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Abstract -

Manual tuning of electronic filters represents a time-consuming process which
can benefit from some computer assistance. A prototype computer-based
system for the tuning of crystal filters after manufacture was developed. This
system solved the problem of crystal filter tuning in a novel way.

The system, called AEK (Applied Expert Knowledge), was developed using
crystal filters and is a hybrid system with the following two functions:

(1) Required values of features are extracted from the filter waveform and
passed to the expert system which determines the component to adjust and

the direction to turn, or the end of the tuning.
(2) Sampled values of the waveform are extracted and passed to a neural

network which determines how far to turn the component chosen in (1).

The pronunent aspects were:
m Work using the protocol analysis elicitation technique indicated the need

to separate the process into two sub-tasks (stopband and passband). Each
- sub-task was divided into three classification parts which determined (1) the
continuation of the tuning process, (i1) the component and direction to turn,
and (iii) the distance to turn respectively. Unfortunately, it was not possible

- .- to extract rules from the operator.

®m Three learning techniques (ID3, Adaptive Combmers, Neural Networks)
were used and compared as the means of automated knowledge elicitation.
All three techniques used case knowledge in the form of examples. The
investigations suggested the use of ID3 for the first two parts of each sub-
task employing features with linguistic values. The number of linguistic
values each feature has, was also derived.

m Neural networks were trained for the third part. It was necessary to have
one network for each component/direction combination and to use examples

from just one mal-adjusting process.
m Tests of the hybrid system for a number of cases indicated that it performed

as well as a skilled operator, and that it can be used by novice operators but
situations arose where there was either no knowledge or contradictory

knowledge.

The prototype system was developed using one type of crystal filters but the
generic construction procedure can be followed to build other systems for

other types.
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Organisation of the thesis

The thesis is divided into two main parts.; Part A consists of two chapters

devoted to the concepts of electrical filters and artificial intelligence. The first
chapter looks at crystal filters and the problems of post-assembly tuning.

Furthermore an overview of expert system components and a review of

knowledge elicitation and representation is given followed by a discussion in
terms of the system constructed. The second chapter covers the procedure
used at the collaborating establishment and the procedures proposed by other
workers in the field. The chapter ends with a discussion about the motives for
employing an expert system approach in the filter tuning domain.

Part B of the thesis has seven parts, which present a chronicle of the expert
system and the neural networks development. Part B represents original
work undertaken during the development of the AEK system. Chapter three

presents the knowledge acquired during the first visit to the company and

identifies the reasons for moving to the machine learning paradigm. Chapter
four introduces a number of techniques which can be employed for the design

of learning systems. These techniques include ID3, adaptive combiners and
neural networks. Chapter five shows the adaption and comparison of the

techniques presented in the previous chapter for the filter tuning application.

Chapter six highlights the problems encountered when using ID3 and
describes additional work undertaken to avoid the shortcomings of the
technique. In the seventh and eighth chapter the induction of rules and the
construction of the neural networks are presented respectively, Chapter nine
presents the software and hardware employed together with instructions of

how to use the AEK system. Chapter ten is entirely devoted to the application
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of the rules and the networks to the tuning of a number of filters. This is
followed by a detailed evaluation of their performance.

Finally, the thesis comes to a closure (chapter 11) with a discussion of the
achievements, a critique of the expert and neural systems and an assessment

of the software used.
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1.1 Introduction

This chapter discusses general aspects of electrical filters with particular

reference to the crystal filter used in the study. The requirement for filter
tuning 1s justified in Section 1.2.5 which also introduces the methods
employed.

Sections 1.3 to 1.4.5 provide an overview of artificial intelligence and expert
systems. This is followed by an overview of the expert system constructed for

this study in terms of knowledge representation and control. AEK (Applied

Expert Knowledge) is the name given to the system and it is used throughout

this thesis.

‘1.2 Introduction to electrical filters

An electrical wave filter, or just filter for ease of reference, is designed to
receive a signal and to attenuate certain pre-defined frequency regions of the
input signal while passing the rest of the frequency regions without changes.
It is possible to classify filters in different ways'. In terms of the frequency
spectrum, they may be grouped as audio, video, or radio-frequency and
microwave filters. In terms of the circuit éonﬁguration of the basic elements,
filters may be classified as ladder or lattice. Categorization in terms of the
character of the elements used in them is also common, for example L.C or RC
filters. The most customary division is between analogue and digital filters

which treat analogue and digital signals respectively. Analogue filters may

be classified as passive or active. These constructions are similar except that

the latter has an integral source of energy, usually an operational amplifier.

Digital filters on the other hand utilise software, such as a subroutine on a



computer program, or as hardware, such as a circuit containing registers and

multipliers.

1.2.1 Filter components

Electrical filters contain a variety of components?® and it is the responsibilit&

of the designer to select the appropriate components for any given task.,

Filter components come in two forms, namely active and passive. Active
elements may amplify the signal power. By contrast passive elements do not

contribute to signal energy; they can only absorb or transfer it. Capacitors

and inductors are two common passive elements.

1.2.2 Magnitude respohses and

approximations

One way for studying any filter is to investigate the magnitude response of
the output signal. The output signal is the product of the magnitudes of the
input signal and the frequency response function of the filter. This means
that if the magnitude of frequency response is equal to zero (or approximately
equal to zero) for a certain frequency range, then the output signal will have

a zero (or approximately zero) magnitude over this frequency band. This
group of frequencies is called the stopband of the filter, Similarly, if the

magnitude function is greater than zero and close to one for another
frequency band, then this interval is called the passband of the filter. In

addition, the band of frequencies between a passband and a stopband is

defined as the transition band. Certain frequency bands are then transmitted
while the rest are rejected. The design of each filter determines the regions,

if any, where frequency is allowed to pass or not and provides yet another
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taxonomy. They can be either lowpass, highpass, bandpass, or bandstop
filters. Lowpass and highpass filters are, respectively, filters that transmit
signals at frequencies below or above a defined cut-off frequency (®,) and
attenuate those frequencies above or below the cut-off point (w ). Bandpass
filters transmit all frequencies between defined upper (®,) and lower limits

(0,), and attenuate frequencies outside those limits. Bandstop filters

attenuate frequencies between upper (w,) and lower limits (w,) and transmit
all other frequencies. These four basic types of frequency selective filters are
illustrated in Figure 1. Of course, there are filters that do not belong to any
of these four types but in most cases the magnitude specification of filters will
fall into one of those categories. In practice, these characteristics are' not
attained with a finite number of components due to absorption, reflection or
radiation, so a number of well known curves, which approximate the ideal

responses within specified tolerances, are used. The common filter

approximations are the Butterworth, Chebyshev,q inverse Chebyshev, and

elliptic® (Figure 2a).
1.2.3 Crystal filters

A crystal, physically, is a three dimensional pattern consisting of atoms,
molecules, or ions*. A variety of classes of crystals exist of which about twenty
exhibit the desired effect of piezoelectricity®. Piezoelectricity refers to the
electric potential being generated whenever an external pressure is applied
to the crystal. Crystals exhibit mechanical resonance which can be excited by
the application of an AC signal. The size and shape of the crystal determine
the frequency 6f the mechanical resonance which typically varies from 20

KHz to 50 MHz. Figure 2b shows the electrical equivalent circuit. L,, C, and
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R, are the motional parameters and C, is known as the static capacitance and
represents the effective capacitance of the crystal unit at frequencies far
removed from resonance. The quality factor of the motional arm is extremely
high, typical values are between 20000 to several hundred thousand,
compared to other resonators, such as LC circuits. The quality factor and the
unique combination of properties (stability with time and temperature, high
quality factor, strength, inexpensive, small size, low insertion loss) make
crystals attractive and provide flexibility for the practical design of filters
with very narrow bandwidth. The term crystal filter is used to describe
electrical filters incorporating crystal resonators. The principal crystal used
in electrical filters, especially bandpass filters, is the quartz cryétal.
Theoretically, an electric circuit using inductors, capacitors and resistors can
be constructed to simulate a crystal resonator but the problem lies with the
practicality of obtaining the exact values for these components. Crystal filters
can be either discrete or monolithic®*®, The former employ standard
components plus a number of single crystal resonators. In comparison

monolithic crystal filters provide a complete filter on a single quartz wafer

with no supplementary parts.

1.2.4 The benchmark filter

The collaborating establishment produces about two hundred separate types
of crystal filters. The filter code number 4716 was used for this study. This
filter is a discrete 4-pole asymmetric bandpass crystal filter. Asymmetric
refers to the passband region because of the steep skirt selectivity on one side
of the passband and the reduced attenuation on the opposite side. Figure 3

displays the top view of the filter. The filter consists of two types of
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C,, G : trimmer capacitors

Ty, T,, T; : inductors

Figure 3: Top view of filter used in the study
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adjustable components, namely trimmer capacitors (C,, C,) and inductors (T,
T,, Ty). The specification of the filter is summarised in Table 1. The selectivity
requirements are divided into two general areas, namely the passband and
the stopband response regions. Both regions are specified with reference to

a nominal frequency which is the centre frequency (reference frequency). A

typical filter response demonstrating the electrical specifications is shown in

Figure 4.
1.2.5 The need for post assembly tuning

Filter engineers have tackled the tuning problem in two different ways. One

approach takes place during the design stage and the other takes place after

assembly. The post-assembly approach can be further categorised into two
methods, namely functional and deterministic’. The latter method applies
circuit modelling and includes techniques such as response sensitivity. This

research concentrated on the former method. This is the traditional approach
in which tuning is performed manually. The manual tuning procedure is

described in Section 2.2.

In practice, the actual performance of an electrical filter differs from the
specification. This is due to the inescapable effects of using real components

which leads to apparently identical filters having slightly different responses.

This becomes more transparent when, for example, the inductor component
is considered. The use of inductors is a predominant cause of response

deterioration, because obtaining exact values requires winding the component

by hand. This results in inconvenience and further cost. Furthermore the

method used in winding the coil, number of windings, spacing of turns,

permeability of the core are all factors that contribute to the electrical
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Table 1 : Specification of used filter

Reference frequency 1.4 MHz

Passband width +0.5 KHz to +2.5 KHz minimum at
Stopband width

Passband ripple

Attenuation at 1.4 MHz 10 dB minimum |

Ultimate attenuation 45 dB minimum to be maintained to +

4 dB

-0.7 KHz to +5.0 KHz maximum at

45 db

3.0 dB maximum 4800 Hz to +2.0

KHz

20 KHz
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characteristics of an inductor. ;

1.3 Overview of Artificial Intelligence

In the literature of computer science the task of exploring and simulating

human intelligence has been termed Artificial Intelligence. The objectives are

twofold:
(1) the amplification of the user’s capability in performing intelligent

tasks, and

(i1) the understanding of the principles of intelligence.

One representative definition of Artificial Intelligence is given by Barr.and

Feigenbaum®.

'Artificial intelligence is the part of computer science concerned with
designing intelligent computer systems, that i1s systems that exhibit the
characteristics we associate with intelligence in human behaviour -
understanding language, reasoning, solving problems and so on.'(page 4)

Therefore Artificial Intelligence 1s based upon perceiations of humaﬁ intell-
igence. Although we can recognize intelligence it 1s questionable that anyone
could provide a definition covering all its aspects. The spread of the interpre-
tation of the termrintelligence has resulted in the discipline of Artificial
Intelligence incorporating the fields of engineering, cognitive science,
philosophy, psychology and linguistics. This generated applications and topics
of research. Some examples of application areas are game playing, automated
reasoning and theorem proving, natural language understanding, robotics,
expert systems, machine learning and neural computing. The work performed
for the tuning of electrical filters involved the expert systems, machine

learning and neural computing branches. These areas are explained at the
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appropriate sections of the thesis. The reader is referred to books by

Winston?, Charniak and McDermott!®, and Barr and Feigenbaum!'>* for

further background to the theory and pragmatics of Artificial Intelligence.

1.4 Expert Systems

The realization by the Artificial Intelligence community during the 1960’s of

the weakness of general purpose problem solvers led to the development of
expert systems. Expert systems held the greatest promise for caipturing
intelligence and have received more attention than any other sul;-discipline
of Artificial Intelligence. The term knowledge-based systems is used
interchangeably to avoid the mis-understandings and mis-interpretations of
the word ’expert’. Irrespective of the adjective, each such system is dneﬁsigned

to operate in one of a variety of narrow areas. The design involves attempts

to model and codify the knowledge of human experts.

1.4.1 A review and classification of expert

systeni projectsh

The number of expert systems reported in journals is rapidly increasing. But
there are four examples that merit special attention due to the fact that they

were the pioneering attempts. These systems are, the Dendral'* system which

infers the molecular structure of complex organic compounds from their
chemical formulae and mass spectrograms, the Mycin'® system which
diagnoses blood infections and recommends the appropriate drug treatment,

the Prospector'® system which is designed to aid geologists in their search for

ore deposits, and the R1(XCON)" system whose purpose is to configure VAX-

11 computer systems. These systems are important. First they showed that
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the new technology can work and secondly they provided models (of
representation and inference) that other implementations followed. Since that
era a wide variety of programs, not so much acclaimed, have been developed
in many different fields, performing a range of diverse tasks. For a survey of
recent applications, and a set of references, see Bramer'®, Reddy'?, Bremer®
and IEEE Computer?®!. There are numerous ways to classify expert systems
but the two that follow are probably the most important. One apparent
practice is by their area of application (Mycin - medical, Prospector - geology).
The other is by the tasks that they are called upon to perform? (Dendral -

interpretation, Mycin - diagnosis).

1.4.2 The éomponents of an expert system

The essential components of an expert system can be identified as :-

Knowledge-base module; this is the essential component of any system.

It contains a representation in a variety of forms of knowledge elicited

from a human expert (see Section 1.4.3).

Inference engine module: the inference engine utilises the contents of

the knowledge base in conjunction with the data given by the user in

order to achieve a conclusion.

Working memory module: this is where the user’s responses and the

system’s conclusions for each session are temporarily stored.

Explanation module: this is an important aspect of an expert system.

Answers from a computer are rarely accepted unquestioningly. This is

particularly true for responses from an expert system. Any system

must be able to explain how it reached its conclusions and why it has

not reached a particular result.
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Justification module: using this module the system provides the user
with justification(s) of why some piece of information is required.
User interface module: the user of an expert system asks questions,
enters data, examines the reasoning etc. The input-output interface,
using menus or restricted language, enables the user to communircate
with the system in a simple and uncomplicated way.

Through the years systems have appeared which include additional modules.

For example, learning modules, knowledge acquisition modules and

refinement modules. Each one of the above constitutes a research topic on its

OWIl.

1.4.3 Theﬂ ﬁaturé énd represeiitation of

knowledge

Whereas from a philosophical point the concept of knowledge is highly

ambiguous and debatable, expert system builders (to be referred to as
knowledge engineers) treat knowledge from a narrower point of view. This
way the knowledge is easier to model and understand, but remains diverse
including rules, facts, truths, reasons, defaults and heuristics. The knowledge
engineer needs some technique for capturing what is known about the
application. The technique should provide expressive adequacy and notational
efficacy®®. Knowledge representation is very much under constant research
and several schemes have been suggested in the literature. The four most

widely used in current expert systems are production rules®, semantic nets?,

frames?®, and logic?’. Obviously, no single method can represent all kinds of

knowledge and although some kinds of knowledge can be represented in many
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ways some other kinds of knowledge, such as time, cannot be captured.

1.4.4 Controlling the knowledge

Much of the power of an expert system comes from the knowledge embedded
in it. In addition, the way the system infers conclusions is of equal
importance. The knowledge engineer has to consider how to implement the
control, ie. what to do next, and the search, ie. how to find some information.

These decisions rely on the classification of the task®, and on the amount of

information known beforehand about the problem space. Various problem-

solving methods have been described in the literature®.

1.4.5 Knowledge acquisition and elicitation

The terms knowledge acquisition and knowledge elicitation are often
confused. The knowledge acquisition process is defined as the combined
activity of eliciting, analyzing, interpreting, representing, administering and
utilising the knowledge of human experts. Clearly, knowledge elicitation only
address the elicitation aspect of the task. The primary activiﬁty during
elicitation is to capture knowledge from experts through a series of sessions.

A large number of elicitation techniques have been proposed as suitable and

as a result of a literature review, the following techniques were identified:

Structured interview Questionnaires

Interruption Retrospective comment analysis
Behaviourial observation Informal interview

Protocol analysis -~ Multidimensional scaling
Concept sorting Repertory grid

Cluster analysis -+ - - Socratic dialogue

Forward scenario Conceptual clustering

It is important to realise that generally none of these techniques can surface

on its own but a mixture will probably obtain the required results. The reason
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for this being that knowledge has many forms and each technique can only

attempt to extract a subset. For example the protocol analysis technique,
described below, works very badly for domains which are best represented

declaratively but a rich amount of procedural knowledge can arise.
1.4.5.1 Protocol analysis

Protocol analysis (or process tracing, or verbal reporting) was first described

by Newell and Simon® and, in recent years, by Ericsson and Simon®., The
expert is given a typical problem to be solved and before the session begins
s/he is requested to verbalize whatever s/he is thinking. The session is audio
and/or video-taped and the protocol is transcribed and analyzed at a later
stage. During the session the builder participates only when the expert seems
to be idle by asking probing questions such as what are you thinking at this
moment?. The technique minimizes the builder - expert interaction resulting
in economising the expert’s time. Although there are some problems
associated with this technique, protocol analysis seems to be useful at the
start of a project. Problems can be encountered due to the fact that not all
individuals find it easy to verbalize and perform sirﬁultaneously and also
most people can think more quickly than they can talk. In both cases

knowledge might be lost. Additionally, protocol analysis can provide us with

extensive information of how the knowledge is used but not about its full
range. Finally, analyzing protocols is time consuming and difficult. Various

authors have described types of analysis to apply to the same raw data in

order to become familiar with it, to understand the reasoning involved and

to facilitate the representation of the knowledge. A brief review follows.

Waldron®? provides a framework for classifying decision alternatives in terms
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of alternatives, attributes, aspects and attractiveness. He also classified
naturally occurring rules into dominant, lexicographic rules. Bainbridge®
offers three analytic approaches to be applied to the transcript. Explicit
content, implicit content and groups and sequences of phrases. She has used
those approaches in analyzing verbal protocols from a process control task.
Kuipers and Kassirer’ analyzed a verbatim transcript taken from a second

year student in three stages: Referring phrase analysis, assertional analysis

and script analysis.

There exists a considerable overlapping on each author’s ideas and proposals.
This is something to be expected since knowledge elicitation is a new
discipline but the terminology leaves something to be desired. Different

people use the same terms to mean different things. A lot of research is under

way in order to compare the various elicitation techniques so a builder can

rate each technique’s suitability under various circumstances. A review of

knowledge acquisition evaluation research can be found in the article by

Dhaliwal et al®.

1.4.6 Expert systems and conventional

programs

One might wonder what makes expert systems different from conventional

ones. One might remark that in some sense, any computer program is expert
at something. A payroll program incorporates knowledge about accountancy,

but it is not included in the expert class. The reason being that the numbers

generated by the payroll program might differ depending on the inputs, but

they are always generated in the same way. Creating conventional programs
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involves the definition, from the beginning, of the data, its nature and the
process involved. The process consists of the presentation, in the proper order,
of the correct set of procedures and control structures.- The conventional
approach typifies program-driven processing where what happens next at any
particular point is pre-determined. Hence, conventional programs rely on
algorithms which contain a step-by-step description of the procedures to be
followed. These algorithms guarantee that the right conclusion will be

reached when the correct data have been entered or that new knowledge from
old can be inferred but the inference order is known. Expert systems differ
from conventional software systems in that they are able to reason about data

and draw conclusions employing heuristic rules. These are rules that have

been formed through practical experience and they are employed to solve
problems. Heuristic rules do not require perfect data and are not guaranteed
to succeed but the proposed solutions are derived with varying degrees of
certainty. The route to a conclusion varies according to the input data but the
difference with conventional programs is that the inference orcier is not preset
by the programmer. The inference order is determined by the success or
otherwise of the branches of the rules. Heunstic rules are useful for
situations where it 1s not possible to construct aﬁ algdrithm. Another
difference is that with conventional programming the knowledge and the
processing procedures are tangled and spread throughout thie entire iJrogram.
In an expert system, h&wever, knowledge is concentrated in one module and

another separate module directs the inferencing. The separation means that

one can make at least some changes to either module without necessarily

having to alter the other. These differences led to the usage of different type
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of programming languages employed. Traditional programming involves the
use ofimperative languages, whereas on the other hand declarative languages
are employed for an expert system construction. Additionally, expert systems
can reason using incomplete data and can generate explanations and

justifications, even during execution of their actions. Once again these

facilities are provided by separate modules.

1.5 An overview of the AEK expert system part

The knowledge engineer has at his disposal a number of tools to aid the
construction of an expert system. These tools fall into four mgjor categories.
Programming languages, shells, development environments and domain
specific tools. As described by Waterman®® and Harmon et. al®’ there are a
variety of expert system tools.

The AEK system was constructed using a commercially available expert
system shell, namely Xi-Plus. Shells provide an alternative to programming

languages since the knowledge engineer does not have to create the entire
system from scratch. Shells like Xi-Plus provide an editor, the user interface,

the inference engine and the explanation facilities. On the other hand the

majority of such shells constrain the construction process due to the lack of
a number of representation and searching schemes. This way the knowledge

engineer might try to represent the whole of the area of knowledge using a

single representation formalism. Ifthe need arises development environments

can provide the solution. These environments are equipped with more
sophisticated editors, graphical interfaces and numerous representation

methods. Gevarter®® presents evaluation criteria for selecting a commercial

tool for performing a particular task.
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The Xi-Plus system was used because it was readily available. Its utilisation

was continued because of the suitability of the architecture and control

features for the task.

1.5.1 The AEK expert system part

architecture

The system implements the most common form of architecture in expert

systems, namely the rule-based architecture. The components of the system

are the ones described in Section 1.4.2.

1.5.2 Representing knowledge in AEK

(expert system part)

The knowledge is represented using rules, facts and defaults. Facts are
statements which are true under all conditions. Defaults are values used in
the absence of other information. Rules, or production rules®, are small
chunks of knowledge expressed in the form of if..then statements. The left
hand side (IF') represents the antecedent or conditional part. The right hand
side (THEN) represents the conclusion or action part. A number of rules
collectively define a modularized know-how system®. A list of the benefits and
drawbacks using production rules is given by Hayes-Roth*, The rationality

for selecting rule-based presentation becomes apparent when examining the

following three factors.
The wording of the expert: When dealing with experts, it is important

to try to select the approach that is most natural to them. In our case,

during protocol analysis (see Section 3.3), it became apparent that the
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expert was expressing his problem solving techniques in terms of

situation-action rules in order to show empirical associations between
attributes. (Appendix 1 contains a protocol transcript).
The nature of the task: The tuning of the filter is accomplished by

classifying the appropriate action to be taken from a pre-specified list

of possibilities. Production rules can only represent what is called

’shallow’ or 'low’ knowledge*! but they present a natural framework for

classification tasks*.

The use of an induction tool: Elicitation of knowledge was performed

using an induction tool (see Chapter 7). The outcome was a decision

tree which was transformed to a set of rules.

1.5.3 Control in the AEK expert system part

The shell comes with predefined control structures but the user can
implement some of his’her own. When a user of AEK requests the
classification of a given magnitude response the system operates in the
backward chaining mode (i.e. tell me how to classify). The order of looking at

the rules is lexical order viz. when scanning rules it will first look at rule 1,
and then rule 2 etc. The order that the rules are recorded is then critical.
Since the rules were generated from a decision tree, the system performs a

depth-first search. When it searches, it inspects each rule to see if the left
hand conditions are true. This is achieved by either reading the working

memory or by asking questions or by generating further subgoals. In any

case, the system continues to the next rule until all rules have been inspected

(if this is not desirable the user can instruct the system to stop at the first

true rule). Theoretically all rules that can execute must be placed in a conflict
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set and one of the rules is selected®. Using Xi-Plus the system displays all

options and the user has to make the decision. The selected -rule then
executes. This is what is known as the match, select and execute cycle. The
system provides forward chaining (ie. what can you tell me when this data is
true) as well, Additionally, meta-rules are available in order to reduce the
search space. Other control facilities are the checking of outstanding queries,

of a completed goal and the initiation of the evaluation of rules.
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2.1 Introduction

Chapter 2 provides an introduction to the manual proceame currently in use
(Section 2.2). Section 2.3 describes previous work in the field ;f electronic
filter tuning. Three approaches are described in total. The heuristic and the
machine learning approaches were selected since their overall methodology
is close to the one followed in this work whereas ﬂthe third approach
(sensitivity-based approach) represents conventional teéhniques. Finally,
Section 2.4 discusses the motives forimplementing the expert-neural (Hybrid)
approach by identifying the strengths and weakness of the previoﬁs
approaches and the areas where the hybrid system can perform (or
compliment) better. It was hoped that the hybrid would eliminate repetitive

and time consuming calculations, provide a better system-human interface

and enable a complete automation of the tuning task.

2.2 Manual tuning procedure

Manual tuning can be thought of as a human real-time optimisation which
attempts to reduce the total and individual errors in the features of interest,

with as few steps as possible. Error is defined as the difference between the

required and the obtained performance.

There does not appear to be a éeneral theory of the practical tuning of filters.
Through an initial training and with acquired experiencg the operator is
transformed into a skilled operator. An experienced operator then effectively
generates an heuristic algorithm for tuning a particular type of filter.
Knowledge about which components are ap;propriatie for adjustment for tuning

and which to be ignored, the order of the specification checking etc. is
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referred to as heuristic. Heuristic algorithms are different to conventional
algorithms in the sense that they do not guarantee success or a solution. They

can fail at certain times, but often they work. The difficult part, as will

become obvious later on, is to extract the algorithm. The operators appear to

be unaware of it.

Despite the variations between operators, which can be found in detail, the
general pattern is the same. An operator checks the performance of the filter
(e.g. magnitude response). From experience coupled with the feedback pro-
vided by the response measurement system he or she decides what corrective
action, if any', is to be taken. The action being the adjustment of an
appropriate tunable component. These steps are then repeated as many tﬁnes
as necessary until the performance satisfies the requirements. Then the
response is checked at a set of frequencies and further corrective actions, if
required, are carried out. Effectively, the operators act as signal interpreters
and the interpretation is not based on any theory but is essentially a

synthesis of a strong capability for pattern recognition linked with knowledge
accumulated from past experiences.

2.3 Work in the electronic filter tuning field

Although manual tuning is successful the advantages of providing
computerised assistance to an operator have been recognised before. This
section introduces and contrasts the work of others in the field. The reasons
behind the motivation for using the expert system technology are also

discussed. Rather than introducing a catalogue of all techniques, this chapter
will highlight on three proposed methods, namely the work described by

Nazemi and Fidler!, Mirzai?, and Crofts and Jervis®. The first two projects are
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most directly relevant to this work due to the involvement of experts, in

Nazemi et. al. case, and the machine learning approach, in the case of Mirzai.

A discussion of the three techniques will hopefully help to understand AEK’s

contribution to the field.

2.3.1 Filter tuning using a microprocessor

based heuristic algorithrh

Nazemi and Fidler® realized the need for the automatic tuning of filters and
proposed a method which took into consideration the operator’s knowledge.
The development of the heuristic method involved three phases. The first
phase involved the selection of the tuning components and the frequency
points. To facilitate the selection, sensitivity analysis was employed as a
starting point. Secondly, the error and stopping criteria were defined in order
to have some means of stopping the tuning process. Finally, the heuristic
tuning algorithm was developed. This involved the creation of an information
storage data table (ISDT). The table included information on which

component to adjust and the direction of adjustment at every test frequency
point. This information was dependent on the polarity of the error. This ISDT

was stored in the memory of a microprocessor controlled system which tested

the filters after each adjustment and then adjusted them again, and so on,

until they were tuned. What is interesting and of particular relevance to our
work is the method used to generate the table. In general, the algorithms,
since each type of filter has a different one, were developed by tuning the

filter manually a number of times. The pattern of tuning and the pattern of

adjustments were combined and their examination resulted in the creation
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of the algorithms. In particular, for a second order Sallen and Key lowpass

filter Nazemi* reported the creation of the algorithm as follows:

"By performing the tuning manually many times, the best approach
was recorded and from that an ISDT was formed." [Chapter 5, page

142]

The goals of the testing of the heuristic algorithms were as follows:
(a) Can the heuristic algorithm be used on its own, and

(b) can the heuristic algorithm be used as a front-end of another technique.

If so, are there any benefits in doing so.

The heuristic algorithms were tested on a number of hardware circuits and
compared to a pattern search optimisation technique devised by Hooke and
Jeeves®. The criterion of comparison was the number of measurements ca&ied

out by each method. One conclusion was that the heuristic algorithm can be

operated on its own but usually resulted in a coarse tuning. An important

observation was the substantial improvement i1n the number of

measurements. When used as a front-end no more than eighty-eight (88)

measurements were required although total reliance on the Hooke and Jeeves

method required a minimum of five hundred (5600).

2.3.2 Alignment of filters using a Machine

Learning System

Mirzai? proposed a machine learning system (MLS) for tuning waveguide
filters. The MLS was originally developed for fault diagnosis of
telecommunications systems, in particular microwave digital radios®. The
approach is based on linear adaptive combiner algorithms and more

information is given in Chapter 4. Here, only an outline of the MLS will be
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given. The overall system is used in two modes, namely: the training mode

and the use mode. In the training mode the adaptive combiner was used for

fine tuning only. The coarse tuning was performed manually. In order for the

algorithm to learn how to perform the fine tuning the following steps were

taken:

(1) The reference characteristic was selected. This was the S,, polar plot
(Figure 5a). This was chosen because it enabled tuning of the group delay of
the filter as well as its amplitude response. S;,, where S stands for scattering,
looks at the division of the output by the input in frequency domain at all the
frequencies of interest. The scattering parameter using a network analyzer
system enabled the measurement of both the magnitude and phase
information and the plotting of the data on a polar display. The measurement
of the scattering parameter can be illustrated better using network parameter
theory. Figure 5b which displays a flow graph of a two port network will be
used. Nodes a and b are the incident and reflected nodes respectively. When
an incident wave enters the device at node a of port 1, part of it will be
returned through the S,, path and b, reflection node. Part of the wave will be

reflected through the a, node as well. This can be expressed as:
by=a,*S;;+a;* Sy,
If the device is not connected to port 2 (i.e. by terminating port 2 withi t s
characteristic impendance) then the equation becomes:
by=a, * 5
Therefore S,, = b, / a, given that a; = 0.
Other scattering parameters can be measured in a similar fashion. These

generalized parameters can be measured easier than other traditionally used
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parameters especially for frequencies above 100 MHz. Additionally their
conversion is quite simple.

(11) A set of prominent features were extracted from the reference
characteristic in order to have some means of assessing the sensitivity of the
adjustable components on the polar plot. In total sixteen (16) features were
selected. These included the area of the loops, the geometric mean of the plot
etc (Figure 5a).

(1i1) The adjustable components to be used were selected - in total six (6).
(iv) The value of each feature for a fine-tuned filter was recorded.

(v) Further examples were generated by simply mal-adjusting one adjustable
component at a time. This was implemented for both directions. |

(vi) The examples were fed to the algorithm and a number of combiner
weights were calculated. These weights represented the knowledge in the

form of mathematical relationships.

In the use mode the system was simply provided with the feature set of a
coarsely tuned filter. This initiated the production of a graphical display of
the adjustment levels of each component. The component which generated the
maximum error at each iteration was adjusted. This process was repeated
until the response of the filter was within the specifications set by the

reference filter. One coarsely tuned filter was found to meet the specification

within twenty (20) adjustments. Unfortunately, the initial amount of mal-

adjustment has not been reported.

2.3.3 Sensitivity-based filter tuning

This section introduces the work by Crofts and Jervis® which is based on

sensitivity analysis. The concept of sensitivity involves the identification of
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Figure 5a : A typical S;; polar plot
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. Figure 5b : Flow graph of a two port network
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the relationship between variations in a particular function F and the
variable parameters of that function. In the case of circuit analysis the
voltage transfer function H(s) was used and the adjustable components X,

represented the variable parameters. Two tuning algorithms by Antreich? et.

al. and Jobe® were compared using simulated and actual tuning of two
differently designed low-pass, 7'" order, elliptic filters (a 4.5 MHz and a 100
kHz filter). Only the magnitude response was considered and the work of
Crofts and Jervis? involved the identification of which adjustable component
(one of three inductors) dominated the sensitivity of the magnitude response
at some selected frequencies. An outhine of the tuning procedure is given

below:;

(1) Calculate the network response using (H(s)) the nominal component

values at six selected frequencies.
(2) Perform the sensitivity analysis by incrementing each component in turn
by a known value (x 2.5 for the 4.5 MHz filter, + 4 for the 100 kHz filter)

from its nominal value.

(8) Calculate the adjusted network response at the six selected frequencies

and compare with the specification. Their difference (A H(s)), termed object

function, at each selected test frequency was found by simple subtraction.

The magnitude sensitivity was calculated using the following formula:

H(s) _ Xy 3|H(S) |
5x, [H(s)| ox,

If the specification was satisfied then step (6) was performed, otherwise step

(4).
(4) The object function combined with the results from step (2) indicated
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which component(s) were in error. Using Antreich’s’ et. al. method the

adjustments, for a circuit with two adjustable components analyzed at two

frequencies, were given by:

E, . E
S, - 51;':21 Sy, = 31.;;-:'22

A= E,__ . E
Sy, 51.;:22 Sy,- 31;:21

= £y + Ea
I i
= & + £,
B

The required component adjustments were then given. The tuning procedure

was repeated from step (2).
(6) The tuning procedure was terminated.

The tuning results with the computer simulations and the actual tuning

showed that®:

m Both tuning algorithms were capable of tuning the filters.

® The Antreich ef. al. method was more efficient than the Jobe method

(simulation results).

m In the case of the actual tuning of the 4.562 MHz filter no difference could
be found between the performance of the two methods.

m The actual tuning of the 100kHz filter showed that there was a poor match

between the practical tuning and the computer simulation but tuning was
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achieved in most cases.

2.4 Motivations for using a hybrid system

The motives for employing a hybrid system (expert system, neural network)

in the filter tuning domain can be categorised into three broad areas, namely

technical, business and science.

Technical considerations

The desirability of applying expert systems in terms of a comparison with
other approaches and general task properties were considered. The expert
system approach could be used for comparison with other techniques in terms
of measurements required and time taken. However, such comparisons are
not feasible since the various authors describe their work using different ﬁlster
types. An investigation could be carried out where the same filters ﬁll be
used, but unfortunately this is work which may never be performed. The
question is then best answered by considering how well those previous
approaches fulfil the requirement of a system which exhibits certain essential

and desirable features. Such essential features are: the reporting of which

tunable component to adjust, in which direction and by how far, The desirable
features are: generality, explanation of reasoning and easy human

interaction. Discussing briefly those approaches, one can assert that both

Mirzai and Crofts provide excellent information about the essential features.
The drawbacks are the need for repetitive and time consuming calculations
(especially Crofts), lack of generality and basic system-human interface. The
latter indicates that the systems cannot possibly be used as tumré. Further,

Crofts work is deterministic and corresponds to an inexperienced operator,

viz. it starts from scratch in every case and does not take into account the
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expertise of an operator. On the other hand Nazemi and Fidler use the
operator’s knowledge but the elicitation method leaves loopholes. For example
the "best” approach of the day does not guarantee it will always be the best.
This is acknowledged by Nazemi and Fidler who conclude that such heuristics

must be generated automatically - something our work contributed towards.

At the same time the work of Nazemi and Fidler does not provide information

about distance (i.e. how far to turn).

The general task properties that have to be satisfied when selecting an expert
system application are numerous'®'*', For example, there must exist
recognised experts who are probably better than novices in performing the
task. The task must be well bounded, must require the use of reasoning. and

not just numeric processing, and must be neither too easy nor too difficult.
The filter tuning task satisfies these expectations.

Business considerations

The other major aspect is the value of the system to the business. At the

present time, manual tuning has some drawbacks. It is time consuming,

represents a large proportion of the total filter production cost, and can be

described as uninteresting and uncreative. An expert system could free the
operator to undertake work more satisfying to him or her and be more

productive for the manufacturer.

Knowledge considerations

The filter tuning task is different to, say, the familiar domain of medicine. In
the medical field one deals with a highly qualified expert, with several years

of practice, able to reason for the decisions taken and performing in static

time. By contrast the operator in the tuning process is not highly qualified,

40



not always able to reason and operates in real time with a constantly

changing environment. The numerical nature of the knowledge and the

problems of eliciting the knowledge resulted in needing a further tool, i.e.,
creating a hybrid expert system-neural network system. Our goal was then

to develop a hybrid system to provide the operator with all the essential
features using an appropriate display.
References

1. Nazemi J., and Fidler J.K., Filter tuning using a microprocessor based

heuristic algorithm, 1Proceedings of the 1985 European conference on circuit

theory and design, pp. 101-104, 1980°.
2. Mirzai A.R., Waveguide filter alignment, In: Artificial Infelligencé -

Concepts and applications in Engineering (Ed. A.R. Mirzai), Chapman and

Hall, 1990.
3. Crofts M., and Jervis B.W., Sensitivity-based computer-aided tuning of

elliptic filters for optimum magnitude vs frequency response, Research report,

Department of Electrical and Electronics, Sheffield City Polytechnic, England,

1987.

4. Nazemi J., Microprocessor-based filter tuning system, PhD thesis,

University of Essex, 1984.

5. Hooke R., and Jeeves T.A., Direct search solution of numerical and

statistical problems, Journal of ACM, Vol. 8, pp. 212-229, 1961.
6. Brown K.E., Cowan C.F.N., Crawford T.M., and Grant P.M., Knowledge-

based techniques for fault detection in digital microwave radio communication
equipment, IEE Journal on selected areas in communications (Special issue

on knowledge-based systems for communications), Vol. 6, No. 5, pp. 819-827,

41



1988.
7. Antreich K., Gleissner E., and Muller G., Computer aided tuning of
electrical circuits, Nachrichtentechnische Zeitschrift, Vol. 28, No. 6, pp. 200-
206, 1975.
8. Jobe G.G., Computer aided adjustment of electrical filters, MPhil thesis,
Newcastle-upon-Tyne Polytechnic, England, 1979.
9. Crofts M., and Jervis B.W., A comparison of computer-aided tuning
algorithms applied to the amplitude response of passive analogue filters, IEE
Proceedings on Circuits, Devices and Systems, Vol. 138, No. 3, pp. 363-371,
1991.
10. Zack B.A., | Selecting an application for knowledge-based sy#tem
development, Proceedings of the third international expert system conference,
pp. 257-269, 1987.
11. Prepau D.S., Selection of an appropriate domain for an expert system, Al
Magazine, Vol. 7, No. 2, pp. 26-30, 1985.
12. Laufmann S.C., DeVaney D.M., and Whitinh M.A., A methodology for
evaluating potential KBS applications, IEEE Expert, Vol. 5, No. 6, pp. 43-61,

1990.

42



Part B

Knowledge-base Construction

Chronicle Elicitation

43



Chapter Three

Initial Knowledge Elicitation

44



3.1 Introduction

Chapter 3 reports on the work and the results obtained during the first visit
to Newmarket Microsystems. The results included the selection of the expert

operator and the type of filter to be employed. Add;tionally, protocol analysis

was 1dentified as a suitable starting knowledge elicitation technique mainly
because of the verbal on-line format of the technique. Section 3.3 presents the
protocol analysis implementation and the subsequent analysis of the
transcripts. The main analysis result was the identification of the overall
filter tuning procedure, Furthermore, the analysis of the transcripts indicated
the need for an alternative elicitation technique due to the apparent lack of

theory behind the selection of a particular tunable component the direction

and how far to turn it (Section 3.3.2).

3.2 The first visit

The first stage of any knowledge engineering project must alwayé be t:he
familiarization of the knowledge enginéer with the domain. In addigibn,
various general but important questions have to be answe;ed before the task
commences. For that reasoﬁ the objective of the first visit to the collaborating
establishment was to obtain background informatioﬁ béneﬁcial for aomain
acquaintance®. The f‘ollowing activities were carried out;

v Identification of benchmark filter

v Identification of expert operator
v Identification of sources of reference
v Identification of the role of the system

v Identification of any parenthetical knowledge
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v Elicitation of concepts

v Definition of the problem areas

v Identification of appropriate knowledge elicitation technique.

3.2.1 Identification of benchmark filter

One of the first tasks was to select a suitable filter. This filter had to satisfy
two requirements. Firstly, the tuning of such a filter had to be more or less
representative of the task. Secondly, the tuning process had to be neither too
trivial, because the effort of developing an expert system might outweigh the
potential benefits, nor too difficult. The filter had to be somewhere in the
middle of the complexity scale. A factor which probably determines how easy
or difficult the tuning of a filter will be is the number of adjustable
components. Another factor derives from how trivial or complex the required
specification is. The degree of complexity depends, for example, on the
requirement of examining the phase response or on the number of frequency
ranges to be checked. The collaborating establishment manufactured more
than 200 types of crystal filters. With the help of an operator the whole
SPGCt@ was segregated into three categories . From each category one ﬁltel;

type was identified. The filter type from the medium category was elected to

be the benchmark filter.
3.2.2 Identification of expert operator

The choice of whom to use as expert is critical. Without an expert, there
cannot be a system, unless the knowledge engineer is also the expert. At

Newmarket, there exist various people who have competence in tuning filters.

These people differ in age, experience and qualifications. Most operators fit
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one category: those people with few years experience on the job and
unqualified. Our expert was chosen because of his vast experiencein
designing and tuning filters (over 25 years), his willingness and enthusiasm

about the project and his articulateness.

3.2.3 Identification of sources of reference

Sources of reference are often sufficient to introduce the knowledge engineer
to the domain. Unfortunately, despite the plethora of books about filters and
their design, there is no book on how to tune filters. A reason for this might
be that filters are manufactured for a particular client’s SpeciﬁcatiOQ,

resulting in hundreds of different designs. A formal theory or methodology

has not surfaced. What was made available was information for the
benchmark filter. That information included a schema of the filter, the

specification that it had to satisfy and a graphical representation of the

magnitude response.

3.2.4 Identification of the role of the system

An expert system can act in a number of different roles®, For example as an
assistant - performing a sub-task of the process, or as a critic - reviewing the
decision of the expert and providing comments. The role a proposed system

takes depends on the user. Is it going to be used by an expert or a novice? It

also depends on the degree to which the problem can be automated. Another

factor is the company’s wish, which in a commercial world is probably the
most important one. By discussing the subject with the expert and senior

staff, it was decided that the system could take the role of the consultant.

That way the system offers an opiniion which the user does not have to
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comply with.

3.2.5 Identification of any parentheti- cal

knowledge

The term ’parenthetical’ is borrowed from Freiling et. al.’? who define it in the

following manner:

"...knowledge about how the task being performed relates to other
tasks and the operational environment in which the task is being

performed.”

Another term that can be used is associated knowledge. There 1s not a
methodical way to obtain this kind of knowledge but it comes out during
casual conversations. A guided tour of the filter tuning production line was
made during the visit. The answers to questions such as what happens when
the task is completed were obtained during the tour. Filters were tuned by
trained persons. In situations where the task could not be completed the filter

was passed to a more experienced person. He could either tune it or reject it

because there was something fundamentally wrong. When the filter
characteristics were tuned to within the specification the filter was packaged

into a metal box and sealed. Then it was distributed to the client. A new

person is trained in-house by a senior operator and it can take up to three
months to reach a satisfactory level of competence. Initially the training

involves monolithic filters and later on other type's. This indicated that some

overall generality might exist. One must collect such information because it

can affect the design and the role of the expert system. For example, the
specification could be supplied automatically by the system eliminating the

job of searching for the correct specification.
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3.2.6 Elicitation of concepts

Prior to the visit a letter was prepared (Appendix 2) which was presented to
the expert. The purpose of the letter was to collect those concepts influencing
the decision prucess. At that time it was unclear what those concepts were.

The expert was asked to tune a filter and at the same time to record those

concepts on a piece of paper. The expert faced difficulties with the term

‘concept’. His answers took the form of description of the task instead of only

the concepts, which can be found hidden in the text.

3.2.7 Definition of the problem areas

When the operator decides that the characteristics of the magnitude response
of a filter are not within the desired specifications, he must choose which

section of the response to adjust first, which tunable component to use, in

which direction to turn it and by how far. He also has to determine which
action is to be taken in order to correct a wrong choice. One minor problem

is that the operator wastes time searching for the specification of each filter.

3.2.8 Identification of an appropriate

knowledge elicitation technique

The technique chosen for the filter tuning project was protocol analysis (see
Section 1.4.5.1). It was considered appropnate to video-itape th*e sessions Tbr
the following reasons. In the filter domain the expert interprets, plans and
executes tasks by visually inspecting the display unit of the measurement set.
The set displays the magnitude response of the filter. By adjusting the set,

the expert can inspect the full response or part of the response. It was felt
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that the expert would have found it difficult, or even impossible, to describe

the response in a verbal off-line format. The choice, then was between
behavioral observation and protocol analysis. Since the knowledge engineer

was unfamiliar with the domain terminology, protocol analysis, where the
expert refers to the task process using the terminology, was preferred to the
behavioral observation. Protocol analysis was selected for the beginning of the
analysis process. Protocol analysis had to be complemented with other
techniques (e.g. structured interviews) which were thought to be more useful
in a 'more clarification’ mode. The reader must appreciate that knowledge
elicitation is at a very early stage of development, where general principles

have not emergéd and only a combination of techniques can provide fruitful

results. The combination will vary from project to project. The expert and

senior management did not oppose the idea of using a video recorder so a

second visit was arranged.

3.3 Protocol analysis implementation

The tuning of the chosen type of filter was video-taped twice. The expert was

instructed to ’think-aloud’ about the process and to refer not only to his

mental skills but also to his manual skills. Manual skills means those needed
to operate the measuring set. Mental refers to the reasons behind each action

taken, such as why to turn component X instead of Y. At the end of the

recordings the video tape was played back and notes were taken. Those notes

were concerned with:
(a) ambiguous statements

e.g. "...arrange these peaks into a more reasonable place.”

(b) cross-reference of the expert’s decision taking. That involved
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watching the two video takes of the process and comparing them.

(¢) recording probing questions for further use. Questions such as 'why

did you take that action’ for those situations where the operator did

not provide any explanations.

(d) transcribing and analyzing the verbatim account. That involved
watching and listening to the tape and writing on to paper everything

that the expert was saying.

Some general observations are as follows:

v the expert did not find it difficult to verbalize his manual skills nor, in
some circumstance, to explain his reasoning but there was a steady
decrease of the level of details from the first recording to the last one.

v The expert was able to describe the tuning process for whichever
component he was tuning at a particular time but when there was

more than one candidate component he did not provide a theory for

which one to select.

3.3.1 Analysis of the transcripts

It was realised early on that the transcription process is time consuming .
When both video takes were transcribed they were entered into document

files of the Wordstar wordprocessing package. Packages as such can be very

useful as support tools to browse and edit the text. Prints of the transcripts
can be found in Appendix 1. The files include a reproduction of the protocols
in a complete fashion, and no attempt to filter the contents of the protocol
was made. Each transcript was broken into short lines, in such a way that
each line contained a phrase which could stand in its own right. Having

individual lines did not provide any additional knowledge but made the
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transcript easier to read, understand and analyze. Where it was possible the

format was: Do this - Why - Because (action - justification - explanation).

Appendix 3 includes the phrase transcriptions. Lines which did not belong to

this format were either general comments or operational comments. The

benefits of the transcription analysis were as follows:

.\I

Identification of order for specification checking ie. what features and

in what order were checked. If during checking one feature needs re-

adjustment, the expert attempts to fix it and he starts re-checking from

the beginning.

A set of possible tunable components associated with each feature
identified above was also recognised (Table 2).

The classes of activity the operator engaged in were identified. The
operator had knowledge about the measuring set, useful in order to
have the most appropriate display at each time (Operational). He had
knowledge of how to interpret a response and identify those regions, if
any, that need adjustment (Interpretational). Additionally, he had
knowledge of which region, or part of, to tune first, what to follow etc.

(Planning), knowledge of how to proceed in order to make a final check

(Inspection), and knowledge of how to recognize an achieved state

(Recognition).

By identifying the various activities, one can concentrate and tackle a

particular activity at a time (i.e. modularity).
The objects were recognized and classified. By objects is meant the

most primitive lexical entries that the expert uses to express domain

knowledge. Objects usually take the form of a noun or a compound
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noun. Such objects in the verbatim transcript are: "coils", "capacitors",

"frequency”, "anticlockwise"” etc. The outcomes of the object identification

process were twofold. Firstly, the knowledge engineer became familiar with
the domain terminology, resulting in the production of a lexicon'. A sample

can be seen in Appendix 4. Each definition is from the IEEE standard

dictionary of electrical and electronic terms‘. Secondly, synonyms were

identified which helped to reduce misunderstandings. For example screw-in

and clockwise mean the same action.

v Casual statements, with a lot of information, were identified. Such
statements were as such:

- it is used to adjust the passband
- capacitors are used to adjust the stopband
- the right capacitor is the best bet to adjust the return levels.

v The expert’s tuning process was identified. That 18, a general t;veririew
of how the expert proceeds. The expert’s process can be split into three
main stages. Set-up the measuring set, qualitative tuning and
quantitative tuning. Stage one, is simply thé setting-up
of the meﬁsuring set using, for example, the reference

frequency. The first stage is not of concern since it is mechanical in

nature and is the same for any type of filter, except of course, that

different reference values are used. By qualitative tuning, is meant

that stage in which the expert uses visual information to decide if

tuning is required. He also employs visual information when he adjusts

a particular component to determine if the correct action has been

taken. Quantitative tuning can be thought of as the specification
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checking. The expert uses not only visual information but numerical

values (obtained from the meter) to determine if more tuning is

required.

3.3.2 The need for an alternative elicitation

technique

Let us concentrate on the second stage. Stage two, can be broken down into
tw01Mher substageé. Tuning of the stopband and tuning of the passband.
It was also discovered that the expert always attempts to tune the stopband
region first. Additionally it was found that the trimmer capacitors are the
only adjustable components to be used for the stopband tuning. The inductors
are used for the”‘passband tuning. Another observation was that having
successfully tuned component X, then when he moved to the next component
he tuned in the same direction as he did with X. The problems arose when
the expert was unable to provide any explanations of either why he selected
a component X instead of Y, or why a certain direction was chosen. It seemed
that the expert either made those decisions by chance or that something
triggered his decision which he was not able to express. Also, he did not

express by how far to turn. The expert actually kept turning until a
particular shape of the response was reached. The rules governing what

constitutes a satisfactory shape could not be expressed. This situation was
worse in those .circumstances where the expert had moved away from the

'optimum’ state. His subsequent action was to turn the component the

opposite direction until the 'optimum’ state was re-achieved. To overcome the

problem of which component to use at certain response states, which direction
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to turn and by how far to rotate, the possibility of automatically acquiring

and updating the rules was considered.

3.4 Conclusions

During the first visit to Newmarket Microsystems the 4716-type of crystal

filter was selected as the benchmark filter and it was decided that the

computerized system should act as an advisor.

It was decided to apply protocol analysis as the first step for acquiring

knowledge. Following the implementation and analysis of the protocol
transcripts it was clear that machine learning algorithms as the means for

automatic knowledge elicitation must be investigated.
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Chapter Four

Machine Learning Principles and Techniques

What we have to learn to do, we learn by doing

Aristotle
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4.1 Introduction

As already mentioned in Chapter 3 an alternative knowledge elicitation

approach had to be considered since the applicable classification rules were
not clearly known.
Recently systems which are capable of automatically identifying and

synthesizing the knowledge of an expert have proved of interest. Machine

learning systems is the commonly used term to describe such systems. The
concept of machine learning and in particularly learning through the uée of
examples is the sul;ject of Section 4.2. In Sections 4.3 to 4.5 three systems
(ID3, Adaptive Combiners, Neural Networks) are described. The algorithm of

each system is given in detail and the main limitations and proposed

modifications are highlighted.

4.2 Introduction to Machine Learning

The power of an expert system depends on the knowledge incorporated into

the system. Knowledge must first be elicited and subsequently represented

and refined. The task of elicitation has been labelled as the bottleneck® of the
construction process of such systems. One role of machine learning is to assist

during the elicitation process and to bypass the bottleneck. Additionally,

expert systems perform in a deductive format?, i.e. the conclusions always
depend on the knowledge supplied. The presence of an incorrect conclusion
can generally only be corrected by the builder’s interference and not by the
system itself. Systems that learn improve the quality of their performance

with time without being reprogrammed. An improvement of a performance

can be manifested by a faster response or a higher proportion of correct
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decisions or both. Three major research paradigms can be identified: neural
modelling and decision-theoretic techniques; symbolic concept acquisition
(SCA); and knowledge-intensive, domain-specific learning®. Each paradigm is
based upon the same principle, namely that of inferring conclusions given a
priori knowledge, and differs from the others only 'in the amount of
information required and in the way the knowledge is represented and
modified. A number of learning strategies have been documented? but in the
work reportedthere techniques which learn from data composed of a number
of independent examples have been implemented. Each example is described
in terms of a number of attribute values, together with an additional
attribute, known as the class, which allocates the examples to a partic;'ular
category (supervised learning). A number of different techniques have been
reported in the literature, e.g. neural networks®, genetic algorithms*, and the
AQ (Aurora) famil 87 of algorithms. The techniques chosen were ID3,
adaptive combiners and three-layer neural networks and these are outlined
briefly in the following sections. The ‘reasons for choosing these three
techniques were more practical than theoretical. Extensive previous work
using adaptive combiners in the field of tuning of waveguide filters®, in

addition to the availability of a commercial package implementing ID3, were

the main factors behind the decision. Therefore, results obtained with ID3

and adaptive combiners can be compared and any benefits of using one

technique rather than the other can be identified. Neural networks were

chosen because of their ability to model non-linearities (a shortcoming of the

adaptive combiners). It has also been reported that ID3 is faster, in terms of

induction, than AQ11? or a genetic algorithm'® with the same performance

69



rate.

4.3 The Iterative Dichotomiser Three (ID3)

Algorithm

One learning strategy is induction. Induction means reasoning from specific
cases to general principles. A subdomain of induction is concept learning from
examples. This involves the generation of rules (or any other kind of
presentation) which best classify the examples with which the system was
presented. Best refers to the accuracy factor when tested with previously
unseen examples and the comprehensibility of the rules. Comprehensibility
of the rules is critical since it determines how effortlessly the knowledge can
be understood and consequently conveyed to people in order for them to
appraise, critise and use. In this section ID3, an example of an inductive
inference system, is described. Prior to the presentation of the actual
algorithm it is worth noticing the following points:

(i) The algorithm does not use any other domain specific

knowledge beyond that of the training examples themselves.

(ii) The algorithm applies to a variety of application areas, viz.

it is a general purpose algorithm.

(iii) The original algorithm looks at the entire set of training

examples before forming the rules. This is usually referred to as

a single learning stage. Further offsprings of the algorithm

bypass this requirement, this is known as windowing.

(iv) The rules which ID3 learns are represented as decision

trees. A decision tree embodies the relationships between the

60



attributes and the classes. Each node of the tree represents an

attribute and each branch corresponds to a possible value the
attribute can take. Each terminal (leaf) node represents a class

prediction to be assigned.

The ID3 algorithm was developed by Quinlan'! in 1979 and is a descendant
of Hunt et al'®s concept learning system. A diagrammatic description of the
algorithm is shown in Figure 6. The decision tree is grown in stages. First the
algorithm looks to see if all examples belong to the same class. If they are the
label ‘null’ (or something equivalent) appears. Otherwise, the algorithm
selects the most informative attribute and either forms subsets equal in
number to the number of values the attribute takes (i.e. creates the branches
of the decision tree) or forms a binary split (cutoff point) when the attribute
holds numerical values (e.g. >5, <=5). For each subset the algorithm checks
whether all the examples are of the same category. If they are then the
algorithm labels that subset with the name of the class (ie. creates a leaf of
the decision tree) and partitioning stops for that subset (labelling rule);
alternatively the algorithm creates further, smallest subsets. The algorithm
stops when no more subsets can be created, i.e. the tree has been grown

meaning all leaves and internal nodes have been defined and all examples

have been considered (termination rule). It is worth noticing that the

algorithm may label a leaf as ‘empty’ or ‘clash’. Empty appears when there

are no examples that can be used for that particular branch. Clash emerges
when there are two (or more) examples covering that specific branch but their

classes are distinct. The key principle underpinning the algorithm lies in the

selection of the most informative attribute and is based on Shannon’s classic
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work in information theory'®. The most informative attribute, at a certain

instance, is the one that maximises the information gain (G) which is
calculated by:

G (of attribute X,) = I-E;, di=1..total number of attributes

where I is the expected information of the whole training set and E is the

expected information of the whole training set when only attribute X,

considered. Both values can be expressed as:

_ iy Yy \ _ D | n.,
I(y,n) _Ly+n log,(ym)t >in log,(ym)

where

u : denotes the number of values attrnnbute X can take

y; : denotes the number of examples that have the i, attribute value at

the column defined by attribute X, and belong to class y

n: denotes the number of examples that have the i, attribute value at

the column defined by attribute X, and belong to class n.
The algorithm has been used on a variety of tasks, in the standard or a

modified form'?%, with some success'®'"'?, It has also been compared to

different approaches and its performance has been shown to be
comparable!®?, The use of ID3 for real world applications uncovered various

deficiencies in the basic mechanism of the algorithm. For example, studies by

Kononenko et al*' have highlighted the deficiency of favouritism towards

attributes with a large number of values. Chapter 6 - describes further

shortcomings as experienced during this research work.  Despite the
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imperfections, it seems that ID3 is a valuable aid for knowledge elicitation.

4.4 Adaptive Combiners

In recent years one class of adaptive architectures, linear combiners, has been
used for the design of intelligent systems®*, These are systems where
traditional elicitation techniques fail to provide any ruleé since the underlying
relationships are not known and many of the variables are continuous in
nature. Figure 7a illustrateé a simple combiner structure. Given knowledge

about a particular problem in the form of input attributes it is possible to

represent them in vector form as shown below,

x = [x,5.x]"
where n represents the number of attributes and T denotes the matrix
transpose operation. Additionally the class y, is also provided. It is desirable

to estimate the weight vector shown below, -

w= [wpwzs os ,WJ

in such a way that, when the system is presented with a new set of attribute
values, it can predict the correct outcome. In other words, we wish to

represent the knowledge relating the attributes to the classes as the weight

vector in the combiner. The adaptive combiner structure described here can
be thought of as a one layer connectionist network. Adaptive combiners, like
neural networks, fall within the first learning criterion as presented by

Michie®. This criterion states that when a system uses sample data to
generate an updated basis for improved performance on subsequent data then
learning occurs but the emphasis is on the performance of the system and

other aspects of intelligence, such as explanation of reasoning, are neglected.
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The knowledge within an adaptive combiner, or a neural network, is
represented by a mathematical function and distributed to a set of weights.
Weights act as parameters of the mathematical function, but have no
meaning by themselves which makes it rather difficult to assign credit or
blame to an individual weight. Adaptive combiners ignore the reasoning

characteristic an intelligent system must have and concentrate on the
performance. The recursive least squares algorithm is employed for the

estimation of the weight vector.

Figure 7b illustrates an adaptive linear combiner where x’(k) is the present

set of attribute values, w(k) 1s the weight vector and {i(k) is the estimated

combiner outpuf. From Figure 7b, the estimated output is,

P8 = xT(®)wk)
The error can be expressed in terms of the desired class value, y(i:), and the

estimated output, Sr(k) as follows,

e(k) = y(k) - p(k)

The RLS algorithm is used to adjust the weights in order to minimise the

mean squared error. It has been shown* that the optimal weights, W, , are

given by the Wiener solution,

bl
W _=¢_ &
where ¢, is the auto-correlation function of x and ¢, is the cross-correlation

function of x and y. In the RLS algorithm”, the present weights, w(k) may be

expressed in terms of the previous weights by,
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w(k) = wik-1) + £ Rake(®)

where r_, is an estimate of ¢, given by,

= E x(n)x"(n)

r,. (k) can be expressed in terms of a standard matrix identity by,

r! ~1 k-1 (B (k-1)

r}k) = rlk-1)-
= = 5D L+x (B (k-1x(k)

This form of RLS has an infinite memory. In other words, the weights are
functions of all the training examples. It is useful to introduce a forgetting
factor into the élgorithm in order to give greater importance to the récent
training examples than the old ones. One way of accomplishing this would be

to apply a time varying exponential window to the recursions. In this case the

above equation is modified to,

£- (k-Da(bx’ (k)t:(k-l))

-1 k) = .l -1 k-1)-
L (0 1 £, %-1) 1+f(k)z:(k-l)l(‘-’)

where 0 < A < 1 and usually lies in the range 0.9 < A < 1. It was mentioned
above that adaptive combiners can be thought of as a subset of connectionism.
- The main difference is the fact that the combiners are linear structures and

cannot be directly applied to non-linear sysfems. However, the non-linearity

can be treated by manipulating the attnbutes, i.e. by usmg second or third

order attributes dependmg on the degree of non-hneanty

4.5_ Neural Networks ?

Following a period of inactivity neural networks (or alternatively neural
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computing, connectionism, parallel distributed processing) research was

revived resulting in the development of various types of systems. A historical
overview of neural research can be found in Pollack®® and an excellent survey
of the different systems in Lippmann®, Whereas the symbolic approach is
based on an explicit rule set in order to understand a problem, neural
networks research targets hard problems (i.e. the ones that eliciting rules is

hard) so difficult to model that way. One can argue?’, that the two approaches

can compliment each other rather than cancel each other out. For instance,
for a natural language processing task, parsing sentences may be done by
symbolic systems and interpretation may involve neural nets.

Neural networks research has been inspired by the way the human Erain
operates but the neural network models are not or even try to be exact
replicas. Simply, certain similarities exist in terms of the features, the
connectivity arrangements and the operation. It is the selection of the
connectivity and operation employed that characterises, to a large extent, the
type of neural model being used. Although, models differ in detail, each one
contains the same basic features. A discussion of these common features and
their relation to the popular Back-Propagation architecture is given below.
Any neural model contains a number of processing units (or nodes or
elements). In the Back-Propagation architecture three types of units exist:
input (sensory) units, hidden (associative) units and output (response) units.
Each type of unit exists in a layer. Back-Propagation networks contain one
input layer, one output layer and one or two hidden layers. A single unit can
represent a small feature and their distribution over the whole network

provides a meaningful entity. The role of the hidden units is to translate the
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input patterns into output patterns. The function of each unit is to receive
inputs (from sensors or other units) and to spread an output (to other units
or to external agents). Unit inputs and output may be discrete, for example
(0,1} or {-1,0,1} or alternatively they may be continuous undertaking values
in the interval [0,1] or [-1,+1]. Using the Back-Propagation model a unit can
receive a number of inputs but it can only produce one output which can be
distributed to more than one unit. The output of a unit is generated by
collecting, combining and transforming the inputs. Each unit has associated
with it a combining function, a transfer function and a set of weights
(See Figure 8). The weights define the influence of an input, the combining

function combines the inputs and the weights and the outcome is passed to

the transfer function which determines the output. The most common

combining function, and the one used in this work, is the summation

function which calculates a weighted sum of all the inputs:

N
Y, Wy,
I
where W, is the weight between unit i of layer (S-1) and unit j of layer (S)

and I is the input from unit i. Other combining functions include the
maximum function, the minimum function, the majority function and the
product function. A number of transfer functions are available (Figure 9), for
example, the step, tangent, linear and sigmoid (logistic) functions. With the
linear transfer function the outcome of the combining function is distributed
without alteration whereas with the sigmoid the outcome is transformed to

a value between 0 and 1 (i.e. a high and a low saturation limit).
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where O, is the output of a unit and 6; is the weight from a unit that is
always on (i.e. holds the values of one). This is referred to as the bias and is
used in order to offset the origin of the transfer function. Thetpattern of
connectivity determines those units that the outcome is passed on. The
outcome can be passed to units in the preceding, the following or even the
same layer. With the Back-Propagation architecture connections are
permitted only between successive layers (feed-forward). Additionally it is
fully connected which means that all units of a preceding layer are connected
to all units of the succeeding layer (Figure 10). Connectivity, once established
cannot change. Having established the basic architecture of a neural model,
it is important to understand how one can use the net for learning. The
overall objective is the formation of a set of optimum weights in order to
minimize the global error. For complex problems it is rather difficult to pre-
set the weights.Therefore they have to be generated using a learning
method. Three types of learning exist: unsupervised, supervised and
reinforcement. Supervised learning is the one used with Back-Propagation.
This way the net is presented with inputs and also with the desired output.

Each learning method implements a number of algorithms which determine

the way the weights change. These algorithms are known as learning rules.
Back-Propagation networks employ the error propagation rule® (or
generalised delta rule). This rule bypasses the credit assignment problem (i.e.

which unit is to blame for an incorrect output) by distributing blame to all

units. The term global error was mentioned previously without actually
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specifying it. The global error is defined as half the sum of the squares of all

the local errors and is given by:
E=2+Y ((4-0))
2 %
where the subscript 2 indexes all examples of the training set and

d,-o,

is the local error which is defined as the difference between the actual
output o, and the desired output d,. A gradient descent rule, using the

knowledge of the local errors, determines how to increment or decrement a

current set of weights:

AW =lcoefxe)  x X7

where lcoef is a learning coefficient which determines the rate of learning..

Since there is no exact knowledge of what a desired output of a hidden unit

should be the local error of a hidden unit is calculated using:

e}"- }"(1.0- ])E e gt "’“

where % is over all nodes in the layers above node j. Now a summary of the
standard back-propagation learning can be given.
(i) Present inputs to the input layer. . L

(ii) Calculate the output of each unit.

If a unit is in the input layer no transformation takes place but sometimes

scaling might be necessary. Otherwise the sigmoid function is employed

(iii) Calculate the local error for each unit in the output layer, Then calculate

the required changes to the weights and update all corresponding previous
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weights.

(iv) Calculate the local error for each unit in the layers below the output
layer. Then calculate the required changes to the weights and update all

corresponding previous weights.

(v) Repeat until the desired global error has been achieved.

The error-propagation learning rule has been used successfully in numerous
applications but it has to be realized that it can also fail. Failure can arise
due to non-convergence. Rumelhart et al*® have reported that a neural
network failed sometimes to converge during learning of the exclusive or task.
The convergence process sometimes gets trapped in a local minimum and the
network cannot produce the desired response. Additionally, there are many
parameters that have to be pre-set without any prior knowledge of their
probable values. For example, the required number of hidden units or the
value of the learning rate. Despite that back-propagation is not error free it
has been very popular and this led to the invention of several improvements
to the standard algorithm. For example, weight decay and the addition of the
momentum term. With weight decay the value of each weight of the network
is reduced after each run (all input patterns or one input{pattern) therefore

only often repeated patterns are learned. The momentum term takes into

account the previous weight changes effectively filtering out large variations

of the error surface. The gradient descent rule becomes

Awgl-koefu}"*x,["“+momtAW“,"“
where mom is the momentum constant that determines the effect of past

weight changes.

Neural nets are mainly developed on conventional serial computers. The
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software for the neural net simulation can be written using programming
languages like Pascal or C or another option is to use a spreadsheet. Another
way is to purchase neural network demonstration systems which accompany
books. For example, the books by Aleksander and Morton or McClelland and
Rumelhart®! include software which can be used as a tutorial of the book or
as a stand alone. Alternatively one can purchase commercially available
neural network programs (or shells) such’'as NeuralWorks (Recognition
Research), BrainMaker (California Scientific Software) and NeuroShell (Ward
Systems Group). These shells allow the users to experiment with a number
of network architectures and the values of the various parameters, they offer
built-in input/oﬁtput facilities (e.g. they can import data from spreadsheets
or databases), and they provide various statistics (e.g. the change of a
particular node). Because it can take several hours or days to train a large

network (large in terms of connections), it is beneficial to use a serial

computer with add-on accelerator -boards capable of performing fast

arithmetic operations and a large storage memory.

References

1. Gammacl; J.G., and Young R.’M., Psychoiogécal rtechm';ques fc;'r elici;i;z;'
exﬁert knowéedge, In Research a:nd development of expert systems (Ed. E.S
Bramer), Cambridge University Press, 1985. - T
2. Ryszard S.M,, GarBonell J.G., and Mitchell T.M,, Machin; Zea%rningﬁ.ﬁr An
Artificial Intelligencl:e%appmach, Vol. 2, Morgan Kaufmann Publishers, 1986.

¥

3. Lippmann R.P., An introduction to computing with neural nets, IEEE ASSP

Magazine, April, pp. 4-27, 1987.

4. Goldberg D.E., Genetic algorithms in search, optimisatior; and machine

76



learning, Addison-Wesley, 1989.
5. Michalski R.S., and Negri P.G., An experiment on inductive learning in

chess end games, In: Machine Intelligence (Eds E.W Elcock, and D. Michie),
Willey, 1977.

6. Michalski R.S., and Larson J.B., Selection of most representative training
examples and incremental generation of Vi1 -hypotheses : the underlying
methodology and description of programs ESEL and AQI11, Report 867,
University of Illinois.

7. Michalski R.S., Mozetic 1., Hong J., Lavrac X., The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains, Proceedings of the AAAI, pp. 1041-1049, 1986.

8. Mirzai A.R., Cowan C.F.N., and Crawford T.M., Intelligent alignment of
waveguide filters using a machine learning approach, IEEE Transactions, Vol.
37, No. 1, pp. 166-173, 1989.

9. Newstead M.A., and Pettipher R., Knowledge acquisition for expert systems,
Electrical communication, Vol. 60, No. 2, pp. 1156-121, 1986.

10. Quinlan J.R., An empirical comparison of genetic and decision tree

classifiers, Proceedings of the Fifth International Conference on Machine

Learning, Morgan Kaufmann, pp. 135-141, 1988.
11. Quinlan J.R., Discovering rules from large collection of examples : a case

study, In: Expert systems in the microelectronic age (Ed. D. Michie),

Edinburgh University Press, 1979.

12. Hunt E.B., Marin J., and Stone P.T., Experiments in induction, Academic

Press, 1966.
13. Shannon C.E.,, and Weaver W., The mathematical theory of

77



communication, University of Illinois Press, 1972.

14, Utgoff P.E., ID5: An incremental ID3,- Proceedings of the Fifth

International Conference on Machine Learning, Morgan Kaufmann, pp. 107-

120, 1988.

15. Schlimmer J.C., and Fisher D., A case study of incremental concept

induction, Proceedings of the Fifth National Conference on Artificial

Intelligence, Morgan Kaufmann, pp. 496-501, 1986. .
16. Cestnic B., Kononenko I.,, and Bratko 1., Assistant 86: A knowledge

elicitation tool for sophisticated users, Proceedings of EWSL 87 : Second
European Workingr Session on Learning, Sigma Press, pp. 31-45, 1987.

17. Shepherd B.A., An appraisal of a decision tree approach to image

classification, Proceedings of the Eighth International Joint Conference on

Artificial Intelligence, Vol. 1, pp. 473-475, 1983.

18. Quinlan J.R., Inductive knowledge acquisition: a case study, In:

Applications of expert systems (Ed. J.R.-Quinlan), Turing Institute

Press/Addisson Wesley, 1987.

19. Mingers J., Rule induction with statistical data - a comparison with

multiple regression, Journal of Operational Research society, Vol. 38, No. 4,

pp. 347-351, 1987.
20. Ward J.B., Green S.M., and Allan A., Machine induction in mass

spectroscopy, IEE Colloquium on Application of Knowledge-Based Systems,

No. 7, pp. 1-4, 1987.

21. Kononenko I., Bratko 1., and Roskar E., Experiments in automatic

learning of medical diagnostic rules, Technical report, Jozaf Stefan Institute,

Ljubljana, Yugoslavia, 1984.

78



22. Brown K.E., Cowan C.F.N., Crawford T.M., and Grant P.M., Knowledge-
based techniques for fault deteéfion in digital microwave radio communication
equipment, IEEE Journal on selected areas in communications, Vol. 6, No. 5,

pp. 819-827, 1988.

23. Michie D., Machine learning in the next five years, Proceedings of the

Third European Working Session on Learning, Pitman, pp. 107-122, 1988.

24. Wiener N., Extrapolation, interpolation and smoothing of stationary time

series, Wiley, 1949.
25. Cowan C.F.N., and Grant P.M., Adaptive filters, Prentice-Hall, 1985.

26. Pollack J.B., Connectionism: past, present and future, Artificial
Intelligence review, Vol. 3, No. 1, pp. 3-20, 1989.

27. Rich E., Expert systems and neural networks can work together, IEEE

Expert, Vol. 5, No. 5, pp. 5-7, 1990.
28. Rumelhart D.E., Hinton G.E., and Williams R.J., Learning representations

by back-propagating errors, Nature, Vol. 132, pp. $33-536, 1986.
29. Rumelhart D.E., Hinton G.E., and Williams R.J., Parallel Distributed

Processing, Vol. 1, MIT Press, 1986.

30. Aleksander 1., and Morton H., An introduction to neural computing,

Chapman and Hall, 1990.
31. McCleland J.L., and Rumelhart D.E., Explorations in parallel distributed

processing, MIT Press, 1988.

79



Chapter Five

Comparison of Machine Learning Techniques

Eureka, Eureka |

~Archimedes

80



9.1 Introduction

The previous chapter introduced the three paradigms (ID3, adaptive

combiners, neural networks) which have been used and compared as
knowledge elicitation tools in this work. As a result of the protocol analysis
the tuning of the filter was divided into two primary tasks. Namely, the tasks
of tuning the stopband and passband regions. Additionally, it was established
that only the two trimmer capacitors were used for the stopband region. In
this chapter results are presented only for this region but the conclusions
apply to both regions.

Section 5.2 e#plains the term example, the nature of the examples used
initially and the way that the examples were collected. Section 5.3 details the
initial work using ID3 which resulted in the division of the stopband tuning
in three knowledge bases (searches). Section 6.4 reports on the comparison
of the three learning algorithms (ID3, Adaptive Combiners, Neural Networks)
for each of the three searches. The experiments were performed in order to
select the classifier that provided good performance with limited training

data, and to explore the tradeoffs in terms of training and testing time. The

performance merits of the systems are highlighted together with their
drawbacks. Suggestions for improving the peﬁormance of each technique are
also detailed. The problems in applying the learning systems to the alignment
of crystal filters are reported in Section 5.4.7. The comparison led to the
proposal of emploﬁng ID3 for the construction of rules for the first two

searches and the need for further work for the thitjd search (Section 5.5)
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5.2 Selection of attributes and generation of

examples

The three techniques function according to a similar principle. They require

a set of examples, referred to as the learning set. Each example is described

in terms of attributes, with each attribute in turn specified by a value,
together with a class identifier. The purpose of the techniques is to determine

the relationships between the attributes which then can be used for
classification of other examples. Pﬁor to the generation of the learning set the
most appropriate attributes were selected. Attributes are the parameters the
operator uses to extract and interpret information from the response
characteristic of the filter. Six relevant attributes were identified as having
strong significance. These were:
(1) Locations of sharp positive peaks of the waveform (Figure 11,
identified as p1, p2, p3, p4, measured in MHz units - horizontal axis).
(ii) Relative magnitudes of sharp negative peaks of the waveform
(Figure 11, identified as rl, r2, measured in dBs units - vertical axis).
The attribute selection was based on the transcripts derived form the protocol
analysis. The operator’s reasoning was revealed by sentences such as
"...arrange these peaks into a more reasonable place™ and "...pull that peak
out of the screen”. Further discussions with the operator supported the choice.
The second step was to obtain a set of examples. Since a database of
examples was not readily available the expert operator was requested to tune
a number of filters. Prior to each action taken by the operator the attribute

values were recorded manually, together with the decision taken each time.
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Figure 11: Normalised magnitude response showing the attributes used for the tuning

of the stopband. The reference frequency of 1.4 MHz is denoted by zero at the

frequency-axis.
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The decision being the component, direction and distance used or an

indication that no further tuning was required. This approach has been

labelled as the tune procedure.

2.2.1 Levels of classification.

A typical tuning process for one filter took the following form
plL  p2 p3 p4 rlr2decision

1.39934 1.39986 1.40273 1.40310 55 46 C4a0.50
1.39921 1.39969 1.40269 1.40568 62 26 C7a2.00
1.39777 1.39945 1.40520 1.40880 60 68 C4c0.25 (U)

1.39788 1.39954 1.40448 1.40800 56 60 C4a0.50
1.39690 1.39915 1.40638 1.40640 66 66 end

The examples can be interpreted as: " turn the C, component anticlockwise,
half a turn (first example) and no further tuning is required (last example)
when the attributes have the given values"”, Three observations need to be
discussed at this stage. Firstly, each filter’s tuning process leads to a number
of examples. For the process above this means four examples. Each example
is considered on its own without taking into account what happened before
or after. This is known as instance-to-class induction’, Secondly, one has to
realise that the decision taken by the expert at each step is not the only

option. Other options could have been followed which probably would had

resulted in fewer or more subsequent decisions being necessary. This is
mainly the case for the ’how far to turn’ part and to a lesser degree for the

other two parts. An infinite number of actions can be taken. This leads to the

problem that for each filter, myriad routes lead to a tuned position.
Sometimes though the expert operator realised that a given action was dra-

matically wrong, as in example three (3) above.. These examples were not

used in the learning set. Thirdly, it is clear that the first
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example points to four decision levels. The operator récbgnized that ﬁdjustm;

ent is needed and then he considered which component to adjust and in which

direction and by how far.

5.3 Initial empirical results with ID3

Using the tune procedure twelve (12) filters were tuned resulting in forty-

seven (47) examples. Thirty-six (36) of these examples were generated using
the expert operator and used as the learning set. The rest of the examples

(11) were generated using another operator and were used as the testing set.
The purpose of testing was to investigate the benefits, 1f any, of dividing the
stopband sub-task into a number of search spaces. The configuration of each
search space, ie. what level of classification to represent, was also examined.
Four knowledge bases were created employing the learning set and tested on
the remaining examples. Each knowledge base was developed feeding the
same examples to ID3 but in a different configuration (Table 3). For example,
referring to Table 3, configuration 1 had just one search. Each example of the
training set could then take one of two classes, either end-of-process or
component /direction/distance. A testing criterion was the number of correct
or nearly correct answers given by the system when examples from the
training set were used. Another criterion was the number of rules created.

The testing results are displayed in Table 4. Some general observations now

follow:

(i) All configurations except one had similar number of successes for

the component part.

(i1) Irrespective of the configuration there was total success for the

direction part.
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(1i1) Except for one instance all system recommendations for the

distance to turn were dissimilar to the operator’s actions. This is a
problem we encountered later on as well.

(iv) The introduction of the carry-on class resulted in a better
recognition of the state of a tuned response (i.e. correct end-of-process

for configurations 3 and 4).

The results demonstrated that it is beneficial to introduce search spaces and
the 'best’ configuration was the one which contained three search spaces:
(i) search space one: to carry-on or to end the tuning process.

(ii) search space two: which component and which direction.

(iii) search space three: how far to turn.

This configuration produced the best success rate but with a relatively higher

number of rules than two other configurations.

5.4 Comparison of the three paradigms

For the purpose of comparing the three paradigms a set of examples was
collected using the "de-tune” procedure. This process involved a systematic

shift of a tuned response to an untuned one. This procedure missed out the

heuristics employed by the expert but a more complete set of examples was

collected. By complete is meant a learning set which

contains most attribute values likely to arise thus eliminating the possibility
of having only extreme or rare values. This was especially valuable in this

part of the work in which numerical attribute values were<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>