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Abstract
Manual tuning of electronic filters represents a time-consuming process which 
can benefit from some computer assistance. A prototype computer-based 
system for the timing of crystal filters after manufacture was developed. This 
system solved the problem of crystal filter tuning in a novel way.

The system, called AEK (Applied Expert Knowledge), was developed using 
crystal filters and is a hybrid system with the following two functions:
(1) Required values of features are extracted from the filter waveform and 
passed to the expert system which determines the component to adjust and 
the direction to turn, or the end of the tuning.
(2) Sampled values of the waveform are extracted and passed to a neural 
network which determines how far to turn the component chosen in  (1).

The prominent aspects were:
■ Work using the protocol analysis elicitation technique indicated the need 
to separate the process into two sub-tasks (stopband and passband). Each 
sub-task was divided into three classification parts which determined (i) the 
continuation of the tuning process, (ii) the component and direction to turn, 
and (iii) the distance to turn respectively. Unfortunately, it was not possible 
to extract rules from the operator.
■ Three learning techniques (ID3, Adaptive Combiners, Neural Networks) 
were used and compared as the means of automated knowledge elicitation. 
All three techniques used case knowledge in the form of examples. The 
investigations suggested the use of ID3 for the first two parts of each sub
task employing features with linguistic values. The number of linguistic 
values each feature has, was also derived.
■ Neural networks were trained for the third part. It was necessary to have 
one network for each component/direction combination and to use examples 
from just one mal-adjusting process.
■ Tests of the hybrid system for a number of cases indicated that it performed 
as well as a skilled operator, and that it can be used by novice operators but 
situations arose where there was either no knowledge or contradictory 
knowledge.

The prototype system was developed using one type of crystal filters but the 
generic construction procedure can be followed to build other systems for 
other types.
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O rganisation of the th esis

The thesis is divided into two main parts. Part A consists of two chapters 

devoted to the concepts of electrical filters and artificial intelligence. The first 

chapter looks at crystal filters and the problems of post-assembly tuning. 

Furthermore an overview of expert system components and a review of 

knowledge elicitation and representation is given followed by a discussion in 

terms of the system constructed. The second chapter covers the procedure 

used at the collaborating establishment and the procedures proposed by other 

workers in the field. The chapter ends with a discussion about the motives for 

employing an expert system approach in the filter timing domain.

Part B of the thesis has seven parts, which present a chronicle of the expert 

system and the neural networks development. Part B represents original 

work undertaken during the development of the AEK system. Chapter three 

presents the knowledge acquired during the first visit to the company and 

identifies the reasons for moving to the machine learning paradigm. Chapter 

four introduces a number of techniques which can be employed for the design 

of learning systems. These techniques include ED3, adaptive combiners and 

neural networks. Chapter five shows the adaption and comparison of the 

techniques presented in the previous chapter for the filter tuning application. 

Chapter six highlights the problems encountered when using ID3 and 

describes additional work undertaken to avoid the shortcomings of the 

technique. In the seventh and eighth chapter the induction of rules and the 

construction of the neural networks are presented respectively. Chapter nine 

presents the software and hardware employed together with instructions of 

how to use the AEK system. Chapter ten is entirely devoted to the application
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of the rules and the networks to the tuning of a number of filters. This is 

followed by a detailed evaluation of their performance.

Finally, the thesis comes to a closure (chapter 11) with a discussion of the 

achievements, a critique of the expert and neural systems and an assessment 

of the software used.

x x i



1.1 Introduction

This chapter discusses general aspects of electrical filters with particular 

reference to the crystal filter used in the study. The requirement for filter 

tuning is justified in Section 1.2.5 which also introduces the methods 

employed.

Sections 1.3 to 1.4.5 provide an overview of artificial intelligence and expert 

systems. This is followed by an overview of the expert system constructed for 

this study in terms of knowledge representation and control. AEK (Applied 

Expert Knowledge) is the name given to the system and it is used throughout 

this thesis.

1.2 Introduction to electrical filters

An electrical wave filter, or just filter for ease of reference, is designed to 

receive a signal and to attenuate certain pre-defined frequency regions of the 

input signal while passing the rest of the frequency regions without changes. 

I t is possible to classify filters in different ways1. In terms of the frequency 

spectrum, they may be grouped as audio, video, or radio-frequency and 

microwave filters. In terms of the circuit configuration of the basic elements, 

filters may be classified as ladder or lattice. Categorization in terms of the 

character of the elements used in them is also common, for example LC or RC 

filters. The most customary division is between analogue and digital filters 

which treat analogue and digital signals respectively. Analogue filters may 

be classified as passive or active. These constructions are similar except that 

the latter has an integral source of energy, usually an operational amplifier. 

Digital filters on the other hand utilise software, such as a subroutine on a
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computer program, or as hardware, such as a circuit containing registers and 

multipliers.

1.2.1 F ilter com ponents

Electrical filters contain a variety of components2 and it is the responsibility 

of the designer to select the appropriate components for any given task. 

Filter components come in two forms, namely active and passive. Active 

elements may amplify the signal power. By contrast passive elements do not 

contribute to signal energy; they can only absorb or transfer it. Capacitors 

and inductors are two common passive elements.

1.2.2 M agnitude responses and  

approxim ations

One way for studying any filter is to investigate the magnitude response of 

the output signal. The output signal is the product of the magnitudes of the 

input signal and the frequency response function of the filter. This means 

tha t if the magnitude of frequency response is equal to zero (or approximately 

equal to zero) for a certain frequency range, then the output signal will have 

a zero (or approximately zero) magnitude over this frequency band. This 

group of frequencies is called the stopband of the filter. Similarly, if the 

magnitude function is greater than zero and close to one for another 

frequency band, then this interval is called the passband of the filter. In 

addition, the band of frequencies between a passband and a stopband is 

defined as the transition band. Certain frequency bands are then transmitted 

while the rest are rejected. The design of each filter determines the regions, 

if any, where frequency is allowed to pass or not and provides yet another



taxonomy. They can be either lowpass, highpass, bandpass, or bandstop 

filters. Lowpass and highpass filters are, respectively, filters that transmit 

signals at frequencies below or above a defined cut-off frequency (coc) and 

attenuate those frequencies above or below the cut-off point (coc). Bandpass 

filters transmit all frequencies between defined upper (co2) and lower limits 

(c O j) , and attenuate frequencies outside those limits. Bandstop filters 

attenuate frequencies between upper (co2) and lower limits (cOj) and transmit 

all other frequencies. These four basic types of frequency selective filters are 

illustrated in Figure 1. Of course, there are filters that do not belong to any 

of these four types but in most cases the magnitude specification of filters will 

fall into one of those categories. In practice, these characteristics are not 

attained with a finite number of components due to absorption, reflection or 

radiation, so a number of well known curves, which approximate the ideal 

responses within specified tolerances, are used. The common filter 

approximations are the Butterworth, Chebyshev, inverse Chebyshev, and 

elliptic3 (Figure 2a).

1.2.3 Crystal filters

A crystal, physically, is a three dimensional pattern consisting of atoms, 

molecules, or ions4. A variety of classes of crystals exist of which about twenty 

exhibit the desired effect of piezoelectricity4. Piezoelectricity refers to the 

electric potential being generated whenever an external pressure is applied 

to the crystal. Crystals exhibit mechanical resonance which can be excited by 

the application of an AC signal. The size and shape of the crystal determine 

the frequency of the mechanical resonance which typically varies from 20 

KHz to 50 MHz. Figure 2b shows the electrical equivalent circuit. h v C2 and
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Rj are the motional parameters and C0 is known as the static capacitance and 

represents the effective capacitance of the crystal unit a t frequencies far 

removed from resonance. The quality factor of the motional arm is extremely 

high, typical values are between 20000  to several hundred thousand, 

compared to other resonators, such as LC circuits. The quality factor and the 

unique combination of properties (stability with time and temperature, high 

quality factor, strength, inexpensive, small size, low insertion loss) make 

crystals attractive and provide flexibility for the practical design of filters 

with very narrow bandwidth. The term crystal filter is used to describe 

electrical filters incorporating crystal resonators. The principal crystal used 

in electrical filters, especially bandpass filters, is the quartz crystal. 

Theoretically, an electric circuit using inductors, capacitors and resistors can 

be constructed to simulate a crystal resonator but the problem lies with the 

practicality of obtaining the exact values for these components. Crystal filters 

can be either discrete or monolithic5,6. The former employ standard 

components plus a number of single crystal resonators. In comparison 

monolithic crystal filters provide a complete filter on a single quartz wafer 

with no supplementary parts.

1.2.4 The benchm ark filter

The collaborating establishment produces about two hundred separate types 

of crystal filters. The filter code number 4716 was used for this study. This 

filter is a discrete 4-pole asymmetric bandpass crystal filter. Asymmetric 

refers to the passband region because of the steep skirt selectivity on one side 

of the passband and the reduced attenuation on the opposite side. Figure 3 

displays the top view of the filter. The filter consists of two types of
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adjustable components, namely trimmer capacitors (C4, C7) and inductors (T1? 

T2, T3). The specification of the filter is summarised in Table 1. The selectivity 

requirements are divided into two general areas, namely the passband and 

the stopband response regions. Both regions are specified with reference to 

a nominal frequency which is the centre frequency (reference frequency). A 

typical filter response demonstrating the electrical specifications is shown in 

Figure 4.

1.2.5 The need for post assem bly tun ing

Filter engineers have tackled the tuning problem in two different ways. One 

approach takes place during the design stage and the other takes place after 

assembly. The post-assembly approach can be further categorised into two 

methods, namely functional and deterministic7. The latter method applies 

circuit modelling and includes techniques such as response sensitivity. This 

research concentrated on the former method. This is the traditional approach 

in which tuning is performed manually. The manual tuning procedure is 

described in Section 2.2.

In practice, the actual performance of an electrical filter differs from the 

specification. This is due to the inescapable effects of using real components 

which leads to apparently identical filters having slightly different responses. 

This becomes more transparent when, for example, the inductor component 

is considered. The use of inductors is a predominant cause of response 

deterioration, because obtaining exact values requires winding the component 

by hand. This results in inconvenience and further cost. Furthermore the 

method used in winding the coil, number of windings, spacing of turns, 

permeability of the core are all factors that contribute to the electrical

11
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Table 1 : Specification of used filter

Filter type Upper Side Band

Reference frequency 1.4 MHz

Passband width +0.5 KHz to +2.5 KHz minimum at 

4dB

Stopband width -0.7 KHz to +5.0 KHz maximum at 

45 db

Passband ripple 3.0 dB maximum +800 Hz to +2.0 

KHz

Transducer attenuation 5.0 dB maximum 0.5 dB minimum

Attenuation at 1.4 MHz 10 dB minimum

Ultimate attenuation 45 dB minimum to be maintained to +  

20 KHz

Termination impedance 1 kQ +  15 III 75 ±  10 pF

Maximum input powers 1 mW

Operating temperature range -10°C to +65°C

Maximum weight 75 gms
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characteristics of an inductor.

1.3 O verview of A rtificial Intelligence

In the literature of computer science the task of exploring and simulating 

human intelligence has been termed Artificial Intelligence. The objectives are 

twofold:

(i) the amplification of the user’s capability in performing intelligent 

tasks, and

(ii) the understanding of the principles of intelligence.

One representative definition of Artificial Intelligence is given by Barr and 

Feigenbaum8.

’Artificial intelligence is the part of computer science concerned with 
designing intelligent computer systems, that is systems that exhibit the 
characteristics we associate with intelligence in human behaviour - 
understanding language, reasoning, solving problems and so on.’(page 4)

Therefore Artificial Intelligence is based upon perceptions of human intell

igence. Although we can recognize intelligence it is questionable tha t anyone 

could provide a definition covering all its aspects. The spread of the interpre

tation of the term intelligence has resulted in the discipline of Artificial 

Intelligence incorporating the fields of engineering, cognitive science, 

philosophy, psychology and linguistics. This generated applications and topics 

of research. Some examples of application areas are game playing, automated 

reasoning and theorem proving, natural language understanding, robotics, 

expert systems, machine learning and neural computing. The work performed 

for the tuning of electrical filters involved the expert systems, machine 

learning and neural computing branches. These areas are explained a t the
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appropriate sections of the thesis. The reader is referred to books by 

Winston9, Chamiak and McDermott10, and Barr and Feigenbaum11,12,13 for 

further background to the theory and pragmatics of Artificial Intelligence.

1.4 Expert System s

The realization by the Artificial Intelligence community during the 1960’s of 

the weakness of general purpose problem solvers led to the development of 

expert systems. Expert systems held the greatest promise for capturing 

intelligence and have received more attention than any other sub-discipline 

of Artificial Intelligence. The term knowledge-based systems is used 

interchangeably to avoid the mis-understandings and mis-interpretations of 

the word ’expert’. Irrespective of the adjective, each such system is designed 

to operate in one of a variety of narrow areas. The design involves attempts 

to model and codify the knowledge of human experts.

1.4.1 A review  and classification  of expert 

system  projects

The number of expert systems reported in journals is rapidly increasing. But 

there are four examples that merit special attention due to the fact that they 

were the pioneering attempts. These systems are, the Dendral14 system which 

infers the molecular structure of complex organic compounds from their 

chemical formulae and mass spectrograms, the Mycin15 system which 

diagnoses blood infections and recommends the appropriate drug treatment, 

the Prospector16 system which is designed to aid geologists in their search for 

ore deposits, and the Rl(XCON)17 system whose purpose is to configure VAX- 

11 computer systems. These systems are important. First they showed that
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the new technology can work and secondly they provided models (of 

representation and inference) that other implementations followed. Since that 

era a wide variety of programs, not so much acclaimed, have been developed 

in many different fields, performing a range of diverse tasks. For a survey of 

recent applications, and a set of references, see Bramer18, Reddy19, Bremer20 

and IEEE Computer21. There are numerous ways to classify expert systems 

but the two that follow are probably the most important. One apparent 

practice is by their area of application (Mycin - medical, Prospector - geology). 

The other is by the tasks that they are called upon to perform22 (Dendral - 

interpretation, Mycin - diagnosis).

1.4.2 The com ponents of an expert system

The essential components of an expert system can be identified as

Knowledge-base module: this is the essential component of any system. 

It contains a representation in a variety of forms of knowledge elicited 

from a human expert (see Section 1.4.3).

Inference engine module: the inference engine utilises the contents of 

the knowledge base in conjunction with the data given by the user in 

order to achieve a conclusion.

Working memory module: this is where the user’s responses and the 

system’s conclusions for each session are temporarily stored. 

Explanation module: this is an important aspect of an expert system. 

Answers from a computer are rarely accepted unquestioningly. This is 

particularly true for responses from an expert system. Any system 

must be able to explain how it reached its conclusions and why it has 

not reached a particular result.
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Justification module: using this module the system provides the user 

with justification(s) of why some piece of information is required. 

User interface module: the user of an expert system asks questions, 

enters data, examines the reasoning etc. The input-output interface, 

using menus or restricted language, enables the user to communicate 

with the system in a simple and uncomplicated way.

Through the years systems have appeared which include additional modules. 

For example, learning modules, knowledge acquisition modules and 

refinement modules. Each one of the above constitutes a research topic on its 

own.

1.4.3 The nature and representation o f 

know ledge

Whereas from a philosophical point the concept of knowledge is highly 

ambiguous and debatable, expert system builders (to be referred to as 

knowledge engineers) treat knowledge from a narrower point of view. This 

way the knowledge is easier to model and understand, but remains diverse 

including rules, facts, truths, reasons, defaults and heuristics. The knowledge 

engineer needs some technique for capturing what is known about the 

application. The technique should provide expressive adequacy and notational 

efficacy23. Knowledge representation is very much under constant research 

and several schemes have been suggested in the literature. The four most 

widely used in current expert systems are production rules24, semantic nets25, 

frames26, and logic27. Obviously, no single method can represent all kinds of 

knowledge and although some kinds of knowledge can be represented in many
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ways some other kinds of knowledge, such as time, cannot be captured.

1.4.4 C ontrolling the know ledge

Much of the power of an expert system comes from the knowledge embedded 

in it. In addition, the way the system infers conclusions is of equal 

importance. The knowledge engineer has to consider how to implement the 

control, ie. what to do next, and the search, ie. how to find some information. 

These decisions rely on the classification of the task28, and on the amount of 

information known beforehand about the problem space. Various problem

solving methods have been described in the literature29.

1.4.5 Knowledge acquisition and elicita tion

The terms knowledge acquisition and knowledge elicitation are often

confused. The knowledge acquisition process is defined as the combined

activity of eliciting, analyzing, interpreting, representing, administering and

utilising the knowledge of human experts. Clearly, knowledge elicitation only

address the elicitation aspect of the task. The primary activity during

elicitation is to capture knowledge from experts through a series of sessions.

A large number of elicitation techniques have been proposed as suitable and

as a result of a literature review, the following techniques were identified:

Structured interview Questionnaires
Interruption Retrospective comment analysis
Behaviourial observation Informal interview
Protocol analysis Multidimensional scaling
Concept sorting Repertory grid
Cluster analysis Socratic dialogue
Forward scenario Conceptual clustering

It is important to realise that generally none of these techniques can surface

on its own but a mixture will probably obtain the required results. The reason
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for this being that knowledge has many forms and each technique can only 

attempt to extract a subset. For example the protocol analysis technique, 

described below, works very badly for domains which are best represented 

declaratively but a rich amount of procedural knowledge can arise.

1.4.5.1 Protocol analysis

Protocol analysis (or process tracing, or verbal reporting) was first described 

by Newell and Simon30 and, in recent years, by Ericsson and Simon31. The 

expert is given a typical problem to be solved and before the session begins 

s/he is requested to verbalize whatever s/he is thinking. The session is audio 

and/or video-taped and the protocol is transcribed and analyzed at a later 

stage. During the session the builder participates only when the expert seems 

to be idle by asking probing questions such as what are you thinking at this 

moment?. The technique minimizes the builder - expert interaction resulting 

in economising the expert’s time. Although there are some problems 

associated with this technique, protocol analysis seems to be useful at the 

start of a project. Problems can be encountered due to the fact tha t not all 

individuals find it easy to verbalize and perform simultaneously and also 

most people can think more quickly than they can talk. In both cases 

knowledge might be lost. Additionally, protocol analysis can provide us with 

extensive information of how the knowledge is used but not about its full 

range. Finally, analyzing protocols is time consuming and difficult. Various 

authors have described types of analysis to apply to the same raw data in 

order to become familiar with it, to understand the reasoning involved and 

to facilitate the representation of the knowledge. A brief review follows. 

Waldron32 provides a framework for classifying decision alternatives in terms
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of alternatives, attributes, aspects and attractiveness. He also classified 

naturally occurring rules into dominant, lexicographic rules. Bainbridge33 

offers three analytic approaches to be applied to the transcript. Explicit 

content, implicit content and groups and sequences of phrases. She has used 

those approaches in analyzing verbal protocols from a process control task. 

Kuipers and Kassirer34 analyzed a verbatim transcript taken from a second 

year student in three stages: Referring phrase analysis, assertional analysis 

and script analysis.

There exists a considerable overlapping on each author's ideas and proposals. 

This is something to be expected since knowledge elicitation is a new 

discipline but the terminology leaves something to be desired. Different 

people use the same terms to mean different things. A lot of research is under 

way in order to compare the various elicitation techniques so a builder can 

rate each technique's suitability under various circumstances. A review of 

knowledge acquisition evaluation research can be found in the article by 

Dhaliwal et al35.

1.4.6 Expert system s and conventional 

program s

One might wonder what makes expert systems different from conventional 

ones. One might remark that in some sense, any computer program is expert 

a t something. A payroll program incorporates knowledge about accountancy, 

but it is not included in the expert class. The reason being tha t the numbers 

generated by the payroll program might differ depending on the inputs, but 

they are always generated in the same way. Creating conventional programs
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involves the definition, 6*001 the beginning, of the data, its nature and the 

process involved. The process consists of the presentation, in the proper order, 

of the correct set of procedures and control structures. The conventional 

approach typifies program-driven processing where what happens next at any 

particular point is pre-determined. Hence, conventional programs rely on 

algorithms which contain a step-by-step description of the procedures to be 

followed. These algorithms guarantee that the right conclusion will be 

reached when the correct data have been entered or that new knowledge from 

old can be inferred but the inference order is known. Expert systems differ 

from conventional software systems in that they are able to reason about data 

and draw conclusions employing heuristic rules. These are rules that have 

been formed through practical experience and they are employed to solve 

problems. Heuristic rules do not require perfect data and are not guaranteed 

to succeed but the proposed solutions are derived with varying degrees of 

certainty. The route to a conclusion varies according to the input data but the 

difference with conventional programs is that the inference order is not preset 

by the programmer. The inference order is determined by the success or 

otherwise of the branches of the rules. Heuristic rules are useful for 

situations where it is not possible to construct an algorithm. Another 

difference is that with conventional programming the knowledge and the 

processing procedures are tangled and spread throughout the entire program. 

In an expert system, however, knowledge is concentrated in one module and 

another separate module directs the inferencing. The separation means that 

one can make at least some changes to either module without necessarily 

having to alter the other. These differences led to the usage of different type
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of programming languages employed. Traditional programming involves the 

use of imperative languages, whereas on the other hand declarative languages 

are employed for an expert system construction. Additionally, expert systems 

can reason using incomplete data and can generate explanations and 

justifications, even during execution of their actions. Once again these 

facilities are provided by separate modules.

1.5 An overview  of the AEK expert system  part

The knowledge engineer has at his disposal a number of tools to aid the 

construction of an expert system. These tools fall into four major categories. 

Programming languages, shells, development environments and domain 

specific tools. As described by Waterman36 and Harmon et. al37 there are a 

variety of expert system tools.

The AEK system was constructed using a commercially available expert 

system shell, namely Xi-Plus. Shells provide an alternative to programming 

languages since the knowledge engineer does not have to create the entire 

system from scratch. Shells like Xi-Plus provide an editor, the user interface, 

the inference engine and the explanation facilities. On the other hand the 

majority of such shells constrain the construction process due to the lack of 

a number of representation and searching schemes. This way the knowledge 

engineer might try to represent the whole of the area of knowledge using a 

single representation formalism. If the need arises development environments 

can provide the solution. These environments are equipped with more 

sophisticated editors, graphical interfaces and numerous representation 

methods. Gevarter38 presents evaluation criteria for selecting a commercial 

tool for performing a particular task.

22



The Xi-Plus system was used because it was readily available. Its utilisation 

was continued because of the suitability of the architecture and control 

features for the task.

1.5.1 The AEK expert system  part 

architecture

The system implements the most common form of architecture in expert 

systems, namely the rule-based architecture. The components of the system 

are the ones described in Section 1.4.2.

1.5.2 R epresenting know ledge in  AEK 

(expert system  part)

The knowledge is represented using rules, facts and defaults. Facts are 

statements which are true under all conditions. Defaults are values used in 

the absence of other information. Rules, or production rules39, are small 

chunks of knowledge expressed in the form of if..then statements. The left 

hand side (IF) represents the antecedent or conditional part. The right hand 

side (THEN) represents the conclusion or action part. A number of rules 

collectively define a modularized know-how system40. A list of the benefits and 

drawbacks using production rules is given by Hayes-Roth40. The rationality 

for selecting rule-based presentation becomes apparent when examining the 

following three factors.

The wording of the expert: When dealing with experts, it is important 

to try to select the approach that is most natural to them. In our case, 

during protocol analysis (see Section 3.3), it became apparent tha t the
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expert was expressing his problem solving techniques in terms of 

situation-action rules in order to show empirical associations between 

attributes. (Appendix 1 contains a protocol transcript).

The nature of the task: The tuning of the filter is accomplished by 

classifying the appropriate action to be taken from a pre-specified list 

of possibilities. Production rules can only represent what is called 

’shallow’ or ’low’ knowledge41 but they present a natural framework for 

classification tasks42.

The use o f an induction tool: Elicitation of knowledge was performed 

using an induction tool (see Chapter 7). The outcome was a decision 

tree which was transformed to a set of rules.

1.5.3 Control in  the AEK expert system  part

The shell comes with predefined control structures but the user can 

implement some of his/her own. When a user of AEK requests the 

classification of a given magnitude response the system operates in the 

backward chaining mode (i.e. tell me how to classify). The order of looking at 

the rules is lexical order viz. when scanning rules it will first look a t rule 1, 

and then rule 2 etc. The order that the rules are recorded is then critical. 

Since the rules were generated from a decision tree, the system performs a 

depth-first search. When it searches, it inspects each rule to see if the left 

hand conditions are true. This is achieved by either reading the working 

memory or by asking questions or by generating further subgoals. In any 

case, the system continues to the next rule until all rules have been inspected 

(if this is not desirable the user can instruct the system to stop a t the first 

true rule). Theoretically all rules that can execute must be placed in a conflict
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set and one of the rules is selected43. Using Xi-Plus the system displays all 

options and the user has to make the decision. The selected rule then 

executes. This is what is known as the match, select and execute cycle. The 

system provides forward chaining (ie. what can you tell me when this data is 

true) as well. Additionally, meta-rules are available in order to reduce the 

search space. Other control facilities are the checking of outstanding queries, 

of a completed goal and the initiation of the evaluation of rules.
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2.1 Introduction

Chapter 2 provides an introduction to the manual procedure currently in use 

(Section 2.2). Section 2.3 describes previous work in the field of electronic 

filter tuning. Three approaches are described in total. The heuristic and the 

machine learning approaches were selected since their overall methodology 

is close to the one followed in this work whereas the third approach 

(sensitivity-based approach) represents conventional techniques. Finally, 

Section 2.4 discusses the motives for implementing the expert-neural (Hybrid) 

approach by identifying the strengths and weakness of the previous 

approaches and the areas where the hybrid system can perform (or 

compliment) better. It was hoped that the hybrid would eliminate repetitive 

and time consuming calculations, provide a better system-human interface 

and enable a complete automation of the tuning task.

2.2 M anual tuning procedure

Manual timing can be thought of as a human real-time optimisation which 

attempts to reduce the total and individual errors in the features of interest, 

with as few steps as possible. Error is defined as the difference between the 

required and the obtained performance.

There does not appear to be a general theory of the practical tuning of filters. 

Through an initial training and with acquired experience the operator is 

transformed into a skilled operator. An experienced operator then effectively 

generates an heuristic algorithm for tuning a particular type of filter. 

Knowledge about which components are appropriate for adjustment for tuning 

and which to be ignored, the order of the specification checking etc. is
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referred to as heuristic. Heuristic algorithms are different to conventional 

algorithms in the sense that they do not guarantee success or a solution. They 

can fail a t certain times, but often they work. The difficult part, as will 

become obvious later on, is to extract the algorithm. The operators appear to 

be unaware of it.

Despite the variations between operators, which can be found in detail, the 

general pattern is the same. An operator checks the performance of the filter 

(e.g. magnitude response). From experience coupled with the feedback pro

vided by the response measurement system he or she decides what corrective 

action, if any, is to be taken. The action being the adjustment of an 

appropriate tunable component. These steps are then repeated as many times 

as necessary until the performance satisfies the requirements. Then the 

response is checked at a set of frequencies and further corrective actions, if 

required, are carried out. Effectively, the operators act as signal interpreters 

and the interpretation is not based on any theory but is essentially a 

synthesis of a strong capability for pattern recognition linked with knowledge 

accumulated from past experiences.

2.3 Work in the electronic filter tun ing field

Although manual tuning is successful the advantages of providing 

computerised assistance to an operator have been recognised before. This 

section introduces and contrasts the work of others in the field. The reasons 

behind the motivation for using the expert system technology are also 

discussed. Rather than introducing a catalogue of all techniques, this chapter 

will highlight on three proposed methods, namely the work described by 

Nazemi and Fidler1, Mirzai2, and Crofts and Jervis3. The first two projects are

31



most directly relevant to this work due to the involvement of experts, in 

Nazemi et. al. case, and the machine learning approach, in the case of Mirzai. 

A discussion of the three techniques will hopefully help to understand AEK’s 

contribution to the field.

2.3.1 F ilter tuning using a m icroprocessor 

based heuristic algorithm

Nazemi and Fidler1 realized the need for the automatic tuning of filters and 

proposed a method which took into consideration the operator’s knowledge. 

The development of the heuristic method involved three phases. The first 

phase involved the selection of the tuning components and the frequency 

points. To facilitate the selection, sensitivity analysis was employed as a 

starting point. Secondly, the error and stopping criteria were defined in order 

to have some means of stopping the tuning process. Finally, the heuristic 

tuning algorithm was developed. This involved the creation of an information 

storage data table (ISDT). The table included information on which 

component to adjust and the direction of adjustment a t every test frequency 

point. This information was dependent on the polarity of the error. This ISDT 

was stored in the memory of a microprocessor controlled system which tested 

the filters after each adjustment and then adjusted them again, and so on, 

until they were tuned. What is interesting and of particular relevance to our 

work is the method used to generate the table. In general, the algorithms, 

since each type of filter has a different one, were developed by tuning the 

filter manually a number of times. The pattern of timing and the pattern of 

adjustments were combined and their examination resulted in the creation
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of the algorithms. In particular, for a second order Sallen and Key lowpass

filter Nazemi4 reported the creation of the algorithm as follows:

"By performing the tuning manually many times, the best approach 
was recorded and from that an ISDT was formed.” [Chapter 5, page 
142]

The goals of the testing of the heuristic algorithms were as follows:

(a) Can the heuristic algorithm be used on its own, and

(b) can the heuristic algorithm be used as a front-end of another technique. 

If so, are there any benefits in doing so.

The heuristic algorithms were tested on a number of hardware circuits and 

compared to a pattern search optimisation technique devised by Hooke and 

Jeeves5. The criterion of comparison was the number of measurements carried 

out by each method. One conclusion was that the heuristic algorithm can be 

operated on its own but usually resulted in a coarse tuning. An important 

observation was the substantial improvement in the number of 

measurements. When used as a front-end no more than eighty-eight (88) 

measurements were required although total reliance on the Hooke and Jeeves 

method required a minimum of five hundred (500).

2.3.2 A lignm ent of filters using a M achine 

Learning System

Mirzai2 proposed a machine learning system (MLS) for tuning waveguide 

filters. The MLS was originally developed for fault diagnosis of 

telecommunications systems, in particular microwave digital radios6. The 

approach is based on linear adaptive combiner algorithms and more 

information is given, in Chapter 4. Here, only an outline of the MLS will be
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given. The overall system is used in two modes, namely: the training mode 

and the use mode. In the training mode the adaptive combiner was used for 

fine tuning only. The coarse tuning was performed manually. In order for the 

algorithm to learn how to perform the fine tuning the following steps were 

taken:

(i) The reference characteristic was selected. This was the Sn polar plot 

(Figure 5a). This was chosen because it enabled tuning of the group delay of 

the filter as well as its amplitude response. Sn , where S stands for scattering, 

looks a t the division of the output by the input in frequency domain a t all the 

frequencies of interest. The scattering parameter using a network analyzer 

system enabled the measurement of both the magnitude and phase 

information and the plotting of the data on a polar display. The measurement 

of the scattering parameter can be illustrated better using network parameter 

theory. Figure 5b which displays a flow graph of a two port network will be 

used. Nodes a and b are the incident and reflected nodes respectively. When 

an incident wave enters the device at node a of port 1, part of it  will be 

returned through the Sn path and b1 reflection node. Part of the wave will be 

reflected through the a2 node as well. This can be expressed as:

= aj * Sn + a2 * S12

If the device is not connected to port 2 (i.e. by terminating port 2 with i t s  

characteristic impendance) then the equation becomes:

b1 = al * Sn 

Therefore Sn = b1I Oj given that a2 = 0.

Other scattering parameters can be measured in a similar fashion. These 

generalized parameters can be measured easier than other traditionally used
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parameters especially for frequencies above 100 MHz. Additionally their 

conversion is quite simple.

(ii) A set of prominent features were extracted from the reference 

characteristic in order to have some means of assessing the sensitivity of the 

adjustable components on the polar plot. In total sixteen (16) features were 

selected. These included the area of the loops, the geometric mean of the plot 

etc (Figure 5a).

(iii) The adjustable components to be used were selected - in total six (6).

(iv) The value of each feature for a fine-timed filter was recorded.

(v) Further examples were generated by simply mal-adjusting one adjustable 

component a t a time. This was implemented for both directions.

(vi) The examples were fed to the algorithm and a number of combiner 

weights were calculated. These weights represented the knowledge in the 

form of mathematical relationships.

In the use mode the system was simply provided with the feature set of a 

coarsely tuned filter. This initiated the production of a graphical display of 

the adjustment levels of each component. The component which generated the 

maximum error at each iteration was adjusted. This process was repeated 

until the response of the filter was within the specifications set by the 

reference filter. One coarsely tuned filter was found to meet the specification 

within twenty (20) adjustments. Unfortunately, the initial amount of mal

adjustment has not been reported.

2.3.3 Sensitivity-based filter tuning

This section introduces the work by Crofts and Jervis3 which is based on 

sensitivity analysis. The concept of sensitivity involves the identification of
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Figure 5b : Flow graph of a two port network
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the relationship between variations in a particular function F and the 

variable parameters of that function. In the case of circuit analysis the 

voltage transfer function H(s) was used and the adjustable components Xk 

represented the variable parameters. Two timing algorithms by Antreich7 et. 

al. and Jobe8 were compared using simulated and actual tuning of two 

differently designed low-pass, 7th order, elliptic filters (a 4.5 MHz and a 100 

kHz filter). Only the magnitude response was considered and the work of 

Crofts and Jervis9 involved the identification of which adjustable component 

(one of three inductors) dominated the sensitivity of the magnitude response 

a t some selected frequencies. An outline of the tuning procedure is given 

below:

(1) Calculate the network response using (H(s)) the nominal component 

values at six selected frequencies.

(2) Perform the sensitivity analysis by incrementing each component in turn 

by a known value (± 2.5 for the 4.5 MHz filter, ± 4 for the 100 kHz filter) 

from its nominal value.

(3) Calculate the adjusted network response a t the six selected frequencies 

and compare with the specification. Their difference (A H(s)), termed object 

function, at each selected test frequency was found by simple subtraction. 

The magnitude sensitivity was calculated using the following formula:

S x ‘  _ | t f (S ) |  d x k

If the specification was satisfied then step (5) was performed, otherwise step

(4).

(4) The object function combined with the results from step (2) indicated
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which component(s) were in error. Using Antreich’s7 et. al. method the 

adjustments, for a circuit with two adjustable components analyzed at two 

frequencies, were given by:

Using Jobe’s method the adjustments were given by:

*i = -
a  _i_ * 2 1 ’* 2 1  *11 =----

'11

^2 =
a  j .  S 2 2 * * 2 2  *12^ =----

'12

s 2
s  +21 *21

*2

*22 + *12*̂ 12
*22

The required component adjustments were then given. The tuning procedure 

was repeated from step (2).

(5) The tuning procedure was terminated.

The tuning results with the computer simulations and the actual tuning 

showed that9:

■ Both tuning algorithms were capable of tuning the filters.

■ The Antreich et. al. method was more efficient than the Jobe method 

(simulation results).

■ In the case of the actual tuning of the 4.52 MHz filter no difference could 

be found between the performance of the two methods.

■ The actual tuning of the 100kHz filter showed that there was a poor match 

between the practical tuning and the computer simulation but tuning was
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achieved in most cases.

2.4 M otivations for using a hybrid system

The motives for employing a hybrid system (expert system, neural network) 

in the filter tuning domain can be categorised into three broad areas, namely 

technical, business and science.

Technical considerations

The desirability of applying expert systems in terms of a comparison with 

other approaches and general task properties were considered. The expert 

system approach could be used for comparison with other techniques in terms 

of measurements required and time taken. However, such comparisons are 

not feasible since the various authors describe their work using different filter 

types. An investigation could be carried out where the same filters will be 

used, but unfortunately this is work which may never be performed. The 

question is then best answered by considering how well those previous 

approaches fulfil the requirement of a system which exhibits certain essential 

and desirable features. Such essential features are: the reporting of which 

tunable component to adjust, in which direction and by how far. The desirable 

features are: generality, explanation of reasoning and easy human 

interaction. Discussing briefly those approaches, one can assert th a t both 

Mirzai and Crofts provide excellent information about the essential features. 

The drawbacks are the need for repetitive and time consuming calculations 

(especially Crofts), lack of generality and basic system-human interface. The 

latter indicates that the systems cannot possibly be used as tutors. Further, 

Crofts work is deterministic and corresponds to an inexperienced operator, 

viz. it starts from scratch in every case and does not take into account the
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expertise of an operator. On the other hand Nazemi and Fidler use the 

operator’s knowledge but the elicitation method leaves loopholes. For example 

the "best" approach of the day does not guarantee it will always be the best. 

This is acknowledged by Nazemi and Fidler who conclude that such heuristics 

must be generated automatically - something our work contributed towards. 

At the same time the work of Nazemi and Fidler does not provide information 

about distance (i.e. how far to turn).

The general task properties that have to be satisfied when selecting an expert 

system application are numerous10,11,12. For example, there must exist 

recognised experts who are probably better than novices in performing the 

task. The task must be well bounded, must require the use of reasoning and 

not just numeric processing, and must be neither too easy nor too difficult. 

The filter tuning task satisfies these expectations.

Business considerations

The other major aspect is the value of the system to the business. At the 

present time, manual tuning has some drawbacks. It is time consuming, 

represents a large proportion of the total filter production cost, and can be 

described as uninteresting and uncreative. An expert system could free the 

operator to undertake work more satisfying to him or her and be more 

productive for the manufacturer.

Knowledge considerations

The filter tuning task is different to, say, the familiar domain of medicine. In 

the medical field one deals with a highly qualified expert, with several years 

of practice, able to reason for the decisions taken and performing in static 

time. By contrast the operator in the tuning process is not highly qualified,
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not always able to reason and operates in real time with a constantly 

changing environment. The numerical nature of the knowledge and the 

problems of eliciting the knowledge resulted in needing a further tool, i.e., 

creating a hybrid expert system-neural network system. Our goal was then 

to develop a hybrid system to provide the operator with all the essential 

features using an appropriate display.
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3.1 Introduction

Chapter 3 reports on the work and the results obtained during the first visit 

to Newmarket Microsystems. The results included the selection of the expert 

operator and the type of filter to be employed. Additionally, protocol analysis 

was identified as a suitable starting knowledge elicitation technique mainly 

because of the verbal on-line format of the technique. Section 3.3 presents the 

protocol analysis implementation and the subsequent analysis of the 

transcripts. The main analysis result was the identification of the overall 

filter tuning procedure. Furthermore, the analysis of the transcripts indicated 

the need for an alternative elicitation technique due to the apparent lack of 

theory behind the selection of a particular tunable component the direction 

and how far to turn it (Section 3.3.2).

3.2 The first v isit

The first stage of any knowledge engineering project must always be the 

familiarization of the knowledge engineer with the domain. In addition, 

various general but important questions have to be answered before the task 

commences. For that reason the objective of the first visit to the collaborating 

establishment was to obtain background information beneficial for domain 

acquaintance1. The following activities were carried out:

V Identification of benchmark filter

V Identification of expert operator

V Identification of sources of reference

V Identification of the role of the system

V Identification of any parenthetical knowledge
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V Elicitation of concepts

V Definition of the problem areas

V Identification of appropriate knowledge elicitation technique.

3.2.1 Identification of benchm ark filter

One of the first tasks was to select a suitable filter. This filter had to satisfy 

two requirements. Firstly, the tuning of such a filter had to be more or less 

representative of the task. Secondly, the tuning process had to be neither too 

trivial, because the effort of developing an expert system might outweigh the 

potential benefits, nor too difficult. The filter had to be somewhere in the 

middle of the complexity scale. A factor which probably determines how easy 

or difficult the tuning of a filter will be is the number of adjustable 

components. Another factor derives from how trivial or complex the required 

specification is. The degree of complexity depends, for example, on the 

requirement of examining the phase response or on the number of frequency 

ranges to be checked. The collaborating establishment manufactured more 

than 200 types of crystal filters. With the help of an operator the whole 

spectrum was segregated into three categories. From each category one filter 

type was identified. The filter type from the medium category was elected to 

be the benchmark filter.

3.2.2 Identification of expert operator

The choice of whom to use as expert is critical. Without an expert, there 

cannot be a system, unless the knowledge engineer is also the expert. At 

Newmarket, there exist various people who have competence in tuning filters. 

These people differ in age, experience and qualifications. Most operators fit
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one category: those people with few years experience on the job and 

unqualified. Our expert was chosen because of his vast experience in 

designing and tuning filters (over 25 years), his willingness and enthusiasm 

about the project and his articulateness.

3.2.3 Identification of sources o f reference

Sources of reference are often sufficient to introduce the knowledge engineer 

to the domain. Unfortunately, despite the plethora of books about filters and 

their design, there is no book on how to tune filters. A reason for this might 

be tha t filters are manufactured for a particular client’s specification, 

resulting in hundreds of different designs. A formal theory or methodology 

has not surfaced. What was made available was information for the 

benchmark filter. That information included a schema of the filter, the 

specification that it had to satisfy and a graphical representation of the 

magnitude response.

3.2.4 Identification of the role o f the system

An expert system can act in a number of different roles2. For example as an 

assistant - performing a sub-task of the process, or as a critic - reviewing the 

decision of the expert and providing comments. The role a proposed system 

takes depends on the user. Is it going to be used by an expert or a novice? It 

also depends on the degree to which the problem can be automated. Another 

factor is the company’s wish, which in a commercial world is probably the 

most important one. By discussing the subject with the expert and senior 

staff*, it was decided that the system could take the role of the consultant. 

That way the system offers an opinion which the user does not have to
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comply with.

3.2.5 Identification of any parentheti- cal 

know ledge

The term ’parenthetical’ is borrowed from Freiling et. a l3 who define it in the

following manner:

"...knowledge about how the task being performed relates to other 
tasks and the operational environment in which the task is being 
performed."

Another term that can be used is associated knowledge. There is not a 

methodical way to obtain this kind of knowledge but it comes out during 

casual conversations. A guided tour of the filter tuning production fine was 

made during the visit. The answers to questions such as what happens when 

the task is completed were obtained during the tour. Filters were tuned by 

trained persons. In situations where the task could not be completed the filter 

was passed to a more experienced person. He could either time it or reject it 

because there was something fundamentally wrong. When the filter 

characteristics were tuned to within the specification the filter was packaged 

into a metal box and sealed. Then it was distributed to the client. A new 

person is trained in-house by a senior operator and it can take up to three 

months to reach a satisfactory level of competence. Initially the training 

involves monolithic filters and later on other types. This indicated tha t some 

overall generality might exist. One must collect such information because it 

can affect the design and the role of the expert system. For example, the 

specification could be supplied automatically by the system eliminating the 

job of searching for the correct specification.
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3.2.6 E licitation  of concepts

Prior to the visit a letter was prepared (Appendix 2) which was presented to 

the expert. The purpose of the letter was to collect those concepts influencing 

the decision process. At that time it was unclear what those concepts were. 

The expert was asked to tune a filter and at the same time to record those 

concepts on a piece of paper. The expert faced difficulties with the term 

’concept*. His answers took the form of description of the task instead of only 

the concepts, which can be found hidden in the text.

3.2.7 D efin ition of the problem  areas

When the operator decides that the characteristics of the magnitude response 

of a filter are not within the desired specifications, he must choose which 

section of the response to adjust first, which tunable component to use, in 

which direction to turn it and by how far. He also has to determine which 

action is to be taken in order to correct a wrong choice. One minor problem 

is that the operator wastes time searching for the specification of each filter.

3.2.8 Identification of an appropriate 

know ledge elicitation  technique

The technique chosen for the filter tuning project was protocol analysis (see 

Section 1.4.5.1). It was considered appropriate to video-tape the sessions for 

the following reasons. In the filter domain the expert interprets, plans and 

executes tasks by visually inspecting the display unit of the measurement set. 

The set displays the magnitude response of the filter. By adjusting the set, 

the expert can inspect the full response or part of the response. It was felt
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that the expert would have found it difficult, or even impossible, to describe 

the response in a verbal off-line format. The choice, then was between 

behavioral observation and protocol analysis. Since the knowledge engineer 

was unfamiliar with the domain terminology, protocol analysis, where the 

expert refers to the task process using the terminology, was preferred to the 

behavioral observation. Protocol analysis was selected for the beginning of the 

analysis process. Protocol analysis had to be complemented with other 

techniques (e.g. structured interviews) which were thought to be more useful 

in a ’more clarification’ mode. The reader must appreciate that knowledge 

elicitation is at a very early stage of development, where general principles 

have not emerged and only a combination of techniques can provide fruitful 

results. The combination will vary from project to project. The expert and 

senior management did not oppose the idea of using a video recorder so a 

second visit was arranged.

3.3 Protocol analysis im plem entation

The timing of the chosen type of filter was video-taped twice. The expert was 

instructed to ’think-aloud’ about the process and to refer not only to his 

mental skills but also to his manual skills. Manual skills means those needed 

to operate the measuring set. Mental refers to the reasons behind each action 

taken, such as why to turn component X instead of Y. At the end of the 

recordings the video tape was played back and notes were taken. Those notes 

were concerned with:

(a) ambiguous statements

e.g. "...arrange these peaks into a more reasonable place."

(b) cross-reference of the expert’s decision taking. That involved
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watching the two video takes of the process and comparing them.

(c) recording probing questions for further use. Questions such as ’why 

did you take that action’ for those situations where the operator did 

not provide any explanations.

(d) transcribing and analyzing the verbatim account. That involved 

watching and listening to the tape and writing on to paper everything 

that the expert was saying.

Some general observations are as follows:

V the expert did not find it difficult to verbalize his manual skills nor, in

some circumstance, to explain his reasoning but there was a steady 

decrease of the level of details from the first recording to the last one.

V The expert was able to describe the tuning process for whichever 

component he was tuning at a particular time but when there was

more than one candidate component he did not provide a theory for

which one to select.

3.3.1 A nalysis of the transcripts

I t was realised early on that the transcription process is time consuming . 

When both video takes were transcribed they were entered into document 

files of the Wordstar wordprocessing package. Packages as such can be very 

useful as support tools to browse and edit the text. Prints of the transcripts 

can be found in Appendix 1. The files include a reproduction of the protocols 

in a complete fashion, and no attempt to filter the contents of the protocol 

was made. Each transcript was broken into short lines, in such a way that 

each line contained a phrase which could stand in its own right. Having 

individual lines did not provide any additional knowledge but made the
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Table 2 : Tunable components associated with each feature

Feature Component

Ripple T„ T2, T3

Passband width T3 (maybe Tls T2)

Attenuation c4, c7

Stopband width c4, c.

Ultimate attenuation c4, c.

Insertion loss reject
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transcript easier to read, understand and analyze. Where it was possible the 

format was: Do this - Why - Because (action - justification - explanation). 

Appendix 3 includes the phrase transcriptions. Lines which did not belong to 

this format were either general comments or operational comments. The 

benefits of the transcription analysis were as follows:

V Identification of order for specification checking ie. what features and 

in what order were checked. If dining checking one feature needs re

adjustment, the expert attempts to fix it and he starts re-checking from 

the beginning.

V A set of possible tunable components associated with each feature 

identified above was also recognised (Table 2).

V The classes of activity the operator engaged in were identified. The 

operator had knowledge about the measuring set, usefiil in order to 

have the most appropriate display at each time (Operational). He had 

knowledge of how to interpret a response and identify those regions, if 

any, that need adjustment (Interpretational). Additionally, he had 

knowledge of which region, or part of, to tune first, what to follow etc. 

(Planning), knowledge of how to proceed in order to make a final check 

(Inspection), and knowledge of how to recognize an achieved state 

(Recognition).

By identifying the various activities, one can concentrate and tackle a 

particular activity at a time (i.e. modularity).

V The objects were recognized and classified. By objects is meant the 

most primitive lexical entries that the expert uses to express domain 

knowledge. Objects usually take the form of a noun or a compound
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noun. Such objects in the verbatim transcript are: "coils", "capacitors", 

"frequency", "anticlockwise" etc. The outcomes of the object identification 

process were twofold. Firstly, the knowledge engineer became familiar with 

the domain terminology, resulting in the production of a lexicon1. A sample 

can be seen in Appendix 4. Each definition is from the IEEE standard 

dictionary of electrical and electronic terms4. Secondly, synonyms were 

identified which helped to reduce misunderstandings. For example screw-in 

and clockwise mean the same action.

V Casual statements, with a lot of information, were identified. Such 

statements were as such:

- it is used to adjust the passband

- capacitors are used to adjust the stopband

- the right capacitor is the best bet to adjust the return levels.

V The expert’s timing process was identified. That is, a general overview 

of how the expert proceeds. The expert’s process can be split into three 

main stages. Set-up the measuring set, qualitative tuning and 

quantitative timing. Stage one, is simply the setting-up

of the measuring set using, for example, the reference 

frequency. The first stage is not of concern since it is mechanical in 

nature and is the same for any type of filter, except of course, that 

different reference values are used. By qualitative tuning, is meant 

that stage in which the expert uses visual information to decide if 

tuning is required. He also employs visual information when he adjusts 

a particular component to determine if the correct action has been 

taken. Quantitative tuning can be thought of as the specification
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checking. The expert uses not only visual information but numerical 

values (obtained from the meter) to determine if more tuning is 

required.

3.3.2 The need for an alternative e licita tion  

technique

Let us concentrate on the second stage. Stage two, can be broken down into 

two further sub-stages. Tuning of the stopband and tuning of the passband. 

It was also discovered that the expert always attempts to time the stopband 

region first. Additionally it was found that the trimmer capacitors are the 

only adjustable components to be used for the stopband tuning. The inductors 

are used for the passband tuning. Another observation was tha t having 

successfully tuned component X, then when he moved to the next component 

he tuned in the same direction as he did with X. The problems arose when 

the expert was unable to provide any explanations of either why he selected 

a component X instead of Y, or why a certain direction was chosen. It seemed 

that the expert either made those decisions by chance or that something 

triggered his decision which he was not able to express. Also, he did not 

express by how far to turn. The expert actually kept turning until a 

particular shape of the response was reached. The rules governing what 

constitutes a satisfactory shape could not be expressed. This situation was 

worse in those circumstances where the expert had moved away from the 

’optimum’ state. His subsequent action was to turn the component the 

opposite direction until the ’optimum’ state was re-achieved. To overcome the 

problem of which component to use at certain response states, which direction
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to turn and by how far to rotate, the possibility of automatically acquiring 

and updating the rules was considered.

3.4 C onclusions

During the first visit to Newmarket Microsystems the 4716-type of crystal 

filter was selected as the benchmark filter and it was decided that the 

computerized system should act as an advisor.

It was decided to apply protocol analysis as the first step for acquiring 

knowledge. Following the implementation and analysis of the protocol 

transcripts it was clear that machine learning algorithms as the means for 

automatic knowledge elicitation must be investigated.
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Chapter Four 

M achine Learning Principles and Techniques

What we have to learn to do, we learn by doing

Aristotle
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4.1 Introduction

As already mentioned in Chapter 3 an alternative knowledge elicitation 

approach had to be considered since the applicable classification rules were 

not clearly known.

Recently systems which are capable of automatically identifying and 

synthesizing the knowledge of an expert have proved of interest. Machine 

learning systems is the commonly used term to describe such systems. The 

concept of machine learning and in particularly learning through the use of 

examples is the subject of Section 4.2. In Sections 4.3 to 4.5 three systems 

(ID3, Adaptive Combiners, Neural Networks) are described. The algorithm of 

each system is given in detail and the main limitations and proposed 

modifications are highlighted.

4.2 Introduction to M achine Learning

The power of an expert system depends on the knowledge incorporated into 

the system. Knowledge must first be elicited and subsequently represented 

and refined. The task of elicitation has been labelled as the bottleneck1 of the 

construction process of such systems. One role of machine learning is to assist 

during the elicitation process and to bypass the bottleneck. Additionally, 

expert systems perform in a deductive format2, i.e. the conclusions always 

depend on the knowledge supplied. The presence of an incorrect conclusion 

can generally only be corrected by the builder’s interference and not by the 

system itself. Systems that learn improve the quality of their performance 

with time without being reprogrammed. An improvement of a performance 

can be manifested by a faster response or a higher proportion of correct
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decisions or both. Three major research paradigms can be identified: neural 

modelling and decision-theoretic techniques; symbolic concept acquisition 

(SCA); and knowledge-intensive, domain-specific learning2. Each paradigm is 

based upon the same principle, namely that of inferring conclusions given a 

priori knowledge, and differs from the others only in the amount of 

information required and in the way the knowledge is represented and 

modified. A number of learning strategies have been documented2 but in the 

work reported here techniques which learn from data composed of a number 

of independent examples have been implemented. Each example is described 

in terms of a number of attribute values, together with an additional 

attribute, known as the class, which allocates the examples to a particular 

category (supervised learning). A number of different techniques have been 

reported in the literature, e.g. neural networks3, genetic algorithms4, and the 

AQ (Aurora) family5,6,7 of algorithms. The techniques chosen were ID3, 

adaptive combiners and three-layer neural networks and these are outlined 

briefly in the following sections. The reasons for choosing these three 

techniques were more practical than theoretical. Extensive previous work 

using adaptive combiners in the field of timing of waveguide filters8, in 

addition to the availability of a commercial package implementing ID3, were 

the main factors behind the decision. Therefore, results obtained with ID3 

and adaptive combiners can be compared and any benefits of using one 

technique rather than the other can be identified. Neural networks were 

chosen because of their ability to model non-linearities (a shortcoming of the 

adaptive combiners). It has also been reported that ID3 is faster, in terms of 

induction, than AQ119 or a genetic algorithm10 with the same performance
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rate.

4.3 The Iterative D ichotom iser Three (£D3) 

Algorithm

One learning strategy is induction. Induction means reasoning from specific 

cases to general principles. A subdomain of induction is concept learning from 

examples. This involves the generation of rules (or any other kind of 

presentation) which best classify the examples with which the system was 

presented. Best refers to the accuracy factor when tested with previously 

unseen examples and the comprehensibility of the rules. Comprehensibility 

of the rules is critical since it determines how effortlessly the knowledge can 

be understood and consequently conveyed to people in order for them to 

appraise, critise and use. In this section ID3, an example of an inductive 

inference system, is described. Prior to the presentation of the actual 

algorithm it is worth noticing the following points:

(i) The algorithm does not use any other domain specific 

knowledge beyond that of the training examples themselves.

(ii) The algorithm applies to a variety of application areas, viz. 

it is a general purpose algorithm.

(iii) The original algorithm looks at the entire set of training 

examples before forming the rules. This is usually referred to as 

a single learning stage. Further offsprings of the algorithm 

bypass this requirement, this is known as windowing.

(iv) The rules which ID3 learns are represented as decision 

trees. A decision tree embodies the relationships between the
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attributes and the classes. Each node of the tree represents an 

attribute and each branch corresponds to a possible value the 

attribute can take. Each terminal (leaf) node represents a class 

prediction to be assigned.

The ID3 algorithm was developed by Quinlan11 in 1979 and is a descendant 

of Hunt et al12)s concept learning system. A diagrammatic description of the 

algorithm is shown in Figure 6. The decision tree is grown in stages. First the 

algorithm looks to see if all examples belong to the same class. If they are the 

label ‘null5 (or something equivalent) appears. Otherwise, the algorithm 

selects the most informative attribute and either forms subsets equal in 

number to the number of values the attribute takes (i.e. creates the branches 

of the decision tree) or forms a binary split (cutoff point) when the attribute 

holds numerical values (e.g. >5, <=5). For each subset the algorithm checks 

whether all the examples are of the same category. If they are then the 

algorithm labels that subset with the name of the class (ie. creates a leaf of 

the decision tree) and partitioning stops for that subset (labelling rule); 

alternatively the algorithm creates further, smallest subsets. The algorithm 

stops when no more subsets can be created, i.e. the tree has been grown 

meaning all leaves and internal nodes have been defined and all examples 

have been considered (termination rule). It is worth noticing tha t the 

algorithm may label a leaf as ‘empty5 or ‘clash5. Empty appears when there 

are no examples that can be used for that particular branch. Clash emerges 

when there are two (or more) examples covering that specific branch but their 

classes are distinct. The key principle underpinning the algorithm lies in the 

selection of the most informative attribute and is based on Shannon’s classic
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work in information theory13. The most informative attribute, a t a certain 

instance, is the one that maximises the information gain (G) which is 

calculated by:

G ( o f  a t t r i b u t e  Xd) = I - E ir  i = 1 . .  t o t a l  number o f  a t t r i b u t e s

where I is the expected information of the whole training set and E is the 

expected information of the whole training set when only attribute Xj 

considered. Both values can be expressed as:

u : denotes the number of values attribute X can take

yd: denotes the number of examples that have the ith attribute value at

the column defined by attribute X, and belong to class y

n*: denotes the number of examples that have the ith attribute value at

the column defined by attribute X, and belong to class n.

The algorithm has been used on a variety of tasks, in the standard or a 

modified form14,15, with some success16,17,18. It has also been compared to 

different approaches and its performance has been shown to be 

comparable19,20. The use of ID3 for real world applications uncovered various 

deficiencies in the basic mechanism of the algorithm. For example, studies by 

Kononenko et al21 have highlighted the deficiency of favouritism towards 

attributes with a large number of values. Chapter 6 describes further 

shortcomings as experienced during this research work. Despite the

u

where
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imperfections, it seems that ID3 is a valuable aid for knowledge elicitation.

4.4 A daptive Combiners

In recent years one class of adaptive architectures, linear combiners, has been 

used for the design of intelligent systems22. These are systems where 

traditional elicitation techniques fail to provide any rules since the underlying 

relationships are not known and many of the variables are continuous in 

nature. Figure 7a illustrates a simple combiner structure. Given knowledge 

about a particular problem in the form of input attributes it is possible to 

represent them in vector form as shown below,

I  =

where n  represents the number of attributes and T denotes the matrix 

transpose operation. Additionally the class y, is also provided. It is desirable 

to estimate the weight vector shown below,

in such a way that, when the system is presented with a new set of attribute 

values, it can predict the correct outcome. In other words, we wish to 

represent the knowledge relating the attributes to the classes as the weight 

vector in the combiner. The adaptive combiner structure described here can 

be thought of as a one layer connectionist network. Adaptive combiners, like 

neural networks, fall within the first learning criterion as presented by 

Michie23. This criterion states that when a system uses sample data to 

generate an updated basis for improved performance on subsequent data then 

learning occurs but the emphasis is on the performance of the system and 

other aspects of intelligence, such as explanation of reasoning, are neglected.
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(a) A simple combiner  s t ruc tu re

X (k)

e r r o r

R L S

(b) Adapt ive combiner

Figure 7: Architecture of the linear adaptive combiner
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The knowledge within an adaptive combiner, or a neural network, is 

represented by a mathematical function and distributed to a set of weights. 

Weights act as parameters of the mathematical function, but have no 

meaning by themselves which makes it rather difficult to assign credit or 

blame to an individual weight. Adaptive combiners ignore the reasoning 

characteristic an intelligent system must have and concentrate on the 

performance. The recursive least squares algorithm is employed for the 

estimation of the weight vector.

Figure 7b illustrates an adaptive linear combiner where xT(k) is the present 

set of attribute values, w(k) is the weight vector and y(k) is the estimated 

combiner output. From Figure 7b, the estimated output is,

The error can be expressed in terms of the desired class value, y(k), and the 

estimated output, y(k) as follows,

m =  m -  m
The RLS algorithm is used to adjust the weights in order to minimise the 

mean squared error. It has been shown24 that the optimal weights, W„rf are 

given by the Wiener solution,

e l - al1 Kopt xx xy

where jj)  ̂is the auto-correlation function of x and (j)xy is the cross-correlation 

function of x and y. In the RLS algorithm25, the present weights, w(k) may be 

expressed in terms of the previous weights by,
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JJ$ ) = ^ - 1 )  + Z~\k)&(k)e(k)
X X

where is an estimate of <(>,« given by,

I  = E r f ( n )
n-0

r^Ck) can be expressed in terms of a standard matrix identity by,

£'(*) = £ (* -1 ) -

This form of RLS has an infinite memory. In other words, the weights are 

functions of all the training examples. It is useful to introduce a forgetting 

factor into the algorithm in order to give greater importance to the recent 

training examples than the old ones. One way of accomplishing this would be 

to apply a time varying exponential window to the recursions. In this case the 

above equation is modified to,

£ (* ) « t  ( t 'ty - l ) - ——  -----------=------ )

where 0 < X < 1 and usually lies in the range 0.9 < X < 1. It was mentioned 

above tha t adaptive combiners can be thought of as a subset of connectionism. 

The main difference is the fact that the combiners are linear structures and 

cannot be directly applied to non-linear systems. However, the non-linearity 

can be treated by manipulating the attributes, i.e. by using second or third 

order attributes depending on the degree of non-linearity.

4.5 N eural Networks

Following a period of inactivity neural networks (or alternatively neural

67



computing, connectionism, parallel distributed processing) research was 

revived resulting in the development of various types of systems. A historical 

overview of neural research can be found in Pollack26 and an excellent survey 

of the different systems in Lippmann3. Whereas the symbolic approach is 

based on an explicit rule set in order to understand a problem, neural 

networks research targets hard problems (i.e. the ones that eliciting rules is 

hard) so difficult to model that way. One can argue27, that the two approaches 

can compliment each other rather than cancel each other out. For instance, 

for a natural language processing task, parsing sentences may be done by 

symbolic systems and interpretation may involve neural nets.

Neural networks research has been inspired by the way the human brain 

operates but the neural network models are not or even try to be exact 

replicas. Simply, certain similarities exist in terms of the features, the 

connectivity arrangements and the operation. It is the selection of the 

connectivity and operation employed that characterises, to a large extent, the 

type of neural model being used. Although, models differ in detail, each one 

contains the same basic features. A discussion of these common features and 

their relation to the popular Back-Propagation architecture is given below. 

Any neural model contains a number of processing  u n its  (or nodes or 

elements). In the Back-Propagation architecture three types of units exist: 

input (sensory) units, hidden (associative) units and output (response) units. 

Each type of unit exists in a layer. Back-Propagation networks contain one 

input layer, one output layer and one or two hidden layers. A single unit can 

represent a small feature and their distribution over the whole network 

provides a meaningful entity. The role of the hidden units is to translate the
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input patterns into output patterns. The function of each unit is to receive 

in p u ts  (from sensors or other units) and to spread an o u tp u t (to other units 

or to external agents). Unit inputs and output may be discrete, for example 

{0,1} or {-1,0,1} or alternatively they may be continuous undertaking values 

in the interval [0,1] or [-1,+1]. Using the Back-Propagation model a unit can 

receive a number of inputs but it can only produce one output which can be 

distributed to more than one unit. The output of a unit is generated by 

collecting, combining and transforming the inputs. Each unit has associated 

with it a com bining function, a tran sfe r function  and a set of w eights 

(See Figure 8). The weights define the influence of an input, the combining 

function combines the inputs and the weights and the outcome is passed to 

the transfer function which determines the output. The most common 

combining function, and the one used in this work, is the sum m ation  

function  which calculates a weighted sum of all the inputs:

i

where is the weight between unit i of layer (S-l) and unit j of layer (S) 

and Ij is the input from unit i. Other combining functions include the 

maximum function, the minimum function, the majority function and the 

product function. A number of transfer functions are available (Figure 9), for 

example, the step, tangent, linear and sigm oid (logistic) functions. With the 

linear transfer function the outcome of the combining function is distributed 

without alteration whereas with the sigmoid the outcome is transformed to 

a value between 0 and 1 (i.e. a high and a low saturation limit).
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Figure 8 : Calculation of the output of a neuron
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Figure 9: Sample transfer functions
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Figure 10: General architecture of a 3-layered feedforward neural network
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O r   ----------J  tttb y m
£  OV*+ej>

1-e *

where Oj is the output of a unit and 0j is the weight from a unit that is 

always on (i.e. holds the values of one). This is referred to as the b ias and is 

used in order to offset the origin of the transfer function. The p a tte rn  of 

connectiv ity  determines those units that the outcome is passed on. The 

outcome can be passed to units in the preceding, the following or even the 

same layer. With the Back-Propagation architecture connections are 

permitted only between successive layers (feed-forward). Additionally it is 

fully connected which means that all units of a preceding layer are connected 

to all units of the succeeding layer (Figure 10). Connectivity, once established 

cannot change. Having established the basic architecture of a neural model, 

it is important to understand how one can use the net for learning. The 

overall objective is the formation of a set of optimum weights in order to 

minimize the global error. For complex problems it is rather difficult to pre

set the weights.Therefore they have to be generated using a lea rn in g  

m ethod. Three types of learning exist: unsupervised, supervised and 

reinforcement. Supervised learn ing  is the one used with Back-Propagation. 

This way the net is presented with inputs and also with the desired output. 

Each learning method implements a number of algorithms which determine 

the way the weights change. These algorithms are known as le a rn in g  ru les. 

Back-Propagation networks employ the e rro r  p ro p ag atio n  ru le 28 (or 

generalised delta rule). This rule bypasses the credit assignment problem (i.e. 

which unit is to blame for an incorrect output) by distributing blame to all 

units. The term global e rro r  was mentioned previously without actually
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specifying it. The global error is defined as half the sum of the squares of all 

the local errors and is given by:

* k

where the subscript k indexes all examples of the training set and

dr ° t

is the local e r ro r  which is defined as the difference between the actual 

output ok and the desired output dk. A gradient descent rule, using the 

knowledge of the local errors, determines how to increment or decrement a 

current set of weights:

A Wf1 =lcoef*ef

where Icoef is a learning coefficient which determines the rate of learning. 

Since there is no exact knowledge of what a desired output of a hidden unit 

should be the local error of a hidden unit is calculated using:

^-^(LO-X^E e£+1X +11 
*

where k is over all nodes in the layers above node j. Now a sum m ary of the 

standard back-propagation learning can be given.

(i) Present inputs to the input layer.

(ii) Calculate the output of each unit.

If a unit is in the input layer no transformation takes place but sometimes 

scaling might be necessary. Otherwise the sigmoid function is employed.

(iii) Calculate the local error for each unit in the output layer. Then calculate 

the required changes to the weights and update all corresponding previous

74



weights.

(iv) Calculate the local error for each unit in the layers below the output 

layer. Then calculate the required changes to the weights and update all 

corresponding previous weights.

(v) Repeat until the desired global error has been achieved.

The error-propagation learning rule has been used successfully in numerous 

applications but it has to be realized that it can also fail. Failure can arise 

due to non-convergence. Rumelhart et al28 have reported tha t a neural 

network failed sometimes to converge during learning of the exclusive or task. 

The convergence process sometimes gets trapped in a local minimum and the 

network cannot produce the desired response. Additionally, there are many 

parameters that have to be pre-set without any prior knowledge of their 

probable values. For example, the required number of hidden units or the 

value of the learning rate. Despite that back-propagation is not error free it 

has been very popular and this led to the invention of several improvements 

to the standard algorithm. For example, weight decay and the addition of the 

momentum term. With weight decay the value of each weight of the network 

is reduced after each run (all input patterns or one input pattern) therefore 

only often repeated patterns are learned. The momentum term takes into 

account the previous weight changes effectively filtering out large variations 

of the error surface. The gradient descent rule becomes

A =lcoef*ef3 + mom * A 11

where mom is the momentum constant that determines the effect of past 

weight changes.

Neural nets are mainly developed on conventional serial computers. The

75



software for the neural net simulation can be written using programming 

languages like Pascal or C or another option is to use a spreadsheet. Another 

way is to purchase neural network demonstration systems which accompany 

books. For example, the books by Aleksander and Morton30 or McClelland and 

Rumelhart31 include software which can be used as a tutorial of the book or 

as a stand alone. Alternatively one can purchase commercially available 

neural network programs (or shells) such as NeuralWorks (Recognition 

Research), BrainMaker (California Scientific Software) and NeuroShell (Ward 

Systems Group). These shells allow the users to experiment with a number 

of network architectures and the values of the various parameters, they offer 

built-in input/output facilities (e.g. they can import data from spreadsheets 

or databases), and they provide various statistics (e.g. the change of a 

particular node). Because it can take several hours or days to train  a large 

network (large in terms of connections), it is beneficial to use a serial 

computer with add-on accelerator boards capable of performing fast 

arithmetic operations and a large storage memory.
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Chapter Five

Com parison of M achine Learning Techniques

Eureka, Eureka 

Archimedes
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5.1 Introduction

The previous chapter introduced the three paradigms (ID3, adaptive 

combiners, neural networks) which have been used and compared as 

knowledge elicitation tools in this work. As a result of the protocol analysis 

the tuning of the filter was divided into two primary tasks. Namely, the tasks 

of tuning the stopband and passband regions. Additionally, it was established 

that only the two trimmer capacitors were used for the stopband region. In 

this chapter results are presented only for this region but the conclusions 

apply to both regions.

Section 5.2 explains the term example, the nature of the examples used 

initially and the way that the examples were collected. Section 5.3 details the 

initial work using ID3 which resulted in the division of the stopband tuning 

in three knowledge bases (searches). Section 5.4 reports on the comparison 

of the three learning algorithms (ID3, Adaptive Combiners, Neural Networks) 

for each of the three searches. The experiments were performed in order to 

select the classifier that provided good performance with limited training 

data, and to explore the tradeoffs in terms of training and testing time. The 

performance merits of the systems are highlighted together with their 

drawbacks. Suggestions for improving the performance of each technique are 

also detailed. The problems in applying the learning systems to the alignment 

of crystal filters are reported in Section 5.4.7. The comparison led to the 

proposal of employing ID3 for the construction of rules for the first two 

searches and the need for further work for the third search (Section 5.5)
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5.2 Selection  of attributes and generation of 

exam ples

The three techniques function according to a similar principle. They require 

a set of examples, referred to as the learning set. Each example is described 

in terms of attributes, with each attribute in turn specified by a value, 

together with a class identifier. The purpose of the techniques is to determine 

the relationships between the attributes which then can be used for 

classification of other examples. Prior to the generation of the learning set the 

most appropriate attributes were selected. Attributes are the parameters the 

operator uses to extract and interpret information from the response 

characteristic of the filter. Six relevant attributes were identified as having 

strong significance. These were:

(i) Locations of sharp positive peaks of the waveform (Figure 11, 

identified as p i, p2, p3, p4, measured in MHz units - horizontal axis).

(ii) Relative magnitudes of sharp negative peaks of the waveform 

(Figure 11, identified as r l , r2, measured in dBs units - vertical axis).

The attribute selection was based on the transcripts derived form the protocol 

analysis. The operator's reasoning was revealed by sentences such as 

"...arrange these peaks into a more reasonable place" and "...pull tha t peak 

out of the screen". Further discussions with the operator supported the choice. 

The second step was to obtain a set of examples. Since a database of 

examples was not readily available the expert operator was requested to tune 

a number of filters. Prior to each action taken by the operator the attribute 

values were recorded manually, together with the decision taken each time.

82



Gain (dB)
100

sharp negative peak

shar) positive 'peak
7 -5£ -42 -2.8 -1A 0 14 2.8 42 5J6 7 BA

Frequency deviation from 1.4 MHz in kHz

Figure 11: Normalised magnitude response showing the attributes used for the tuning 

of the stopband. The reference frequency of 1.4 MHz is denoted by zero at the 

frequency-axis.
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The decision being the component, direction and distance used or an 

indication that no further tuning was required. This approach has been 

labelled as the tune procedure.

5.2.1 Levels o f classification

A typical tuning process for one filter took the following form

p i p2 p3 p4 r l  r2 decision

1.39934 1.39986 1.40273 1.40310 55 46 C4a0.50 
1.39921 1.39969 1.40269 1.40568 62 26 C7a2.00 
1.39777 1.39945 1.40520 1.40880 60 68 C4c0.25 (U)
1.39788 1.39954 1.40448 1.40800 56 60 C4a0.50 
1.39690 1.39915 1.40638 1.40640 66 66 end

The examples can be interpreted a s :" turn the C4 component anticlockwise, 

half a turn (first example) and no further tuning is required (last example) 

when the attributes have the given values". Three observations need to be 

discussed at this stage. Firstly, each filter’s tuning process leads to a number 

of examples. For the process above this means four examples. Each example 

is considered on its own without taking into account what happened before 

or after. This is known as instance-to-class induction1. Secondly, one has to 

realise that the decision taken by the expert at each step is not the only 

option. Other options could have been followed which probably would had 

resulted in fewer or more subsequent decisions being necessary. This is 

mainly the case for the ’how far to turn’ part and to a lesser degree for the 

other two parts. An infinite number of actions can be taken. This leads to the 

problem that for each filter, myriad routes lead to a tuned position. 

Sometimes though the expert operator realised that a given action was dra

matically wrong, as in example three (3) above. These examples were not 

used in the learning set. Thirdly, it is clear that the first
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example points to four decision levels. The operator recognized that adjustm

ent is needed and then he considered which component to adjust and in which 

direction and by how far.

5.3 In itia l em pirical results w ith ID3

Using the tune procedure twelve (12) filters were tuned resulting in forty- 

seven (47) examples. Thirty-six (36) of these examples were generated using 

the expert operator and used as the learning set. The rest of the examples 

(11) were generated using another operator and were used as the testing set. 

The purpose of testing was to investigate the benefits, if any, of dividing the 

stopband sub-task into a number of search spaces. The configuration of each 

search space, ie. what level of classification to represent, was also examined. 

Four knowledge bases were created employing the learning set and tested on 

the remaining examples. Each knowledge base was developed feeding the 

same examples to ID3 but in a different configuration (Table 3). For example, 

referring to Table 3, configuration 1 had just one search. Each example of the 

training set could then take one of two classes, either end-of-process or 

component I direction I distance. A testing criterion was the number of correct 

or nearly correct answers given by the system when examples from the 

training set were used. Another criterion was the number of rules created. 

The testing results are displayed in Table 4. Some general observations now 

follow:

(i) All configurations except one had similar number of successes for 

the component part.

(ii) Irrespective of the configuration there was total success for the 

direction part.
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Table 3 : Search configurations

Configuration Search 1 Search2 Search3 Search4

1 end,

component

direction

distance

2 end,

component

direction

distance

3 end,

carry-on

component direction distance

4 end,

carry-on

component

direction

distance

Table 4 : Testing results using the four configurations

Config. Number of 

rules

Correct End Carrv 

Compon. Direct. Dist.

1 18 1/3 8/8 1/8 5/8 -

2 22 2/3 8/8 1/8 6/8 -

3 27 3/3 8/8 1/8 1/8 8/8

4 25 3/3 8/8 1/8 6/8 8/8
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(iii) Except for one instance all system recommendations for the 

distance to turn were dissimilar to the operator’s actions. This is a 

problem we encountered later on as well.

(iv) The introduction of the carry-on class resulted in a better 

recognition of the state of a tuned response (i.e. correct end-of-process 

for configurations 3 and 4).

The results demonstrated that it is beneficial to introduce search spaces and 

the "best’ configuration was the one which contained three search spaces:

(i) search space one: to carry-on or to end the tuning process.

(ii) search space two: which component and which direction.

(iii) search space three: how far to turn.

This configuration produced the best success rate but with a relatively higher 

number of rules than two other configurations.

5.4 Com parison of the three paradigm s

For the purpose of comparing the three paradigms a set of examples was 

collected using the "de-tune" procedure. This process involved a systematic 

shift of a tuned response to an untuned one. This procedure missed out the 

heuristics employed by the expert but a more complete set of examples was 

collected. By complete is meant a learning set which

contains most attribute values likely to arise thus eliminating the possibility 

of having only extreme or rare values. This was especially valuable in this 

part of the work in which numerical attribute values were used. This section 

of the work has been described previously2.
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5.4.1 G eneration of de-tuned exam ples

This work employs, as previously, attributes with continuous attribute values 

(i.e. numerical format), and it concerns only the stopband region of the 

response. An algorithmic illustration of the de-tune procedure now follows.

(i) The expert operator was requested to tune the stopband region of 

the filter’s magnitude response.

(ii) The attribute values were recorded, together with the class end-of- 

process.

(iii) The right component (C7) was kept constant a t its optimum 

position. The left component (C4) was turned anticlockwise in steps of 

0.25 revolutions, resulting in eleven examples.

(iv) Steps (i) and (ii) were repeated.

(v) As step (iii), but this time in a clockwise direction (eleven 

examples).

(vi) Steps (i) and (ii) were repeated.

(vii) As step (iii), but this time C7 was turned anticlockwise (eleven 

examples).

(viii) Steps (i) and (ii) were repeated.

(ix) As step (vii) but in a clockwise direction (six examples).

In this way 43 examples were collected for one filter. Six filters were de-tuned 

resulting in a total of 258 examples.

5.4.2 Presentation of exam ples

Previous work resulted in three search spaces for the tuning of the stopband 

(see Section 5.4). The reader should note that the same examples were
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presented to each technique for every search. The examples were introduced 

to the techniques in an incremental fashion. The number of classes were 

different in each search. Search one had two classes (carry-on, end-of-process), 

search two had four classes(C4 and C7 in clockwise and anti-clockwise 

direction), search three had eleven classes (distance to turn). Initially eight 

examples were used in the learning set. They comprised four end-of-process 

and four carry-on examples of the same filter. The latter included those 

examples generated when the components were adjusted to their maximum 

positions in both directions. Then four more examples were introduced, the 

ones generated when the components were turned halfway. Finally the four 

examples which arose when the components were adjusted to their minimal 

positions were presented. For the second and third search the same examples 

were presented but with the carry-on class replaced by either the 

component/direction or the distance respectively. The end-of-process examples 

were replaced by those examples generated with the minimum turn for these 

two searches. At each stage of the procedure the generated set of rules or 

weights was tested against the learning set (SI), the remaining unseen 

examples of the same filter (S2) and the unseen examples of the rest of the 

filters (S3). Finally, the total performance was calculated (TOTAL). Total was 

determined by testing the rules (or the weights) against all available 

examples.

5.4.3 Comparison criteria

Machine learning involves generalising from a set of examples and identifying 

those attributes and attribute values that can be used to discriminate 

between classes. The quality of generalisation depends heavily on the
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selected attributes (sufficient or inadequate ?) and the number of examples 

present. At this stage of the work the hypothesis was that the chosen 

attributes were adequate. However, the number of examples necessary was 

unknown. The objective of the comparison was to identify that technique 

which used the least number of examples in conjunction with a satisfactory 

performance. Note that in using the set of examples, either to learn or to test, 

the assumption was being made that, given a set of attribute values, the only 

correct action is the one defined by the example. The comparison was then 

based on two criteria:

(a) The percentage of examples used in the final learning set and

(b) the predictive accuracy of the final learning set.

5.4.4 Search one com parison

Table 5 shows an example and how it was presented to each technique. The 

exact numbers were presented to ID3 and adaptive combiners. The numbers 

were scaled between zero and one for the neural net. This scaling is reported 

in the literature to be beneficiary3.

Implementing ID3

The following points can be concluded regarding the results obtained using 

ID3 (Table 6). ID3 is seen to be always capable of predicting accurately those 

examples presented in the training set (SI). Furthermore, by taking into 

account the percentage success rate one can conclude that a satisfactory 

generalisation has been achieved with few examples. Introducing extra 

examples seems to improve the generalisation even further. Unfortunately 

this is misleading. Closer inspection of the test results shows tha t the high 

success rate was due to the presence of a large number of carry-on examples.
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Table 5 : Two typical examples and their class representation for each technique 

(search I)

Attribute

Pi P2 P3 P4 Ri r 2 ID3 A.C N.N

1.3875 1.39602 1.412 1.422 55 56 ca

rry

1 1

1.3825 1.3956 1.402 1.423 60 62 end 0 -1

Table 6 : ID3 predictive accuracy (Search I)

Number of learning 

examples

(%) Rate of success on...

SI S2 S3 Total

8 100 82 80 81

12 100 81 80 81

16 100 100 93 94

18 100 100 96 97

t  P denotes a positive peak 
$ R denotes a negative peak
$ SI denotes performance for examples of the training set
$ S2 denotes performance for unseen examples of the same filter
$ S3 denotes performance for unseen examples of other filters
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ID3 predicted successfully the carry-on examples but failed to recognise the 

end-of-process ones, i.e. no true classification. The need arose for more end-of- 

process examples to be introduced in the learning set. Those additional 

examples were taken from the tuning process of another filter. It was found 

that by increasing the learning set to 18 the objective was achieved with a 96 

percent success rate (Row 4 of Table 6).

Implementing adaptive combiners

Obtained results employing the adaptive combiner architecture are displayed 

in Table 7. The performance of the adaptive combiner also tends to improve 

through presentation of extra examples with the performance of the training 

set (SI) being the exception. Unfortunately, like ID3, a large number of end- 

of-process examples were misclassified. Therefore, experiments were carried 

out to investigate if any improvements in tuning by the combiner could be 

obtained by following one or more of the next options:

(a) Varying the forgetting factor.

(b) Re-train the combiner with the same learning set.

(c) Introduce another attribute with a constant value of one. This is 

similar to the biases of back-propagation. It has weights whose values 

are energised by an input of +1.

(d) Introduce further examples of end-of-process.

Im plem enting the first option

The value of lambda (ie. the forgetting factor) was set to values between 0.9 

and 0.97. As the forgetting factor increased the learning of the end-of-process 

examples deteriorated. Oddly, the opposite occurred for the end-of-process 

examples of the training set. With the benefit of hindsight this can be
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Table 7 : Combiner predictive accuracy (Search I)

Number of learning examples (%) Rate of success on...

SI S2 S3 Total

8 87 57 67 67

12 100 77 82 82

16 75 100 91 91

$ SI denotes performance for examples of the training set 
$ S2 denotes performance for unseen examples of the same filter 
$ S3 denotes performance for unseen examples of other filters 
$ Total denotes performance for all available examples
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attributed to the fact that a wide range of responses can be considered 

as tuned. Most likely, the examples of the training set belonged to 

analogous responses slightly different to those of the learning set. 

Im plem enting the second option

The sixteen examples used previously were used again as the learning set. 

Rather than testing on the whole set of examples it was decided to test each 

loop only on the whole set of end-of-process examples. One loop occurs every 

time the adaptive combiner sees all the examples in the training 

set. Re-training stopped when the four end-of-process examples of the learning 

set were recognised as such. This happened after twenty-nine (29) loops but 

still it did not recognise the end-of-process examples of the training set. Then 

the adaptive combiner was tested against the whole set of examples. The 

results were as when the sixteen examples were learned in one single pass. 

The re-leaming of the training set only proved beneficial for the learning set 

and it achieved nothing in terms of generalisation.

Im plem enting the third option

The introduction of an extra attribute which contained the value 1 showed no 

advantages towards learning the end-of-process examples. All end-of-process 

examples were given carry-on classifications.

Im plem enting the fourth option

Because of the sensitivity of the algorithm towards the order in which the 

learning examples are introduced, the new examples were placed between the 

existing ones and not at the end. No changes to the previous results occurred 

when one or two end-of-process examples were presented. Some improvements 

appeared when three end-of-process examples were presented but only for the
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learning set. Some further improvement developed with four and five end-of- 

process examples. This was true for the training set as well. Despite the short 

scale improvements it was concluded that this option on its own does not offer 

any great advantage.

Im plem enting a m ixture o f options

Experiments were carried out to improve the performance of the combiner 

using a mixture of the available options. Table 8 shows the predictive 

accuracy of the combiner when the forgetting factor equals 0.9 and the 

learning set was presented to the combiner 9 times. With this combination 

the misclassification problem was resolved. All the end-of-process examples 

were correctly classified.

Im plem enting an additional option

This option involved the identification of any irrelevant attributes. This work 

was performed by Dr. Mirzai and involved the construction of an attribute 

matrix with 6 (attributes) times 16 (examples) dimension. Then the corre

lation matrix and the eigenvalues were calculated. The generated eigenvalues 

had a small value. This indicated that the problem was overspecified. Two of 

the attributes (the two negative peaks) responsible for the overspecification 

were then dropped. The remaining attributes were also scaled between 0 and 

100. Results obtained with the reduced set of the scaled attributes are 

illustrated in Table 9. It is interesting to notice that the combiner performs 

best when only 8 examples were used. This is mainly due to the fact that 

when a large number of examples from one filter are shown to the combiner 

in the learning mode, it cannot recognise examples of the other filters (S3) 

very well. Also in this experiment the end-of-process examples were
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Table 8  : Combiner predictive accuracy with adjusted parameters (Search I)

Forgetting factor : 0.9 Re-leaming loops : 9

Number of learning 

examples

(%) Rate of success on...

SI S2 S3 Total

16 94 1 0 0 91 92

Table 9 : Combiner predictive accuracy with scaled attribute values (Search I)

Number of learning 

examples

(%) Rate of success on...

SI S2 S3 Total

8 1 0 0 8 8 90 90

1 2 1 0 0 91 84 85

16 94 98 85 87

$ SI denotes performance for examples of the training set 
$ S2 denotes performance for unseen examples of the same filter 
$ S3 denotes performance for unseen examples of other filters 
$ Total denotes performance for all available examples
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recognised.

Implementing neural networks

The work with neural nets concerns layered, feed-forward networks learning 

the classification task by back-propagation. There are some obstacles in using 

neural networks. One does not how many hidden units are required, nor with 

what values to initialise the weights etc. At this stage of the research the 

ease of usage of the technique was mainly explored. The following results 

arose through the use of a three layered (two hidden layers) network, with a 

decision threshold of 0.3, a gain of 0.1 and a momentum term equal to 0.0. 

The algorithm was written in Turbo Pascal and run using a Compaq 386 

personal computer. Each architecture iterated for 500 times irrespective of 

whether convergence happened before the full number of iterations had been 

completed. Each architecture which learned the examples of the training set 

was tested against the unseen examples. The number of hidden nodes for 

each hidden layer was set, arbitrarily, equal to 1 up to 5. Using Table 10, 

where some results are displayed when eight examples were used, various 

points can be made:

■ Irrespective of the architecture there was a 100 per cent success on the 

learning set with an average of 117 iterations.

■ The prediction performance averaged 72 per cent.

■ Ten out of 24 end-of-process examples were mis-classified.

Increasing the training set by four examples showed that:

■ A number of architectures were unable to learn the training set even with 

a 1000 runs. The common entity of these architectures was that the number 

of hidden nodes of the first hidden layer was set to one.
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Table 10 : Neural net predictive accuracy (Search I - eight examples)

(%) Rate of success on the whole set of 

examples (Total)

Neural net architecture

74 6 -1-2 - 1

76 6 -2 -2 - 1

74 6-4-2-1

74 6-1-3-1

74 6-2-3-1

71 6-3-5-1

72 6-4-4-1

74 6-4-5-1

$ Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units



■ The networks that were able to learn the training set took an average of 

109 iterations.

■ The average prediction performance increased as well to 78 per cent (Table 

11).

■ Again the mis-classification rate of end-of-process examples was 50 per cent 

except when the number of hidden nodes in the first layer was four. That was 

irrespective of the number of nodes in the second layer. The best true 

classification was achieved when the (6)-4-4-l architecture was employed. 

Increasing the examples in the learning set to 16 produced fewer archit

ectures able to learn the training set (Table 12). In average it took them 515 

iterations. They also produced an average performance of 93 per cent with a 

misclassification rate of 4 examples out of 24. It became clear that although 

increasing the size of the learning set can improve performance, having the 

right architecture is also important.

5.4.5 Search tw o com parison

Table 13 shows how an example was presented to each technique. 

Implementing ID3

The three learning sets were introduced to the ID3 algorithm. Table 14 shows 

the results obtained. Note that even when eight examples were used the 

prediction rate was acceptable and that the performance did not improve with 

the introduction of further examples. This is probably an indication that 

further attributes are required if better performance was to be achieved. 

Alternatively, a larger number of examples could have been used in the 

training set, but at this stage this was not desirable since the comparison of 

the three techniques using sets of 8,12, and 16 examples was the main task.
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Table 11 : Neural net predictive accuracy (Search I - twelve examples)

(%) Rate of success on the whole set of 

examples (Total)

Neural net architecture

77 6 -2 -2 - 1

78 6-3-2-1

78 6-4-2-1

77 6-2-3-1

78 6-3-3-1

77 6-4-3-1

77 6-2-5-1

77 6-3-5-1

78 6-4-5-1

78 6-4-4-1

t  Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units
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Table 12 : Neural net predictive accuracy (Search I - sixteen examples)

(%) Rate of success on the whole set of 

examples (Total)

Neural net architecture

93 6-4-2-1

91 6-4-3-1

93 6-5-2-1

93 6-5-3-1

93 6 -6 -2 - 1

93 6-6-3-1

93 6-4-4-1

93 6-5-4-1

93 6-3-5-1

93 6-4-5-1

94 6-5-5-1

t  Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units



Table 13 : Four typical examples and the representation of their class using each 

technique (search II)

Attribute... ID3 A.C N.N

Pi P2 P3 P4 Ri r 2

1.372 1.383 1.405 1.415 45 62 C4a -1  0 -1  -1

1.393 1.404 1.412 1.423 54 55 C4c 1 0 - 1  1

1.381 1.392 1.418 1.429 49 52 CjSL 0 - 1 1 -1

1.387 1.398 1.425 1.436 54 49 C7c 0  1 1 1

Table 14 : ID3 predictive accuracy (Search II)

Number of leamine 

examples

(%) Rate of success on...

SI S2 S3 Total

8 1 0 0 1 0 0 8 8 91

1 2 1 0 0 1 0 0 8 8 91

16 1 0 0 1 0 0 8 8 91

$ P denotes a positive peak 
$ R denotes a negative peak
$ SI denotes performance for examples of the training set 
$ S2 denotes performance for unseen examples of the same filter 
$ S3 denotes performance for unseen examples of other filters 
$ Total denotes performance for all available examples
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Implementing adaptive combiners

When the three learning sets, in their original form, were presented to the 

combiner the results were very poor (Table 15). It was thought that the 

combiner needs to encounter examples which can act as reference points. That 

role was played by the introduction of end-of-process examples to the learning 

set, once again. This way the combiners were trained to indicate the end-of- 

process, as well as which screw to adjust and in what direction. As for search 

one, it was found necessary to present the combiner with a reduced number 

of attributes (the four positive peaks) and to scale the values between 0 and 

100 in order to improve the performance. The first training set contained 5 

examples, i.e. one end-of-process plus four examples when the screws were 

mal-adjusted to their maximum positions. Then the examples corresponding 

to the minimum positions of the screws were added to the learning set (i.e. 

9 examples all together) and finally the examples corresponding to the half

way mal-adjustments of the screws plus one more end-of-process example 

were added resulting in 14 examples. The performances of the combiners for 

the three new learning sets are summarised in Table 16. Introducing more 

examples from the same filter resulted in an acceptable performance when 

testing examples from the filter that the training examples were taken from. 

Instability in the learning occurred for examples generated from different 

filters. Again, the combiners successfully recognised all the end-of-process 

examples but their total percentage rate of success was not as high as for the 

ID3 algorithm. The reason behind the much lower overall performance of the 

combiner lies in the low percentage rate of success when examples of other 

filters are tested (S3 - Table 16). It is known that two filters of the same
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Table 15 : Adaptive combiner predictive accuracy (Search II)

Number of learning 

examples

(%) Rate of success on...

SI S2 S3 Total

8 25 35 39 38

1 2 33 33 39 38

16 38 39 38 38

Table 16 : Combiner predictive accuracy with scaled attribute values (Search II)

Number of learning 

examples

(%) Rate of success on...

SI S2 S3 Total

5 1 0 0 93 75 78

9 1 0 0 93 81 83

14 93 95 58 64

$ SI denotes performance for examples of the training set 
J S2 denotes performance for unseen examples of the same filter 
$ S3 denotes performance for unseen examples of other filters 
$ Total denotes performance for all available examples
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family are not identical. Tolerandng errors and parasitic effects result in 

different attribute values. It seems that the combiner could not handle these 

situations while the selected attribute cut-off values and therefore lines using 

ID3 divided the 6-dimensional space properly.

Implementing neural networks

The three layer networks produced an average performance of 76 per cent 

with a (6)-3-3-2 architecture gaining the highest performance (80% with 8 

examples). Note that adding an extra node to either layer did not produce a 

better performance. By increasing the examples the performance improved 

with architecture 6-5-3-2 reaching the highest performance (92%) using 16 

examples. Irrespective of the number of examples and number of nodes used 

the nets produced a better performance for the direction to turn  rather than 

the component to be used. Table 17 displays a sample of results.

5.4.6 Search three com parison

Table 18 shows the way that examples were presented to the techniques. 

Implementing ID3

Problems arose when ID3 was implemented for search three. It is not 

reasonable to expect a prediction of, say, 2.25 when only examples with 0.25 

and 2.75 classes were presented. This implied the necessity of a large training 

set consisting of all examples of one filter. However, due to the large number 

of classes (11) together with the relative small number of examples (43), the 

problem of bushy, unstructured decision trees arose. This resulted in a very 

poor performance. Even the introduction of a larger training set would not 

ensure success. The ID3 algorithm was originally constructed to deal with 

binary classification and it seems that better performances are achieved with
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Table 17 : Neural net predictive accuracy (Search II)

Number of examples (%) Rate of success on...

SI Component Direction Architecture

8 72 72 98 6-4-3-2

8 80 80 97 6-3-3-2

8 77 77 98 6-3-4-2

1 2 77 77 98 6-3-2-2

1 2 81 81 97 6-3-3-2

1 2 74 74 97 6-5-5-2

16 93 93 98 6-5-3-2

16 92 92 97 6-8-4-2

16 87 87 97 6-3-3-2

$ SI denotes performance for examples of the training set
$ Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units



Table 18 : Representation of class for each technique (search III)

ID3 Class Adaptive combiner Neural network

0.25 0.25 0 0 0  1

0.50 0.50 0 0  1 0

0.75 0.75 0 0  1 1

1 . 0 0 1 . 0 0 0  1 0 0

2 . 0 0 2 . 0 0 1 0 0 0

2.75 2.75 1 0  1 1
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a low number of classes. The inability of ID3 to perform successfully when a 

large number of classes are present was the main factor in deciding to split 

the tasks into three separate searches, as reported previously. 

Implementing adaptive combiners

The main advantage of the combiner and neural net architecture over that of 

ID3 is due to their capability of producing continuous output. For this search 

space experiments were carried out with the original learning sets. When the 

reduced set of attributes and the scaled values were used the combiner 

performance improved. Notice that end-of-process examples were used once 

again. The combiners were trained on the exact values of mal-adjustments for 

both screws. Figures 12a and 12b show the correct mal-adjustment levels for 

screws C4 and C7 respectively. Figures 12c and 12d illustrate the output of 

the combiners when 5 learning examples were used. Figures 12e and 12f 

show the same outputs when 9 learning examples were used and finally 

figures 12g and 12h show the outputs with 14 learning examples. With this 

limited number of examples the combiners have managed to reach the desired 

outcomes (Figure 12g and 12h) although not to 100 per cent accuracy. In 

order to improve the performance of the combiner for this search space, it 

would be necessary to include learning examples generated when both screws 

are mal-adjusted together.

Implementing neural networks

Unfortunately, the three layer network did not produce very good results even 

when a large number of nodes were used. For that reason when over one 

hundred nets were run further investigation was suspended. An interesting, 

and somewhat predictable, fact arose with the use of the nets. Increasing the
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Figure 12: Output of the combiners (Search III)
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hidden nodes drastically improved (Table 19) the performance for each 

individual node. The nets had started to behave as ’look-up’ tables.

5.4.7 Problem s encountered

The experiences gained in implementing the three techniques are presented 

in terms of learning, testing and learning refinement. This work has been 

published4.

During the learning phase various problems arose due to the structure of the 

training set. To improve the adaptive combiner performance it was necessary 

to manipulate the attribute set. The manipulation took the form of scaling the 

attribute values and/or the elimination of certain attributes. The scaling of 

the attribute values was important. Without proper scaling an ill-conditioned 

problem was created in terms of the auto-correlation matrix in the RLS 

algorithm5. It was possible to find if the problem was ill-conditioned by using 

eigenvalue analysis6. Initial work with neural networks and ID3 employed 

examples generated while tuning a number of filters. When both techniques 

were tested using unseen examples ID3 performed better. Neural nets failed 

to classify correctly a number of test examples. Those examples contained at 

least one attribute with a value previously found in an example with a differ

ent classification. Because of the large range of numerical values each 

attribute can take, a different set of learning examples was required which 

included all likely values or the extreme values (i.e. m axim um  and 

minimum). This was also necessary when using the adaptive combiners. 

Another obstacle was that learning with neural nets was time consuming. 

Additionally, unlike adaptive combiners or neural networks which can provide 

continuous output ID3 had to be presented with examples covering all eleven
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Table 19 : Neural net predictive accuracy (Search III)

Number of 

examples: 39

Number of correct predictions 

on node..

Architecture

1 2 3 4

2 0 0 0 0 6 -1-3-4

25 3 6 0 6-2-3-4

2 1 2 2 5 0 6-4-5-4

29 28 16 8 6-20-10-4

23 16 9 3 6-10-20-4

t  Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units



classes for the third search. The large number of classes meant that the 

examples were less representative with the consequence of poor performance. 

Another problem was the inability of ID3 to mix numeric and symbolic 

attribute values. This created a problem during testing as will pointed out 

later.

Testing the rules generated by ID3 was more time consuming than testing 

the two other techniques. More importantly, though, was that in running the 

ID3 algorithm, examples with unknown attribute values could not be used 

when numerical values were employed. A notation to indicate tha t an 

attribute value was not significant was available but not to indicate that an 

attribute value was unknown. It was then impossible to use both numeric and 

symbolic descriptions for an attribute. If at any point an attribute value was 

requested and this value was unknown then the system failed completely. 

Using the other two techniques this could not happen. Unknown values were 

presented with a constant. During testing the combiner or the net did not 

perform appropriately but they did not fail.

The presentation of attributes holding numerical values to ID3, caused the 

following problem. The enlargement of the learning set resulted in a slight 

change of the threshold values of the decision tree. This led to different 

classifications of a number of testing examples. In addition the presentation 

of new examples, resulted to new attributes being introduced or old attributes 

being excluded from the newly generated decision tree. Therefore the 

architecture of the decision tree generated by ID3 is dependable on the 

examples of the training set. The introduction of further examples to the 

adaptive combiner or the neural net did not alter the architectural structure
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but strengthened or weakened the individual weights.

5.5 D iscussion o f the com parison resu lts

Although the three techniques are different, a comparison was possible. The 

main difference between the three techniques, apart from the algorithmic 

approach used, is that adaptive combiners and neural nets learn in an 

incremental fashion while ID3 sees all the examples a t the same time. ID3 

performed slightly better than the other two for the first two searches. For 

the third search ID3 failed significantly. The use of ID3 for the first two 

searches was elected. The decision was based on the following advantages of 

ID3, as seen by the author.

V An expert system cannot ever be completed. Such systems should expand 

their knowledge through time. The augmentation of the learning set by 

presenting new examples demonstrated that running ID3 was faster. Neural 

networks took a long time to train. Some architectures took up to 17 hours 

to train.

V ID3 always gives correct predictions for the examples used in the learning 

set. This is not guarantee with the other two techniques.

V ID3 generated decision trees which can be transformed into production 

rules. These rules can be used directly to explain the relationships between 

the attributes and the decisions made. With weights a direct explanation is 

not feasible. Some work towards this has been reported7,8.

V ID3 gave slightly better results with less manipulation of parameters and 

without the need to worry about the order of introduction of the examples. 

With adaptive combiners a lot of time was spent in experimenting with 

parameters. The problem with neural nets was the absence of any theory for

113



determining the architecture.

From the preceding sections it can be inferred that the adaptive combiner 

performed well for the third search. At the moment the discussion about the 

third search will be suspended. The next chapter introduces the way the ID3 

problems were resolved.

5.6 Conclusions

The tuning of the stopband and the passband regions were to be treated 

independently. It was decided each region to be divided into three search 

spaces. The comparison of the three algorithms led to the use of ID3 for the 

first two search spaces of both regions. Furthermore, it was decided to 

research further the use of neural networks for the third search in the future.
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Chapter Six 

Further Work With ID3
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6.1 Introduction

During the comparisons of the performance of the three classifiers no attempt 

was made to achieve high performance but experience gained through the 

experiments was employed at a later stage. The representation of the input 

examples, of the output descriptions and the available knowledge (i.e. number 

of examples) influence the success of any machine learning system. Using ID3 

in particular the actual learning time is negligible (a m atter of seconds) but 

the most critical and time consuming part is the one of example selection. 

Chapter 6 presents the work taken to identify the attributes and their 

format to be used for each search.

The use of attributes with logical values was selected mainly for two reasons:

■ A substantial set of examples was generated but when the attributes had 

numerical values huge possible combinations between attribute values were 

missing.

■ The unsatisfactory performance with numerical valued attributes when 

testing with unseen examples.

6.2 ID3 problem s

The employment of the de-tune data for the comparison of the three 

techniques, as described in the previous chapter, served the purpose of 

comparing machine learning techniques. The ID3 technique was selected for 

the first two searches. Problems arose due to the use of numerical attribute 

values. This resulted in a problem associated with the cut-off point. The 

algorithm produced rules of the form *if attribute X  is less than cut-off point 

Tthen...’. The cut-off point, which took values such as 1.39765, was calculated
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by using those values that were currently present in the learning set. The 

introduction of more examples would probably result in different cut-off 

points. But in the filter tuning task values such as, say, 1.39765 and 1.39766 

can be considered as same whereas the ID3 algorithm regards them as two 

different entities. Therefore it was important to develop a way of relating 

values that were close.

Using the de-tune data one could attempt to generate the whole set of 

possible examples and then present it to the algorithm. It was though the 

intention from the start to use data generated through the tune procedure. 

This way the expert’s knowledge was to be utilised. Unfortunately it was 

impossible to produce an entire set of examples since these examples should 

have included every possible numerical value each of the attributes could 

have taken.

Problems using ID3 as stated above had to be solved before proceeding any 

further. In this chapter a report is given on results obtained in an attem pt to 

identify any advantages in using one attribute presentation form over 

another. The investigation involved the evaluation and comparison of decision 

trees produced by using logical and numerical attribute values for the first 

two searches. This work has been reported elsewhere as well1.

6.3 Further selection  of attributes and  

generation of exam ples

It was considered that the inclusion of further attributes might be helpful in 

order to decrease the number of empty and/or clash situations. In total seven 

more attributes were introduced. These took the form of the six differences
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between positive peaks, for example peakl-peak2, peak3-peak4, and the 

difference between the two negative peaks. These attributes were introduced 

because not only the position of each individual peak was regarded as 

important but also the peak’s position in relation to where the rest of the 

peaks are. A new set of examples was collected. This time the tune procedure 

was employed. Therefore, the operator was requested to time a number of 

filters and the data were recorded as previously. In this way 34 filters were 

tuned (only the stopband) resulting in 138 examples.

6.4 G eneration of logical values

Schemes have been proposed2 which attempt to define supplementary 

cutpoints for each cut-off point. Producing such confidence intervals enhances 

the classification of examples with values near the cut-off points. An alternat

ive scheme was followed in this work. Instead of using the raw numerical 

values a transformation was applied. The numerical values were placed into 

ranges which were given logical names. The term logical is borrowed from the 

ID3 literature and simply means a linguistic term, similar to fuzzy predicates 

of the fuzzy set theory3. Due to the absence of a priori knowledge for 

determining the ranges within which attribute values must lie for the filter 

to be considered timed, the membership was calculated as below:

■ Collect all those examples with an end-of-process as their class

■ Calculate the mean (m) and the standard deviation (sd) value of each 

attribute.

■ For each attribute determine the range (m-sd.m+sd). This range 

represents all those numerical values an attribute can have and be 

considered to be tuned. Label the range as ’ok’.
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■ Determine the rest of the ranges. For example values within (m- 

2sd.m-sd) are labelled ’close-left’ etc. (Figure 13)

That way 8 (ok, far-left, far-right, close-left, close-right, left, right, absent) or 

4 (ok, left, right, absent) logical values were generated and assigned to each 

numerical value. Note that the eighth (or the fourth) logical value takes the 

label ’absent’. This label was used when a value for an attribute could not be 

determined (ie. absence of a peak) and not because it was unknown. This way 

three attribute formats were available for each search space (ie. numerical, 

8-logical, 4-logical).

6.5 Criteria for the evaluation o f decision  

trees

The evaluation and comparison was based on the following criteria.

(i) Percentage errors on classifying unseen examples

(ii) Number of branches in the decision tree

(iii) Number of rules in rule base

(iv) Number of clash labelled leaves

(v) Number of empty labelled leaves

(vi) Total number of preconditions in rule base

The first criterion assessed the performance of a decision tree in terms of 

accuracy on classifying unseen examples. This indicated how good the 

generalisation was (i.e. predicting future performance). The rest of the criteria 

are of secondary importance and can be applied in order to determine the 

complexity and intelligibility of a decision tree. Figure 14 displays a decision 

tree and Table 20 the equivalent set of rules. They both illustrate the terms
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Figure 13: Distribution of logical values. The left hand side shows the distribution of 
the 8  logical values (the 8 th logical value is absent). The right hand side shows the 
distribution of the 4 logical values (the 4th logical value is absent).
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Figure 14: Subset of a decision tree generated with four-valued logical attributes
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Table 2 0  : Set of rules produced using the decision tree of Figure 14

IF d3 is absent 

AND pj is absent 

THEN class is carry-on

IF d3 is ok 

AND d7 is ok 

THEN class is end

IF d3 is absent 

AND p2 is left 

THEN class is carry-on

IF d3 is ok AND d2 is 

left

THEN class is end

IF d3 is right 

THEN class is end

IF d3 is left THEN class is 

carry-on

Table 21  : Configurations key

Config.

Number

Description Number of 

attributes

Attributes used

F I numerical attributes 13 Pi* *P4

F 2 4  logical-value attributes 13
rl**r2

d,..d7
F 3 8  logical-value attributes 13

F 4 numerical attributes 6 Pl**P4

F 5 4  logical-value attributes 6
rl**r2

F 6 8  logical-value attributes 6
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6.6 Presentation of tuned exam ples

The object of this part of the work was the identification of the ’best’ 

configuration for the first two search spaces. By configuration is meant the 

choice of attributes to be used and their format (ie. numerical or logical). The 

six configurations used are summarised in Table 21. To test how well the six 

configurations measure up to the criteria, the available examples were 

divided into three randomly chosen batches. The first batch included 42 

examples, the second 43 and the third 53. Initially, the first batch was used 

as the training set and the other two as the testing set (Test 1). That was 

followed by introducing the second batch to the training set which was then 

tested against the third batch (Test 2). Both tests were evaluated for all 

configurations for each search space. In total, thirty six decision trees were 

generated, viz. eighteen per search space (Figure 15).

6.7 Evaluation of results and d iscussion  

(Search One)

Percentage errors on classifying unseen examples

Table 22 shows the results for each configuration for both tests, expressed as 

the percentage error of mis-classification. Observing Table 22, one can 

establish the following:

(i) All performances, but one, improve as the size of the training set increases.

(ii) The amount of classification improvement varies between configurations. 

Trees generated using logical value attributes seem to perform better than 

those produced using numerical ones. The drawback of numerical value

124



Table 22 : Misclassification errors (Search I)

Configuration Test-1 

(% error')

Test-2 

(% error')

Classification 

improvement (%)

FI 42.7 41.5 1 .2

F2 31.3 2 2 . 6 8.7

F3 2 0 . 8 28.3 -7.5

F4 42.7 41.5 1 .2

F5 31.3 26.4 4.9

F6 27.1 2 2 . 6 4.5

$ Test 1 denotes one learning set of data and two testing sets 
$ Test 2 denotes two learning sets of data and one testing set
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decision trees is their inability to handle examples with absent attribute 

values.

(iii) Upon increasing the number of attributes no major differences were noted 

with configurations F5 and F6 in terms of improvements in their 

classification capabilities.

(iv) With thirteen attributes one can see that the performance improves 

further with the F2 configuration.

Number of empty labelled leaves

For the algorithm to be effective, the number of situations where knowledge 

(i.e. examples) has not being provided and hence nothing can be learned must 

be kept to a minimum. To illustrate the concept of emptiness consider Figure 

14. Such a situation arises when attribute D3 takes the value absent. If that 

is true then attribute P I has to be considered. When P I takes the value right 

then the system will respond with the message empty, indicating the lack of 

knowledge of what to advise. If the number of empties is large, the 

performance will be poor when testing with such examples.

For each of the six configurations three decision trees were generated by 

increasing the learning set with the addition of the third batch. Table 23 

shows the results. It is worth noting the following:

(i) When numerical values are used there are not empty situations.

(ii) Increasing either the number of attributes (from 6 to 13, compare 

configurations F4, F5, F6 versus FI, F2, F3 respectively), or the number of 

logical values each attribute can take (from 4 to 8, compare configurations F2, 

F5 versus F3, F6 respectively), an increasing number of empty situations is 

generated. The reason is that the use of a large number of attributes or
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Table 23 : Number of empties per configuration (Search I)

Configuration Test-1 Test-2 Test-3

FI 0 0 0

F2 6 15 29

F3 16 6 6 1 0 0

F4 0 0 0

F5 6 14 24

F6 2 0 58 69

Table 24 : Number of clashes per configuration (Search I)

Configuration Test-1 Test-2 Test-3

FI 0 0 0

F2 0 3 2

F3 0 3 2

F4 0 0 0

F5 0 4 8

F6 0 4 6

$ Test 1 denotes one learning set of data and two testing sets
$ Test 2 denotes two learning sets of data and one testing set
$ Test 3 denotes three learning sets of data
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attribute values rendered the learning set less representative and nothing 

was gained by the introduction of further examples.

Number of clashes

Similarly, the number of clashes has to be kept to a minimum. A large 

number of clashes indicates the need for the introduction of further attributes 

or examples for the algorithm to be able to discriminate between examples. 

A situation where the system will respond with the message that clash is 

present, it is illustrated in Figure 14. It occurs when attribute D3 takes the 

value ok and attribute D7 is assigned the value right. The configurations were 

tested as before and Table 24 shows the results obtained. Notice the 

following:

(i) The absence of any clashes when numerical values are used is noticeable. 

This was to be expected. By definition, a clash occurs when two (or more) 

examples have the same attribute values but are classified differently. This 

is unlikely to occur when numerical values with six significant figures are 

employed.

(ii) When the number of attributes is kept small the introduction of more 

examples results in an increase in clashes, (iii) When the number of 

attributes is increased, the number of clashes tends to stabilise, irrespective 

of the number of values an attribute takes.

Number of nodes

Large, bushy trees reduce the intelligibility of the results and increase the 

execution time. Table 25 shows the results obtained when testing the six 

configurations. No attempt was made to perform any kind of pruning4 or to 

compare various selection criteria5. The following observations can be made:
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Table 25 : Number of nodes per configuration (Search I)

Configuration Test-1 Test-2 Test-3

FI 3 11 23

F2 2 1 45 77

F3 33 105 161

F4 3 13 23

F5 2 1 45 69

F6 41 97 1 2 1

Table 26 : Number of preconditions per configuration (Search I)

Configuration Test-1 Test-2 Test-3

FI 2 18 51

F2 2 1 53 106

F3 23 65 132

F4 2 19 37

F5 2 1 45 6 6

F6 31 57 84

$ Test 1 denotes one learning set of data and two testing sets
t  Test 2 denotes two learning sets of data and one testing set
$ Test 3 denotes three learning sets of data
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(i) Decision trees generated using numerical attributes produce a smaller 

number of nodes, irrespective of the number of attributes used.

(ii) Using logical attributes created much larger trees, especially when the 

number of attribute values increased.

Number of preconditions in rule base

This criterion has been suggested6 in order to measure the generality of the 

entire set of rules. It has been mentioned that any decision tree can be 

transformed into a set of rules. For example, in Figure 14 the rule i f  D3 is 

absent and P2 is absent then carry-on can be extracted from the decision tree. 

This rule has two preconditions. The total number of preconditions in the rule 

base can then be measured. Table 26 shows the results obtained. A list of 

remarks now follows:

(i) As the number of examples in the learning set increases, the total number 

of preconditions increases as well, resulting in less efficient execution timing. 

This is true irrespective of the number of attributes used but the rate of 

increase is smaller when the number is kept small.

(ii) Increasing the number of values of the attribute resulted in a greater 

number of preconditions. This was anticipated since the algorithm has no 

means of determining if it is necessary to branch for all defined values of an 

attribute. Perhaps, in some cases various attribute values are relevant, yet 

the rest may not be.

Number of rules

Every leaf of a decision tree corresponds to a rule of the form i f  X I  and X2 

and... and Xn then Y  where the X’s are the branches and Y is the class of the 

leaf. By measuring the number of rules extracted from a decision tree the
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goal of achieving the minimal set of rules representing the domain was 

reached. Table 27 shows the results obtained by transforming each tree to a 

collection of rules. The following comments can be made:

(i) It appears that the introduction of extra attributes, as in configurations 

FI, F2 and F3, diminishes any benefits (i.e. in most tests more rules were 

generated).

(ii) Noticeable are the identical results obtained when numerical attributes 

are used (FI, F4), whereas the difference in the number of rules when logical 

attributes are used was minor.

(iii) Comparing the results with a view to the attribute format one can deduce 

that numerical attributes produce less rules than logical attributes. The rate 

of increase of the number of rules though was much greater as the number 

of examples increased. For example, considering the F I and F2 configurations 

(both have 13 attributes) one can see that the number of rules of F I tripled 

(200%) from test-1 to test-2 and doubled (100%) from test-2 to test-3 whereas 

the number of rules of F2 increased with a lower rate (60 and 56.25 per cent) 

in both tests.

(iv) Decision trees generated using logical attributes with four values produce 

less rules than when eight logical values were used. This became more 

significant as the learning set expanded.

The reader should note that since the introduction of the algorithm the 

transformation of a decision tree to a set of rules has received much 

attention. The objective of the proposed schemes7,8 is to produce a minimal set 

of rules, which in turn affect the number of preconditions and nodes, but in
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Table 27 : Number of rules per configuration (Search I)

Configuration Test-1 Test-2 Test-3

FI 2 6 1 2

F2 1 0 16 27

F3 13 23 39

F4 2 7 1 2

F5 1 0 16 2 0

F6 16 23 31

$ Test 1 denotes one learning set of data and two testing sets
$ Test 2 denotes two learning sets of data and one testing set
$ Test 3 denotes three learning sets of data



this work the results discussed were obtained using the primitive transf

ormation.

6.8 Selection  of configuration for search one

Taking into account all the criteria with equal weighting attached to each 

suggested the use of numerical attributes since they produced smaller trees 

with fewer clashes etc. However, the most important criterion of percentage 

errors in classification of unseen examples, showed the use of numerical 

values to be unsatisfactory. The mis-classification error of approximately 42 

percent was too large to be ignored. The use of logical values resulted in a 

more acceptable error rate. It was necessary to select between the choice of 

6 or 13 attributes. There was not much difference between their performances 

as far the secondary criteria were concerned but the use of F2 almost doubled 

the classification improvement. Therefore F2 was selected as the most 

promising configuration. Notice that though the performances using logical 

values based on the secondary criteria were not satisfactory these can (and 

were) improved, as is reported in the following Chapter. In conclusion, the 

tuning of the first search of the stopband was to be achieved by using the 

location of the peaks and their differences as attributes. Each numerical value 

was to be assigned one logical value out of four.
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6.9 Evaluation o f results and discussion  

(Search Two)

Percentage errors on classifying unseen examples

Table 28 shows the results for each configuration for both tests, expressed as 

the percentage error of mis-classification. From the table, the following can 

be established:

(i) All performances, except the ones with 4 logical values, improve as the size 

of the training set increases.

(ii) The minimum mis-classification error can be found at both configurations 

with 8 logical values.

(iii) The amount of classification improvement varies between configurations. 

Trees generated using 8 logical value attributes have slightly higher average 

performance than the ones produced using numerical attributes.

(iv) The initial error (i.e. column one) for the 8 logical configurations is 

considerably smaller than the error when using numerical configurations.

(v) Comparing with the counterpart results of search one (Table 22) the error 

is much higher. The main contributor to the error is due to the choice of the 

component. The direction was given right 50 per cent of the time which might 

have been achieved by pure chance. It seems that by increasing the number 

of classes generates worse results, hence the need for a larger training set. 

Number of empty labelled leaves

For each of the six configurations three decision trees were generated by 

increasing the training set with the addition of an extra batch each time. The 

following comments can be made using Table 29.
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Table 28 : Misclassification errors (Search II)

Configuration Test-1 Test-2

FI 77.5 68.5

F2 60.6 68.3

F3 66.9 56.1

F4 80.3 65.9

F5 56.3 61.0

F6 70.4 56.1

i  Test 1 denotes one learning set of data and two testing sets 
$ Test 2 denotes two learning sets of data and one testing set



Table 29 : Number of empties per configuration (Search II)

Configuration Test-1 Test-2 Test-3

FI 0 0 0

F2 8 24 31

F3 26 71 137

F4 0 0 0

F5 9 24 29

F6 26 87 124

Table 30: Number of clashes per configuration (Search II)

Configuration Test-1 Test-2 Test-3

FI 0 0 0

F2 1 4 1 0

F3 0 2 9

F4 0 0 0

F5 1 4 1 0

F6 1 3 1 2

$ Test 1 denotes one learning set of data and two testing sets
$ Test 2 denotes two learning sets of data and one testing set
$ Test 3 denotes three learning sets of data
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(i) The numerical configurations did not produce any empty situations.

(ii) All logical configurations generate a considerable number of empty 

situations which increase as more examples are entered in the training set. 

The largest amount is created with 8 logical value attributes.

(iii) Once again an increase in the number of classes generates more empty 

situations, notably for the 8 logical value configurations (compare with Table 

23).

Number of clashes

Table 30 shows the results obtained . The following can be noticed:

(i) There are no clashes of attributes with the numerical configurations.

(ii) Irrespective of the number of attributes used 4 logical values produce the 

same number of clashes for each test. The number of clashes is comparable 

to when 8 logical configurations were used.

(iii) More clashes were generated (compare with Table 24) but the effect of 

increasing the number of classes is not as dramatic as when considering mis- 

classification errors or empty situations.

Number of nodes

Table 31 shows the results obtained testing the six configurations. The 

following observations can be made:

(i) Using numerical attributes the generated tress have a smaller number of 

nodes irrespectively of the number of attributes used.

(ii) Using logical attributes created larger trees especially when the number 

of attribute values increased.
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Table 31 : Number of nodes per configuration (Search II)

Configuration Test-1 Test-2 Test-3

FI 9 2 1 33

F2 25 69 89

F3 49 1 2 1 2 0 1

F4 11 23 37

F5 25 65 81

F6 49 137 193

t  Test 1 denotes one learning set of data and two testing sets
$ Test 2 denotes two learning sets of data and one testing set
t  Test 3 denotes three learning sets of data



Number of preconditions in rule base

Table 32 shows the results obtained. A list of remarks now follows:

(i) Unlike search one (see Table 26) this time numerical configurations 

generated more preconditions as the training set increased in comparison 

with 4 logical configurations.

(ii) Increasing the number of logical values an attribute can take resulted in 

a greater number of preconditions.

Number of rules

Table 33 shows the results obtained by converting each tree to a group of 

rules. The following can be noticed:

(i) The introduction of extra attributes is beneficial only when numerical 

values are used.

(ii) Numerical configurations produce less rules than those in which logical 

attributes are used. The rate of increase though was much greater as the 

number of examples increases. Notably configurations with 4 logical attribute 

values (F2, F5) and F6 configuration seem to stabilise.

6.10 Selection  of configuration for search  tw o

The numerical based configurations were not considered for the same reasons 

as discussed in Section 6.7. Again the selection was between either 4 or 8 

logical values with 13 or 6 attribute values. The use of 8 logical values had 

the better mis-classification error. The employment of six attribute values 

resulted in a better performance as far as the secondary criteria were 

concerned. Hence F6 was selected as the most promising configuration.
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Table 32 : Number of preconditions per configuration (Search II)

Configuration Test-1 Test-2 Test-3

FI 14 57 95

F2 24 85 89

F3 33 93 1 2 1

F4 2 0 64 126

F5 23 72 79

F 6 30 8 6 94

Table 33 : Number of rules per configuration (Search II)

Configuration Test-1 Test-2 Test-3

FI 5 11 17

F2 2 24 25

F3 17 33 41

F4 6 1 2 19

F5 9 2 1 2 2

F 6 16 30 32

t  Test 1 denotes one learning set of data and two testing sets
$ Test 2 denotes two learning sets of data and one testing set
$ Test 3 denotes three learning sets of data
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6.11 D iscussion

The configuration choice for each search was made empirically, as shown 

above. At the same time the configurations chosen seemed to be sensibly 

right. For search one 13 attributes, each with 4 permissible logical values 

were selected. Search two had 6 attributes with 8 allowable logical values. 

Using search one, one tried to discover if further tuning was required so a 

strict testing was required. This is a full-scale approach. It involved not only 

the checking of a position of an attribute but also its relative position to other 

attributes - hence the need for the differences. Using search two, one tried to 

find the combination of component and direction for correcting the position 

of an individual attribute (i.e. one of the peaks) at a time. This can be 

described as a reductionist approach. The outcome influenced the position of 

one attribute and we were not worrying about the effect it will have, if any, 

on the rest of the attributes. Therefore, there is no need for differences to be 

included. The exact position of an attribute is therefore very important and 

8 logical attribute values are needed to provide a fuller description of the 

position.

6.12 Conclusions

It was decided to use linguistic labels for the description of the position of 

each attribute of the magnitude response rather than the raw numerical 

values. The work undertaken showed that hereafter thirteen attributes each 

taking a linguistic label from a set of 4 to be employed for the first search. 

The second search to use six attributes each taking a linguistic label from a 

set of 8.
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Chapter Seven

The Knowledge-base C onstruction

i t aBin iaxa  |ia0T]|iaTa

Greek proverb
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7.1 Introduction

The generation of the decision tree and therefore of the rule set of each search 

is the subject of Chapter 7.

Techniques for decreasing the complexity of a rule set without reducing 

performance are also given. The manual inspection for the identification and 

elimination of rules which will never be active and the erasure of rule 

conditions after testing their relevance using contingency tables were two 

techniques found to be most effective.

The final section details the evaluation of the quality of the rules by 

considering domain knowledge which reinforced belief in the trustworthiness 

of the generated rules.

7.2 Induction of decision tree for the stopband  

region

Three visits to Newmarket Microsystems produced a total of 159 examples. 

These are the same examples employed for the comparison of decision trees, 

as reported in the previous chapter. Twenty one of these were examples 

where the user had realized that the wrong action had been taken. For that 

reason, they were not included in the induction process.

The ID3 algorithm was developed by Quinlan1 for problems associated with 

the game of chess, in particular for endgame knowledge. In the chess domain, 

an entire database of examples was used. In our application it was not feas

ible to generate a complete set of examples. For example, it was not possible 

to ask the operator to place, say, the first positive peak in a Tar left’ position 

and at the same time to have the second negative peak in a ’close right’
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location. The generated tree had to, eventually, analyze unknown examples. 

At that stage of the research, there was no evidence to show that the collected 

examples were sufficient or that they constituted a small sample. Two ways 

to find out are for either the expert to investigate the rules or to test the tree 

against a new set of data. The first way involves the expert looking at the 

selection of relevant attributes and the relationships between them as 

presented by the rules. This was not possible in this study. The choice of 

relevant attributes from an initial set of attributes provided by the expert in 

the first place does not reveal much. Furthermore, the expert was not aware 

of what rules existed anyway, so the rules formed by ID3 were mentally 

uncheckable. Testing against a new sample would have given only an 

indication of the validity of the rules. Also, the indication would have been 

very dependent on the sample. The problem once again is that there were 

many routes towards the goal. It was then decided to test the system on-line 

and to record and observe its performance. The actual testing is reported in 

Chapter 9. An account of work performed prior to the testing in order to 

bypass certain ID3 problems and to optimise the execution efficiency of the 

rules now follows.

7.2.1 M odifying the rule set o f search one

Removing the ’unsuccessful’ examples left 138 examples. The distribution of 

the examples is shown in Table 34.

Prior to the execution of the algorithm a change to the training set was made. 

This involved a reduction of the set of attribute values assignable to the 

fourth positive peak (P4). In particular, all references to the label ’right’ were 

renamed ’ok’. The reasons behind this were that P4 lies to the right side of
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Table 34 Distribution of examples per class category

Class Number of examples

Carry-On 104

End-of-process 34
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the ok-range only a few times (8 out of 138). Also, the objective of the expert 

operator was to place P4 to the far right of the display, irrespective of the 

exact position. The modified example set was fed to the algorithm and a new 

decision tree, incorporating the changes, was generated. It is worth 

mentioning that identical examples were not used. That way the possibility 

of elevating an attributed significance was reduced.

The decision tree had 34 leaves classified as empty and two leaves with the 

clash class (the two terms have been defined in the previous chapter). Before 

continuing any further it was thought to be beneficial to investigate the 

nature of the clashes. This involved finding those examples tha t contributed 

to each clash.

Table 35 displays the two ’dash’ rules. The first clash arose due to the

difference in class of the following two examples.

P I p2 p3 p4 r l  r2 class example
number

1.397269 1.399436 1.40472 - 62 - end 65 
1.397262 1.399425 1.404553 - 58 - carry-on 95

Example 65 reports an end-of-process whereas example 95 a carry-on. It 

became apparent that example 65 was wrongly classified. The operator should 

not have ended the process at that stage. The value of the first negative peak 

(R2) was not identified. Ending a stopband timing process when unknown 

values are present contradicts the existing knowledge. The expert had 

mentioned the need for the two negative peaks to be about the same level for 

the filter to be tuned. This is not possible when one of the values is missing. 

Further class revealed that the expert never terminated a stopband tuning 

if a value was missing. The class of example 65 was then changed to carry-on. 

Another m atter to notice is that example 65 was not used when the ok-ranges
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Table 35 Rules with a clash action

Rule Number: One Two

if d3 is absent if d3 is ok

and pi is ok and p3 is ok

and p2  is ok and r2  is ok

and dl is ok

and r l  is ok

and d4 is ok
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were specified, because of the appearance of unknown values, so there was 

no need to re-calculate the ranges.

The second clash was of a different nature. Ten of the twelve contributing 

examples had an ’end’ outcome. Because of the vast difference (10-2) the 

majority ruled so the classes of the two examples were changed to ’end’. The 

ranges were then re-calculated in order to take into inspection of the rest of 

the examples with an end-of-process account the two examples and the 

transformation of the numerical values to logical values took place again. The 

new decision tree generated 58 rules which determined the class an example 

took. The values were carry-on, end or empty. There were no clash rules 

anymore. Table 36 shows the distribution of rules per class. Work undertaken 

was concerned with the identification and, possible, removal of the empty 

rules. The thirty-three empty rules had in common that the attribute of the 

first if-branch was Diff3. Diff3’s value is calculated by subtracting the first 

positive peak (PI) from the fourth positive peak (P4). In thirty-one rules out 

of 33 Diff3 had the value ’ok’. In order for Diff3 to take this value then both 

peaks (ie. P I  and P4) must be present. Bearing this in mind, each empty rule 

was examined.

Two empty rules were eliminated since they had an additional if-branch 

which stated that PI is absent. This implies that Diff3 cannot be ’ok’ while P I 

is absent, ie. this rule will never apply. Similarly, two more empty rules were 

removed since Diffl is absent appeared in the left hand side of the rule. Diffl 

is calculated by subtracting P I from the second positive peak (P2). In order 

for Diffl to be absent then either P I or P2 or both are absent. If both are 

absent or if P I is absent then Diff3 can never be in the ok-range. If P I is
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Table 36 Distribution of rules per class after elimination 

of clash rules

Class Number of 

rules

Percentage

Carry-on 13 22.41

Empty 33 56.90

End-of-process 1 2 20.69
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present then P2 must be absent. But a further if-branch states that P2 is 

right. Since it is impossible for this situation to arise the empty rules were 

erased.

It was mentioned previously that one rule for determining the continuation

of the tuning is that every attribute must be known. Using this rule 13 empty

rules were initially changed to carry-on rules. Then it was recognised that

they were redundant rules since they can be replaced with a set of rules

which state that if any attribute is missing then class is carry-on.

Furthermore, two more empty rules were eliminated. The reasons for their

dismissal will be explained since these rules demonstrated a drawback of the

ID3 algorithm. One of the rules stated:

if Diff3 is ok 
and P3 is ok 
and Diffl is right 
and R2 is ok 
and DifF4 is absent 
then class is empty

For Diff4 to be absent then either P2 or P3 or both are missing. But P3 is ok

appears as an if-branch, so P2 might be missing. This argument is also

invalid since Diffl is right appears which implies that both P I and P2 are

present. Therefore, P2 cannot be missing, causing this rule to be unnecessary

since all of the conditions can never occur. This is a demonstration of the ID3

problem known as irre g u la r  branching. The algorithm could not possibly

determine that branching for Diff4 is absent is not actually possible. Table 37

presents the new distribution of rules per class.
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Table 37 Distribution of rules per class after elimination of empty rules

Class Number of rules Percentage

Carry-on 18 40.00

Empty 15 33.33

End-of-process 1 2 26.67
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7.2.2 Sim plifying the rule set o f search  one

Tree generation inevitably creates immense decision structures. While 

comparing the various decision trees (see Chapter 6) the number of pre

conditions was used as a criteria of what constitutes a well formed tree 

structure. Work in this section describes how the number of pre-conditions 

was reduced and efficiency was kept at the same level.

There exist two methods of creating an efficient and a t the same time 

understandable decision tree. The first method is known as windowing2. The 

basic idea is to select a small subset of the examples {the window) rather than 

the complete training set. A tree is then generated and the remaining 

examples are tested using the tree. The incorrectly classified examples are 

added to the window and the process is repeated until there are no mis- 

classifications. This technique has been tested in a series of experiments3 and 

it  was found to have some problems of its own. In the filter domain the 

technique was not considered firstly due to the small collection of data and 

secondly due to the presence of noise in the data.

The second method is concerned with the pruning of decision trees. Quinlan4 

proposed and empirically compared four techniques. One technique, 

simplifying the production rules, was proved by Quinlan to be especially 

powerful since it matched or outperformed the rest of the techniques on nine 

out of twelve tests. Therefore this technique was implemented for the tree of 

the first search of the stopband. First, the decision tree was compiled into 

production rules. The extraction of production rules was achieved by following 

a path through the tree to one of the leaves.

The technique will be better explained using an example. As an illustration
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of the process the rule in Table 38 will be considered.

S tep  1 For every condition branch a 2 x 2 contingency table is created. Table 

39 shows the contingency table created for the first condition branch, i.e, 

Table 38, condition 1. The numbers in the cells were obtained from the 

training set. The number in cell a represents the number of examples (of the 

training set) that satisfy the condition (i.e. the entire left hand side) and 

belong to the carry-on class (i.e. the one given by the rule). The number in cell 

b represents the number of examples (of the training set) that satisfy the 

condition (i.e. the entire left hand side) and belong to any other class other 

than the one given by the rule. In this case this means the end-of-process 

class. The number in cell c represents the number of examples (of the 

training set) that belong to the class given by the rule (i.e. carry-on) without 

satisfying the condition (i.e. it is irrelevant what value d3 takes). The number 

in cell d  represents the number of examples (of the training set) tha t do not 

belong to the class given by the rule (i.e. carry-on) and do not satisfy the 

condition (i.e. it is irrelevant what value d3 takes).

S tep  2 Having created the table the necessity of the presence of the condition 

is examined. In other words the effect of its removal on the accuracy of the 

rule is observed. The accuracy, with the condition present is estimated4 as

r t  _ a - 0  . 5
1 a + b

where Ca represents the probability of needing the condition, whereas the 

accuracy, without the condition present is estimated4 as

c  _ a + c - 0 . 5  
2 a+b+c+d

where C2 represents the probability that the condition arose by chance.
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Table 38 A sample rule to demonstrate post pruning

Condition 1 if d3 is ok

Condition 2 and p3 is ok

Condition 3 and dl is ok

Condition 4 and r2  is right

Condition 5 and p2  is right

Condition 6 and d7 is right

Action then carry-on

Table 39 Contingency table for the first condition of rule of table 38

Carry-on class End-of-process class

Keep first condition

a 2 bO

eliminate first condition

c 4 dO
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If C2 > Cj then the condition is dropped, otherwise it is kept. For the above 

example, C1=0.75 and C2=0.917, therefore the condition is dropped.

Steps 1 and 2 are repeated for all conditions of the original rule (i.e. no 

conditions are dropped at this stage). For our example the first three 

conditions and the fifth condition were found to be non-contributors, hence 

they were eliminated. The process is then carried out for the remaining 

conditions until the stage where no condition can be dropped is reached. For 

the rule example only the last condition was retained (i.e. d7 is right).

Step  3 A certainty factor in a percentage form, given by the calculation of Cl 

times 100, is assigned to the simplified rule. For our example the simplified 

rule has a certainty factor of 86.5 per cent.

Unfortunately the elimination of conditions and/or the calculation of the 

certainty factors cannot be done using the expert system shell. This is a 

facility worth having in order to save time on tedious tasks. The allocation of 

a certainty factor to a rule was also unavailable with the Xi-Plus package. 

This again would had been of value when considering conflict resolution (i.e. 

resolving the problem of which rule to choose when more than one rule 

applies). The only solution was to include the certainty factor by hand in the 

right hand side of the rule and the user to solve the conflict.

7.2.3 Evaluation of reduced rule set o f search  

one

The examination of the significance of conditions resulted in the discarding 

of rules. This was true when the entire left hand side of certain original rules 

were found to be irrelevant. Table 40 presents the new distribution of rules
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Table 40 Distribution of rules per class after post pruning

Class Number of rules Percentage

Carry-on 15 39.47

Empty 15 39.47

End-of-process 8 20.06
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per class. The next stage was to determine how well the cut down rule set 

functioned. This involved the evaluation of how the new set of rules 

performed on the training examples.

Table 41 presents the successful results obtained. Notice the low success 

performance of the reduced set. This was especially true for the examples 

with end-of-process class. This though can be misleading as will be shown. 

Table 42 presents the unsuccessful results obtained. Unsuccessful being 

either when the wrong class or a clash is given. Clash situations arise due to:

(i) more than one rule applies but all rules have the same class, or

(ii) more than one rule applies but the rules have different class.

The wrong outcome state arises due to:

(iii) X outcome is expected and something else is generated.

Breaking down the end-of-process unsuccessful results it was found tha t all 

34 were due to clashes. Twenty-two of them because of category (i) and 12 

because of category (ii). Since all 22 clashes were generated by rules with end- 

of-process as their class can be allocated to the success region. Examination 

of the carry-on unsuccessful results showed that 32 were due to clashes and 

2 due to category (iii). Unfortunately no action can be taken to correct 

category three errors. Concentrating on category (ii) clashes for both classes 

a heuristic rule was used in order to eliminate some of them. The heuristic 

rule adopted states: choose the rule with the higher certainty factor. This way 

4 end-of-process and 30 carry-on category (ii) clashes were resolved and 

allocated to the success region. Tables 43 and 44 present the new right and 

wrong classification figures respectively. The tables show that the elimination 

of some rules and the improvement of the comprehensibility of the rest with
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Table 41 Testing reduced set of rules with training set

Number of examples in training set 138

Successful classification 72

Number of examples in training set with 

end-of-process classification

36

Successful end-of-process classification 2

Number of examples in training set with 

carry-on classification

1 0 2

Successful carry-on classification 70
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Table 42 Testing reduced set of rules with training set

Number of examples in training set 138

Unsuccessful classification 6 6

Number of examples in training set with 

end-of-process classification

36

Unsuccessful end-of-process classification 34

Number of examples in training set with 

carry-on classification

1 0 2

Unsuccessful carry-on classification 32
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Table 43 Testing reduced set of rules with training set

Number of examples in training set 138

Successful classification 128

Number of examples in training set with 

end-of-process classification

36

Successful end-of-process classification 28

Number of examples in training set with 

carry-on classification

1 0 2

Successful carry-on classification 1 0 0
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Table 44 Testing reduced set of rules with training set

Number of examples in training set 138

Unsuccessful classification 1 0

Number of examples in training set with 

end-of-process classification

36

Unsuccessful end-of-process classification 8

Number of examples in training set with 

carry-on classification

1 0 2

Unsuccessful carry-on classification 2

Table 45 Distribution of examples per class category (search 2)

Class Number of examples

c4a 32

c4c 29

c7a 2 2

c7c 2 1
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subsequent faster execution resulted in an insignificant percentage drop of 

classification accuracy in comparison with the classification accuracy prior to 

pruning.

7.2.4 M odifying the rule base of search tw o

Removing the ‘unsuccessful’ and the end-of-process examples left 102 

examples. The distribution of the examples is shown in Table 45. It was not 

possible to judge the rules about irregular branching etc. so the number of 

clash and/or empty rules could not be reduced.

7.2.5 Sim plifying the rule set o f search tw o

Work, similar to the one described in Section 7.2.2, was undertaken resulting 

in twelve rules being removed altogether. Table 46 shows the new 

distribution of the rules.

7.2.6 Evaluation of reduced rule set o f search  

tw o

No evaluation was performed due to time constraints.

7.3 Induction o f decision tree for th e passband  

region

Four more visits to Newmarket Microsystems produced a total of 196 

examples for the tuning of the passband region. The nine attributes, different 

to ones used for the stopband, employed for the tuning of the passband are 

the following:

(i) Ripple (see explanation below in text)

(ii) Low Passband (passband value at 1.4005 MHz)
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Table 46 Distribution of rules per class (search 2)

Class Number of rules

c4a 16

c4c 7

c7a 1 0

c7c 7

empty 1 0 1

clash 11
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(iii) High Passband (passband value at 1.4025 MHz)

(iv) Insertion Loss (see explanation below in text)

(v) Carrier rejection (attenuation at reference frequency)

(vi) Low Stopband (stopband value at 1.3993 MHz)

(vii) High Stopband (stopband value at 1.405 MHz)

(viii) Low Stopband Return (see explanation below in text)

(ix) High Stopband Return (see explanation below in text)

The selected attributes are outlined in Figure 16. Low refers to the left side 

of the response. High refers to the right side of the response. A program was 

written, in HP-Basic, with the help of the expert in order to automate the 

extraction of the attributes. The program samples the response, at 

appropriate points, in order to find the values for the attributes. Fifty-one 

sample points are used for attributes (viii) and (ix) and twenty points for the 

ripple. For example, the sampling for the calculation of the ripple starts at 

1.4008 MHz and ends at 1.402 MHz. The maximum and the minimum sample 

are found and their difference is the ripple. The minimum sample of the 

ripple is the insertion loss. The low and high stopband returns are calculated 

similar to the insertion loss but the sample ranges are 1.38 MHz to 1.398 

MHz and 1.406 MHz to 1.42 MHz respectively. Prior to the generation of 

examples for the passband tuning two assumptions had to be met:

(a) The stopband had already been tuned, and

(P) the three components (Tl, T2, T3) were, almost, screwed in.

Strictly speaking, this part of the system does not deal with the passband 

only. It incorporates further tuning of the stopband, if the need arises. 

Therefore, the set of possible components (i.e. classes) comprise of all the
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Figure 16: Magnitude response showing the attributes used for the tuning of the 
passband. The Low Stopband Return is the minimum attenuation (dB) measured 
between the f2 = 1.38 MHz to f2= 1.398 MHz range. The High Stopband Return is the 
minimum attenuation (dB) measured between the f3= 1.406 MHz to f4=1.42 MHz 
range. The Low Stopband attenuation (dB) is measured at f9= 1.3993 MHz. The High 
Stopband attenuation (dB) is measured at f6= 1.405 MHz. The Carrier Rejection 
attenuation (dB) is measured at f5 =1.4 MHz. The Ripple is the difference between the 
maximum and minimum attenuations measured in dB’s between 1.4008 MHz and 1.402 
MHz. The minumum attenuation (dB) measured in this range is the Insertion Loss. The 
Low Passband is the attenuation (dB) measured at f7= 1.4005 MHz. The High Passband 
is the attenuation (dB) measured at f8= 1.4025 MHz.
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tunable components.

7.3.1 Partition  of search spaces

The search spaces were partitioned as for the stopband region. This meant 

tha t search one specifies the conclusion or not of the tuning process, search 

two the appropriate component and direction combination and search three 

the distance to turn.

7.3.2 Search one rule set

Unlike the stopband, this time the expert had knowledge of the range of 

values in which each attribute must lie to be considered timed (i.e. the ok- 

range). The specification, after a couple of revisions, is given in  Table 47. 

Therefore a single rule stating that if every attribute is within the ok-range 

then the process can stop was sufficient. Obviously, if any of the attributes 

did not conform to this then the tuning process was to be continued. With Xi- 

Plus this was represented as a default rather than a rule. The rule was 

augmented after some initial testing by including one more condition in the 

left hand side: the low stopband return and high stopband return values 

should also be close to each other (i.e. their difference is less than 3 db). An 

analysis of the distribution of values, for each attribute, for all the collected 

examples confirmed the suitability of the specification. Table 48 gives the 

distribution values of the attributes collected during the acquisition of the 

training examples. It can be seen, for example, that the ripple is within the 

ok-range for all examples with end-of-process class. The same applies for the 

rest of the attributes except for the two return attributes. These attributes 

had one or two values not within the ok-range but still the expert terminated
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Table 47 Specification for attributes used in the passband

Attributes Acceptable Values fdbl

ripple 0 - 1

insertion loss 0.5 - 5.0

carrier rejection > 1 0

low stopband > 45

high stopband > 45

low passband < 4

high passband < 4

low stopband return > 45

high stopband return > 45
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the tuning process. Furthermore, the expert changed the two return 

attributes’ value from 45 db to 48 db.

7.3.3 Search two rule set

The withdrawal of the end-of-process examples from the training set left 152 

examples. The second search for the passband utilised eight logical values, in 

a similar fashion to the respective search of the stopband. The logical values 

were close-left, close-right, far-left, far-right, ok, left, right, unknown. The 

generation of logical values was as before (See Section 6.3). The standard 

deviation of all the carry-on examples was computed and the ranges were 

determined by adding the standard deviation to the limits of the ok-range. 

Some attributes were not assigned all the logical values. For example, the 

ripple does not take any value less than zero, so references to left, close-left, 

far-left are not necessary. Additionally, the ok-range was split into three 

ranges (close-ok, far-ok, middle-ok) for some of the attributes (carrier 

rejection, high stopband, low stopband, low stopband return, high stopband 

return). The reason being that the expert continued even if the attributes 

were within the ok-range (See Table 48). The examples were fed to the Xi- 

Rule package and 63 rules were generated (without considering the empty 

and the clash rules). The distribution of the rules is given in Table 49.

7.3.4 M odifying rule set of search tw o

No work was performed due to time constraints.

7.3.5 Sim plifying rule set o f search tw o

No work was performed due to time constraints.
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Table 48 Distribution of attribute values of training set

Attribute Range End-of-process Carrv-on

ripple 0 - 1 38 84

> 1 0 74

insertion loss 0.5- 5.0 38 158

> 5 0 0

low passband 0-4 38 153

> 4 0 5

high passband 0-4 38 113

> 4 0 45

carrier rejection > 1 0 38 158

0 - 1 0 0 0

low stopband > 45 38 145

0-45 0 13

high stopband > 45 37 114

0-45 1 44

low stopband return > 45 36 107

0 - 4 5 2 51
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Table 48 continued Distribution of attribute values of training set

Attribute Range End-of-process Carrv-on

high stopband return > 45 38 137

0 - 4 5 0 21
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the tuning process. Furthermore, the expert changed the two return 

attributes’ value from 45 db to 48 db.

7.3.3 Search two rule set

The withdrawal of the end-of-process examples from the training set left 152 

examples. The second search for the passband utilised eight logical values, in 

a similar fashion to the respective search of the stopband. The logical values 

were close-left, close-right, far-left, far-right, ok, left, right, unknown. The 

generation of logical values was as before (See Section 6.3). The standard 

deviation of all the carry-on examples was computed and the ranges were 

determined by adding the standard deviation to the limits of the ok-range. 

Some attributes were not assigned all the logical values. For example, the 

ripple does not take any value less than zero, so references to left, close-left, 

far-left are not necessary. Additionally, the ok-range was split into three 

ranges (close-ok, far-ok, middle-ok) for some of the attributes (carrier 

rejection, high stopband, low stopband, low stopband return, high stopband 

return). The reason being that the expert continued even if the attributes 

were within the ok-range (See Table 48). The examples were fed to the Xi- 

Rule package and 63 rules were generated (without considering the empty 

and the clash rules). The distribution of the rules is given in Table 49.

7.3.4 M odifying rule set o f search tw o

No work was performed due to time constraints.

7.3.5 Sim plifying rule set o f search tw o

No work was performed due to time constraints.

171



Table 49 Distribution of rules per class (passband)

Class Number of rules

c4a 10

c4c 4

c7a 8

c7c 4

Ha 3

0

t2a 12

t2c 5

t3. 12

t3c 5

empty 117

clash 18

$ The character ’c’ as in C4c donates the clockwise direction 
$ The character ’a’ as in C4a donates the anti-clockwise direction



7.3.6 Evaluation of the quality o f the rules

Only seven attributes appear on the decision tree. The absent attributes are: 

carrier rejection and insertion loss. This was welcomed as the reasons given 

beneath will demonstrate.

Somewhere hidden in one of the transcriptions of the protocol analysis the 

following statement appears: i f  short or long way out (referring to insertion 

loss) reject the filter. This statement indicates that the insertion loss must be 

within the ok-range for the filter to be accepted but it does not influence the 

choice of the tunable component to be used. The analysis of the values’ 

distribution, shown before in Table 48, shows that the values of the carrier 

rejection and for the insertion loss always lie within the ok-range irrespective 

of whether it is an end-of-process or a carry-on example. This is further 

evidence that these two attributes do not contribute to the selection of the 

tunable component. Therefore, the algorithm did well to recognise the 

irrelevance of these two attributes.

Sixty three rules (excluding empty and clash rules) were generated. The 

attribute ripple appeared as the root of the tree. This attribute took the 

following attribute values: ok (34), close-right (15), far-right (7), right (7). The 

number in the bracket indicates in how many rules the attribute ripple with 

the applicable value appeared in the left hand side. Now, if  the rules with 

ripple is ok are considered then one would expect the class to be given as 

either C4 or C7, except if the low or high passband is wrong (where component 

should be given as or T3). The reason for that lies in the recognition of

the contents of the transcripts where the expert said that: i f  something is 

wrong with the ripple or the low or high passband then use T-components, for
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the rest C-components. Twenty seven out of thirty two rules gave C- 

components. Seven rules can be judged as wrong due to the above 

observation, but again maybe they hold some special cases. Considering rules 

with the ripple being far-right, right or close-right one again expects T- 

components. This is exactly what happened except for two cases when ripple 

had the value close-right. The induction avoided the generation of non-logical 

rules such as: i f  the ripple is ok and the low passband is ok then use Tv 

The above remarks reinforced belief in the trustworthiness of the generated 

rules.

7.4 C onclusions

The work undertaken in order to reduce the complexity of the rules generated 

by ID3 showed that the ID3 algorithm produces irrelevant rules which had 

to be identified and eliminates manually. Additionaly the use of contingency 

tables proved to be effective when eliminating branches of the decision rules. 

The performance of the reduced rule set was not affected.
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Chapter Eight 

N eural N etw orks for Search 3 of the Stopband
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8.1 Introduction

Neural networks offer an alternative approach for constructing learning 

systems and in Chapter 8 a detailed chronicle of the development of a multi

layer perceptron for the third search (i.e. how far to turn) of the filter tuning 

task is presented.

The performance of a neural network depends on a number of parameters 

such as the network architecture (i.e. number of hidden nodes), the number 

and presentation of the training examples, when to stop the learning process 

etc. These are usually determined through repeated experiments. The 

network architecture (57-11-10-1) was empirically determined and it was 

found necessary to build four networks (one for each component/direction 

combination) after some data analysis. Each network was trained for 75000 

runs and a record was maintained of those weights that yield the minimum 

error as encountered during the learning. While the selected sets of weights 

did not manage to perform 100% on the training set. Section 8.7.2 shows that 

the errors were acceptable. In addition it has been cited that over-learning 

results to bad generalisation.

The lesson learned was that performing data analysis results in more 

selective training data hence better performance.

8.2 R easons for im plem enting neural netw orks 

for search three

Neural networks are generally implemented for two reasons: understanding 

of the human brain and for achieving goals in computing. The primary 

incentive for implementing neural networks for the third search of the
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stopband was the computational one. Testing the expert system (see next 

chapter) in a live environment indicated that it will be beneficial to have 

some sort of hint of how far to turn. It was obvious, during testing, that even 

when the correct outcomes are given for the first two searches if the operator 

turned arbitrarily, the tuning will take some time to terminate. Timing 

consideration was the main motivation. Additionally, initial accomplishments 

using neural networks for the third search were poor (See Chapter 5). 

Another motivation arose due to this. The work undertaken, described in this 

chapter, tried to establish if neural networks are generally inapplicable to the 

problem area or whether the neural networks were incorrectly applied 

previously. The latter is not difficult to do since a change to a parameter (e.g. 

number of input units) effects the network performance. The challenge was 

then to see if there were any network architectures that were more suitable. 

The ultimate goal was to produce a connectionist expert system1, meaning an 

expert system interfaced to a neural network with the latter being another 

knowledge source. This was seen as increasingly important in the 

development of a total solution to the tuning problem. Recent research has 

begun to indicate the merits of such a union2,3.

8.3 C ollection of the training data

It was apparent by now that the expert did not have any knowledge of how 

far to turn. It was a matter of trial and error. Therefore, the training data 

consisted of examples generated using the de-tune procedure. The examples 

were created by having C7 either at its optimum position (i.e. where it  was 

placed when the expert finished the tuning) or mal-adjusted in steps of half 

a revolution up to 1.75 revolutions in a clockwise direction or up to 2.5
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revolutions in an anti-clockwise direction. At each position of C7 the other 

component (C4) was mal-adjusted in steps of half a revolution from its 

optimum position up to 1.5 revolutions in a clockwise direction or up to 2.5 

revolutions in an anticlockwise direction). In total 358 examples were 

generated for each filter. Each example comprised fifty seven point samples 

from the frequency range of 1.38 MHZ to 1.42 MHz, plus the class to which 

it belonged (i.e. the distance turned). Nineteen points were sampled from the 

left hand side of the stopband, nineteen from the passband region and the 

rest from the right side of the stopband (see Figure 17). The sample points 

were equally spaced for each part of the response.

8.4 Software im plem entation

Software from an available package (NeuralWare Explorer) was used to 

simulate the learning algorithm on an 80386 based microcomputer.

8.5 D evelopm ent of the netw ork architecture

The software package liberates the builder from the task of writing programs 

but still a group of crucial decisions concerning the architecture of the 

network have to be made. What is the optimal number of processing units in 

each layer? How many layers are to be built? How long should the training 

last? etc are a few of these decisions. Unfortunately, current literature and 

research does not provide a general method to the design issue for a given 

problem area. The following sections describe how the network for the third 

search of the stopband was constructed.
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8.5.1 Netw ork architecture

The back-propagation architecture described in Section 4.4 was implemented. 

This is a feedforward architecture consisting of a number of processing units 

with each unit belonging to one of the four available layers. Three layer 

neural networks (i.e. the input layer is not counted) were constructed.

8.5.2 Network type

The back-propagation architecture can be used in two modes:

(a) The auto-associative mode where the network is expected to generate an 

output which is the same as the input.

(P) The hetero-associative mode where the desired output is different to the 

input.

The last mode was used since the task of filter tuning falls into the sphere of 

classification.

8.5.3 Input layer configuration

The number of processing units in the input layer was set to 57, thus each 

sampled point was assigned to one and only one unit. In the literature it  has 

been reported that numerical problems may be avoided by scaling the inputs 

to the [0,1] range. Hence, the input of each input unit was subjected to a 

simple transformation using the software package of the following form 

Transformed input= Input Value * Scale Factor + Offset 

where the values of 0.01 and 0.1 were used for the scale factor and offset 

respectively. The offset was used to avoid having any zero inputs. The new 

value of each input unit was then transferred to the processing units of the 

first hidden layer.
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8.5.4 Output layer configuration

The number of processing units in the output layer was set to 1. The output 

of the single unit is simply the summation of all its inputs, multiplied by 

their associated weights, from the second hidden layer. Hence, the linear 

transfer function was applied. The desired output was represented in the 

learning set using a value from the [0,1] set. Table 50 displays the real 

desired output and the equivalent coded representation. The result obtained 

was limited to both an upper (1.0) and lower (0.0) bound and then compared 

to the desired output. Using the software package learning was inhibited 

when the error was lower than a pre-set value. This was accomplished with 

the use of a coefficient (C3). Whenever the absolute difference between the 

desired and obtained output was less than the value of C3 the error was set 

to zero. In the use mode (i.e. after learning) the output result was scaled 

using the linear transformation mentioned above in order to transform the 

data into more understandable units.

8.5.5 H idden layers configuration

The sigmoid function (see Chapter 4) was used as the transfer function. The 

selection of the number of processing units for each hidden layer was not as 

natural and effortless as for the other layers. Their numbers were determined 

empirically (11 and 10 for the first and second hidden layer respectively) and 

no claim is made that they are the most appropriate. In the literature a 

number of approaches have been described. For example enter a large number 

of units and then freeze units to see the effect it has on the performance. This 

is known as skeletonisation4.
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Table 50: Presentation of classes to the neural networks

Real Value Coded Value

0 . 0 0 0 . 0

0.25 0 . 1

0.50 0 . 2

0.75 0.3

1 . 0 0 0.4

1.25 0.5

1.50 0 . 6

1.75 0.7

2 . 0 0 0 . 8

2.25 0.9

2.50 1 . 0

183



Alternatively, train the net with 'P1 units until some optimum learning has 

been achieved. Add P2 units to the net, re-train and continue in this way until 

some termination test has been satisfied5.

In preliminary work the optimum number of hidden units was found by 

adding new hidden units to each layer and observing the effect. The next 

section describes this preliminary work undertaken in order to investigate the 

feasibility of neural networks and the architecture to be used for the timing 

of electronic filters and search 3 in particular.

8.6 D eterm ining the size o f the train ing set

One has to be cautious when examples are employed for automatic learning. 

Prior to the neural network implementation various questions arose 

concerning the size of the learning set. For example, should the learning set 

include examples generated from different filters, should it include examples 

covering de-tuning of both components etc. Before implementing the network 

in full, some experiments were carried out with a smaller example set in 

order to get a feeling for the process and to assess the feasibility of the 

networks.

The training set included eleven examples from one filter generated with the 

C4 component mal-adjusted in an anti-clockwise direction. Each example 

contained the 57 points sampled from the response. After running the 

network (57-11-10-1) a number of times (« 100,000) the performance was 

flawless viz. the system had learned to discriminate between those eleven 

classes (Table 51). Then the generalisation capabilities of the network were 

evaluated. This involved testing the network using unseen examples from 

other filters (Table 52). These examples were once again generated under the
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Table 51: Network training with (100000 runs)

Desired Values Generated Values

0 . 0 0.03

0 . 1 0 . 1

0 . 2 0 . 2

0.3 0.3

0.4 0.4

0.5 0.51

0 . 6 0.62

0.7 0.73

0 . 8 0.83

0.9 0.91

1 . 0 0.96

.
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Table 52: Network testing

Desired

Values

Generated values for different filters

0 . 0 0.06 0.06 0.08 0.03

0 . 1 0.03 0.008 0 . 0 1 0 . 0 1

0 . 2 0.13 0 . 1 0 . 1 1 0.09

0.3 0.23 0.18 0 . 2 0.16

0.4 0.3 0.24 0.27 0 . 2 2

0.5 0.36 0.28 0.34 0.27

0 . 6 0.46 0.33 0.39 0.32

0.7 0.56 0.37 0.45 0.36

0 . 8 0.62 0.41 0.52 0.41

0.9 0.82 0.43 0.54 0.44

1 . 0 0 . 6 8 0.45 0 . 6 0.46
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same de-tune procedure conditions. The results ranged from very good to 

useless. Similar results were obtained with different network architectures. 

For instance, when only the 19 sampled points from the left side of the 

stopband were used (19-11-10-1). Table 53 shows the learning results after 

100,000 trials and Table 54 when the network was tested with unseen 

examples. The enigma of this situation (i.e. bad performance during testing 

versus good performance during learning) was resolved by simply plotting the 

responses. The initial positions of each response were all correct but not the 

same. This resulted in overlapping of classes. Figure 18 displays the left hand 

side of the stopband of six filter responses all classed as tuned. For example, 

the waveform generated with a 0.25 mal-adjustment was above the timed 

waveform for some filters whereas other filters generated a waveform which 

could be found below the tuned response. The variety of the position of the 

responses which can be considered as tuned created an overlapping of classes. 

For that reason, it was decided to employ the de-tune data of ju st one filter. 

This would force the tuning of other filters towards one model solution. 

Additionally, in some cases, maladjustment by more than 2 revolutions 

caused negligible changes in the response (Figure 19). Those examples 

remained in the learning set but they were assigned the class of the earlier 

example. An overlapping of classes similarly occurred when the complete 

learning set was used (i.e all component and direction combinations). 

Responses generated using the left component (C4) with, say, 0.5 turns 

resembled the ones generated using the right component (C7) with 1.25 turns. 

For tha t reason it was thought appropriate to break the learning set into four 

sub-sets (Table 55).

187



Table 53: Network training with 19-11-10-1 nodes

Desired Values Generated Values

0 . 0 0 . 0 2

0 . 1 0.08

0 . 2 0.17

0.3 0.27

0.4 0.37

0.5 0.48

0 . 6 0.60

0.7 0.72

0 . 8 0.82

0.9 0.90

1 . 0 0.96
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Table 54: Network testing

Desired

Values

Generated values using different filters

0 . 0 0.03 0.03 0.04 0 . 0 1

0 . 1 0 . 0 1 0 . 0 0 . 0 0 . 0

0 . 2 0.09 0.07 0.07 0.06

0.3 0.16 0.14 0.14 0 . 1 2

0.4 0 . 2 2 0 . 2 0 0.19 0.17

0.5 0.27 0.28 0.25 0 . 2 1

0 . 6 0.32 0.29 0.28 0.26

0.7 0.37 0.33 0.32 0.30

0 . 8 0.41 0.37 0.35 0.34

0.9 0.44 0.39 0.37 0.36

1 . 0 0.45 0.45 0.39 0.38
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Figure 18: Six stopband responses (left side only). Nineteen equally spaced values are 

sampled from the left side of the magnitude response between fj = 1.38 MHz and f2= 1.4 

MHz, in steps of 0.001 MHz.
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Figure 19: Magnitude responses generated by mal-adjusting C4. The reference 

frequency is denoted by zero at the frequency-axis.

Table 55: Learning sets

Learning... C4a C4c C7a C7c

No. of examples 215 144 216 178
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8.7 N eural networks in  learning m ode

8.7.1 Stopping learning criterion

For each learning set the network was executed for 75000 runs. Every 1000 

runs the learning was momentarily paused and the total sum of squared 

errors was calculated. The total squared error being the sum of all the 

squared differences between the desired class and the generated class. The 

network with those weights which generated the smallest squared error was 

selected. This way it is suggested that the better a system performs on the 

learning set, the better it will perform on tests.

8.7.2 M easuring the perform ance o f the  

netw orks

Figures 20 to 23 display the learning curve for the four networks. These 

graphs show the plots of the total squared error against iteration number. 

The minimum total squared error (3.3) when learning C4 turned anti

clockwise was found in run 56000 (Figure 20). The minimum total squared 

error (0.55) when learning C4 rotated clockwise was found in run 66000 

(Figure 21). The minimum total squared error (1.25) when learning C7 turned 

clockwise was located in trial 55000 (Figure 22). Finally, the minimum total 

squared error (4.62) when learning C7 rotated anti-clockwise was located in 

trial 62000 (Figure 23).

Various indicators can be used to measure the performance of a network. One 

such measure is the fraction of patterns classified correctly. The network for 

learning C4 anti-clockwise is investigated below. Since any generated outcome
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Figure 20: C4 anti-clockwise learning curve
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Figure 21: C4 clockwise learning curve
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Figure 23: C7 anti-clockwise learning curve
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within ± 0.04 units from the desired outcome is considered to be correct (for 

example any value between 0.36 and 0.44 is considered right if the desired 

output is 0.4) the optimum minimum total squared error is then 0.3456 (i.e 

215 examples times 0.042). The minimum total squared error reported above 

was 3.3. This is almost 10 times higher than the optimum. A discussion 

breaking down the results now follows.

In total 46.8 percent of the examples were assigned the correct number of 

turns. Individual outcomes will be examined below. Looking at all the 

examples with a desired class value of zero (Figure 24) it is obvious that 

except in one case the present set of weights generates the correct results. 

Figures 25(a) to 25(i) show similar plots for classes 0.1 to 0.9 respectively. A 

number of predicted values are not very close to the desired values. Those 

that predict higher are clearly wrong but a wrong action can be corrected 

later, just as in the performance of the human user. A prediction of smaller 

values will force a longer tuning. What was important was for the network 

to discriminate between extremely dissimilar values like 0 and 0.9 rather 

than neighbouring values like 0.8 and 0.9. In each desired class there were 

examples which stood out as being more difficult to learn, hence increasing 

the error.

At this stage the network was examined against examples not previously 

seen. One testing involved de-tune examples obtained by mal-adjusting C4 in 

a clockwise direction. The expected outcome was 0 (i.e. because C4 does not 

need maladjustment in an anti-clockwise direction) and Figure 26 illustrates 

the output of the network. Figure 26 shows that in the majority of the cases 

the predictions of the neural network were within the correct area. Some
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Figure 25 (a,b,c,d): Output of the neural network for the examples in the training set 
with class 0.1, 0.2, 0.3, 0.4 respectively
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Figure 25 (e,f,g,h): Output of the neural network for the examples in the training set 
with class 0.5, 0.6, 0.7, 0.8 respectively
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predictions were wrong but the error was not dramatic. These predictions 

were made using examples where the C7 component was mal-adjusted. This 

suggests that there is a certain interaction between the two adjustable 

components.

Is it then appropriate to stop learning here? Did further trials have to be 

carried out? Questions as such could only be answered after the network is 

tested live and only then the capabilities of the four neural networks will be 

known.

8.8 Conclusions

It was decided to employ neural networks with the back-propagation learning 

rule for the third search of the stopband region. As a training set it  was found 

necessary to employ data from the process of de-tuning of just one filter. The 

topology of the network was determined empirically but for this particular 

domain two hidden layers were found to be required. One such neural 

network was constructed for each component/direction combination. The 

testing of the learning set showed that a number of predicted values are not 

very close to the desired values but at the same time not dramatically 

erroneous. Agreeing or disagreeing with the learning set was not sufficient 

to determine whether the network made the correct judgement therefore it 

was decided to test the networks on the production line.

R eferences

1. Gallant S.I., Connectionist expert systemsj Communications of the ACM, 

Vol. 31, No. 2, pp. 152-168, 1988.

2 0 1



2. Rich E., Expert systems and neural networks can work together, IEEE 

Expert, Vol. 5, No. 5, pp. 5-7, 1990.

3. Minsky M., Logical versus analogical or symbolic versus connectionist or 

neat versus scruffy, AI Magazine, Vol. 12, No. 2, pp. 34-51, 1991.

4. Mozer M.C., and Smolensky P., Using relevance to reduce network size 

automatically, Connection science, Vol. 1, No. 1, pp. 3-16, 1989.

5. Gallinar P., Some properties of linear multilayer perceptrons, In: New 

developments in neural computing (Eds. J.G. Taylor and C.L.T. Mannion), 

Adam Hilger, pp. 201-216, 1989.

2 0 2



9.1 The AEK system  for tuning crystal filters

The AEK system was developed to semi-automatically assist an operator 

during the tuning of crystal filters on the production line. This chapter 

describes the hardware and software that was used. The operating 

instructions are also given.

9.1.1 System  com ponents

Figure 27 shows the hardware and software used as well as the flow of 

information between the system components.

The crystal filter was placed on an HP8721A test chassis. The test chassis 

was connected to the HP3577A network analyser which was linked with an 

HP9816 computer using the IEEE488 Control bus. Additionally, an MS-DOS 

running Compaq 386/25 computer was employed. The Compaq computer 

contains the Xi-Plus expert system shell and the Knowledge-bases (see below 

for further information). The HP9816 computer contains the Neural network 

test module (see below for further information) and the HP-Basic program 

employed for interfacing.

9.1.2 D escription of software

A brief description of the knowledge-bases, the neural network test module, 

and the HP-Basic program now follows.

1. Name of knowledge-base: Searchl

The rules of this knowledge-base determine if (further) tuning of the stopband 

is required. The decision is based on some or all values of six peaks (as 

entered by the user) and their differences (as calculated by the system). All 

numerical values are assigned logical values taken from a set of eight possible
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values. Appendix 5 contains a listing of the knowledge-base.

2. Name of knowledge-base: Search2

The rules of this knowledge-base advise which component and in which 

direction to turn. The decision is based on the values of the peaks already 

entered on Searchl or newly requested ones. The values are then re-assigned 

logical values taken from a set of four possible values. Appendix 6 contains 

a list of the knowledge-base.

3. Name of knowledge-base: Numbers

This knowledge-base determines if (further) tuning of the passband, and 

therefore of the filter is needed. The resolution is based upon the values of all 

attributes. The numerical values are assigned one logical value each selected 

from a set of eight possible values. Appendix 7 contains a fist of the 

knowledge-base.

4. Name of knowledge-base: Pamod

This knowledge-base recommends which component and in which direction 

to adjust. The recommendation is based upon the values as entered previously 

in the Numbers knowledge-base and additional input is not required. The 

attributes are assigned logical values selected from a set of four possible 

values. Appendix 8 contains a listing of the knowledge-base.

5. Name of Neural Network test module: LastjOne

The neural network test module is an HP-Basic program which contains 

commands for the interfacing with the test equipment in order to acquire the 

input in the form of 57 sampled points taken from the complete amplitude 

response. Furthermore, a data fist of all the weights and threshold values for 

the neural networks are present which in turn are used to calculate the
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output (i.e. how far to turn). This program is used only for the stopband and 

Appendix 9 contains a listing of the program.

6. HP-Basic program for interfacing: Pband_2

This is an HP_Basic program written in order to provide interface with the 

measuring equipment for the measurement and printing of the attribute 

values used for the tuning of the stopband and passband regions of the 

amplitude response. Appendix 10 contains a listing of the program.

Figure 27 illustrates the configuration of the measuring equipment.

9.1.3 O perating instructions

The operator carries out the following procedure.

A filter is fitted into a temporary alignment can which is connected to the 

measurement equipment. This is set to the approximate frequency and range 

in order to measure the amplitude response. The Xi-Plus expert system shell 

and the first knowledge-base (i.e., stopband search 1) are loaded on to a MS- 

DOS computer. The execution of the first knowledge-base requires the 

operator to allocate and type the values of some or all of the peaks in order 

to determine if the stopband region needs tuning. The peak values are 

measured by the HP-Basic program. In the case where stopband tuning is 

needed the second knowledge-base (i.e., stopband search 2) is loaded 

automatically in order to determine which screw needs turning and in which 

direction to turn. The distance to turn is provided by the neural network test 

module program. The operator then makes the proposed adjustment. The first 

knowledge-base is automatically re-loaded and the operator enters the values 

taken from the new amplitude response. This is repeated until no further 

stopband tuning is required. Then the third knowledge-base (i.e., passband
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search 1) is automatically loaded and this requires the operator to use the HP 

program to obtain values of the passband attributes. In the case where 

passband tuning is needed then the fourth knowledge-base (i.e., passband 

search 2) is automatically loaded and informes the operator which screw and 

in which direction to turn. The distance to turn is decided by the operator. 

When the adjustment is completed the third knowledge-base is automatically 

re-loaded and the new amplitude response is re-measured. This procedure 

reiterates until no further passband timing is required. The user then 

connects a new filter and the process re-commences.
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Chapter Ten 

V erification, V alidation and T esting
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10.1 Introduction

Clearly there is need to evaluate the performance of the system with on-line 

data rather than using examples of the learning set. Without any feedback 

in the form of assessment of performance one cannot judge if the tuning 

process has been learned. In this chapter the testing of the tuning of a 

number of filters is reported.

Issues such as consistency, validity and usability of the rule set of the expert 

system are discussed. Three approaches are investigated for the tuning of the 

stopband region. These approaches include the rule-based expert system 

attached to the human operator or to the neural network, and a stand-alone 

neural network. Whereas the tuning of the stopband region of a number of 

crystal filters was managed with all approaches the expert system - neural 

network approach provided an increase in the efficiency with which a solution 

was produced. The passband region was timed in all cases but the operator 

was required to provide the distance to turn. Part of this work has been 

published1.

10.2 Evaluation criteria

The evaluation of the performance of the system comprised three aspects, 

namely consistency, validity and usability. Consistency referred to the 

reliability of the system in the sense that the system produced similar 

answers to similar questions. Of course a consistent system did not 

necessarily guarantee that the rules were correct. This was examined under 

the validity aspect. The validity term referred to whether the system provided 

the results it should. The system was studied to see if it could deliver
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everything that was true (completeness) and if what it delivered was true 

(soundness). Usability referred to the user-friendliness of the system, viz. can 

the system being used by a non-expert in terms of the human-computer 

interaction.

The AEK system was tested many times by the author and by the author and 

the expert together. The system scored high marks for consistency.

Initially, a small-scale testing took place to check for complete/correct rules. 

For each testing the system suggested one component/direction combination 

and the operator was allowed to veto prior to execution. In the presence of a 

strong disagreement the decision of the operator was selected. The execution 

was carried out by the operator. In subsequent tests, see Section 10.3, the 

operator was following the instructions of the system.

The other aspects are considered in the following sub-sections.

10.2.1 The com pleteness o f the system

In the AEK system completeness was examined primarily by looking a t the 

correctness of the final decision. That was when the system had arrived at an 

end-of-process conclusion, for stopband and/or passband, and the expert was 

consulted. He either then agreed or disagreed with the conclusion of the 

system. Second the correctness of the intermediate decisions (component, 

direction) were checked. Since there are numerous paths to the tuning only 

the prominently wrong were identified and corrected. This also applied for the 

third search when neural networks were employed.

10.2.2 The soundness o f the system

The system contains rules with incomplete knowledge (empty rules). These
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are rules which contain a number of conditions with an empty consequent, 

possibly because the particular combination of conditions was not covered 

within the learning set. When such a rule appears the consequent part is 

overwritten with the action the operator took.

The system also contains rules with conflicting knowledge (clash rules). These 

are rules delivered by examples from the learning set with different classes. 

When such a rule appears all clashing actions are reported and the decision 

is left to the operator. The decision of the operator can differ from the ones 

advised by the system. The consequent part of the rule is amended in order 

to contain the new action. It was hoped in this way either some actions would 

disappear or new rules would be discovered.

10.2.3 The usability o f the system

The user communicates with the expert system using a textual user interface. 

The interface displays questions such as Please enter the value of the first 

peak and some questions are accompanied by instructions. The value read in 

the measurement set by the operator or acquired using software has to be 

typed. Because the operator has to enter a numerical value (i.e the 

transformation into logical values is performed by the system) no other type 

of communication, e.g a menu, is provided. The operator can be given an 

initial training in using the shell. Facilities such as trace can be used if 

necessary to examine the reasoning behind a recommendation. No extended 

or complicated training is required for running the system. The system is 

programmed to guide the user.

The neural network system does not have any form of communication with 

the operator other than by providing a conclusion. The system is interfaced
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with the measuring equipment and the sampling and calculation is performed 

within the software.

10.3 D efin ition of test cases

Testing of the tuning of a number of filters was undertaken using three 

different systems.

Case 1: Knowledge-based system plus user

The knowledge-based system provided advice for when to stop the timing of 

the stopband otherwise the component to turn and the direction to turn. The 

user had to decide on how far to turn.

Case 2: Hybrid system (Knowledge-based system plus neural network 

As for Case 1 but the distance to turn was indicated by the network.

Case 3: Neural network

Because each component/direction combination had a net associated with it 

then the outcome of the net was used to define all decision levels.

The above three cases were tested on-line. The neural network was also 

tested with data where the desired outcome was known beforehand.

Case 4: Neural network testing using artificially generated data 

In this case a tuned filter was maladjusted by a known amount of turn using 

one of the two components in a particular direction. For example if the 

maladjustment was done using C4 in a clockwise direction turning half a 

revolution then we would expect the system to provide an output of the same 

form but indicating the opposite direction.

10.4 Specific testing criteria

The following criteria were employed to compare the various systems:
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■ The average number of turns required for the entire timing

■ The number of successful tunings

■ The number of unsuccessful tunings.

The last two criteria give rise to other criteria:

■ The number of empty rules which arose at each tuning

■ The number of clash rules which arose at each tuning.

The term tuning refers to stopband or to passband or to a complete tuning.

10.5 Exam ple of AEK in  action

The way the AEK system (only the expert system part) arrives at decisions 

is demonstrated by walking through the processing of one tuning case. The 

interaction of the system with the operator, and the formation and reporting 

of conclusions are also illustrated. Italic text is used to show the questions 

asked by the system. Bold text represents the answer typed by the operator. 

Comments in between are included within square brackets.

[ The operator enters the Xi-Plus shell and loads the stopband application 

which in turn loads the first knowledge-base of the stopband. This knowledge

base determines the continuation or not of the stopband tuning. The loading 

of the knowledge-base is followed by the automatic execution of the outcome 

query.]

What is the value o f the fourth peak? 1.402852

[This question is asked in order to determine the distance between the first 

and the fourth peak. At the same time the fourth peak is assigned a logical 

value (left)]

What is the value of the first peak? 1.399494

[The question is asked for the same reason as previously. The first peak is
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assigned a logical value (right). Their distance (i.e. peak4-peakl) is calculated 

by the system and a logical value is specified (left). With these attribute 

values rule 1 of the system with the outcome of carry-on holds. At this point 

the demon rule (13) takes over and resets the current knowledge-base and 

loads the second knowledge-base of the stopband. This knowledge-base 

determines the component and the direction to be used. It is worth noticing 

at this stage that if the demon rule was absent the search of more rules 

which can apply would have been continued. This continuation would have 

resulted in one of three situations:

■ no other rule applies

■ another rule with a carry-on outcome applies

■ a rule with an end-of-process outcome applies.

The first two situations clearly indicate waste of processing time. As for the 

third situation it was decided in case of such a clash the carry-on rule to have 

priority. Therefore, the demon is required.]

Enter the value of the second return level: 48.9

[Notice that the term return level was used in order to employ the 

phraseology of the user and it is synonymous to the term negative peak, as 

used previously.

The system tries to determine the logical value of the second return level for 

use in rule 122. The allocated logical value (left) satisfies the second condition 

of the rule. The first condition of the rule involves the value of the first peak. 

Since the numerical value was already entered in the first knowledge-base 

the system realises there is no need to question again. The system treats the 

value as volunteering information and automatically allocates a logical value
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(fright). It is worth remembering that the configuration of the logical values 

of the two knowledge-bases are different (See Chapter 6).]

Enter the value of the first return level: 53.2

[The system checks whether the third condition of rule 122 can be satisfied. 

The attribute is allocated the logical value of close-left which does not satisfy 

the condition. Consequently, the search for another rule which can be 

satisfied with the present information continues. Rule 128 has all its 

conditions satisfied therefore its outcome C4a (i.e. turn component C4 

anticlockwise) is reported. Then the system resets the current knowledge-base 

and re-loads the first. In this case this is repeated twice until the end of 

tuning of the stopband is reached. The system then resets the current 

knowledge-base and the first knowledge-base of the passband is loaded. This 

knowledge-base discovers if there is a need for any tuning of the passband. 

I t is worth mentioning the following:

■ The breaking-up of the tuning application into four knowledge-bases was 

necessary due to the limited memory capacity of the computer used.

■ The operator had to locate the peaks and the return levels on the 

oscilloscope manually. Then the values were read on the display.]

Enter the value of the ripple: 5.4

[The system asks a series of questions in order to obtain the values of all the 

attributes used in the passband. The values are calculated using a program 

written in HP-Basic and they are displayed on the screen of the computer. 

Logical values are then assigned to the attributes by the system. Ripple in 

this example takes the logical value of far-right.]

Enter the value of the insertion loss: 2.3
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[The associated logical value is ok]

Enter the value of the low passband: 0.6 

[The associated logical value is ok]

Enter the value of the high passband: 8.1 

[The associated logical value is right]

Enter the value of the carrier rejection: 28.7 

[The associated logical value is far-ok]

Enter the value of the low stopband: 59.6 

[The associated logical value is far-ok]

Enter the value of the high stopband: 56.9 

[The associated logical value is middle-ok]

Enter the value of the low stopband return: 59.3 

[The associated logical value is far-ok]

Enter the value of the high stopband return: 53.3 

[The associated logical value is middle-ok]

[At this stage the decision of the system is that the passband requires tuning. 

The decision was based on the fact that the ripple and the high passband 

attributes are not within specification. As a result of this the system resets 

the current knowledge-base and loads the second knowledge-base of the 

passband. This knowledge-base provides the component to be used and the 

direction to turn. Since the two knowledge-bases share the same configuration 

of logical values it is not necessary to ask any further questions. The system 

simply searches through the rule set using the allocated logical values from 

the previous knowledge-base. In this case the reported component is T3 in an 

anti-clockwise direction (rule 198). The system then resets the current
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knowledge-base and the first knowledge-base of the passband is loaded once 

again. This procedure was repeated twice until the end of the passband 

tuning and subsequently of the filter was reached. Then the user was 

requested to connect another filter and the process started again.]

10.6 Case 1 testin g for the stopband

The stopband region of the magnitude response of the filter was tuned using 

the expert system and an expert human operator. The system advised which 

component to turn and in which direction and the operator turned as much 

or little as he wanted. In case of turning too far the operator was asked not 

to correct his action by backtracking. He was also encouraged to provide any 

comments on the decision of the expert system.

10.6.1 Starting positions of the tunable 

com ponents

Theoretically, the expert system should be able to assist the operator 

irrespective of how distorted the magnitude response be. The distortion of the 

response obviously depends on the position of the screws. For tha t reason, the 

testing involved filters for which the initial positions of their components 

were different (Table 56).

10.6.2 Presentation and discussion o f resu lts

Distribution of successful tunings

Table 57 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings categorised per component 

configuration.
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Table 56: Initial position of tunable components during stopband testing (case 1)

Configuration C4 position C7 position

A screwed-in screwed-in

B screwed-out screwed-out

C screwed-in screwed-out

D screwed-out screwed-in

E halfway halfway

F as found as found

$ Case 1 designates the knowledge-based plus human system
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Table 57 : Tuning attempts per configuration using case 1 system for the stopband

Configuration Number of attempts Successful tunings Unsuccessful

tunings

A 6 3 3

B 4 4 0

C 1 1 0

D 1 1 0

E 1 1 0

F 8 8 0

TOTAL: 2 1 18 3

$ Case 1 designates the knowledge-based plus human system
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The system failed to time a filter in three cases, all of them with component 

configuration (A). In all three cases the tuning was abandoned due to the 

factthat the system seemed to supply oscillatory advice (i.e. turn C4 anti

clockwise followed by C4 clockwise). It was interesting to see how these three 

cases contrasted with the three cases of the same component configuration 

where tuning was achieved. Again, it was expected that the system, ideally, 

should have been able to tune the stopband even if a different number of 

turns were employed for the same situation. Observing all cases it seemed 

that the system managed to tune each filter when the operator turned about 

three revolutions. When he turned less, except for one case, the system failed 

to achieve the objective. Therefore, some blame could also be assigned to the 

amount of turning, hence the need for the provision of some indication of how 

far to turn.

A number of encouraging points were made concerning the overall 

performance of the system:

■ When one or both components were screwed all the way in the system 

always gave the direction as anti-clockwise.

■ When one or both components were unscrewed all the way out the system 

always gave the direction as clockwise.

■ The system did not suggest the end of the stopband tuning where it was 

obviously not appropriate.

Average number of adjustments

Table 58 shows the average number of adjustments taken for the tuning of 

the stopband. These results refer only to the successful tunings. The 

minimum and maximum number of adjustments are also recorded. The
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Table 58 : Average number of adjustments using case 1 system for the stopband

Average number of turns: 3.22

Minimum number of turns: 1

Maximum number of turns: 7

$ Case 1 designates the knowledge-based plus human system
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reader should recognise that these figures depend on two related factors:

(i) The revolutions turned, and(ii) the position of the tunable components. For 

example, when both components were screwed all the way in it took on 

average 3.7 adjustments whereas when they were all the way out it took 5.3 

adjustments on average.

Examination of end of tuning events

Table 59 shows the rules that were executed for the 18 events where the 

tuning was ended.

Only 5 out of the 12 end-of-process rules were used. Although only a few 

attributes were considered by each rule (Column 4 of Table 59) it is worth 

noticing that the system had at its disposal the values for all thirteen 

attributes. This indicated that carry-on rules did not apply, otherwise the 

tuning would had been continued. Initially, rule 45 was an empty rule but its 

action was replaced by end-of-process (by the system builder). In all cases the 

expert operator commented that the right advice was given.

Examination of timing steps by the empty rule category 

It was felt appropriate to examine not only the validity of the proposed 

actions but also the completeness of the system. Therefore the number of 

situations where the system could not provide advice {empty rules) or 

provided more than one advice {clash rules - see following heading) were also 

inspected. Table 60 shows the number of occurrences by category of action. 

Table 61 displays, in more detail, the empty rules that were executed together 

with the action taken by the operator. These rules, in most cases, were 

applied on more than one occasion but only the first time is counted as an 

empty step. It is noticeable that the operator always took the same action.
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Table 59 : End of tuning rules executed using case 1 system for the stopband

Rule number Occurrences Rule confidence Number of 

attributes used

50 1 6 8 . 2 2

27 8 91.7 6

119 4 60.0 1

4 3 87.5 3

45 2 5

J Case 1 designates the knowledge-based plus human system
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Table 60 : Number of occurrences per action using case 1 system for the stopband

Action given by the 

system

Number of occurrences Number of occurrences 

(%)

Empty 4 6.9

Clash 1 2 20.7

Component and Direction 42 72.4

TOTAL: 58 1 0 0 . 0

Table 61 : Number of occurrences for situations where the system could not provide 

advice for the tuning of the stopband (case 1)

Rule number Action taken

106 C7 clockwise x  6

1 0 0 C7 clockwise

53 C7 anti-clockwise x  3

87 C4 clockwise x  2

$ The character ’x’ as in C4 clockwise denotes multiple occurrences 
$ Case 1 designates the knowledge-based plus human system



Also 3 out of 4 empty actions were replaced with a C7 action and/or a 

clockwise direction (by the system builder). Since 41 per cent of the 

trainingset were examples with a clockwise class it was expected that more 

situations where a clockwise turn was required would occur.

Examination of tuning steps by the clash rule category 

Table 62 shows the clash rules that were executed together with the action 

taken by the operator. The third column displays the actions taken previously 

(i.e. under training) under the same circumstances. One can observe that a 

clash of actions also occurred during the testing. Re-appearing clash rules 

were left as before, i.e. with a clash outcome. When such a rule executes it 

reports the diverse actions taken previously, including training and testing 

occurrences, and the decision is left to the operator. This is a possible 

shortcoming of the system and the need arises for discovering the reasons 

behind such diversity.

Examination of tuning steps by component and direction category 

For a significant number of tuning steps (72.4% - Table 60) the system made 

the decision of which component to turn and in which direction. Table 63 

shows the distribution per rule. Rules are in ascending order. Table 64 shows 

the total number of rules and their occurrences. The third column shows the 

available number of rules for each combination. The comparison of the last 

two columns of Table 64 shows that the frequency of a particular action 

occurring is close to its associated percentage of available rules in the rule 

base (especially for the clockwise direction). Additionally, one can observe tha t 

approximately 51 per cent of the available rules came into use. Combinations 

with an anti-clockwise direction used half or less of their available rules.
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Table 62 : Number of occurrences of situations where the system provided 

conflicting outcomes for the tuning of the stopband (case 1)

Rule number Action taken during testing Action taken during 

training

90 C4 clockwise C4 clockwise x  4

C4 anti-clockwise

C7 clockwise C7 clockwise x 3

8 8 C4 clockwise X 2 C4 clockwise x  2

C7 clockwise C7 clockwise

93 C4 anti-clockwise x 2 C4 anti-clockwise

C4 clockwise C7 clockwise

97 C4 clockwise C4 clockwise

C4 anti-clockwise C4 anti-clockwise

113 C7 clockwise C7 clockwise

C4 clockwise

$ The character ’x’ as in C4 clockwise denotes multiple occurrences 
$ Case 1 designates the knowledge-based plus human system



Table 63 : Distribution per rule for the tuning of the stopband using case 1 system

Rule number Number of occurrences Combination

2 1 C4 anti-clockwise

5 2 C4 clockwise

9 1 C7 clockwise

15 1 C4 clockwise

17 3 C7 anti-clockwise

18 4 C7 anti-clockwise

42 1 C4 anti-clockwise

44 3 C7 anti-clockwise

53 2 C7 anti-clockwise

70 2 C4 anti-clockwise

76 1 C4 anti-clockwise

87 1 C4 clockwise

1 0 1 5 C7 clockwise

1 0 2 1 C4 clockwise

103 2 C4 clockwise

106 2 C7 clockwise
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Table 63 continued : Distribution per rule for the tuning of the stopband using 

case 1 system

Rule number Number of occurrences Combination

115 2 C7 clockwise

1 2 0 2 C7 clockwise

128 2 C4 anti-clockwise

132 1 C4 anti-clockwise

134 1 C4 anti-clockwise

144 2 C4 anti-clockwise

$ Case 1 designates the knowledge-based plus human system
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Table 64 : Total distribution of rules per combination using case 1 system for the 

stopband

Combin

ation

No. of rules Occur

rences

Available 

number of 

rules

Occur

rences (%)

Availa

bility (%)

C4 a 8 11 16 26.2 37.2

C4 c 5 7 7 16.7 16.3

C7 a 4 1 2 11 28.6 25.6

C7 c 5 1 2 9 28.6 20.9

$ The character ’c’ as in C4 c denotes the clockwise direction 
$ The character ’a’ as in C4 a denotes the anti-clockwise direction 
t  Case 1 designates the knowledge-based plus human system



Therefore the possibility of eliminating a number of redundant rules after 

some further extensive on-line testing arises.

10.7 Case 2 testin g for the stopband

The testing results with case 1 were obtained with an experienced operator 

who had some idea of how far to turn the screws. The objective though was 

to construct a system which could be used by anyone irrespective of his or her 

level of experience and proficiency. An inexperienced operator would probably 

turn the screws too far or too little. This could result in a larger number of 

iterations and while the timing would eventually be done it would take 

longer. For this reason the stopband region of the magnitude response of the 

filter was tuned using the expert system and the neural networks. The expert 

system advised, as before, on which component to turn and in which direction 

but the operator turned the distance given by the appropriate neural network. 

For example, if the expert system indicated C4 anti-clockwise, then the C4 

anti-clockwise network was used.

10.7.1 Starting position o f the tunable  

com ponents

For the reasons given in Section 10.6.1 the testing involved filters which had 

different initial positions of their components (Table 65).

10.7.2 Presentation and d iscussion  o f resu lts

Distribution of successful tunings

Table 66 shows the total number of attempts made together with the number 

of successful and unsuccessful timings arranged per component configuration.
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Table 65 : Initial positions of tunable components during testing using case 2 system 

(stopband)

Configuration C4 position C7 position

A screwed-in screwed-in

B screwed-out screwed-out

C screwed-in screwed-out

D screwed-out screwed-in

E halfway halfway

F as found as found

G halfway screwed-in

H screwed-in halfway

I screwed-in as found

J screwed-out as found

$ Case 2 designates the knowledge-based plus neural network system
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Table 6 6  : Tuning attempts per configuration using case 2 system (stopband)

Configuration Number of attempts Successful tunings Unsuccessful

tunings

A 1 0 1

B 1 1 0

C 1 1 0

D 1 1 0

E 3 3 0

F 8 7 1

G 1 0 1

H 1 1 0

I 1 1 0

J 1 0 1

TOTAL: 19 15 4

$ Case 2 designates the knowledge-based plus neural network system
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The hybrid failed to tune a filter in four cases. Unlike the results reported 

previously the failures this time occurred with more than one configuration. 

In all four cases the tuning was abandoned due to the choice of the 

component and direction by the expert system rather than the output of the 

neural network. Of course it is possible that the wrong outcome of a neural 

net in a preceding step contributed in the first place but this was 

uncheckable. It is interesting to notice that in only one case the outcome of 

the expert system was C4 anti-clockwise while for the rest of the cases the 

C7 clockwise combination was given. In these situations the system would 

have continued advising C7 clockwise despite the fact that it was obviously 

the wrong choice. It was likely that the blame can be assigned to the C7 

component rather than the C4 component. The latter component had a 

different position for each unsuccessful tuning and they covered all the 

possible testing positions. On the other hand it seemed that C7 created 

problems when it was placed half-way or screwed all the way in.

The observations made with case 1 testing about the choice of direction when 

one or both components were in their extreme positions applied here also. 

Average number of adjustments

Table 67 shows the average number of adjustments required for the timing 

of the stopband considering only the successful tunings. The minimum and 

maximum number of adjustments are also shown. Comments made in the 

respective section of case 1 testing still apply.

It is interesting also to compare case 1 and case 2 tests for those filters with 

configuration (F). In both tests the number of attempts was the same (8) but 

case 1 system successfully tuned all attempts whereas case 2 system failed
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Table 67 : Average number of adjustments using case 2 system (stopband)

Average number of turns: 3.53

Minimum number of turns: 1

Maximum number of turns: 8

$ Case 2 designates the knowledge-based plus neural network system
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in one situation. There is a slight difference in the average number of 

adjustments and the maximum and minimum number of turns required in 

favour of the case 2 system (Table 68).

Examination of end of tuning events

Table 69 shows the rules that were executed for the 15 situations where the 

tuning was terminated. Six out of the 12 available end-of-process rules were 

utilised. A peculiarity was that with the exception of two rules (119, 27) the 

rest of the rules had not appeared with case 1 testing. (Table 59). It is also 

worthwhile to examine the generated outcomes of the neural networks at 

these 15 situations. Table 70 shows the generated outcomes of each network 

for each termination of tuning. The expected outcomes are values close to 

zero. These rules indicate that, allowing a ± 0.1 error, for the majority of 

cases the expert system and the neural networks agreed. The disagreements 

arose due to the anti-clockwise networks. That was something experienced for 

case 4 testing as will be discussed in Section 10.10.

Examination of tuning steps by the empty rule category 

Table 71 shows the number of occurrences for each action advised by the 

system. At this testing an increase in the number of occurrences of empty 

rules can be observed in conjunction with a significant drop of execution of 

clash rules.

Combining the results of Tables 60 and 71 it seems tha t the expected 

likelihood of the system giving a component -direction combination is 71.2% 

with the rest of the time (28.8%) the output being distributed approximately 

equally between empty and clash rules (Table 72). Table 73 shows the 

occurrences of empty situations distributed per rule but only the first time an
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Table 6 8  : Average number of adjustments using case 1 and case 2 systems for the 

tuning of the stopband (only as-found configuration is considered)

Case 1 Case 2

Average number of turns: 3.5 2.9

Minimum number of turns: 2 1

Maximum number of turns: 7 5

Table 69 : End of tuning rules using case 2 rules (stopband)

Rule number Occurrences Rule Confidence 

(%)

Number of 

attributes used

1 2 0 2 54.0 1

46 2 78.8 2

1 2 1 2 56.0 2

29 3 87.5 4

119 5 60.0 1

27 1 91.7 3

$ Case 1 designates the knowledge-based plus human system 
$ Case 2 designates the knowledge-based plus neural network system



Table 70 : Neural networks generated outcomes when tuning was 

terminated

Network Generated values

C4 c 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1

C4 a 0 0.3 0 0 . 2 0 . 2 0 0 0 . 1

C7 c 0 0 0 0 0 0 0 0

C7 a 0 0 0 0 0 0 0 0 . 6

Table 70 continued : Neural networks generated outcomes when 

tuning was terminated

Network Generated values

C4 c 0 0 0 0 . 1 0 0 0

C4 a 0 . 1 0.4 0 0 0 0 . 1 0

C7 c 0 0 0 0 0 0 0

C7 a 0 0 . 1 0 0 0 0 0

$ The character ’c’ as in C4 c denotes the clockwise direction 
$ The character ’a’ as in C4 a denotes the anti-clockwise direction
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Table 71 : Number of occurrences per action using case 2 system (stopband)

Action Number of occurrences Number of occurrences 

(%)

Empty 13 24.1

Clash 3 5.6

Component and Direction 37 68.5

TOTAL: 53 1 0 0

Table 72 : Number of occurrences per action given by case 1 and case 2 

testing (stopband)

Action Number of occurrences Number of occurrences 
(%)

Empty 17 15.3

Clash 15 13.5

Component and Direction 79 71.2

$ Case 1 designates the knowledge-based plus human system
$ Case 2 designates the knowledge-based plus neural network system
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Table 73 : Number of occurrences of situations where the case 2 system could not 

provide an advice (stopband)

Rule number Action taken

118 C4 anti-clockwise

107 C4 clockwise, C4 anti-clockwise

5 C4 clockwise

119 C4 anti-clockwise

98 C4 clockwise

95 C7 anti-clockwise

58 C7 anti-clockwise X 6

0 2 1 C7 clockwise x 2

43 C4 clockwise X 2

85 C7 clockwise

1 0 C4 anti-clockwise

19 C4 anti-clockwise

1 C7 anti-clockwise

$ The character ’x’ as in C4 clockwise x 2 denotes multiple occurrences 
$ Case 2 designates the knowledge-based plus neural network system



empty situation was encountered counted as an empty step. A large number 

of the empty rules appeared only once which makes it difficult to appraise the 

proposed action. For rules that emerged more than once, except in one case 

(Rule 107), the operator followed the same action.

Examination of tuning steps by the clash rule category 

Table 74 shows the clash rules that were executed and the action taken by 

the operator. The third and fourth columns display the actions taken during 

training and where applicable, testing case 1 respectively. Whereas the 

actions taken for circumstances covered by rule 105 seem to be different it is 

interesting to examine the other clash rule. The proposed actions for rule 88 

were equally distributed between the two components with the direction given 

as clockwise for all cases. Rule 88 appeared in five cases during testing. The 

common link being that the execution of the rules occurred either a t the 

beginning of the tuning(i.e. the first step) or at the second tuning step. What 

one can conclude is that both actions were correct and most probably both 

actions have to be implemented.

Examination of timing steps by component and direction category 

Table 75 shows the distribution per rule of the 37 circumstances where the 

system provided an advice. Rules are in ascending order. Four rules (14, 41, 

86, 109) had not been executed with case 1 testing. Table 76 shows the total 

number of rules, their occurrences and the available number of rules in the 

rule base for each combination. Three observations can be made:

■ The low number of C4 anti-clockwise occurrences. Taking into account the 

4 instances of empty rules (which were modified to C4 anti-clockwise) and the 

one instance of clash rule (which again was modified to C4 anti-clockwise)
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Table 74 : Number of situations per rule where the case 2 system provided 

conflicting advices (stopband)

Rule

no.

Testing Training Testing (case 1 

system)

8 8 C7 clockwise X 2 C7 clockwise C7 clockwise

C4 clockwise x 2 C4 clockwise x 2

105 C4 anti-clockwise C4 clockwise

C7 clockwise

J The character ’x’ as in C4 clockwise x 2 denotes multiple occurrences 
$ Case 2 designates the knowledge-based plus neural network system
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Table 75 : Distribution of outcomes per rule using case 2 system (stopband)

Rule number Number of occurrences Combination

14 1 C7 clockwise

15 1 C4 clockwise

18 4 C7 anti-clockwise

41 2 C7 anti-clockwise

8 6 1 C4 clockwise

87 6 C7 clockwise

1 0 1 9 C7 clockwise

1 0 2 5 C4 clockwise

103 2 C4 clockwise

109 1 C4 anti-clockwise

$ Case 2 designates the knowledge-based plus neural network system
■ The C4 component was maladjusted anti-clockwise half a turn (i.e. 0.50).
■ The C7 component was maladjusted anti-clockwise half a turn (i.e. 0.50).



Table 76 : Total distribution per combination using case 2 system (stopband)

Combina

tion

No. of 

rules

Occur

rences

Available

rules

Occur

rences

(%)

Availa

bility (%)

C4 a 1 1 16 3.1 37.2

C4 c 4 9 7 28.1 16.3

C7 a 2 6 11 18.8 25.6

C7 c 6 06 9 50.0 20.9

t  Case 2 designates the knowledge-based plus neural network system 
$ The character ’c’ as in C4c denotes the clockwise direction 
t  The character ’a’ as in C4a denotes the anti-clockwise direction



results in a total of six occurrences. This still reflects a low occurrence 

considering that C4 anti-clockwise rules constitute more than a third of the 

available rules.

■ The high number of occurrences (50.0%) for the C7 clockwise combination

■ Only 23.3% of the available rules were executed.

Testing the tuning steps in terms of distance turned

During the testing one filter was found to be timed, something which was 

recognised by the expert system and the neural networks. Then the tuned 

filter was mal-adjusted by the following actions:

■ C4 anti-clockwise 0.50 turns

■ C7 anti-clockwise 0.50 turns

Then one expects that the opposite actions (i.e. 0.50 clockwise) would return 

the magnitude response to the initial (i.e. tuned) position. The outputs of the 

hybrid system for each of the four neural networks were:

■ Turn C4 clockwise 0.56 turns.

■ Turn C7 clockwise 0.36 turns.

■ Turn C4 anti-clockwise 0.14 turns.

■ Turn C7 anti-clockwise 0.25 turns.

Therefore, in total the actions taken were:

■ Turn C4 clockwise 0.42 turns.

■ Turn C7 clockwise 0.11 turns.

These demonstrate that the hybrid system advised on the right direction for 

both components but only the C4 networks approximately matched the initial 

maladjustment. The estimates of the C7 networks were far below the expected 

adjustments. Another observation was that the C4 networks, in particular,
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provided two estimates (0.56, 0.14) rather than realising that a single 

distance around 0.50 clockwise turns would have been sufficient. Despite that 

in this case the difference between the estimates was implemented the 

following section will show that selecting the largest estimate for each 

direction works better.

10.8 Case 3 testing for the stopband

Since the outcome of each net incorporates the component/ direction 

combination they were employed to define all decision levels. For example, if 

the output of the four networks were:

■ C4 anti-clockwise network : 0.1 (i.e. 0.25 in real turns)

■ C4 clockwise network : 0.3 (i.e. 0.75 in real turns)

■ C7 clockwise network : 0.5 (i.e. 1.25 in real turns)

■ C7 anti-clockwise network : 0.6 (i.e. 1.50 in real turns)

then the outputs could be interpreted in one of the following two ways:

■ Implement the difference between the directions for each component. For 

the above example this would mean

C4 clockwise 0.2 (i.e. 0.50 in real turns)

C7 anti-clockwise 0.1 (i.e. 0.25 in real turns).

This way the fact that each network was taught using a different training set 

was taken into account.

■ Select the largest of each component. In this example, tha t would had 

meant

C4 clockwise 0.3 (i.e. 0.75 in real turns)

C7 anti-clockwise 0.6 (i.e. 1.50 in real turns).

The necessary adjustments for both components were to be implemented one
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after the other. It was hoped that the pseudo-simultaneous adjustment would 

result in a reduction in the number of tuning steps necessary.

10.8.1 Im plem enting the differences

Five filters were employed. In one filter only the stopband tuning was 

successfully terminated. For the rest of the attempts the tuning was 

abandoned for various reasons. In two situations the differences were close 

to zero indicating that further tuning was not required which was obviously 

wrong. Figure 28 illustrates the tuned position and the two positions where 

the tuning was abandoned. In another situation the same component (C7) was 

constantly chosen which resulted in the worsening of the position of the 

magnitude response (Figure 29). Finally in the last abandoned situation the 

reason was that the networks provided oscillating outputs (Figure 30).

10.8.2 Selecting the maximum output o f each  

com ponent

Table 77 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings shown. The networks failed to 

converge towards a tuned position due to the assertion of the C7 component 

in an anti-clockwise direction after the third tuning step. Figure 31 illustrates 

the fact that the continuation of the this selection resulted in worse 

responses. Table 78 shows the average number of adjustments taken jointly 

with the minimum and maximum number of turns.
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—  tuned —  tuned (proposed) -  -  tuned (proposed)

Figure 28: Illustration of two magnitude responses where the system proposed wrongly 
the end of tuning. The reference frequency is denoted as zero at the frequency axis.
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—  tunod  malsdjustment-2 -  -  malsdjustment-1

Figure 29: Illustration of deterioration of magnitude response due to the constant 
proposal of turning Q  component. The reference frequency is denoted as zero at the 
frequency axis
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Figure 30: Illustration of oscillating adjustments resulting to oscillations. The reference 

frequency is denoted by zero at the frequency axis.
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Figure 31: Illustration of (a) complete magnitude responses and (b) the right side of the 
responses where the proposal of turning the Cj component resulted to non-converge. 
The reference frequency is denoted by zero at the frequency axis. Nineteen equally 
spaced values were sampled from the right hand side of the magnitude response 
between f3= 1.404 MHz and f4= 1.42 MHz, in steps of 0.051 MHz.
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Table 77 : Number of attempts using case 3 system for the tuning of the stopband

Number of attempts: 3

Successful tunings: 2

Unsuccessful tunings: 1

Table 78 : Average number of adjustments using case 3 system for the tuning of the 

passband

Average number of turns: 10.5

Minimum number of turns: 7

Maximum number of turns: 14
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10.9 Case 1 vs. Case 2 vs. Case 3 (stopband  

testing)

In Table 79 the number of successful and unsuccessful attempts made for the 

tuning of the stopband using the three systems are combined and shown. 

Testing with all three cases resulted in more successful than unsuccessful 

tunings but the most encouraging results were obtained with the case 2 

testing. This was because of the lack of any human intervention (unlike case 

1 testing). The results with the case 3 system, when using the nets with the 

largest outputs rather than their differences, were promising. Concrete 

conclusions about the case 3 system cannot arise due to the small number of 

attempts made and the various problems encountered. Table 80 combines and 

contrasts the three systems in terms of the number of turns required. The 

table compares the performances of the systems and of the human operator. 

The comparison shows that the use of any system did not necessarily reduce 

the required number of tuning steps but the expected benefit will be a 

reduction of the time an operator spends learning about the tuning procedure. 

This is apparent when comparing case 1 and case 2 systems. The results are 

comparable and encouraging. There is no need to have an experienced 

operator. At this stage it is preferable to use the case 2 system rather than 

case 3. The latter system seems to require more steps. There are two probable 

reasons for this. These are firstly the shortcomings of the C7 anti-clockwise 

network as experienced during all the testing and secondly the single model 

solution effect (recall that only one tuned magnitude response was used in the 

learning set) which results in each network to aim to one and only solution
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Table 79 : Number of successful and unsuccessful attempts of the tuning of stopband 

using case 1, 2 and 3 systems

Case 1 Case 2 Case 3

Successful 85.7 78.9 66.7

Unsuccessful 14.3 21.1 33.3

$ Case 1 designates the knowledge-based plus human system 
$ Case 2 designates the knowledge-based plus neural network system 
$ Case 3 designates the neural network system



Table 80 : Average number of turns for the tuning of the stopband using case 1,

2 and 3 systems

Human Case 1 Case 2 Case 3

Average number of turns: 3.67 3.67 3.22 10.5

Minimum number of turns: 1 1 1 7

Maximum number of turns: 9 9 7 14

$ Case 1 designates the knowledge-based plus human system 
$ Case 2 designates the knowledge-based plus neural network system 
$ Case 3 designates the neural network system



space. This resulted in oscillating outputs.

From the test results shown above, it should be noted that it is possible for 

the hybrid system (case 2) and the connective equivalent (case 3) to tune the 

stopband region of the magnitude response. A decrease in the training time 

can be achieved with either system. However, each system has its own 

advantages. The case 2 system can generate basic explanations of its 

reasoning whereas the networks have a faster execution time despite the 

larger number of steps taken. Additionally, with the neural networks 

situations where knowledge would conflict or not exist cannot arise. Both 

systems are then promising but an extensive testing period would be required 

before they be introduced in the production line.

10.10 Case 4 testing for the stopband

Tables 81 and 82 show the results obtained when the neural networks were 

tested with data generated from three filters with single maladjustments. 

Tables 83 and 84 show similar results but with both components being 

maladjusted. Table 85 shows the output of each of the four networks when 

presented with a timed filter. Observing the output of the neural networks 

in Tables 81 to 85 and allowing a ± 0.1 error rate, the following points can be 

made:

■ The networks for learning C4 and C7 clockwise both give correct estimates.

■ The network for learning C4 anti-clockwise tends to under-estimate for 

values greater than 0.5 but worked well for one filter.

■ The network for learning C7 anti-clockwise does not perform well in  general 

except in one case in which it worked correctly for values up to 0.7 but for 

greater values it provided conservative estimates.
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Table 81 : Comparison of desired vs generated outputs

C4 a network C7 a network

Desired Values Generated Values 

for test filter..

Generated Values 

for test filter..

1 2 3 1 2 3

0.1 0.1 0.1 0.1 0.0 0.0 0.0

0.2 0.1 0.1 0.1 0.0 0.1 0.0

0.3 0.2 0.2 0.1 0.1 0.5 0.2

0.4 0.4 0.3 0.3 0.1 0.5 0.2

0.5 0.6 0.4 0.3 0.1 0.5 0.2

0.6 0.7 0.4 0.4 0.1 0.6 0.2

0.7 0.8 0.5 0.5 0.2 0.6 0.2

0.8 0.9 0.5 0.5 0.2 0.6 0.2

0.9 0.9 0.6 0.6 0.2 0.6 0.2

1.0 1.0 0.6 0.6 0.2 0.6 0.2

$ The character ’a’ as in C4a denotes the anti-clockwise direction
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Table 82 : Comparison of desired vs generated output

C4 c network C7 c network

Desired Values Generated Values 

for test filter..

Generated Values 

for test filter..

1 2 3 1 2 3

0.1 0.0 0.0 0.1 0.0 0.0 0.0

0.2 0.3 0.1 0.3 0.2 0.1 0.1

0.3 0.4 0.3 0.4 0.3 0.2 0.3

0.4 0.4 0.4 0.5 0.4 0.4 0.5

0.5 0.5 0.5 0.6

0.6 0.7 0.6 0.7

$ The character ’c’ as in C4c denotes the clockwise direction
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Table 83 : Comparison of desired vs generated output

C4 a network C7 a network

Desired Values Generated

Values

Desired Values Generated

Values

0.1 0.1 0.1 0.0

0.2 0.1 0.1 0.0

0.3 0.1 0.1 0.0

0.4 0.3 0.1 0.1

0.5 0.3 0.1 0.2

0.6 0.4 0.1 0.3

0.7 0.5 0.1 0.3

0.8 0.6 0.1 0.3

0.9 0.6 0.1 0.4

1.0 0.6 0.1 0.5

$ The character ’a’ as in C4a denotes the anti-clockwise direction
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Table 84 : Comparison of desired vs generated output

C4 c network C7 c network

Desired Values Generated Values Desired Values Generated Values

0.1 0.0 0.1 0.0

0.2 0.1 0.1 0.0

0.3 0.1 0.1 0.0

0.4 0.2 0.1 0.0

Table 85 : Generated output with tuned filters

Desired

Values

Sample of generated values

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

$ The character ’c’ as in C4c denotes the clockwise direction
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■ All networks recognise a tuned state.

It seems that networks for learning the clockwise maladjustment for both 

components operated better. It is noticeable that both had fewer examples in 

their learning sets and less classes were represented than for the ones with 

anti-clockwise maladjustments. This testing also indicated that there is an 

interaction between the two components and if the neural networks were to 

be used on their own then the four learning sets must be combined together. 

This though will create problems as already have been discussed in Section 

8.5.

10.10.1 Experim ents to investigate the ± 0.1 

error

Two types of experiments were performed in order to identify the probable 

source of the ±0.1 error. First, multiple measurements were taken from an 

amplitude response without any adjustments in between. In that experiment 

the amplitude response represented a tuned state therefore the outcome of 

the neural network test module (See Section 10.1.1 for further explanation) 

should produce four values equal or close to zero indicating that no tuning is 

needed. The outcome of this experiment was expected to show if  the ±0 .1  

error could be allocated to the sampling. The second experiment involved 

adjusting one component in an arbitrary direction and then turning the same 

screw the opposite direction using the same number of turns. The goal of this 

experiment was to investigate if blame can be designated to the actual 

turning of the screw, owing either backlash in the screw or the inexactness 

of the operator.
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Table 86 presents the results of the first experiment which showed that there 

is a certain element of error due to sampling but it is negligible. Table 87 

provides the results of the second experiment for when only the C4 component 

was adjusted in an anti-clockwise direction. The table presents the output of 

each of the four neural networks for two trials. For each trial four rows show 

the output of the networks initially, when mal-adjusted, when adjusted back 

and finally the difference between the predictions. The table shows that the 

turning of the screw affects mainly the performance of the C4 anti-clockwise 

neural network approximately 0.17 turns. This of course does not mean that 

other combinations of adjustments would not result to similar results for the 

other networks. The number 0.17 is the mean of the two differences which is 

in excess of the ±0.1 error as experienced during the case 4 testing. The error 

can then be allocated to the screw backlash.

10.11 Case 1 testing for the passband

The passband region of the magnitude response of the filter was tuned using 

the expert system and an expert human operator. The system advised on the 

component to employ and in which direction to turn. The operator turned as 

much or as little as he wanted.

10.11.1 Presentation and d iscussion  o f resu lts

Distribution of successful tunings

It is worth remembering that a t the start of each passband tuning the 

following were true:

■ The three tunable components (i.e. Tlt T2, T3) for the passband were 

screwed all the way in.
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Table 86 : Neural networks output when sampling a amplitude response without 

any adjustment in between

Network output for...

Sampling

Number

C4 anti

clockwise

C4 clockwise C7 anti

clockwise

Cy clockwise

1 0.052 0.007 0.091 0.065

2 0.051 0.008 0.085 0.065

3 0.051 0.007 0.105 0.070

4 0.052 0.0 0.105 0.064

5 0.052 0.012 0.095 0.068

6 0.052 0.011 0.097 0.070

Mean 0.052 0.008 0.096 0.067

Standard

Deviation

0.00047 0.0038 0.0072 0.0024

262



Table 87 : Comparison of neural network outputs after adjusting the screws back 

and forward (Each adjustment equals two turns)

Neural network output for...

Position C4 anti

clockwise

C4 clockwise C7 anti

clockwise

C7 clockwise

tuned 0.052 0.026 0.0 0.0

C4 anti-clockwise 0.830 0.072 0.532 0.097

C4 clockwise 0.262 0.0 0.003 0.0

Difference: 0.210 0.026 0.003 0.0

tuned 0.262 0.0 0.003 0.0

C4 anti-clockwise 1.596 0.078 0.706 0.452

C4 clockwise 0.136 0.0 0.0 0.0

Difference: 0.126 0.0 0.003 0.0

Mean of 

Differences

0.168 0.013 0.003 0.0
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■ The stopband was already tuned. Therefore C4 and C7 remained at the 

positions where found.

Table 88 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings. The system managed to tune the 

passband region in all cases. Other observations made were:

■ For the first timing step the system always advised a T component in an 

anti-clockwise direction.

■ The system advised T components at the beginning of the tuning (on 

average for two to three steps) and then, if necessary, C components. A 

situation where, for example, a T component was used, followed by a C 

component and then a T component was re-used did not arise. This resembles 

how the human operator proceeds.

Average number of adjustments

Table 89 shows the average number of adjustments required for the tuning 

of the passband. The minimum and maximum number of adjustments are 

also recorded. The equivalent figures for the performance of the human 

operator are given as well. In some filter tuning attempts the human seems 

to require one more step but on average a slight decrease of tuning steps 

required does appear to have been achieved.

Examination of tuning steps by the empty rule category 

Table 90 shows the number of steps for each action advised by the system. 

Table 91 displays, in more detail, the empty rules that were executed together 

with the action taken by the operator each time. Again, only the first time of 

an empty rule appearance is counted. It is noticeable that the operator always 

took the same action and that most empty rules were substituted with a C
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Table 88 : Number of attempts for the tuning of the passband using case 1 system

Number of attempts: 26

Successful tunings: 26

Unsuccessful tunings: 0

$ Case 1 designates the knowledge-based plus human system
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Table 89 : Average number of turns for the tuning of the 

passband using case 1 system

Human Case 1

Average number of turns: 4.03 4.3

Minimum number of turns: 2 2

Maximum number of turns: 9 8

Table 90 : Number of occurrences per action using case 1 system (passband)

Number of occurrences Number of occurrences (%)

Empty 14 12.4

Clash 23 20.4

Component and 

Direction

76 67.2

$ Case 1 designates the knowledge-based plus human system
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Table 91 : Number of rules executed at situations where the case 1 system could not 

provide an advice for the tuning of the passband

Rule number Proposed action

165 T3 anti-clockwise

71 C7 clockwise x 2

130 C4 anti-clockwise

203 T3 anti-clockwise X 3

81 T3 anti-clockwise

66 C4 anti-clockwise

84 C4 anti-clockwise X 2

89 C4 anti-clockwise

75 C4 anti-clockwise

91 C7 clockwise

$ Case 1 designates the knowledge-based plus human system 
$ The character ’x’ as in C4 clockwise x 2 denotes multiple occurrences



component. This was expected since only 38.8% of the training examples had 

a C component class.

Examination of tuning steps by the clash rule category 

Table 92 shows the clash rules that were executed together with the action 

taken each time by the operator during the testing and the training. For the 

majority of the cases clashes also occurred during the testing. One noticeable 

exception is rule 77 which appeared five times and the action taken was 

identical for all of them.

Examination of timing steps by component and direction category 

Table 93 shows the distribution per rule of the 76 situations where the 

system provided an advice. Rules are in ascending order. Table 94 shows the 

total number of rules, their occurrences and the available number of rules in 

the rule base for each combination. The following observations can be made:

■ Only 29.2% of the available rules were used with the C component rules 

having the smaller percentage.

■ The vast majority of the executed rules had an anti-clockwise direction part.

■ The component Tj was rarely used.

■ The probable frequency of a particular combination arising is independent 

of the number of available rules in the rule set.
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Table 92 : Number of rules providing conflicting advice for the tuning of the 

passband using case 1 system

Rule number Testing Training

163 T2 clockwise C7 clockwise

T2 anti-clockwise T2 anti-clockwise

129 C7 clockwise x 3 C7 clockwise x 2

T2 anti-clockwise T3 clockwise

51 C7 anti-clockwise x 2 T2 anti-clockwise

C4 anti-clockwise C4 anti-clockwise

68 C7 anti-clockwise x 2 C7 anti-clockwise

C7 clockwise

C4 anti-clockwise

176 T2 anti-clockwise x 2 T2 anti-clockwise

C7 clockwise C7 anti-clockwise

77 C4 anti-clockwise x 5 C4 anti-clockwise

T2 clockwise X 2

T2 anti-clockwise

$ Case 1 designates the knowledge-based plus human system
$ The character ’x’ as in C4 clockwise x 2 denotes multiple occurrences
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Table 92 continued : Number of rules providing conflicting advice for the tuning 

of the passband using case 1 system

Rule number Testing Training

102 C4 clockwise C4 clockwise

C7 anti-clockwise C7 anti-clockwise x 2

T3 anti-clockwise

T2 clockwise

C4 anti-clockwise x 2 C4 anti-clockwise

C7 anti-clockwise

$ Case 1 designates the knowledge-based plus human system
t  The character ’x’ as in C4 clockwise x 2 denotes multiple occurrences



Table 93: Distribution per rule for the tuning of the passband using case 1 

system

Rule number Number of occurrences Combination

11 2 C7 anti-clockwise

44 1 T3 clockwise

45 1 C4 anti-clockwise

47 2 C4 anti-clockwise

52 5 C4 anti-clockwise

58 2 C7 anti-clockwise

90 6 C4 anti-clockwise

112 1 T2 clockwise

117 2 C7 clockwise

118 1 T3 clockwise

119 1 T2 anti-clockwise

136 2 T, anti-clockwise

151 2 T2 anti-clockwise

156 2 T2 anti-clockwise

164 11 T2 anti-clockwise

$ Case 1 designates the knowledge-based plus human system
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Table 93 continued : Distribution per rule for the tuning of the passband using 

case 1 system

Rule number Number of occurrences Combination

177 4 T2 anti-clockwise

179 3 T2 anti-clockwise

194 3 T3 anti-clockwise

195 3 T3 anti-clockwise

197 1 T3 anti-clockwise

198 18 T3 anti-clockwise

$ Case 1 designates the knowledge-based plus human system
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Table 94 : Distribution of rules per combination for the tuning of the passband 

using case 1 system

Combin

ation

No. of 

rules

Occur

rences

No. of

available

rules

No. of 

occur

rences

(%)

No. of

available rules 

(%)

Ti a 1 2 3 2.7 4.2

T ,c 0 0 0 0.0 0.0

T2 a 6 26 02 60.5 16.7

T2 c 1 1 5 1.4 7.0

T3 a 4 25 14 34.2 19.2

T3 c 2 2 5 2.7 7.0

C4 a 4 14 15 19.2 20.8

C4 c 0 0 4 0.0 5.6

C7 a 2 4 9 5.6 12.5

C7 c 1 2 5 2.7 7.0

$ The character ’c’ as in T3 c denotes the clockwise direction 
$ The character ’a’ as in T3 a denotes the anti-clockwise direction 
$ Case 1 designates the knowledge-based plus human system



10.12 Summary of results

Using the expert system-neural network system combination, the stopband 

regions of 79% of the filters were successfully tuned with typically 3 

adjustments needed. The passband regions of all filters were successfully 

tuned with typically 4 adjustments needed. The results are given separately 

for the two regions because for the passband region how far to turn  was 

provided by the operator. Typically 80% of the filters were tuned completely 

(i.e., both stopband and passband) requiring on average 7 adjustments.

The results presented above demonstrate that no one system out-performed 

the rest considering all the performance criteria stated in Section 10.4. 

Comparing the three systems with the results obtained solely with a human 

operator one can deduce that there was not an increase in the efficiency with 

which the tuning was produced. The number of required adjustments, except 

for when the neural network were used on their own, remained about the 

same but the argument is that they can be used by non-experts viz. reducing 

the training time.

The employment of the expert system displays similar dynamics to the 

human operator including shortcomings such as the empty or clash situations. 

Neural networks on the other hand do not suffer from these shortcomings. An 

answer, not necessarily the correct one, is always given. Since in the filter 

tuning application checking the neural network predictions was not always 

possible then this advantage of neural networks is questionable.

The selection of the best system cannot depend only on the accuracy and 

speed of tuning but must also depend on the speed of training of the 

classifiers and the amount of effort that goes into their training, their ease
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of use and implementation.

10.13 Conclusions

The evaluation of the performance of the three approaches for the tuning of 

the stopband region using on-line data showed that the hybrid system 

provided good results with an increase in the efficiency with which a solution 

was produced.

After using the neural networks as stand-alone systems with on-line data 

demonstrated that the actions given by the networks with the largest 

prediction values should be followed. When de-tune data was employed none 

of the networks which recognize a timed position or the clockwise adjustment 

gave an incorrect result that was off by more than 0.1 unit. On the other 

hand results for the anti-clockwise adjustment were not as well-defined 

usually giving correct predictions up to a level and then under-estimating. 

The experiments which were performed in order to identify the probable 

source of the 0.1 error showed that the error arose mainly due to the screw 

backlash.

On the other hand the tuning of the passband region was performed 

successfully in all cases but the operator was required to provide the distance 

to turn.
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Chapter Eleven  

G eneral Observations and C onclusions

2 76



11.2 General observations

The knowledge acquisition bottleneck is a huge obstacle to the development 

of expert systems. This was also proven in the task of tuning electronic 

filters. The hybrid system AEK, as described in this thesis, uses knowledge 

in rule form for determining which component to turn and in which direction 

and in weight form for determining how far to turn. Rules were induced 

automatically using the ID3 learning algorithm and weights were derived 

after teaching feed-forward neural networks using the back-propagation 

learning algorithm. Sets of training examples representing past experience 

were at the disposal of the algorithms. The training examples presented to 

the neural networks were sampled values of the raw magnitude response 

while for ID3 the examples consisted of representations of the raw responses 

in term of waveform peaks. During the implementation of the two learning 

algorithms a number of issues were observed and they are summarised below 

in order to serve other researchers in the field.

■ When using ID3 with attributes which take numerical rather than 

categorical values it is strongly advisable to introduce some inexact modelling 

by creating ranges of values and introducing linguistic values to label them. 

The reason for that is that the algorithm comprehends two numerical values 

like 1.75 and 1.76 as two different concepts when most of the time a human 

will consider both values as equal. The cut-off points of the decision tree are 

very dependent on the examples present in the training set whereas this 

dependency is greatly reduced with the introduction of ranges. Therefore, 

when the following are true:

(i) A complete set of examples is not available, and
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(ii) the present set is somehow representative, and

(iii) it is expected to introduce new examples as the time passes on

then by employing attributes with linguistic variables one stabilises the 

appearance of the decision tree. This was observed during the comparisons 

of decisions trees as described in Chapter 6 and it held true especially for the 

top part of the trees.

■ The algorithms depend on the examples of the training set and whereas the 

question of training set size is important one must also pay attention to the 

available examples as well. A statistical detection of peculiar data is therefore 

useful and essential since their use will cause poor results. This can involve 

the discovery of data corrupted by noise and spikes or outliers using basic 

statistical concepts (e.g. the mean) and graphical representations. For 

example, an attribute value three standard deviations away from the mean 

is a candidate for further exploration of its validity. The drawing of 

scattergrams (see Chapter 8) was a simple method of looking a t the data and 

demonstrated its usefulness by discovering the overlapping of classes.

■ ID3 assists but is fallible. One must always examine the generated decision 

tree. This due to the irrelevant branching problem as discussed in Chapter 

7 which causes the algorithm to branch out for situations which can never 

hold.

■ For applications where data interpretation is desirable the output of ID3 

is much more useful. A decision tree is more useful for understanding the 

structure of the data than the output of a neural network which has a much 

less clear (approaching zero) usefulness for interpretation.

■ Experiments for determining the topology of the networks showed tha t the
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influence of the manner of representation of the data was critical and that 

scaling of the inputs and outputs was beneficial. In order to avoid confusion 

to the users and because response time in the filter tuning domain is 

important a simple procedure which required modest computation was 

followed. In fact, most time was spent in the design of the means for 

representing the data for both algorithms rather than the actual learning.

■ The use of commercially available packages (Xi-Plus, Xi-Rule, and 

NeuralWorks Explorer) for the research period permits some assessment. The 

assessments that follow concern only the stated versions of the software 

packages.

Xi-Plus provides a good user interface and a good diagrammatic 

representation of conclusions. The drawbacks of the shell are:

(i) The use of a lot of memory which can cause the crash of the system.

(ii) The limit of the number of rules per knowledge base. This and the 

previous drawback can be avoided by creating an application layer with a 

number of knowledge bases calling each other. This was followed in AEK but 

revealed the following shortcoming.

(iii) When the execution of one knowledge-base terminates and another 

knowledge-base is called the conclusions of the previous knowledge-base can 

be kept but the explanations are missing. The explanation provided by the 

system is a single line stating that the conclusion was inferred during the 

execution of the previous knowledge-base.

(iv) The shell is lacking in the provision of mathematical functions and 

graphical facilities.

(v) The shell can be interfaced with other software but it is rather
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complicated. Using the Lotus interface with AEK revealed that one can read 

one or more lines of the spreadsheet and assign the values of each 

spreadsheet cell to variables but if one desires to do a sequential reading this 

is impossible.

(vi) The assignment of certainty factors to the conclusion of the rules is not 

possible. Therefore, when one faces a situation where more than one rule 

holds it is not feasible for the system to perform the conflict resolution.

(vii) The ordering of the rules is important thus one has to be careful where 

the rules are located.

(viii) Xi-Plus is menu-based but a mouse driver is not available therefore a 

lot of keyboard usage cannot be avoided during execution.

(ix) Xi-Plus lacks the ability to represent knowledge acquired in the most 

suitable representation format since it provides only the production rule 

format.

Xi-Rule is based on the ID3 algorithm and creates decision trees easily and 

quickly. The user has only to provide the names of the attributes, to decide 

on the attribute values and either to type the examples or to read them in 

from an ASCII file. It does not provide a windowing facility or any pruning 

facilities. The decision tree can be easily sent to Xi-Plus transforming each 

leaf to a production rule. This is not possible though for leaves assigned an 

empty or a clash class and had to be done by hand.

NeuralWorks Explorer can generate a number of standard network types 

from an extensive library with more than enough summation, error, output 

and transfer functions. The use of the package is painless but the learning 

process will benefit in future with the introduction of graphical representation
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of the weights, the output etc. as learning progresses.

11.3 Future work

The AEK system incorporating knowledge-bases and neural networks is 

proposed for now. At its present state the system still has one problem, 

namely that of the third search. This is particularly true for the tuning of the 

passband region where a t the moment how far to turn is determined by the 

user. For eventual use in industry future work must concentrate on the 

following:

(i) Automation of the instrumentation by using for an example a robotic arm. 

This will be useful during the gathering of de-tune data for use by the neural 

networks.

(ii) Transferring the knowledge-bases to the Hewlett-Packard computer. This 

will increase the speed of execution of the rules since an interface between 

the measuring equipment and the Hewlett-Packard computer can be easily 

constructed. This has the disadvantage of being difficult to maintain, change 

and inspect the knowledge-bases.

(iii) Algorithms must be investigated and programs must be written in order 

to locate the peaks automatically.

All the above suggestions will contribute towards a fully-automatic system. 

Additionally, further work can be done in order to improve the performance 

of the neural networks. For example some form of pre-processing, such as 

filtering of the magnitude response using Fourier transforms, might improve 

the results.
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11.4 C onclusions

This thesis presented the work undertaken in order to create a prototype 

expert system which is hoped to be of benefit to the industry. The system is 

taking the role of an advisor during the tuning of crystal filters.

Two main conclusions were drawn concerning the use of ID3.

(i) When using ID3 with attributes which take numerical rather than 

categorical values it is strongly advisable to introduce some inexact modelling 

by creating ranges of values and introducing linguistic values to label them.

(ii) It was not possible to create rules to predict how far to turn (i.e., search 

3) using ID3 because of the vast number of attributes the class attribute can 

take. Information would have been lost if linguistic values were introduced. 

Therefore an alternative method was needed. Multi-layer neural networks 

learning using the back-propagation algorithm were constructed for the third 

search of the stopband sub-task. Hence, a hybrid expert system-neural 

network system was formed.

The testing and evaluation of the performance of three systems (see Chapter 

10) showed that:

(i) For case 1 (i.e., the expert system-operator system combination), the 

stopband regions of 86% of the filters were successfully timed with typically 

3 adjustments needed. The passband regions of all filters were successfully 

tuned with typically 4 adjustments needed.

(ii) For case 2 (i.e., the expert system-neural network system combination), 

the stopband regions of 79% of the filters were successfully tuned with 

typically 3 adjustments needed.

(iii) For case 3 (i.e., the neural network system), the stopband regions of 67%
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of the filters were successfully tuned with typically 10 adjustments needed. 

The results are given separately for the two regions because for the passband 

region how far to turn was provided by the operator. Typically 80% of the 

filters were tuned completely (i.e., both stopband and passband) requiring in 

average 7 adjustments.

The production of the hybrid system (i.e., case 2) indicated that the choice of 

which component to use and in which direction to turn can be easily 

determined. How far to turn presents a more complex problem.

The second system is recommended for use now with the third system being 

the most promising for the future. The results presented in the thesis concern 

only one type of crystal filter but the generic methodology can be applied to 

other types with little problem.
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Appendix One

Transcription of video-tape for filter 4716 

Taped at Newmarket 20..22 June 1988
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These are the end coils they are just straight inductors effectively, in the center 
there is a center-tap coil which acts as the bridge circuit in the middle there. 
There are two trimmer capacitors which are used to adjust the stopband. The 
stopband is an asymetric one. It is an unusual shape. It is made this way to 
provide a single side band type of performance from what it is normally just a 
four-pole elliptic.

Stick it and we can have a go. Set the frequency to 1.4MHz coarse frequency 
that is. Adjust the display on log scale to give me a whole responce of the filter. 
Looking at, let me check that is locked on. Looking at the responce on the 
screen I want to increase the amount I am seen so I am reducing the 
sweep-width down to about 3.5 KHz, that is +-3.5 and then just centring up 
using the fine frequency control.

Now we see the basic untuned filter. If I can get my head out of the way. Right 
now the first thing I am gonna do is to adjust the trimmer capacitors to arrange 
these peaks into a more reasonable place because I once have done tha t I know 
the stray balancing capacitor in the circuit is more or less right and it is not 
going to effect the passband responce too much later on. It does not matter 
which end you do first. Turn the trimmer capacitor (R) anticlockwise and pull 
the peaks out on the other side. That is done one. Now move to the other end 
(L) turning anticlockwise again and pull that out just off the screen.

Increase the sweep-width to +-7KHz and see the two peaks have been moved 
off to one side and we are looking more like a decent asymetric single side band 
responce where the carrier frequency is against this edge.

Now ready to begin and try to tune the end coils to flatten the ripple. Again it 
doesn’t  m atter which end you start from. Ill go left hand end and turn  clockwise 
and see what happens and the ripple drops. Keep on turning, it is getting worst 
again 111 stop there. Go to right hand end turn the slug clockwise. Watch the 
ripple drop. So we are getting close to the theoretical shape now. Change now 
to a linear display about there and increase the bandwidth, reduce the 
bandwidth rather to something I cannot actually read 1.75,1 think. Centre up 
the display. Right now I’m ready to tune the centre coil and I’ll need to go and 
get a tuner.

I t should bring down the lump on the upper side, we hope. I’m turning 
clockwise and that is going too far so I come back again anticlockwise again and 
tha t is going too far. So about there it looks about right. Now give the end coils 
another adjust just to make sure they are where they ought to be. If I screw in 
they get worst if I turn anticlockwise they get better. Turn this one 
anticlockwise as well that is too bad. So I go back again clockwise. Ju st put a 
bit of ripple it doesn’t  want to be too flat. The flatter you make your passband 
the less stopband attenuation you get so you want to put a little bit of ripple 
just to help you along. Right now what we’ll do.
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I think at this stage i will actually measure the passband to see what weVe got, 
so HI stop the sweep. Find the maximum power transmission, lowest point of 
passband which is there. Set the needle to zero with the generator output level. 
I can now measure the 4db bandwidth on the upper side it is, change that 
quickly, is 2.7 on the spec is 2.55 we are ok there. Go back to the other side 4db 
on the meter gives us +4.34 and we are looking for less than 4.5. That is ok, a 
bit tight but it is ok.
Um, right if I resume sweeping again and change the level to 40 (10,20, 30, 40) 
increase the sweepwidth, center the passband again, what Fll try to do now is 
to adjust the peaks so these return levels come to about, what we’ve got, about 
48db. Check and see where they are at the moment. That one is a t 53 and that 
one is about 57. If I sweep there and then just try to adjust the trimmer 
capacitors that effect those peaks in. ie. drop the return levels down. This is the 
LH one turning clockwise looks what I want to do it is coming down, probably 
too much now. Fll check the level again. That is 50 that is 50. I ll say that is 
probably about right.

Right, I can go back now to the passband and measure the whole filter right 
through make sure we are in spec still. So it is to the lowest point of the 
passband. Set to zero the meter. Measure 4db which is 2.6 and we are looking 
for 2.55 that is ok. Set to the other side that is 0.43 we are looking for 4.5, less 
than 4.5 that is ok, 0.45 beg your pardon, that is ok. The next thing is the 
where are we, carrier rejection I think yes if I set the frequency exactly on 1.4 
MHz ie. zero on the counter as it stands at the moment, about there somewhere, 
the attenuation should be better than 15 so that is 10 we’ve got 24 so that is 
fine. Right now we are up to 20 on that scale. I’m gonna increase tha t to 40 and 
check the 45 db points. I think we’ll have to change the bandwidth. Now there 
is this time 10’s multiplier that comes on certain ranges of the bandwidth so 
now switched in the times 10’s.

I’ll have to readjust the fine frequency to put the filter back in the middle of the 
screen, that is, stop the sweep go to find the 45db points. That is the low one 
there which is -4.52 and we are looking for something better than 600, so that 
is okay. This side is +3.9 and we want it less than +4.8 tha t is ok too. So just 
a quick sweep there just to check the return levels. That is 50db, that is 50db.

LH capacitor trimmer effects the closest upper stopband peak, this will effect 
the upper 45db point more than anything else it also effects the return level but 
tha t can be compensated later.

On the LH trimmer both outer peaks on each side move and this will tend to 
leave the 45db frequencies where they are but they will effect the return levels.

So if you want to adjust the return levels your best bet is with the RH trimmer 
- if you want to adjust the upper 45db point your best bet is with the LH 
trimmer.
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Appendix Two

Instructions given to the operator



D ear Sir,

We are making a study of the filter tuning process. We believe you are 
especially well qualified to tell us about the process as a whole, but at the 
present we would like you to concentrate only on the following task. You are 
just about ready to start timing a filter. During the process you probably 
make some decisions based on something.

Those something are what we would like you to write down on a piece of 
paper as they occur. Please use your own terminology.

For example, consider the situation where you try to decide if an umbrella 
will be required to be taken to work. The decision might be made by just 
looking at the sky. Well, the sky is the something. Note that they do not have 
to be single words.

One thing we would like you to know is that there are no right or wrong 
answers. Different people judge things in different ways. We are interested 
in your results as an individual.

Please take as much time as you require.

Yours faithfully

Dimitris Tsaptsinos
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Appendix Three

Transcription of video-tape for filter 4716 

Taped at Newmarket 20..22 June 1988
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These are the end coils
they are just straight inductors effectively,
in the center there is a center-tap coil
which acts as the bridge circuit in the middle there.
There are two trimmer capacitors 
which are used to adjust the stopband.
The stopband is an asymetric one.
It is an unusual shape.
It is made this way to provide a single side band type of 
performance from what it is normally just a four-pole elliptic. 
Stick it and we can have a go.
Set the frequency to 1.4MHz coarse frequency that is.
Adjust the display on log scale
to give me a whole responce of the filter.
Looking at,let me check that is locked on.
Looking at the responce on the screen I want to 
increase the amount I am seen
so I am reducing the sweep-width down to about 3.5 KHz,that is 
+-3.5
and then just centring up 
using the fine frequency control.
Now we see the basic untuned filter.
If I can get my head out of the way.
Right now the first thing I am gonna do is to 
adjust the trimmer capacitors 
to arrange these peaks into a more reasonable place 
because I once have done that
I know the stray balancing capacitor in the circuit is more or 
less right and it is not going to effect the passband responce 
too much later on.
It does not matter which end you do first.
Turn the trimmer capacitor (R) anticlockwise 
and pull the peaks out on the other side.
That is done one.
Now move to the other end (L) turning anticlockwise again 
and pull that out just off the screen.
Increase the sweep-width to +-7KHz and
see the two peaks have been moved off to one side and
we are looking more like a decent asymetric single side band
responce where the carrier frequency is against this edge.
Now ready to begin and 
try to tune the end coils 
to flatten the ripple.
Again it doesn’t  matter which end you start from.
Fll go left hand end and turn clockwise and 
see what happens and
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the ripple drops.
Keep on turning,
it is getting worst again
ill  stop there.
Go to right hand end turn the slug clockwise.
Watch the ripple drop.
So we are getting close to the theoretical shape now.
Change now to a linear display about there
and increase the bandwidth,reduce the bandwidth rather to
something I cannot actually read 1.75 I think.
Centre up the display.
Right now i’m ready to tune the centre coil 
and i’ll need to go and get a timer.
It should bring down the lump on the upper side, 
we hope.
I’m turning clockwise
and that is going too far
so I come back again anticlockwise again
and that is going too far.
So about there it looks about right.
Now give the end coils another adjust
just to make sure they are where they ought to be.
If I screw in they get worst
if I turn anticlockwise they get better.
Turn this one anticlockwise as well 
tha t is too bad.
So I go back again clockwise.
Just put a bit of ripple it doesn’t  want to be too flat.
The flatter you make your passband the less stopband attenuation you get 
so you want to put a little bit of ripple just to help you along.
Right now what we’ll do.
I think a t this stage 
I will actually measure the passband 
to see what we’ve got, 
so i’ll stop the sweep.
Find the maximum power transmission, 
lowest point of passband which is there.
Set the needle to zero
with the generator output level.
I can now measure the 4db bandwidth on the upper side it is, 
change that quickly, 
is 2.7 on the spec is 2.55 
we are ok there.
Go back to the other side
4db on the meter gives us +4.34
and we are looking for less than 4.5.
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That is ok, a bit tight but it is ok.
Um,right
if I resume sweeping again and 
change the level to 40 (10,20,30,40) 
increase the sweepwidth, 
center the passband again, 
what i’ll try to do now is to 
adjust the peaks
so these return levels come to about,what we’ve got,about 48db. 
Check and see where they are at the moment.
That one is at 53 and that one is about 57.
If I sweep there and
then just try to adjust the trimmer capacitors
that effect those peaks in.
ie. drop the return levels down.
This is the LH one turning clockwise 
looks what I want to do it is coming down, 
probably too much now.
I ll check the level again.
That is 50 that is 50.
Fll say that is probably about right.
Right,I can go back now to the passband and 
measure the whole filter right through 
make sure we are in spec still.
So it is to the lowest point of the passband.
Set to zero the meter.
Measure 4db which is 2.6 and we are looking for 2.55 
that is ok.
Set to the other side that is 0.43 we are looking for 4.5,less 
than 4.5
that is ok,0.45 beg your pardon,that is ok.
The next thing is the where are we,carrier rejection 
I think yes
if I set the frequency exactly on 1.4 MHz
ie. zero on the counter as it stands at the moment,
about there somewhere,
the attenuation should be better than 15 so that is 10 we’ve got 
24
so that is fine.
Right now we are up to 20 on that scale.
I’m gonna increase that to 40 and 
check the 45 db points.
I think well have to change the bandwidth.
Now there is this time 10’s multiplier that comes on certain
ranges of the bandwidth
so now switched in the times 10’s.
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I ll  have to readjust the fine frequency
to put the filter back in the middle of the screen,that is,
stop the sweep
go to find the 45db points.
That is the low one there which is -4.52 and we are looking for something better 
than 600, 
so that is okay.
This side is +3.9 and we want it less than +4.8 
that is ok too.
So just a quick sweep there 
just to check the return levels.
That is 50db, that is 50db.
LH capacitor trimmer
effects the closest upper stopband peak,
this will effect the upper 45db point more than anything else
it also effects the return level but
that can be compensated later.
On the LH trimmer
both outer peaks on each side move and
this will tend to leave the 45db frequencies where they are but
they will effect the return levels.
So if you want to adjust the return levels 
your best bet is with the RH trimmer - 
if you want to adjust the upper 45db point 
your best bet is with the LH trimmer.
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A ttenuation: A general term used to denote a decrease in signal magnitude in 
transmission from one point to another. May be expressed as a scalar ratio of the 
input magnitude to the output magnitude or in decibels.

Active filter: A filter network containing one or more active devices (usually an 
operational amplifier) in addition to passive elements (resistors, capacitors).

Coil: One or more loops of wire wound spirally, often around a cylindrical 
cardboard or iron core, and exhibiting the property of inductance. Also called an 
inductor.

Passband: A band of frequencies that pass through a filter with little loss.

Ripple: The variations on a frequency plot of an impedance function or of a 
transfer function.
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Appendix Five

Listing of knowledge-base of the stopband (search 1)
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fact d l = peak2 - peakl
fact d2 = peak3 - peakl
fact d3 = peak4 - peakl
fact d4 = peak3 - peak2
fact d5 = peak4 - peak2
fact d6 = peak4 - peak3
fact d7 = level2 - level 1
question peak4 =

1 to 100 , unknown 
question text what is the value of the fourth peak ?

and ( if r2 exists give the max on the right value ) 
question peakl =

1 to 100 , unknown 
question text what is the value of the first peak ? 

question peak3 =
1 to 100 , unknown 

question text what is the value of the third peak ? 
question peak2 =

1 to 100 , unknown 
question text what is the value of the second peak ? 

question levell =
1 to 100 , unknown 

question text what is the value of the first return level ? 
question level2 =

1 to 100 , unknown 
question text what is the value of the second return level ? 
when outcome is carry - on 
then command reset p i 
and command reset p2 
and command reset p3 
and command reset p4 
and command reset r l  
and command reset r2 
and command reset d l 
and command reset d2 
and command reset d3 
and command reset d4 
and command reset d5 
and command reset d6 
and command reset d7 
and command load c:\newmarket\search2 

when peak4 = unknown 
then force outcome is carry - on 
when peakl = unknown 
then force outcome is carry - on 
when peak2 = unknown 
then force outcome is carry - on 
when peak3 = unknown 
then force outcome is carry - on 
when levell = unknown
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then force outcome is carry - on 
when level2 = unknown 
then force outcome is carry - on 
when outcome is end 
then command load a:\numbers 
if diff3 is left 
then outcome is carry - on 
and report EXAMPLES USED 34 / 138 ( 24.61% ) 
and confidence = 98.5 

if diff3 is right 
and p2 is left 

then outcome is empty 
if p2 is right 
then outcome is carry - on 
and report EXAMPLES USED 3 / 138 ( 2.17% ) 
and confidence = 91.3 

if diff3 is right 
and p2 is ok 

then outcome is end
and report EXAMPLES USED 4 / 138 ( 2.9% ) 
and report END - OF - PROCESS 
and confidence = 87.5 

if diff3 is ok 
and p3 is left 
and p2 is left 

then outcome is empty 
if p i  is left
then outcome is carry - on 
and report EXAMPLES USED 2 / 138 ( 1.45% ) 
and confidence = 75 

if diff3 is ok 
and p3 is left 
and p2 is right 
and diffl is right 
and p i  is right 

then outcome is empty 
if p3 is left 
and p2 is right 

then outcome is carry - on 
and report EXAMPLES USED 6 / 138 ( 4.35% ) 
and confidence = 97.2 

if p3 is left
then outcome is carry - on 
and report EXAMPLES USED 1 / 138 ( 0.72% ) 
and confidence = 92.4 

if diff3 is ok 
and p3 is left 
and p2 is ok 
and diffl is right 

then outcome is empty
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if diff3 is ok 
and p3 is left 
and p2 is ok 
and diffl is ok 
and p i  is left 

then outcome is empty 
if diff3 is ok 
and p3 is left 
and p2 is ok 
and diffl is ok 
and p i  is ok 
and difF7 is left 

then outcome is empty 
if diff3 is ok 
and p3 is right 
and diffl is left 

then outcome is empty 
if p3 is right 
and diffl is right 

then outcome is carry - on 
and report EXAMPLES USED 2 / 138 ( 1.45% ) 
and confidence = 87.5 

if p3 is right 
and diffl is ok 

then outcome is end
and report EXAMPLES USED 5 / 138 ( 3.62% ) 
and report END - OF - PROCESS 
and confidence = 91.7 

if diff3 is ok 
and p3 is ok 
and diffl is left 

then outcome is end
and report EXAMPLES USED 4 / 138 ( 2.90% ) 
and report END - OF - PROCESS 
and confidence = 87.5 

if diff3 is ok 
and p3 is ok 
and diffl is right 
and r2 is right 

then outcome is empty 
if diff3 is ok 
and p3 is ok 
and diffl is right 
and r2 is ok 
and diff4 is right 

then outcome is empty 
if diffl is right 
then outcome is carry - on 
and report EXAMPLES USED 2 / 138 ( 1.45% ) 
and confidence = 75
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if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is left 

then outcome is empty 
if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is right 
and p2 is left 

then outcome is empty 
if diff7 is right 
then outcome is carry - on 
and report EXAMPLES USED 2 / 138 ( 1.45% ) 
and confidence = 86.5 

if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is right 
and p2 is right 
and diffY is left 

then outcome is empty 
if diffB is ok 
and p3 is ok 
and diffl is ok 
and r2 is ok 
and p2 is left 

then outcome is empty 
if p3 is ok 
and r2 is ok 

then outcome is end
and report EXAMPLES USED 2 / 138 ( 1.45% ) 
and report END - OF - PROCESS 
and confidence = 78.8 

if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is ok 
and p2 is ok 
and r l  is right 

then outcome is empty 
if r2 is ok 
and diff7 is ok 

then outcome is end
and report EXAMPLES USED 12 / 138 ( 8.70% ) 
and report END - OF - PROCESS 
and confidence = 68.2 

if diff3 is ok 
and p3 is ok 
and diffl is ok
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and r2 is ok 
and p2 is ok 
and r l  is ok 
and diff7 is left 

then outcome is empty 
if p i is ok 
then outcome is end
and report EXAMPLES USED 1 / 138 ( 0.72 % ) 
and report END - OF - PROCESS 
and confidence = 0.60 

if p2 is ok 
then outcome is end
and report EXAMPLES USED 1 / 138 ( 0.72 % ) 
and report END - OF - PROCESS 
and confidence = 0.54 

if diff7 is ok 
then outcome is end
and report EXAMPLES USED 1 / 138 ( 0.72 % ) 
and report END - OF - PROCESS 
and confidence = 0.56 

if peakl >= 1.397156 
and peakl <= 1.398220 

then p i is ok 
if peakl < 1.397156 
then p i is left 
if peakl > 1.398220 
then p i is right 
if d3>= 0.008236 
and d3 <= 0.032018 

then diff3 is ok 
if d3<  0.008236 
then diff3 is left 
if d3>  0.032018 
then diff3 is right 
if peak2 >= 1.399327 
and peak2 <= 1.399546 

then p2 is ok 
if peak2 < 1.399327 
then p2 is left 
if peak2 > 1.399546 
then p2 is right 
if peak3 >= 1.404048 
and peak3 <= 1.405241 

then p3 is ok 
if peak3 < 1.404048 
then p3 is left 
if peak3 > 1.405241 
then p3 is right 
if peak4 >= 1.406214 
and peak4 <= 1.429488
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then p4 is ok 
if peak4 < 1.406214 
then p4 is left 
if peak4 > 1.429488 
then p4 is right 
if levell >= 56 
and levell <= 64 

then r l  is ok 
if levell < 56 
then r l  is left 
if levell > 64 
then r l  is right 
if level2 >= 58 
and level2 <= 65 

then r2 is ok 
if level2 < 58 
then r2 is left 
if level2 > 65 
then r2 is right 
if d l > =  0.001188 
and d l <= 0.002309 

then diffl is ok 
if d l<  0.001188 
then diffl is left 
if d l>  0.002309 
then diffl is right 
if d2>= 0.006105 
and d2 <= 0.007807 

then diff2 is ok 
if d2<  0.006105 
then diff2 is left 
if d2>  0.007807 
then diff2 is right 
if d4>= 0.004522 
and d4 <= 0.005894 

then diff4 is ok 
if d4<  0.004522 
then diff4 is left 
if d4>  0.005894 
then diff4 is right 
if d5>= 0.006767 
and d5 <= 0.030062 

then diff5 is ok 
if d5<  0.006767 
then diffB is left 
if d5>  0.030062 
then diff5 is right 
if d6>= 0.001616 
and d6 <= 0.024798 

then diffB is ok



if d6<  0.001616 
then diffB is left 
if d6> 0.024798 
then diff6 is right 
if d7 >= 0 
and d7 <= 6 

then diff7 is ok 
if d7 < 0 
then diff7 is left 
if d7 > 6 
then diff7 is right 
if levell > level2 
then d7 = levell - level2 

query outcome is 
query options auto



Appendix Six
Listing of knowledge-base of the stopband (search 2)
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fact lim l = 0.0001
fact lim2 = 0.001
question peakl =

1 to 100 , unknown 
question text enter the value of the first peak 

question peak2 =
1 to 100 , unknown 

question text enter the value of the second peak 
question peak3 =

1 to 100 , unknown 
question text enter the value of the third peak 

question peak4 =
1 to 100 , unknown 

question text enter the value of the fourth peak 
question level 1 =

1 to 100 , unknown 
question text enter the value of the first return level 

question level2 =
1 to 100 , unknown 

question text enter the value of the second return level 
question observe is 

yes , 
no

question text Would you like to see the results ? 
when componen is X 
then report Component to he used is [X] 
and command reset peakl 
and command reset peak2 
and command reset peak3 
and command reset peak4 
and command reset level 1 
and command reset level2 
and command reset p i 
and command reset p2 
and command reset p3 
and command reset p4 
and command reset r l  
and command reset diffl 
and command reset diff2 
and command reset diffS 
and command reset diff3 
and command reset diff4 
and command reset diffB 
and command reset difT7 
and command reset r2 
and command reset outcome 
and command reset componen 
and command load c:\newmarket\searchl 

when peakl = unknown 
then force p i is absent
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when peak2 = unknown 
then force p2 is absent 
when peak3 = unknown 
then force p3 is absent 
when peak4 = unknown 
then force p4 is absent 
when level 1 = unknown 
then force r l  is absent 
when level2 = unknown 
then force r2 is absent 
if p i is left 
and p2 is left 

then componen is empty 
if p i  is left 
and p2 is right 

then componen is c4a 
if p i  is left 
and p2 is ok 
and r l  is left 

then componen is empty 
if p i  is left 
and p2 is ok 
and r l  is right 

then componen is empty 
if p i  is left 
and p2 is ok 
and r l  is ok 

then componen is c4c 
if p i  is left 
and p2 is ok 
and r l  is absent 

then componen is empty 
if p i is left 
and p2 is ok 
and r l  is fleft 

then componen is empty 
if p i is left 
and p2 is ok 
and r l  is fright 

then componen is empty 
if p i  is left 
and p2 is ok 
and r l  is cleft 

then componen is c7c 
if p i  is left 
and p2 is ok 
and r l  is cright 

then componen is empty 
if  p i  is left 
and p2 is absent



then componen is empty 
if p i  is left 
and p2 is fleft 

then componen is empty 
if p i  is left 
and p2 is fright 

then componen is empty 
if p i is left 
and p2 is cleft 

then componen is c7c 
if p i  is left 
and p2 is cright 

then componen is c4c 
if p i  is right 
and p2 is left 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is left 

then componen is c7a 
if p i  is right 
and p2 is right 
and p4 is ok 

then componen is c7a 
if p i  is right 
and p2 is right 
and p4 is absent 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is left 

then componen is c4a 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is right 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is ok 

then componen is c4a 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is absent 

then componen is empty 
if p i  is right 
and p2 is right



and p4 is fleft 
and r l  is fleft 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is fright 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is left 

then componen is c7a 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is right 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is ok

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is absent 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is fleft 

then componen is c4a 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is fright 

then componen is empty 
if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is cleft 

then componen is clash
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if p i  is right 
and p2 is right 
and p4 is fleft 
and r l  is cleft 
and r2 is cright 

then componen is empty 
if p i is right 
and p2 is right 
and p4 is fleft 
and r l  is cright 

then componen is empty 
if p i is right 
and p2 is right 
and p4 is cleft 

then componen is empty 
if p i is right 
and p2 is ok 

then componen is c4a 
if p i  is right 
and p2 is absent 

then componen is empty 
if p i is right 
and p2 is fleft 

then componen is empty 
if p i  is right 
and p2 is fright 

then componen is empty 
if p i  is right 
and p2 is cleft 

then componen is empty 
if p i  is right 
and p2 is cright 

then componen is c7a 
if p i  is ok 
and r2 is left 

then componen is c4a 
if p i  is ok 
and r2 is right 

then componen is empty 
if p i  is ok 
and r2 is ok 

then componen is c7a 
if p i  is ok 
and r2 is absent 
and p2 is left 

then componen is c4c 
if p i is ok 
and r2 is absent 
and p2 is right 

then componen is empty



if p i  is ok 
and r2 is absent 
and p2 is ok 

then componen is c7c 
if p i  is ok 
and r2 is absent 
and p2 is absent 

then componen is empty 
if p i  is ok 
and r2 is absent 
and p2 is fleft 

then componen is empty 
if p i  is ok 
and r2 is absent 
and p2 is fright 

then componen is empty 
if p i  is ok 
and r2 is absent 
and p2 is cleft 

then componen is empty 
if p i  is ok 
and r2 is absent 
and p2 is cright 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is left 

then componen is c7a 
and report This was an empty rule before 

if p i  is ok 
and r2 is fleft 
and r l  is right 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is ok 
and p2 is left 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is ok 
and p2 is right 

then componen is c7a 
if p i  is ok 
and r2 is fleft 
and r l  is ok 
and p2 is ok 

then componen is empty 
if p i  is ok 
and r2 is fleft

A - 2 7



and r l  is ok 
and p2 is absent 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is ok 
and p2 is fleft 

then componen is empty 
if p i is ok 
and r2 is fleft 
and r l  is ok 
and p2 is fright 

then componen is empty 
if p i is ok 
and r2 is fleft 
and r l  is ok 
and p2 is cleft 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is ok 
and p2 is cright 

then componen is clash 
and report component previously used 
and report c4c ( 1 examples during elicitation ) 
and report c7a ( 1 examples during elicitation ) 
and report c7a ( 1 examples during testing ) 

if p i  is ok 
and r2 is fleft 
and r l  is absent 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is fleft 

then componen is empty 
if p i  is ok 
and r2 is fleft 
and r l  is fright 

then componen is empty 
if p i is ok 
and r2 is fleft 
and r l  is cleft 

then componen is c4a 
if p i  is ok 
and r2 is fleft 
and r l  is cright 

then componen is empty 
if p i  is ok 
and r2 is fright 

then componen is empty
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if p i is ok 
and r2 is cleft 
and p2 is left 

then componen is empty 
if p i  is ok 
and r2 is cleft 
and p2 is right 

then componen is c4a 
if p i is ok 
and r2 is cleft 
and p2 is ok 

then componen is c7a 
if p i  is ok 
and r2 is cleft 
and p2 is absent 

then componen is empty 
if p i is ok 
and r2 is cleft 
and p2 is fleft 

then componen is empty 
if p i  is ok 
and r2 is cleft 
and p2 is fright 

then componen is empty 
if p i  is ok 
and r2 is cleft 
and p2 is cleft 

then componen is empty 
if p i  is ok 
and r2 is cleft 
and p2 is cright 

then componen is c4a 
if p i  is ok 
and r2 is cright 
and p2 is left 

then componen is empty 
if p i  is ok 
and r2 is cright 
and p2 is right 

then componen is empty 
if p i  is ok 
and r2 is cright 
and p2 is ok 

then componen is c4c 
if p i  is ok 
and r2 is cright 
and p2 is absent 

then componen is empty 
if p i is ok 
and r2 is cright
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and p2 is fleft 
then componen is empty 
if p i is ok 
and r2 is cright 
and p2 is fright 

then componen is empty 
if p i is ok 
and r2 is cright 
and p2 is cleft 

then componen is empty 
if p i  is ok 
and r2 is cright 
and p2 is cright 

then componen is clash 
if p i is absent 
and p2 is left 
and p3 is left 

then componen is empty 
if p i  is absent 
and p2 is left 
and p3 is right 

then componen is c4c 
if p i  is absent 
and p2 is left 
and p3 is ok 

then componen is empty 
if p i  is absent 
and p2 is left 
and p3 is absent 

then componen is clash 
and report components previously used 
and report c4c ( 2 examples during elicitation ) 
and report c7c ( 1 examples during elicitation ) 
and report c7c ( 1 examples during testing ) 
and report c4c ( 2 examples during testing ) 

if p i  is absent 
and p2 is left 
and p3 is fleft 

then componen is empty 
if p i  is absent 
and p2 is left 
and p3 is fright 

then componen is clash 
and report component previously used 
and report c7c ( 4 examples during elicitation ) 
and report c4c ( 4 examples during elicitation ) 
and report c4c ( 1 examples dining testing ) 

if p i  is absent 
and p2 is left 
and p3 is cleft
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then componen is empty 
if p i is absent 
and p2 is left 
and p3 is cright 

then componen is empty 
if p i  is absent 
and p2 is right 
and p3 is left 

then componen is clash 
and report component previously used 
and report c4a ( 1 examples during elicitation ) 
and report c7c ( 1 examples during elicitation ) 
and report c4c ( 2 examples during testing ) 
and report c4a ( 2 examples during testing ) 

if p i  is absent 
and p2 is right 
and p3 is right 

then componen is empty 
if p i is absent 
and p2 is right 
and p3 is ok 

then componen is empty 
if p i is absent 
and p2 is right 
and p3 is absent 

then componen is empty 
if p i is absent 
and p2 is right 
and p3 is fleft

then componen is clash c4a c4c 
and report THERE IS A CLASH
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used : C4A ( 2.75 ) ex.12 
and rep o rt: C4C ( 2.50 ) ex.82 

if p i  is absent 
and p2 is right 
and p3 is fright 

then componen is empty 
if p i  is absent 
and p2 is right 
and p3 is cleft 

then componen is empty 
if p i  is absent 
and p2 is right 
and p3 is cright 

then componen is c7c 
and report This was an empty rule before 

if p i  is absent 
and p2 is ok 

then componen is c7c
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if p i  is absent 
and p2 is absent 

then componen is c4c 
if p i  is absent 
and p2 is fleft 

then componen is c4c 
if p i  is absent 
and p2 is fright 

then componen is empty 
if p i  is absent 
and p2 is cleft 

then componen is clash 
and report component previously used 
and report c4c ( 1 examples during elicitation ) 
and report c7c ( 1 examples during elicitation ) 
and report c4c ( 1 examples during testing ) 

if p i  is absent 
and p2 is cright 

then componen is c7c 
and report This was an empty rule before 

if p i  is fleft 
and r2 is left 

then componen is empty 
if p i is fleft 
and r2 is right 

then componen is empty 
if p i is fleft 
and r2 is ok 

then componen is c4a 
if p i  is fleft 
and r2 is absent 
and p3 is left 

then componen is empty 
if p i  is fleft 
and r2 is absent 
and p3 is right 

then componen is c7c 
if p i  is fleft 
and r2 is absent 
and p3 is ok 

then componen is empty 
if p i  is fleft 
and r2 is absent 
and p3 is absent 

then componen is clash 
if p i  is fleft 
and r2 is absent 
and p3 is fleft 

then componen is empty 
if p i  is fleft
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and r2 is absent 
and p3 is flight 

then componen is c7c 
if p i is fleft 
and r2 is absent 
and p3 is cleft 

then componen is empty 
if p i  is fleft 
and r2 is absent 
and p3 is cright 

then componen is empty 
if p i  is fleft 
and r2 is fleft 

then componen is empty 
if p i  is fleft 
and r2 is fright 

then componen is empty 
if p i is fleft 
and r2 is cleft 

then componen is c7c 
if p i  is fleft 
and r2 is cright 

then componen is empty 
if p i  is fright 
and r2 is left 
and r l  is left 

then componen is empty 
if p i  is fright 
and r2 is left 
and r l  is right 

then componen is empty 
if p i  is fright 
and r2 is left 
and r l  is ok 

then componen is clash 
and report THERE IS A CLASH
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used : C7A ( 1.50 ) ex.46 
and rep o rt: C4A ( 1.75 ) ex.53 
and rep o rt: C7A ( 0.75 ) ex.57 

if p i  is fright 
and r2 is left 
and r l  is absent 

then componen is empty 
if p i  is fright 
and r2 is left 
and r l  is fleft 

then componen is empty 
if  p i  is fright 
and r2 is left
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and r l  is fright 
then componen is empty 
if p i is fright 
and r2 is left 
and r l  is cleft 

then componen is c4a 
if p i  is fright 
and r2 is left 
and r l  is cright 

then componen is empty 
if p i  is fright 
and r2 is right 

then componen is empty 
if p i  is fright 
and r2 is ok 

then componen is c4a 
if p i is fright 
and r2 is absent 

then componen is c4a 
if p i  is fright 
and r2 is fleft 
and p2 is left 

then componen is empty 
if p i  is fright 
and r2 is fleft 
and p2 is right 

then componen is c4a 
if p i  is fright 
and r2 is fleft 
and p2 is ok 

then componen is empty 
if p i  is fright 
and r2 is fleft 
and p2 is absent 

then componen is empty 
if p i  is fright 
and r2 is fleft 
and p2 is fleft 

then componen is empty 
if p i  is fright 
and r2 is fleft 
and p2 is fright 

then componen is empty 
if p i is fright 
and r2 is fleft 
and p2 is cleft 

then componen is empty 
if p i  is fright 
and r2 is fleft 
and p2 is cright



then componen is c7a 
if p i is flight 
and r2 is fright 

then componen is empty 
if p i is fright 
and r2 is cleft 

then componen is c7a 
if p i  is fright 
and r2 is cright 

then componen is clash 
and report THERE IS A CLASH
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used : C4A ( 2.50 ) ex.4 
and rep o rt: C7A ( 2.00 ) ex.8 
and rep o rt: C7A ( 1.50 ) ex.33 
and rep o rt: C4A ( 2.25 ) ex.41 
and rep o rt: C4A ( 2.75 ) ex.96 

if p i  is cleft 
then componen is c4a 
if p i  is cright 
and p2 is left 

then componen is empty 
if p i is cright 
and p2 is right 

then componen is empty 
if p i  is cright 
and p2 is ok 

then componen is c4a 
if p i is cright 
and p2 is absent 

then componen is empty 
if p i  is cright 
and p2 is fleft 

then componen is empty 
if p i  is cright 
and p2 is fright 

then componen is empty 
if p i is cright 
and p2 is cleft 

then componen is empty 
if p i  is cright 
and p2 is cright 

then componen is c7a 
if peakl >= 1.397516 
and peakl <= 1.39822 

then p i is ok 
if peakl < 1.397516 
and 1.397516 - peakl < liml 

then p i is cleft 
if peakl < 1.397516
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and 1.397516 - peakl >= liml 
and 1.397516 - peakl < lim2 

then p i is left 
if peakl < 1.397516 
and 1.397516 - peakl >= lim2 

then p i is fleft 
if peakl > 1.39822 
and peakl - 1.39822 < lim l 

then p i is cright 
if peakl > 1.39822 
and peakl - 1.39822 >= lim l 
and peakl - 1.39822 < lim2 

then p i is right 
if peakl > 1.39822 
and peakl - 1.39822 >= lim2 

then p i is flight 
if peak2 >= 1.399327 
and peak2 <= 1.399546 

then p2 is ok 
if peak2 < 1.399327 
and 1.399327 - peak2 < liml 

then p2 is cleft 
if peak2 < 1.399327 
and 1.399327 - peak2 >= liml 
and 1.399327 - peak2 < lim2 

then p2 is left 
if peak2 < 1.399327 
and 1.399327 - peak2 >= lim2 

then p2 is fleft 
if peak2 > 1.399546 
and peak2 - 1.399546 < liml 

then p2 is cright 
if peak2 > 1.399546 
and peak2 - 1.399546 >= liml 
and peak2 - 1.399546 < lim2 

then p2 is right 
if peak2 > 1.399546 
and peak2 - 1.399546 >= lim2 

then p2 is fright 
if peak3 >= 1.404048 
and peak3 <= 1.405241 

then p3 is ok 
if peak3 < 1.404048 
and 1.404048 - peak3 < liml 

then p3 is cleft 
if peak3 < 1.404048 
and 1.404048 - peak3 >= liml 
and 1.404048 - peak3 < lim2 

then p3 is left 
if peak3 < 1.404048
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and 1.404048 - peak3 >= lim2 
then p3 is fleft 
if peak3 > 1.405241 
and peak3 - 1.405241 < lim l 

then p3 is cright 
if peak3 > 1.405241 
and peak3 - 1.405241 >= liml 
and peak3 - 1.405241 < lim2 

then p3 is right 
if peak3 > 1.405241 
and peak3 - 1.405241 >= lim2 

then p3 is flight 
if peak4 >= 1.406214 
then p4 is ok 
if peak4 < 1.406214 
and 1.406214 - peak4 < liml 

then p4 is cleft 
if peak4 < 1.406214 
and 1.406214 - peak4 >= liml 
and 1.406214 - peak4 < lim2 

then p4 is left 
if peak4 < 1.406214 
and 1.406214 - peak4 >= lim2 

then p4 is fleft 
if levell >= 56 
and levell <= 64 

then r l  is ok 
if levell < 56 
and levell >= 49 

then r l  is cleft 
if levell < 49 
and levell >= 42 

then r l  is left 
if levell < 42 
then r l  is fleft 
if levell > 64 
and levell <=71 

then r l  is cright 
if levell >71 
and levell <= 78 

then r l  is right 
if levell > 78 
then r l  is fright 
if  level2 >= 58 
and level2 <= 65 

then r2 is ok 
if level2 < 58 
and level2 >= 52 

then r2 is cleft 
if level2 < 52
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and level2 >= 46 
then r2 is left 
if level2 < 46 
then r2 is fleft 
if level2 > 65 
and level2 <=72 

then r2 is cright 
if level2 > 72 
and level2 <=78 

then r2 is right 
if level2 >78 
then r2 is fright 

query componen is 
query options auto 

query componen



Appendix Seven
Listing of knowledge-base of the passband (search 1)
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when done process
then command load c:\newmarket\pamod 
when process is end
then report Please connect another filter 
and command reset data 
and command load c:\newmarket\searchl 

if vripple >= 0.0 
and vripple <= 1.0 

then ripple is ok 
if vripple > 1 
and vripple <= 2.60 

then ripple is closerigt 
if vripple > 2.60 
and vripple <= 4.20 

then ripple is right 
if vripple > 4.20 
then ripple is farright 
if vinloss >= 0.0 
and vinloss < 0.5 

then inloss is closeleft 
if vinloss >= 0.50 
and vinloss <= 5.0 

then inloss is ok 
if vinloss > 5.0 
and vinloss <= 5.33 

then inloss is closerigt 
if vinloss > 5.33 
and vinloss <= 5.66 

then inloss is right 
if vinloss > 5.66 
then inloss is farright 
if vlowpb >= 0.0 
and vlowpb <= 4.0 

then lowpb is ok 
if vlowpb > 4.0 
and vlowpb <= 5.05 

then lowpb is closerigt 
if vlowpb > 5.05 
and vlowpb <= 6.1 

then lowpb is right 
if vlowpb >6.1 
then lowpb is farright 
if vhighpb >= 0.0 
and vhighpb <= 4.0 

then highpb is ok 
if vhighpb > 4.0 
and vhighpb <= 6.93 

then highpb is closerigt 
if vhighpb > 6.93 
and vhighpb <= 9.86
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len highpb is right 
vhighpb > 9.86 

len highpb is farright 
vcarret < 5.8 

len carret is farleft 
vcarret >= 5.8 

and vcarret < 7.9 
len carret is left 

vcarret >= 7.9 
and vcarret < 10 
len carret is closeleft 

vcarret >= 10 
and vcarret <= 12.10 
len carret is closeok 

vcarret > 12.1 
and vcarret <= 14.20 
len carret is ok 

vcarret > 14.20 
len carret is farok 

vlowsb < 32.6 
len lowsb is farleft 
' vlowsb >= 32.6 
and vlowsb < 38.8 
len lowsb is left
■ vlowsb >= 38.8 
and vlowsb < 45
len lowsb is closeleft
■ vlowsb >= 45 
and vlowsb <= 51.2 
len lowsb is closeok 
' vlowsb > 51.2 
and vlowsb <= 57.4
len lowsb is middleok 

vlowsb > 57.4 
len lowsb is farok 

vhighsb < 27.5 
len highsb is farleft
■ vhighsb >= 27.5 
and vhighsb < 36.25 
len highsb is left

vhighsb >= 36.25 
and vhighsb < 45.0 
len highsb is closeleft 

vhighsb >= 45.0 
and vhighsb <= 53.75 
len highsb is closeok 

vhighsb > 53.75 
and vhighsb <= 62.5 
len highsb is middleok 

vhighsb > 62.5



then highsb is farok 
if vlowsbret < 33.76 
then lowsbret is farleft 
if vlowsbret >= 33.76 
and vlowsbret < 39.38 

then lowsbret is left 
if vlowsbret >= 39.38 
and vlowsbret < 45.0 

then lowsbret is closeleft 
if vlowsbret >= 45.00 
and vlowsbret <= 50.62 

then lowsbret is closeok 
if vlowsbret > 50.62 
and vlowsbret <= 56.24 

then lowsbret is middleok 
if vlowsbret > 56.24 
then lowsbret is farok 
if vhighsbret < 35.96 
then highsbret is farleft 
if vhighsbret >= 35.96 
and vhighsbret < 40.48 

then highsbret is left 
if vhighsbret >= 40.48 
and vhighsbret < 45.00 

then highsbret is closeleft 
if vhighsbret >= 45.00 
and vhighsbret <= 49.52 

then highsbret is closeok 
if vhighsbret > 49.52 
and vhighsbret <= 54.04 

then highsbret is middleok 
if vhighsbret > 54.04 
then highsbret is farok 
if ripple is ok 
and inloss is ok 
and lowpb is ok 
and highpb is ok
and carret is ok or middleok or farok or closeok 
and lowsb is ok or middleok or farok or closeok 
and highsb is ok or middleok or farok or closeok 
and lowsbret is ok or middleok or farok or closeok 
and highsbret is ok or middleok or farok or closeok 
and difference <= 3.0 

then process is end 
if vlowsbret >= vhighsbret 
then difference = vlowsbret - vhighsbret 
if vlowsbret < vhighsbret 
then difference = vhighsbret - vlowsbret 
if check process 
then check ripple
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and check inloss 
and check lowpb 
and check highpb 
and check carret 
and check lowsb 
and check highsb 
and check lowsbret 
and check highsbret 
and check difference 

default process is noend 
query process 

query options auto



Appendix Eight
Listing of knowledge-base of the passband (search 2)
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when tuner is X 
and process is Y

then report component to be used [tuner] 
and report process to be used [Y] 
and report "" " end of testing """ 
and command reset data 
and command load a:\numbers 

if ripple is ok 
and lowsbret is farleft 

then timer is clash
and report components previously used 
and report t2c ( 1 example during elicitation ) 
and report tic  ( 1 example during elicitation ) 

if ripple is ok 
and lowsbret is left 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is left 

then timer is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is closeleft 

then tuner is clash
and report components previously used 
and report c7c ( 1 examples during elicitation ) 
and report t2a ( 1 examples during elicitation ) 
and report t l a  ( 1 examples during elicitation ) 
and report t3a ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is closeok 

then tuner is c4a 
if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is middleok
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then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is closeleft 
and highsb is farok 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is closeok 

then timer is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is middleok 
and highpb is ok 

then tuner is c7a 
if ripple is ok 
and lowsbret is left 
and lowsb is middleok 
and highpb is closerigt 

then tuner is t2c 
if  ripple is ok 
and lowsbret is left 
and lowsb is middleok 
and highpb is right 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is middleok 
and highpb is farright 

then tuner is empty 
if ripple is ok 
and lowsbret is left 
and lowsb is farok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is left 
and highsbret is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is left 
and highsbret is left 

then tuner is c7a 
if ripple is ok 
and lowsbret is closeleft



and highsb is left 
and highsbret is closeleft 

then tuner is c7a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is left 
and highsbret is closeok 

then tuner is clash
and report components previously used 
and report c4c ( 1 examples during elicitation ) 
and report c7a ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is closeleft 
and highsb is left 
and highsbret is middleok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is left 
and highsbret is farok 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is farleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is closeleft 

then tuner is c4a 
if ripple is ok

A - 4 7



and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is closeok 

then tuner is t2a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is middleok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is farok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeok 

then timer is c4a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is closeleft 

then tuner is clash
and report components previously used 
and report c7a ( 1 examples during elicitation ) 
and report c7c ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is closeok 

then tuner is clash
and report components previously used

A-48



and report c7a ( 1 example during elicitation ) 
and report c7c ( 1 example during elicitation ) 

if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is middleok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is farok 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is ok 

then tuner is clash
and report components previously used 
and report c7c ( 2 examples during elicitation ) 
and report t2a ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is closerigt 

then tuner is t3c 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is right 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is farright 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is left
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then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeleft 

then tuner is t3c 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeok 

then tuner is c4a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is middleok 

then tuner is clash
and report components previously used 
and report c4a ( 1 example during elicitation )
and report c7a ( 1 example during elicitation )
and report c4a ( 1 example during testing )

if ripple is ok 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farok 

then timer is c4a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeok 

then tuner is clash
and report components previously used 
and report t2a ( 1 example during dictation ) 
and report c4a ( 1 example during elictation ) 
and report c7a ( 2 example during testing ) 
and report c4a ( 1 example during testing )
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if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is middleok 

then tuner is c4a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is closeleft 

then timer is empty 
if  ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is closeok 

then tuner is empty 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is middleok 

then tuner is c7a 
if ripple is ok 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is farok 

then timer is c7c 
if ripple is ok 
and lowsbret is closeok 
and highsbret is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok



and highsbret is closeleft 
then tuner is c4c 
if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is closeleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is closeok 

then tuner is c4a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is middleok 

then tuner is c4a 
if ripple is ok 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is farok 

then tuner is clash
and report components previously used 
and report c7c ( 1 example during elicitation ) 
and report c4a ( 1 example during elicitation ) 
and report c7a ( 1 example during elicitation ) 
and report c7a ( 1 example during testing ) 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok
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and highsbret is middleok 
and highsb is closeleft 

then tuner is c7c
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeok 

then tuner is c4a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is middleok 

then tuner is c4a 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farok 

then timer is C4a
and report previously component used 
and report t2c ( 2 examples during elicitation ) 
and report t2a ( 1 examples during elicitation ) 
and report c4a ( 1 examples during elicitation ) 
and report c4a ( 3 examples during testing ) 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok
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and lowsb is farleft 
then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is closeleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is closeok 

then tuner is t3a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is middleok 

then tuner is clash
and report components previously used 
and report c7a ( 1 examples during elicitation ) 
and report t2a ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is farok 

then tuner is clash
and report components previously used 
and report t3a ( 1 example during elicitation ) 
and report t2a ( 2 example during elicitation ) 

if ripple is ok 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is farok 

then tuner is c4a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is farleft 

then tuner is empty
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if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is closeleft 

then timer is empty 
if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is closeok 

then tuner is t2a 
if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is middleok 

then tuner is c4a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is farok 

then tuner is c4a 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farleft 

then tuner is c7c
and report This was an empty rule before 

if ripple is ok 
and lowsbret is middleok 
and highsbret is left 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeleft 

then tuner is c7a 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is left 

then tuner is empty 
if ripple is ok
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and lowsbret is middleok 
and highsbret is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is closeok 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is middleok 

then tuner is c4c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is left 

then timer is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is closeok 

then tuner is clash
and report components previously used 
and report t3a ( 1 example during elicitation ) 
and report c7a ( 2 example during elicitation ) 
and report t2c ( 1 example during elicitation ) 
and report c4c ( 1 example during elicitation ) 
and report c4c ( 1 example during testing ) 

if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is middleok 

then tuner is c7a
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if ripple is ok 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is farok 

then tuner is c7a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is closeok 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is middleok 

then tuner is c4c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok
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and highsb is closeleft 
and lowsb is farok 

then tuner is t2c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeok 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is middleok 

then timer is c7c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farok 

then tuner is t3c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is middleok 

then tuner is t2a 
if  ripple is ok 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is farok 

then tuner is empty 
if ripple is ok



and lowsbret is middleok 
and highsbret is farok 
and lowsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is left 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is closeok 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is middleok 

then tuner is c4c 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is farleft 

then tuner is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is left 

then timer is empty 
if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is closeleft 

then tuner is clash
and report components previously used 
and report c7c ( 1 examples during elicitation ) 
and report t3a ( 1 examples during elicitation ) 

if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is closeok
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then tuner is clash
and report components previously used 
and report t3c ( 1 example during elicitation ) 
and report c7c ( 2 example during elicitation ) 
and report c7c ( 2 example during testing ) 
and report t2a ( 1 example during testing ) 

if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is middleok 

then tuner is c4a
and report This was an empty rule before 

if ripple is ok 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is farok 

then tuner is empty 
if ripple is ok 
and lowsbret is farok 
and highsbret is farleft 

then timer is empty 
if ripple is ok 
and lowsbret is farok 
and highsbret is left 

then tuner is empty 
if ripple is ok 
and lowsbret is farok 
and highsbret is closeleft 

then tuner is empty 
if ripple is ok 
and lowsbret is farok 
and highsbret is closeok 

then tuner is c7a 
if ripple is ok 
and lowsbret is farok 
and highsbret is middleok 

then tuner is t la  
if ripple is ok 
and lowsbret is farok 
and highsbret is farok 

then tuner is c7c 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is ok 

then tuner is t3c 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is closerigt
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then tuner is c7a 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is right 

then tuner is empty 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is farright 

then tuner is empty 
if ripple is closerigt 
and lowsbret is left 

then timer is t3a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is left 

then tuner is t3c 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeleft 

then tuner is clash t2a / t2c ) 
and report component previously used 
and report t2a ( 1 examples during elicitation ) 
and report t2c ( 1 examples during elicitation ) 

if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farleft 

then timer is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is left 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeok 

then tuner is t3a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok
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and lowsb is middleok 
then timer is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeok 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farok 

then tuner is c4a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is farok 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is left



then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is closeok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is middleok 

then tuner is clash
and report components previously used 
and report c7c ( 1 example during elicitation ) 
and report t2a ( 1 example during elicitation ) 
and report t2c ( 1 example during testing ) 
and report t2a ( 1 example during testing ) 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is ok 
and highsbret is farok 

then timer is t2a 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is closerigt 

then tuner is t3a
and report This was an empty rule before 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is right 

then tuner is clash
and report component previously used 
and report t2a ( 1 examples during elicitation ) 
and report t l a  ( 1 examples during elicitation ) 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is farright 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is farleft 

then tuner is empty 
if  ripple is closerigt 
and lowsbret is middleok 
and highsb is left 

then tuner is empty
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if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeleft 

then tuner is t2c 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is left 

then timer is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is closeok 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is farok 

then tuner is clash
and report component previously used 
and report c7a ( 1 examples during elicitation ) 
and report t2a ( 1 examples during elicitation ) 
and report c7c ( 1 examples during testing ) 
and report t2a ( 1 examples during testing ) 

if ripple is closerigt 
and lowsbret is middleok 
and highsb is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is farok 

then tuner is t2a 
if  ripple is closerigt 
and lowsbret is farok 

then tuner is t2a
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if ripple is right 
and lowsbret is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is left 

then tuner is empty 
if ripple is right 
and lowsbret is closeleft 

then tuner is t2a 
if ripple is right 
and lowsbret is closeok 
and highsb is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is closeok 
and highsb is left 

then timer is empty 
if ripple is right 
and lowsbret is closeok 
and highsb is closeleft 

then tuner is t la  
if ripple is right 
and lowsbret is closeok 
and highsb is closeok 

then tuner is t3a 
if ripple is right 
and lowsbret is closeok 
and highsb is middleok 

then tuner is t3a 
if ripple is right 
and lowsbret is closeok 
and highsb is farok 

then timer is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is left 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is closeok 

then tuner is empty 
if ripple is right



and lowsbret is middleok 
and lowsb is middleok 

then timer is t3a 
if ripple is right 
and lowsbret is middleok 
and lowsb is farok 

then tuner is t3a 
if ripple is right 
and lowsbret is farok 

then tuner is t3a 
if ripple is farright 
and lowpb is ok 
and highpb is ok 

then tuner is t3a 
if ripple is farright 
and lowpb is ok 
and highpb is closerigt 

then tuner is t3a 
if ripple is farright 
and lowpb is ok 
and highpb is right 

then tuner is t3a 
if ripple is farright 
and lowpb is ok 
and highpb is farright 
and highsb is farleft 

then tuner is empty 
if ripple is farright 
and lowpb is ok 
and highpb is farright 
and highsb is left 

then tuner is empty 
if ripple is farright 
and lowpb is ok 
and highpb is farright 
and highsb is closeleft 

then tuner is empty 
if ripple is farright 
and lowpb is ok 
and highpb is farright 
and highsb is closeok 

then tuner is t2c 
if ripple is farright 
and lowpb is ok 
and highpb is farright 
and highsb is middleok 

then timer is t3a
and report This was an empty rule before 

if ripple is farright 
and lowpb is ok
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and highpb is farright 
and highsb is farok 

then tuner is t3a 
if ripple is farright 
and lowpb is closerigt 

then tuner is t2c 
if ripple is farright 
and lowpb is right 

then tuner is t la  
if ripple is farright 
and lowpb is farright 

then tuner is empty 
query tuner 

query options auto



Appendix N ine
Listing of HP-Basic program which displays the output of the

networks
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1 ! THIS IS THE LAST VERSION AT 25/6/91
2 ! IT SENDS THE RESULTS TO DISC
3 !
4 !
10 INTEGER Layer,Node,Max_node,Prev_max_node,Prev_node, 

Next_node, Loopx 
20 DIM Inputx(57,4),Weight(57,ll,3),Threshold(ll,3)
40 DIM Frx(50),Mrk(50),Binno(50),
41 DIM M$[40],F$[20],A(100,2),Name$[6]
42 !
43 ASSIGN @Na TO 711
44 ASSIGN @Prt TO 1
45 P rt= l
46 PRINTER IS 1
47 !
48 ASSIGN @Na_nofmt TO 711;FORMAT OFF
49 Meas_complete=4
50 !
51 !
52 CLEAR @Na
53 OUTPUT @Na;"IPR;"
54 OUTPUT @Na;"IAR;IAl;IRl;IBl;"
55 OUTPUT @Na;"BP0;"
56 !
57 OUTPUT @Na;"ST5;SMl;SFR1401500HZ;DF7;DIVlDBR;REF0DBR;"
58 OUTPUT @Na;"SAM+5.8DBM;FM2;"
59 OUTPUT @Na;"RPS50%;BW3;AV0;"
60 !
61 DISP " Insert S/C and press ’CONT’"
62 PAUSE
63 DISP ""
64 !
65 OUTPUT @Na;"DMl;TRG;"
66 Meascomp
67 ENTER @Na USING "%,2A";Junk$
68 ENTER @Na_nofmt;Sc_ref
69 PRINT "Ref ";Sc_ref
70 OUTPUT @Na;"DIV5DBR;REF-26DBR;"
71 !
72 DISP " Insert unit and press ’CONT”'
73 PAUSE
74 DISP""
75 OUTPUT @Na;"DMl;TRG;"
76 Meascomp
77 ENTER @Na USING "%,2A";Junk$
78 ENTER @Na_nofint;Ins_loss
79 PRINT "Approx. Insertion loss ";-Ins_loss-26
80 !
81 Again: !
82 PRINTER IS 1
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83 Menul: !
84 OUTPUT @Na;"DF7;SAM+5.8DBM;FMl;STl;SWTlSEC;

DIV10DBR; RPS100%;"
85 OUTPUT @Na;"REF-26DBR;"
86 OUTPUT @Na;"FRC1401500HZ;FRS40KHZ;SMl;BW3;"
87 LOCAL 711
88 !
89 Sband: !
90 Menu2: !
91 DISP "PRESS ’CONT” TO MEASURE"
92 PAUSE
93 !
94 Sweep: !
95 D IS P ""
96 FOR 1=1 TO 21
97 A(I,1)=0
98 A(I,2)=0
99 NEXT I
100 !----------------------------------- LO
102 1=0
104 Fl=1.380000
105 F2=1.400000
106 Screenl=0
107 Screen2=400
108 Screen_step=Screen2/20 
110 !
111 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA"&VAL$(Fl)&"MHZ; FRB"

&VAL$(F2) &"MHZ;FM1;"
112 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
113 Measready
114 FOR S=Screenl TO Screen2 STEP Screen_step 
116 1=1+1
118 OUTPUT @Na;"MKP"&VAL$(S)&";"
119 OUTPUT @Na;"DMl;"
120 ENTER @Na;Level
121 OUTPUT @Na;"MPl;"
122 ENTER @Na;Freql
123 A(I,l)=Freq/1000
124 A(I,2)=-Level+Ins_loss+.6
125 NEXTS
126 Loop1=0
128 FOR J=1 TO 19
129 Loop l=Loop 1+1
132 Inputx(Loopl,l)=A(J,2)
133 ! PRINT USING Imagell;J,A(J,l),Loopl,Inputx(Loopl,l)
135 NEXT J
136 !---------------------------------------------MID
150 Fl=1.400000
151 F2=1.404000
152 Screenl=0
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153 Screen2=400
154 Screen_step=Screen2/20
157 Lmin=+1000
158 !
159 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA"&VAL$(Fl)&"MHZ;FRB"

&VAL$(F2)&"MHZ;FM1;"
160 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
161 Measready
162 1=0
164 FOR S=Screenl TO Screen2 STEP Screen_step
165 1=1+1
168 OUTPUT @Na;"MKP"&VAL$(S)&";"
169 OUTPUT @Na;"DMl;n
170 ENTER @Na;Level
171 OUTPUT @Na;"MPl;u
172 ENTER @Na;Freql
173 A(I,l)=Freq/1000
174 A(I,2)=-Level+Ins_loss+.6
175 NEXTS
177 ! PRINT ,
178 FOR J=1 TO 19
179 Loopl=Loopl+l
182 Inputx(Loopl,l)=A(J,2)
183 ! PRINT USING Imagell;J,A(J,l),Loopl,Inputx(Loopl,l)
185 NEXT J
186!---------------------------------- HI
187 Fl=1.404000
188 F2=1.420000
189 Screenl=0
190 Screen2=400
191 Screen_step=Screen2/20
192 Lmin=+1000
193 !
194 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA"&VAL$(Fl)&"MHZ;FRB"

&VAL$(F2)&"MHZ;FM1;"
195 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
196 Measready
197 1=0
198 FOR S=Screenl TO Screen2 STEP Screen_step
199 1=1+1
200 OUTPUT @Na;"MKP"&VAL$(S)&";"
201 OUTPUT @Na;"DMl;"
202 ENTER @Na;Level
203 OUTPUT @Na;"MPl;"
204 ENTER @Na;Freql
205 A(I,l)=Freq/1000
206 A(I,2)=-Level+Ins_loss+.6
207 NEXTS
208 Imagell:IMAGE DD,2X,DDDD.DDD,2X,DD,2X,DDD.D 
210 FOR J=1 TO 19
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211 Loopl=Loopl+l
214 Inputx(Loopl,l)=A(J,2)
215 ! PRINT USING Imagell;J,A(J,1),Loopl,Inputx(Loopl,l)
217 NEXT J
218 !
219 !
222 PRINT
223 PRINT
224 INPUT "ENTER FILENAME FOR 57 POmTS",File$
226 CREATE ASCII File$,50
227 ASSIGN ©Disk TO File$
228 FOR 1=1 TO 57 
229! PRINT I;Inputx(I,l)
230 OUTPUT @Disk;Inputx(1,1)
232 Inputx(I, l)=((Inputx(1,1)*.01)+0.1)
234 ! PRINT I;Inputx(I,l)
235 NEXT I
236 ASSIGN ©Disk TO *1
237 !
238 !
239 !
240 RESTORE 
241!
242 !
243 FOR No_of_out_nodes=l TO 4
244 FOR Loopl=l TO 11
245 FOR Loop2=l TO 57
246 READ Weight(Loop2,Loopl,l)
247! PRINT Weight(Loop2,Loopl,l)
248 NEXT Loop2
249 NEXT Loopl
250 FOR Loopl=l TO 10
251 FOR Loop2=l TO 11
252 READ Weight(Loop2,Loopl,2)
253! PRINT WeightCLoop2,Loopl,2)
254 NEXT Loop2
255 NEXT Loopl
256 FOR Loopl=l TO 10
257 READ Weight(Loopl,l,3)
258! PRINT Weight(Loopl,l,3)
259 NEXT Loopl
260 FOR Loopl=l TO 11
261 READ Threshold(Loopl,l)
262! PRINT Threshold(Loopl,l)
263 NEXT Loopl
264 FOR Loopl=l TO 10
265 READ Threshold(Loopl,2)
266! PRINT Threshold(Loopl,2)
267 NEXT Loopl
268 READ Threshold(l,3)
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269 FOR Layer=l TO 3
270 SELECT Layer
271 CASE 1
272 Max_node=ll
273 Prev max node=571
274 CASE 2
275 Max_node=10
276 Prev max node=ll
277 CASE 3
278 Max_node=l
279 Prev max node=10
280 END SELECT
281 FOR Next_node=l TO Max_node
284 Sumx=0.
285 FOR Prev_node=l TO Prev_max_node
286 Sumx= Sumx+Inputx(Prev_node,Layer)* 

Weight(Prev_node,Next_node,Layer)
287 NEXT Prev_node
288 Sumx=Sumx+Threshold(Next_node,Layer)
289 IF Layer<3 THEN
290 Inputx(Next node,Layer+1)=( l/(l+EXP(-Sumx)))
291 ELSE
292 Inputx(Next node,Layer+l)=Sumx
293 END IF
294 SELECT Layer
295 CASE 3
296 PRINT USING "10A,D.DDD";"OUTPUT =,,,Inputx(Next_

Layer+1)
297 END SELECT
299 NEXT Next_node
300 NEXT Layer
301 NEXT No_of_out_nodes
302 GOTO Menu2
303 !
304 !
308!
309 ! THIS IS DATA FOR DOING C4C (LEARNED ON C4A)
310 !
311! WEIGHTS FROM 1ST INPUT NODES TO FIRST NODE OF 1ND 
LAYER
3 1 2 D  A T A
1.7054,1.6862,1.8178,1.656,1.7115,1.5767,1.6291,1.3468,1.5618,1.4923,1.275
6,1.3185,1.3777,1.4325,1.5456,1.52,1.5833,1.5493,-0.86580
3 1 3  D A T A
1.5812,0.1820,-0.6985,-0.6548,-0.7964,-0.8214,-0.7573,-0.6252,-0.5864,-0.667
,-0.7946,-0.5579,-0.0432,1.5602,1.368,-0.0346,-0.2067
3 1 4  D A T A
-0.5331,-1.8867,0.2903,0.3879,-1.6108,-2.3090,-1.9934,-4.1147,-3.7425,-1.345
8,-0.5457,0.2033,0.0654,0.0584,0.0998,0.2333,0.1874,0.09160
315 DATA 0.1709,0.0974,0.23860
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316 ! WEIGHTS FROM 1ST INPUT NODES TO SECOND NODE OF 1ND 
LAYER
3 1 7  D A T A
2.5158,2.3952,2.3875,2.4159,2.4248,2.4999,2.4166,2.1193,2.2126,2.3709,2.16
15,2.1193,1.967,2.2638,2.1276,2.1899,2.0721,1.58628
3 1 8  D A T A
-1.6029,1.8458,0.1827,-0.945,-0.909,-0.8244,-0.9231,-0.9592,-0.8964,-0.8545,- 
0.7511,-0.8708,-0.6894,0.1577,2.4668,1.9297,-0.457
3 1 9  D A T A
-1.398,-0.979,-2.4885,0.271,0.1042,-2.6323,-3.291,-2.7768,-5.1375,-4.7547,-1. 
7416,-0.978,-0.0323,-0.0941,-0.0516,0.0489,0.11587
320 DATA 0.1884,0.1211,0.0283,0.1399,0.1733
321 ! WEIGHTS FROM 1ST INPUT NODES TO THIRD NODE OF 1ND 
LAYER
3 2 2 D A T  A
1.2599.1.5166.1.4285.1.7237.0.7171.0.345.0.3048,-0.2053,-0.2489,-0.7161,-0. 
9294,-1.0911,-1.4691,-1.6038,-1.6178,-0.9569,-0.1923
3 2 3 D A T A
0.7266,-0.7471,1.6313,-0.1382,-1.3494,-1.1822,-1.2035,-1.1812,-1.1775,-1.024 
9,-0.9898,-0.9562,-1.0977,-1.0489,-0.5762,1.063,1.846
3 2 4 D A T A
2.6369.1.3001.1.6308.0.6172.0.8608.2.4969,-0.0971,-0.6238,0.5247,-1.9494,-1 
.2785,1.4571,1.8799,2.7754,2.0713,1.8505,1.428,1.2671,1.110
325 DATA 0.9573,0.5478,0.6825,0.4302
326 ! WEIGHTS FROM 1ST INPUT NODES TO FOURTH NODE OF 1ND 
LAYER
3 2 7 D A T A
0.9649,1.1817,1.2409,1.47,0.5352,0.3692,0.3159,-0.0002,-0.1967,-0.4514,-0.7 
641,-1.0861,-1.1949,-1.3355,-1.2471,-0.3539,0.9004,2.518 
3 2 8 D A T A
2.1994.1.9063.0.0436,-1.0038,-0.9388,-0.8094,-1.0623,-0.8029,-0.9177,-0.8008 
,-0.716,-0.7886,-0.8073,-0.2346,1.6015,1.6073,2.0828,1.1075
3 2 9 D A T A
1.2788.0.2272.1.1158.2.1758.0.0525,-0.7542,-0.0288,-2.3981,-1.9523,0.2939,0 
.7205,1.5084,1.2459,0.8794,0.6516,0.6521,0.4521,0.4783
330 DATA 0.175,0.2357,0.1441
331 ! WEIGHTS FROM 1ST INPUT NODES TO FIFTH NODE OF 1ND 
LAYER
3 3 2 D A T A
1.9901,1.7912,1.8668,1.8065,1.8999,1.7316,1.5983,1.5832,1.548,1.6979,1.586 
2,1.5071,1.4992,1.5322,1.5582,1.789,1.7337,1.6234,-0.9936 
3 3 3 D A T A
1.6702.0.0718,-0.8268,-0.6721,-0.6783,-0.8339,-0.7771,-0.7426,-0.6866,-0.637 
0,-0.7639,-0.566,-0.0264,1.8716,1.5631,0.0763,-0.3124,-0.6324
3 3 4 D A T A
-2.026,0.1063,0.467,-1.7374,-2.4888,-2.1225,-4.4329,-3.9213,-1.4887,-0.7111, 
0.0514,0.2415,0.1864,0.0704,0.2061,0.0643,0.1558,0.2082
335 DATA 0.1447 0.2068
336 ! WEIGHTS FROM 1ST INPUT NODES TO SIXTH NODE OF 1ND 
LAYER
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3 3 7 D A T A
1.5819,1.3994,1.5173,1.2064,1.7098,2.0028,1.5771,1.8332,1.9508,2.2222,2.53
38,2.5665,2.6559,2.9872,2.7367,1.5754,-0.3105,-2.7309
3 3 8 D A T A
-6.5742,-0.646,-0.5992,-0.7228,-0.5495,-0.4839,-0.5621,-0.6491,-0.5607,-0.641
6,-0.5584,-0.4884,-0.5631,-0.4482,-0.0655,0.6264,-0.8728
3 3 9 D A T A
-0.7563,-1.0207,-1.7276,-1.1338,-1.1366,-2.2394,-2.5464,-2.3386,-3.7755,-3.55
37,-1.8299,-0.9768,-0.1829,-0.0315,0.0681,-0.0083,0.2607
340 DATA 0.2001,0.1831,0.2386,0.3356,0.5613
341 ! WEIGHTS FROM 1ST INPUT NODES TO SEVENTH NODE OF 1ND 
LAYER
3 4 2 D A T A
1.2214.1.5381.1.4747.1.75.0.6924.0.5081.0.4486.0.0486,-0.1136,-0.5959,-0.78 
09,-1.0821,-1.3284,-1.6308,-1.5428,-0.5304,0.7299,2.1261
3 4 3 D A T A
1.3985,1.8813,-0.0006,-1.3246,-1.0367,-1.086,-1.1192,-1.0132,-1.0403,-1.0240 
,-0.9412,-1.1037,-0.8656,-0.3417,1.5146,1.8954,2.5244 
3 4 4 D A T A
1.2452.1.5969.0.7091.1.0204.2.3797,-0.0837,-0.6935,0.0792,-2.2889,-1.8771,0 
.5788,1.0701,1.9302,1.4296,1.1358,0.9263,0.8606,0.6705
345 DATA 0.4769,0.3369,0.2451,0.1678
346 ! WEIGHTS FROM 1ST INPUT NODES TO EIGHTH NODE OF 1ND 
LAYER
3 4 7 D A T A
1.0236.1.3993.1.3658.1.6092.0.8041.0.4712.0.3225,-0.0785,-0.0848,-0.5058,-0 
.793,-1.0316,-1.1897,-1.3756,-1.4596,-0.5494,0.7615,2.3191
3 4 8 D A T A
1.6652,1.8015,-0.0424,-1.111,-0.9029,-0.935,-0.9671,-1.0377,-0.9534,-0.8302,- 
0.8324,-0.9532,-0.7524,-0.2031,1.5052,1.7483,2.318,1.22753 
3 4 9 D A T A
1.4594.0.4527.1.0866.2.3117,-0.0529,-0.7106,0.0588,-2.2574,-1.7795,0.454,0.
8475.1.6529.1.3089.0.9748.0.8728.0.6793.0.6074.0.4943.0.2523
350 DATA 0.218,0.086
351 ! WEIGHTS FROM 1ST INPUT NODES TO NINETH NODE OF 1ND 
LAYER
3 5 2 D A T A
1.2672.1.3552.1.5325.1.6085.0.6318.0.3876.0.3591,-0.0145,-0.2325,-0.4929,-0 
.7531,-1.1901,-1.3432,-1.4546,-1.6355,-0.9454,-0.0191,0.9993
3 5 3 D A T A
-0.2964,1.6265,-0.1868,-1.2415,-1.0215,-1.0191,-1.0779,-1.1247,-1.1679,-1.08 
23,-1.0482,-1.089,-0.9349,-0.5188,1.2855,1.8188,2.5913 
3 5 4 D A T A
1.2689.1.641.0.5635.0.8944.2.4673,-0.1465,-0.5923,0.3818,-1.9583,-1.4859,1.
3146.1.6137.2.432.1.9992.1.6747.1.3028.1.1504.0.8553
355 DATA 0.7551,0.6142,0.4887,0.4092
356 ! WEIGHTS FROM 1ST INPUT NODES TO TENTH NODE OF 1ND 
LAYER
3 5 7 D A T A
0.5466,0.7718,0.6676,0.9327,0.3583,0.1768,0.1418,-0.1721,-0.2081,-0.3505,-0
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.6532,-0.8608,-0.9692,-0.8972,-0.8145,0.027,1.0047,2.30349 
3 5 8 D A T A
2.1322.1.6969.0.2209,-0.7477,-0.7777,-0.6731,-0.6739,-0.7427,-0.725,-0.5871, 
-0.6055,-0.5663,-0.5534,-0.213,1.3218,1.2017,1.3019,0.76643
3 5 9 D A T A
0.6119,-0.2955,1.1374,1.7687,0.2226,-0.4985,-0.2279,-2.2104,-1.7272,-0.1902, 
0.4874,1.079,0.8319,0.6921,0.4226,0.4785,0.4155,0.28257
360 DATA 0.0433,0.0525,-0.0206
361 ! WEIGHTS FROM 1ST INPUT TO ELEVENTH NODE OF 1ND 
LAYER
3 6 2 D A T A
0.5865,0.5576,0.6355,0.8511,0.3259,0.1207,0.1536,-0.0052,-0.0984,-0.3556,-0 
.454,-0.6591,-0.7156,-0.6406,-0.7134,-0.0677,0.7952,1.8213 
3 6 3 D A T A
1.6868.1.4035.0.298,-0.5292,-0.5705,-0.5756,-0.5439,-0.6292,-0.5922,-0.4809, 
-0.583,-0.668,-0.4791,-0.1398,0.9935,1.1301,0.9148,0.5805
3 6 4 D A T A
0.4682,-0.3096,1.1135,1.5773,0.3575,-0.3853,-0.439,-2.0493,-1.7594,-0.2621,0 
.31,0.8143,0.6283,0.6007,0.3624,0.2647,0.227,0.3153,0.13563
365 DATA 0.0985,0.0927
366 ! WEIGHTS FROM 1ST LAYER NODES TO FIRST NODE OF 2ND 
LAYER
3 6 7 D A T A
-0.4260,-0.8936,-1.2925,-0.7822,-0.3524,1.4944,-0.9189,-0.8249,-1.2242,-0.64 
65,-0.3090
368 ! WEIGHTS FROM 1ST LAYER NODES TO SECOND NODE OF 2ND 
LAYER
3 6 9 D A T A
-0.3681,-0.5297,-1.3782,-0.6117,-0.3637,1.2812,-0.7503,-0.5911,-1.0642,-0.42 
26,-0.2374
370 ! WEIGHTS FROM 1ST LAYER NODES TO THIRD NODE OF 2ND 
LAYER
3 7 1 D A T A
-0.3703,-0.5028,-1.2933,-0.5446,-0.4311,1.2952,-0.7872,-0.5846,-1.1442,-0.42 
56,-0.403
372 ! WEIGHTS FROM 1ST LAYER NODES TO FOURTH NODE OF 2ND 
LAYER
3 7 3 D A T A
-0.3571,-0.4842,-1.3277,-0.5512,-0.3569,1.2426,-0.7175,-0.5436,-1.105,-0.461 
4,-0.4473
374 ! WEIGHTS FROM 1ST LAYER NODES TO FIFTH NODE OF 2ND 
LAYER
3 7 5 D A T A
-0.386,-0.6443,-1.3222,-0.606,-0.4141,1.3604,-0.7894,-0.6911,-1.2168,-0.3903, 
-0.28053
376 ! WEIGHTS FROM 1ST LAYER NODES TO SIXTH NODE OF 2ND 
LAYER
3 7 7 D A T A
-0.2893,-0.747,-1.2615,-0.5905,-0.3922,1.3591,-0.7614,-0.713,-1.2423,-0.4798, 
-0.43833

A-76



378 ! WEIGHTS FROM 1ST LAYER NODES TO SEVENTH NODE OF 2ND 
LAYER
3 7 9 D A T A
-0.273,-0.1772,-1.3838,-0.3308,-0.4379,1.0309,-0.64,-0.5318,-1.2122,-0.2999,- 
0.5106
380 ! WEIGHTS FROM 1ST LAYER NODES TO EIGHTH NODE OF 2ND 
LAYER
3 8 1 D A T A
-0.268,-0.9124,-1.3525,-0.7842,-0.3672,1.4543,-0.8172,-0.8422,-1.205,-0.4682, 
-0.37493
382 ! WEIGHTS FROM 1ST LAYER NODES TO NINETH NODE OF 2ND 
LAYER
3 8 3 D A T A
-0.3792,-0.7339,-1.2309,-0.6663,-0.4636,1.4558,-0.8864,-0.838,-1.148,-0.5701, 
-0.39593
384 ! WEIGHTS FROM 1ST LAYER NODES TO TENTH NODE OF 2ND 
LAYER
3 8 5 D A T A
-0.3314,0.106,-1.4582,-0.3749,-0.3677,0.7514,-0.5944,-0.3731,-1.1957,-0.3436 
,-0.49773
386 ! WEIGHTS FROM 2ND LAYER NODES TO FIRST NODE OF 3ND 
LAYER
3 8 7 D A T A
2.1717,2.0299,2.042,2.011,2.0901,2.0886,1.9205,2.1465,2.1407,1.8425 
388 ! THRESHOLDS OF 1ST LAYER
3 8 9 D A T A
-5.7925,-7.0155,-9.749,-7.4551,-6.0775,-5.468,-8.7614,-8.1127,-9.4196,-5.3607 
,-4.6895
390 ! THRESHOLDS OF 2ND LAYER
3 9 1 D A T A
-2.2662,-2.4902,-2.4485,-2.4863,-2.4021,-2.3821,-2.6299,-2.3498,-2.3166,-2.729-
392 ! THRESHOLDS OF 3ND LAYER
393 DATA 0.0393
394 !
395 ! THIS IS DATA FOR DOING C4A (LEARNED ON C4C)
396 !
397 ! WEIGHTS FROM INPUT LAYER TO FIRST NODE OF 1ST LAYER 
3 9 8 D A T A
-0.5326,-0.4641,-0.3858,-0.5713,-0.5249,-0.5759,-0.519,-0.6862,-0.5337,-0.706 
5,-0.7948,-0.7885,-0.7038,-0.9384,-0.8808,-1.1824,-1.349
3 9 9 D A T A
-2.2014,-2.2053,0.7106,1.0498,0.4152,0.1029,0.1971,0.1146,-0.0151,0.073,0.0 
914,-0.0054,-0.03,0.1736,-0.3038,-1.3411,-0.5053,1.7871,0.5646
4 0 0 D A T A
-0.7283,2.5025,1.9539,2.8437,-1.0475,-0.1296,1.6436,2.2876,1.5952,-0.2911,- 
0.8008,-0.3687,-0.1418,0.3828,0.3909,0.326,0.4262,0.5074
401 DATA 0.5397,0.3043,0.62429
402 WEIGHTS FROM INPUT LAYER TO SECOND NODE OF 1ST LAYER. 
4 0 3 D A T A
-0.0156,-0.0662,-0.1083,-0.0965,-0.1372,0.0124,-0.0442,-0.2562,-0.2206,-0.16
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09,-0.2517,-0.3201,-0.4272,-0.3864,-0.4978,-0.5273,-0.61276
4 0 4 D A T A
-1.1385,-0.0751,-0.5378,-0.281,-0.2515,-0.0751,0.0345,-0.0467,-0.19,-0.1683,-
0.1608,-0.0845,-0.0645,0.0709,0.2902,0.2282,0.5861,0.33836
4 0 5 D A T A
-1.071,-2.338,-1.7791,-0.3594,0.0113,-0.3735,-0.2001,0.8384,1.4309,1.1215,-0.
1026,-0.4446,-0.0423,0.0379,0.4695,0.5496,0.4504,0.67798
406 DATA 0.7637,0.6533,0.5304,0.8088
407 WEIGHTS FROM INPUT LAYER TO THIRD NODE OF 1ST LAYER 
4 0 8 D A T A
-0.4098,-0.2758,-0.3983,-0.3596,-0.3766,-0.4773,-0.4199,-0.5553,-0.4596,-0.64 
99,-0.5813,-0.5456,-0.7233,-0.7536,-0.7135,-0.8807
4 0 9 D A T A
-1.0333,-1.7112,-1.4021,0.3085,0.4775,-0.0348,-0.0642,0.0594,0.0713,-0.1167,
0.0081,0.0274,0.0175,0.0117,0.0694,-0.1716,-0.719,0.01738
4 1 0  D A T A
1.5695,0.1179,-0.8575,1.2039,0.6631,1.5948,-0.8081,0.1849,1.5235,1.8821,1.4
287,-0.1598,-0.5391,-0.1113,-0.0022,0.5076,0.3472,0.2551
411 DATA 0.4374,0.5731,0.3794,0.4081,0.48361
412! WEIGHTS FROM INPUT LAYER TO FOURTH NODE OF 1ST LAYER8
4 1 3  D A T A
0.2749,0.3397,0.3018,0.2705,0.0529,0.2349,0.1193,0.1067,0.0316,0.0139,-0.0
646,-0.2138,-0.2066,-0.2887,-0.2646,-0.4372,-0.7195,-1.3677
4 1 4  D A T A
0.278,-0.7011,-0.6183,-0.4273,-0.0564,0.1107,-0.143,-0.0468,-0.2005,-0.1021,-
0.0611,0.046,0.1277,0.4614,0.697,0.5526,0.1028,-1.4833,-3.1431
4 1 5  D A T A
-2.7204,-0.7787,-0.3658,-0.5334,-0.9808,0.908,1.4979,1.245,-0.4564,-0.9148,-
0.4047,-0.0301,0.5188,0.5333,0.5361,0.7638,1.233,0.9995
416 DATA 0.7796,1.3581
417! WEIGHTS FROM INPUT LAYER TO FIFTH NODE OF 1ST LAYER
4 1 8  D A T A
0.1698,0.0275,0.0619,-0.0168,0.043,-0.0342,-0.1489,-0.0825,-0.1714,-0.093,-0.
116,-0.2271,-0.2142,-0.4397,-0.4385,-0.3944,-0.6056,-1.13214
4 1 9  D A T A
-0.028,-0.5537,-0.4796,-0.3545,0.0567,0.0923,-0.0745,-0.1305,-0.142,-0.1166,-
0.0912,-0.0664,0.1726,0.3232,0.4199,0.6243,0.3158,-1.28942
4 2 0 D A T A
-2.7291,-2.0121,-0.6189,-0.034,-0.445,-0.4828,0.9135,1.5243,1.231,-0.348,-0.6
433,-0.3037,0.1298,0.6035,0.5145,0.4979,0.5783,0.90692
421 DATA 0.9259,0.6028,1.03081
422! WEIGHTS FROM INPUT LAYER TO SIXTH NODE OF 1ST LAYER
4 2 3 D A T A
-0.0875,-0.0378,0.0738,-0.0998,-0.0653,0.0055,-0.2018,-0.1212,-0.1955,-0.182
7,-0.1806,-0.3219,-0.3358,-0.4082,-0.4222,-0.5398,-0.5209
4 2 4 D A T A
-0.9498,-0.102,-0.4682,-0.2871,-0.3704,-0.012,0.0743,-0.0329,-0.1413,-0.0679,
-0.1646,-0.0854,0.0383,0.1307,0.2465,0.2097,0.4868,0.13582
4 2 5 D A T A
-1.0954,-2.31,-1.5477,-0.2604,0.1336,-0.3097,-0.225,0.6996,1.1924,0.9046,-0.2
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234,-0.4206,-0.1335,0.1281,0.5281,0.447,0.4547,0.55341 
426 DATA 0.6782,0.6076,0.5109,0.8672
427! WEIGHTS FROM INPUT LAYER TO SEVENTH NODE OF 1ST LAYER
4 2 8 D A T A
0.1572,0.2916,0.1445,0.1172,-0.0388,0.1299,0.0561,0.0025,-0.0226,-0.2077,-0
.1438,-0.2164,-0.297,-0.4696,-0.371,-0.4143,-0.5833,-1.25092
4 2 9 D A T A
0.143,-0.5725,-0.4267,-0.51,-0.019,-0.0251,-0.0468,-0.1058,-0.1676,-0.1701,-0.
1363,-0.1242,0.1819,0.3923,0.5006,0.6726,0.1198,-1.4248
4 3 0 D A T A
-2.9161,-2.287,-0.6503,-0.2219,-0.5227,-0.6062,0.9047,1.5765,1.2941,-0.3935,
-0.7445,-0.272,-0.0844,0.5016,0.5601,0.5352,0.7701,0.9858
431 DATA 0.9752,0.6361,1.16750
432! WEIGHTS FROM INPUT LAYER TO EIGHTH NODE OF 1ST LAYER,
4 3 3 D A T A
-0.3254,-0.1115,-0.2156,-0.2542,-0.2014,-0.1991,-0.3525,-0.4048,-0.2809,-0.39
67,-0.3986,-0.3974,-0.368,-0.3959,-0.4309,-0.4571,-0.36882
4 3 4 D A T A
-0.3643,-0.181,0.341,0.3785,0.0768,-0.0159,0.1037,0.0913,-0.1661,-0.1132,0.0
093,-0.0350,-0.0734,0.0306,-0.3257,-0.8837,0.3807,1.52818
4 3 5 D A T A
0.2107,-0.6054,1.0688,1.967,1.7485,0.195,0.1963,0.9246,1.0195,0.9631,0.344
7,0.1201,0.3338,0.4218,0.495,0.5844,0.4614,0.5894,0.65298
436 DATA 0.5654,0.4654,0.56558
437! WEIGHTS FROM INPUT LAYER TO NINETH NODE OF 1ST LAYER3
4 3 8 D A T A
0.4098,0.3752,0.4829,0.2944,0.1844,0.2507,0.2499,0.1964,0.1135,0.0875,0.05
09,-0.2053,-0.1966,-0.286,-0.4151,-0.5957,-0.8385,-1.8335
4 3 9 D A T A
0.3622,-0.7584,-0.6493,-0.5039,0.0924,0.1294,0.0543,-0.1606,-0.2418,-0.1786,
-0.1906,-0.0166,0.3264,0.6636,1.0511,0.9389,0.2585,-1.77132
4 4 0 D A T A
-3.6126,-3.2705,-0.8187,-0.5098,-0.9113,-1.3164,1.1003,2.1909,1.7122,-0.7046
,-1.3023,-0.68,-0.1774,0.7294,0.7107,0.5689,0.8784,1.3602
441 DATA 1.3411,0.8554,1.64651
442! WEIGHTS FROM INPUT LAYER TO TENTH NODE OF 1ST LAYER
4 4 3 D A T A
0.1671,0.3047,0.1039,0.1909,0.0772,0.1578,0.0661,-0.0354,0.0021,-0.0044,-0.
1382,-0.2716,-0.3226,-0.2841,-0.3311,-0.3851,-0.7302,-1.4478
4 4 4 D A T A
0.0452,-0.6138,-0.5008,-0.449,-0.1111,0.0359,0.0122,-0.2012,-0.222,-0.1018,-
0.1507,0.054,0.2,0.399,0.6769,0.5519,0.1469,-1.3691,-3.1044
4 4 5 D A T A
-2.516,-0.6089,-0.262,-0.5085,-0.7724,0.9636,1.5773,1.3221,-0.5286,-0.7090,-
0.2781,-0.0226,0.644,0.5462,0.5618,0.8575,1.1261,0.8955 446 DATA
0.6466,1.1687
447! WEIGHTS FROM INPUT LAYER TO ELEVENTH NODE OF 1ST 
LAYER
4 4 8 D A T A
0.3928,0.3108,0.295,0.3698,0.1567,0.1686,0.1451,0.1413,0.0938,-0.085,-0.063
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4,-0.2354,-0.2494,-0.25,-0.439,-0.5266,-0.7649,-1.5522
4 4 9 D A T A
0.2352,-0.6836,-0.4494,-0.3954,0.01,0.0473,0.0402,-0.1804,-0.1806,-0.0873,-0. 
2113,-0.1296,0.246,0.5765,0.768,0.7136,0.0733,-1.574
4 5 0 D A T A
-3.3648,-2.8066,-0.6694,-0.3297,-0.5991,-1.0349,0.8207,1.8019,1.3402,-0.5662 
,-0.8967,-0.462,-0.1508,0.693,0.6144,0.4403,0.7863,1.3153 
451 DATA 1.0977,0.7681,1.42266>452
WEIGHTS FROM 1ND LAYER NODES TO FIRST NODE OF 2ND LAYER 

4 5 3 D A T A
-0.6997,-0.7052,-0.53,-0.8284,-0.6257,-0.4957,-0.7538,-0.9141,-1.2098,-0.8673 
,-0.8674
454! WEIGHTS FROM 1ST LAYER NODES TO SECOND NODE OF 2ND 
LAYER
4 5 5 D A T A
-0.6751,-0.5507,-0.6291,-0.9774,-0.657,-0.6176,-0.8019,-0.9977,-1.0779,-0.839 
9,-0.841
456! WEIGHTS FROM 1ST LAYER NODES TO THIRD NODE OF 2ND 
LAYER
4 5 7 D A T A
-0.6516,-0.547,-0.5104,-0.8806,-0.7,-0.5273,-0.812,-0.9887,-1.1175,-0.8106,-0. 
95148
458! WEIGHTS FROM 1ST LAYER NODES TO FOURTH NODE OF 2ND 
LAYER
4 5 9 D A T A
-0.6236,-0.6264,-0.5007,-0.9323,-0.6357,-0.5308,-0.758,-0.9689,-1.0525,-0.859
5,-0.97620
460! WEIGHTS FROM 1ST LAYER NODES TO FIFTH NODE OF 2ND 
LAYER
4 6 1 D A T A
-0.6901,-0.601,-0.5791,-0.8536,-0.7098,-0.5652,-0.7668,-0.985,-1.2262,-0.7416 
-0 8723

462! WEIGHTS FROM 1ST LAYER NODES TO SIXTH NODE OF 2ND 
LAYER
4 6 3 D A T A
-0.55,-0.672,-0.4992,-0.8046,-0.6347,-0.5274,-0.7132,-1.0383,-1.2134,-0.7899,- 
0.97583
464! WEIGHTS FROM 1ST LAYER NODES TO SEVENTH NODE OF 2ND 
LAYER
4 6 5 D A T  A
-0.5554,-0.6472,-0.4716,-0.8255,-0.7974,-0.5622,-0.7302,-1.0351,-1.1127,-0.73 
47,-0.9875
466! WEIGHTS FROM 1ST LAYER NODES TO EIGHTH NODE OF 2ND 
LAYER
4 6 7 D A T A
-0.5508,-0.6301,-0.6329,-0.8615,-0.6152,-0.6101,-0.6812,-1.0152,-1.1999,-0.72 
21,-0.9752
468! WEIGHTS FROM 1ST LAYER NODES TO NINETH NODE OF 2ND 
LAYER
4 6 9 D A T A

A-80



-0.5986,-0.5131,-0.4663,-0.8055,-0.7053,-0.5212,-0.793,-1.0249,-1.1406,-0.857
3,-0.97052
470! WEIGHTS FROM 1ST LAYER NODES TO TENTH NODE OF 2ND 
LAYER
4 7 1 D A T A
-0.6881,-0.5584,-0.5557,-0.9544,-0.7613,-0.6177,-0.7256,-0.9783,-1.0858,-0.79 
11,-0.9124
472! WEIGHTS FROM 2ND LAYER NODES TO FIRST NODE OF 3RD 
LAYER
4 7 3 D A T A
1.4987,1.4891,1.4934,1.4942,1.4948,1.4988,1.495,1.5009,1.4998,1.48758 
474! THRESHOLDS OF 1ST LAYER
4 7 5 D A T A
0.1063,-1.1184,-0.7053,-1.4004,-1.247,-1.1718,-1.2812,-0.733,-1.4439,-1.2136, 
-1.32971
476! THRESHOLDS OF 2ND LAYER
4 7 7 D A T A
-1.592,-1.4998,-1.5475,-1.5828,-1.5153,-1.5493,-1.5548,-1.5442,-1.554,-1.5244
478! THRESHOLDS OF 3RD LAYER
479 DATA -0.1369
480!
481! THIS IS DATA FOR DOING C7C (LEARNED ON C7A)
482 !
483! WEIGHTS FROM INPUT NODES TO FIRST NODE OF 1ST LAYER
4 8 4 D A T A
-2.4549,-2.3229,-1.7672,-2.0566,-0.7999,-0.071,0.0644,0.8988,1.0743,1.5834,1
.7837,1.97,1.9369,1.8503,1.6613,0.8948,0.0603,-0.2645
4 8 5 D A T A
-1.4781,-2.2384,-1.7873,-1.3837,-0.6214,-0.3756,-0.457,-0.7985,-0.6755,-0.889
5,-0.7821,-0.7362,-0.4108,0.0223,0.357,0.7908,1.2379
4 8 6 D A T A
1.3089.0.8573.0.9444.0.9907.1.7586.0.4414,-0.2865,0.4228,2.1211,0.6179,0.2 
744,-0.4988,-1.827,-0.4668,-0.1557,0.1135,0.0363,0.4529,0.76554
487 DATA 0.8196,1.0777,1.3797
488! WEIGHTS FROM INPUT NODES TO SECOND NODE OF 1ST LAYER 
4 8 9 D A T A
-2.0541,-2.106,-1.5474,-1.8677,-0.7691,-0.369,-0.1108,0.4884,0.655,1.1395,1.2
752.1.3716.1.3908.1.5975.1.267.0.6413,-0.1168,-0.58480
4 9 0 D A T A
-1.4955,-1.6476,-1.147,-0.7323,-0.3485,-0.0558,-0.2692,-0.4032,-0.46,-0.3872,-
0.3747,-0.4,-0.0822,0.2756,0.5947,0.7053,0.9488,0.83967
4 9 1 D A T A
0.2414,0.0677,-0.0524,0.3022,-0.2929,-0.533,0.4376,2.0498,0.8888,0.4058,-0.
4799,-1.5975,-0.379,-0.0126,0.1803,0.2904,0.385,0.6175,0.888
492 DATA 0.9841,1.1557
493! WEIGHTS FROM INPUT NODES TO THIRD NODE OF 1ST LAYER 
4 9 4 D A T A
-2.2205,-2.177,-1.6166,-1.8605,-0.9124,-0.1141,-0.0908,0.5961,0.7769,1.4067,
1.479.1.6885.1.6628.1.7774.1.5696.0.8319.0.1908,-0.0558
4 9 5 D A T A
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-1.1411,-2.1293,-1.6146,-1.3761,-0.5961,-0.386,-0.6235,-0.7741,-0.8038,-0.798
1,-0.784,-0.7281,-0.4498,-0.0232,0.2436,0.6066,1.10098
4 9 6 D A T A
1.2828.1.0072.1.169.1.1696.1.9512.0.5972,-0.1957,0.607,2.1647,0.605,0.3949, 
-0.3808,-1.7226,-0.4611,-0.1145,0.0666,0.1752,0.4665,0.62588
497 DATA 0.8465,1.0651,1.49331
498! WEIGHTS FROM INPUT NODES TO FOURTH NODE OF 1ST LAYER
4 9 9 D A T A
-2.3365,-2.1853,-1.7966,-2.0085,-0.7929,-0.2523,0.0974,0.7532,0.822,1.2038,1 
.5779,1.5976,1.6935,1.6399,1.3763,0.5414,-0.3404,-1.18315
5 0 0 D A T A
-2.1653,-1.492,-0.8904,-0.6549,-0.1681,0.188,0.0385,-0.3335,-0.3476,-0.4173,- 
0.2531,-0.0991,0.1081,0.45,0.82,1.0522,1.0021,0.7233
5 0 I  D A T A
-0.1828,-0.5565,-0.6757,-0.478,-0.7705,-0.6349,0.4558,2.1462,0.83,0.4568,-0.5 
369,-1.5014,-0.4109,-0.1177,0.0812,0.2625,0.4183,0.58665 
502 DATA 0.9168,0.8719,1.15527
503! WEIGHTS FROM INPUT NODES TO FIFTH NODE OF 1ST LAYER 
5 0 4 D A T A
-2.3222,-2.1726,-1.7156,-2.0303,-0.8267,-0.1403,0.0439,0.6137,0.9064,1.3188,
1.6533.1.6931.1.7687.1.7163.1.3851.0.8667,-0.0694,-0.3665
5 0 5 D A T A
-1.5029,-1.962,-1.4459,-1.1398,-0.4466,-0.2435,-0.432,-0.585,-0.6589,-0.6034,-
0.6864,-0.5277,-0.3235,0.0679,0.3627,0.8292,1.1703,1.1352
5 0 6 D A T A
0.6329,0.6329,0.5708,1.0458,0.0594,-0.2808,0.589,2.3975,0.8521,0.5238,-0.50
27,-1.6903,-0.4719,-0.1352,0.0368,0.1447,0.4171,0.7336
507 DATA 0.8309,0.9825,1.3243
508! WEIGHTS FROM INPUT NODES TO SIXTH NODE OF 1ST LAYER 
5 0 9 D A T A
-2.0594,-2.0273,-1.6004,-1.7756,-0.9104,-0.2596,-0.1565,0.4882,0.7258,1.0906 
,1.227,1.3038,1.3378,1.4895,1.2035,0.7819,0.0554,0.1624 
5 1 0  D A T A
-0.8118,-2.056,-1.5817,-1.1657,-0.5425,-0.2208,-0.5213,-0.7342,-0.7013,-0.722 
6,-0.7162,-0.5851,-0.4758,-0.0239,0.1489,0.7276,1.0109 
5 1 1  D A T A
1.0914.0.8567.0.8182.0.9086.1.8964.0.4671,-0.1147,0.7187,2.3509,0.8245,0.4 
296,-0.3751,-1.7182,-0.3116,0.014,0.034,0.1347,0.4271,0.82452
512 DATA 0.8845,1.0677,1.4463
513! WEIGHTS FROM INPUT NODES TO SEVENTH NODE OF 1ST 
LAYER
5 1 4 D A T A
-2.3966,-2.2665,-1.8559,-2.0819,-0.7752,-0.336,0.029,0.7857,0.9069,1.4918,1.
696.1.8527.1.7349.1.7966.1.5595.0.7518,-0.4661,-1.44398
5 1 5  D A T A
-2.5469,-1.5388,-0.9324,-0.6174,-0.191,0.1977,-0.0891,-0.1604,-0.2451,-0.344 
9,-0.2647,-0.1701,0.1665,0.5167,0.9031,1.1728,1.1858,0.7324 
5 1 6  D A T A
-0.1584,-0.621,-0.8985,-0.6585,-0.8554,-0.7915,0.3019,2.1923,0.8148,0.3069,- 
0.6116,-1.5131,-0.4926,-0.1195,0.1761,0.2013,0.4422,0.73144 517 DATA
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0.8374,0.961,1.2423
518! WEIGHTS FOM INPUT NODES TO EIGHTH NODE OF 1ST LAYER 
5 1 9  D A T A
-2.27,-2.1913,-1.7951,-1.8872,-0.7494,-0.3147,0.0712,0.5673,0.785,1.245,1.36
31.1.5176.1.656.1.6464.1.4321.0.7296,-0.2586,-0.9207,-1.726
5 2 0 D A T A
-1.7326,-1.077,-0.8729,-0.3666,0.1304,-0.2524,-0.2846,-0.4304,-0.5409,-0.488
3,-0.2885,-0.0793,0.3347,0.6603,0.9439,1.0866,0.862,0.06776
5 2 1 D A T A
-0.1728,-0.287,0.0996,-0.3965,-0.5418,0.5162,2.1123,0.8764,0.3014,-0.4558,-1
.6334,-0.3393,-0.1511,-0.0012,0.2441,0.5583,0.7366,0.8619AY522 DATA
0.975,1.16158
523! WEIGHTS FROM INPUT NODES TO NINETH NODE OF 1ST LAYER. 
5 2 4 D A T A
-2.0763,-1.9956,-1.5501,-1.8702,-0.8286,-0.3852,-0.1505,0.5199,0.7156,0.984,
1.2007.1.3342.1.3994.1.4234.1.0896.0.4892,-0.3623,-0.8381
5 2 5 D A T A
-1.5269,-1.3491,-0.826,-0.5802,-0.1197,0.0171,-0.0419,-0.198,-0.3489,-0.4277,
-0.3102,-0.1332,0.0733,0.3651,0.5798,0.7989,0.9625,0.52996
5 2 6 D A T A
-0.1982,-0.5123,-0.6372,-0.2606,-0.5259,-0.5704,0.5704,2.0671,0.9193,0.4963,
-0.5671,-1.4984,-0.4451,0.0318,0.1229,0.2422,0.4742,0.70396
527 DATA 0.6845,0.8876,1.16853
528! WEIGHTS FROM INPUT NODES TO TENTH NODE OF 1ST LAYER
5 2 9 D A T A
-2.3691,-2.4287,-1.6102,-1.9907,-0.9324,0.1755,0.1388,0.9689,1.1364,2.021,2.
1585,2.2389,2.0843,2.2313,2.0233,1.4583,1.0039,1.1644
5 3 0 D A T A
-0.6229,-2.9251,-2.4377,-2.1163,-1.1042,-0.7743,-0.9173,-1.2808,-1.2675,-1.34
53,-1.3317,-1.1432,-0.9855,-0.5851,-0.075,0.7128,1.75313
5 3 1 D A T A
2.5853.2.6601.3.6818.3.3754.4.8412.1.7359.0.0584.0.227.1.5901,-0.04047,-0.0 
754,-0.6222,-2.2901,-0.7356,-0.316,-0.2509,-0.1646,0.23133(532 DATA 
0.6245,0.7099,1.0856,1.5502
533! WEIGHTS FROM INPUT NODES TO ELEVENTH NODE OF 1ST 
LAYER
5 3 4 D A T A
-2.049,-2.0172,-1.5801,-1.9052,-0.8557,-0.3014,-0.1578,0.4403,0.7366,1.0346,
1.3028.1.5043.1.4334.1.3765.1.2798.0.7018,-0.2366,-0.6496
5 3 5 D A T A
-1.4868,-1.5719,-1.0311,-0.717,-0.3585,0.0755,-0.1657,-0.3153,-0.3121,-0.534
7,-0.3902,-0.2527,-0.0415,0.2946,0.4348,0.7717,1.0438
5 3 6 D A T A
0.7211,0.0378,-0.1041,-0.1625,0.2107,-0.2577,-0.4444,0.4441,2.0777,0.8093,0
.4254,-0.5664,-1.5171,-0.2804,-0.0315,0.0678,0.1856,0.4705(537 DATA
0.7647,0.8119,0.9431,1.13699
538! WEIGHTS FROM 1ST LAYER NODES TO FIRST OF 2ND LAYER 
5 3 9 D A T A
-0.8475,-0.585,-0.731,-0.6812,-0.6928,-0.7487,-0.8038,-0.6847,-0.689,-1.8663,- 
0.55615
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540! WEIGHTS FROM 1ST LAYER NODES TO SECOND OF 2ND LAYER 
5 4 1 D A T A
-0.8412,-0.7079,-0.882,-0.7897,-0.5838,-0.6889,-0.8388,-0.6237,-0.6062,- 
.8384,-0.61299
542! WEIGHTS FROM 1ST LAYER NODES TO THIRD OF 2ND LAYER 
5 4 3 D A T A
-0.9104,-0.685,-0.8591,-0.6715,-0.7306,-0.6571,-0.7861,-0.7696,-0.6587,-1.766 
9,-0.61166
544! WEIGHTS FROM 1ST LAYER NODES TO FOURTH OF 2ND LAYER 
5 4 5 D A T A
-0.8436,-0.5366,-0.7936,-0.6537,-0.674,-0.7443,-0.6561,-0.7003,-0.6281,-1.851 
1,-0.542969
546! WEIGHTS FROM 1ST LAYER NODES TO FIFTH OF 2ND LAYER 
5 4 7 D A T A
-0.8472,-0.5668,-0.7739,-0.6989,-0.7306,-0.818,-0.6649,-0.6287,-0.5587,-1.801 
4,-0.69
548! WEIGHTS FROM 1ST LAYER NODES TO SIXTH OF 2ND LAYER 
5 4 9 D A T A
-0.8641,-0.4888,-0.8474,-0.5939,-0.6401,-0.6992,-0.6494,-0.5855,-0.6507,-1.84 
76,-0.69365
550! WEIGHTS FROM 1ST LAYER TO SEVENTH OF 2ND LAYER 
5 5 1 D A T A
-0.7469,-0.7109,-0.8796,-0.7143,-0.624,-0.6439,-0.7248,-0.7509,-0.6212,-1.871 
,-0.67454
552! WEIGHTS FROM 1ST LAYER TO EIGHTH OF 2ND LAYER 
5 5 3 D A T A
-0.7396,-0.5717,-0.8012,-0.7935,-0.6616,-0.7657,-0.7144,-0.6518,-0.6867,-1.88 
72,-0.58044
554! WEIGHTS FROM 1ST LAYER TO NINETH OF 2ND LAYER 
5 5 5 D A T A
-0.9384,-0.6431,-0.741,-0.648,-0.6272,-0.704,-0.7319,-0.7290,-0.6116,-1.8253,- 
0.732283
556! WEIGHTS FROM 1ST LAYER TO TENTH OF 2ND LAYER 
5 5 7 D A T A
-0.7544,-0.7124,-0.7308,-0.7603,-0.7567,-0.7526,-0.7934,-0.6061,-0.6788,-1.86 
65,-0.65493
558! WEIGHTS FROM 2ND LAYER TO FIRST OF 3RD LAYER 
5 5 9 D A T A
2.6083,2.6096,2.603,2.6003,2.5978,2.5988,2.6103,2.6091,2.605,2.6115 
560! THRESHOLDS FOR 1ST LAYER
5 6 1 D A T A
-7.0838,-4.0887,-7.3075,-2.9892,-5.9418,-6.7417,-2.8443,-3.8748,-2.9295,-11.9 
581,-3.8993
562! THRESHOLDS FOR 2ND LAYER
5 6 3 D A T A
-3.0054,-2.9972,-2.9975,-3.0242,-3.0239,-3.0283,-3.0007,-3.0058,-3.0059,-2.99 
45
564! THESHOLDS FOR 2RD LAYER
565 DATA -0.2864
566!
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567! THIS IS DATA FOR DOING C7A (LEARNED ON C7C)
568!
569! WEIGHTS FROM INPUT NODES TO FIRST OF 1ST LAYER
5 7 0 D A T A
0.0245,-0.012,0.143,-0.0152,0.0779,-0.0341,0.0989,-0.0829,0.1114,0.1167,-0.1
021,-0.0673,0.129,-0.0702,-0.021,-0.05,0.1476,0.8239,1.1887
5 7 1 D A T A
-0.7831,0.1762,0.3917,-0.2555,-0.3097,-0.2127,-0.1903,-0.1175,-0.0993,-0.223
3,-0.3718,-0.6457,-1.3497,-2.8493,-3.3415,-0.6554,0.03848
5 7 2 D A T A
-0.6746,-0.3119,0.1448,1.2777,2.0556,0.1991,-0.3452,-0.1753,-0.9051,-1.2434, 
-0.6402,-0.2249,-0.1245,-0.2233,-0.1151,0.2727,0.3044 
573 DATA 0.2578,0.47,0.2784,0.63436
574! WEIGHTS FROM INPUT NODES TO SECOND OF 1ST LAYER
5 7 5 D A T A
-0.0125,-0.109,-0.1087,-0.0686,-0.0506,0.0553,0.0524,-0.1369,-0.0861,0.0839,
-0.0652,-0.1006,-0.1497,-0.0711,-0.1997,-0.0647,0.07538
5 7 6 D A T A
0.3684,0.657,-0.5451,0.2609,0.4094,-0.1704,-0.087,-0.0407,-0.1083,-0.0912,-0.
0775,-0.0237,-0.1318,-0.4361,-0.7741,-1.7463,-2.1906
5 7 7 D A T A
-0.6078,0.4031,-0.381,-0.3545,0.096,0.8345,1.1991,0.0125,-0.3962,-0.2076,-0.
5859,-0.8013,-0.7454,-0.4805,-0.441,-0.4812,-0.34358
578 DATA -0.1361,0.0393,-0.0146,0.0696,0.0957,0.22235
579! WEIGHTS FROM INPUT NODES TO THIRD OF 1ST LAYER2
5 8 0 D A T A
0.0434,0.1005,0.0405,0.996,0.115,-0.041,0.0779,-0.0652,0.0678,0.0156,-0.032
,0.0352,-0.0309,-0.0748,-0.04,0.0263,0.1655,0.7185,1.22658
5 8 1 D A T A
-0.7209,0.1365,0.1842,-0.4024,-0.3423,-0.1730,-0.2489,-0.1409,-0.1178,-0.150
4,-0.2922,-0.7206,-1.4163,-2.7997,-3.0903,-0.5363,-0.2007
5 8 2 D A T A
-0.6491,-0.3695,0.2329,1.4138,2.0489,0.2162,-0.2292,-0.2076,-0.784,-1.2382,- 
0.6269,-0.1089,-0.0487,-0.0454,-0.1215,0.1833,0.3279,0.3701 
583 DATA 0.3287,0.3766,0.527326
584! WEIGHTS FROM INPUT NODES TO FOURTH OF 1ST LAYER 
5 8 5 D A T A
0.092.0.0837.0.1127.0.1066,-0.0154,0.093,0.0542,0.0727,0.0304,0.1647,0.021 
7,-0.0942,0.0406,-0.0086,-0.0109,0.0158,0.096,0.7265,1.1663
5 8 6 D A T A
-0.7372,0.0704,0.3224,-0.347,-0.1379,-0.2465,-0.0758,-0.2385,-0.1296,-0.1105
,-0.1895,-0.7081,-1.319,-2.5585,-3.2702,-0.5217,0.09696
5 8 7 D A T A
-0.55,-0.3968,-0.0083,1.19,1.9717,0.0667,-0.2771,-0.3436,-0.8617,-1.1017,-0.7
612,-0.323,-0.048,-0.2612,-0.2368,0.1745,0.1862,0.3786
588 DATA 0.3408,0.3319,0.595435
589! WEIGHTS FROM INPUT NODES TO FIFTH OF 1ST LAYER,
5 9 0 D A T A
-0.0386,-0.2248,-0.1484,-0.1883,-0.0519,-0.1683,-0.222,-0.1231,-0.1972,0.002
1,-0.0613,-0.1292,-0.0623,-0.214,-0.2223,-0.0074,0.0275
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5 9 1 D A T A
0.3419,0.3392,-0.235,0.2874,0.453,0.0862,0.0545,0.0189,0.0525,0.0406,0.071
7.0.0712,-0.0242,-0.2056,-0.4936,-1.0006,-1.5154,-0.23425
5 9 2 D A T A
0.8986,-0.1837,-0.3076,-0.205,0.5636,0.7807,-0.3094,-0.5001,-0.3569,-0.5769,
-0.8743,-0.839,-0.7563,-0.4327,-0.5179,-0.5653,-0.284351
593 DATA-0.3014,-0.1765,0.0529,-0.058,0.0968
594! WEIGHTS FROM INPUT NODES TO SIXTH OF 1ST LAYER
5 9 5 D A T A
0.064,-0.0175,0.153,-0.0111,0.0684,0.0699,-0.0861,0.0028,-0.047,0.0901,-0.01
65,-0.146,-0.0543,-0.1661,-0.2121,-0.1465,0.1596,0.8206
5 9 6 D A T A
1.3595,-0.8483,0.1541,0.1844,-0.3923,-0.2206,-0.2088,-0.2671,-0.2127,-0.3005
,-0.2379,-0.2792,-0.7322,-1.5127,-3.0642,-3.2363,-0.81533
5 9 7 D A T A
-0.4224,-0.8158,-0.3201,0.3242,1.697,2.3992,0.4064,-0.2883,-0.1965,-1.0112,- 
1.4027,-0.6572,-0.1271,0.2110,0.1041,0.0579,0.4539,0.4409
598 DATA 0.4365,0.483,0.4331,0.776837
599! WEIGHTS FROM INPUT NODES TO SEVENTH OF 1ST LAYER
6 0 0 D A T A
-0.0998,-0.0856,-0.1548,-0.194,-0.2965,-0.2465,-0.2582,-0.3129,-0.3448,-0.356 
8,-0.4875,-0.555,-0.5793,-0.782,-0.6767,-0.448,-0.1297
6 0 1 D A T A
0.8478,1.9259,-0.8578,0.2959,0.1291,-0.7311,-0.5154,-0.4217,-0.4512,-0.545,-
0.5328,-0.5081,-0.7359,-1.1587,-2.2433,-4.1042,-3.32257
6 0 2 D A T A
-0.8171,-0.8644,-0.7449,-0.6617,0.4182,2.3219,4.041,1.063,-0.0127,-0.0747,-1.
4394,-1.9763,-0.3535,0.8045,1.1853,1.0692,1.0007,1.42489
603 DATA 1.7559,1.0772,1.0325,0.6618,1.153546
604! WEIGHTS FROM INPUT NODES TO EIGHTH OF 1ST LAYER
6 0 5 D A T A
-0.4203,-0.2698,-0.3265,-0.2915,-0.1777,-0.1976,-0.3208,-0.3167,-0.0864,-0.04
81,-0.155,-0.1317,0.1765,0.0123,-0.2389,-0.1276,0.0037
6 0 6 D A T A
0.6832,0.1658,0.6967,2.0149,1.574,-0.009,0.1473,0.3127,0.1496,0.1726,0.300
7.0.2196,-0.0018,-0.637,-2.1045,-4.484,-0.8386,2.8081,3.29761
6 0 7 D A T A
3.1827,1.8214,3.0407,3.4279,1.4383,-1.9137,-2.2437,-1.0049,-0.6885,-1.1091,-
0.6502,-0.0257,-0.2596,-1.3008,-1.3405,-1.003,-0.6684
608 DATA-0.7209,-0.7334,-0.8471,-0.41776
609! WEIGHTS FROM INPUT NODES TO NINETH OF 1ST LAYER
6 1 0 D A T A
-0.0399,-0.2013,0.0012,-0.1922,-0.2003,-0.2624,-0.1673,-0.2038,-0.2801,-0.10
44,-0.2987,-0.5289,-0.4259,-0.476,-0.5903,-0.4715,-0.1232
6 1 1  D A T A
0.8217,1.8245,-0.8881,0.1635,0.229,-0.6114,-0.3822,-0.3123,-0.4737,-0.5781,-
0.4994,-0.5227,-0.6184,-1.0763,-2.5185,-3.8384,-3.36982
6 1 2  D A T A
-0.6727,-0.8107,-0.723,-0.7565,0.4388,2.279,3.6228,0.9014,-0.0389,-0.0222,-1.
3556,-1.7643,-0.4167,0.5833,1.0759,0.9547,0.8008,1.15522
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613 DATA 0.9138,0.9485,0.9962,0.6273,1.088135
614! WEIGHTS FROM INPUT NODES TO TENTH OF 1ST LAYER
6 1 5  D A T A
0.0335,0.0834,-0.432,0.0577, .0263,0.021,0.0047,-0.0767,-0.0091,0.1423,-0.09
02,-0.1978,-0.1206,-0.0772,-0.1455,0.0232,0.0778,0.77275
6 1 6  D A T A
1.3712,-0.8199,0.1232,0.2317,-0.547,-0.3027,-0.1871,-0.339,-0.3765,-0.2443,-
0.3111,-0.3103,-0.8083,-1.6881,-3.1039,-3.5085,-0.63095
6 1 7  D A T A
-0.2613,-0.7899,-0.4202,0.2656,1.5939,2.6045,0.4085,-0.2042,-0.2717,-1.0349,
-1.5266,-0.5652,0.0085,0.25,0.1609,0.0629,0.5192,0.5626
618 DATA 0.567,0.4868,0.3797,0.679528
619! WEIGHTS FROM INPUT NODES TO ELEVENTH OF 1ST LAYER
6 2 0 D A T A
0.1804,0.0187,0.0755,0.1723,0.0603,-0.0076,0.0529,0.0795,0.062,0.0436,-0.00
51,-0.1409,-0.0322,0.0163,-0.1906,-0.0607,0.102,0.7005
6 2 1 D A T A
1.2103,-0.7533,0.2083,0.3352,-0.3232,-0.2378,-0.0945,-0.2374,-0.2468,-0.1428
,-0.2874,-0.4031,-0.6521,-1.3216,-2.6667,-3.1689,-0.71532
6 2 2 D A T A
-0.1007,-0.7077,-0.4002,0.2231,1.4014,2.1345,0.2327,-0.3838,-0.1674,-0.9147,
-1.1823,-0.6173,-0.2674,-0.0742,-0.0728,-0.146,0.1058
623 DATA 0.2092,0.4318,0.4171,0.3094,0.612203
624! WEIGHTS FROM 1ST LAYER TO FIRST OF 2ND LAYER
6 2 5 D A T A
-0.6856,-0.655,-0.5701,-0.5135,-0.5899,-0.624,-1.1072,-0.4819,-1.0934,-0.7625
,-0.50824
626! WEIGHTS FROM 1ST LAYER TO SECOND OF 2ND LAYER 
6 2 7 D A T A
-0.6415,-0.511,-0.6629,-0.6789,-0.6377,-0.7609,-1.1707,-0.5919,-0.9819,-0.758 
5,-0.4999.3
628! WEIGHTS FROM 1ST LAYER TO THIRD OF 2ND LAYER 
6 2 9 D A T A
-0.6167,-0.5128,-0.5556,-0.5993,-0.6883,-0.6747,-1.1941,-0.5544,-1.0422,-0.73 
88,-0.62614
630! WEIGHTS FROM 1ST LAYER TO FOURTH OF 2ND LAYER 
6 3 1 D A T A
-0.5993,-0.5907,-0.5529,-0.6479,-0.6188,-0.6775,-1.1341,-0.5158,-0.972,-0.784 
2,-0.647513
632! WEIGHTS FROM 1ST LAYER TO FIFTH OF 2ND LAYER 
6 3 3 D A T A
-0.6721,-0.5612,-0.6241,-0.5618,-0.6884,-0.7122,-1.1498,-0.5768,-1.1434,-0.66 
62,-0.53573
634! WEIGHTS FROM 1ST LAYER TO SIXTH OF 2ND LAYER 
6 3 5 D A T A
-0.5415,-0.6448,-0.5655,-0.5454,-0.6292,-0.6935,-1.1252,-0.5951,-1.1731,-0.74 
36,-0.67345
636! WEIGHTS FROM 1ST LAYER TO SEVENTH OF 2ND LAYER 
6 3 7 D A T A
-0.5922,-0.6236,-0.5718,-0.5682,-0.7875,-0.7465,-1.1615,-0.5842,-1.0865,-0.7,-
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0.689574
638! WEIGHTS FROM 1ST LAYER TO EIGHTH OF 2ND LAYER 
6 3 9 D A T A
-0.547,-0.5956,-0.6823,-0.5825,-0.5996,-0.7686,-1.0753,-0.5888,-1.1352,-0.660
1,-0.655444
640! WEIGHTS FROM 1ST LAYER TO NINETH OF 2ND LAYER 
6 4 1 D A T A
-0.638,-0.4725,-0.5509,-0.5237,-0.6798,-0.6825,-1.1983,-0.6198,-1.0891,-0.795 
4,-0.6553
642! WEIGHTS FROM 1ST LAYER TO TENTH OF 2ND LAYER 
6 4 3 D A T A
-0.6326,-0.533,-0.5945,-0.6768,-0.759,-0.7709,-1.1034,-0.5356,-1.0046,-0.7246 
,-0.59033
644! WEIGHTS FROM 2ND LAYER TO FIRST OF 3RD LAYER 
6 4 5 D A T A
1.8659,1.88,1.878,1.8692,1.8841,1.8863,1.8927,.8818,1.8922,1.8759 
646! THRESHOLDS OF 1ST LAYER
6 4 7 D A  T A
-1.7985,-0.4371,-2.1599,-1.7573,0.4019,-2.5127,-4.6869,1.837,-4.4738,-2.6227 
,-1.94113
648! THRESHOLDS OF 2ND LAYER
6 4 9 D A T A
-2.6343,-2.55,-2.5803,-2.5984,-2.5636,-2.5535,-2.5385,-2.5551,-2.5454,-2.5689 
650! THRESHOLDS OF 3RD LAYER
651 DATA -0.2069
652 END 
653!
654 Measready:
655 SUB Measready
656 REPEAT
657 Stat=SPOLL(711)
658 UNTIL BINAND(Stat, 16)
659 SUBEND 
660!
661 Meascomp:
662 SUB Meascomp
663 REPEAT
664 Stat=SPOLL(711)
665 UNTIL BINAND(Stat,4)
666 SUBEND
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Appendix Ten
Listing of HP-Basic program which displays the values of the 

attributes of the stopband and passband regions

A - 8 9



GOTO Pband

1000 DIM Frx(50),Mrk(50),Binno(50)
1010 DIM M$[40],F$[20],A(100,2),Name$[6],File_name$[20]
1020 !
1021! MASS STORAGE IS ":CS80,700,0"
1030 ASSIGN @Na TO 711
1040 ASSIGN @Prt TO 1
1050 P rt= l 
1060 PRINTER IS 1 
1070 !
1080 ASSIGN @Na_nofmt TO 711;FORMAT OFF 
1090 Meas_complete=4
1100 
1110 
1120 
1130 
1140
1150 CLEAR @Na
1160 OUTPUT @Na;"IPR;"
1170 OUTPUT @Na;"IAR;IAl;IRl;IBl;"
1180 OUTPUT @Na;"BP0;"
1190 !
1200 OUTPUT @Na;"ST5;SMl;SFR1401500HZ;DF7;DIVlDBR;REF0DBR;" 
1210 OUTPUT @Na;"SAM+5.8DBM;FM2;"
1220 OUTPUT @Na;"RPS50%;BW3;AV0;"
1230 !
1240 DISP " Insert S/C and press ’CONT’"
1250 PAUSE
1260 D ISP""
1270 !
1280 OUTPUT @Na;"DMl;TRG;"
1290 Meascomp
1300 ENTER @Na USING "%,2A";Junk
1310 ENTER @Na_nofint;Sc_ref
1320 PRINT "Ref ";Sc_reff
1330 OUTPUT @Na;"DIV5DBR;REF-26DBR;"
1340 !
1350 DISP " Insert unit and press ’CONT’"
1360 PAUSE
1370 D ISP""
1380 OUTPUT @Na;"DMl;TRG;"
1390 Meascomp
1400 ENTER @Na USING "%,2A";Junk$
1410 ENTER @Na_nofint;Ins_loss
1420 PRINT "Approx. Insertion loss ";-Ins_loss-26
1430 !
1440 ! GOTO Singles 
1450 Again:!
1460 PRINTER IS 1
1461 Cnt=0 
1470 Menul:!
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1471 INPUT "ENTER SERIAL STRING (5 CHRS MAX.) ",Name
1472 MASS STORAGE IS ":CS80,700,1"
1474 ON ERROR GOTO Jumpa
1475 PURGE Name$
1476 Jumpa:
1477 OFF ERROR
1478 CREATE ASCII Name$,100
1479 ASSIGN @Disk TO Name$
1480 Flagp=0 
1490 Flags=0
1500 OUTPUT @Na; "DF7; SAM+ 5.8DBM; FM1; ST1; SWT1SEC;

DIV10DBR ;RPS100%;"
1510 OUTPUT @Na;"REF-26DBR;"
1520 OUTPUT @Na;"FRC1401500HZ;FRS40KHZ;SMl;BW3;"
1530 LOCAL 711 
1540 !
1550 OFF KEY
1560 DISP "SELECT DISPLAY AREA "
1570 ON KEY 5 LABEL "PASSBAND" GOTO Pband 
1580 ON KEY 9 LABEL "STOPBAND" GOTO Sband 
1590 Idlel:GOTO IdlelL 
1600 !
1610 !
1620 !
1630 !
1640 Sband:!
1650 Flags=0
1660 D IS P ""
1670 OFF KEY
1680 Menu2:!
1690 DISP "SELECT POINT WITH MARKER "
1700 OUTPUT @Na;"SM2;"
1710 LOCAL 711
1720 ON KEY 0 LABEL "PEAK 1" GOTO PI 
1730 ON KEY 1 LABEL "PEAK 2" GOTO P2 
1740 ON KEY 2 LABEL "PEAK 3" GOTO P3 
1750 ON KEY 3 LABEL "PEAK 4" GOTO P4 
1760 ON KEY 5 LABEL "RTN 1" GOTO R1 
1770 ON KEY 6 LABEL "RTN 2" GOTO R2
1780 ON KEY 7 LABEL "SKIP" GOTO Blank
1781 ON KEY 8 LABEL "SWEEP" GOTO Sweep
1790 ON KEY 9 LABEL "MENU" GOTO Lf
1800 Idle2:GOTO Idle2
1810 !
1820 PI:!
1830 IF Flags=0 THEN PRINT "Stopband"
1840 PRINTER IS Prt
1850 Flags=l
1860 OUTPUT @Na;"DMl;"
1870 ENTER @Na;Level
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1880 OUTPUT @Na;"MPl;"
1890 ENTER @Na;Freq
1900 Imagel:IMAGE "Peak 1 Freq ",DDDDD.DDD," kHz Level " 

DDDD.D ," dB"
1910 PRINT USING Imagel;Freq/1000,-Level+Ins_loss
1911 OUTPUT 703 USING Imagel;Freq/1000,-Level+Ins_loss 
1920 GOTO Menu2
1930 P2:!
1940 IF Flags=0 THEN PRINT "Stopband"
1950 PRINTER IS Prt
1960 Flags=l
1970 OUTPUT @Na;"DMl;"
1980 ENTER @Na;Level 
1990 OUTPUT @Na;"MPl;"
2000 ENTER @Na;Freq
2010 Image2:IMAGE "Peak 2 Freq ",DDDDD.DDD," kHz Level ", 

DDDD.D," dB"
2020 PRINT USING Image2;Freq/1000,-Level+Ins_loss
2021 OUTPUT 703 USING Lnage2;Freq/1000,-Level+Ins_loss 
2030 GOTO Menu2
2040 P3:!
2050 IF Flags=0 THEN PRINT "Stopband"
2060 PRINTER IS Prt
2070 Flags=l
2080 OUTPUT @Na;"DMl;"
2090 ENTER @Na;Level 
2100 OUTPUT @Na;"MPl;"
2110 ENTER @Na;Freq
2120 Image3:IMAGE "Peak 3 Freq ",DDDDD.DDD," kHz Level ", 

DDDD.D," dB"
2130 PRINT USING Image3;Freq/1000,-Level+Ins_loss
2131 OUTPUT 703 USING Lnage3;Freq/1000,-Level+Ins_loss 
2140 GOTO Menu2
2150 P4:!
2160 IF Flags=0 THEN PRINT "Stopband"
2170 PRINTER IS Prt
2180 Flags=l
2190 OUTPUT @Na;"DMl;"
2200 ENTER @Na;Level;
2210 OUTPUT @Na;"MPl;"
2220 ENTER @Na;Freq
2230 Image4:IMAGE "Peak 4 Freq ",DDDDD.DDD," kHz Level ", 

DDDD.D," dB"
2240 PRINT USING Image4;Freq/1000,-Level+Ins_loss
2241 OUTPUT 703 USING Lnage4;Freq/1000,-Level+Ins_loss 
2250 GOTO Menu2
2260 Rl:!
2270 IF Flags=0 THEN PRINT "Stopband"
2280 PRINTER IS Prt 
2290 Flags=l
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2300 OUTPUT @Na;"DMl;"
2310 ENTER @Na;Level;
2320 OUTPUT @Na;"MPl;"
2330 ENTER @Na;Freq
2340 Image5:IMAGE "Return 1 Freq ",DDDDD.DDD," kHz Level ", 

DDDD.D," dB"
2350 PRINT USING Image5;Freq/1000,-Level+Ins_loss
2351 OUTPUT 703 USING Image5;Freq/1000,-Level+Ins_loss 
2360 GOTO Menu2
2370 R2:!
2380 IF Flags=0 THEN PRINT "Stopband"
2390 PRINTER IS Prt
2400 Flags=l
2410 OUTPUT @Na;"DMl;"
2420 ENTER @Na;Level 
2430 OUTPUT @Na;"MPl;"
2440 ENTER @Na;Freq
2450 Image6:IMAGE "Return 2 Freq ",DDDDD.DDD," kHz Level ", 

DDDD.D," dB"
2460 PRINT USING Image6;Freq/1000,-Level+Ins_loss
2461 OUTPUT 703 USING Lnage6;Freq/1000,-Level+Ins_loss
2470 GOTO Menu2
2471 !
2473 Sweep: !
2474 OFF KEY
2475 D ISP""
2477 Cnt=Cnt+l
2478 File_name$=Name$&VAL$(Cnt)
2479 PRINT "<"&File_name$&">"
2487 FOR 1=1 TO 21
2488 A(I,1)=0
2489 A(I,2)=0
2490 NEXT I
2491 Fl=1.380000
2492 F2=1.400000
2493 Screenl=0
2494 Screen2=400
2495 Screen_step=Screen2/20
2497 !
2498 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA"&VAL$(Fl)&" MHZ; FRB"

&VAL$(F2) &"MHZ;FM1;"
2499 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
2500 Measready
2501 1=0
2502 FOR S=Screenl TO Screen2 STEP Screen_step;
2503 1=1+1
2504 OUTPUT @Na;"MKP"&VAL$(S)&";"
2505 OUTPUT @Na;"DMl;"
2506 ENTER @Na;Level
2507 OUTPUT @Na;"MPl;"
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2508 ENTER @Na;Freq
2509 A(I,l)=Freq/1000
2510 A(I,2)=-Level+Ins_loss+.6
2511 NEXT S
2512 PRINT "Lo Freq returns"
2513 ! OUTPUT 703;"Lo Freq returns"
2515 ! OUTPUT 703;CHR$(10)
2516 FOR J=1 TO 19 STEP 3
2517 PRINT USING Imagell;A(J,l);A(J,2),A(J+l,l); A(J+1,2), A(J+2,1);

A(J+2 2)
2518 10UTPUT 703 USING Imagell;A(J,l);A(J,2),A(J+l,l); A(J+1,2),

A(J+2,1); A(J+2,2)
2519 NEXT J
2520 OUTPUT @Disk;File_name$
2521 OUTPUT @Disk;"
2523 FOR J=1 TO 21
2524 OUTPUT @Disk;A(J,2)
2525 NEXT J  
2526!
2527 PRINT
2528 PRINT
2529 Fl=1.404000
2530 F2=1.420000
2531 Screenl=0
2532 Screen2=400
2533 Screen_step=Screen2/20
2534 Lmin=+1000
2535 !
2536 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA" ,&VAL$(F1)&"MHZ;FRB"

&VAL$(F2)&"MHZ;FM1;"
2537 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
2538 Measready
2539 1=0
2540 FOR S=Screenl TO Screen2 STEP Screen_step;
2541 1=1+1
2542 OUTPUT @Na;"MKP"&VAL$(S)&";"
2543 OUTPUT @Na;"DMl;"
2544 ENTER @Na;Level
2545 OUTPUT @Na;"MPl;"
2546 ENTER @Na;Freql
2547 A(I,l)=Freq/1000
2548 A(I,2)=-Level+Ins_loss+.6
2549 NEXT S
2550 Imagell:IMAGE 3(DDDD.DDD,2X,DDD.D,3X)
2551 PRINT "Hi Freq returns"
2552 ! OUTPUT 703;"Hi Freq returns"
2553! OUTPUT 703;CHR$(10)
2554 PRINT
2555 FOR J=1 TO 19 STEP 3
2556 PRINT USING Imagell;A(J,l);A(J,2),A(J+l,l); A(J+1,2),A(J+2,1);
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A(J+2,2)
2557 10UTPUT 703 USING Imagell;A(J,l);A(J,2), A(J+1,1); A(J+1,2),

A(J+2,l);A(J+2,2)
2558 NEXT J
2559 OUTPUT ©Disk;"
2560 FOR J=1 TO 21
2561 OUTPUT @Disk;A(J,2)
2562 NEXT J
2563 !
2564 !
2565 !
2567 Fl=1.400000
2568 F2=1.404000
2569 Screenl=0
2570 Screen2=400
2571 Screen_step=Screen2/20
2572 Lmin=+1000
2573 !
2574 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA"&VAL$(Fl) &"MHZ;FRB”

&VAL$(F2)&"MHZ;FM1;")
2575 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
2576 Measready
2577 1=0
2578 FOR S=Screenl TO Screen2 STEP Screen_step;
2579 1=1+1
2580 OUTPUT @Na;"MKP',&VAL$(S)&";"
2581 OUTPUT @Na;"DMl;"
2582 ENTER ©NajLevel
2583 OUTPUT @Na;"MPl;"
2584 ENTER @Na;Freql
2585 A(I,l)=Freq/1000
2586 A(I,2)=-Level+Ins_loss+.6
2587 NEXT S
2589 PRINT "Pass band levels"
2590 ! OUTPUT 703;"Passband levels"
2591! OUTPUT 703;CHR$(10)
2592 PRINT
2593 FOR J=1 TO 19 STEP 3
2594 PRINT USING Imagell;A(J,l);A(J,2),A(J+l,l);A(J+l,2), A(J+2,1);

A(J+2,2)
2595 (OUTPUT 703 USING Imagell;A(J,l);A(J,2),A(J+l,l);A(J+l,2),A(J+2,l);

A(J+2,2)
2596 NEXT J
2597 OUTPUT ©Disk;"
2598 FOR J=1 TO 21
2599 OUTPUT @Disk;A(J,2)
2600 NEXT J
2603 GOTO Menu2
2604 !
2605 Blank:!
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2606 PRINTER IS Prt
2607 IF Flags=0 THEN PRINT "Stopband"
2608 Flags=l
2609 PRINT"
2610 PRINTER IS 1
2611 GOTO Menu2 
2612!
2613!
2614 !
2615 Lf:!
2616 PRINTER IS Prt
2617 PRINT CHR$(15)
2618 PRINT CHR$(15)
2619 PRINT CHR$(15)
2620 PRINT CHR$(15)
2621 PRINTER IS 1
2622 ASSIGN ©Disk TO *
2624 GOTO Again
2625 !
2626 !  ------------------------
2627 !
2628 A:!
2629 Pband: !
2630 !
2631 !GOTO Singles
2632 !
2633 OFF KEY
2634 PRINTER IS Prt
2635 D IS P ""
2636 Bw=30000
2637 Bw2=Bw/2
2638 Fl=1400000
2639 F2=1403000
2640 F9=(F2-Fl)/50
2641 Screenl=0
2642 Screen2=400
2643 Screen_step=Screen2/50
2644 Lmax=-1000
2645 Lmin=+1000
2646 !
2647 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA1.4MHZ;FRB1.403MHZ;

FM1;"
2648 OUTPUT @Na;"REF-26DBR;DIV2DBR;TRG;"
2649 WAIT 1.5
2650 1=0
2651 FOR S=Screenl TO Screen2 STEP Screen_stepl
2652 1=1+1
2653 OUTPUT @Na;"MKP"&VAL$(S)&";"
2654 OUTPUT @Na;"DMl;"
2655 ENTER @Na;Level
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2656 OUTPUT @Na;"MPl;"
2657 ENTER @Na;Freql
2658 A(I,l)=Freq/1000
2659 A(I,2)=-Level
2660 IF S=0 THEN Carrier=-Level
2661 IF -Level<Lmin THEN Lmin=-Level
2662 IF S>=104 AND S<=272 AND -Level>Lmax THEN Lmax=-Level
2663 ! PRINT S;Freq/1000;-Level;Lmin;Lmax
2664 NEXT S
2665 Insert_loss=Lmin-26
2666 Ripple=Lmax-Insert_loss-26
2667 FOR J=1 TO 51 STEP 1 
2668! PRINT J;A(J,1);
2669 A(J,2)=A(J,2)-Insert_loss-26
2670! PRINT A(J,2)
2671 NEXT J
2672 ImagelO:IMAGE 3(DDDDDDD,2X,DD.D,3X)
2673! FOR J=1 TO 51 STEP 3
2674 ! PRINT USING ImagelO;A(J,l);A(J,2),A(J+l,l);A(J+l,2),A(J+2,l);

A(J+2,2)
2675 ! NEXT J
2676 PRINT
2677 PRINT USING "20A,DDD.D,3A";"Insertion loss ",Insert_loss," dB"
2678 PRINT USING "20A,DDD.D,3A";"Ripple",Ripple," dB”
2679 OUTPUT 703 USING "20A,DDD.D,3A";"Insertion loss",Insert_loss,"

dB"
2680 OUTPUT 703 USING "20A,DDDD,3A”;"Ripple",Ripple," dB"
2681 Offset=Insert_loss+26
2682 !
2683 B:!
2684 Singles:!
2685 !
2686 OUTPUT @Na;"IPR;"
2687 OUTPUT @Na;"IAR;IAl;IRl;IBl;"
2688 OUTPUT @Na;"BP0;SAM5.8DBM;"
2689 OUTPUT @Na;"ST5;SMl;SFR1400500HZ;"
2690 OUTPUT @Na;"DF7;DIV 1DBR;REF-26DBR;U
2691 OUTPUT @Na;"RPS50%;BW3;AV0;FM2;TKM;"
2692 Measready
2693 OUTPUT @Na;"DMl;TRG;"
2694 Meascomp
2695 ENTER @Na USING "%,2A";Junk$
2696 ENTER @Na nofmt;Level"
2697 PRINT USING "20A,DDD.D,3A";"Lo P/B",-Level-Offset," dB"
2698 OUTPUT 703 USING "20A,DDD.D,3A";"Lo P/B",-Level-Offset," dB
2699 !
2700 OUTPUT @Na;"SFR1402500HZ;TKM;"
2701 Measready
2702 OUTPUT @Na;"DMl;TRG;"
2703 Meascomp
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2704 ENTER @Na USING "%,2A";Junk$
2705 ENTER @Na nofint;Level"
2706 PRINT USING "20A,DDD.D,3A";"Hi P/B",-Level-Offset," dB"
2707 OUTPUT 703 USING "20A,DDD.D,3A";"Hi P/B",-Level-Offset,' ' dB"
2708 !
2709 OUTPUT @Na;"SFR1400000HZ;TKM;"
2710 Measready
2711 OUTPUT @Na;"DMl;TRG;"
2712 Meascomp
2713 ENTER @Na USING "%,2A";Junk$
2714 ENTER @Na_nofint;Level"
2715 PRINT USING "20A,DDD.D,3A";"C/R ",-Level-Offset," dB"
2716 OUTPUT 703 USING "20A,DDD.D,3A";"C/R ",-Level-Offset," dB"
2717 !
2718 OUTPUT @Na;"SFR1399300HZ;TKM;"
2719 Measready
2720 OUTPUT @Na;"DMl;TRG;"
2721 Meascomp
2722 ENTER @Na USING "%,2A";Junk$
2723 ENTER @Na nofint;Level"
2724 PRINT USING "20A,DDD.D,3A";"Lo S/B",-Level-Offset," dB""
2725 OUTPUT 703 USING "20A,DDD.D,3A";"Lo S/B",-Level-Offset,'" dB"
2726 !
2727 OUTPUT @Na;"SFR1405000HZ;TKM;"
2728 Measready
2729 OUTPUT @Na;"DMl;TRG;"
2730 Meascomp
2731 ENTER @Na USING "%,2A";Junk$
2732 ENTER @Na nofmt;Level"
2733 PRINT USING "20A,DDD.D,3A";"Hi S/B",-Level-Offset," dB"
2734 OUTPUT 703 USING "20A,DDD.D,3A";"Hi S/B",-Level-Offset,' ’ dB"
2735 !
2736 FOR 1=1 TO 51
2737 A(I,1)=0
2738 A(I,2)=0
2739 NEXT I
2740 Fl=1.380000
2741 F2=1.398000
2742 Screenl=0
2743 Screen2=400
2744 Screen_step=Screen2/30
2745 Lmin=+1000
2746 !
2747 OUTPUT @Na:"STl:SM2: SWT1SEC;FRA" &VAL$(F1) &"MHZ; FRB

&VAL$(F2) &"MHZ;FM1;")
2748 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
2749 Measready
2750 1=0
2751 FOR S=Screenl TO Screen2 STEP Screen step;
2752 1=1+1
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2753 OUTPUT @Na;"MKP"&VAL$(S)&";"
2754 OUTPUT @Na;"DMl;"
2755 ENTER @Na;Level
2756 OUTPUT @Na;"MPl;"
2757 ENTER @Na;Freql
2758 A(I,l)=Freq/1000
2759 A(I,2)=-Level-Offset
2760 IF -Level-Offset<Lmin THEN Lmin=-Level-OfFset
2761 NEXT S
2762 Return_level=Lmine
2763 ! FOR J=1 TO 31 STEP 3
2764 ! PRINT USING Imagell;A(J,l);A(J,2),A(J+l,l);A(J+l,2)^(J+2,l);

A(J+2,2)
2765! NEXT J  
2766! PRINT
2767 PRINT USING "20A,DDD.D,3A";"Lo return level ",Lnrin," dB"
2768 OUTPUT 703 USING "20A,DDD.D,3A";"Lo return level ",Lmin," dB" 
2769!
2770 Fl=1.406000
2771 F2=1.420000
2772 Screenl=0
2773 Screen2=400
2774 Screen_step=Screen2/30
2775 Lmin=+1000
2776 !
2777 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA” &VAL$(F1)&"MHZ;FRB"

&VAL$(F2)&"MHZ;FM1;"
2778 OUTPUT @Na;"RPS50%;REF-45DBR;DIV 10DBR;TRG;"
2779 Measready
2780 1=0
2781 FOR S=Screenl TO Screen2 STEP Screen_step;
2782 1=1+1
2783 OUTPUT @Na;"MKP"&VAL$(S)&";"
2784 OUTPUT @Na;"DMl;"
2785 ENTER @Na;Level
2786 OUTPUT @Na;"MPl;"
2787 ENTER @Na;Freql
2788 A(I,l)=Freq/1000
2789 A(I,2)=-Level-Offset
2790 IF -Level-Offset<Lmin THEN Lmin=-Level-Offset
2791 NEXT S
2792 Retum_level=Lmine 
2793! FOR J=1 TO 31 STEP 3
2794 ! PRINT USING Imagell;A(J,l);A(J,2),A(J+l,l);A(J+l,2)A(J+2,l);

A(J+2,2)
2795! NEXT J  
2796! PRINT
2797 PRINT USING "20A,DDD.D,3A";"Hi return level ",Lmin," dB"
2798 OUTPUT 703 USING "20A,DDD.D,3A";"Hi return level ",Lmin," dB"
2799 GOTO Menul
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2800 !
2801 ENDO
2802 !
2803 !
2804 Measready:!
2805 SUB Measready
2806 REPEAT
2807 Stat=SPOLL(711)
2808 UNTIL BINAND(Stat,16)
2809 SUBEND
2810 !
2811 Meascomp:!
2812 SUB Meascomp
2813 REPEAT
2814 Stat=SPOLL(711)
2815 UNTIL BINAND(Stat,4)
2816 SUBEND
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Appendix E leven

Listing of HP-Basic program which samples the magnitude response
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1000 DIM Frx(50),Mrk(50),Binno(50)
1010 DIM M$[40],F$[20],A(100,2),Name$[6],File_name$[20]
1020 !
1030 ASSIGN @Na TO 711
1040 ASSIGN @Prt TO 1
1050 P rt= l
1060 PRINTER IS 1
1070 !
1080 ASSIGN @Na_nofmt TO 711;FORMAT OFF
1090 Meas_complete=4t
1100 !
1110 !
1150 CLEAR @Nal
1160 OUTPUT @Na;"IPR;"
1170 OUTPUT @Na;'TAR;IAl;IRl;IBl;"
1180 OUTPUT @Na;"BP0;"
1190 !
1200 OUTPUT @Na;"ST5;SMl;SFR1401500HZ;DF7;DIVlDBR;REF0DBR;" 
1210 OUTPUT @Na;"SAM+5.8DBM;FM2;"
1220 OUTPUT @Na;"RPS50%;BW3;AV0;"
1230 !
1240 DISP " Insert S/C and press ’CONT’"
1250 PAUSE
1260 D IS P ""
1270 !
1280 OUTPUT @Na;"DMl;TRG;"
1290 Meascomp
1300 ENTER @Na USING "%,2A";Junk$
1310 ENTER @Na_nofmt;Sc_ref
1320 PRINT "Ref ";Sc_reff
1330 OUTPUT @Na;"DIV5DBR;REF-26DBR;"
1340 !
1350 DISP " Insert unit and press ’CONT"
1360 PAUSE
1370 D IS P ""
1380 OUTPUT @Na;"DMl;TRG;"
1390 Meascomp
1400 ENTER @Na USING "%,2A";Junk$
1410 ENTER @Na_nofmt;Ins_loss
1420 PRINT "Approx. Insertion loss ";-Ins_loss-26R
1430 !
1450 Again:!
1460 PRINTER IS 1
1470 Menul:!
1500 OUTPUT @Na;"DF7;SAM+5.8DBM;FMl; ST1; SWT1SEC; DIV10DBR;

RPS100%;"
1510 OUTPUT @Na;"REF-26DBR;"
1520 OUTPUT @Na;"FRC1401500HZ;FRS40KHZ;SMl;BW3;"
1530 LOCAL 711
1540 !
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1640 Sband:!
1680 Menu2:!
1781 ON KEY 8 LABEL "SWEEP" GOTO Sweep; 
1800 Idle2:GOTO Idle2
1810 !
2473 Sweep: !
2474 OFF KEY
2475 DISP ""
2487 FOR 1=1 TO 21
2488 A(I,1)=02
2489 A(I,2)=02
2490 NEXT I
2491 Fl=1.380000
2492 F2=1.400000
2493 Screenl=0
2494 Screen2=400
2495 Screen_step=Screen2/20
2497 !
2498 OUTPUT @Na; "ST1;SM2;SWT1SEC;FRA"&VAL$(F1)&"MHZ; FRB 
"&VAL$(F2)&"MHZ;FM1;"

2499 OUTPUT @Na;"RPS50%;REF-45DBR;DIV 10DBR;TRG;"
2500 Measready
2501 1=0
2502 FOR S=Screenl TO Screen2 STEP Screen_step;
2503 1=1+1
2504 OUTPUT @Na;"MKP"&VAL$(S)&";"
2505 OUTPUT @Na;"DMl;"
2506 ENTER @Na;Level
2507 OUTPUT @Na;"MPl;"
2508 ENTER @Na;Freq
2509 A(I,l)=Freq/1000
2510 A(I,2)=-Level+Ins_loss+.6
2511 NEXT S
2512 PRINT "Lo Freq Returns"
2516 FOR J=1 to 19 STEP 3
2517 PRINT USING Imagell;A(J,l);A(J,2);A(J+l,l);A(J+l,2),A(J+2,2) 
2519 NEXT J
2526 !
2527 PRINT
2528 PRINT
2529 Fl=1.404000
2530 F2=1.420000
2531 Screenl=0
2532 Screen2=400
2533 Screen_step=Screen2/20
2534 Lmin=+1000
2535 !
2536 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA" &VAL$(F1) &"MHZ; FRB

"& VAL$(F")&"MHX;FM1;"
2537 OUTPUT @Na;"RPS50%;REF-45DBR;DIV 10DBR;TRG;"
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2538 Measready
2539 1=0
2540 FOR S=Screenl TO Screen2 STEP Screen_step;
2541 1=1+1
2542 OUTPUT @Na;"MKP"&VAL$(S)&";"
2543 OUTPUT @Na;"DMl;"
2544 ENTER @Na;Level
2545 OUTPUT @Na;"MPl;"
2546 ENTER @Na;Freq
2547 A(I, l)=Freq/1000
2548 A(I,2)=-Level+Ins_loss+.6
2549 NEXT S
2550 Imagell:IMAGE 3 (DDDD.DDD,2X,DDD.D,3X)
2551 PRINT "Hi Freq Returns"
2554 PRINT
2555 FOR J=1 to 19 STEP 3
2556 PRINT USING Imagell;A(J,l);A(J,2);A(J+l,l);A(J+l,2),A(J+2,2) 
2558 NEXT J
2565 !
2567 Fl=1.400000
2568 F2=1.404000
2569 Screenl=0
2570 Screen2=400
2571 Screen_step=Screen2/20
2572 Lmin=+1000
2573 !
2574 OUTPUT @Na;"STl;SM2;SWTlSEC;FRA" &VAL$(F1) &"MHZ; FRB

"& VAL$(F")&"MHX;FM1;"
2575 OUTPUT @Na;"RPS50%;REF-45DBR;DIV10DBR;TRG;"
2576 Measready
2577 1=0
2578 FOR S=Screenl TO Screen2 STEP Screen_step;
2579 1=1+1
2580 OUTPUT @Na;"MKP"&VAL$(S)&";"
2581 OUTPUT @Na;"DMl;"
2582 ENTER @Na;Level
2583 OUTPUT @Na;"MPl;"
2584 ENTER @Na;Freq
2585 A(I,l)=Freq/1000
2586 A(I,2)=-Level+Ins_loss+.6
2587 NEXT S
2589 PRINT "Pass band levels"
2592 PRINT
2593 FOR J=1 to 19 STEP 3
2594 PRINT USING Imagell;A(J,l);A(J,2);A(J+l,l);A(J+l,2),A(J+2,2) 
2596 NEXT J
2603 GOTO Menu2 
2800 !
2801 END
2802 !

A-104



2804 Measready:!
2805 SUB Measready
2806 REPEAT
2807 Stat=SPOLL(711)
2808 UNTIL BINAND(Stat, 16)
2809 SUBEND
2810 !
2811 Meascomp:!
2812 SUB Meascomp
2813 REPEAT
2814 Stat=SPOLL(711)
2815 UNTIL BINAND(Stat,4)
2816 SUBEND
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LEARNING BY ANALYTICAL METHODS OR INDUCTION : A CASE STUDY

D. Tsaptsinos, B. W. Jervis and A. R. Mirzai

Abstract

An expert ■ system is under construction for the application of tuning 
electronic filters. Machine learning techniques were used to enhance knowledge 
elicitation and experiences gained in implementing them are presented in terms 
of learning, testing, and learning refinement.

The application

The tuning of an electronic filter is typically performed manually. Initial 
knowledge elicitation using protocol analysis revealed the nature of the 
problem domain. An operator monitored the magnitude response of the filter and 
when tuning was required a set of tunable components was adjusted. This was 
followed by determining a number of frequency and attenuation points.

Initial knowledge elicitation

The tuning of two filters of the same characteristics was video-taped. The 
analysis of the transcripts resulted in the identification of the activity 
classes, a domain dictionary, the reasoning process of tuning and the order of 
specification checking. It is interesting to note that the justifications for 
the actions taken comprised of a mixture of symbols (eg. the left peak), 
abstractions (eg. the peak is too far out) and numerical parameters (especially 
during testing). When the operator was prompted for further elaboration (eg. 
can you define the value, or range of values, where the peak should be) the
answers did not provide any further information. This made the knowledge
elicitation even more difficult. It was found necessary to separate the process 
into two tasks (stopband and passband tuning) and to recognise which components 
to employ for each task.

Machine learning techniques

To aid the knowledge elicitation for the task of stopband tuning, for which 
two tuning components were applicable, three machine learning techniques were 
applied, namely, ID3 [1], an adaptive combiner [2] and a neural network [3]. A 
set of examples was generated. Each example was described in terms of six 
attributes derived from the magnitude response. Each attribute, in turn,
contained a numerical value with six significant figures. In a series of
experiments, the three techniques were compared and ID3 was elected for further 
use [4]. Moreover, a number of experiments took place which compared the ID3 
performance using different numbers of attributes in different formats (logical 
or numerical). The results are reported in reference [5].

D. Tsaptsinos and B.V. Jervis are with the School of Engineering IT, Sheffield 
City Polytechnic. A.R. Mirzai with the School of Mechanical Engineering, 
Polytechnic of Central London.
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Problems encountered

The presentation of attributes holding numerical values to ID3 introduced 
the following problem. The enlargement of the learning set resulted, at best, 
in a slight change of the threshold values of the decision tree. This led to 
different classifications of a number of testing examples. In addition, new 
attributes were introduced or old attributes were excluded from the newly 
generated decision tree. The grouping of numerical values into logical ranges 
[5] resulted in more stable decision trees in terms of attributes and 
thresholds. The introduction of further examples to the adaptive combiner or 
the neural net did not alter the architectural structure but strengthened or 
weakened the individual nodes.

The task of stopband tuning was divided into three searches. Each search
had a different goal. Search one contained rules on how to recognise a tuned
state (ie. 2 classes). Search two incorporated rules for which component to 
tune and in which direction (ie. 4 classes). Search three determined the amount 
of turn (ie. 11 classes). Unlike adaptive combiners or neural networks which 
can provide continuous output ID3 had to be presented with examples covering 
all eleven classes. The large number of classes meant that the examples were 
less representative with the consequence of poor performance. This deficiency 
was the reason for dividing the task into three searches in the first place.

To improve the adaptive combiner performance it was necessary to manipulate 
the attribute set. The manipulation took the form of scaling the attribute 
values and/or the introduction of second order features. The scaling of the 
attribute values was important. Without a proper scaling an ill-conditioned 
problem was created in terms of the auto-correlation matrix in the RLS 
algorithm [6]. It was possible to find if the problem was ill-conditioned by 
using eigenvalue analysis [7]. The adaptive combiners are linear structures and 
they cannot directly model non-linearity. Therefore it was necessary to 
introduce second order features (ie. attribute squared) to handle the non-
linearities. Scaling was also required for the neural network implementation. 
All three techniques produced comparable results but the use of ID3 was less 
time consuming. The actual learning time for the combiner was small but some
extra time was required to identify the right format of the attributes and
their values. Neural networks were also time consuming. A lot of time was spend 
in investigating different architectures and the learning time for some
architectures ran into hours.

The structure of the learning set was of some importance. Initial work with 
neural networks and ID3 employed examples generated while tuning a number of 
filters. When both techniques were tested using unseen examples ID3 performed
better. Neural nets failed to classify correctly a number of testing examples.
Those examples contained at least one attribute with a value previously found 
in an example with a different classification. Because of the large range of 
numerical values each attribute can take, a different set of learning examples 
was required which included either all likely values or the extreme values (ie. 
maximum or minimum). This was also necessary when using the adaptive combiners. 
The new training set missed out the heuristics employed by the operator but was 
appropriate for the comparison. Unlike ID3 which learned by considering all 
examples at once, adaptive combiner and neural network implementations learned 
in an incremental fashion. The weights were updated with each example 
presented. For that reason the order of introduction of the examples was 
critical. Examples with different class were presented alternatively. In this 
way a better performance was achieved.

The set of rules produced by ID3 can be examined to identify the 
relationships that exist between the attributes. The outcomes of the adaptive





combiner or neural network (vector of weights) can be also examined. Weights 
can be transformed into rules but this presents a more difficult challenge 
[ 6 1 -

Testing the rules generated by ID3 was more time consuming than testing the 
two other techniques. More importantly, though, was that in running the ID3 
algorithm, examples with unknown attribute values could not be used when 
numerical attributes were employed. A notation to indicate that the attribute 
value was not significant was available but not to indicate that an attribute 
value was unknown. It was then impossible to use both numeric and symbolic 
descriptions for an attribute. If at any point an attribute value was requested 
and this value was unknown then the system failed completely. Using the other 
two techniques this could not happen. Unknown values were represented with a 
constant. During testing the network might not perform appropriately but it 
would not fail.

Conclusions

ID3 and adaptive combiners learned faster than neural networks once the 
structure of the learning set had been established. Testing adaptive combiners 
and neural nets was quicker than testing ID3. The problems with ID3 testing and 
refining when numerical attribute values were used were by-passed with the use 
of logical attribute values. Introducing new examples did not alter the 
architecture of adaptive combiners or neural nets.
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ARTIFICIAL INTELLIGENCE IN SIGNAL PROCESSING

Comparison of knowledge elicitation techniques in 
the domain of electronic filter tuning

D. Tsaptsinos
A.R. Mirzai
B.W. Jervis, PhD
C.F.N. Cowan, PhD

Indexing terms: Algorithms, Artificial intelligence, Filters, Manufacturing

Abstract: The work done towards the construc
tion of an expert system to assist an operator in 
the identification of the corrective action to be 
applied during tuning of electronic filters is 
described. The first part of the paper introduces 
two algorithms for induction by examples (ID3 
and adaptive combiner) and their relationship to 
expert systems. The two algorithms were applied, 
in a series of tests which involved an incremental 
presentation of a number of examples, to the task 
of filter tuning. The reported results suggest the 
use of ID3 when a small number of classes is 
present. The second part of the paper presents 
subsequent work with ID3. Results are reported of 
using this algorithm for filter tuning with exam
ples containing either numerical or logical attrib
ute values. A comparison of the results showed 
that improved test performance was achieved by 
using logical values.

1 Introduction

Artificial-intelligence techniques, such as expert systems 
and machine learning, have been applied to engineering 
applications [1]. This paper reports work on the applica
tion of the expert system concept in the field of signal 
processing by electronic filters. In particular, an expert 
system is being constructed to assist in the tuning of 
filters after manufacture. The filter employed for this 
study is an asymmetric bandpass crystal filter, whose top 
view is shown in Fig. 1. At present, filter tuning is typi
cally a manual process involving an operator who 
inspects the performance of the filter (e.g. the amplitude 
response (Fig. 2)) and applies the necessary successive 
adjustments to a set of tunable components (e.g. coils)
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until the performance satisfies the specification. Effec
tively the operators act as signal interpreters who base 
their skills not on any theory but on the combination of

I_

Fig. 1 Top view o f filter
C4, C7 are trimmer capacitors; T „  T 2, T , are inductors
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Fig. 2  Normalised magnitude response 
p„  p 2, P i , P t  are positive peaks; r , ,  r2 are negative peaks

a strong capability for pattern recognition and know
ledge acquired from past experience. Although manual 
tuning is successful the advantages of providing com
puterised assistance to an operator have been recognised 
[2, 3]. Initial knowledge elicitation by protocol analysis 
[4] revealed the problems to be solved by the expert 
system-builder (e.g. why component X  should be adjust
ed rather than component Y  at a particular instant) and
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indicated the need for an alternative to protocol analysis 
for articulating knowledge. Thus it was found necessary 
to integrate machine learning into knowledge elicitation. 
In this paper experiments which were carried out to 
investigate and compare the applicability of the ID3 and 
adaptive-combiner techniques to the field of filter tuning 
are discussed. Furthermore, the results of empirically 
comparing various decision trees generated using ID3 are 
reported.

2 Expert and machine-learning systems

Several expert systems have been constructed [5] and 
their number is rapidly increasing. The purpose of such a 
system is to incorporate, in an organised way, the sub
stantial knowledge of one or more specialists in a specific 
field so that the system performs in a similar fashion to 
the specialists. A classical method for the construction of 
an expert system involves an iterative interaction between 
the system builder and the specialist and the encoding of 
the elicited knowledge in rule form. A number of tech
niques have been identified as aids to the knowledge elic
itation process [6]. Expert systems perform in a 
deductive format [7, p. 4], i.e. the conclusions always 
depend on the knowledge supplied. The presence of an 
incorrect conclusion can generally only be corrected by 
the builder’s interference and not by the system itself. 
(Even methods for refining existing knowledge bases [8] 
require additional interaction with the expert.) In con
trast, machine-learning systems improve the quality of 
their performance with time. Three major research para
digms can be identified: neural modelling and decision- 
theoretic techniques; symbolic concept acquisition 
(SCA); and knowledge-intensive, domain-specific learning 
[7, p. 12]. Each paradigm is based upon the same prin
ciple, namely that of inferring conclusions given a priori 
knowledge, and differs from others only in the amount of 
information required and in the way the knowledge is 
represented and modified.

A number of learning strategies have been documented 
[7, p. 13] but in the work reported here techniques which 
learn from data composed of a number of independent 
examples have been implemented. Each example is 
described in terms of a number of attribute values, 
together with an additional attribute, known as the class, 
which allocates the examples to a particular category 
(supervised learning). A number of different techniques 
were available, e.g. neural networks [9], genetic algo
rithms [10] and AQ11 [11]. The techniques chosen were 
ID3 and adaptive combiners and these are outlined 
briefly in the following sections. ID3 is an example of an 
SCA system and adaptive combiners can be considered 
as a subset of neural networks. The difference between 
them, apart from the algorithm employed, lies in the way 
the knowledge is represented. In ID3 the knowledge is 
held within a decision tree, in adaptive combiners it is 
held in a weight matrix. The reasons for choosing these 
two techniques were more practical than theoretical. 
Extensive expertise and previous work using adaptive 
combiners in the field of filter tuning by one of the 
authors, in addition to the availability of a commercial 
package implementing ID3, were the main factors behind 
the decision. It has also been reported that ID3 is faster, 
in terms of induction, than AQ11 [12] or a genetic algo
rithm [13] with the same performance rate. Two- and 
three-layer neural networks using the back-propagation 
technique [14] have also been considered and the results 
are reported in Reference 15.

The use of machine learning techniques was intended 
to enhance the initial knowledge elicitation and to over
come the problem of selecting the appropriate com
ponent to tune.

2.1 The ID3 algorithm
ID3 (iterative dichotomiser 3) was developed by Quinlan 
[16] in 1979. The goal of the algorithm is to induce a 
decision tree (which can easily be transformed into rules 
of the form ‘if x then y’) from a set of examples. The 
decision tree can then be used to classify an unseen 
example. A diagrammatic description of the algorithm is 
shown in Fig. 3. The algorithm selects the most informa-
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no

no>»

yes

yes>»

no

end

end

treat one partition

label leaf with ‘C

initialise example set

label single leaf with ‘C’

more partitions to 
consider?

perform partition of 
examples

all examples of same 
class 'C* ?

all examples of same 
class *C' ?

select the most 
informative attribute

Fig. 3 ID3 algorithm

tive attribute (i.e. creates the root of the decision tree) and 
either forms subsets equal in number to the number of 
values the attribute takes (i.e. creates the branches of the 
decision tree) or forms a binary split (cutoff points) when 
the attribute holds numerical values (e.g. >5, <5). For 
each subset the algorithm checks whether all the exam
ples belong to the same class.. If they do then the algo
rithm labels that subset with the name of the class (i.e. 
creates a leaf of the decision tree) and partitioning stops 
for that subset; otherwise the algorithm creates further, 
smaller subsets. The algorithm stops when no more 
subsets can be created. The key principle underpinning 
the algorithm lies in the selection of the most informative 
attribute. This is based on information theory; it may be 
stated that the most informative attribute is the one that 
maximises the difference between the expected informa
tion of the whole set of examples and the expected infor
mation of the whole set of examples when only attribute, 
X , is considered. A detailed explanation of the formulas 
used can be found in Reference 17. It is worth noticing 
that the algorithm may label a leaf as ‘empty’ or ‘clash’. 
‘Empty’ appears when there are no examples that can be 
used for that particular branch. ‘Clash’ emerges when 
there are two (or more) examples covering that specific 
branch but their classes are distinct.

2.2 Adaptive combiners
In recent years one class of adaptive architectures, linear 
combiners, has been used for the design of intelligent
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systems [18]. Fig. 4 illustrates a sim ple com biner struc
ture. Each exam ple is presented to the algorithm  by a 
matrix containing the attribute values (the X's) and the 
class y. The goal of the learning algorithm  is to estimate 
the weight vector (the IT’s) in such a way that, when the

y(K)

c b

R LS

X(K)

Fig. 4  Adaptive combiner architecture

system is presented with a previously unseen example, it 
can predict the correct class. In other words, the weight 
vector in the com biner represents the know ledge relating 
the attributes to  the classes. For each exam ple an esti
mated class is calculated by simply m ultiplying the attri
bute values (in a transposed form) and the weight vector. 
The difference between the estimated and the desired 
class is the error. The recursive least squares (RLS) algo
rithm is then used to estim ate a new weight vector to 
minimise the mean squared error. The weights are func
tions of all the examples in the training set. The formulas 
used can be found in reference [9]. The RLS algorithm  
can be slightly modified by introducing a ‘forgetting’ 
factor in the range 0.9 to 1.0. This has the effect of giving 
greater im portance to more recent exam ples than older 
ones and allow s relearning of the sam e training set. The 
adaptive com biner structure can be thought of as a one- 
layer connectionist network. The main difference is that 
the com biners are linear structures and cannot be directly 
applied to nonlinear systems. However, the nonlinearity 
can be treated by m anipulating the attributes, i.e. by 
using second- or third-order attributes depending on the 
degree o f nonlinearity.

3 Com parison of m achine learning techn iqu es

The results o f experim ents to determine the more suitable 
of the two techniques (ID 3 and com biners) for filter 
tuning are presented in this Section.

3.1 Selection of attributes and generation of 
examples

T o use either technique one has to select a set o f attri
butes and to generate a set o f examples.

Attributes can be thought o f as those relevant factors 
(features) used in reaching a decision. As a result o f the 
protocol analysis the tuning o f the filter was divided into 
tw o primary tasks, namely the tasks o f tuning the stop
band and the passband regions. Additionally, it was 
established that only the tw o trimmer capacitors were to 
be used for the stopband region. In this paper results are 
presented for this region only. Six relevant attributes 
were identified as having strong significance. These were:

(i) locations o f sharp positive peaks o f the waveform  
(identified as p t , p 2 , p 3 and pA in Fig. 2 and measured in 
megahertz units)

(ii) relative magnitudes o f sharp negative peaks of the 
waveform (identified as r 1 and r2 in Fig. 2 and measured 
in decibels).

This identification was based on the transcripts derived 
from the protocol analysis. The operator’s reasoning was 
revealed by sentences such as ‘. . .  arrange these peaks 
into a m ore reasonable place’ and \ . .  pull that peak out 
of the screen’. Further discussion with the operator sup
ported the selection.

The second step was to obtain a set of examples. For 
the purpose o f com paring the tw o machine-learning tech
niques the detune procedure was em ployed. This pro
cedure ensured that a set was obtained which covered  
most o f the attribute values likely to arise, a feature 
which is especially valuable in work in which numerical 
attributes are used. The process involved an operator 
tuning the stopband region of a filter and recording the 
attribute values together with the class ‘end-of-process’. 
This was follow ed by a system atic detuning in which one 
of the tunable com ponents was kept constant and the 
other was misadjusted in a certain direction (i.e. clock
wise or anticlockwise) in quarter-turn steps. For each 
turn the attribute values, together with the component, 
direction o f turn and how  far the com ponent was turned, 
were recorded. The process was then repeated by mis- 
adjusting in a different direction and by using the other 
com ponent. O bviously, the filter was retuned in be
tween. In this way 43 exam ples were collected for one 
filter. The tuning o f six filters resulted in a total of 258 
examples.

3.2 Levels of classification
Two typical recorded exam ples took the following form

1.39678 1.40234 1.41967 1.42003 45 53 C4a0.5

1.39756 1.40856 1.41325 1.43256 48 51 end-of-process

which can be translated as ‘turn the C4 com ponent anti
clockwise by half a turn’ (first example) and ‘no further 
tuning is required’ (second example) ‘when the attributes 
have the given values’. It is clear that the first example 
points to another decision, that of continuing the tuning. 
Previous work resulted in the identification of three 
search spaces:

(i) search space 1: to carry on or to end the tuning (2 
classes)

(ii) search space 2: which com ponent to adjust and 
which direction (4 classes)

(iii) search space 3: how  far to turn (11 classes).

Thus, given a set o f attribute values the system is to  
decide if further tuning is required. If it is, the same 
attribute values are to be used to define the com ponent, 
direction and distance to turn; otherwise the process can  
be repeated with a new set o f values o f another untuned  
filter.

3.3 Presentation of examples
The attribute values were used in the tw o techniques in 
their recorded format. Initially eight exam ples were used 
in the learning set. These com prised four ‘end-of-process’ 
examples and four ‘carry on ’ exam ples for the same filter. 
The latter included those exam ples generated when the 
com ponents were adjusted to their m axim um  positions in 
both directions. Four m ore exam ples were then intro
duced, nam ely those generated when the com ponents
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were turned half way. Finally, the four examples which 
arose when the components were adjusted to their 
minimal positions were presented. For the second and 
third search the same examples were presented but with 
the ‘carry on’ class replaced by either the component/ 
direction or the distance, respectively. The ‘end-of- 
process’ examples were replaced by the examples gener
ated with the minimum turn. At each stage the generated 
decision tree or weight vector was tested against the 
training set S lt the remaining unseen examples of the 
same filter S2 and the unseen examples of the rest of the 
filters S3. Finally, the total performance was calculated 
(Total).

3.4 Comparison criteria
Machine learning involves generalising from a set of 
examples and identifying those attributes and attribute 
values that can be used to discriminate between classes. 
The quality of generalisation depends heavily on the 
selected attributes (sufficient or inadequate?) and the 
number of examples present. At this stage of the work the 
hypothesis was that the chosen attributes were adequate. 
However, the number of examples necessary was 
unknown. The objective of the comparison was to iden
tify the technique which used the least number of exam
ples while giving a satisfactory performance. Note that in 
using the set of examples, either to learn or to test, the 
assumption is being made that, given a set of attribute 
values, the only correct action is the one as defined by the 
example. By ‘correct’ action is meant that action which 
would have resulted in tuning the stopband in the least 
number of steps.

3.5 Search 1 comparison
The following points can be made regarding the results 
obtained (Table 1). ID3 is seen always to be capable of 
predicting accurately those examples presented to it in 
the training set Su Furthermore, by taking into account 
the percentage success rate it can be concluded that a 
satisfactory generalisation has been achieved with few 
examples. Introducing extra examples tends to improve 
the generalisation even further. Unfortunately, this is mis
leading. Closer inspection of the test results shows that 
the high success rate was due to the presence of a large 
number of ‘carry on’ examples. ID3 successfully predicted 
the ‘carry on’ examples but failed to recognise the ‘end- 
of-process’ ones, i.e. there was no true classification.

The only option for improving the ID3 performance 
was to introduce further ‘end-of-process’ examples. It was 
found that by increasing the learning set to 18 the objec
tive was achieved with a 96% success rate (row 4 of 
Table 1).

The performance (Table 1) of the adaptive combiner 
with a forgetting factor of 0.9 also tends to improve with 
the presentation of extra examples, the performance of 
the training set St being the exception. Unfortunately, 
like ID3, a large number of ‘end-of-process’ examples

were misclassified. Therefore, experiments were carried 
out to investigate the effects of varying the forgetting 
factor and of retraining the combiner with the same 
training set. Table 2 shows the predictive accuracy of the

Table 2: Combiner predictive accuracy for Search 1 and 
adjusted param eters (nine relearning loop s and forgettin a  
factor  =  0.9)

Number of learning % rate of success on
examples -----------------------------

S , S2 S3 Total

16 94 100 91 92

combiner when the forgetting factor equals 0.9 and the 
training set was presented to the combiner nine times. 
Further experiments involved manipulation of the attri
butes and the presentation of the attribute values. Table 
3 shows the results obtained when only four attributes

Table 3: Combiner predictive accuracy for  Search 1 and  
reduced s e t  o f  attributes (four positive  peaks) and sca led  
values (Q-100)

Number of learning % rate of success on
examples ----------------------------

S , S 2 S 3 Total

8
12
16

100 88 90 90 
100 91 84 85 

94 98 85 87

were used (the four positive peaks) with values scaled 
between 0 and 100. In this case, it is interesting to notice 
that the combiner performed best when only eight exam
ples were used. This is mainly due to the fact that, when a 
large number of examples from one filter are shown to 
the combiner in the training mode, it cannot recognise 
examples of the other filters (S3) very well. In both cases 
(Tables 1, 2) the ‘end-of-process’ examples were recog
nised.

3.6 Search 2 comparison
The three learning sets were introduced to the ID3 algo
rithm. Table 4 shows the results obtained. Note that even

Table 4: ID3 Predictive accuracy for  S e arch 2_______________

Number of learning % rate of success on 
examples

S , S 3 Total

8
12
16

100 100 88 91 
100 100 88 91 
100 1 00 88 91

when eight examples were used the prediction rate was 
acceptable and that the performance did not improve 
with the introduction of further examples. This is prob
ably an indication that further attributes are required if 
better performance is to be achieved.

Table 1: ID3 and adaptive com biner predictive accuracy for Search  1 
(fo rg ettin g  factor  «= 0.9)

Number of learning 
examples

% rate of success on

Total5 , s 2
ID3 combiner ID3 combiner ID3 combiner ID3 combiner

8 100 87 82 57 80 67 81 67
12 100 100 81 77 80 82 81 82
16 100 75 100 100 93 91 94 91
18 100 100 96 97
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As for Search 1, it was found necessary to present the 
combiner with a reduced number of attributes (the four 
positive peaks) and to scale the values between 0 and 100 
to improve the performance. It was also necessary to 
include ‘end-of-process’ examples as well. The first train
ing set contained five examples, i.e. one ‘end-of-process’ 
plus four examples when the screws were misadjusted to 
their maximum positions. Then the examples correspond
ing to the minimum positions of the screws were added 
to the learning set (i.e. nine examples in all) and finally 
the examples corresponding to the half-way mis- 
adjustments of the screws plus one more ‘end-of-process’ 
example were added, resulting in 14 examples. The per
formances of the combiners for the three learning sets are 
summarised in Table 5. Introducing more examples from

Table 5: Com biner predictive accuracy fo r  Search 2 and  
reduced s e t  o f  a ttributes (four positive  peaks) and sca led  
values (0-100)

Number of learning % rate of success on
examples ----------------------------

S , S2 S3 Total

5
9

14

100 93 75 78  
100 93 81 83 

93 95 58 64

one filter resulted in an acceptable performance when 
testing examples from the filter that the training examples 
were taken from. Instability in the learning occurred for 
examples generated from different filters. Again, the com
biners successfully recognised all the ‘end-of-process’ 
examples but their total percentage rate of success was 
not as high as for the ID3 algorithm.

3.7 Search 3 comparison
Problems arose when ID3 was implemented for Search 3. 
It is not reasonable to expect a prediction of, say, 2.25 
when only examples with 0.25 and 2.75 classes were pre
sented. This implies the necessity of a large training set 
consisting of all the examples of one filter. However, due 
to the large number of classes (11), the problem of bushy, 
unstructured decision trees arose and this resulted in a 
very poor performance. The inability of ID3 to perform 
successfully when a large number of classes are present 
was the main factor in deciding to split the search into 
three separate searches, as reported previously.

The main advantage of the combiner architecture over 
that of ID3 is due to its ability to produce continuous 
output For this search space, it was decided to train the 
combiners on the exact values of misadjustments for both 
screws. Again, the reduced set of attributes and the scaled 
values were used. Figs. 5a and 5b show the correct mis- 
adjustment levels for screws C4 and C7, respectively. 
Figs. 5c and 5d illustrate the output of the combiners 
when five learning examples were used, i.e. one ‘end-of- 
process’ and four for the maximum misadjustments of the 
screws. Figs. 5e and 5/ show the same outputs when nine 
learning examples were used and, finally, Figs. 5g and 5h 
show the outputs with 14 learning examples. Although 
not one hundred per cent accurate, with this limited 
number of examples the combiners have managed to 
track the desired outcomes (Figs. 5g and 5h) as evidenced 
by the similarities between Figs. 5g and 5a and between 
Figs. 5h and 5b.

3.8 Discussion o f performance
The difference between the two techniques, apart from 
the algorithmic approach used, is that adaptive com

biners learn in an incremental fashion whereas ID3 sees 
all the examples at the same time. For Search 1 both 
techniques showed a tendency to improve their total per
formance when further examples were introduced. ID3
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Fig. 5 Output o f combiners (search 3)

performed as well and sometimes better than the com
biner. Also both techniques were plagued with the same 
problem of not recognising the ‘end-of-process’ class. 
Finally, this problem was solved (see Section 3.5) when it 
was found that ID3 sometimes gave slightly better results 
with less inconvenience. To produce an acceptable per
formance with adaptive combiners a considerable 
amount of time had to be spent manipulating the number 
of attributes, the format of the attribute values and even 
the order of introduction of the examples.

Two interesting points arose for Search 2. Firstly, the 
performance of ID3 was independent of the number of 
examples, and secondly ID3 had a higher percentage 
testing success than the combiner. The reason behind the 
much lower total performance of the combiner lies in the 
low percentage rate of success when examples of other 
filters are tested (S3 in Table 5). It is known that two 
filters of the same family are not identical. Tolerancing 
errors and parasitic effects result in different attribute 
values. It seems that the combiner could not handle these 
situations whereas selected cutoff points of ID3 divided 
the N-dimensional space of the N-attributes properly.

ID3 failed significantly for search 3. This was due to 
the large number of classes (11) together with the relatively 
small number of examples (43). Less than four examples 
contributed to each class. Even the introduction of a 
larger training set did not ensure success. The ID3 algo
rithm was originally constructed to deal with binary clas
sification and it seems that better performances are 
achieved with a low number of classes. On the other 
hand the ability of adaptive combiners to handle contin
uous output produced better results with fewer examples. 
To improve the performance of the combiner for this 
search space, it would be necessary to include learning 
examples generated when both screws are misadjusted 
together. Additionally, combiners can be used to indicate 
both the magnitude and the direction of the adjustments 
of both screws, therefore eliminating the need for three 
search spaces. However, this is not possible if one 
requires the use of a training set which might be incom
plete.

Some general points can be made which apply irre
spective of the application. Unlike the combiners, ID3 
always gave correct predictions for the examples used in 
the training set. ID3 also generated decision trees which
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could be transformed in the form of IF . . .  THEN rules. 
These rules can be used directly to explain the relation
ships between the attributes and the decisions made. 
Using adaptive combiners the knowledge is represented 
in the weights and direct explanation is not feasible. 
Some work along these lines has been reported [19, chap. 
5]. ID3 runs (i.e. learns) faster than the combiners. A 
drawback in using ID3 is that introducing further exam
ples means the regeneration of a decision tree that may 
result in changes in the cutoff points and/or the attributes 
used etc. The experiments reported in the text below 
attempted to deal with this problem. New examples will 
not effect the structure of the combiners and only the 
weights will be updated.

4 Comparison of decision trees generated using 
ID3

The use of numerical attribute values resulted in a 
problem associated with the cutoff point. The algorithm 
produced rules of the form

IF attribute X  is less than cutoff point T  THEN..

The cutoff point, which took values such as 1.39765, was 
calculated using those values that were currently present 
in the training set. When new examples with previously 
unseen values were introduced, in most cases the cutoff 
point changed, resulting in a new set of rules.

In this Section the results obtained in an attempt to 
identify any advantages in using one attribute presen
tation form over another are reported. The investigation 
involved the evaluation and comparison of decision trees 
produced by using logical and numerical attribute values 
for the first two searches.

4.1 Further selection o f attributes and generation of 
examples

It was considered that the inclusion of further attributes 
might be helpful. In total, seven more attributes were 
introduced. These took the form of the six differences 
between positive peaks, for example p v — p2 , p3 — p4 , 
and the difference between the two negative peaks. A new 
set of examples was collected. This time the ‘tune’ pro
cedure was employed. This was necessary since, although 
the original ‘detune’ data was applicable, the previous 
comparison omitted the heuristics (short cuts) of the 
operator. Therefore, the operator was requested to tune a 
number of filters and the data were recorded as pre
viously. In this way 34 filters were tuned (only in the 
stopband) resulting in 138 examples.

4.2 Generation o f logical values
Schemes have been proposed [20] which attempt to 
define supplementary cutpoints for each cutoff point. 
Producing such confidence intervals enhances the classi
fication of examples with values near the cutoff points. 
An alternative scheme was followed in our work. Instead 
of using the raw numerical values a transformation was 
applied. The numerical values were placed into ranges 
which were given logical names. Due to the absence of a 
priori knowledge for determining the ranges within which 
attribute values must he for the filter to be considered 
tuned, ranges were calculated by employing the mean m 
and the standard deviation sd value of each attribute 
[21] using only those examples with ‘end-of-process’ as 
their class. In this way eight (ok, farleft, farright, closeleft, 
closeright, left, right, absent) or four (ok, left, right, 
absent) logical values were generated and assigned to

each numerical value. Thus, three sets of examples were 
available for each search space (i.e. numerical, 8-logical, 
4-logical). The label ‘absent’ was used when a value for 
an attribute could not be determined (i.e. when a peak 
was absent) and not because it was unknown. The ‘ok’ 
label was given to those values which lay within the 
range (m — sd) to (m + sd). Furthermore, values within 
the range (m -  2sd) to (m -  sd) were labelled ‘closeleft’, 
which in the case of 4-logical values were assigned ‘left’ 
etc.

4.3 Criteria for the evaluation o f decision trees 
The evaluation and comparison was based on the follow
ing criteria:

(i) percentage errors on classifying unseen examples
(ii) number of branches in the decision tree

(iii) number of rules in the rule base
(iv) number of clash-labelled leaves
(v) number of empty-labelled leaves

(vi) total number of preconditions in the rule base.

The first criterion assessed the performance of a decision 
tree in terms of accuracy in classifying unseen examples. 
This indicated how good the generalisation was. The rest 
of the criteria are of secondary importance and can be 
applied to determine the complexity and intelligibility of 
a decision tree. Fig. 6 displays a decision tree and Table 6

d3(root)

absentI
Pi

 I__

right
eAd

1----1 (branches)

absent right left ok I | I 1 
carry on I carry on P3 

empty [

left ok (attribute values) I ' carry on d7
 I I I

absent right left 
empty clash end

ok
end (leaves)

Fig. 6 Subset of a decision tree generated with four-valued logical 
attributes

Table 6: S e t o f rules produced using th e  dec ision  tree  o f  
Fig. 6

IF d3 is absent IF d3 is left
AND p, is absent THEN class is carry-on
THEN class is carry-on
IF d3 is absent IF d3 is ok
AND p , is left AND d7 is left
THEN class is carry-on THEN class is end
IF d3 is right IF d3 is ok
THEN class is end AND d7 is ok

THEN class is end

the equivalent set of rules. They both illustrate the terms 
used in the criteria.

4.4 Presentation o f tuned examples 
The objective of this part of the work was the identifica
tion of the ‘best’ configuration for the two first search 
spaces. By ‘configuration’ is meant the choice of attri
butes to be used and their format (e.g. numerical, logical). 
The six configurations used are summarised in Table 7. 
To test how well the six configurations measured up to 
the criteria, the available examples were divided into 
three randomly chosen batches. The first batch included 
42 examples, the second 43 and the third 53. Initially, the 
first batch was used as the training set and the other two
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Table 7: C onfigurations key

Configuration Description Number of
number atrributes

F, numerical attributes 13
F2 4 logical-value attributes 13
F3 8 logical-value attributes 13
Fa numerical attributes 6
Fs 4 logical-value attributes 6
F6 8 logical-value attributes 6

as the testing set (Test 1). This was followed by intro
duction of the second batch into the training set, which 
was then tested against the third batch (Test 2). Both 
tests were evaluated for all configurations for each search 
space. In total, 54 decision trees were generated, i.e. 18 
per search space (Fig. 7).

13 attributes 
used

6 attributes 
used

search 1

training set 1

training set 1

training set 3

training set 3

training set 2

training set 2

4 logical attributes

numerical attributes

8 logical attributes

numerical attributes

8 logical attributes
4 logical attributes

Fig. 7  Configuration o f generated decision trees

4.5 Evaluation o f results and discussion (Search 1) 
Table 8 shows the results for each configuration for both 
tests, expressed as the percentage error of misclassifica- 
tion. From Table 8 the following can be established:

Table 8: M isclassification  errors

Configuration Test 1 Test 2 Classification
% error % error improvement, %

42.7 41.5 1.2
31.3 22.6 8.7
20.8 28.3 -7 .5
42.7 41.5 1.2
31.3 26.4 4.9
27.1 22.6 4.5

(i) All performances but one improve as the size of the 
training set increases.

(ii) The amount of classification improvement varies 
between configurations. Trees generated using logical- 
value attributes seem to perform better than those pro
duced using numerical attributes. The drawback of 
numerical-value decision trees is their inability to handle 
examples with absent attribute values.

(iii) Upon increasing the number of attributes no 
major differences are seen with configurations Fs and F6 
in terms of improvements in their classification capabil
ities.

(iv) With 13 attributes it can be seen that the per
formance improves further with the F2 configuration.
The results suggest the use of logical values for Search 1. 
Furthermore, 13 attributes, each one expressed with four 
logical values, tend to produce better results.

For the algorithm to be effective, the number of situ
ations in which knowledge does not appear to have been 
learned (empty leaves) or there are contradictions (clash

leaves) must be kept to a minimum. If either number is 
large a poor performance during testing results.

Table 9 shows the results obtained using these two cri
teria. It is worth noting that when numerical attributes 
are used there are neither empty nor clash situations.

Table 9: Number o f  leaves w ith  •empty* or 'clash' label

Configuration Test 1/ Test 2 / Test 3/Batch
Batch 1 Batch 1 + 2  1 + 2  + 3

number of number of number of
leaves leaves leaves

empty clash empty clash empty clash

F, 0 0 0 0 0 0
f2 6 0 15 3 29 2
f3 16 0 66 3 100 2
F+ 0 0 0 0 0 0
Fs 6 0 14 4 24 8
Fe 20 0 58 4 69 6

This is to be expected. With numerical values the algo
rithm branches using cutoff points which inevitably cover 
every example. It is also unlikely for a clash to occur 
when numerical values with six significant figures are 
employed. The conclusion that can be made here is that 
by increasing either the number of attributes (from 6 to 
13) or the number of logical descriptors (from 4 to 8) an 
increasing number of empty situations is generated. This 
is because the use of a large number of attributes or 
attribute values renders the training set less representa
tive. This is influenced by a recognised drawback of the 
algorithm [22]: the algorithm has no means of determin
ing if it is necessary to branch for all defined values of an 
attribute. Attributes and attribute values are sometimes, 
but not always, relevant. When the number of attributes 
was six the number of clashes increased as further exam
ples were introduced. With a larger set of attributes the 
number of clashes tended to stabilise, irrespective of the 
number of logical values.

The analysis of the results obtained for the remaining 
criteria (number of rules, branches, preconditions) were 
also complicated by the problem of irrelevance branch
ing. Decision trees generated using numerical attributes 
produce a smaller number of branches, less preconditions 
and fewer rules.

4.6 Selection o f configuration for Search 1 
Taking into account all the criteria, with equal weighting 
attached to each, suggested the use of numerical attri
butes since they produced smaller trees etc. However, the 
most important criterion, namely the percentage of errors 
in the classification of unseen examples, showed the use 
of numerical values to be unsatisfactory. The misclassifi
cation error of approximately 42% was too large to be 
ignored. The use of logical values resulted in a more 
acceptable error rate. It was necessary to select between 
the choice of 6 or 13 attributes. There was not much dif
ference between their performances as far as the second
ary criteria were concerned, but the use of F2 almost 
doubled the classification improvement. Therefore F2 
was selected as the most promising configuration. 
Further work with the chosen configuration resulted in 
an improvement in the performance of the secondary cri
teria. By taking into account a priori knowledge, the 
clashes were eliminated and the number of leaves was 
greatly reduced. Pruning the rule base [23] resulted in a 
reduction of preconditions and rules while maintaining 
the same performance.
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4.7 Selection o f configuration for Search 2  
A similar analysis took place for the second search space 
and configuration F6 was found to perform best.

5 Conclusions

Advances have been made in applying the techniques of 
expert systems with rule induction by the ID3 algorithm 
and of adaptive combiners to the tuning of the stopband 
of crystal filters.

ID3 was chosen as the preferred technique for the first 
two searches. The main advantages of the ID3 algorithm 
over adaptive combiners were faster learning, the gener
ation of better results, and less manipulation of the 
attributes. Additionally, with ID3, decision tree rules 
were generated which made the relationships between the 
attributes more visible, the order of introduction of 
examples was not critical, and, finally, a 100% correct 
prediction for the training set was obtained. These 
advantages did not hold for the third search, where a 
larger number of classes was present. Further work with 
ID3 indicated that it was more efficeint to use logical 
than numerical attribute values when testing unseen 
examples. Logical configurations were identified for each 
search space. It seems that ID3 is a valuable aid to the 
knowledge elicitation stage and, particularly, when a 
small number of classes and logical values are present.

6 Acknowledgment

The authors are grateful to expert operator Lawrence 
Mack of Newmarket Microsystems and to Dr. Anne 
Hart of Lancashire Polytechnic for helpful discussions on 
the use of the ID3 algorithm.

7 References

1 IEEE Computer, 1986,1, (7)
2 MIRZAI, A.R., COWAN, C.F.N., and CRAWFORD, T.M.: ‘Intelli

gent alignment of waveguide filters using a machine learning 
approach’, IEEE Transn 1989, MTT-37, (1), pp. 166-173

3 NAZEMI, J., and FIDLER, J.K.: ‘Filter tuning using a micro
processor based heuristic algorithm’. Proc. 1983 European Conf. on 
Circuit theory and design, pp. 101-104

4 ERICSSON, K A , and SIMON, H.A.: ‘Protocol analysis: verbal 
reports as data’ (Bradford Books/MIT Press, 1984)

5 REDDY, R.: ‘Foundations and grand challenges of artificial intelli
gence’, AI Mag,  1988,9, (4), pp. 9-21

6 GAMMACK, J.G , and YOUNG, R.M.: ‘Psychological techniques 
for eliciting knowledge’, in BRAMER, M.A. (Ed.): ‘Research and 
development on expert systems’ (Cambridge University Press, 1985)

7 MICHALSKI, R.S.: ‘Understanding the nature of learning’ in 
MICHALSKI, R.S., CARBONELL, J.G., and MITCHELL, T.M. 
(Eds.): ‘Machine learning: an artificial intelligence approach. Vol. 2’ 
(Morgan Kaufmann, 1986)

8 POLITAKIS, P.G.: ‘Empirical analysis for expert systems’ (Pitman 
1985)

9 LIPMANN, R.P.: ‘An introduction to computing with neural nets’, 
IEEE ASSP Mag,  April 1987, pp. 4-22

10 GOLDBERG, D.E.: ‘Genetic algorithms in search, optimisation 
and machine learning’ (Addison-Wesley, 1989)

11 MICHALSKI, R.S, and CHILAUSKY, R.L.: ‘Knowledge acquisi
tion by encoding expert rules versus computer induction from exam
ples: a case study involving soybean pathology’, Int. J. Man-Mach 
Stud., 1980,12, pp. 63-87

12 NEWSTEAD, M.A. and PETTTPHER, R.: ‘Knowledge acquisition 
for expert systems’, Electr. Communn 1986,60, (2), pp. 115-121

13 QUINLAN, J.R.: An empirical comparison of genetic and decision 
tree classifiers’. Proc. Fifth InL Conf. on Machine learning, Morgan 
Kaufmann, 1988, pp. 135-141

14 RUMELHART, W.E., HINTON, G.E., and WILLIAMS, RJ. (Ed.): 
‘Parallel distributed processing: explorations in the microstructure 
for cognition. Vol. 1’ (MIT Press, 1986)

15 TSAPTSINOS, D., MIRZAI, A.R., and JERVIS, B.W.: ‘Compari
son of machine learning paradigms in a classification task’. Proc. 
Fifth Int. Conf. on Applications of artificial intelligence in engineer
ing, Computational Mechanics Publications, July, 1990

16 QUINLAN, J.R.: ‘Discovering rules from a large collection of exam
ples: a case study’, in MICHIE, D. (Ed.): ‘Expert systems in the 
micro-electronic age’ (Edinburgh University Press, 1979)

17 QUINLAN, J.R.: ‘Induction of decision trees’, Mach. Learning, 
1986,1, pp. 81-106

18 BROWN, K.E, COWAN, C.F.N, CRAWFORD, T.M , and 
GRANT, P.M.: ‘Knowledge-based techniques for fault detection in 
digital microwave radio communication equipment’, IEEE J. Sel. 
Areas in Commun,  1988,6, (5), pp. 819-827

19 MIRZAI, A.R. (Ed.): ‘Artificial intelligence: concepts and applica
tions in engineering’ (Chapman & Hall, 1990)

20 QUINLAN, J.R.: ‘Decision trees as probabilistic classifiers’. Proc. 
Fourth Int. Workshop on Machine learning, 1987, pp. 31-37

21 GIORDAN A, A , and SAITTA L.: ‘An expert system oriented to 
complex pattern recognition problems’, Inf. Sciences, 1985, 36, pp. 
157-177

22 CHENG, J., FAYYAD, U.M., IRANI, K.B., and QIAN, Z.: 
‘Improved decision trees: a generalised version of ID3’. Proc. Fifth 
Int. Conf. on Machine learning, Morgan Kaufmann, 1988, pp. 
100-106

23 QUINLAN, J.R.: “Simplifying decision trees’, Knowledge-based 
Syst., 1988,1, pp. 241-254

344 I  EE PROCEEDINGS, Vol. 137, Pt. F, No. 5, OCTOBER 1990



PRACTICAL ASPECTS OF USING AN EXPERT SYSTEM-NEURAL NETWORK 
HYBRID SYSTEM FOR TUNING CRYSTAL FILTERS
D. Tsaptsinos*, B.W. Jervis*, A.R. Mirzai

Sheffield City Polytechnict, Polytechnic of Central London, UK

INTRODUCTION

A knowledge-based system in a rule format, 
has been developed in order to help an opera
tor during the post-assembly tuning of crystal 
filters. The generation of the rules was accom
plished using the ID3 learning by examples 
algorithm. A consultation with the system 
provides the operator with advice as to 
whether the filter is tuned or as to which screw 
to turn and in which direction. Unfortunately it 
was not possible to use ID3 to generate rules 
for the distance to turn. The distance can be 
any value in the range of 0  to 2.5 revolutions 
inclusive and ID3 cannot handle such a large 
number of classes (Tsaptsinos et al (1)). It is 
therefore left to the operator to judge how far 
to turn the screw. Initial testing results were 
obtained with an experienced operator who 
had some idea of how far to turn the screw. 
The objective though was to construct a sys
tem which could be used by anyone irrespec
tive of his level of experience and proficiency. 
An inexperienced operator would probably 
turn the screws too far or too little. This could 
result in a larger number of iterations and 
while the tuning would eventually be done it 
would take longer. For this reason, neural 
networks were investigated in order to provide 
the operator with an indication of how far to 
turn the screws. The results below are for one 
sub-process of tuning, namely the stopband 
tuning of the filter. For this sub-process two 
adjustable components are used, C4 and C,.

GENERATION OF THE EXAMPLE SET

A number of filters were de-tuned. De-tuning 
means moving from a tuned response to an 
untuned one. The examples were created by

having G, either at its optimum position (i.e. 
where it was placed when the expert finished 
the tuning) or maladjusted in steps of half a 
revolution up to 1.75 revolutions in a clock
wise direction or up to 2.5 revolutions in an 
anti-clockwise direction. At each position of 
C, the other component C4 was maladjusted in 
steps of half a revolution from its optimum 
position up to 1.5 revolutions in a clockwise 
direction or up to 2.5 revolutions in an 
anti-clockwise direction. In total 358 examples 
were generated for each filter. Each example 
consisted of fifty seven sampled values of the 
amplitude response (dB) plus the class to 
which it belongs (i.e. the distance turned).

Representing the examples

The 57 sampled amplitude data were pre
sented to the neural network without transfor
mation. The class value for each example was 
coded with a value between 0 and 1. For 
example, real values of 0,0.25,0.50 became 
0 , 0 .1 , 0 .2  respectively.

Determining the learning set

Various questions arose prior to the neural 
network implementation concerning the size 
of the learning set For example, should the 
learning set include examples generated from 
different filters, and/or should it include 
examples covering de-tuning of both compo
nents etc.? This section deals with these 
questions. The variety of the position of the 
responses which can be considered as tuned 
created an overlapping of classes. For this 
reason, it was decided to employ the de-tune 
data of just one filter. This will force the 
tuning of other filters towards the model
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‘solution’. Additionally, in some cases, malad
justment by more than two revolutions caused 
negligible changes in the response. Overlap
ping of classes similarly occurred when the 
complete learning set was used. Responses 
generated using die left component (C4) with, 
say, 0.5 turns resembled the ones generated 
using the right component (C,) with 1.25 
turns. For this reason it was thought appropri
ate to break the learning set into four sets 
(Table 1).

TABLE 1 - Learning sets

Learning
maladjustment

Number of 
examples

C4 anti-clockwise 215
C4 clockwise 144
C7 anti-clockwise 216
Cj clockwise 178

NEURAL NETWORK ARCHITECTURE

Software from a commercially available 
package was used to simulate the learning 
algorithm on a 80386 based computer.

A three layer feedforward network 
(57-11-10-1) using the generalised delta 
learning rule (Rumelhart et al (2)) was em
ployed for each of the four learning sets. The 
learning rate and the momentum term were set 
at 0.9 and 0.6 respectively. The number of 
processing units in the input layer was set to 
57, thus each sampled point was assigned to 
one and only one unit The input of each input 
unit was subjected to a simple linear transfor
mation using the software package, of the 
following form
Transformed input = Input value * Scale 
factor + Offset
where the values of 0.01 and 0.1 were used for 
the scale factor and offset respectively. The 
offset was used to avoid having any zero

inputs.

The number o f processing units in the output 
layer was set to 1. The output of the single 
unit is simply the summation of all its inputs, 
multiplied by their associate weights, from the 
second hidden layer. The obtained result was 
limited to both an upper (1.0) and lower (0.0) 
bound and then compared to the desired 
output (i.e. how far to turn). Using the soft
ware package learning was inhibited when the 
error was lower than a pre-set value.

The sigmoid function was used as the transfer 
function for the two hidden layers. The selec
tion of the number of processing units for each 
hidden layer was not as natural and effortless 
as for the other layers. Their numbers were 
determined empirically (11 and 10 for the first 
and second hidden layer respectively) and no 
claim is made that they are the most appropri
ate. Initial connection weights were set to 
small random values and they were updated 
after each presentation of an example.

NEURAL NETWORK IN LEARNING 
MODE

The stop learning criterion

For each learning set the network was ex
ecuted for 75000 runs. Every 1000 runs the 
learning was momentarily paused and the total 
sum of the squared errors was calculated. The 
error was the absolute difference between the 
desired and the obtained value. Those weights 
which generated the smallest error were 
selected for the network. For example, when 
using the learning set generated with C4 mal
adjusted anti-clockwise from the tuned posi
tion the smallest error occurred in run 56000. 
One of the criteria used to test the suitability 
of the above network based on anti-clockwise 
maladjustments was to test the network with 
de-tuned examples obtained by maladjusting 
C4 in a clockwise direction. The expected
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outcome was 0 (since C4 does not need malad
justment in an anti-clockwise direction) and 
for the majority of the test cases a value close 
to zero was produced.

NEURAL NETWORK IN TEST MOPE

Definition of test cases

Testing of the tuning of a number of filters 
was undertaken using three different systems.

System 1: Knowledge-based system plus user 
The knowledge-based system provided advice 
on when to stop the tuning of the stopband, 
otherwise which component to turn and the 
direction to turn. The user had to decide on 
how far to turn.

System 2: Hybrid system As for system 1 but 
the distance to turn was indicated by the 
appropriate net For example, if the expert 
system indicated C4 clockwise, then the C4 

clockwise neural network would be used.

System 3; Neural network Because each 
component/direction combination had a net 
associated with it then the outcome of each net 
was used to define all decision levels. For 
example, if the output of the four networks 
were:
C4 anti-clockwise network: 0.1 (i.e. 0.25 in 
real turns)
C4 clockwise network : 0.3 (i.e. 0.75 in real 
turns)
Cy anti-clockwise network: 0.6 (i.e. 1.50 in 
real turns)
C7 clockwise network : 0.5 (i.e. 1.25 in real
turns)
then the largest of each component was se
lected. In this example, that would had meant 
turn C4 clockwise 0.75 turns and C, 
anti-clockwise 1.50 turns.

Igst.gyaluation criteria

The following criteria were employed to 
compare the various systems.
(i) The average number of turns required for 
the entire tuning
(ii) The number of successful tunings
(iii) The number of unsuccessful tunings 
In this paper the term tuning refers to the 
stopband tuning. It is worth noticing that the 
final result (i.e. the tuning) was examined 
rather than the intermediate actions. This was 
due to the fact that there exist numerous paths 
to the tuning and only the prominently wrong 
actions could be identified.

PRESENTATION AND DISCUSSION OF 
RESULTS

Table 2 shows the number of attempts made 
for tuning the stopband. Table 3 shows the 
comparison of the systems in terms of the 
number of turns required. The table compares 
the performances of the systems and of the 
human operator.
The comparison shows that the use of any 
system did not necessarily reduced the number 
of steps but the expected benefit will be a 
reduction of the time an operator spends 
learning about the tuning procedure. This is 
apparent when comparing system 1 and sys
tem 2. The results are comparable and encour
aging. There is no need to have an experi
enced operator. At this stage it is preferable to 
use system 2 rather than system 3. The latter 
system seems to require more steps. There are 
two probable reasons for this. Firstly the 
shortcomings of the C7 anti-clockwise network 
as experienced during all testing and secondly 
the attempt of each network to target to a 
single model solution. This resulted in oscil
lating outputs.
The neural networks were also tested with 
data where the desired outcome was known 
beforehand. Observing the output of the neural 
networks the following points were made:
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(i) The networks for learning C4 and C7 clock
wise both gave correct estimates
(ii) The network for learning C4 
anti-clockwise tends to underestimate for 
values greater than 0.5
(iii) The network for learning C7 
anti-clockwise did not perform well in general 
except in one case in which it worked cor
rectly for values up to 0.7 but for greater 
values it provided conservative estimates
(iv) All networks recognise a tuned state
(v) Networks for learning the clockwise 
maladjustment for both components operated 
better. Both had fewer examples in their 
learning sets and less classes represented than 
the ones with anti-clockwise maladjustments.

CONCLUSIONS

From the test results shown above, it should 
be noted that it is possible for the hybrid 
system (system 2) and the connective equiva
lent (system 3) to tune the stopband region of 
the magnitude response. A decrease in the 
training of operators can be achieved with 
either system.

TABLE 2 - Number of test filters

However, each system has its own advantages. 
The case 2 system can generate basic explana
tions of its reasoning whereas the networks 
have a faster execution time despite the larger 
number of steps taken. Both systems are then 
promising but an extensive testing period 
would be required before they be introduced 
in the production line.
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Manual System 1 System 2 System 3

Number of attempts 34 21 19 3
Successful tunings 34 18 15 2
Unsuccessful tunings 0 3 4 1

TABLE 3 - Comparison of performances

Manual System 1 System 2 System 3

Average number of turns 3.67 3.22 3.53 10.50
Minimum number of turns 1 1  1 7
Maximum number of turns 9 7 8 14
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ABSTRACT

Filters can be used in a variety of applications. In practice, 
manual tuning of the components is required in order to achieve 
a specified performance. An expert system is being constructed 
to assist the operator during the tuning phase. Protocol 
analysis was employed originally but failed to provide the 
whole spectrum of the operator's knowledge. Experiments were 
carried out to investigate and compare the applicability of 
three machine learning paradigms (ID3, adaptive combiners, 
neural nets) as the means of automated knowledge elicitation. A 
brief description of the techniques, a comprehensive analysis 
of the experiments and the reasons behind ID3's selection are 
described in this paper.

INTRODUCTION TO THE DOMAIN

At present, the tuning of electronic filters is performed 
manually. The objective of our work is to develop the expert 
system paradigm in this domain in order to partly or completely 
automate the process.

Electronic filters are available in various types but 
irrespective of the type the function of an electronic filter 
remains the same. That is, to retain all frequencies within 
certain limits (passband regions), while rejecting all other 
frequencies (stopband regions).

A produced filter will not always meet the desired 
specification, thus manual tuning is required to adjust 
component values to achieve the required performance. There 
does not appear to be a theory of the practical tuning of 
filters. Through an initial training and with acquired 
experience the operator is transformed into a skilled operator. 
Despite the variations between operators, which can be found in



detail, the general pattern is the same. An operator checks the 
performance of the filter (eg. magnitude response [Figure 1]), 
decides if tuning is required and, if so, performs the 
necessary adjustments to a tunable component. These steps are 
then repeated as many times as necessary until the performance 
satisfies the requirements. Effectively the operators act as 
signal interpreters and perform a human real-time optimisation 
attempting to reduce the total and individual errors of the 
features of interest.
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Figure 1 Normalised magnitude response
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Figure 2 Top level view o f filter





The filter employed as the test benchmark is an asymmetric 
bandpass crystal filter [Figure 2]. The filter consists of two 
types of adjustable components, namely trimmer capacitors (C4 
and C7) and inductors (Tl, T2, T3).

INITIAL KNOWLEDGE ELICITATION

Several expert systems have been constructed (Bramer [1]), and 
their number is rapiplly increasing for engineering domains 
(Computer [2]). The construction of an expert system is a 
painstaking process. Eliciting, analysing, interpreting, 
representing, administering and utilising the knowledge that a 
human expert uses presents problems to the builder.

The knowledge elicitation technique chosen for the filter- 
tuning project was the protocol analysis approach. Protocol 
analysis was first described by Newell and Simon [3] and, in 
recent years, by Ericsson and Simon [4]. The reason to employ a 
verbal on-line technique becomes more visible when one 
considers the nature of the decision process. The operator 
interprets, plans and executes tasks by visually inspecting the 
measurement set which displays the magnitude response of the 
connected filter. By adjusting the set the operator is able to 
inspect the full response or part of it. It was felt that the 
operator would have found it impossible to describe the 
response in a verbal off-line format.

The tuning of the chosen filter was then video-taped twice. 
The expert was instructed to "think-aloud" about the process 
and to include not only his mental skills but also his manual 
skills. Manual means the skills needed to operate the measuring 
set. Mental means the reasons behind each action taken, such as 
why to turn component X instead of Y. Then the process of 
transcribing the video-tapes and analysing the transcripts 
commenced. The benefits of the transcription analysis were as 
follows :-

Identification of order for specification checking ie. what 
features and in what order were checked. Possible corrective 
actions were also identified.

Identification of the classes of activity the operator was 
involved with.

Identification of objects which resulted in the production of a 
dictionary. By objects is meant the most primitive words that 
the expert uses to express domain knowledge (eg. frequency, 
coils etc.).

Clustering of objects and identification of their relations. 

Identification of the expert’s tuning process.





What failed to surface is best described by the following 
scenario. It was identified that the expert begins with the 
tuning of the stopband region of the magnitude response. Also, 
it was found that only the trimmer capacitors were of any . use 
for this region. Although there are only two candidates the 
expert failed to provide a theory for which one to pick, which 
direction to tune and by how far to turn at certain situations. 
To overcome that problem the possibility of automatically 
acquiring and updating the knowledge was considered. This 
involved the implementation and comparison of three paradigms 
which learn through the use of examples.

GENERATION OF EXAMPLES

The three techniques (ID3, adaptive combiners and neural nets), 
function according to a similar principle. They require a set 
of examples, referred to as the learning set. Each example is 
described in terms of attributes, with each attribute in turn 
specified by a value, together with a class identifier. The 
purpose of the techniques is to determine the relationships 
between the attributes which then can be used for 
classification of other examples.

A database of examples was not readily available, therefore 
a set of examples was collected using the "de-tune" procedure. 
This procedure misses out the heuristics employed by the expert 
but a more complete set of examples can be collected. By 
complete is meant a learning set which contains most attribute 
values likely to arise thus eliminating the possibility of 
having only extreme or rare values.

Prior to the generation of the learning set using the 
previous transcript analysis and further discussions with the 
expert the following suitable attributes were identified:-

(i) Locations of sharp positive peaks of the waveform 
(number=4, MHz units)
(ii) Relative magnitudes of sharp negative peaks of the 
waveform (number=2, dBs units).

During the de-tuning the expert was asked to tune the 
stopband region. Then the attribute values were recorded 
together with the class "end-of-process". A systematic de
tuning followed. That was achieved by keeping one tunable 
component constant and mis-adjusting the other one. This was
reapeated by misadjusting in a different direction and by using
the other component. Obviously, the filter was re-tuned in 
between. For those examples the component, direction of turn
and how far the component was turned were recorded. In this
way 43 examples were collected for one filter. Six filters were 
de-tuned resulting in a total of 258 examples.



THE ID3 ALGORITHM

ID3 (Iterative Dichotomiser 3) was developed by Quinlan [5] in 
1979. The goal of the algorithm is to induce a decision tree 
(which can easily be transformed into rules of the form IF x 
THEN y). A decision-tree is then generated from a collection of 
examples by recursively sub-dividing this collection into 
smaller subsets. A decision tree consists of a number of nodes 
( the "IF" part) representing attribute-based tests together 
with a number of terminal nodes, also known as leaves. The 
terminal nodes (the "THEN" part) may take the label of a class, 
or be labelled "empty" or "clash". Empty appears when there are 
no examples which can be used for that particular branch. Clash 
emerges when there are two (or more) examples covering that 
specific branch but their classes are distinct.

In order to illustrate the technique, a simple example will 
be used. The objective is to obtain rules to help us identify 
the class to which a filter belongs. By class is meant 
highpass, lowpass, bandpass or bandreject. Those classes are 
then the outcomes. For attributes the following were used:

(i) Number of stopband regions (abbreviation: nostop)
(ii) Number of passband regions (abbreviation: nopass)
(iii) Number of transition regions (abbreviation: notrans)

Table 1 shows the examples used. Using a commercial package Xi-

NOSTOP NOPASS NOTRANS OUTCOME

one one one highpass
one one one lowpass
two one two bandpass
one two two bandreject

Table 1. Examples

Rule, which implements the algorithm, the decision tree in 
Figure 3 was generated. Certain observations can be made:-

notrans = two
---  nostop = one: bandreject

|--- = two: banpass
---  = one (Clash)

Figure 3 Decision tree

(i) When the number of transitions is less than two, a clash 
exists. This is due to the fact that the first two examples 
have the same attribute values but different classes. This



means that more attributes are needed in order to discriminate 
between highpass and lowpass filters.

(ii) The attribute "number of passband regions" is redundant. 
The attribute can be eliminated and the rules will be the same.

From the decision tree rules can be generated by simply 
following a branch through the tree to one of the leaves. Table 
2 contains the two rules extracted from the decision tree in

IF notrans IS two 
AND nostop IS one
THEN outcome IS bandreject (Rule 1)

IF notrans IS two 
AND nostop IS two 
THEN outcome IS bandpass (Rule 2)

Table 2. Generated example rules

Figure 3. What has to be remembered is that induced rules do 
not generate new knowledge but prompt to what the rules appear 
to be. For example, on observing Table 2, one can see that the 
condition for attribute "notrans" is not required.

ADAPTIVE COMBINERS

In recent years one class of adaptive architectures, linear 
combiners, has been used for the design of intelligent systems 
(Mirzai [6]). Figure 4 illustrates a simple combiner structure.

Given knowledge about a particular problem in the form of input 
attributes, and the class, it is desirable to estimate the 
weight vector in such a way that, when the system is presented 
with a new set of examples, it can predict the correct outcome.

! y«

RLS ----- '

Figure 4 Adaptive combiner architecture



The adaptive combiner structure used here can be thought of as 
a one layer connectionist network and the recursive least 
squares (RLS) algorithm is employed for the estimation of the 
weight vector.

NEURAL NETWORKS

Only recently research in neural networks was revived resulting 
in the development of various techniques (Pollack [7]) which 
attempt to eliminate the original shortcomings. Back- 
propagation is a such technique, which was developed 
independently by several people (LeCun [8], Parker [9], 
Rumelhart [10]). Figure 5 illustrates a three layer network

Tjf2

output
layer

hidden
layer

hidden
layer

input
layer

X.
J

Figure 5 neural net architecture

which consists of an input layer, an output layer and two 
hidden layers. The input layer contains the information coming 
from the features (attributes) from each example. The hidden 
layers perform a recoding of the original feature-set which is 
then passed to the output layer for the generation of a pattern 
(class). The characters written on the arrows represent the 
connectionist strength of the weights. The characters in the 
circles represent the thresholds of each unit. The back- 
propagation algorithm uses the sigmoid function which results



in a continuous threshold. By initialising all weights and 
thresholds to small random values and using the sigmoid 
function the outputs are calculated. Then the algorithm 
recursively adjusts the weights and the thresholds.. Reference 
(Rumelhart [10]) provides a more detailed mathematical analysis 
of the technique.

To illustrate the technique we adopt the example used by 
Lippman [11]. Eight examples representing two classes 1 and 0 
(Table 3) were introduced as the learning set. Examples from

XI X2 CLASS

1 2 0
1 1 1

-1 3 0
-1 -1 1

-3 0
1 -1 1
1 -4 0

-1 1 1

Table 3. Learning set

class 1 were distributed to the edges of a circle of radius 1 
centered at the origin. Examples from class 0 were distributed 
outside the circle. After 548 iterations using a two-layer 
network with two hidden nodes the weights and thresholds were 
calculated. Then the network was tested with eleven previously 
unseen examples (Table 4). The results were satisfactory for 
either class except those examples, of class 0, with values 
close to the circle.

XI X2 Desired class Produced class

0 0 1 0.97
3 1 0 0.85

-0.5 -0.9 1 0.96
1.1 1 0 0.92
-0.1 0 1 0.97
-1.1 -1.1 0 0.95
5 5 0 0.04
1.1 1.1 0 0.89
1 1.1 0 0.89

Table 4. Testing set

In the above example and in the investigation the three 
techniques are trained to function as classifiers. The goal is 
to learn to classify correctly during training so that in 
future use they will be able to classify correctly new 
examples.



PRESENTATION OF EXAMPLES

Previous work resulted in three search spaces for the tuning of 
the stopband.

(i) search space one: to carry-on or to end the process
(ii) search space two: which component to adjust and which

direction
(iii) search space three: how far to turn.

The examples were introduced to the techniques in an
incremental fashion. The reader should note that the same 
examples were presented to each technique for every search. The 
number of classes were different in each search. Search one has 
two classes, search two has four classes, search three has 
eleven classes. Initially 8 examples were used in the learning 
set. They comprised of 4 "end-of-process" and 4 "carry-on" 
examples of the same filter. The latter included those examples 
generated when the components were adjusted to their maximum 
positions in both directions. Then, 4 more examples were 
introduced, the ones generated when the components were turned 
halfway. Finally the 4 examples which arose when the components 
were adjusted to their minimal positions were presented.

At each stage of the procedure the generated set of rules 
or weights was tested against the learning set (SI), the 
remaining unseen examples of the same filter (S2) and the 
unseen examples of the rest of the filters (S3). Finally, the 
total performance was calculated (TOTAL). In this way it could 
be determined how well the algorithms learnt and generalized.

An obtained example took the following form,

1.39678 1.40234 1.41967 1.42003 45 53 C4a0.5

which can be translated as "turn the C4 component anti
clockwise, half a revolution when the attributes have the given 
values". The exact numbers were presented to the three 
techniques as above. The presentation of the classes was
different for the combiner and neural net. For example, in
search three class 0.5 was presented to the neural net as 4
nodes (eg. 0 0 10). In search two, class C4a was presented to
the adaptive combiner as two nodes (eg. -1 0).

CRITERIA OF PERFORMANCE

The comparison was based on two criteria. The percentage of 
examples used in the final learning set and the predictive 
accuracy of the final learning set. The reason for using those 
two interrelated criteria is that an expert system's knowledge 
base is constantly refined. This is due to that the correct 
number and nature of examples to be used is unknown. The need



arises to identify that technique which uses the lesser number 
of examples in conjunction with a satisfactory performance.

SEARCH ONE COMPARISON

The following points can be concluded regarding the results 
obtained using ID3 (Table 5). ID3 seems to perform better when 
a small learning set was used and it is always capable of 
predicting accurately those examples presented to it in the 
learning set.

NUMBER OF LEARNING 
EXAMPLES

( Z ) RATE OF SUCCESS ON ... 
SI S2 S3 TOTAL

8 100 82 80 81
12 100 81 80 81
16 100 100 93 94
18 100 100 96 97

Table 5. ID3 Predictive accuracy (Search I)

The satisfactory success rate achieved when 16 examples were 
used can be misleading because the success rate was due to the 
presence of a large number of "carry-on" examples. ID3 
predicted succesfully the "carry-on" examples but failed to 
recognize the "end-of-process" ones. The only option available 
to improve the ID3 performance was to introduce further "end- 
of-process" examples. It was found that by increasing the 
learning set to 18 the objective was achieved (Row 4 of Table
5).

Obtained results employing the adaptive combiner 
architecture are displayed in Table 6. Despite unstable 
behaviour of the learning set, the success rate of the total

NUMBER OF LEARNING (*) RATE OF SUCCESS ON
EXAMPLES SI S2 S3 TOTAL

8 87 57 67 67
12 100 77 82 82
16 75 100 91 91

Table 6. Combiner predictive accuracy (Search I)

test was improved. Unfortunately, like ID3, a large number of 
"end-of-process" examples were mis-classified. Experiments were 
carried out to improve the performance of the combiner. That 
took the form of manipulating parameters and the presentation 
of the attribute values. Table 7 shows the predictive accuracy 
of the combiner when the forgetting factor equals 0.9 and the



learning set was presented to the combiner 9 times. Similarly, 
Table 8 shows the results when the attribute values were re
scaled between 0 and 1. In both cases the misclassification 
problem was resolved.

FORGETTING FACTOR : 0.9 RE-LEARNING LOOPS : 9

NUMBER OF LEARNING 
EXAMPLES

(%) RATE OF SUCCESS ON 
SI S2 S3 TOTAL

16 94 100 91 92

Table 7. Combiner predictive accuracy (Search I) 
(Adjusted Parameters)

NUMBER OF LEARNING 
EXAMPLES

(%) RATE OF SUCCESS ON 
SI S2 S3 TOTAL

8 100 88 90 90
12 100 91 84 85
16 94 98 85 87

Table 8. Combiner predictive accuracy (Search I) 
Scaled Values

There are some obstacles in using neural networks. One does 
not know how many hidden units are required, with what values 
to initialise the weights etc. Using Table 9, where some 
results are displayed, various points can be made. When the

(%) RATE OF SUCCESS ON 
LEARNING SET (SI)

ARCHITECTURE

72 6-4-4-1
71 6-3-5-1
74 6-4-5-1

Table 9. Neural net predictive accuracy 
(Search I - Eight examples)

examples were eight the prediction performance averaged 72 per 
cent. At the same time 10 out of 24 "end-of-process" examples 
were mis-classified. An increase of 4 examples produced an 
average performance of 78 per cent. Again the mis
classification rate of "end-of-process" examples was 50 per 
cent except when the number of hidden nodes in the first layer 
was four (Table 10). That was irrespective of the number of 
nodes in the second layer. The best true classification was



( %) RATE OF SUCCESS ON 
LEARNING SET (SI)

ARCHITECTURE

77 6-2-2-1
78 6-3-2-1
78 6-4-2-1
77 6-2-3-1
78 6-3-3-1
77 6-4-3-1
77 6-2-5-1
77 6-3-5-1
78 6-4-5-1
78 6-4-4-1

Table 10. Neural net predictive accuracy 
(Search I - Twelve examples)

achieved when the 6-4-4-1 architecture was employed. Increasing 
the examples in the learning set to 16 produced an average 
performance of 93 per cent with a mis-classification rate of 4 
examples out of 24 (Table 11).

( %) RATE OF SUCCESS ON 
LEARNING SET (SI)

ARCHITECTURE

93 6-4-2-1
91 6-4-3-1
93 6-5-2-1
93 6-5-3-1
93 6-6-2-1
93 6-6-3-1
93 6-4-4-1
93 6-5-4-1
93 6-3-5-1
93 6-4-5-1
94 6-5-5-1

Table 11. Neural net predictive accuracy 
(Search I - Sixteen examples)

SEARCH TWO COMPARISON

The three learning sets were introduced to the ID3 algorithm. 
This time the "end-of-process" examples were replaced with 
those examples generated with the minimum mis-adjustment. Table 
12 shows the results obtained. Note that even when eight
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NUMBER OF LEARNING (%) RATE OF SUCCESS ON ... 
EXAMPLES SI S2 S3 TOTAL

8 100 100 88 91
12 100 100 88 91
16 100 100 88 91

Table 12. ID3 Predictive accuracy (Search II)

examples vere used the prediction rate was acceptable and that 
the performance did not improve with the introduction of 
further examples. This is probably an indication that further 
attributes are required if better performance is to be 
achieved.

When the three learning sets used for ID3 were presented to 
the combiner the results were very poor. The reason being the 
need to have examples which can act as reference points. That 
role was played by the "end-of-process" examples. The combiners 
were trained to indicate the "end-of-process", as well as which 
screw to adjust and in what direction. The first learning set 
contained 5 examples, ie. one "end-of-process" plus four 
examples when the screws were mis-adjusted to • their maximum 
positions. Then the examples corresponding to the minimum 
positions of the screws were added to the learning set (ie. 9 
examples all together) and finally the examples corresponding 
to the half way mis-adjustments of the screws were added 
resulting in 13 examples. The performance of the combiners was 
again poor. For that reason the attribute values were re-scaled 
as before, and an extra "end-of-process" example was introduced. 
This greatly improved the performance. The performances of the 
combiners for the three learning sets are summarised in Table 
13. Again, the combiners successfully recognised all the "end- 
of-process" examples.

NUMBER OF LEARNING (%) RATE OF SUCCESS ON
EXAMPLES SI S2 S3 TOTAL

5 100 93 75 78
9 100 93 81 83
14 . 93 95 58 64

Table 13. Combiner predictive accuracy 
(Search II - Scaled Values)

The three layer networks produced an average performance of 
76 per cent with 6-3-3-2 architecture gaining the highest (80% 
with 8 examples). Note that adding an extra node at either 
layer did not produce a better performance. By increasing the 
examples the performance improved with architecture 6-5-3-2



reaching the highest (92%) using 16 examples. Irrespective of 
the number of examples and number of nodes used the nets 
produced a better performance for the direction to turn than 
the component to be used. Table 14 displays a . sample of 
results.

NUMBER OF 
EXAMPLES

(%) RATE OF SUCCESS ON 
SI Component Direction

ARCHITECTURE

8 72 72 98 6-4-3-2
8 80 80 97 6-3-3-2
8 77 77 98 6-3-4-2
12 77 77 98 6-3-2-2
12 81 81 97 6-3-3-2
12 74 74 97 6-5-5-2
16 93 93 98 6-5-3-2
16 92 92 97 6-8-4-2
16 87 87 97 6-3-3-2

Table 14. Neural net predictive accuracy 
(Search II)

SEARCH THREE

Problems arose when ID3 was implemented for search three due to 
the presence of a large number of classes (11). The necessity 
of a learning set consisting of all examples of one filter 
produced the problem of bushy, unstructured decision trees 
arose which resulted in a very poor performance. The inability 
of ID3 to perform succesfully when a large number of classes 
are present was the main factor in deciding to split the search 
into three separate searches, as reported previously.

The main advantage of the combiner architecture over that 
of ID3 is due to its capability of producing continuous output. 
For this search space experiments were carried out with un
sealed values as well. When re-scaling took place the combiner 
performance improved. Again "end-of-process'1 examples were 
required. Figure 6a and 6b show the correct mis-adjustment 
levels for screws C4 and C7 respectively. Figure 6c and 6d 
illustrate the output of the combiners when 5 learning examples 
were used (ie. one "end-of-process" and four for the maximum 
mis-adjustments of the screws). Figure 6e and 6f show the same 
outputs when 9 learning examples were used and finally 6g and 
6h show the outputs with 14 learning examples. With this 
limited number of examples the combiners have managed to track 
the desired outcomes (Figure 6g and 6h) although not to 100 per 
cent accuracy.





Figure 6 Adaptive combiner results

Unfortunately, the three layer network did not produce very 
good results. At this stage our aim was not to identify the 
most appropriate architecture but to determine how easy or 
feasible that job is. For that reason when over one hundred 
nets were run before further investigation was suspended. An 
interesting, and somewhat expected, fact arose with the use of 
the nets. Increasing the hidden nodes drastically improved 
(Table 15) the performance for each individual node. It is 
probable that additional re-learning of the learning set will 
produce better results in the future.

NUMBER OF NUMBER OF CORRECT PREDICTIONS ON ARCHITECTURE
EXAMPLES:39 NODE 1 2 3 4

20 0 0 0 6-1-3-4
25 3 6 0 6-2-3-4
21 22 5 0 6-4-5-4
29 28 16 8 6-20-10-4
23 16 9 3 6-10-20-4

Table 15. Neural net predictive accuracy 
(Search III)

DISCUSSION

Although the three techniques are different, a comparison was 
possible. ID3 performed slightly better than the other two for 
the first two searches. For the third search ID3 failed





significantly. This was due to the inability of the algorithm 
to handle a large number of classes. The use of ID3 for the
first two searches was elected. The decision was based on the
following advantages of ID3, as seen by the authors.

J An expert system cannot ever be completed. Such systems 
should append their knowledge through time. The incremental 
presentation of examples demonstrated that running ID3 was
faster. Neural networks took a long time to train. Some
architectures took up to 17 hours to train.

f  ID3 always gives correct predictions for the examples 
used in the learning set. This is not quaranteed with the 
other two techniques.

f  ID3 generated decision trees which can be transformed in 
the form of rules. These rules can be used directly to 
explain the relationships between the attributes and the 
decisions made. With weights a direct explanation is not 
feasible.

J ID3 obtained slightly better results with less 
manipulation of parameters and without the need to worry 
about the order of introduction of the examples. With 
adaptive combiners a lot of time was spent in experimenting 
with parameters. The problem with neural nets was the 
absence of any theory in determining the architecture.

The adaptive combiner performed well for the third search. 
The advantage of the combiner over ID3 is as follows. The only 
available option of improving ID3’s performance is by 
introducing further examples. This results to the re-generation 
of a decision tree which may result in a different set of 
rules. One has further options using the combiners. Employing 
the same learning set one can experiment with the forgetting 
factor and/or re-introduce the same learning set. This was done 
for the first search and resulted in a better performance. New 
examples will not effect the structure of the combiners and 
only the weights will be updated.

In future, neural nets will be further investigated as a 
solution to the third search space problem and a connective 
expert system will be tested live on the filter and on other 
similar filter designs.

CONCLUSIONS

ID3 is recommended for the first two searches having the better 
performance and requiring little time to up-date. Also, rules 
may be derived from the decision trees. Adaptive combiners are 
prefered for search 3, for which ID3 is inapplicable and for 
which neural networks require excessive training time.
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