 Secondary Heart Field, Tr 5 Trabeculae.
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cardiac cell migration and induction depends on signal-
ing from the anterior lateral mesoderm, anterior endo-
derm and nonneural ectoderm during gastrulation and
crescent formation. These signals regulate cardiac
induction while defining the mediolateral borders of
the heart-forming region (Arai et al., 1997; Auda-
Boucher et al., 2000; Dunwoodie, 2007).

During gastrulation, anterior primitive streak cells
transiently express the basic helix-loop-helix family
(bHLH) transcription factor Mesp1, recognized as the
first detectable cardiac marker (David et al., 2008; Kita-
jima et al., 2000; Saga, 1998; Saga et al., 2000; Saga
et al., 1999). Mesp1 expressing cells are incorporated
into all mature cardiac layers (i.e., endothelium, endo-
cardium, myocardium and epicardium) (Saga et al.,
2000). Mesp1 knockout mice display lethality by E10.5
due to cardia bifida through failure of the linear heart
tube to fuse (Saga et al., 1999). Mesp1 and Mesp2 dou-
ble knockouts, however, display complete migratory
block of cardiac precursors and do not develop
mesoderm-derived structures including the heart,
somites or gut (Kitajima et al., 2000). This indicates
that Mesp1 and Mesp2 may be able to compensate for
the lack of each other to some extent. Mesp1 may also
be critical in promoting differentiation of cells that con-
tribute to the cardiovascular system including cardio-
myocytes, endothelial, and smooth muscle cells
(Bondue et al., 2008; Bondue et al., 2011; David et al.,
2008; Lindsley et al., 2008).

Bone morphogenetic proteins (BMPs) predominantly
promote cardiac specification in the PHF. The specifics
of BMP signal transduction have been considered in
greater detail elsewhere (van Wijk et al., 2007; Wang
et al., 2011). However, several ligands from this family
are essential to cardiac development. Bmp2 null mutant
mice experience embryonic lethality between E7.0 and
E10.5 with severely delayed, ectopic or absence of car-
diac development (Zhang and Bradley, 1996). Bmp4

null mice similarly demonstrate lethality from E6.5 to
E9.5 where the majority of null embryos lack
mesoderm-derived structures; those that do achieve the
initiation of the heartbeat die soon thereafter with
widespread and severe developmental delays (Winnier
et al., 1995). Unsurprisingly, BMP receptor null mice
such as Alk3, Alk2, and Bmpr2 mutants mirror these
phenotypes with lethality occurring by E9.5 due to
absence of mesoderm-derived structures (Beppu et al.,
2000; Gu et al., 1999; Mishina et al., 1995).

Fibroblast growth factor (Fgf) function is also
required for cardiac development. Fgf8 knockout mice
demonstrate failure of mesodermal cell migration from
the primitive streak during gastrulation at �E7.0 and
lack mesoderm-derived and endoderm-derived tissues,
including the heart, despite cells undergoing epithelial-
to-mesenchymal transition (EMT) (Sun et al., 1999).
The cardiac abnormalities found in Fgf8 mutants are

mirrored by Fgfr1 null mice (Deng et al., 1994). There
is considereable crosstalk between the BMP and FGF
signaling pathways in chick models; FGF signaling main-
tains a pool of undifferentiated stem cells. For cardiomy-
ocyte induction to occur, BMP signaling must
downregulate the FGF pathway (Hutson et al., 2010;
Tirosh-Finkel et al., 2010). It is not unreasonable to pro-
pose that a similar crosstalk mechanism occurs in mice.

HEART FIELDS AND CARDIAC PROGENITOR
CONTRIBUTIONS

The mutant phenotypes described above are associated
with the absence of PHF cell contributions and failure of
PHF cell programming towards a cardiogenic fate. After
its formation, the linear heart tube grows through cellu-
lar contributions at the arterial and venous poles (Buck-
ingham et al., 2005; Vincent and Buckingham, 2010;
Viragh and Challice, 1973). This was originally thought
to be entirely from the PHF, however, LacZ transgene
expression under Fgf10 promoter control in mice
revealed contributions of a second heart field (SHF) to
the outflow tract (OFT) myocardium, with transgene
expression originating in the pharyngeal mesoderm
from E7.5 (Kelly et al., 2001). The SHF was found to lie
anteriorly and dorsally to the PHF before migrating cau-
dally and medially to the cardiac crescent and then dor-
sally to the linear heart tube (Fig. 1B). DiI labeling and
retrospective clonal analysis later demonstrated SHF
contributions to the OFT, the majority of the right ven-
tricle and parts of the atria. PHF cells were found to con-
tribute to the entire left ventricle, the majority of both
atria and parts of the right ventricle (Meilhac et al.,
2004; Zaffran et al., 2004). Later contributions of cardiac
progenitor cells come from the proepicardial organ
(PEO), which will be discussed in more detail below.

Contributions of the SHF to myocardial and endocar-
dial cell populations have been shown in vivo and SHF
progenitor cells demonstrate differentiation into myo-
cardial, endocardial and smooth muscle cells in vitro
(Moretti et al., 2006; Verzi et al., 2005). The LIM- and
homeodomain-containing transcription factor Islet1

(Isl1) is vital to SHF migration, survival, and differentia-
tion. Mice null for Isl1 display absence of SHF derived
structures (OFT and right ventricle) and have severely
reduced atrial tissue (Cai et al., 2003; Lin et al., 2007);
they experience developmental arrest by �E9.5 and
lethality around E10.5. Isl1 activity in the SHF is at least
partly mediated by forkhead transcription factors such
as Foxc1 and Foxc2 that bind SHF-specific enhancer
sequences within the Isl1 locus to direct Isl1 expres-
sion (Kang et al., 2009). Mice null for Foxc1 or Foxc2

and heterozygous null/wildtype for the other gene
experience lethality from E12.0 to E12.5; the Foxc2 null
mice particularly had a shortened OFT and smaller right
ventricle (Seo and Kume, 2006). However, double

CARDIAC ESSENTIAL GENES 715
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knockout mice exhibit lethality by E9.5 with a com-
plete absence of the OFT and right ventricle, indicating
that Foxc1 and Foxc2 are partially functionally redun-
dant (Seo and Kume, 2006). Similar phenotypes were
observed in Foxh1 null embryos (von Both et al.,
2004). As the SHF has not yet been genetically defined,
additional genes essential for and specific to SHF devel-
opment likely await discovery.

CHARACTERISTICS OF ESSENTIAL GENES IN
EARLY CARDIAC DEVELOPMENT

Essential genes that cause lethality early in cardiac devel-
opment, disrupting the processes of induction, migra-
tion of cardiac progenitors to the cardiac crescent, and
heart field formation, represent a small and functionally
homogeneous group with respect to their biochemical
function. This group of genes consists predominantly of
transcription factors, ligands and receptors. The lack of
functional diversity at this stage of heart development is
unsurprising given that the early-gestational embryonic
heart represents a relatively homogenous cell popula-
tion. Conversely, some genes essential to cardiac devel-
opment are essential to other earlier developmental
processes. Fgf and Bmp signaling pathway members
both frequently demonstrate multiple developmental
requirements, with null alleles exhibiting lethality dur-
ing gastrulation, although these genes have later cardiac
functions (Arman et al., 1998; Marguerie et al., 2006; Qi
et al., 2007; Sirard et al., 1998). Furthermore, the pres-
ence or absence of functional redundancy can obscure
the role of some genes in early-gestational cardiac devel-
opment. For example, Wnt signaling ligands possess
high protein sequence homology, overlapping expres-
sion domains and overlapping functions during early
cardiac development which compensates for the
absence of each other (Cohen et al., 2008), making the
dissection of their specific functions challenging. Some
processes occurring during early cardiac development
may only have later functional consequences. For exam-
ple, cardiac looping begins at �E8.5 but problems
resulting from loss of concordance between the heart
and other organs may not cause lethality until later in
development (Kim, 2011). The limited numbers of
genes with essential functions specific to early cardiac
developmental processes suggest a relatively restricted
genetic programme required for cardiac specification
and heart field formation.

CARDIAC CHAMBER FORMATION

Positional identity is established within cardiac progeni-
tors early during cardiac development, prior to the for-
mation of the linear heart tube. However, regions of
force-producing chamber and primary nonchamber
myocardium are only formed on the onset of cardiac

looping (Fig. 1D). Differentiation into atrial and ventric-
ular chamber myocardium occurs locally on the outer
curvature of the looping heart simultaneously with
rapid proliferation of differentiated cells to form the
chambers. During this process, cell-type specific tran-
scriptional programmes that pattern the chambers
along the left–right, anteroposterior, and dorsoventral
axes also initiate the specialization of cells within the
chambers. This collective process of differentiation,
proliferation, and specialization is known as the bal-
looning model of chamber morphogenesis (Christoffels
et al., 2004a; Christoffels et al., 2000; Delorme et al.,
1997; Moorman et al., 2010). Cardiac cell terminal dif-
ferentiation and cardiac morphogenesis are governed
by a core set of essential transcription factors, particu-
larly those from the Nkx, Gata, Mef, Hand, and Tbx fam-
ilies. These transcription factors act as a point of
convergence for earlier, upstream pathways and act
combinatorially with each other, as well as with cardiac-
specific and ubiquitous transcription factors to target
the expression of genes involved in later events in car-
diac development (Olson, 2006). Understandably, genes
from these families are indispensible for the progression
of cardiac development beyond midgestation.

In cardiac development, Gata4 has been the most
extensively studied family member of Gata zinc finger-
containing transcription factors. Gata4 is expressed in
the precardiac mesoderm from E7.0 before expanding
to the endocardium and myocardium throughout heart
tube formation and persisting through adult life (Heikin-
heimo et al., 1994). Homozygous Gata4 deficient mice
suffer embryonic lethality between E7.0 and E9.5 and
fail to form the linear heart tube due to inappropriate
lateral to ventral embryonic folding and extraembyonic
defects (Kuo et al., 1997; Molkentin et al., 1997).
Embryo-specific deletion of Gata4 in mice also results
in a range of cardiac defects including incorrect looping
morphogenesis, thin myocardium with altered
cytoarchitecture, reduced trabeculation, absence of the
atrioventricular canal (AVC) and bulboventricular
groove, absence of endocardial cushions (ECCs) and
absence of the proepicardium (Watt et al., 2004). The
range in phenotypes caused by disruption of GATA4
function is partly due to its involvement in the expres-
sion of sarcomeric genes including Myh6, Myl1, and
Tnni3 (Di Lisi et al., 1998; McGrew et al., 1996; Mol-
kentin et al., 1994). Gata4 has additional roles in cardio-
genesis; it interacts with Fog2 and a Cx30.2 enhancer
to promote ECC formation and the atrioventricular con-
duction system development, respectively (Flagg et al.,
2007; Munshi et al., 2009). Furthermore, chamber
expansion appears reliant on Gata family proteins as
Gata4 interacts with core cell cycle machinery and
cooperates with Gata5 to regulate cardiomyocyte prolif-
eration (Rojas et al., 2008; Singh et al., 2010; Trivedi
et al., 2010). Thus, Gata4 acts at both transcriptional

716 CLOWES ET AL.
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and posttranscriptional levels with several other tran-
scription factors and DNA regulatory elements in a car-
diac cell-type specific manner (Brown et al., 2004; Lien
et al., 1999; Lozano-Velasco et al., 2011; Maitra et al.,
2009; Munshi et al., 2009; Sepulveda et al., 1998; Sepul-
veda et al., 2002; Singh et al., 2010).

The homeodomain-containing transcription factor
Nkx2–5 is another key regulator and essential gene dur-
ing cardiac development. Nkx2–5 forms complex regu-
latory loops with Gata4 and lies both upstream and
downstream of Gata4 in different systems, although its
expression is more spatially restricted than Gata4

within the heart (Brown et al., 2004; Riazi et al., 2009).
Nkx2–5 is expressed in cardiac progenitors within the
mesoderm during mouse development from E7.5
before being present in myocardial cells throughout car-
diac development and adult life (Kasahara et al., 1998;
Lints et al., 1993). Nkx2–5 null mice experience lethal-
ity between E9.5 and E11.5 due to subsets of abnormal-
ities including cardiac looping defects, abnormal OFT
development, absent ECCs, reduced trabeculation,
shortened AVC, absence of one ventricle and lack of
cardiomyocyte differentiation (Lyons et al., 1995;
Tanaka et al., 1999). In addition to cardiomyocyte dif-
ferentiation, Nkx2–5 appears essential for differentia-
tion of endocardium, components of the conduction
system, epicardium and formation of the AVC (Ferdous
et al., 2009; Habets et al., 2002; Jamali et al., 2001; Mos-
kowitz et al., 2007; Prall et al., 2007; Zhou et al.,
2008b). Again, this is unsurprising given that Nkx2–5
acts upstream of numerous critical genes expressed
during cardiac development such as Npr1, Ankrd1,
Cx40, Actc1, and Myocd (Bruneau et al., 2001; Chen
and Schwartz, 1996; Shiojima et al., 1999; Ueyama
et al., 2003; Zou et al., 1997). Additionally, Nkx2–5 is
central to pathways controlling cardiac cell prolifera-
tion (Prall et al., 2007; Qi et al., 2007; Zhang et al.,
2010b). These cellular and morphological events are
collectively mediated through differential interactions
with cardiac-specific transcription factors and DNA reg-
ulatory elements in a cell-type specific manner (Chen
and Schwartz, 1996; Puskaric et al., 2010; Sepulveda
et al., 2002; Shiojima et al., 1999; Zou et al., 1997).
Given the influence of Gata4 and Nkx2–5, many midg-
estational lethal cardiac phenotypes demonstrate aber-
rant signaling pathways associated with Gata4 and
Nkx2–5.

The MADS-box transcription factor Mef2c acts imme-
diately downstream of and cooperates with Nkx2–5
and Gata4 in cardiac development (Dodou et al., 2004;
Skerjanc et al., 1998; Vincentz et al., 2008). Mef2c

expression is first detected in the precardiac mesoderm
at E7.5, then in the common atrium and ventricle of the
heart tube and throughout the myocardium of all cham-
bers during midgestation before declining to lower level
expression in late-gestation to adult life (Edmondson

et al., 1994; Naya et al., 1999). Mef2c null mice suffer
lethality between E9.5 and E10.5 due to inability to
undergo cardiac looping, absence of the right ventricle,
atrial and ventricular hypoplasia, reduced trabeculation
and shortened AVC with absent ECCs. Like Gata4 and
Nkx2–5, Mef2c appears to be essential for cardiomyo-
cyte differentiation in vivo (Karamboulas et al., 2006).
Several genes have also been identified whose cardiac
expression is dependent on upstream signaling of
Mef2c including Calr, Tnni3k, Ctnna3, Champ, and
Smyd1 (Liu et al., 2001; Phan et al., 2005; Qiu and
Michalak, 2009; Vanpoucke et al., 2004; Wang et al.,
2008). Lineage tracing analyses have demonstrated con-
tributions of Mef2c expressing cells to the ventricles
and atrioventricular bundle and a role for Mef2c in allo-
cating cells of PHF origin to ventricular or sinoatrial
node fate (Aanhaanen et al., 2010; Vong et al., 2006).
Mef2c has also been suggested to have specific SHF
roles downstream of Isl1 and Gata4 (Dodou et al.,
2004).

Cardiac chamber formation is achieved by dividing
the developing heart into different functional compart-
ments (Fig. 1E). The heart and neural crest derivatives

expressed transcript (Hand) genes are among the ear-
liest differentially expressed genes during cardiac devel-
opment. The Hand1 and Hand2 bHLH family
transcription factors are both uniformly expressed in
mice at E7.75 during the cardiac crescent stage of heart
development before becoming restricted to left and
right ventricles, respectively, during and after cardiac
looping (Srivastava et al., 1997; Thomas et al., 1998).
Hand2 null mouse embryos suffer lethality around
E11.0 due to absence of a right ventricle and lack of aor-
tic arch arteries (Srivastava et al., 1997). Rescue of
extraembryonic defects by tetraploid aggregation in
Hand1 null mice (to circumvent peri-implantation
lethality) demonstrated cardiac defects including defec-
tive looping and failure to establish distinct atria and
ventricles and lack of trabeculation (Riley et al., 1998).
The critical roles of Hand1 are in maintenance of prolif-
eration of cardiomyocytes. Removal of Hand1 and 2 in
a dose-dependent manner demonstrate their co-
operative regulation of ventricular chamber growth and
ventricular hypoplasia (McFadden et al., 2005). Further-
more, Hand1 has been suggested to regulate the bal-
ance between cardiomyocyte differentiation and
proliferation. Mouse embryos overexpressing Hand1

exhibit overexpansion of the linear heart tube whilst
embryonic stem cells overexpressing Hand1 upregu-
late cell cycle gene expression of cyclin D2 (Ccnd2)

and cyclin-dependent kinase 4 (Cdk4), which prevents
cell cycle exit (Risebro et al., 2006). Ventricular growth
mediated by Hand proteins depends on the regulation
of myocardial gene expression, which is mostly
achieved cooperatively with upstream signals from
Gata4, Nkx2–5, and Mef2c (Bruneau et al., 2000; Dai
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et al., 2002; Thattaliyath et al., 2002; Yamagishi et al.,
2001; Zang et al., 2004a, 2004b).

The T-box (Tbx) transcription factors represent a
group of at least 18 transcription factors that have
diverse roles in cardiac development. Regarding cham-
ber development, Tbx5 plays important roles in regulat-
ing an atrial-specific transcriptional program. During
development, Tbx5 is expressed from cardiac crescent
to looping heart tube stage hearts in areas destined to
become the atria and sinus venosus. Tbx5 expression
then gradually expands to the left ventricle and right
ventricular trabeculae, atrial septum, left aspect of the
ventricular septum, and atrioventricular valves as the
heart matures (Bruneau et al., 1999). Tbx5 null mice
suffer lethality by E10.5 due to looping abnormalities,
failure to form two atria and hypoplasia of the single
atrium and left ventricle (Bruneau et al., 2001).

Tbx2 is essential during cardiac development with
respect to nonchamber structures. Tbx2 is expressed in
the AVC and atrioventricular cushions, OFT and inflow
tract in the linear and looping heart before gradually
decreasing to background levels by E15.0. In these
regions, Tbx2 is thought to repress chamber-specific
gene expression such as Nppa, Smpx, Cx40, and Slit3

allowing these areas to remain as primary myocardium
for purposes of chamber alignment and to form special-
ist structures of ECCs, valves, septa, and conduction
system components (Aanhaanen et al., 2011; Christof-
fels et al., 2004b; Medioni et al., 2010). Tbx2 null mice
suffer lethality by E14.5 demonstrating abnormal AVC
morphology, severely retarded ECC growth, OFT septa-
tion defects and ectopic expression of chamber-specific
genes Nppa and Smpx (Harrelson et al., 2004). Ventric-
ular defects have also been demonstrated in Tbx2 defi-
cient embryos due to reduced contributions of cells
from the primary myocardium that typically turn off
Tbx2 expression before contributing to the expanding
chambers and septum (Aanhaanen et al., 2009). Tbx2

expression is directly repressed by Tbx20; overexpres-
sion of Tbx2 in the myocardium and loss of Tbx20 gen-
erates similar cardiac phenotypes (Cai et al., 2005;
Christoffels et al., 2004b). Evidence suggests that spa-
tial regulation of primary myocardium-specific gene
expression is as equally important as initiation of
chamber-specific expression during chamber
development.

CHAMBER EXPANSION

After chamber identity is fixed, the myocardium
expands to ensure it can pump blood around the grow-
ing embryo, while the heart responds to signaling cues
directing chamber separation and orientation (Fig. 1F).
While the muscle mass is growing the myocardium
begins compaction from E11.5 (most markedly
between E13 and E14) which contributes to formation

of the interventricular septum, papillary muscle, and
conduction system and maximizes the amount of mus-
cle that can contribute to the heart. The concurrent
actions of ventricular myocardial growth and compac-
tion of the muscle itself allows for production of greater
contractile force (Dunwoodie, 2007; Risebro and Riley,
2006; Wagner and Siddiqui, 2007b). Several genes that
maintain cardiac chamber expansion and morphogene-
sis following the actions of the core cardiogenic tran-
scription factors are essential for cardiac development.

Transcription factors are important in regulating
growth of the cardiac chambers, as well as their specifi-
cation. The MADS-box transcription factor Srf acts with
Gata4 and Nkx2–5 to regulate chamber myocardium
growth (Sepulveda et al., 1998). Global knockouts of
Srf are early lethal (Arsenian et al., 1998), but cardiomy-
ocyte, smooth muscle, and endothelial-specific knock-
outs of Srf all exhibit midgestation lethality with a
panopoly of cardiac defects caused by defective cham-
ber specific differentiation (Holtz and Misra, 2008;
Miano et al., 2004; Niu et al., 2005; Parlakian et al.,
2004). Tef1, a downstream effector of Srf1, has impor-
tant roles in muscle-specific gene expression and recog-
nizes regulatory sequences present in the cardiac-
specific genes Myh7, Myocd, and Acta2 (Gan et al.,
2007; Gupta et al., 2001; Yoshida, 2008). Retroviral
gene-trap of Tef1 in mice results in embryonic lethality
in homozygous mutants at E11.5–E12.5 with mutants
exhibiting thin myocardium and decreased trabecula-
tion (Chen et al., 1994).

The maintenance of mechanotransductive signals is
required to support cardiac chamber morphogenesis
and expansion. By midgestation genes that sense
mechanical stress also become essential for cardiogene-
sis. G-protein coupled receptors (GPCRs) initiate cas-
cades in response to mechanical force, controlling
heart rate, and force of contraction. This response can
be desensitized by agonists binding to GPCRs resulting
in their subsequent phosphorylation by GPCR kinases
(Hata and Koch, 2003). A fine balance must be achieved
between desensitization and cascade initiation during
cardiac development. Disruption of adrenergic receptor
kinase Adrbk1 in mice causes embryonic lethality due
to heart failure in homozygous mutants between E9.0
and E15.5 caused by hypoplasia of the ventricular sep-
tum and all cardiac chambers, resulting in poor ejection
fraction and heart failure (Jaber et al., 1996).
Myocardial-specific ablation of Fak, which is needed for
stretch induced Mef2 activation (Nadruz et al., 2005),
induces defects in cardiomyocyte proliferation and ven-
tricular septal defects (Peng et al., 2008). Other pro-
teins involved in mechanotransduction, such as Erk1,
Erk2, and Pxn, also display cardiac morphological
defects which suggest links between blood flow, car-
diac contraction, and cardiomyocyte proliferation
(Granados-Riveron and Brook, 2012).
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CHARACTERISTICS OF GENES ESSENTIAL IN
CHAMBER FORMATION AND EXPANSION

During the processes of cardiac chamber formation and
expansion there is a great increase in the number of
transcription factors required, as compared to earlier
stages of cardiac development. Members of several dif-
ferent transcription factor families, such as Nkx2, Gata,

Mef2, Tbx, and Hand all have been shown to be essen-
tial during chamber formation. The functions of these
transcription factors ultimately serve to establish cham-
ber identity, so downstream effectors direct appropriate
cell differentiation linked to the anatomical position
within the heart. Cardiac chamber expansion also
requires proteins that drive cell proliferation, which
include both transcription factors (Holtz and Misra,
2008; Miano et al., 2004; Niu et al., 2005; Parlakian
et al., 2004), as well as mechanotransducers (Granados-
Riveron and Brook, 2012). It is not surprising that there
are continued requirements for transcription factors
during the chamber formation and expansion stages,
given the essential role of transcriptional networks in
directing cell fate. However, links between mechano-
transduction and chamber formation are perhaps more
surprising, and underscore the developmental need for
cardiac function to propagate the continued cardiac
developmental programme.

TRABECULATION

Interactions between the endocardium and myocar-
dium are critical during cardiac development to form
essential specialized structures such as ECCs, valves,
and trabeculae (Fig. 2). Trabeculation begins around
E9.0 in mice with the migration and recruitment of ven-
tricular myocardial cells into the cardiac jelly between
the myocardium and endocardium (Samsa et al., 2013).

Cells then proliferate and differentiate (earlier than in
compact myocardium) forming long thin projections
into the endocardium which increase surface area avail-
able for oxygen uptake, help to prevent inappropriate
blood flow between cardiac chambers and provide the
contractile force to support the growing mouse heart
from E9.5 to E14.5 (Samsa et al., 2013). During compac-
tion, these trabeculae collapse leaving shorter thicker
projections to support cardiac structure and contrac-
tion during development and through adult life (Rise-
bro and Riley, 2006).

Null mutations of Nrg1, ErbB2, and ErbB4 all display
similar phenotypes of poorly trabeculated ventricles
and lethality between E10.5 and E11.5 in mice (Gass-
mann et al., 1995; Lee et al., 1995; Meyer and Birchme-
ier, 1995). Endocardial Nrg1 signaling mediates ligand-
dependent heterodimersation of ErbB2 and ErbB4
within the heart myocardium. These dimers become
phosphorylated and enable docking of cytoplasmic pro-
teins involved in signal transduction (Negro et al.,
2004). Mice null for Efnb2, encoding EphrinB2, and its
specific receptor EphB4 both display failure to form
ventricular trabeculae and lethality between E10.5 and
E11.0 due to defective signaling between endocardial
cells (Gerety et al., 1999; Wang et al., 1998). These
examples suggest that intercellular signaling is impor-
tant in trabeculation.

Signaling within the trabeculae themselves also regu-
lates their growth. Bmp10 is transiently expressed
within the trabecular myocardium between E9.0 and
E13.5. Bmp10 null mice have thin hypoplastic ventricu-
lar walls and demonstrate arrested growth of trabeculae
and lethality around E10.5 (Chen et al., 2004). This phe-
notype may be attributed to essential interactions
between Bmp10, cardiogenic transcription factors
Nkx2–5, Mef2c and Tbx20, and the trabeculae-specific
cell cycle regulator Cdkn1c (Chen et al., 2004; Kochilas

FIG. 2. Ventricular trabeculation and endocardial cushion development. Schematic representation of the E9.5 looping mouse heart (a)
with location of the outflow tract (left) and atrioventricular (right) endocardial cushions (ECC). Two different cross-sections through the E10.5
mouse heart (b) showing the midgestational location of the OFT cushions (left) and atrioventricular cushions (right). AVC 5 Atrioventricular
canal, CA 5 Common atrium, IVS 5 Interventricular Septum, LA 5 Left Atrium, LV 5 Left Ventricle, OFT - Outflow Tract, RA 5 Right Atrium,
RV 5 Right Ventricle, Tr 5 Trabeculae.
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et al., 1999; Zhang et al., 2011). It has been elegantly
shown that Bmp10, Nrg1, and EphrinB2 signaling all
act downstream of Notch signaling during trabeculation
(Grego-Bessa et al., 2007). However, the lethality of
Notch pathway mutants has yet to be linked to trabecu-
lation defects.

The formation of large specialized structures such as
ventricular trabeculae concomitantly requires genes
encoding proteins with specialized function beyond sig-
naling and cell programming. For example, the cardiac
jelly must contain a permissive microenvironment to
allow the passage of signaling molecules and which tra-
beculae can physically negotiate. Adamts1 is a matrix
metalloproteinase that degrades cardiac jelly components
including Versican (Kern et al., 2006; Kuno et al., 2000;
Rodriguez-Manzaneque et al., 2002). Although not fully
penetrant, deletion of Adamts1 in mice results in �50%
embryonic lethality likely due to uncontrolled trabecular
growth (Stankunas et al., 2008). The requirement for
genetic functions beyond cell signaling and programming
is a characteristic shared with ECC formation.

ECC FORMATION

The mature adult heart contains pulmonary and aortic
valves in its arterial pole and mitral and tricuspid valves
separating atria from the ventricles in the left and right
sides, respectively. Valvulogenesis begins with the for-
mation of ECCs during cardiac looping, which persist
through midgestation (Fig. 2). ECC formation takes
place in the OFT and AVC beginning with localized pro-
duction of extracellular matrix (ECM) by myocardium
forming the cardiac jelly (Miquerol and Kelly, 2013).
These ECM proteoglycans are hydrophillic and the vol-
ume of matrix produced causes tissue swelling, forming
cushions to prevent the inappropriate backflow of
blood. Myocardial and endocardial signals then induce
activation of endocardial cells, allowing these cells to
break interaction with the neighboring endocardium
and invade the cardiac jelly. Migrating cells then
undergo EMT to populate ECCs with mesenchymal cells
(Combs and Yutzey, 2009; Person et al., 2005;
Schroeder et al., 2003). The ECCs then undergo ECM
remodeling and elongate to form the heart valve leaflets
(Chakraborty et al., 2009).

Similarly to trabeculation, a permissive microenviron-
ment must be present to allow ECC formation. Cush-
ions are absent in Has2 and Vcan null mice due to
absence of Hyaluronan and Versican, respectively, in
both cases causing lethality from E9.5 to E11.5 (Came-
nisch et al., 2000; Mjaatvedt et al., 1998; Yamamura
et al., 1997). Hyaluronan and Versican interact with fel-
low ECM components and initiate signaling cascades
(Aspberg et al., 1999; Binette et al., 1994; Hirose et al.,
2001; Kawashima et al., 2000; Kern et al., 2006; LeB-
aron et al., 1992; Lionetti et al., 2010; Maioli et al.,

2010; Zhang et al., 1998). If Hyaluronon and Versican
act as links between the ECM and intracellular signaling
cascades, this could explain why they are so essential
for ECC formation. Hyaluronan has also been associated
with cell migration which precedes EMT since Has2
null AVC explants could be rescued by Hyaluronan
treatment, which induces phosphorylation of ErbB2
and ErbB3, thus rescuing cushion mesenchyme forma-
tion (Camenisch et al., 2002).

In valvulogenesis genes that control cell proliferation
become especially important during valve elongation,
particularly in endocardial derived ECC cells. The tran-
scription factor Nfatc1 is highly expressed in valve
endocardial cells and is essential for valve and septum
formation; in mice with nonfunctional Nfatc1 cardiac
valves remained immature (de la Pompa et al., 1998;
Ranger et al., 1998). Nfatc1 supports valvulogenesis by
promoting valve endocardial proliferation and simulta-
neously inhibiting EMT, ensuring a large enough endo-
cardial population for proper valve growth (Wu et al.,
2011). Endocardial expression of Tbx20 promotes cell
proliferation in valvulogenesis, as well as Wnt/b-catenin
signaling, but is dispensable for EMT (Cai et al., 2013).

Classical intercellular signaling is important in ECC
formation. All Notch receptors and ligands are
expressed in mouse endocardium during the onset of
ECC formation (Timmerman et al., 2004). Deletion of
Notch pathway components Rbpjk and Notch1 result
in collapse of ECCs due to failure of cells to undergo
EMT and exhibit lethality at E10.5. The majority of evi-
dence supports ECC explant culture experiments sug-
gesting that Rbpjk and Notch1 signal via Snai1. Snai1 in
turn represses VE-Cadherin expression, allowing endo-
cardial cells to destabilize adherens junction cell con-
tacts, delaminate, and invade the cardiac jelly to
undergo EMT (Saad et al., 2010; Timmerman et al.,
2004). However, Notch1 also appears to act down-
stream of and converge with Bmp2 signaling during
cushion cell invasion and EMT, forming a complex regu-
latory web between the myocardium and endocardium.
Myocardial Bmp2 upregulates endocardial Notch,
which in turn downregulates endocardial, but not myo-
cardial, Bmp2 (Fischer et al., 2007; Kokubo et al.,
2005; Luna-Zurita et al., 2010).

TRABECULATION AND ECC DEVELOPMENT
DISPLAY OVERLAPPING ESSENTIAL FUNCTIONS

Genes with essential functions during trabeculation and
ECC formation reveal an overlapping requirement for
ECM and basement membrane proteins (Costell et al.,
2002; Sasse et al., 2008) during these processes. The
increasing importance of the extracellular environment
as cardiac development progesses is apparent, as animal
mutants with perturbations in the production or func-
tion of molecules needed for the ECM resemble human
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congenital heart defects (Lockhart et al., 2011).
Although ECM is found within all the structures of the
developing heart, and is present in the form of cardiac
jelly in the early heart tube (Markwald et al., 1977), the
ECM is particularly important for the formation of endo-
caridal cushions (Lockhart et al., 2011) and trabecula-
tion. Mutants lacking various matrix molecules or
enzymes needed for matrix protein production display
thin myocardial walls that lack trabeculae in addition to
ECC defects (Camenisch et al., 2002; Camenisch et al.,
2000; Mjaatvedt et al., 1998; Yamamura et al., 1997),
highlighting the similar processes needed to create
these disparate structures. Despite this, the diversity in
the signaling cascades required in the processes of ECC
formation and trabeculation provides for distinctions
between these two events during cardiac development.

EPICARDIAL DEVELOPMENT

In mice, the PEO originates from the pericardial meso-
thelium covering the pericardial surface of the septum
transversum below the heart near the sinus venosus,
where a villous structure protruding toward the looped
heart is formed (reaching maximal size around E9.5;
Fig. 3). In mammals, cells from this structure are
thought to undergo vesicular budding into the pericar-
dial space followed by adherence to the myocardium
(E9.5–10). However, in rats and mice the PEO and dor-
sal surface of the heart interact directly, allowing cells
to adhere to myocardium via ECM or adhesive protein
tissue bridges (Nesbitt et al., 2006; Rodgers et al.,
2008). Once the cells have reached the myocardial sur-
face they proliferate and migrate laterally to eventually
envelop the heart (completed by E11). The PEO then

ceases to exist and PEO-derived cells become differenti-
ated to form the epicardium. The epicardium makes cel-
lular contributions to multiple lineages of the
myocardium via delamination, EMT and myocardial
invasion. The epicardium is also the main source of car-
diac fibroblasts (reviewed in (Souders et al., 2009),
prior to EMT the whole epicardium expresses Tcf21,
which is necessary but not sufficient for fibroblast fate
specification (Acharya et al., 2012). In addition to cellu-
lar contributions, the epicardium is also a potent source
of trophic factors that stimulate myocardial growth, dif-
ferentiation, and coronary artery formation (Cai et al.,
2008; Lie-Venema et al., 2007; Smart et al., 2007; Sucov
et al., 2009; Zhou et al., 2008a).

Migration of epicardial progenitors to and along the
myocardium is an essential requirement for cardiac
development, and correct cell polarity is required for
this process. Par3 null mouse embryos suffer lethality
from E10.5 to E12.5 because a loss of cell polarity
results in a failure to form the vesicles that bud from
the PEO, causing subsequent absence of epicardium in
mouse hearts. These defects were identified through
aberrant intracellular localization of Pard6b, Prkci, and
Ezrin (Hirose et al., 2006). Additionally, Pdpn null mice
demonstrate lethality during midgestation due to failure
to break cell–cell contact and subsequent decreased
delamination of cells from the PEO associated with
inability to remove E-Cadherin (Mahtab et al., 2008).

Once cells have migrated from the PEO, they must
adhere to the myocardium. Mice null for the myocar-
dially expressed cell adhesion molecule Vcam1 display
lethality around E11.5–E12.5 exhibiting absent epicar-
dium with subsequent thinner compact myocardium
accompanied by pericardial haemorrhage (Kwee et al.,

FIG. 3. The PEO contributes to CV formation. (a) The proepicardial organ (PEO) is a transient structure that forms near the sinus venosus
of the postlooped embryonic heart at approximately E9.5. (b) Cells within the proepicardial organ translocate across the pericardial cavity
and adhere to the myocardium to form an epithelial sheet that envelopes the developing heart, called the epicardium, by E11.0. Later in
development, a sub population of epicardial cells undergo epithelial to mesenchymal transition, allowing them to migrate through the
subepicardial ECM and invade the myocardium. These EPDCs differentiate into VSMC and cardiac fibroblasts, and are essential for the for-
mation of the mature CV, as observed on the ventricular surface of the E16.5 heart (c). Ao 5 Aorta, LA 5 Left Atria, PT 5 Pulmonary Trunk,
RA 5 Right Atria.
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1995). Mutations in Itga4, coding for a4 integrin, mirror
these defects as a4b1 integrin, along with its two major
ligands Vcam1 and Fibronectin, are essential for epicar-
dial adhesion both initially and long-term (Sengbusch
et al., 2002; Yang et al., 1995). The proepicardium
marker gene Wilms tumor suppressor 1 (Wt1) regulates
expression of Itga4; embryos deficient in a4integrin
resemble Wt1 knockout embryos (Kirschner et al.,
2006).

Once attached, epicardial cells direct myocardial cell
proliferation, maturation, mechanical/electrical cou-
pling, and cellular alignment to maximize contractile
force (Weeke-Klimp et al., 2010). Wt1, which in the
heart is specific to the epicardium, controls synthesis of
the highly potent morphogen retinoic acid (RA)
through Raldh2 expression (Guadix et al., 2011;
Kirschner et al., 2006). Raldh2 null mice demonstrate
lethality by E10.5 with defective chamber development,
myofilament gene expression, cardiomyocyte differen-
tiation and mechanical looping defects (Niederreither
et al., 2001), suggesting that epicardially synthesized
RA is needed for myocardial development. Within the
epicardium, RA signaling appears reliant on retinoid
receptor Rxra. Rxra null mice exhibit lethality from
E13.5 to E17.5 due to ventricular hypoplasia and
reduced trabeculation that appears to stem from failure
in epicardial adhesion to the myocardium (Sucov et al.,
1994). Subsequent studies on Rxra null mice have
showed delayed cellular migration from the PEO, ele-
vated apoptosis of PEO cells, increased myocardial
fibronectin and decreased epicardial Vcam1 causing
increased area of subepicardial spaces between epicar-
dium and myocardium (Hoover et al., 2008; Jenkins
et al., 2005). Nonlocal sources of RA are also essential;
RA signaling in the liver controls Epo expression,
whose product travels to the heart and stimulates myo-
cardial cell proliferation (Brade et al., 2011). Expression
of its receptor, Epor, is found in the epicardium while
expression Epo itself is absent from the heart; both are
essential genes (Koury et al., 1988; Wu et al., 1999).

Perhaps the transcription factor that has been most
characterized with regards to its function in the epicar-
dium is Wt1. Wt1 has been shown to promote epicar-
dial EMT via transcriptional regulation of Snai1 and E-

cadherin (Martinez-Estrada et al., 2010) and regulate
RA signaling through transcriptional activation of
Raldh2 (Guadix et al., 2011). Subsequent to epicardial
EMT, epicardial-derived cells contribute to the develop-
ing coronary vasculature, which is critical for late-
gestation cardiac function (Dong et al., 2008; Perez-
Pomares and de la Pompa, 2011).

ESSENTIAL GENES FOR EPICARDIAL FUNCTION

The development of the epicardium from the PEO coin-
cides with an expansion in the complexity of the

developing heart, and concomitantly, an increase in the
number of essential genes. As the epicardium migrates
onto the heart surface during development to envelop
the developing myocardium, cellular interactions
between the epicardium and myocardium are formed.
Genes mediating these interactions are essential for car-
diac development (Kwee et al., 1995; Sengbusch et al.,
2002; Yang et al., 1995). Yet the epicardium is also a
source of signals to promote ventricular development,
and, therefore, a diverse array of molecules is essential
for epicardial function. Many mutants with epicardial
defects display a thin ventricular myocardium, indicat-
ing a link between epicardial function and myocardial
cell proliferation or compaction (Brade et al., 2011;
Mahtab et al., 2008; Niederreither et al., 2001; Sucov
et al., 2009; Weeke-Klimp et al., 2010). There are both
signaling molecules and transcription factors that inter-
connect epicardial and myocardial development. Fol-
lowing epicardial EMT, epicardial derived cells (EPDCs)
contribute to the forming coronary vasculature (Perez-
Pomares and de la Pompa, 2011; Riley and Smart, 2011;
Ruiz-Villalba and Perez-Pomares, 2012; von Gise and Pu,
2012). As many processes in epicardial formation are
conserved and essential throughout embryogenesis,
loss of these genes often results in early lethality.
Embryos that survive to midgestation exhibit lethality
because defects in epicardial cell function will cause
defects in coronary vessel (CV) formation.

CARDIAC NEURAL CREST CELLS AND
PHARYNGEAL ARCH ARTERY FORMATION

Neural crest cells (NCCs) migrate from the dorsal neural
tube between the midotic placode and the caudal
boundary of the third somite into the pharyngeal arches
and OFT where they eventually form part of the OFT
septum (Jiang et al., 2000). The pharyngeal arch
arteries (PAAs) emerge proximally from the aortic sac
and distally from the descending aorta to form continu-
ous arteries during early to midgestation. The PAAs are
numbered 1–6, although the fifth artery is thought to
be rudimentary or absent, and form sequentially. The
first PAA emerges by E9.0, the second by E9.5, and the
third, fourth, and sixth between E9.5 and E10.0. The
PAAs are initially formed from mesoderm-derived endo-
thelial cells and rely on cranial and cardiac (from rhom-
bomeres 1, 2, and 4, and 6–8, respectively) NCC
contributions for their maintenance and remodelling.
Specifically, cranial NCCs contribute to the first and sec-
ond pharyngeal arches including the first and second
PAAs, while the cardiac NCCs contribute to the third,
fourth, and sixth pharyngeal arches including the third,
fourth, and sixth PAAs. Beginning at �E11.0, the right-
sided PAAs regress and are lost, leaving the left-sided
PAAs to be remodelled and become integral compo-
nents of the vascular system. For example, the fourth
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PAA becomes the arch of the aorta from which the left
subclavian and common carotid arteries emerge. Unsur-
prisingly, the precise spatiotemporal regulation
required for PAA development provides ample opportu-
nity for defects to manifest themselves when pathway
components are altered or absent (Graham, 2003; Hir-
uma et al., 2002; Snider et al., 2007).

Similar cardiac inductive and migratory processes are
required in mouse NCCs as in PHF and SHF as shown
by mutations of members of the Bmp, Fgf, and Wnt
pathways (Kubota and Ito, 2000; Nie et al., 2008;
Schleiffarth et al., 2007; Song et al., 2010; Tang et al.,
2010; Zhang et al., 2010a). Genes specific to NCCs (in
the context of cardiogenesis) include Sox9, Snai2, and
Foxd3, with the former two influencing EMT and differ-
entiation and the latter influencing NCC induction
(Cheung et al., 2005). Interactions between the SHF
and NCCs appear to be mutually important in regulat-
ing EMT and NCC migration; this is revealed in mutants
with loss of function of Pax3 or components of Fgf sig-
naling (Bradshaw et al., 2009; Park et al., 2008; Zhang
et al., 2008). Foxd3 and Pax3 interact genetically to
allow cell survival in cardiac NCC progenitors, although
the nature of this interaction is unknown (Nelms et al.,
2011). Unsurprisingly, the majority of defects observed
in the cardiac NCCs affect OFT septation and align-
ment, as observed in embryos with Pax3 loss of func-
tion or NCC-specific deletion of N-cadherin (Bradshaw
et al., 2009; Luo et al., 2006). These defects arise from
wide ranging aspects of NCC migration, specification,
proliferation, and EMT (Snider et al., 2007; Vincent and
Buckingham, 2010).

Tgfb signaling also appears to be an integral compo-
nent of PAA development, suggesting similarities
between PAA and normal vascular development. Tgfb2

null mice experience inappropriate apoptosis of the
fourth PAA, which contributes to the perinatal lethality
observed in these mice (Molin et al., 2002; Molin et al.,
2004). Similarly, NCC-specific deletion of Tgfb receptor
Alk5 results in abnormal PAA remodelling due to aber-
rant apoptosis of neural crest derived cells (Wang et al.,
2006). Function of the transcription factor Mrtfb, which
is needed for vascular smooth muscle cell (VSMC) dif-
ferentiation, is mediated by SMAD2 (Li et al., 2005; Xie
et al., 2013). Mice null for transcription factor Mrtfb

experience lethality by E14.5, displaying widespread
haemorrhaging as well as defects in PAA remodeling
and VSMC differentiation (Oh et al., 2005).

Bmp signaling is critical for the induction and/or
EMT of NCCs that contribute to PAAs; mice with NCC-
specific deletion of Smad4 are lethal by E12 with
reduced expression of NCC markers including Tfap2a,
Sox9, and Msx1 and 2. This causes apoptosis of both
neural crest and nonneural crest derived cells within
the developing pharyngeal arches (Nie et al., 2008).
Similarly, NCC-specific conditional mutants of Bmpr1a

display hypoplasia of OFT cushions, inappropriate
backflow of blood and lethality (Nomura-Kitabayashi
et al., 2009).

ESSENTIAL GENES FOR CARDIAC NCC
FUNCTION AND PAA FORMATION

Cardiac NCC function, migration and the subsequent
formation of the PAAs shares many of the same proc-
esses as cardiac chamber or epicardium formation and
maturation. In all these events cellular differentiation,
migration, and adhesion are indispensable, as are the
genes that control these processes. As a result, it is not
surprising that familiar pathways, such as the Fgf, Bmp,
and Tgfb signaling pathways, are needed in cardiac
NCC and PAA development. Where genes specific to
cardiac NCC and PAA fit into established pathways is
less well characterized, but it is clear that other signal-
ing pathways and transcription factors are also essen-
tial, and these may be poorly understood. For instance,
mice null for genes needed to produce endothelin 1,
such as Edn1 and Ece1, exhibit inappropriate persist-
ence and/or regression of the PAAs during remodelling
(Yanagisawa et al., 1998). It is likely that many genes
and pathways which contribute to defects in PAA
remodelling are yet to be discovered, given the com-
plexity and lack of complete understanding of this
developmental process.

SARCOMERE FORMATION

As the heart begins to circulate blood, structural genes,
and the genes that control them, become essential.
Contraction of muscle fibers including those of the
heart is achieved through the actions of the sarcomere,
the functional unit of contractility, which contains con-
tractile, structural and regulatory proteins. Fully formed
sarcomeres are visible from E9.0 in mice and are large
multiprotein complexes (Craig and Padron, 2004),
which retain their structural integrity despite having to
constantly and rapidly contract/relax and switch on/off
to meet the demands of the heart. These structures
allow transduction of force throughout the cell to the
ECM and sense mechanical stretch (Boateng and Gold-
spink, 2008). In contrast to the transcriptional and sig-
naling pathways that direct many of the events of
cardiac development, the functions encoded by genes
lethally disrupting sacromere function do not show
much overlap with other groups of cardiac essential
genes.

The structure of the sarcomere is understood in
terms of its longitudinal appearance via electron
microscopy in relaxed state (Fig. 4). The sarcomere is
bordered at each end by the dark Z-disc of �0.1 mm
length. The Z-disc bisects the I-band, which is �1 mm
long, is shared between adjacent sarcomeres and is
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made up of thin filaments (10 nm diameter). The A-
band lies between I-bands and is predominantly made
up of thick filaments (15 nm diameter) with a slight
overlap of thin filaments and is �1.6 mm length. At the
centre of the A-band is the higher density H-zone
appearing lighter with the M-line in turn at its centre. In
cross section, where thick and thin filaments overlap,
thin filaments are hexagonally arranged around thick fil-
aments (Craig and Padron, 2004).

Several structural sarcomeric proteins perhaps unsur-
prisingly have proven to be essential for cardiac devel-
opment. At up to 3.7 MDa, Titin is the largest known
protein and spans from the Z-disc to the M-line within
the sarcomere (LeWinter et al., 2007). Due to the vast
size and volume of interacting partners, Titin has been
studied on a modular basis. Evidence has suggested
Titin regulates sarcomeric length, plays important roles
in cardiac stress responses and contributes to diastolic
properties of the heart (Kontrogianni-Konstantopoulos
et al., 2009; Linke, 2008). A truncation mutant of Ttn

(which encodes Titin) thought to cause degradation of
Titin causes embryonic lethality at �E9.0 due to

defective sarcomeric formation (Gramlich et al., 2009).
An M-line deficient mutant of Titin led to developmen-
tal delay by �E11.0 followed by embryonic lethality
due to lateral growth defects in sarcomeres and their
consequent disassembly (Weinert et al., 2006).

The thick filaments of sarcomeres are made up of
members of the Myosin II superfamily, as well as other
nonmyosin proteins. Each Myosin II molecule com-
prises two myosin heavy chains which form an insolu-
ble coil via their tail domains and two pairs of myosin
light chains which attach to the neck domain of each
heavy chain, respectively, leaving the head domains in
close proximity (Craig and Padron, 2004; Craig and
Woodhead, 2006). When in a high Ca21 environment
the head domains interact with actin and ATP, providing
the energy for contraction, which occurs through the
slippage of cross bridges between myosin and actin
(Huxley and Hanson, 1954). Given the important struc-
tural and enzymatic properties of myosin heavy chains,
it is unsurprising that they are essential genes for cardio-
genesis. For instance, deletion of Myosin II member
Myh6 causes embryonic lethality from E11.0 to E12.0

FIG. 4. Sarcomere structure. Schematic representation of the mouse sarcomere showing the relevant banding pattern according to its
electron microscopic appearance. Thin filaments are comprised of two interacting helically organized F-Actin polymeric chains along which
Tropomyosin polymers lie in the grooves. Troponin complexes are found at set periods along the thin filament. Thick filaments are com-
prised of over 300 Myosin II molecules arranged into filament bundles and many interacting nonmyosin proteins. Individual molecules of
the giant protein Titin span from Z-disc to M-line. Adapted from (Morimoto, 2008).
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(Jones et al., 1996). Deletion of atrial or ventricle-
specific Myosin light chains Myl7 or Myl2 results in
embryonic lethality at E11.5 and E12.5, respectively,
due to sarcomeric disorganization accompanied by mor-
phological cardiac defects (Chen et al., 1998; Huang
et al., 2003).

The thin filaments of sarcomeres consist of a double
helix of two F-Actin polymeric chains, along which are
bound two parallel Tropomyosin polymers and periodic
Troponin complexes (reviewed in Craig and Padron,
2004). In a Ca21 rich environment, inhibition of con-
traction by Troponin is lifted, allowing Actin-Myosin
interaction, ATPase activity and movement of the thin
filaments along the thick filament towards the M-line
(Galinska et al., 2010; Galinska-Rakoczy et al., 2008;
Huxley and Hanson, 1954; Lehman et al., 2009; Solaro,
2010). Tnnt2 encodes the cardiac-specific isoform of
Troponin subunit TnT of which null mice demonstrate
lethality at �E10.0 with absent sarcomeres and absent
heartbeat (Nishii et al., 2008). Tropomodulin prevents
Actin depolymerization and elongation at the end of
appropriately sized thin filaments and also interacts
with Tropomyosin. Unsurprisingly, Tmod1 null mice
exhibit lethality by �E9.5, with an absence of sarco-
meres and defective cardiac looping (McKeown et al.,
2008). Mice null for cardiac Actin Actc1 also experience
56% embryonic lethality rate in late gestation due to sar-
comeric disorganization and presumptive compromised
cardiac function (Kumar et al., 1997).

A number of nonstructural genes are essential for sar-
comere development; these are genes needed to induce
proper sarcomere formation or regulatory pathway
components enabling sarcomeres to respond to stress,
developmental stimuli or to maintain sarcomeric func-
tion. These genes by necessity have more diverse func-
tions than structural sarcomeric functions. Cardiac-
specific light chain kinase, which phosphorylates Myo-
sin regulatory light chain 2 ventricular/cardiac isoform
(Mlc2v), is essential for sarcomere assembly (Seguchi
et al., 2007) and appears to be under the control of
Nkx2–5 (Chan et al., 2008). Calreticulin is an endoplas-
mic reticulum protein which binds Ca21 and regulates
its intracellular homeostasis (Michalak et al., 1999).
Calr null mice demonstrate embryonic lethality from
mid to late gestation with ventricular hypoplasia, ran-
dom sarcomeric orientation, sarcomeric waviness, and
thinning (Lozyk et al., 2006; Mesaeli et al., 1999).

SARCOMERE FUNCTIONAL ESSENTIALITY
IS DISTINCT

In contrast to the transcriptional and signaling path-
ways that direct many of the events of cardiac develop-
ment, the functions encoded by genes lethally and
exclusively disrupting sacromere function do not show
much overlap with other groups of cardiac essential

genes. From midgestation, the mammalian embryo
requires cardiac contractility to pump blood through-
out the cardiovascular system, delivering nutrients to
embryonic cells. Impaired cardiac function as a result
of disordered or functionally incomplete contractile
apparatus assembly leads to embryonic lethality. Struc-
tural proteins that allow myofilament assembly and
function are required within the sarcomere to form the
contractile units of the developing heart. The specific
mechanical and structural role of sarcomere proteins
makes it unsurprising that there is a functionally dis-
tinct group of genes displaying essentiality during sarco-
mere assembly, which are not involved in other aspects
of cardiac development.

CONCLUSIONS

Complete functional annotation of mammalian
genomes is beginning to appear as a realistic possibility
(Dolgin, 2011; Skarnes et al., 2011; White et al., 2013).
The increasingly systematic nature of random mutagen-
esis and mutation identification, targeted mutagenesis/
cloning and identification of epigenetic modifications
along with increasing computational power and variety
of bioinformatic approaches are facilitating these
efforts. Systems biological approaches can be used to
model metabolic pathways, dynamics of specific cell
behavior under varying stimuli, disease causing aberra-
tions in functional networks and in screening for poten-
tial therapeutic agents (Chen et al., 2012; Lambrou
et al., 2012; Nagasaki et al., 2011; Tan et al., 2013).
These approaches can also demonstrate the consequen-
ces of nonsynonymous DNA polymorphisms on protein
interactions and identify mutations leading to develop-
ment of diseases (Reimand and Bader, 2013; Yates and
Sternberg, 2013a). Perhaps most relevantly, analysis of
the characteristics of genes that confer essentiality or
disease-susceptibility will lead to insights into the
genetic networks required for cellular functions (Yates
and Sternberg, 2013b). As systems biological data accu-
mulates it may be possible in the near future to scale
these networks up to construct a hierarchy for the func-
tional importance of genes or domains at the whole
mammalian genome scale.

Efforts to functionally annotate the mammalian
genome have increased the identification of essential
genes. Recent experimental studies support the predic-
tion that approximately 40% of mammalian genes are
essential (White et al., 2013). Interlinked with the iden-
tification of essential genes is the discovery of new
developmental functions, as essential genes inherently
are required during development. The in utero demand
for a functional cardiovascular system further under-
scores the integration of gene essentiality and cardiac
development. During the process of heart formation
genes with diverging functions become essential. An
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analysis of the functional diversity of cardiac essential
genes throughout development therefore reveals the
changing cellular and biochemical demands of the
developing heart. As more essential genes are anno-
tated, links between gene function and specific cardiac
developmental events will expand our knowledge of
genetic factors that may contribute to cardiac develop-
mental defects including congenital heart disease.
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