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Abstract - 
Manual tuning of electronic filters represents a time-consuming process which 
can benefit from some computer assistance. A prototype computer-based 
system for the tuning of crystal filters after manufacture was developed. This 
system solved. the problem of crystal filter tuning in a novel way. 

The system, called AEK (Applied Expert Knowledge), was developed using 
crystal filters and is a hybrid system with the following two functions: 
(1) Required values of features are extracted from the filter waveform and 
passed to the expert system which determines the component to adjust and 
the direction to turn, or the end of the tuning. 
(2) Sampled values of the waveform are extracted and passed to a neural 
network which determines how far to turn the component chosen in (1). 

The prominent aspects were: 
m Work using the protocol analysis elicitation technique indicated the need 
to separate the process into two sub-tasks (stopband and passband). Each 
sub-task was divided into three classification parts which determined (i) the 
continuation of the tuning process, (ii) the component and direction to turn, 
and (iii) the distance to turn respectively. Unfortunately, it was not possible 
to extract rules from the operator. 
m Three learning techniques (IID3, Adaptive Combiners, Neural Networks) 
were used and compared as the means of automated knowledge elicitation. 
All three techniques used case knowledge in the form of examples. The 
investigations suggested the use of ID3 for the first two parts of each sub- 
task employing features with linguistic values. The number of linguistic 
values each feature has, was also derived. 
m Neural networks were trained for the third part. It was necessary to have 
one network for each component/direction combination and to use examples 
from just one mal-a(busting process. 
m Tests of the hybrid system for a number of cases indicated that it performed 
as well as a skilled operator, and that it can be used by novice operators but 
situations arose where there was either no knowledge or contradictory 
knowledge. 

The prototype system was developed using one type of crystal filters but the 
generic construction procedure can be followed to build other systems for 
other types. 
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Organisation of the thesis 

The thesis is divided into two main parts. Part A consists of two chapters 

devoted to the concepts of electrical filters and artificial intelligence. The first 

chapter looks at crystal filters and the problems of post-assembly tuning. 

Furthermore an overview of expert system components and a review of 

knowledge elicitation and representation is given followed by a discussion in 

terms of the system constructed. The second chapter covers the procedure 

used at the collaborating establishment and the procedures proposed by other 

workers in the field. The chapter ends with a discussion about the motives for 

employing an expert system approach in the filter tuning domain. 

Part B of the thesis has seven parts, which present a chronicle of the expert 

system and the neural networks development. Part B represents original 

work undertaken during the development of the AEK system. Chapter three 

presents the knowledge acquired during the first visit to the company and 

identifies the reasons for moving to the machine learning paradigm. Chapter 

four introduces a number of techniques which can be employed for the design 

of learning systems. These techniques include IID3, adaptive combiners and 

neural networks. Chapter five shows the adaption and comparison of the 

techniques presented in the previous chapter for the filter tuning application. 

Chapter six highlights the problems encountered when using ID3 and 

describes additional work undertaken to avoid the shortcomings of the 

technique. In the seventh and eighth chapter the induction of rules and the 

construction of the neural networks are presented respectively. Chapter nine 

presents the software and hardware employed together with instructions of 

how to use the AEK system. Chapter ten is entirely devoted to the application 

xx 



of the rules and the networks to the tuning of a number of filters. This is 

followed by a detailed evaluation of their performance. 

Finally, the thesis comes to a closure (chapter 11) with a discussion of the 

achievements, a critique of the expert and neural systems and an assessment 

of the software used. 
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Part A 

Background Information 



Chapter One 

Preliminaries 



1.1 Introduction 
This chapter discusses general aspects of electrical filters with particular 

reference to the crystal filter used in the study. The requirement for filter 

tuning is justified in Section 1.2.5 which- also introduces, the methods 

employed. 

Sections 1.3 to 1.4.5 provide an overview of artificial intelligence and expert 

systems. This is followed by an overview of the expert system constructed for 

this study in terms of knowledge representation and control. AEK (Applied 

Expert Knowledge) is the name given to the system and it is used throughout 

this thesis. 

1.2 Introduction to eIectrical filters 

An electrical wave filter, or just filter for ease of reference, is designed to 

receive a signal and to attenuate certain pre-defined frequency regions of the 

input signal while passing the rest of the frequency regions without changes. 

It is possible to classify filters in different ways'. In terms of the frequency 

spectrum, they may be grouped as audio, video, or radio-frequency and 

microwave filters. In terms of the circuit configuration of the basic elements, 

filters may be classified as ladder or lattice. Categorization in terms of the 

character of the elements used in them is also common, for example LC or RC 

filters. The most customary division is between analogue and digital filters 

which treat analogue and digital signals respectively. Analogue filters may 

be classified as passive or active. These constructions are suimilar except that 

the latter has an integral source of energy, usually an operational amplifier. 

Digital filters on the other hand utilise software, such as a subroutine on a 
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computer program, or as hardware, such as a circuit containing registers and 

multipliers. 

1.2.1 Filter components 
Electrical filters contain a variety of components' and it is the responsibility 

of the designer to select the appropriate components for any given task. 

Filter components come in two forms, namely active and passive. Active 

elements may amplify the signal power. By contrast passive elements do not 

contribute to signal energy; they can only absorb or transfer it. Capacitors 

and inductors are two common passive elements. 

1.2.2 Magnitude responses and 

approximations 

One way for studying any filter is to investigate the magnitude response of 

the output signal. The output signal is the product of the magnitudes of the 

input signal and the frequency response function of the filter. This means 

that if the magnitude of frequency response is equal to zero (or approximately 

equal to zero) for a certain frequency range, then the output signal will have 

a zero (or approximately zero) magnitude over this frequency band. This 

group of frequencies is called the stopband of the filter. Similarly, if the 

magnitude function is greater than zero and close to one for another 

frequency band, then this interval is called the passband of the filter. -In 

addition, the band of frequencies between a passband and a stopband is 

defined as the transition band. Certain frequency bands are then transmitted 

while the rest are rejected. The design of each filter determines the regions, 

if any, where frequency is allowed to pass or not and provides yet another 
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taxonomy. They can be either lowpass, highpass, bandpass, or bandstop 

filters. Lowpass and highpass filters are, respectively, filters that transmit 

signals at frequencies below or above a defined cut-off frequency (co, ) and 

attenuate those frequencies above or below the cut-off point ((0, ). Bandpass 

filters transmit all frequencies between defined upper ((02) and lower limits 

(col), and attenuate frequencies outside those limits. Bandstop filters 

attenuate frequencies between upper (%) and lower limits 40) and transmit 

all other frequencies. These four basic types of frequency selective filters are 

illustrated in Figure 1. Of course, there are filters that do not belong to any 

of these four types but in most cases the magnitude specification of filters win 

fall into one of those categories. In practice, these characteristics are not 

attained with a finite number of components due to absorption, reflection or 

radiation, so a number of well known curves, which approximate the ideal 

responses within specified tolerances, are used. The common filter 

approximations are the Butterworth, Chebyshev, inverse Chebyshev, and 

elliptic' (Figure 2a). 

1.2.3 Crystal filters 

A crystal, physically, is a three dimensional pattern consisting of atoms, 

molecules, or ions". A variety of classes of crystals exist of which about twenty 

exhibit the desired effect of piezoelectricity. Piezoelectricity refers to the 

electric potential being generated whenever an external pressure is applied 

to the crystal. Crystals exhibit mechanical resonance which can be excited by 

the application of an AC signal. The size and shape of the crystal determine 

the frequency of the mechanical resonance which typically varies from 20 

KHz to 50 MHz. Figure 2b shows the electrical equivalent circuit. L,, C, and 
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R, are the motional parameters and C. is known as the static capacitance and 

represents the effective capacitance of the crystal unit at frequencies far 

removed from resonance. The quality factor of the motional arm is extremely 

high, typical values are between 20000 to several hundred thousand, 

compared to other resonators, such as LC circuits. The quality factor and the 

unique combination of properties (stability with time and temperature, high 

quality factor, strength, inexpensive, small size, low insertion loss) make 

crystals attractive and provide flexibility for the practical design of filters 

with very narrow bandwidth. The term crystal filter is used to describe 

electrical filters incorporating crystal resonators. The principal crystal used 

in electrical filters, especially bandpass filters, is the quartz crystal. 

Theoretically, an electric circuit using inductors, capacitors and resistors can 

be constructed to simulate a crystal resonator but the problem lies with the 

practicality of obtaining the exact values for these components. Crystal filters 

can be either discrete or monolithic". The former employ standard 

components plus a number of single crystal resonators. In comparison 

monolithic crystal filters provide a complete filter on a single quartz wafer 

with no supplementary parts. 

1.2.4 The benchmark filter 

The collaborating establishment produces about two hundred separate types 

of crystal filters. The filter code number 4716 was used for this study. This 

filter is a discrete 4-pole asymmetric bandpass crystal filter. Asymmetric 

refers to the passband region because of the steep skirt selectivity on one side 

of the passband and the reduced attenuation on the opposite side. Figure 3 

displays the top view of the filter. The filter consists of two types of 
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adjustable components, namely trimmer capacitors (C41 CO and inductors (T,, 

T2, T3). The specification of the filter is summarised in Table 1. The selectivity 

requirements are divided into two general areas, namely the passband and 

the stopband response regions. Both regions are specified with reference to 

a nominal frequency which is the centre frequency (reference frequency). A 

typical filter response demonstrating the electrical specifications is shown in 

Figure 4. 

1.2.5 The need for post assembly tuning 

Filter engineers have tackled the tuning problem in two different ways. One 

approach takes place during the design stage and the other takes place after 

assembly. The post-assembly approach can be further categorised into two 

methods, namely functional and deterministic. The latter method applies 

circuit modelling and includes techniques such as response sensitivity. This 

research concentrated on the former method. This is the traditional approach 

in which tuning is performed manually. The manual tuning procedure is 

described in Section 2.2. 

In practice, the actual performance of an electrical filter differs from the 

specification. This is due to the inescapable effects of using real components 

which leads to apparently identical filters having slightly different responses. 

This becomes more transparent when, for example, the inductor component 

is considered. The use of inductors is a predominant cause of response 

deterioration, because obtaining exact values requires winding the component 

by hand. This results in inconvenience and further cost. Furthermore the 

method used in winding the coil, number of windings, spacing of turns, 

permeability of the core are all factors that contribute to the electrical 
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Table I: Specification of used filter 

Filter type Upper Side Band 

Reference frequency 1.4 MHz 

Passband width +0.5 KHz to +2.5 KHz minimum at 

4 dB 

Stopband width -0.7 KHz to +5.0 KHz maximum at 

45 db 

Passband ripple 3.0 dB maximum +800 Hz; to +2.0 

KHz 

Transducer attenuation 5.0 dB maximum 0.5 dB minimum 

Attenuation at 1.4 MHz 10 dB minimum 

Ultimate attenuation 45 dB minimum to be maintained to 

20 KHz 

Termination impedance I k(I ± 15 /// 75 10 pF 

Maximum input powers I mW 

Operating temperature range -10'C to +65'C 

Maximum weight 75 gms 
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characteristics of an inductor. 4 

1.3 Overview of Artificial Intelligence 

In the literature of computer science the task of exploring and simulating 

human intelligence has been termed Artificial Intelligence. The objectives are 

twofold: 

(i) the amplification of the user's capability in performing intelligent 

tasks, and 

(ii) the understanding of the principles of intelligence. 

One representative definition of Artificial Intelligence is given by Barr. and 

FeigenbauO. 

'Artificial intelligence is the part of computer science concerned with 
designing intelligent computer systems, that is systems that exhibit the 
characteristics we associate with intelligence in human behaviour - 
understanding language, reasoning, solving problems and so on. '(page 4) 

Therefore Artificial Intelligence is based upon perceptions of human intell- 

igence. Although we can recognize intelligence it is questionable that anyone 

could provide a definition covering all its aspects. The spread of the interpre- 

tation of the term intelligence has resulted in the discipline of Artificial 

Intelligence incorporating the fields of engineering, cognitive science, 

philosophy, psychology and linguistics. This generated applications and topics 

of research. Some examples of application areas are game playing, automated 

reasoning and theorem proving, natural language understanding, robotics, 

expert systems, machine learning and neural computing. The work performed 

for the tuning of electrical filters involved the expert systems, machine 

learning and neural computing branches. These areas are explained at the 
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appropriate sections of the thesis. The reader, is referred to books by 

Winston', Charniak and McDermott", and Barr and Feigenbaum'1,12,23 for 

further background to the theory and pragmatics of Artificial Intelligence. 

1.4 Expert Systems 

The realization by the Artificial Intelligence community during the 1960's of 

the weakness of general purpose problem solvers led to the development of 

expert systems. Expert systems held the greatest promise for capturing 

intelligence and have received more attention than any other sub-discipline 

of Artificial Intelligence. The term knowledge-based systems is used 

interchangeably to avoid the mis-understandings and mis-interpretations of 
III the word 'expert'. Irrespective of the adjective, each such system is designed 

to operate in one of a variety of narrow areas. The design involves attempts 

to model and codify the knowledge of human experts. 

1.4.1 A review and classification of expert 

system projects 

The number of expert systems reported in journals is rapidly increasing. But 

there are four examples that merit special attention due to the fact that they 

were the pioneering attempts. These systems are, the Dendral" system which 

infers the molecular structure of complex organic compounds from their 

chemical formulae and mass spectrograms, the Mycin" system -which 
diagnoses blood infections and recommends the appropriate drug treatment, 

the Prospector" system which is designed to aid geologists in their search for 

ore deposits, and the RI(XCON)" system whose purpose is to configure VAX- 

11 computer systems. These systems are important. First they showed that 
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the new technology can work and secondly they provided models (of 

representation and inference) that other implementations followed. Since that 

era a wide variety of programs, not so much acclaimed, have been developed 

in many different fields, performing a range of diverse tasks. For a survey of 

recent applications, and a set of references, see Bramer", Reddy'9, Bremer" 

and IEEE Computer". There are numerous ways to classify expert systems 

but the two that follow are probably the most important. One apparent 

practice is by their area of application (Mycin - medical, Prospector - geology). 

The other is by the tasks that they are called upon to perform" (Dendral - 

interpretation, Mycin - diagnosis). 

1.4.2 The components of an expert system 

The essential components of an expert system can be identified as :- 

Knowledge-base module: this is the essential component of any system. 

It contains a representation in a variety of forms of knowledge elicited 

from a human expert (see Section 1.4.3). 

Inference enzine module: the inference engine utilises the contents of 

the knowledge base in conjunction with the data given by the user in 

order to achieve a conclusion. 

Working memory module: this is where the user's responses and the 

system's conclusions for each session are temporarily stored. 

Explanation module: this is an important aspect of an expert system. 

Answers from a computer are rarely accepted unquestioningly. This is 

particularly true for responses from an expert system. Any system 

must be able to explain how it reached its conclusions and why it has 

not reached a particular result. 
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Justification module: using this module the system provides the user 

with justification(s) of why some piece of information is required. 

User interface module: the user of an expert system asks questions, 

enters data, examines the reasoning etc. The input-output interface, 

using menus or restricted language, enables the user to communicate 

with the system in a simple and uncomplicated way. 

Through the years systems have appeared which include additional modules. 

For example, learning modules, knowledge acquisition modules and 

refinement modules. Each one of the above constitutes a research topic on its 

own. 

1.4.3 The nature and representation of 

knowledge 

Whereas from a philosophical point the concept of knowledge is highly 

ambiguous and debatable, expert system builders (to be referred to as 

knowledge engineers) treat knowledge from a narrower point of view. This 

way the knowledge is easier to model and understand, but remains diverse 

including rules, facts, truths, reasons, defaults and heuristics. The knowledge 

engineer needs some technique for capturing what is known about the 

application. The technique should provide expressive adequacy and notational 

efficacy". Knowledge representation is very much under constant research 

and several schemes have been suggested in the literature. The four most 

widely used in current expert systems are production rules"', semantic netS25, 

frameSH, and logic". Obviously, no single method can represent all kinds of 

knowledge and although some kinds of knowledge can be represented in many 
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ways some other kinds of knowledge, such as time, cannot be captured. 

1.4.4 Controlling the knowledge 

Much of the power of an expert system comes from the knowledge embedded 

in it. In addition, the way the system infers conclusions is of equal 

importance. The knowledge engineer has to consider how to implement the 

control, ie. what to do next, and the search, ie. how to find some information. 

These decisions rely on the classification of the task"', and on the amount of 

information known beforehand about the problem space. Various problem- 

solving methods have been described in the literature"'. 

1.4.5 Knowledge acquisition and elicitation 

The terms knowledge acquisition and knowledge elicitation are often 

confused. The knowledge acquisition process is defined as the combined 

activity of eliciting, analyzing, interpreting, representing, administering and 

utilising the knowledge of human experts. Clearly, knowledge elicitation only 

address the elicitation aspect of the task. The primary activity during 

elicitation is to capture knowledge from experts through a series of sessions. 

A large number of elicitation techniques have been proposed as suitable and 

as a result of a literature review, the following techniques were identified: 

Structured interview 
Interruption 
Behaviourial observation 
Protocol analysis 
Concept sorting 
Cluster analysis 
Forward scenario 

Questionnaires 
Retrospective comment analysis 
Informal interview 
Multidimensional scaling 
Repertory grid 
Socratic dialogue 
Conceptual clustering 

It is important to realise that generally none of these techniques can surface 

on its own but a mixture will probably obtain the required results. The reason 
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for this being that knowledge has many forms and each technique can only 

attempt to extract a subset. For example the protocol analysis technique, 

described below, works very badly for domains which are best represented 

declaratively but a rich amount of procedural knowledge can arise. 

1.4.5.1 Protocol analysis 

Protocol analysis (or process tracing, or verbal reporting) was first described 

by Newell and Simon" and, in recent years, by Ericsson and SimoO. The 

expert is given a typical problem to be solved and before the session begins 

s/he is requested to verbalize whatever s/he is thinking. The session is audio 

and/or video-taped and the protocol is transcribed and analyzed at a later 

stage. During the session the builder participates only when the expert seems 

to be idle by asking probing questions such as what are you thinking at this 

moment?. The technique minimizes the builder - expert interaction resulting 

in economising the expert's time. Although there are some problems 

associated with this technique, protocol analysis seems to be useful at the 

start of a project. Problems can be encountered due to the fact that not an 

individuals find it easy to verbalize and perform simultaneously and also 

most people. can think more quickly than they can talk. In both cases 

knowledge might be lost. Additionally, protocol analysis can provide us with 

extensive information of how the knowledge is used but not about its full 

range. Finally, analyzing protocols is time consuming and difficult. Various 

authors have described types of analysis to apply to the same raw data in 

order to become familiar with it, to understand the reasoning involved and 

to facilitate the representation of the knowledge. A brief review follows. 

Waldron" provides a framework for classifying decision alternatives in terms 
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of alternatives, attributes, aspects and attractiveness. He also classified 

naturally occurring rules into dominant, lexicographic rules. Bainbridge" 

offers three analytic approaches to be applied to the transcript. Explicit 

content, implicit content and groups and sequences of phrases. She has used 

those approaches in analyzing verbal protocols from'a process control task. 

Kuipers and Kassirer"' analyzed a verbatim transcript taken from a second 

year student in three stages: Referring phrase analysis, assertional analysis 

and script analysis. 

There exists a considerable overlapping on each author's ideas and proposals. 

This is something to be expected since knowledge elicitation is a new 

discipline but the terminology leaves something to be desired. Different 

people use the same terms to mean different things. A lot of research is under 

way in order to compare the various elicitation techniques so a builder can 

rate each technique's suitability under various circumstances. A review of 

knowledge acquisition evaluation research can be found in the article by 

Dhaliwal et a135. 

1.4.6 Expert systems and conventional 

progTams 

One might wonder what makes expert systems different from conventional 

ones. One might remark that in some sense, any computer program is expert 

at something. A payroll program incorporates knowledge about accountancy, 

but it is not included in the expert class. The reason being that the numbers 

generated by the payroll program might differ depending on the inputs, but 

they are always generated in the same way. Creating conventional programs 
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involves the definition, from the beginning, of the data, its nature and the 

process involved. The process consists of the presentation, in the proper order, 

of the correct set of procedures and control structures. ý The conventional 

approach typifies program-driven processing where what happens next at any 

particular point is pre-determined. Hence, conventional programs rely on 

algorithms which contain a step-by-step description of the procedures to be 

followed. These algorithms guarantee that the right conclusion will be 

reached when the correct data have been entered or that new knowledge from 

old can be inferred but the inference order is known. Expert systems differ 

from conventional software systems in that they are able to reason about data 

and draw conclusions employing heuristic rules. These are rules that have 

been formed through practical experience and they are employed to solve 

problems. Heuristic rules do not require perfect data and are not guaranteed 

to succeed but the proposed solutions are derived with varying degrees of 

certainty. The route to a conclusion varies according to the input data but the 

difference with conventional programs is that the inference order is not preset 

by the programmer. The inference order is determined by the success or 

otherwise of the branches of the rules. Heuristic rules are useful for 

situations where it is not possible to construct an algorithm. Another 

difference is that with conventional programming the knowledge and the 

processing procedures are tangled and spread throughout the entire program. 

In an expert system, however, knowledge is concentrated in one module and 

another separate module directs the inferencing. The separation means that 

one can make at least some changes to either module without necessarily 

having to alter the other. These differences led to the usage of different type 
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of programming languages employed. Traditional programming involves the 

use of imperative languages, whereas on the other hand declarative languages 

are employed for an expert system construction. Additionally, expert systems 

can reason using incomplete data and can generate explanations and 

justifications, even during execution of their actions. Once again these 

facilities are provided by separate modules. 

1.5 An overview of the AEK expert system p'art 

The knowledge engineer has at his disposal a number of tools to aid the 

construction of an expert system. These tools fall into four major categories. 

Programming languages, shells, development environments and domain 

specific tools. As described by Waterman" and Harmon et. al" there are a 

variety of expert system tools. 

The AEK system was constructed using a commercially available expert 

system shell, namely Xi-Plus. Shells provide an alternative to programming 

languages since the knowledge engineer does not have to create the entire 

system from scratch. Shells like Xi-Plus provide an editor, the user interface, 

the inference engine and the explanation facilities. On the other hand the 

majority of such shells constrain the construction process due to the lack of 

a number of representation and searching schemes. This way the knowledge 

engineer might try to represent the whole of the area of knowledge using a 

single representation formalism. Ifthe need arises development environments 

can provide the solution. These environments are equipped with more 

sophisticated editors, graphical interfaces and numerous representation 

methods. Gevarter" presents evaluation criteria for selecting a commercial 

tool for performing a particular task. 
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The Xi-Plus system was used because it was readily available. Its utilisation 

was continued because of the suitability of the architecture and control 

features for the task. 

1.5.1 The AEK expert system part 

architecture 
The system implements the most common form of architecture in expert 

systems, namely the rule-based architecture. The components of the system 

are the ones described in Section 1.4.2. 

1.5.2 Representing knowledge in AEK 

(expert system part) 

The knowledge is represented using rules, facts and defaults. Facts are 

statements which are true under all conditions. Defaults are values used in 

the absence of other information. Rules, or production rules"', are small 

chunks of knowledge expressed in the form of if. then statements. The left 

hand side (IF) represents the antecedent or conditional part. The right hand 

side (THEN) represents the conclusion or action part. A number of rules 

collectively define a modularized know-how system"'. A list of the benefits and 

drawbacks using production rules is given by Hayes-Roth'. The rationality 

for selecting rule-based presentation becomes apparent when examining the 

following three factors. 

The wording of the expert: When dealing with experts, it is important 

to try to select the approach that is most natural to them. In our case, 

during protocol analysis (see Section 3.3), it became apparent that the 
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expert was expressing his problem solving techniques in terms of 

situation-action rules in order to show empirical associations between 

attributes. (Appendix I contains a protocol transcript). 

The nature of the task: The tuning of the filter is accomplished by 

classifying the appropriate action to be taken from a pre-specified list 

of possibilities. Production rules can only represent what is called 

-'shallow' orlow' knowledge"' but they present a natural framework for 

classification taskS42. 

The use of an induction tool: Elicitation of knowledge was performed 

using an induction tool (see Chapter 7). The outcome was a decision 

tree which was transformed to a set of rules. 

1.5.3 Control in the AEK expert system part 

The shell comes with predefined control structures but the user can 

implement some of his/her own. When a user of AEK requests the 

classification of a given magnitude response the system operates in the 

backward chaining mode (i. e. tell me how to classify). The order of looking at 

the rules is lexical order viz. when scanning rules it will first look at rule 1, 

and then rule 2 etc. The order that the rules are recorded is then critical. 

Since the rules were generated from a decision tree, the system performs a 

depth-first search. When it searches, it inspects each rule to see if the left 

hand conditions are true. This is achieved by either ý reading the working 

memory or by asking questions or by generating further subgoals. In any 

case, the system continues to the next rule until all rules have been inspected 

(if this is not desirable the user can instruct the system to stop at the first 

true rule). Theoretically all rules that can execute must be placed in a conflict 
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set and one of the rules is selected'. Using Xi-Plus the system displays all 

options and the user has to make the decision. The selected -rule then 

executes. This is what is known as the match, select and execute cycle. The 

system provides forward chaining (ie. what can you tell me when this data is 

true) as well. Additionally, meta-rides are available in order to reduce the 

search space. Other control facilities are the checking of outstanding queries, 

of a completed goal and the initiation of the evaluation of rules. 
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2.1 Introduction 

Chapter 2 provides an introduction to the manual procedure currently in use 

(Section 2.2). Section 2.3 describes previous work in the field of electronic 

filter tuning. Three approaches are described in total. The heuristic and the 

machine learning approaches were selected since their overall methodology 

is close to the one followed in this work whereas the third approach 

(sensitivity-based approach) represents conventional techniques. Finally, 

Section 2.4 discusses the motives for implementing the expert-neural (Hybrid) 

approach by identifying the strengths and weakness of the previous 

approaches and the areas where the hybrid system can perform (or 

compliment) better. It was hoped that the hybrid would eliminate repetitive 

and time consuming calculations, provide a better system-human interface 

and enable a complete automation of the tuning task. 

2.2 Manual tuning procedure 

Manual tuning can be thought of as a human real-time optimisation which 

attempts to reduce the total and individual errors in the features of interest, 

with as few steps as possible. Error is defined as the difference between the 

required and the obtained performance. 

There does not appear to be a general theory of the practical tuning of filters. 

Through an initial training and with acquired experience the operator is 

transformed into a sldlled operator. An experienced operator then effectively 

generates an heuristic algorithm for tuning a particular type of filter. 

Knowledge about which components are appropriate for adUustment for tuning 

and which to be ignored, the order of the specification checldng etc. is 
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referred to as heuristic. Heuristic algorithms are different to conventional 

algorithms in the sense that they do not guarantee success or a solution. They 

can fail at certain times, but often they work. The difficult part, as will 

become obvious later on, is to extract the algorithm. The operators appear to 

be unaware of it. 

Despite the variations between operators, which can be found in detail, the 

general pattern is the same. An operator checks the performance of the filter 

(e. g. magnitude response). From experience coupled with the feedback pro- 

vided by the response measurement system he or she decides what corrective 

action, if any, is to be taken. The action being the adjustment' of an 

appropriate tunable component. These steps are then repeated as many times 

as necessary until the performance satisfies the requirements. Then the 

response is checked at a set of frequencies and further corrective actions, if 

required, are carried out. Effectively, the operators act as signal interpreters 

and the interpretation is not based on any theory but is essentially a 

synthesis of a strong capability for pattern recognition linked with knowledge 

accumulated from past experiences. 

2.3 Work in the electronic filter tuning flield 

Although manual tuning is successful the advantages of providing 

computerised assistance to an operator have been recognised before. This 

section introduces and contrasts the work of others in the field. The reasons 

behind the motivation for using the expert system technology are also 

discussed. Rather than introducing a catalogue of all techniques, this chapter 

will highlight on three proposed methods, namely the work described by 

Nazemi and Fidler', Mirzai', and Crofts and Jervis'. The first two projects are 
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most directly relevant to this work due to the involvement of experts, in 

Nazemi et. aL case, and the machine learning approach, in the case of Mirzai. 

A discussion of the three techniques will hopefully help to understand AEI'Cs 

contribution to the field. 

2.3.1 Filter tuning, using a 'microprocessor 

based heuristic algorithm 

Nazemi and Fidler' realized the need for the automatic tuning of filters and 

proposed a method which took into consideration the operator's knowledge. 

The development of the heuristic method involved three phases. The first 

phase involved'the selection of the tuning components and the frequency 

points. To facilitate the selection, sensitivity analysis was employed as a 

starting point. Secondly, the error and stopping criteria were defined in order 

to have some means of stopping the tuning process. Finally, the heuristic 

tuning algorithm was developed. This involved the creation of an information 

storage data table (ISDT). The table included information on which 

component to adjust and the direction of adJustment at every test frequency 

point. This information was dependent on the polarity of the error. This ISDT 

was stored in the memory of a microprocessor controlled system which tested 

the filters after each adjustment and then adjusted* them again, and so on, 

until they were tuned. What is interesting and of particular relevance to our 

work is the method used to generate the table. In general, the algorithms, 

since each type of filter has a different one, were developed by tuning the 

filter manually a number of times. The pattern of tuning and the pattern of 

adjustments were combined and their examination resulted in the creation 
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of the algorithms. In particular, for a second order Sallen and Key lowpass 

filter Nazemi" reported the creation of the algorithm as follows: 

"By performing the tuning manually many times, the best approach 
was recorded and from that an ISDT was formed. " [Chapter 5, page 
1421 

The goals of the testing of the heuristic algorithms were as follows: 

(a) Can the heuristic algorithm be used on its own, and 

(b) can the heuristic algorithm be used as a front-end of another technique. 

If so, are there any benefits in doing so. 

The heuristic algorithms were tested on a number of hardware circuits and 

compared to a pattern search optimisation technique devised by Hooke and 

Jeeves'. The criterion of comparison was the number of measurements carried 

out by each method. One conclusion was that the heuristic algorithm can be 

operated on its own but usually resulted in a coarse tuning. An important 

observation was the substantial improvement in the number of 

measurements. When used as a front-end no more than eighty-eight (88) 

measurements were required although total reliance on the Hooke and Jeeves 

method required a minimum of five hundred (500). 

2.3.2 Alignment of filters using a Machine 

Learning System 

Mirzai' proposed a machine learning system (MLS) for tuning waveguide 

filters. The MLS was originally developed for fault diagnosis of 

telecommii ni cations systems, in particular microwave digital radios'. The 

approach is based on linear adaptive combiner algorithms and more 

information is given. in Chapter 4. Here, only an outline of the MLS will be 
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given. The overall system is used in two modes, namely: the training mode 

and the use mode. In the training mode the adaptive combiner was used for 

fine tuning only. The coarse tuning was performed manually. In order for the 

algorithm to learn how to perform the fine tuning the following steps were 

taken: 

W The reference characteristic was selected. This was the S11 polar plot 

(Figure 5a). This was chosen because it enabled tuning of the group delay of 

the filter as well as its amplitude response. S, I, where S stands for scattering, 

looks at the division of the output by the input in frequency domain at all the 

frequencies of interest. The scattering parameter using a network analyzer 

system enabled the measurement of both the magnitude and phase 

information and the plotting of the data on a polar display. The measurement 

of the scattering parameter can be illustrated better using network parameter 

theory. Figure 5b which displays a flow graph of a two port network will be 

used. Nodes a and b are the incident and reflected nodes respectively. When 

an incident wave enters the device at node a of port 1, part of it will be 

returned through the S,, path and b, reflection node. Part of the wave will be 

reflected through the a2node as well. This can be expressed as: 

b, = a, *Sll+a2 * S12 

If the device is not connected to port 2 (i. e. by terminating port 2 with its 

characteristic impendance) then the equation becomes: - 

b, =a, * SI, 

Therefore S,, = b, / a, given that a2 = 0- 

Other scattering parameters can be measured in a similar fashion. These 

generalized parameters can be measured easier than other traditionally used 
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parameters especially for frequencies above 100 MHz. Additionally their 

conversion is quite simple. 

(ii) A set of prominent features were extracted from the reference 

characteristic in order to have some means of assessing the sensitivity of the 

adjustable components on the polar plot. In total sixteen (16) features were 

selected. These included the area of the loops, the geometric mean of the plot 

etc (Figure 5a). 

(iii) The adjustable components to be used were selected - in total six (6). 

(iv) The value of each feature for a fine-tuned filter was recorded. 

(v) Further examples were generated by simply mal-adjusting one adjustable 

component at atime. This was implemented for both directions. 

(vi) The examples were fed to the algorithm and a number of combiner 

weights were calculated. These weights represented the knowledge in the 

form of mathematical relationships. 

In the use mode the system was simply provided with the feature set of a 

coarsely tuned filter. This initiated the production of a graphical display of 

the adjustment levels of each component. The component which generated the 

aximum error at each iteration was adjusted. This process was repeated 

until the response of the filter was within the specifications set by the 

reference filter. One coarsely tuned filter was found to meet the specification 

within twenty (20) adjustments. Unfortunately, the initial amount of mal- 

adjustment has not been reported. 

2.3.3 Sensitivity-based filter tuning 

This section introduces the work by Crofts and Jervis' which is based on 

sensitivity analysis. The concept of sensitivity involves the identification of 
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- Figure 5b : Flow graph of a two port network 
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the relationship between variations in a particular function F and the 

variable parameters of that fimction. In the case of circuit analysis the 

voltage transfer function H(s) was used and the adUustable components Xk 

represented the variable parameters. Two tuning algorithms by Antreich 7 et. 

al. and Jobe" were compared using simulated and actual tuning of two 

differently designed low-pass, 7t" order, elliptic filters (a 4.5 MHz and a 100 

kHz filter). Only the magnitude response was considered and the work of 

Crofts and Jervis" involved the identification of which adUustable component 

(one of three inductors) dominated the sensitivity of the magnitude response 

at some selected frequencies. An outline of the tuning procedure is given 

below: 

(1) Calculate the network response using (H(s)) the nominal component 

values at six selected frequencies. 

(2) Perform the sensitivity analysis by incrementing each component in turn 

by a known value (: t 2.5 for the 4.5 MHz filter, ±4 for the 100 kHz filter) 

from its nominal value. 

(3) Calctdate the adjusted network response at the six selected frequencies 

and compare with the specification. Their difference (A H(s)), termed object 

function, at each selected test frequency was found by simple subtraction. 

The magnitude sensitivity was calculated using the following formula: 

R(B) - 
Xk a III(S) 

H (S) ax 
't 

If the specification was satisfied then step (5) was performed, otherwise step 

(4). 

(4) The object fimction combined with the results from step (2) indicated 

37 



which component(s) were in error. Using Antreich's 7 et. al. method the 

adjustments, for a circuit with two acIjustable components analyzed at two 

frequencies, were given by: 

r Ei 
-+ 

E2 

S12. S21 
S 

sll s22 

Ax=I 
Sil- 

Ei 

S22 

ý+ 

2 

E2 

s12 

s12- 
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s22- 
S12. S21 
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Using Jobe's method the adjustments were given br. 
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su s12 
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s12 s22 

The required component adjustments were then given. The tuning procedure 

was repeated from step (2). 

(5) The tuning procedure was terminated. 

The tuning results with the computer simulations and the actual tuning 

showed that?: 

" Both tuning algorithms were capable of tuning the filters. 

" The Antreich et. al. method was more efficient than the Jobe method 

(simulation results). 

N In the case of the actual tuning of the 4.52 MHz filter no difference could 

be found between the performance of the two methods. 

0 The actual tuning of the IOOkHz filter showed that there was a poor match 

between the practical tuning and the computer simulation but tuning was 
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achieved in most cases. 

2.4 Motivations for using a hybrid system 
The motives for employing a hybrid system (expert system, neural network) 

in the filter tuning domain can be categorised into three broad areas, namely 

technical, business and science. 

Technical considerations 

The desirability of applying expert systems in terms of a comparison with 

other approaches and general task properties were considered. The expert 

system approach could be used for comparison with other techniques in terms 

of measurements required and time taken. However, such comparisons are 

not feasible since the various authors describe their work using different filter 

types. An investigation could be carried out where the same filters will be 

used, but unfortunately this is work which may never be performed. The 

question is then best answered by considering how well those previous 

approaches fulfil the requirement of a system which exhibits certain essential 

and desirable features. Such essential features are: the reporting of which 

tunable component to adjust, in which direction and by how far. The desirable 

features are: generality, explanation of reasoning and easy human 

interaction. Discussing briefly those approaches, one can assert that both 

Mirzai and Crofts provide excellent information about the essential features. 

The drawbacks are the need for repetitive and time consuming calculations 

(especially Crofts), lack of generality and basic system-human interface. The 

latter indicates that the systems cannot possibly be used as tutors. Further, 

Crofts work is detern: dnistic and corresponds to an inexperienced operator, 

viz. it starts from scratch in every case and does not take into account the 
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expertise of an operator. On the other hand Nazemi and Fidler use the 

operator's knowledge but the elicitation method leaves loopholes. For example 

the "best" approach of the day does not guarantee it will always be the best. 

This is acknowledged by Nazemi and Fidler who conclude that such heuristics 

must be generated automatically - something our work contributed towards. 

At the same time the work of Nazemi and Fidler does not provide information 

about distance (i. e. how far to turn). 

The general task properties that have to be satisfied when selecting an expert 

system application are numerouslo-1 1.12 
. For example, there must exist 

recognised experts who are probably better than novices in performing the 

task. The task must be well bounded, must require the use of reasoning and 

not just numeric processing, and must be neither too easy nor too difficult. 

The filter tuning task satisfies these expectations. 

Business considerations 

The other major aspect is the value of the system to the business. At the 

present time, manual tuning has some drawbacks. It is time consuming, 

represents a large proportion of the total filter production cost, and can be 

described as uninteresting and uncreative. An expert system could free the 

operator to undertake work more satisfying to him or her and be more 

productive for the manufacturer. 

KnowledLye considerations 

The filter tuning task is different to, say, the familiar domain of medicine. In 

the medical field one deals with a highly qualified expert, with several years 

of practice, able to reason for the decisions taken and performing in static 

time. By contrast the operator in the tuning process is not highly qualified, 
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not always able to reason and operates in real time with a constantly 

changing environment. The numerical nature of the knowledge and the 

problems of eliciting the knowledge resulted in needing a further tool, i. e., 

creating a hybrid expert system-neural network system. Our goal was then 

to develop a hybrid system to provide the operator with all the essential 

features using an appropriate display. 
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3.1 Introduction 

Chapter 3 reports on the work and the results obtained during the first visit 

to Newmarket Aficrosystems. The results included the selection of the expert 

operator and the type of filter to be employed. Additionally, protocol analysis 

was identified as a suitable starting knowledge elicitation technique mainly 
because of the verbal on-line format of the technique. Section 3.3 presents the 

protocol analysis implementation and the subsequent analysis, of the 

transcripts. The main analysis result was the identification of the overall 

filter tuning procedure. Furthermore, the analysis of the transcripts indicated 

the need for an alternative elicitation technique due to the apparent lack of 

theory behind the selection of a particular tunable component the direction 

and how far to turn it (Section 3.3.2). 

3.2 The first visit 
The first stage of any knowledge engineering project must always be the 

familiarization of the knowledge engineer with the domain. In addition, 

various general but important questions have to be answered before the task 

commences. For that reason the objective of the first visit to the collaborating 

establishment was to obtain background information beneficial for domain 

acquaintance'. The following activities were carried out: 

Identification of benchmark filter 

Identification of expert operator 

Identification of sources of reference 

Identification of the role of the system 

Identification of any parenthetical knowledge 
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Elicitation of concepts 

Definition of the problem areas 

Identification of appropriate knowledge elicitation technique. 

3.2.1 Identification of benchmark filter 

One of the first tasks was to select a suitable filter. This filter had to satisfy 

two requirements. Firstly, the tuning of such a filter had to be more or less 

representative of the task. Secondly, the tuning process had to be neither too 

trivial, because the effort of developing an expert system might outweigh the 

potential benefits, nor too difficult. The filter had to be somewhere in the 

middle of the complexity scale. A factor which probably determines how easy 

or difficult the tuning of a filter will be is the number of acuustable 

components. Another factor derives from how trivial or complex the required 

specification is. The degree of complexity depends, for example, on the 

requirement of examining the phase response or on the number of frequency 

ranges to be checked. The collaborating establishment manufactured more 

than 200 types of crystal filters. With the help of an operator the whole 

spectrum was segregated into three categories. From each category one filter 

type was identified. The filter type from the medium category was elected to 

be the benchmark filter. 

3.2.2 Identification of expert operator 

The choice of whom to use as expert is critical. Without an expert, there 

cannot be a system, unless the knowledge engineer is also the expert. At 

Newmarket, there exist various people who have competence in tuning filters. 

These people differ in age, experience and qualifications. Most operators fit 
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one category: those people with few years experience on the job and 

unqualified. Our expert was chosen because of his vast experience-in 

designing and tuning filters (over 25 years), his willingness and enthusiasm 

about the project and his articulateness. 

3.2.3 Identification of sources of reference' 

Sources of reference are often sufficient to introduce the knowledge engineer 

to the domain. Unfortunately, despite the plethora of books about filters and 

their design, there is no book on how to tune filters. A reason for this might 

be that filters are manufactured for a particular client's specification, 

resulting in hundreds of different designs. A formal theory or methodology 

has not surfaced. What was made available was information for the 

benchmark filter. That information included a schema of the filter, the 

specification that it had to satisfy and a graphical representation of the 

magnitude response. 

3.2.4 Identification of the roIe of the system 
An expert system can act in a number of different roles. For example as an 

assistant - performing a sub-task of the process, or as a critic - reviewing the 

decision of the expert and providing comments. The role a proposed system 

takes depends on the user. Is it going to be used by an expert or a novice? It 

also depends on the degree to which the problem can be automated. Another 

factor is the company's wish, which in a commercial world is probably the 

most important one. By discussing the subject with the expert and senior 

staff, it was decided that the system could take the role of the consultant. 

That way the system offers an opinion which the user does not have to 
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comply with. 

3.2.5 Identification of any parentheti- cal 

knowledge 

The term 'parenthetical'is borrowed from Freiling et. al. ' who define it in the 

following manner: 

"... knowledge about how the task being performed relates to other 
tasks and the operational environment in which the task is being 
performed. " 

Another term that can be used is associated knowledge. There is not a 

methodical way to obtain this kind of knowledge but it comes out during 

casual conversations. A guided tour of the filter tuning production line was 

made during the visit. The answers to questions such as what happens when 

the task is completed were obtained during the tour. Filters were tuned by 

trained persons. In situations where the task could not be completed the filter 

was passed to a more experienced person. He could either tune it or reject it 

because there was something fundamentally wrong. When the filter 

characteristics were tuned to within the specification the filter was packaged 

into a metal box and sealed. Then it was distributed to the client. A new 

person is trained in-house by a senior operator and it can take up to three 

months to reach a satisfactory level of competence. Initially the training 

involves monolithic filters and later on other types. This indicated that some 

overall generality might exist. One must collect such information because it 

can affect the design and the role of the expert system. For example, the 

specification could be supplied automatically by the system eliminating the 

job of searching for the correct specification. 
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3.2.6 Elicitation of concepts 

Prior to the visit a letter was prepared (Appendix 2) which was presented to 

the expert. The purpose of the letter was to collect those concepts influencing 

the decision process. At that time it was unclear what those concepts were. 

The expert was asked to tune a fidter and at the same time to record those 

concepts on a piece of paper. The expert faced difficulties with the term 

'concept'. His answers took the form of description of the task instead of only 

the concepts, which can be found hidden in the text. 

3.2.7 Definition of the problem areas 

When the operator decides that the characteristics of the magnitude response 

of a filter are not within the desired specifications, he must choose which 

section of the response to adjust first, which tunable component to, use, in 

which direction to turn it and by how far. He also has to determine which 

action is to be taken in order to correct a wrong choice. Oneminor problem 

is that the operator wastes time searching for the specification of each filter. 

3.2.8 Identification of an appropriate 

knowledge elicitation technique 

The technique chosen for the filter tuning project was protocol analysis (see 

Section 1.4.5.1). It was considered appropriate to video-tape the sessions for 

the following reasons. In the filter domain the expert interprets, plans -and 

executes tasks by visually inspecting the display unit of the measurement set. 

The set displays the magnitude response of the filter. By adjusting the set, 

the expert can inspect the full response or part of the response. It was felt 
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that the expert would have found it difficult, or even impossible, to describe 

the response in a verbal off-line format. The choice, then was between 

behavioral observation and protocol analysis. Since the knowledge engineer 

was unfamiliar with the domain terminology, protocol analysis, where the 

expert refers to the task process using the terminology, was preferred to the 

behavioral observation. Protocol analysis was selected for the beginning of the 

analysis process. Protocol analysis had to be complemented with other 

techniques (e. g. structured interviews) which were thought to be more useful 

in a 'more clarification! mode. The reader must appreciate that knowledge 

elicitation is at a very early stage of development, where general principles 

have not emerged and only a combination of techniques can provide fruitful 

results. The combination will vary from project to project. The expert and 

senior management did not oppose the idea of using a video recorder so a 

second visit was arranged. 

3.3 Protocol analysis implementation 

The tuning of the chosen type of filter was video-taped twice. The expert was 

instructed to 'think-aloud' about the process and to refer not only to his 

mental skills but also to his manual skills. Manual skills means those needed 

to operate the measuring set. Mental refers to the reasons behind each action 

taken, such as why to turn component X instead of Y. At the end of the 

recordings the video tape was played back and notes were taken. Those notes 

were concerned with: 

(a) ambiguous statements 

e. g. "... arrange these peaks into a more reasonable place. " 

(b) cross-refer ence of the expert's decision taking. That involved 
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watching the two video takes of the process and comparing them. 

(c) recording probing questions for further use. Questions such as 'why 

did you take that action' for those situations where the operator did 

not provide any explanations. 

(d) transcribing and analyzing the verbatim account. That involved 

watching and listening to the tape and writing on to paper everything 

that the expert was saying. 

Some general observations are as follows: 

the expert did not find it difficult to verbalize his manual skins nor, in 

some circumstance, to explain his reasoning but there was a steady 

decrease of the level of details from the first recording to the last one. 

The expert was able to describe the tuning process for whichever 

component he was tuning at a particular time but when there was 

more than one candidate component he did not provide a theory for 

which one to select. 

3.3.1 Analysis of the transcripts 

It was realised early on that the transcription process is time consuming . 

When both video takes were transcribed they were entered into document 

files of the Wordstar wordprocessing package. Packages as such can be very 

useful as support tools to browse and edit the text. Prints of the transcripts 

can be found in Appendix 1. The files include a reproduction of the protocols 

in a complete fashion, and no attempt to filter the contents of the protocol 

was made. Each transcript was broken into short lines, in such a way that 

each line contained a phrase which could stand in its own right. Having 

individual lines did not provide any additional knowledge but made the 
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transcript easier to read, understand and analyze. Where it was possible the 

format was: Do this - Why - Because (action - justification - explanation). 

Appendix 3 includes the phrase transcriptions. Lines which did not belong to 

this format were either general comments or operational comments. The 

benefits of the transcription analysis were as follows: 

Identification of order for specification checking ie. what features and 

in what order were checked. If during checking one feature needs re- 

adjustment, the expert attempts to fix it and he starts re-checking from 

the beginning. 

A set of possible tunable components associated with each feature 

identified above was also recognised (Table 2). 

The classes of activity the operator engaged in were identified. The 

operator had knowledge about the measuring set, useful in order to 

have the most appropriate display at each time (Operational). He had 

knowledge of how to interpret a response and identify those regions, if 

any, that need adjustment (Interpretational). Additionally, he had 

knowledge of which region, or part of, to tune first, what to follow etc. 

(Planningi, knowledge of how to proceed in order to make a final check 

(Inspection), and knowledge of how to recognize an achieved state 

(Recognition). 

By identifying the various activities, one can concentrate and tackle a 

particular activity at a time (i. e. modularity). 

The objects were recognized and classified. By objects is meant the 

most primitive lexical entries that the expert uses to express domain 

knowledge. Objects usually take the form of a noun or a compound 
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Table 2: Tunable components associated with each feature 

Featu Compgnent 

Ripple TI, T2, T3 

Passband width T3 (maybe T1, T2) 

Attenuation C49 C7 

Stopband width CO C7 

Ultimate attenuation C4 
0 

C7 

Insertion loss reject 
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noun. Such objects in the verbati .m transcript are: "coils", "capacitors", 

"frequency", "anticlockwise" etc. The outcomes of the object identification 

process were twofold. Firstly, the knowledge engineer became familiar with 

the domain terminology, resulting in the production of a lexicon'. A sample 

can be seen in Appendix 4. Each definition is from the IEEE standard 

dictionary of electrical and electronic terms". Secondly, synonyms were 

identified which helped to reduce misunderstandings. For example screw-in 

and clockwise mean the same action. 

4 Casual statements, with A'lot of information, were identified. Such 

statements were as such: 

- it is used to adjust the passband 

- capacitors are used to acbust the stopband 

- the right capacitor is the best bet to adjust the return levels. 

4 The expert's tuning process was identified. That is, a general overview 

of how the expert proceeds. The expert's process 'can be split into three 

main stages. Set-up the measuring set, qualitative tuning and 

quantitative tuning. Stage one, is simply the setting-up 

of the measunng set using, for example, the reference 

frequency. The first stage is not of concern since it is mechanical in 

nature and is the same for any type of filter, except of course, that 

different reference values are used. By qualitative tuning, is meant 

that stage in which the expert uses visual information to decide if 

tuning is required. He also employs visual information when he a4justs 

a particular component to determine if the correct action has been 

taken. Quantitative tuning can be thought of as the specification 
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checking. The expert uses not only visual information but numerical 

values (obtained from the meter) to determine if more tuning is 

required. 

3.3.2 The need for an alternative elicitation 

technique 

Let us concentrate on the second stage. Stage two, can be broken down into 

two further sub-stages. Tuning of the stopband and tuning of the passband. 

It was also discovered that the expert always attempts to tune the stopband 

region first. Additionally it was found that the trimmer capacitors are the 

only adjustable components to be used for the stopband tuning. The inductors 

are used for the'passband tuning. Another observation was that having 

successfully tuned component X, then when he moved to the next component 

he tuned in the same direction as he did with X. The problems arose when 

the expert was unable to provide any explanations of either why he selected 

a component X instead of Y, or why a certain direction was chosen. It seemed 

that the expert either made those decisions by chance or that something 

triggered his decision which he was not able to express. Also, he did not 

express by how far to turn. The expert actually kept turning until a 

particular shape of the response was reached. The rules governing what 

constitutes a satisfactory shape could not be expressed. This situation was 

worse in those circumstances where the expert had moved away from the 

'optimum' state. His subsequent action was to turn the component the 

opposite direction until the 'optimum' state was re-achieved. To overcome the 

problem of which component to use at certain response states, which direction 
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to turn and by how far to rotate, the possibility of automatically acquiring 

and updating the rules was considered. 

3.4 Conclusions ý 
During the firsL visit to Newmarket Aficrosystems the 4716-type of crystal 

filter was selected as the benchmark filter and it was decided that the 

computerized system should act as an advisor. 

It was decided to apply protocol analysis as the first step for acquiring 

knowledge. Following the implementation and analysis of the protocol 

transcripts it was clear that machine learning algorithms as the means for 

automatic knowledge elicitation must be investigated. 
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Chapter Four 

Machine Learning Principles and Techniques 

What we have to learn to do, we learn by doing 

Aristotle 
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4.1 Introduction 

As already mentioned in Chapter 3 an alternative knowledge elicitation 

approach had to be considered since the applicable classification rules were 

not clearly known. 

Recently systems which are capable of automatically identifying and 

synthesizing the knowledge of an expert have proved of interest. Machine 

learning systems is the commonly used term to describe such systems. The 

concept of machine learning and in particularly learning through the use of 

examples is the subject of Section 4.2. In Sections 4.3 to 4.5 three systems 

(ED3, Adaptive Combiners, Neural Networks) are described. The algorithm of 

each system is given in detail and the main limitations and proposed 

modifications are highlighted. 

4.2 Introduction to Machine Learning 

The power of an expert system depends on the knowledge incorporated into 

the system. Knowledge must first be elicited and subsequently represented 

and refined. The task of elicitation has been labelled as the bottleneck' of the 

construction process of such systems. One role of machine learning is to assist 

during the elicitation process and to bypass the bottleneck. Additionally, 

expert systems perform in a deductive format', i. e. the conclusions always 

depend on the knowledge supplied. The presence of an incorrect conclusion 

can generally only be corrected by the builder's interference and not by the 

system itself. Systems that learn improve the quality of their performance 

with time without being reprogrammed. An improvement of a performance 

can be manifested by a faster response or a higher proportion of correct 
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decisions or both. Three major research paradigms can be identified: neural 

modelling and decision-theoretic techniques; symbolic concept acquisition 

(SCA); and knowledge-intensive, domain-specific learnine. Each paradigm is 

based upon the same principle, namely that of inferring conclusions given a 

priori knowledge, and differs from the others only'in the amount of 

information required and in the way the knowledge is represented and 

modified. A number of learning strategies have been documented' but in the 

work reported here techniques which learn from data composed of a number 

of independent examples have been implemented. Each example is described 

in terms of a'number of attribute values, together with' an additional 

attribute, known as the class, which allocates the examples to a particular 

category (supervised learning). A number of different techniques have been 

reported in the literature, e. g. neural networks", genetic algorithms", and the 

AQ (Aurora) family", ' of algorithms. The techniques chosen were ID3, 

adaptive combiners and three-layer neural networks and these are outlined 

briefly in the following sections. The reasons for choosing these three 

techniques were more practical than theoretical. Extensive previous work 

using adaptive combiners in the field of tuning of waveguide filters", in 

addition to the availability of a commercial package implementing ED3, were 

the main factors behind the decision. Therefore, results obtained with IID3 

and adaptive combiners can be compared and any benefits of using one 

technique rather than the other can be identified. Neural 'networks were 

chosen because of their ability to model non-linearities (a shortcoming of the 

adaptive combiners). It has also been reported that ED3 is faster, in terms of 

induction, than AQ11" or a genetic algorithm" with the same performance 
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rate. 

4.3 The Iterative Dichotomiser Three (ID3) 

Algorithm 

One learning strategy is induction. Induction means reasoning from specific 

cases to general principles. A subdomain of induction is concept learning from 

examples. This involves the generation of rules (or any other kind of 

presentation) which best classify the examples with which the system was 

presented. Best refers to the accuracy factor when tested with previously 

unseen examples and the comprehensibility of the rules. Comprehensibility 

of the rules is critical since it determines how effortlessly the knowledge can 

be understood and consequently conveyed to people in order for them to 

appraise, czitise and use. In this section IID3, an example of an inductive 

inference system, is described. Prior to the presentation of the actual 

algorithm it is worth noticing the following points: 

(i) The algorithm does not use any other domain specific 

knowledge beyond that of the training examples themselves. 

(ii) The algorithm applies to a variety of application areas, viz. 

it is a general purpose algorithm. 

(iii) The original algorithm looks at the entire set of training 

examples before forming the rules. This is usually referred to as 

a single learning stage. Further offsprings of the algorithm 

bypass this requirement, this is known as windowing. 

Ov) The rules which IID3 learns are represented as decision 

trees. A decision tree embodies the relationships between the 
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attributes and the classes. Each node of the tree represents an 

attribute and each branch corresponds to a possible value the 

attribute can take. Each terminal (leaf) node represents a class 

prediction to be assigned. 

The ED3 algorithm was developed by Quinlan" in 1979 and is a descendant 

of Hunt et al"s concept learning system. A diagrammatic description of the 

algorithm is shown in Figure 6. The decision tree is grown in stages. First the 

algorithm looks to see if all examples belong to the same class. If they are the 

label 'null' (or something equivalent) appears. Otherwise, the algorithm 

selects the most informative attribute and either forms subsets equal in 

number to the number of values the attribute takes (i. e. creates the branches 

of the decision tree) or forms a binary split (cutoff point) when the attribute 

holds numerical values (e. g. >5, <=5). For each subset the algorithm checks 

whether all the examples are of the same category. If they are then the 

algorithm labels that subset with the name of the class (ie. creates a leaf of 

the decision tree) and partitioning stops for that subset (labelling rule); 

alternatively the algorithm creates further, smallest subsets. The algorithm 

stops when no more subsets can be created, i. e. the tree has been grown 

meaning all leaves and internal nodes have been defined and all examples 

have been considered (termination rule). It is worth noticing that the 

algorithm may label a leaf as 'empty' or 'clash'. Empty appears when there 

are no examples that can be used for that particular branch. Clash emerges 

when there are two (or more) examples covering that specific branch but their 

classes are distinct. The key principle underpinning the algorithm lies in the 

selection of the most informative attribute and is based on Shannon's classic 
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work in information theory". The most informative attribute, at a certain 

instance, is the one that ma3dmises the information gain (G) which is 

calculated by: 

G (of attribute Xj) - X-Hp i-1.. total number of attributes 

where I is the expected information of the whole training set and E is the 

expected information of the whole training set when only -attribute Xj 

considered. Both values can be expressed as: 

X(y, n) Y log2( Yn 
'1092 (n 

y+n y+n y+n y+n 

Y, +ni 
y+n 

where 

u denotes the number of values attribute X can take 

yj denotes the number of examples that have the ith attribute value at 

the column defined by attribute X, and belong to class y 

n,: denotes the number of examples that have the ithattribute value at 

the column defined by attribute X, and belong to class n. 

The algorithm has been used - on a variety of tasks, in ý the standard or a 

modified form", "', with some success", "-". It has also been compared to 

different approaches and its performance has been shown to be 

comparable", ". The use of ID3 for real world applications uncovered various 

deficiencies in the basic mechanism of the algorithm. For example, 'studies by 

Kononenko et al" have highlighted the deficiency of favouritism towards 

attributes with a large number of values. Chapter 6, describes further 

shortcomings as experienced during this research work. ý Despite the 
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imperfections, it seems that ED3 is a valuable aid for knowledge elicitation. 

4.4 Adaptive Combiners 

In recent years one class of adaptive architectures, linear combiners, has been 

used for the design of intelligent systems". These are systems where 

traditional elicitation techniques fail to provide any rules since the underlying 

relationships are not known and many of the variables are continuous in 

nature. Figure 7a illustrates a simple combiner structure. Given knowledge 

about a particular problem in the form of input attributes it is possible to 

represent them in vector form as shown below, 

'l - [X,, r2_xjr 

where n represents the number of attributes and T denotes the matrix 

transpose operation. Additionally the class yj is also provided. It is desirable 

to estimate the weight vector shown below,, - 

[wlw29.. 
pwj 

in such a way that, when the system is presented with a new set of attribute 

values, it can predict the correct outcome. In other words, we wish to 

represent the knowledge relating the attributes to the classes as the weight 

vector in the combiner. The adaptive combiner structure described here can 

be thought of as a one layer connectionist network. Adaptive combiners, like 

neural networks, fall within the first learning criterion as presented by 

Michie". This criterion states that when a system uses sample data to 

generate an updated basis for improved performance on subsequent data then 

learning occurs but the emphasis is on the performance of the system and 

other aspects of intell igence, such as explanation of reasoning, are neglected. 
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The knowledge within an adaptive combiner, or a neural network, is 

represented by a mathematical function and distributed to a set of weights. 

Weights act as parameters of the mathematical function, but have no 

meaning by themselves which makes it rather difficult to assign credit or 

blame to an individual weight. Adaptive combiners ignore the reasoning 

characteristic an intelligent system must have and concentrate on the 

performance. The recursive least squares algorithm is employed for the 

estimation of the weight vector. 

Figure 7b illustrates an adaptive linear combiner where AT(k) is the present 

set of attribute values, H(k) is the weight vector and Y(k) is the estimated 

combiner output. From Figure 7b, the estimated output is, 

(k) - 

The error can be expressed in terms of the desired class value, y(k), and the 

estimated output, Y^(k) as folIows, 

e(k) - )(k) - JO(k) 

The RLS algorithm is used to adjust the weights in order to minimise the 

mean squared error. It has been shown 24 that the optimal weights, WPt are 

given by the Wiener solution, 

if -- 
mw C, ky 

where §. is the auto-correlation function of x and §-., is the cross-correlation 

function of x and y. In the RLS algorithM25 , the present weights, M(k) may be 

expressed in terms of the previous weights by, 
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3Xk) - w(k-1) + zý(k)x(k)e(k) 

where r is an estimate of k. given by, =XX 

k 

Z,. -E z(n)z'(n) 
j8-0 

r `(k) can be expressed in terms of a standard matrix identity by, 

(k - 1) -- 

This form of RLS has an infinite memory. In other words, the weights are 

fimctions of all the training examples. It is useful to introduce a forgetting 

factor into the algorithm in order to give greater importance to the recent 

training examples than the old ones. One way of accomplishing this would be 

to apply a time varying exponential window to the recursions. In this case the 

above equation is modified to, 

Cl(k) 

where 0<X<1 and usually lies in the range 0.9 <X<1. It was mentioned 

above that adaptive combiners can be thought of as a subset of connectionism. 

The main difference is the fact that the combiners are linear structures and 

cannot be directly applied to non-linear systems. However, the non-linearity 

can be treated by manipulating the attributes, i. e. by using second or third 

order attributes depending on the degree of non-linearity. 

4.5 Neural Networks 

Following a period of inactivity neural networks (or alternatively neural 
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computing, connectionism, parallel distributed processing) research was 

revived resulting in the development of various types of systems. A historical 

overview of neural research can be found in Pollack" and an excellent survey 

of the different systems in Lippmann'. Whereas the symbolic approach is 

based on an explicit rule set in order to understand a problem, neural 

networks research targets hard problems (i. e. the ones that eliciting rules'is 

27 hard) so difficult to model that way. One can argue , that the two approaches 

can compliment each other rather than cancel each other out. For instance, 

for a natural language processing task, parsing sentences may be done by 

symbolic systems and interpretation may involve neural nets. 

Neural networks research has been inspired by the way the human brain 

operates but the neural network models are not or even try to be exact 

replicas. Simply,, certain similarities exist in terms of the features, the 

connectivity arrangements and the operation. It is the selection of the 

connectivity and operation employed that characterises, to a large extent, the 

type of neural model being used. Although, models differ in detail, each one 

contains the same basic features. A discussion of these common features and 

their relation to the popular Back-Propagation architecture is given below. 

Any neural model contains a number of processing units (or nodes or 

elements). In the Back-Propagation architecture three types of units exist: 

input (sensory) units, hidden (associative) units and output (response) units. 

Each type of unit exists in a layer. Back-Propagation networks contain one 

input layer, one output layer and one or two hidden layers. A single unit can 

represent a small feature and their distribution over the whole network 

provides a meaningful entity. The role of the hidden units is to translate the 
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input patterns into output patterns. The fimction of each unit is to receive 

inputs (from sensors or other units) and to spread an output (to other units 

or to external agents). Unit inputs and output may be discrete, for example 

(0,1) or (-1,0,1) or alternatively they may be continuous undertaking values 

in the interval [0,11 or [-l, +Il. Using the Back-Propagation model a unit can 

receive a number of inputs but it can only produce one output which can be 

distributed to more than one unit. The output of a unit is generated by 

collecting, combining and transforming the inputs. Each unit has associated 

with it a combining function, a transfer function and a set of weights 

(See Figure 8). The weights define the influence of an input, the combining 

function combines the inputs and the weights and the outcome is passed to 

the transfer function which defermines the output. The most common 

combining function, and the one used in this work, is the summation 

function which calculates a weighted sum of all the inputs: 

wif *it 

where WU is the weight between unit i of layer (S-1) and unit j of layer (S) 

and ý is the input from unit i. Other combining functions include the 

maximum fimction, the minimum function, the majority function and the 

product function. A number of transfer functions are available (Figure 9), for 

example, the step, tangent, linear and sigmoid (logistic) functions. With the 

linear transfer function the outcome of the combining function is distributed 

without alteration whereas with the sigmoid the outcome is transformed to 

a value between 0 and 1 (i. e. a high and a low saturation limit). 
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oj =I 

(Will + 0) 

where Oj is the output of a unit and Oj is the weight from a unit that is 

always on (i. e. holds the values of one). This is referred to as the bias and is 

used in order to offset the origin of the transfer function. The pattern of 

connectivity determines those units that the outcome is passed on. The 

outcome can be passed to units in the preceding, the following or even the 

same layer. With the Back-Propagation architecture connections are 

permitted only between successive layers (feed-forward). Additionally it is 

fully connected which means that all units of a preceding layer are connected 

to all units of the succeeding layer (Figure 10). Connectivity, once established 

cannot change. Having established the basic architecture of a neural model, 

it is important to understand how one can use the net for learning. The 

overall objective is the formation of a set of optimum weights in order to 

minimize the global error. For complex problems it is rather difficult to pre- 

set the weights. Therefore they have to be generated using a learning 

method. Three types of learning exist: unsupervised, supervised and 

reinforcement. Supervised learning is the one used with Back-Propagation. 

This way the net is presented with inputs and also with the desired output. 

Each learning method implements a number of algorithms which determine 

the way the weights change. These algorithms are known as learning rules. 

Back-Propagation networks employ the error propagation rule" (or 

generalised delta rule). This rule bypasses the credit assignment problem (i. e. 

which unit is to blame for an incorrect output) by distributing blame to all 

units. The term global error was mentioned previously without actually 
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specifying it. The global error is defined as half the sum of the squares of all 

the local errors and is given by: 

E-1 *E ((dkoa)2) 

where the subscript k indexes all examples of the training set and 

d, 
't 

is the local error which is defined as the difference between the actual 

output ok and the desired output dA. A gradient descent rule, using the 

knowledge of the local errors, determines how to increment or decrement a 

current set of weights: 

A WIvol -koef * , 
rpl * X118- 11 

where Icoef is a learning coefficient which determines the rate of learning., 

Since there is no exact knowledge of what a desired output of a hidden unit 

should be the local error of a hidden unit is calculated using: 

IS] IS] ts+ll ej -X; (1.0-xj"'ý, E ei eiv 
k 

where k is over all nodes in the layers above node j. Now a summary of the 

standard back-propagation learning can be given. 

(i) Present inputs to the input layer. 

(ii) Calculate the output of each unit. 

If a unit is in the input layer no transformation takes place but Sometimes 

scaling might be necessary. Otherwise the siginoid function is employed. 

(iii) Calculate the local error for each unit in the output layer. Then calculate 

the required changes to the weights and update all corresponding previous 
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weights. I 

(iv) Calculate the local error for each unit in the layers below' the'output 

layer. Then calculate the required changes to the weights and update all 

corresponding previous weights. 

(v) Repeat until the desired global error has been achieved. 

The error-propagation learning rule has been used successfully in numerous 

applications but it has to be realized that it can also fail. Failure can arise 

due to non-convergence. Rumelhart et al" have reported that a neural 

network failed sometimes to converge during lean-Ling of the exclusive or task. 

The convergence process sometimes gets trapped in a local minimum and the 

network cannot produce the desired response. Additionally, there are many 

parameters that have to be pre-set without any prior knowledge of their 

probable values. For example, the required ýnumber of hidden units or the 

value of the learning rate. Despite that back-propagation is not error free it 

has been very popular and this led to the invention of several improvements 

to the standard algorithm. For example, weight decay and the addition of the 

momentum term. With weight decay the value of each weight of the network 

is reduced after each run (all input patterns or one input pattern) therefore 

only often repeated patterns are learned. The momentum term takes into 

account the previous weight changes effectively filtering out large variations 

of the error surface. The gradient descent rule becomes 
I 

, &W@O, '-koef *e, 'F'*x, "-" +mom -j, 

where mom is the momentum constant that determines the effect of past 

weight changes. 

Neural nets are mainly developed on conventional serial computers. 7be 
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software for the neural net simulation can be written using programming 

languages like Pascal or C or another option is to use a spreadsheet. Another 

way is to purchase neural network demonstration systems which accompany 

books. For example, the books by Aleksander and Morton" or McClelland and 

Rumelhare' include software which can be used as a tutorial of the book or 

as a stand alone. Alternatively one can purchase commercially available 

neural network programs (or shells) such'as, NeuralWorks (Recognition 

Research), BrainMaker (California Scientific Software) and NeuroShell (Ward 

Systems Group). These shells allow the users to experiment with a number 

of network architectures and the values of the various parametersi they offer 

built-in input/output facilities (e. g. they can import'data from spreadsheets 

or databases), and they provide various statistics (e. g., the change of a 

particular node). Because it can take several hours or days to train a large 

network (large in terms of connections), it is beneficial to use a serial 

computer with add-on accelerator boards capable of performing fast 

arithmetic operations and a large storage memory. 
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Chapter Five 

0 Comparison of Machine Learning Techniques 
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5.1 Introduction 

The previous chapter introduced the three paradigms (ID3, adaptive 

combiners, neural networks) which have been used and compared as 

knowledge elicitation tools in this work. As a result of the protocol analysis 

the tuning of the filter was divided into two primary tasks. Namely, the tasks 

of tuning the stopband and passband regions. Additionally, it was established 

that only the two trimmer capacitors were used for the stopband region. In 

this chapter results are presented only for this region but the conclusions 

apply to both regions. 

Section 5.2 explains the term example, the nature of the examples used 

initially and the way that the examples were collected. Section 5.3 details the 

initial work using ID3 which resulted in the division of the stopband tuning 

in three knowledge bases (searches). Section 5.4 reports on the comparison 

of the three learning algorithms (ED3, Adaptive Combiners, Neural Networks) 

for each of the three searches. The experiments were performed in order to 

select the classifier that provided good performance with limited training 

data, and to explore the tradeoffs in terms of training and testing time. The 

performance merits of the systems are highlighted together, with their 

drawbacks. Suggestions for improving the performance of each technique are 

also detailed. The problems in applying the learning systems to the alignment 

of crystal filters are reported in Section 5.4.7. The comparison led to 

proposal of employing ID3 for the construction of rules for the first two 

searches and the need for further work for the third search (Section 5.5) 
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5.2 Selection of attributes and generation of 

examples 

The three techniques function according to a similar principle. They require 

a set of examples, referred to as the learning set. Each example is described 

in terms of attributes, with each attribute in turn specified by a value, 

together with a class identifier. The purpose of the techniques is to determine 

the relationships between the attributes which then can be used for 

classification of other examples. Prior to the generation of the learning set the 

most appropriate attributes were selected. Attributes are the parameters the 

operator uses to extract and interpret information from the response 

characteristic of the filter. Six relevant attributes were identified as having 

strong significance. These were: 

M Locations of sharp positive peaks of the waveform' (Figure *11, - 

identified as pl, p2, p3, p4, measured in MHz units - horizontal wis). 

(ii) Relative magnitudes of sharp negative peaks of the waveform, 

(Figure 11, identified as rl, r2, measured in dBs units - vertical axis). 

The attribute selection was based on the transcripts derived form the protocol 

analysis. The operator's reasoning was revealed by sentences such as 

"... arrange these peaks into a more reasonable place" and "... pull that peak 

out of the screen". Further discussions with the operator supported the choice. 

The second step was to obtain a set of examples. Since a database of 

examples was not readily available the expert operator was requested to tune 

a number of filters. Prior to each action taken by the operator the attribute 

values were recorded manually, together with the decision taken each time. 
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Figure 11: Normalised magnitude response showing the attributes used for the tuning 

of the stopband. The reference frequency of 1.4 MHz is denoted by zero at the 

frequency-axis. 
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The decision being the component, direction and distance used or an 

indication that no further tuning was required. This approach has been 

labeRed as the tune procedure. 

5.2.1 Levels of classifi* cation. 

A typical tuning process for one filter took the following form 

P1 p2 p3 p4 rl r2 decision 

1.39934 1.39986 1.40273 1.40310 55 46 C4aO. 5O 
1.39921 1.39969 1.40269 1.40568 62 26 C7a2.00 
1.39777 1.39945 1.40520 1.40880 60 68 C4cO. 25 (U) 
1.39788 1.39954 1.40448 1.40800 56 60 C4aO. 50 
1.39690 1.39915 1.40638 1.40640 66 66 end 

The examples can be interpreted as: " turn the C4 component anticlockwise, 

half a turn (first example) and no further tuning is required (last example) 

when, the attributes have the given values". Three observations need to be 

discussed at this stage. Firstly, each filtees tuning process leads to a number 

of examples. For the process above this means four examples. Each example 

is considere&on its own without taking into account what happened before 

or after. This is known as instance-to-class induction'., Secondly, one has to 

realise that the decision taken by the expert at each step is not the, only 

option. Other options could have been followed which probably would had 

resulted in fewer or more subsequent decisions being necessary. 
'This 

is 

ainly the case for the 'how far to turn! part and to a lesser degree for the 

other two parts. An infinite number of actions can be taken. This leads to the 

problem that for each filter, myriad routes lead to a, tuned, position. 

Sometimes though the expert operator realised that a given action was dra- 

matically wrong, as in example three (3) above.. These examples were not 

used in the learning set. Thirdly, it is clear that the first 
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example points to four decision levels. The operator recognized that adjustm- 

ent is needed and then he considered which component to adjust and in which 

direction and by how far. 

5.3 Initial empirical results with ID3 

Using the tune procedure twelve (12) filters were tuned resulting in forty- 

seven (47) examples. Thirty-six (36) of these examples were generated using 

the expert operator and used as the learning set. The rest of the examples 

(11) were generated using another operator and were used as the testing set. 

The purpose of testing was to investigate the benefits, if any, of dividing the 

stopband sub-task into a number of search spaces. The configuration of each 

search space, ie. what level of classification to represent, was also examined. 

Four knowledge bases were created employing the learning set and tested on 

the remaining examples. Each knowledge base was developed feeding the 

same examples to ID3 but in a different configuration (Table 3). For example, 

referring to Table 3, configuration 1 had just one search. Each example of the 

training set could then take one of two classes, either end-of-process or 

component Idirection Idistance. A testing criterion was the number of correct 

or nearly correct answers given by the system when examples from the 

training set were used. Another criterion was the number of rules created. 

The testing results are displayed in Table 4. Some general observations now 

follow: 

(i) All configurations except one had similar number of successes for 

the component part. 

(ii) Irrespective of the configuration there was total success for the 

direction part. 
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Table 3: Search configurations 

Configuration Search I Search2 Search3 Search4 

end, 

component 

direction 

distance 

2 end, distance 

component 

direction 

3 end, component direction distance 

carry-on 

4 end, component distance 

carry-on direction 

Table 4 Testing results using the four configurations 

Config. Number o 

mtu 

Corr 

Comp 

ec 

gn. Direct . PjsL 

ED-d Cury 

1 18 1/3 8/8 1/8 5/8 

2 22, 2/3 8/8 1/8- 6/8 

3 27 3/3 8/8 1/8 1/8 8/8 

4 25 3/3 8/8 1/8 6/8 8/8 
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(iii) Except for one instance all system recommendations for the 

distance to turn were dissimilar to the operator's actions. This is a 

problem we encountered later on as well. 

(iv) The introduction of the carry-on class resulted in a better 

recognition of the state of a tuned response (i. e. correct end-of-process 

for configurations 3 and 4). 

The results demonstrated that it is beneficial to introduce search spaces and 

the lest' configuration was the one which contained three search spaces: 

(i) search space one: to carry-on or to end the tuning process. 

(ii) search space two: which component and which direction. 

(iii) search space three: how far to turn. 

This configuration produced the best success rate but with a relatively higher 

number of rules than two other configurations. 

5.4 Comparison of the three paradigms 

For the purpose of comparing the three paradigms a set of examples was 

collected using the "de-tune" procedure. This process involved a systematic 

shift of a tuned response to an untuned one. This procedure missed out the 

heuristics employed by the expert but a more complete set of examples was 

collected. By complete is meant a learning set which 

contains most attribute values likely to arise thus eliminating the possibility 

of having only extreme or rare values. This was especially valuable in this 

part of the work in which numerical attribute values were used. This section 

of the work has been described previously2. 
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5.4.1 Generation of de-tuned examples 

This work employs, as previously, attributes with continuous attribute values 

(i. e. numerical format), and it concerns only the stopband region of the 

response. An algorithmic illustration of the de-tune procedure now follows. 

(i) The expert operator was requested to tune the stopband region of 

the filte? s magnitude response. 

(ii) The attribute values were recorded, together with the class end-of- 

process. 

(iii) The right component (CO was kept constant at its optimum 

position. The left component (C4) was turned anticlockwise in steps of 

0.25 revolutions, resulting in eleven examples. 

(iv) Steps W and (ii) were repeated. 

M As step (iii), but this time in a clockwise direction (eleven 

examples). 

(vi) Steps (i) and (ii) were repeated. 

(vii) As step (iii), but this time C7 was turned anticlockwise (eleven 

examples). 

(viii) Steps (i) and (ii) were repeated. 

(ix) As step (vii) but in a clockwise direction (six examples). 

In tWs way 43 examples were collected for one filter. Six filters were de-tuned 

restdting in a total of 258 examples. 

5.4.2 Presentation of examples 

Previous work resuIted in three search spaces for the tuning of the stopband 

(see Section 5.4). The reader should note that the same examples were 
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presented to each technique for every search. The examples were introduced 

to the techniques in an incremental fashion. The number of classes were 

different in each search. Search one had two classes (carry-on, end-of-process), 

search ý two had four classeS(C4 and C7 in clockwise and anti-clockwise 

direction), search three had eleven classes (distance to turn). Initially eight 

examples were used in the learning set. They comprised four end-of-process 

and four carry-on examples of the same filter. The latter included those 

examples generated when the components were adjusted to their maximum 

positions in both directions. Then four more examples were introduced, the 

ones generated when the components were turned halfway. Finally the four 

examples which arose when the components were adjusted to their minimal 

positions were presented. For the second and third search the same examples 

were presented but with the carry-on class. replaced, by either the 

component/direction or the distance respectively. The end-of-process examples 

were replaced by those examples generated with the minimum turn for these 

two searches. At each stage of the procedure the generated set of rules or 

weights was tested against the learning set (Sl), the remaining unseen 

examples of the same filter (S2) and the unseen examples of the rest of the 

filters (S3). Finally, the total performance was calculated (TOTAL). Total was 

determined by testing the rules (or the weights) against all available 

examples. 

5.4.3 Comparison criteria 

Machine learning involves generalising from a set of examples and identifying 

those attributes and attribute values that can be used to discriminate 

between classes. The quality of generalisation depends heavily on the 
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selected attributes (sufficient or inadequat ? )'and the - number of examples 

present. At this stage of the work the hypothesis was that the chosen 

attributes were adequate. However, the number of examples necessary was 

unknown. The objective of the comparison was to identify that technique 

which used the least number of examples in coWunction with a satisfactory 

performance. Note that in using the set of examples, either to learn or to test, 

the assumption was being made that, given a set of attribute values, the only 

correct action is the one defined by the example. The comparison-was then 

based on two criteria: 

(a) The percentage of examples used in the final learning set and 

(b) the predictive accuracy of the final learning set. 

5.4.4 Search one comparison 

Table 5 shows an example and how it was Presented to each technique. The 

exact numbers were p resented to ED3 and adaptive combiners. The numbers 

were scaled between zero and one for the neural net. This scaling is reported 

in the literature to be beneficiary. 

Implementim: ID3 

The following points can be concluded regarding the results obtained using 

ID3 (Table 6). ID3 is seen to be always capable of predicting accurately those 

examples presented in the training set (Sl). Furthermore, by taking into 

account the percentage success rate one can conclude that a satisfactory 

generalisation has been achieved with few examples. Introducing extra 

examples seems to improve the generalisation even further. Unfortunately 

this is misleading. Closer inspection of the test results shows that the high 

success rate was due to the presence of a large number of carry-on examples. 
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Table 5: Two typical examples and their class representation for each technique 

(search 1) 

Attribut 

P, P2 P3 P4 R, R2 JP3 AJQ N&I 

1.3875 1.39602 1.412 1.422 55 56 ca- 

ffy 

1 1 

13825 Lýý- 1.3956 I 1.402 I 1.423 60 I 62 I 
end 

- -- 

I 0 -1 
- 

Table 6: ID3 pie&tive accuracy (Search 1) 

Number of leaming 

examples 

M) Rate of success on... 

S1 S2 S3 Total 

3 100 82 80 81 

12 100 81 80 81 

16 100 100 93 94 

L 18 100 100 96 97 

tP denotes a positive peak 
*R denotes a negative peak 
* SI denotes performance for examples of the training set 

S2 denotes performance for unseen examples of the same filter 
S3 denotes performance for unseen examples of other filters 
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ID3 predicted successfully the carry-on examples but fhiled'to"recognisý 'the 

end-of-process ones, i. e. no true classification. The need arose for more end-of- 

process examples to be introduced in the learning set. Those additional 

examples were taken from the tuning process of another filter. It was found 

that by increasing the learning set to 18 the objective was achieved with a 96 

percent success rate (Row 4 of Table 6). 

Implementina adaptive combiners 

Obtained results employing the adaptive combiner architecture are displayed 

in Table 7. The performance of the adaptive combiner also tends to improve 

through presentation of extra examples with the performance of the training 

set (Sl) being the exception. Unfortunately, like M3, a large number of end- 

of-process examples were misclassified. Therefore, experiments were carried 

out to investigate if any improvements in tuning by the combiner could be 

obtained by following one or more of the next options: 

(a) Varying the forgetting factor. 

(b) Re-train the combiner with the same learning set. 

(c) Introduce another attribute with a constant value of one. This is 

similar to the biases of back-propagation. It has weights whose values 

are energised by an input of +1. 

(d) Introduce further examples of end-of-process. 

Implementing the first option 

The value of lambda (ie. the forgetting factor) was set to values between 0.9, 

and 0.97. As the forgetting factor increased the learning of the end-of-process 

examples deteriorated. Oddly, the opposite occurred for the end-of-process 

examples of the training set. With the benefit of hindsight this can be 
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Table 7: Combiner predictive accuracy (Search 1) 

Number of learning examples Rate of success on... 

S1 S2 S3 Total 

8 87 57 67 67 

12 100 77 82 82 

75 100 91 91 

tSI denotes performance for examples of the training set 
t S2 denotes performance for unseen examples of the same filter 
t S3 denotes performance for unseen examples of other filters 
t Total denotes performance for all available examples 
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attributed to the fact that a wide range of responses can be considered 

as tuned. Most likely, the examples of the training set belonged to 

analogous responses slightly different to those of the learning set., 

Implementing the second option 

The sixteen examples used previously were used again as the learning set. 

Rather than testing on the whole set of examples it was decided to test each 

loop only on the whole set of end-of-process examples. One loop occurs every 

time the adaptive combiner sees all the examples in the training ý -- 

set. Re-training stopped when the four end-of-process examples of the learning 

set were recognised as such. This happened after twenty-nine (29) loops but 

still it did not recognise the end-of-process examples of the training set. Then 

the adaptive combiner was tested against the whole set of examples. The 

results were as when the sixteen examples were learned in one single pass. 

The re-learning of the training set only proved beneficial for the learning set 

and it achieved nothing in terms of generalisation. 

Implementing the third option 

The introduction of an extra attribute which contained the value 1 showed no 

advantages towards learning the end-of-process examples. All end-of-process 

examples were given carry-on classifications. 

Implementing the fourth option 

Because of the sensitivity of the algorithm towards the order in which the 

learning examples are introduced, the new examples were placed between the 

existing ones and not at the end. No changes to the previous results occurred 

when one or two end-of-process examples were presented. Some improvements 

appeared when three end-of-process examples were presented but only for the 
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learning set. Some further improvement developed with four and five end-of- 

process examples. This was true for the training set as well. Despite the short 

scale improvements it was concluded that this option on its own does not offer 

any great advantage. 

Implementing a mixture of options 

Experiments were carried out to improve the performance of the combiner 

using a mixture of the available options. Table 8 shows the predictive 

accuracy of the combiner when the forgetting factor equals 0.9 and the 

learning set was presented to the combiner 9 times. With this combination 

the misclassification problem was resolved. All the end-of-process examples 

were correctly classified. 

Implementing an additional option 

This option involved the identification of any irrelevant attributes. This work 

was performed by Dr. Mirzai and involved the construction of an attribute 

matrix with 6 (attributes) times 16 (examples) dimension. Then the corre- 

lation matrix and the eigenvalues were calculated. The generated eigenvalues 

had a small value. This indicated that the problem was overspecified. Two of 

the attributes (the two negative peaks) responsible for the overspecification 

were then dropped. The remaining attributes were also scaled between 0 and 

100. Results obtained with the reduced set of the scaled attributes are 

illustrated in Table 9. It is interesting to notice that the combiner performs 

best when only 8 examples were used. This is mainly due to the fact that 

when a large number of examples from one filter are shown to the combiner 

in the learning mode, it cannot recognise examples of the other filters (S3) 

very well. Also in this experiment the end-of-process examples were 
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Table 8: Combiner predictive accuracy with adjusted parameters (Search I) 

Forgetting factor : 0.9 Re-learning loops :9 

Number of learning 

examples 

M Rate of success on... 

SI, S2 S3 Total 

16 94 100 91 92 

Table 9: Combiner predictive accuracy with scaled attribute values (Search 1) 

Number of learning 

examples 

Rate o f success on. .. 

S1 S2 S3 Total 

8 100 88 90 90 

12 100 91 84 85 

16 94 98 85 87 

tSI denotes performance for examples of the training set 
t S2 denotes performance for unseen examples of the same filter 
t S3 denotes performance for unseen examples of other filters 
t Total denotes performance for all available examples 
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recognised. 

Implementinj: neural networks 

The work with neural nets concerns layered, feed-forward networks learning 

the classification task by back-propagation. There are some obstacles in using 

neural networks. One does not how many hidden units are required, nor with 

what values to initialise the weights etc. At this stage of the research the 

ease of usage of the technique was mainly explored. The following results 

arose through the use of a three layered (two hidden layers) network, with a 

decision threshold of 0.3, a gain of 0.1 and a momentum term equal to 0.0. 

The algorithm was written in Turbo Pascal and run using a Compaq 386 

personal computer. Each architecture iterated for 500 times irrespective of 

whether convergence happened before the full number of iterations had been 

completed. Each architecture which learned the examples of the training set 

was tested against the unseen examples. The number of hidden nodes for 

each hidden layer was set, arbitrarily, equal to 1 up to 5. Using Table 10, 

where some results are displayed when eight examples were used, various 

points can be made: 

N Irrespective of the architecture there was a 100 per cent success on the 

learning set with an average of 117 iterations. 

" The prediction performance averaged 72 per cent. 

" Ten out of 24 end-of-process examples were mis-classified. 

Increasing the training set by four examples showed that: 

*A number of architectures were unable to learn the training set even with 

* 1000 runs. The common entity of these architectures was thaf the number 

of hidden nodes of the first hidden layer was set to one. 
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Table 10 : Neural net predictive accuracy (Search I- eight examples) 

(%) Rate of success on the whole set. Qf Neural net architecture 

examples g-Qtal) 

74 6-1-2-1 

76 6-2-2-1 

74 6-4-2-1 

74 6-1-3-1 

74 6-2-3-1 

71 6-3-5-1 

72 6-4-4-1 

74 6-4-5-1 

t Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units 
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The networks that we're able to learn the training set took an average of 

109 iterations. 

E The average prediction performance increased as well to 78 per cent (Table 

11). 

m Again the mis-classification rate of end-of-process examples was 50 per cent 

except when the number of hidden nodes in the first layer was four. That was 

irrespective of the number of nodes in the second layer. The best true 

classification was achieved when the (6)-4-4-1 architecturewas employed. 

Increasing the examples in the learning set to 16 produced fewer archit- 

ectures able to learn the training set (Table 12). In average it took them 515 

iterations. They also produced an average performance of 93 per cent with a 

mis classification rate of 4 examples out of 24. It became clear that although 

increasing the size of the learning set can improve performance, having the 

right architecture is also important. 

5.4.5 Search two comparison 

Table 13 shows how an example was presented to each technique. 

Implementing ID3 

The three learning sets were introduced to the ED3 algorithm. Table 14 shows 

the results obtained. Note that even when eight examples were used the 

prediction rate was acceptable and that the performance did not improve with 

the introduction of further examples. This is probably an indication that 

further attributes are required if better performance was to be achieved. 

Alternatively, a larger number of examples could have been used -in the 

training set, but at this stage this was not desirable since the comparison of 

the three techniques using sets of 8,12, and 16 examples was the main task. 

99 



Table II: Neural net predictive accuracy (Search I- twelve examples) 

(%) Rate of success on the whole set of Neural net architecture 

examples Mtal) 

77 6-2-2-1 

78 6-3-2-1 

78 6-4-2-1 

77 6-2-3-1 

78 6-3-3-1 

77 6-4-3-1 

77 6-2-5-1 

77 6-3-5-1 

78 64-5-1 

78 6-4-4-1 

Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units 
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Table 12 : Neural net predictive accuracY (Search I- sixteen examples) 

Rate of success on the whole set of Neural net architecture 

examples Mtal) 

93' 6-4-2-1 

91 &4-3-1 

93 6-5-2-1 

93 6-5-3-1 

93 6-6-2-1 

93 6-6-3-1 

93 6-4-4-1 

93 6-5-4-1 

93 6-3-5-1 

93 6-4-5-1 

94 6-5-5-1 

* Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units 

101 



Table 13 : Four typical examples and the representation of their class using each 

technique (search 11) 

Attribute... im AL ME 

P, P2, P3 P4 R, R2 

1.372 1.383 1.405 1.415 45 62 C4a -10 -1 -1 

1.393 1.404 1.412 1.423 54 55 C4C 10 -1 1 

1.381 1.392 1.418 1.429 49 52 C7a 0-1 1 -1 

1387 L 1.398 1.425 1.436 54 49 C7C 01 

-1 

11- 

Table 14 : ID3 predictive accuracy (Search II) 

Number of leaming 

examples 

(%) Rate of success on... 

'SI S2 S3 Total 

8 100 100 88 91 

12 100 100 88 91 

16 100 100 88 91 

*P denotes a positive peak 
*R denotes a negative peak 
tSI denotes performance for examples of the training set 
* S2 denotes performance for unseen examples of the same filter, 
* S3 denotes performance for unseen examples of other filters 
* Total denotes performance for all available examples 
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Implementing adaptive combiners 

When the three learning sets, in their original form, were presented to the 

combiner the results were very poor (Table 15). It was thought that the 

combiner needs to encounter examples which can act as reference points. That 

role was played by the introduction of end-of-process examples to the learning 

set, once again. This way the combiners were trained to indicate the end-of- 

process, as well as which screw to adjust and in-what direction. As for search 

one, it was found necessary to present the combiner with a reduced number 

of attributes (the four positive peaks) and to scale the values between 0 and 

100 in order to improve the performance. The first training set contained 5 

examples, i. e. one end-of-process plus four examples when the screws were 

mal-adjusted to their maximum positions. Then the examples corresponding 

to the minimum positions of the screws were added to the learning set (i. e. 

9 examples all together) and finally the examples corresponding to the half- 

way mal-adjustments of the screws plus one more end-of-process example 

were added resulting in 14 examples. The performances of the combiners for 

the three new learning sets are summarised in Table 16. Introducing more 

examples from the same filter resulted in an acceptable performance when 

testing examples from the filter that the training examples- 
-were 

taken from. 

Instability in the learning occurred for examples generated from different 

filters. Again, the combiners successfully recognised all the end-of-process 

examples but their total percentage rate of success was not as high as for the 

ID3 algorithm. The reason behind the much lower overall performance of the 

combiner lies in the low percentage rate of success when examples of other 

filters are tested (S3 - Table 16). It is known that two filters of the same 
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Table 15 : Adaptive combiner predictive accuracy (Search 11) 

Number of learning 

examples 

Rate o f success on. .. 

S1 S2 S3 Total 

8 25 35 '39 . 38 

12 33 33 39 38 

16 38 39 38 38 

Table 16 : Combiner pred ictive accuracy with scaled attribute values (Search II) 

Number of ]ea-rnin 

examples 

M Rate o f success on... 

S1 S2 S3 Total 

5 100 93 75 78 

9 100 93 81, 
ý 

83 

14 93 95 58 64 

ý-, -r 

S1 denotes performance for examples of the training set 
S2 denotes performance for unseen examples of the same 

, 
filter, 

S3 denotes performance for unseen examples of other filters 
Total denotes performance for, all available examples 
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family are not identical. Tolerancing errors and parasitic effects result in 

different attribute values. It seems that the combiner could not handle these 

situations while the selected attribute cut-off values and therefore lines using 

ID3 divided the 6-dimensional space properly. 

Implementina neural networks 

The three layer networks produced an average performance of 76 per cent 

with a (6)-3-3-2 architecture gaining the highest performance (80% with 8 

examples). Note that adding an extra node to either layer did not produce a 

better performance. By increasing the examples the performance improved 

with architecture 6-5-3-2 reaching the highest'performance (92%) using 16 

examples. Irrespective of the number of examples and number of nodes used 

the nets produced a better performance for the direction to turn rather than 

the component to be used. Table 17 displays a sample of results. 

5.4.6 Search three comparison 

Table 18 shows the way that examples were presented to the techniques. 

Implementing ID3 

Problems arose when ED3 was implemented for search three. It is not 

reasonable to expect a prediction of, say, 2.25 when only examples with 0.25 

and 2.75 classes were presented. This implied the necessity of a large training 

set consisting of all examples of one filter. However, due to the large number 

of classes (11) together with the relative small number of examples (43), the 

problem of bushy, unstructured decision trees. arose. This resulted in a very 

poor performance. Even the introduction of a larger training set would not 

ensure success. The ID3 algorithm was originally constructed to deal with 

binary classification and it seems that better performances are achieved with 
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Table 17 : Neural net predictive accuracy (Search 11) 

Number of example (%) Rate of success on... 

SI Component Direction Architecture 

8 72 72 98 6-4-3-2 

8 80 80 97 6-3-3-2 

8 77 77 98 6-3-4-2 

12 77 77 98 6-3-2-2 

12 81 81 97 6-3-3-2 

12 74 74 97 6-5-5-2 

16 93 93 98 6-5-3-2 

16 92 92 97 6-8-4-2 

16 87 87 97 6-3-3-2 

*SI denotes performance for examples of the training set 
* Neural net architecture of A-B-C-D as in 64-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units 
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Table 18 Representation of class for each technique (search III) 

ID3 Class Adaptive combine Neural networ 

0.25 0.25 0001 

0.50 0.50 0010 

0.75 0.75 0011 

1.00 1.00 0 10 Q 

2.00 2.00 1000 

2.75 2.75 101 1 

107 



a low number of classes. The inability of ED3 to perform successfully when a 

large number of classes are present was the main factor in deciding to split 

the tasks into three separate searches, as reported previously. 

Implementina adantive combiners 

The main advantage of the combiner and neural net architecture over that of 

ID3 is due to their capability of producing continuous output. For this search 

space experiments were carried out with the original learning sets. When the 

reduced set of attributes and the scaled values were used the combiner 

performance improved. Notice that end-of-process examples were used once 

again. The combiners were trained on the exact values of mal-adjustments for 

both screws. Figýres 12a and 12b show the correct mal-adjustment levels for 

screws C4 and C7 respectively. Figures 12c and 12d illustrate the output of 

the combiners when 5 learning examples were used. Figures 12e and 12f 

show the same outputs when 9 learning examples were used and finally 

figures 12g and 12h show the outputs with 14 learning examples. With this 

limited number of examples the combiners have managed to reach the desired 

outcomes (Figure 12g and 12h) although not to 100 per cent accuracy. In 

order to improve the performance of the combiner for this'search space, it 

would be necessary to include learning examples generated when both screws 

are mal-adjusted together. 

Implementiniz neural networks 

Unfortunately, the three layer network did not produce very good results even 

when a large number of nodes were used. For that reason when over one 

hundred nets were run further investigation was suspended. An interesting, 

and somewhat predictable, fact arose with the use of the nets. Increasing the 
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Figure 12: output of the combiners (Search 111) 
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hidden nodes drastically improved (Table' 19) the perfor, mance for each 

individual node. The nets had started to behave as 'look-up' tables. 

5.4.7 Problems encountered 

The experiences gained in implementing the three techniques are presented 

in terms of learning, testing and learning refinement. This work has been 

published". 

During the learning phase various problems arose due to the structure of the 

training set. To improve the adaptive combiner performance it was necessary 

to manipulate the attribute set. The manipulation took the form of scaling the 

attribute values and/or the elimination of certain attributes. The scaling of 

the attribute values was important. Without proper scaling an ill-conditioned 

problem was created in terms of the auto-correlation matrix in the RLS 

algorithmý. It was possible to find if the problem was ill-conditioned by using 

eigenvalue analysis'. Initial work with neural networks and ID3 employed 

examples generated while tuning a number of filters. When both techniques 

were tested using unseen examples ID3 performed better. Neural nets failed 

to classify correctly a number of test examples. Those examples contained at 

least one attribute with a value previously found in an example with a differ- 

ent classification. Because of the large range of numerical values each 

attribute can take, a different set of learning examples was required which 

included all likely values or the extreme values (i. e. maximum and 

minimum). This was also necessary when using the adaptive combiners. 

Another obstacle was that learning with neural nets was time consuming. 

Additionally, unlike adaptive combiners or neural networks which can provide' 

continuous output ID3 had to be presented with examples covering all eleven 
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Table 19 : Neural net predictive accuracy (Search 111) 

Number o Number of correct predictions Architectu 

examples: 39 on node. - 

1 2 3 4 

20 0 0 0 6-1-3-4 

25 3 6 0 6-2-3-4 

21 22 5 0 6-4-5-4 

29 28 '16 8 6-20-10-4 

23 16 9 3 6-10-20-4 

Neural net architecture of A-B-C-D as in 6-4-5-1 denotes A input units, B units in the 
first hidden layer, C units in the second layer, and D output units 
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classes for the third search. The large number of classes meant that the 

examples were less representative with the consequence of poor performance. 

Another problem was the inability of IID3 to mix numeric and symbolic 

attribute values. This created a problem during testing as will pointed out 

later. 

Testing the rules g enerated 
I 
by ID3 was more time consuming than testing 

the two other techniques. More importantly, though, was that in running the 

ID3 algorithm, examples with unknown attribute values could not be used 

when numerical values were employed. A notation to indicate that an 

attribute value was not significant was available but not to indicate that an 

attribute value was unknown. It was then impossible to use both numeric and 

symbolic descriptions for an attribute. If at any point an attribute value was 

requested and this value was unknown then the system failed completely. 

Using the other two techniques this could not happen. Unknown values were 

presented with a constant. During testing the combiner or the net did not 

perform appropriately but they did not fail. 

The presentation of attributes holding numerical values to ID3, caused the 
I 

following problem. The enlargement of the learning set resulted in a slight 

change of the threshold values of the decision tree. This led to different 

classifications of a number of testing examples. In addition the presentation 

of new examples, resulted to new attributes being introduced or old attributes 

being excluded from the newly generated decision tree. Therefore the 

architecture of the decision tree generated by ID3 is dependable on the 

examples of the training set. The introduction of further examples to the 

adaptive combiner or the neural net did not alter the architectural structure 
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but strengthened or weakened the individual weights. 

5.5 Discussion of the comparison results 

Although the three techniques are different, a comparison was possible. The 

main difference between the three techniques, apart from the algorithmic 

approach used, is that adaptive combiners and neural nets learn in an 

incremental fashion while 1ID3 sees all the examples at the same time. ED3 

performed slightly better than the other two for the first, two searches. For 

the third search 1ID3 failed significantly. The use of ý ID3 for the first two 

searches was elected. The decision was based on the following advantages of 

ID3, as seen by the author. 

An expert system cannot ever be completed. Such systems should expand 

their'knowledge through time. The augmentation of the learning set by 

presenting new examples demonstrated that running IM was faster. Neural 

networks took a long time to train. Some architectures 
I 
took up to 17 hours 

to train. 

ID3 always gives correct predictions for the examples used in the learning 

set. This is not guarantee with the other two techniques. 

ID3 generated decision trees which can be transformed into production 

rules. These rules can be used directly to explain the relationships between 

the attributes and the decisions made. With weights a direct explanation is 

not feasible. Some work towards this has been reported', '. 

ID3 gave slightly better results with less manipulation of parameters and 

without the need to worry about the order of introduction of the examples. 

With adaptive combiners a lot of time was spent in experimenting with 

parameters. The problem with neural nets was the absence of any theory for 
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determining the architecture. 

From the preceding sections it can be inferred that the adaptive combiner 

performed well for the third search. At the moment the discussion about the 

third search will be suspended. The next chapter introduces the way the ED3 

problems were resolved. 

5.6 Conclusions 

The tuning of the stopband and the passband regions were to be treated 

independently. It was decided each region to be divided into three search 

spaces. The comparison of the three algorithms led to the use of ID3 for the 

first two search spaces of both regions. Furthermore, it was decided to 

research further the use of neural networks for the third search in the future. 
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Chapter Six 

0 Further Work With ED3 
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6.1 Introduction 

During the comparisons of the performance of the three classifiers no attempt 

was made to achieve high performance but experience gained through the 

experiments was employed at a later stage. The representation of the input 

examples, of the output descriptions and the available knowledge (i. e. number 

of examples) influence the success of any machine learning system. Using ID3 

in particular the actual leaming time is negligible (a matter of seconds) but 

the most critical and time consuming part is the one of example selection. 

Chapter 6 presents the work taken to identify the attributes and their 

format to be used for each search. 

The use of attributes with logical values was selected mainly for two reasons: 

aA substantial set of examples was generated but when the attributes had 

numerical values huge possible combinations between attribute values were 

ssing. 

The unsatisfactory performance with numerical valued attributes when 

testing with unseen examples. 

6.2 IM problems 
The employment of the de-tune data for the comparison of the three 

techniques, as described in the previous chapter, served, the purpose of 

comparing machine learning techniques. The 1ID3 technique was selected for 

the first two searches. Problems arose due to the use of numerical attribute 

values. This resulted in a problem associated with the cut-off point. The 

algorithm produced rules of the form 'if attribute X is less than cut-off Point 

T then.... The cut-offpoint, which took values such'as 1.39765, was calculated 
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by using those values that were currently present in the learning set. ' The 

introduction of more examples would probably result in different cut-off 

points. But in the filter tuning task values such as, say, 1.39765 and 1.39766 

can be considered as same whereas the ED3 algorithm regards them as two 

different entities. Therefore it was important to develop a way of relating 

values that were close. 

Using the de-tune data one could attempt to generate the whole set of 

possible examples and then present it to the algorithm. It was though the 

intention from the start to use data generated through the tune procedure. 

This way the expert's knowledge was to be utilised. Unfortunately it was 

impossible to produce an entire set of examples since these examples should 

have included every possible numerical value each of the attributes could 

have taken. 

Problems using ID3 as stated above had to be solved before proceeding any 

further. In this chapter a report is given on results obtained in an attempt to 

identify any advantages in using one attribute presentation form, over 

another. The investigation involved the evaluation and comparison of decision 

trees produced by using logical and numerical attribute values for the first 

two searches. This work has been reported elsewhere as well'. 

6.3 Further selection of attributes and 

generation of examples 
It was considered that the inclusion of further attributes might be helpful in 

order to decrease the number of empty and/or clash situations. In total seven 

more attributes were introduced. These took the form of the six differences 
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between positive peaks, for example peakl-peak2, peak3-peak4, and the 

difference between the two negative peaks. These attributes were introduced 

because not only the position of each individual peak was regarded as 

important but also the peak's position in relation to where the rest of the 

peaks are. A new set of examples was collected. This time the tune procedure 

was employed. Therefore, the operator was requested to tune a number of 

filters and the data were recorded as previously. In this way 34 filters were 

tuned (only the stopband) resulting in 138 examples. 1, 

6.4 Generation of logical values 
Schemes have been proposed' -which attempt to define supplementary 

cutpoints for each cut-off point. Producing such confidence intervals enhances 

the classification of examples with values near the cut-off points. An alternat- 

ive scheme was followed in this work. Instead of using the raw numerical 

values a transformation was applied. The numerical values were placed into 

ranges which were given logical names. The term logical is borrowed from the 

ID3 literature and simply means a linguistic term, similar to fuzzy predicates 

of the fuzzy set theory. Due to the absence of a priori knowledge for 

determining the ranges within which attribute values must lie for the filter 

to be considered tuned, the membership was calculated as below: 

" Collect all those examples with an end-of-process as their class 

" Calculate the mean (m) and the standard deviation (sd) value of each 

attribute. 

For each attribute determine the range (m-sd. m+sd). This range 

represents all those numerical values an attribute can have and be 

considered to be tuned. Label the range as 'ok'. 
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Determine the rest of the ranges. For example values within (m- 
I 

2sd. m-sd) are labelled 'close-left! etc. (Figure 13) 

That way 8 (ok, far-left, far-right, close-left, close-right, left, right, absent) or 

4 (ok, left, right, absent) logical values were generated and assigned to each 

numerical value. Note that the eighth (or the fourth) logical value takes the 

label 'absent'. This label was used when a value for an attribute could not be 

determined (ie. absence of a peak) and not because it was unknown. This way 

three attribute formats were available for each search space (ie. numerical, 

8-logical, 4-logical). 

6.5 Criteria for the evaluation of decision 

trees 

The evaluation and comparison was based on the following criteria. 

W Percentage errors on classifying unseen examples 

(ii) Number of branches in the decision tree 

(iii) Number of rules in rule base 

(iv) Number of clash labelled leaves 

(v) Number of empty labelled leaves 

NO Total number of preconditions in rule base 

The first criterion assessed the performance of a decision tree in terms of 

accuracy on classifying unseen examples. This indicated how good the 

generalisation was (i. e. predicting future performance). The rest of the criteria 

are of secondary importance and can be applied in order to determine the 

complexity and intelligibility of a decision tree. Figure 14 displays a decision 

tree and Table 20 the equivalent set of rules. They both illustrate the terms 

120 



Imean-3od I hr m mean-3sd 
1 

memi-2sd 
4 

left 
t 

1 

010" kft 

nimn 
I 

I ok 
I 

imwn 

meantsd 

I clow rigbt t 

Iman 

=wn+29d It I rrmwn+2sd 
I t I 

llmm+3$d 4 mc=on+3sd far fl& 
t 

E 

meon+4st- Mmn +4sdL 

left 

ok 

right 4ý- 
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Table 20 : Set of rules produced using the decision tree of Figure 14 

IF d3 is absent IF d3 is ok 

AND p, is absent AND . d7 is ok 

THEN class is carry-on THEN class is end 

IF d3 is absent IF d3 is ok AND d2 is 

AND p, is left left 

THEN class is carry-on THEN class is end 

IF d3 is right IF d3 is left THEN class is 

THEN class is end carry-on 

Table 21 Configurations key 

Conft. 

Numbe 

Description Number-of 

attributes 

Attributes 
-used 

Fl. numerical attributes 13 PI--P4 

F2 4 logical-value attributes 13 rj.. r2 

dj.. d7 
F3 8 logical-value attributes 13 

F4 numerical attributes 6 PI-P4 

F5 4 logical-value attributes 6 rj.. r2 

F6 8 logical-value attributes 6 
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6.6 Presentation of tuned examples 

The object of this part of the work was the identification of the 'best' 

configuration for the first two search spaces. By configuration is meant the 

choice of attributes to be used and their format Ue. numerical or logical). The 

six configurations used are summarised in Table 21. To test how well the six 

configurations measure up to the criteria, the available examples were 

divided into three randomly chosen batches. The first batch included 42 

examples, the second 43 and the third 53. Initially, the first batch was used 

as the training set and the other two as the testing set (Test 1). That was 

followed by introducing the second batch to the training set which was then 

tested against the third batch (Test 2). Both tests were evaluated for all 

configurations for each search space. In total, thirty six decision trees were 

generated, viz. eighteen per search space (Figure 15). 

6.7 Evaluation of results and discussion 

(Search One) 
Percentage errors on classifying unseen examples 

Table 22 shows the results for each configuration for both tests, expressed as 

the percentage error of mis-classification. Observing Table 22, one can 

establish the following: 

W All performances, but one, improve as the size of the training set increases. 

(ii) The amount of classification improvement varies between configurations. 

Trees generated using logical value attributes seem to perform better than 

those produced using numerical ones. The drawback of numerical value 
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Table 22 : Misclassificadon errors (Search 1) 

Configuration Test- I 

(% error) 

Test-2 

error) 

Classification 

improvement 

Fl. 42.7 41.5 1.2 

F2 31.3 22.6 8.7 

F3 20.8 28.3 -7.5 

F4 42.7 41.5 1.2 

F5 31.3 26.4 4.9 

F6 27.1 22.6 4.5 

Test I denotes one learning set of data and two testing sets 
Test 2 denotes two learning sets of data and one testing set 
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decision trees is their inability to handle examples with absent attribute 

values. 

(iii) Upon increasing the number of attributes no major differences were noted 

with configurations F5 and F6 in terms of improvements in their 

classification capabilities. 

(iv) With thirteen - attributes one can see that the performance improves 

further with the F2 configuration. 

Number of emptv labelled leaves, 

For the algorithm to be effective, the number of situations where knowledge 

(i. e. examples) has not being provided and hence nothing can be learned must 

be kept to a minimum. To illustrate the concept of emptiness consider Figure 

14. Such a situation arises when attribute D3 takes the value absent. If that 

is true then attribute P1 has to be considered. When P1 takes the value light 

then the system will respond with the message empty, indicating the lack of 

knowledge -of what to advise. - If the number of empties is large, the 

performance will be poor when testing with such examples. 

For each of the six configurations three decision trees were generated by 

increasing the learning set with the addition of the third batch. Table 23 

shows the results. It is worth noting the following: 

(i) When numerical values are used there are, not empty, situations. 

(ii) Increasing either the number of attributes (from 6 to 13, compare 

configurations F4, F5, F6 versus F1, F2, F3 respectively), or the number of 

logical values each'attribufe can take"(frorn 4 to 8, 'conipare configurations F2, 

F5 versus F3, F6 respectively), an increasing number of empty situations is 

generated. The reason is that the use of a large number of attributes or 

126 

7. 



Table 23 Number of empties per configuration (Search I) 

Configuration ThU ISIL-2 ThUl 

, Fl. 10 0 

F2 6 15 29 

F3 16 66 100 

F4 0 0 0 

F5 6 14 24 

F6 20 58 69 

Table 24 : Number of clashes per configuradon (Search I) 

Configuration Test-2 Test-3 

Fl. 0 0 0 

T2 0 3 2 

F3 0 3 2 

F4 0 0 0 

F5 0 4 8 

F6 0 4 6- 

t Test I denotes one learning set of data and two testing sets 
* Test 2 denotes two learning sets of data and one testing set 
ý Test 3 denotes three learning sets of data 
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attribute values rendered the learning set less representative and nothing 

was gained by the introduction of further examples. 

Number of clashes 

Similarly, the number of clashes has to be kept to a minimum. A large 

number of clashes indicates the need for the introduction of further attributes 

or examples for the algorithm to be able to discriminate between examples. 

A situation where the system will respond with the message that clash is 

present, it is illustrated in Figure 14. It occurs when attribute D3 takes the 

value A and attribute D7is assigned the value right. The configurations were 

tested as -before and Table 24 shows the results obtained. - Notice the 

following- 

W The absence of any clashes when numerical values are used is noticeable. 

This was to be expected. By definition, a clash occurs'when two (or more) 

examples have the same attribute values but are classified differently. This 

is unlikely to occur when numerical values with six significant figures are 

employed. 

(ii) When the number of attributes is kept small the introduction of more 

examples results in an increase in clashes. (iii) When the number of 

attributes is'-increased, the number of clashes tends to stabilise, irrespective 

of the number of values an attribute takes. 

Number of nodes 

Large, bushy trees reduce the intelligibility of the results'and increase the 

execution time. Table 25 shows-'the results obtained wh6n-testing the'six 

configurations. No attempt was made to perform any kind of prunine or to 

compare various selection criteria. The following observations can be made: 
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Table 25 : Number of nodes per configuradon (Search 1) 

Configuration Th U- lukl Thka 

F1 3, 11 23 

F2 21 45 77 
1 

F3 33 105 161 

F4 3 13 23 

F5 21 45 69 

F6 41 97 121 

Table 26 : Number of preconditions per configuration (Search I) 

Configuration Test-I Test-2 Test-3 

F1 2 18 51 

F2 21 53 106 

F3 23 65 132 

ý4 2 19 37 

F5 21 45 66 

F6 31 57 84 

t Test 1 denotes one learning set of data and two testing sets 
t Test 2 denotes two learning sets of data and one testing set 
* Test 3 denotes three learning sets of data 
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(i) Decision trees generated using numerical attributes produce a smaller 

number of nodes, irrespective of the number of attributes used. - -, 

(ii) Using logical attributes created much larger trees, ' especially when the 

number of attribute values increased. 

Number of vreconditiOns in rule base 

This criterion has been suggested' in order to measure the generality of the 

entire set of rules. It has been mentioned that any decision tree can be 

transformed into a set of rules. For example, in Figure 14 the rule if D3 ý is 

absent and P, is absent then carry-on can be extracted from the decision tree. 

This rule has two preconditions. The total number of preconditions in the rule 

base can then be measured. - Table 26 shows the results obtained. A list of 

remarks now follows: II,, ýII 13ýý 11 1 11'ý 

W As the number of examples in the learning set increases', the total number 

of preconditions increases as well, resulting in less efficient execution timing. ý 

This is true irrespective of, the number of attributes used, but the rate, of 

increase is smaller when the number is kept small. 

(ii) Increasing the number of values of the attribute resulted in a greater 

number of preconditions. This was anticipated since the algorithm has'no 

means of determining if it is necessary to branch for all defined values of an 

attribute. Perhaps, in some cases various attribute values are relevant, yet 

the rest may not be. 

Number of rules 

Every leaf of a decision tree corresponds to a rule of the form if X1 and X2 

and.. and Xn then Y where the rs are the branches and Y is the class'of the 

leaf. By measuring the number of rules extracted from a decision tree the 

130 



goal of achieving the minimal set of rules repres I enting the domain was 

reached. Table 27 shows the results obtained by transforming each tree to a 

collection of rules. The following comments can be made: 

W It appears that the introduction of extra attributes, as in configurations 

F1, F2 and F3, diminishes any benefits (i. e. in most tests more rules were 

generated). 

(ii) Noticeable are the identical results obtained when numerical attributes 

are used (FI, FQ, whereas the difference in the number of rules when logical 

attributes are used was minor. 

(iii) Comparing the results with a view to the attribute format one can deduce 

that numerical attributes produce less rules than logicallattributes. 
-The 

rate 

of increase of the number of rules though was much greater as the number 

of examples increased. For example, considering the F1 and F2 configurations 

(both have 13 attributes) one can see that the number of rules of F1 tripled 

(200%) from test-1 to test-2 and doubled (100%) from test-2 to test-3 whereas 

the number of rules of F2 increased with a lower rate (60 and 56.25 per cent) 

in both tests. 

(iv) Decision trees generated using logical attributes with four values produce 

less rules than when eight logical values were used. This became more 

significant as the learning set expanded. 

The reader should note that since the introduction of the algorithm the 

transformation of a decision tree to a set of rules has received much 

attention. The objective of the proposed schemes', $ is to produce a minimal set 

of rules, which in turn affect the number of preconditions and nodes, but in 
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Table 27 : Number of rules per configuradon (Search 1) 

Configuration Test-I Test-3 

F1 2 6 12 

F2 10 16 27 

F3 13 23 39 

F4 2 7 12 

F5 10 16 20 

F6 16 23 31 

t Test I denotes one learning set of data and two testing sets 
* Test 2 denotes two learning sets of data and one testing set 
t Test 3 denotes three learning sets of data 
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this work the results discussed were obtained using the primitive transf- 

ormation. 

6.8 Selection of configuration for search one 
Taking into account all the criteria with equal weighting attached to each 

suggested the use of numerical attributes since they produced smaller trees 

with fewer clashes etc. However, the most important criterion of percentage 

errors in classification of unseen examples, showed the use of numerical 

values to be unsatisfactory. The mis-classification error of approximately 42 

percent was too large to be ignored. The use of logical values resulted in a 

more acceptable error rate. It was necessary to select between the choice of 

6 or 13 attributes. There was not much difference between their performances 

as far the secondary criteria were concerned but the use of F2 almost doubled 

the classification improvement. Therefore F2 was selected as the most 

promising configuration. Notice that though the performances using logical 

values based on the secondary criteria were not satisfactory these can (and 

were) improved, as is reported in the following Chapter. In conclusion, the 

tuning of the first search of the stopband was to be achieved by using the 

location of the peaks and their differences as attributes. Each numerical value 

was to be assigned one logical value out of four. 
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6.9 EvaluvMon-of r6iiults and discu'ssion 

(Search Two) 

Percentage errors on classifving unseen examples 

Table 28 shows the results for each configuration for both tests, expressed as 

the percentage error of mis-classification. From the table, the following can 

be established: 

W All performances, except the ones with 4 logical values, improve as the size 

of the training set incre'as*es. 

(ii) The minimum mis-classification error can be found at both configurations 

with 8 logical values. 

(iii) The amount of classification improvement varies between configurations. 

Trees generated using 8 logical value attributes have slightly higher average 

performance than the ones produced using numerical attributes. 

(iv) The initial error (i. e. column one) for the 8 logical configurations is 

considerably smaller than the error when using numerical configurations. 

W Comparing with the counterpart results of search one (Table 22) the error 

is much higher. The main contributor to the error is due to the choice of the 

component. The direction was given right 50 per cent of the time which might 

have been achieved by pure chance. It seems that by increasing the number 

of classes generates worse results, hence the need for a larger training set. 

Number of emptv labelled leaves 

For each of the six configurations three decision trees were generated by 

increasing the training set with the addition of an extra batch each time. The 

following comments can be made using Table 29. 
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Table 28 : Misclassification errors (Search II) 

Configuration Test-1 Test-2 

F1 77.5 68.5, ' 

F2 60.6 68.3 

F3 66.9 56.1 

F4 80.3 65.9 

F5 56.3 61.0 

F6 70.4 56.1 

Test 1 denotes one learning set of data and two testing sets 
Test 2 denotes two learning sets of data and one testing set 
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Table 29 Number of empties per configuration (Search II) 

Configuration jest-I T r, st-2 Les 

F1 - 0- - 0 0 

F2 8 24 31 1 

F3 26 71 137 

F4 0 0 0 

F5 9 24 29 

F6 26 87 124 

Table 30: Number of clashes per configuraflon (Search II) 

Configuraflon Thk I 
-Tot--2 

T. C. -S 
Q- 

F1 0 0 0 

F2 1 4 10 

F3 0 2 9 

F4 0 0 0 

F5 1 4 10 

F6 3 12 

Test I denotes one learning set of data and two testing sets 
Test 2 denotes two learning sets of data and one testing set 
Test 3 denotes three learning sets of data 
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W The numerical configurations did not produce any empty situations. 

(ii) All logical configurations generate a considerable number of empty 

situations which increase as more examples are entered in the training set. 

The largest amount is created with 8 logical value attributes. 

(iii) Once again an increase in the number of classes generates more empty 

situations, notably for the 8 logical value configurations (compare with Table 

23). 

Number of clashes 

Table 30 shows the results obtained. The following can be noticed: 

W There are no clashes of attributes with the numerical configurations. 

(ii) Irrespective of the number of attributes used 4 logical values produce the 

same number of clashes for each test. The number of clashes is comparable 

to when 8 logical configurations were used. 

(iii) More clashes were generated (compare with Table 24) but the effect of 

increasing the number of classes is not as dramatic as when considering mis- 

classification errors or empty situations. 

Number of nodes 

Table 31 shows the results obtained testing the six configurations. The 

following observations can be made: 

(i) Using numerical attributes the generated tress have a smaller number of 

nodes irrespectively of the number of attributes used. 

(ii) Using logical attributes created larger trees especially when the number 

of attribute values increased. 
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Table 31 : Number of nodes per configuration (Search 11) 

Configuration Test-I 1P. 9-2 T91 U- 

Fl. 9 21- 33 

F2 25 69 89 

F3 49 121 201 

F4 11 23 37 

F5 25 65 '81 

F6 49 137 193 

- fl -b 

Test I denotes one learning set of data and two testing sets 
Test 2 denotes two learning sets of data and one testing set 
Test 3 denotes three learning sets of data 
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Number of preconditiOns in rule base 

Table 32 shows the results obtained. A list of remarks now follows: 

Unlike search one (see Table 26) this time numerical configurations 

generated more preconditions as the training set increased in comparison 

with 4 logical configurations. 

(ii) Increasing the number of logical values an attribute can take resulted in 

a greater number of preconditions. 

Number of rules 

Table 33 shows the results obtained by converting each tree to a group of 

rules. The following can be noticed: 

(i) The introduction of extra attributes is beneficial only when. numerical 

values are used. 

(ii) Numerical configurations produce less rules than those in which logical 

attributes are used. The rate of increase though was much greater as the 

number of examples increases. Notably configurations with 4 logical attribute 

values (F2, F5) and F6 configuration seem to stabilise. 

6.10 Selection of configuration for search two 

The numerical based configurations were not considered for the same reasons 

as discussed in Section 6.7. Again the selection was between'either 4 or 8 

logical values with 13 or 6 attribute values. The use of 8 logical values had 

the better mis-classification error. The employment of six attribute values 

resulted in a better performance 
- 
as far asl the secondary criteria were 

concerned. Hence F6 was selected as the most promising configuration. 
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Table 32 : Number of preconditions per configuration (Search 11) 

Configuration 1911-11 TssL-2 

F1 14 57 95 

F2 24 85 89 

F3 33 93 121 

F4 20 64 126 

F5 23 72 79 

F6 30 86 94 

Table 33 : Number of rules per configuration (Search II) 

Configuration Zest-I Tgg-2 

F1 5 11 17 

F2 2 24 25 

F3 17 33 41 

F4 6 12 19 

F5 9 21 22, 

F6 16 '30 32 

t Test I denotes one learning set of data and two testing sets 
t Test 2 denotes two learning sets of data and one testing set 
t Test 3 denotes three learning sets of data 
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6.11- Discussion 

The configuration choice for each search was made empirically, as shown 

above. At the same time the configurations chosen seemed to be sensibly 

right. For search -one 13 attributes, each with 4 permissible logical values 

were selected. Search two had 6 attributes with 8 allowable logical values. 

Using search one, one tried to discover if further tuning was required so a 

strict testing was required. This is a full-scale approach. It involved not only 

the checking of a position of an attribute but also its relative position to other 

attributes - hence the need for the differences. Using search two, one tried to 

find the combination of component and direction for correcting the position 

of an individual attribute (i. e. one of the peaks) at a time. This'can be 

described as a reductionist approach. The outcome influenced the position of 

one attribute and we were not worrying about the effect it will have; if any, 

on the rest of the attributes. Therefore, there is no need for differences to be 

included. The exact position of an attribute is therefore very important and 

8 logical attribute values are needed to provide a fuller description of the 

position. 

6.12 Conclusions 

It was decided to use linguistic labels for the description of the position of 

each attribute of the magnitude response rather than the raw numerical 

values. The work undertaken showed that hereafter thirteen attributes each 

taking a linguistic label from a set of 4 to be employed for the first search. 

The second search to use six attributes each taking a linguistic label from a 

set of 8. 
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The Knowledge-base Construction 
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7.1 Introduction 

The generation of the decision tree and therefore of the rule set of each search 

is the subject of Chapter 7. 

Techniques for decreasing the complexity of a rule set without reducing 

performance are also given. The manual inspection for the identification and 

elimination of rules which will never be active and the erasure of rule 
ý, ,Iý, 

A 

conditions after testing their relevance using contingency tables were two 

techniques found to be most effective. 

The final section details the evaluation of the quality of tlý e rules by 

considering domain knowledge which reinforced belief in the trustworthiness 

of the generated rules. 

7.2 Induction of decision tree for the stopband 

region 
Three visits to Newmarket Aficrosystems produced a total of 159"e'xamples. 

These are the same examples employed for the comparison of decision trees, 

as reported in the previous chapter. Twenty one of these were examples 

where the user had realized that the wrong action had been taken. For that 
T 

reason, they were not included in the induction Process. 

The ID3 algorithm was developed by Quinlan' for problems associated with 

the game of chess, in particular for endgame knowledge. In the chess domain, 

an entire database of examples was used. In our application it was not feas- 

ible to generate a complete set of examples. For example, it was not possible 

to ask the operator to place, say, the first positive peak in a 'far left' position 

and at the same time to have the second negative peak in a 'close right' 
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location. The generated tree had to, eventually, analyze unknown examples. I 

At that stage of the research, there was no evidence to show that the collected 

examples were sufficient or that they constituted a small sample. Two ways 

to find out are for either the expert to investigate the rules or to test the tree 

against a new set of data. The first way involves the expert looking at the 

selection of relevant attributes and the relationships between them'. as 

presented by the rules. This was not possible in this study. The choice of 

relevant attributes from an initial set of attributes provided by the expert in 

the first place does not reveal much. Furthermore, the expert was not aware 

of what rules existed anyway, so the rules formed by ID3 were mentally 

uncheckable. Testing against a new sample would have given only an 

indication of the validity of the rules. Also, the indication would have been 

very dependent on the sample. The problem once again is that there were 

many routes towards the goal. It was then decided to test the system on-line 

and to record and observe its performance. The actual testing is reported in 

Chapter 9. An account of work performed prior to the testing in order to 

bypass certain ED3 problems and to optimise the execution efficiency of the 

rules now follows. 

7.2.1 Modifying the rule set of search one 

Removing the 'unsuccessful' examples left 138 examples. The distribution of 

the examples is shown in Table 34. 

Prior to the execution of the algorithm a change to the training set was made. 

This involved a reduction of the set of attribute values assignable to the 

fourth positive peak (P4). In particular, all references to the label 'right'were 

renamed 'ole. The reasons behind this were that P4 lies to the right side of 
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Table 34 Distribution of examples per class category 

QM Number of examples 

Carry-On 104 

End-of-process 34 
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the ok-range only a few times (8 out of 138). Also, the objective of the"e'xpert 

operator was to place P4 to the far right of the display, irrespective of the- -ý 

exact position. The modified example set was fed to the algorithm and a new 

decision tree, incorporating the changes, was generated. It is worth 

mentioning that identical examples were not used. That way the possibility 

of elevating an attribute's significance was reduced. 

The decision tree had 34 leaves classified as empty and two leaves with the 

clash class (the two terms have been defined in the previous chapter). Before 

continuing any further it was thought to be beneficial to investigate the 

nature of the clashes. This involved finding those examples that contributed 

to each clash. 

Table 35 displays the two 'clash' rules. The first clash arose due to the 

difference in class of the following two examples. 

Pi p2 p3 p4 rl r2 class example 
number 

1.397269 1.399436 1.40472 62 end 65 
1.397262 1.399425 1.404553 58 carry-on 95 

Example 65 reports an end-of-process whereas example 95 a carry-on. It 

became apparent that example 65 was wrongly classified. The operator should 

not have ended the process at that stage. The value of the first negative peak 

(R2) was not identified. Ending a stopband tuning process when unknown 

values are present contradicts the existing knowledge. The expert had 

mentioned the need for the two negative peaks to be about the same level for 

the filter to be tuned. This is not possible when one of the values is missing. 

Further class revealed that the expert never terminated a stopband tuning 

if a value was missing. The class of example 65 was then changed to carry-on. 

Another matter to notice is that example 65 was not used when the ok-ranges 
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Table 35 Rules with a clash action 

Rule Number: One Two 

if d3 is absent if d3 is ok 

and pI is ok and'p3 is ok 

and p2 is ok and r2 is ok 

and dl. is ok 

and rl is ok 

and d4 is ok 
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were specified, because of the appearance'of unknown values, so there was 

no need to re-calculate the ranges. 

The second clash was of a different nature. Ten of the twelve contributing 

examples had an 'end' outcome. Because of the vast difference (10-2) the 

majority ruled so the classes of the two examples were changed to 'end'. The 

ranges were then re-calculated in order to take into inspection of the rest of 

the examples With an end-of-process account the two examples and the 

transformation of the numerical values to logical values took place again. The 

new decision tree generated 58 rules which determined the class an example 

took. The values were carry-on, end or empty. There were no clash rules 

anymore. Table ý6 shows the distribution of rules per class. Work undertaken 

was concerned with the identification and, possible, removal of the empty 

rules. The thirty-three empty rules had in common that the attribute of the 

first if-branch was Diffl. Diffs value is calculated by subtracting the first 

positive peak (Pl) from the fourth positive peak (P4). In thirty-one rules out 

of 33 DffM had the value 'ok'. In order for DffM to take this value then both 

peaks (ie. P1 and PQ must be present. Bearing this in mind, each empty rule 

was examined. 

Two empty rules were eliminated since they had an additional if-branch 

which stated that P1 is absent. This implies that Dif13 cannot be 'ok'while P1 

is absent, ie. this rule will never apply. Similarly, two more empty rules were 

removed since DiM is absent appeared in the left hand side of the rule. DWI 

is calculated by subtracting P1 from the second positive peak (P2). In order 

for Diffl to be absent then either P1 or P2 or both are absent. If both are 

absent or if P1 is absent then DifM can never be in the ok-range. If PI is 
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Table 36 Distribution of rules per class after elimination 

of clash rules 

Class Number o 

MIM 

Percentagc 

Carry-on 13 22.41 

Empty 33 56.90 

End-of-process 12 20.69 
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present, then'P2'must be absent. But a further if-bianch' -state's that P2 is 

right. Since it is impossible for this situation to arise the empty rules were, 

erased. 

It'was mentioned previously that one rule for determining the continuation 

of the tuning is that every attribute must be known. Using this rule 13 empty 

rules were initially changed to carry-on rules. Then it was - recognised that 

they were redundant rules since they can be replaced with a set of rules 

which state that if any attribute is missing then class is carry-on. 

Furthermore, two more empty rules were eliminated. The reasons for their 

dismissal will be explained since these rules demonstrated a drawback of the 

ID3 algorithm. bne of the rules stated: 

if DiffS is A 
and P3 is A 
and Diffl is right 
and R2 is A 
and Diff4 is absent 
then class is empty 

For Diff4 to be absent then either P2 or P3 or both are missing. But P3 is ok 

appears as an if-branch, so P2 might be missing. This argument is also 

invalid since Diffl is right appears which implies that both Pl and P2 are 

present. Therefore, P2 cannot be missing, causing this rule to be unnecessary 

since all of the conditions can never occur. This is a demonstration of the IID3 

problem known as irregular branching. The algorithm could not possibly 

determine that branching for Diff4 is absent is not actually possible. Table 37 

presents the new distribution of rules per class. 
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Table 37 Distribution of rules per class after elimination of empty rules 

Class Nuýmber of rules Percent= 

Carry-on 18 40.00 

Empty 33.33, 

End-of-process 12 26.67 
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7.2.2 - SiMPlifyink the rule set of search one 
Tree generation inevitably creates immense decision structures. While 

comparing the various decision trees (see Chapter 6) the number of pre- 

conditions was used as a criteria of what constitutes a well formed tree 

structure. Work in this section describes how the number of pre-conditions 

was reduced and efficiency was kept at the same level. 

There exist two methods of creating an efficient and at the same time 

understandable decision tree. The first method is known as windowing. The 

basic idea is to select a small subset of the examples (the window) rather than 

the complete training set. A tree is then generated and the remaining 

examples are tested using the tree. The incorrectly classified examples are 

added to the window and the process is repeated until there are no mis- 

classifications. This technique has been tested in a series of experiments' and 

it was found to have some problems of its own. In the filter domain the 

technique was not considered firstly due to the small collection of data and 

secondly due to the presence of noise in the data. 

The second method is concerned with the pruning of decision trees. Quinlaný 

proposed and empirically compared four techniques. One technique, 

simplifying the production rules, was proved by Quinlan to be especially 

powerful since it matched or outperformed the rest of the techniques on nine 

out of twelve tests. Therefore this technique was implemented for the tree of 

the first search of the stopband. First, the decision tree was compiled into 

production rules. The extraction of production rules was achieved by following 

a path through the tree to one of the leaves. 

The technique will be better explained using an example. As an illustration 
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of the process the rule in Table 38 will be considered. 

Step I For every condition branch a2x2 contingency table is created. Table 
1 

39 shows the contingency table created for the first condition branch, i. e, 

Table 38, condition 1. The numbers in the cells were obtained from the 

training set. The nufiiber in cell a represents - the mimber of examples (of the- * 

training set) that satisfy the condition (i. e. the entire left hand side) and_ ., 
belong to the carry-on class (i. e. the one given by the rule). The number in cell 

b represents the number of examples (of the training set) that satisfy the 

condition (i. e. the entire left hand side) and belong to any other class other 

than-the one given by the rule. In this case this means the end-of-process- 

class. The number in cell c represents the number of examples (of the 

training set) that belong to the class given by the rule (i. e. carry-on) without 

satisfying the condition (i. e. it is irrelevant what value d3takes). The number 

in cell d represents the number of examples (of the training set) that do not 

belong to the class given by the rule (i. e. carry-on) and do not satisfy the 

condition (i. e. it is irrelevant what value d3takes). 

Step 2 Having created the table the necessity of the presence of the condition 

is examined. In other words the effect of its removal on the accuracy of the 

rule is observed. The accuracy, with the condition present is estimated' as 

cl= a-0.5 
a+b 

where C, represents the probability of needing the condition, whereas the 

accuracy, without the condition present is estimated' as 

C2 - a+c-0.5 
a+b+c+d 

whereC2represents the probability that the condition arose by chance. 
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Table 38 A sample rule to demonstrate post pruning 

Condition I if d3 is ok 

Condition 2 and p3 is ok 

Condition 3 and dl is ok 

Condition 4 and r2 is right 

Condition 5 and p2 is right 

Condition 6 and V is right, 

Action then carry-on 

Table 39 Contingency table for the first condition of rule of table 38,,,, 

Carry-on class End-of-process class 

Keep first condition 

a2 b0 

, eliminate first condition 

I 

c4 

-- 

dO 

I 
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If C2 ; -ý' 
C, then the condition is dropped, otherwise it is kept. For the above 

example, C, =0.75 and CT'ý0,917, therefore the condition is dropped. 

Steps 1 and 2 are repeated for all conditions of the original rule (i. e. no 

conditions are dropped at this stage). For our example the first three 

conditions and the fifth condition were found to be non-contributors, hence 

they were eliminated. The process is then carried out for the remaining 

conditions until the stage where no condition can be dropped is reached. For 

the rule example only the last condition was retained (i. e. d7is right). 

Step 3A certainty factor in a percentage form, given by the calculation of C, 

times 100, is assigned to the simplified rule. For our example the simplified 

rule has a certainty factor of 86.5 per cent. 

Unfortunately the elimination of conditions and/or the calculation of the 

certainty factors cannot be done using the expert system shell. This is a 

facility worth having in order to save time on tedious tasks. The allocation of 

a certainty factor to a rule was also unavailable with the Xi-Plus package. 

This again would had been of value when considering conflict resolution (i. e. 

resolving the problem of which rule to choose when more than one rule 

applies). The only solution was to include the certainty factor by hand in the 

right hand side of the rule and the user to solve the conflict. 

7.2.3 Evaluation of reduced rule set of search 

one 
The examination of the significance of conditions resulted in the discarding 

of rules. This was true when the entire left hand side of certain original rules 

were found to be irrelevant. Table 40 presents the new distribution of rules 
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Table 40 Distribution of rules per class after post pruning 

Class Number of rules Percentag 

Carry-on 15 39.47 

Empty 15 39.47 

End-of-process 8 20.06 
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per class. The next stage was to determine how well the cut down rule set 

functioned. This involved the evaluation of how the new set. of rules 

performed on the 
_training 

examples. 

Table 41 presents the successful results obtained. Notice the low success 

performance of the reduced set. This was especially true for the examples 

with end-of-process class. This though can be misleading as will be shown. 

Table 42 presents the unsuccessful results obtained. Unsuccessful being 

either when the wrong class or a clash is given., Clash situations arise due to: 

(i) more than one rule applies but all rules have the same class, or 

(ii) more than one rule applies but the rules have different class. 

The wrong outcome state arises due to: 

ý, (iii) X outcome is expected and something else is generated. ` 11- -ý 

Breaking down the end-of-process unsuccessful results it was found that all 

34 were due to clashes. Twenty-two of them because of category W and 12 

because of category (ii). Since all 22 clashes were generated by rules with end- 

of-process as their class can be allocated to the success region. Examination 

of the carry-on unsuccessful results showed that 32 were due to clashes and 

2 due to category (iii). Unfortunately no action can be taken to correct 

category three errors. Concentrating on category (ii) clashes for both classes 

a heuristic rule was used in order to eliminate some of them. The heuristic 

rule adopted states: choose the rule with the higher certainty factor. This way 

4 end-of-process and 30 carry-on category (ii) clashes were resolved and 

allocated to the success region. Tables 43 and 44 present the new right and 

wrong classification figures respectively. The tables show that the elimination 

of some rules and the improvement of the comprehensibility of the rest with 
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Table 41 Testing reduced set of rules with training set 

Number of examples in training set 138 

Successful classification . 72 

Number of examples in training set with 

end-of-process classification 

36 

Successful end-of-process, classification 2 

Number of examples in training set with 

carry-on classification 

102 

Successful carry-on classification 70 
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Table 42 Testing reduced set of rules with training set 

Number of examples in training set 138 

Unsuccessful classification 66 

Number of examples in training set with 

end-of-process classification 

36 

Unsuccessful end-of-process classification 34 

Number of examples in training set with 

carry-on classification 

102 

Unsuccessful carry-on classification 
L_ 

I 32 
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Table 43 Testing reduced set of rules with training set 

Number of examples in training set 138 

Successful classification 128 

Number of examples in training set with 

end-of-process classification 

36 

Successful end-of-process classification 28 

Number of examples in training set with 

carry-on classification 

102 

Successful carry -on classification 100 
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Table 44 Testing reduced set of rules with training set 

Number of examples in training set 138 

Unsuccessful classification 10 

Number of examples in training set with 

end-of-process classification 

36 

Unsuccessful end-of-process classification 8 

Number of examples in training set with 

carry-on classification 

102 

Unsuccessful carry-on classification 2 

Table 45 Distribution of examples per class category (search 2) 

Class Number of examples 

CA 32 

c4c 29 

c7a 22 

c7c 21 
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s6s6q-uent'&ster e'xec'u'tion"resulted iri'an"*insigm*ficani'p-"e-rc"en-6 g-e , &op I of 

classification accuracy in comparison with the classification accuracy prior to, 

pruning. 

7.2.4 Modifying the rule base of search two 

Removing the 'unsuccessful' and the end-of-process examples left 102 

examples. The distribution of the examples is shown in Table 45. It was not 

possible to judge the rules about irregulai branching etc. so the number'of 

clash and/or empty rules could not be reduced. 

7.2.5 Simplifying the rule set of search two., 

Work, similar to the one described in Section 7.2.2, was undertaken resulting 

in twelve rules being removed altogether. Table 46 shows the new 

distribution of the rules. 

7.2.6 Evaluation of reduced rule set of search 

two 

No evaluation was performed due to time constraints. 

7.3 Induction of decision tree for the passband 

region 
Four more visits to Newmarket Microsystems produced a total of 196 

examples for the tuning of the passband region. The nine attributes, different 

to ones used for the stopband, employed for the tuning of the passband are 

the following: 

(i) Ripple (see explanation below in text) 

(ii) Low Passband (passband value at 1.4005 MHz) 
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Table 46 Distribution of rules per class (search 2) 

Class Number of rules 

c4a 16 

c4c 7 

c7a 10 

c7c 7 

empty 101 

clash 11 
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(iii) Ifigh Passband (passband value at 1.4025 MHz) 

GO Insertion Loss (see explanation below in text) 

(v) Carrier rejection (attenuation at reference frequency) 

(vi) Low Stopband (stopband value at 1.3993 MHz) 

(vii) High Stopband (stopband value at 1.405 MHz) 

(viii) Low Stopband Return (see explanation below in text) 

(ix) High Stopband Return (see explanation below in text) 

The selected attributes are outlined in Figure 16. Low refers to the left side 

of the response. Ifigh refers to the right side of the response. A program was 

written, in HP-Basic, with the help of the expert in order to automate the 

extraction of the attributes. The program samples the response, at 

appropriate points, in order to find the values for the attributes. Fifty-one 

sample points are used for attributes (viii) and Ux) and twenty points for the 

ripple. For example, the sampling for the calculation of the ripple starts at 

1.4008 MHz and ends at 1.402 MHz. The maximum and the mintimurn sample 

are found and their difference is the ripple. The minimum sample of the 

ripple is the insertion loss. The low and high stopband returns are calculated 

similar to the insertion loss but the sample ranges are 1.38 MHz to 1.398 

MHz and 1.406 MHz to 1.42 MHz respectively. ' Prior to the'generation of 

examples for the passband tuning two assumptions had to be met: 

(a) The stopband had already been tuned, and 

the three components M, T2, T3) were, almost, screwed in. 

Strictly speaking, this part of the system does not deal with the passband 

only. It incorporates further tuning of the stopband, if the need arises. 

Therefore, the set of possible components (i. e. classes) comprise of all the 
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Figure 16: Magnitude response showing the attributes used for the tuning of the 
passband. The Low Stopband Return is the minimum attenuation (dB) measured 
between the f, = 1.38 MHz to f2 = 1.398 MHz range. The High Stopband Return is the 
minimum attenuation (dB) measured between the f, =1.406 MHz to f4=1.42 MHz 
range. The Low Stopband attenuation (dB) is measured at f, = 1.3993 MHz. The High 
Stopband attenuation (dB) is measured at f, =1.405 MHz. The Carrier Rejection 
attenuation (dB) is measured at f, = 1.4 MHz. The Ripple is the difference between the 
maximum and minimum attenuations measured in dB's between 1.4008 MHz and 1.402 
MHz. The minumum attenuation (dB) measured in this range is the Insertion Loss. The 
Low Passband is the attenuation (dB) measured at f7= 1.4005 MHz. The High Passband 
is the attenuation (dB) measured at f, = 1.4025 MHz. 
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tunable components. '"' 

7.3.1 Partition of search spaces 
, -, 1- 

The search spaces were partitioned as for the stopband region. This -meant 

that search one specifies the conclusion or not of the tuning process, search 

two the appropriate component and direction combination and search three 

the distance to turn. 

7.3.2 Search one rule set 

Unlike the stopband, this time the expert had knowledge of the range of 

values in which each attribute must lie to be considered tuned (i. e. -the ok- 

range). The specification, after a couple of revisions, is given in Table 47. 
_ 

Therefore a single rule stating that if every attribute is within the ok-range 

then the process can stop was sufficient. Obviously, if any of the attributes 

did not conform to this then the tuning process was to be continued. 'With Xi. '- 

Plus this was represented as a default rather than a rule. The. rule was_ 

augmented after some initial testing by including one more condition in the 

left hand side: the low stopband return and high stopband return values 

should also be close to each other (i. e. their difference is less than 3 db). An 

analysis of the distribution of values, for each attribute, for all the collected 

examples confirmed the suitability of the specification. Table 48 gives the 

distribution values of the attributes collected during the acquisition of the 

traming examples. It can be seen, for example, that the ripple is within the 

ok-range for all examples with end-of-process class. The same applies for the 

rest of the attributes except for the two return attributes. These attributes 

had one or two values not within the ok-range but still the expert terminated 
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Table 47 Specification for attributes used in the passband 

Attributes Acccptable Values (db), 

ripple 0-1 

insertion loss 0.5-5.0 

carrier rejection > 10 

low stopband > 45 

high stopband > 45 

low passband <4 

high passband <4 

low stopband return > 45 

high stopband return > 45 
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Table 48 Distribution of attribute values of training set 
I 

Attribut Bl= End-of-process Ca=-on 

ripple 0-1 38 84 

>1 0 74 

insertion loss 0.5-5.0 38 158 

>5 0 0 

low passband 0-4 38 153 

>4 0 5 

high passband 0-4 38 113 

>4 0 45 

carrier rejection > 10 38 158 

0-10 0 0 

low stopband > 45 38 145 

0-45 0 13 

high stopband > 45 37 114 

0-45 1 44 

low stopband return > 45 36 107 

0-45 2 51 
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Table 48 continued Distribution of attribute values of training set 

Attribu 
-Rana 

End-of-process Q13ýý-on 

high stopband return > 45 38 137 

0-45 0 21 
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the tuning process. Furth6irmore, 1. the-e-xpeit chinged 'the tw6--'ieiurii`--' ' 

attzibutes' value from 45 db to 48 db., 

7.3.3 Search two rule set 
The withdrawal of the end-of-process examples from the training set left. 152 

_ý 
examples. The second search for the passband utiIised eight logical values, in 

a similar fashion to the respective search of the stopband. The logical values 

were close-left, close-right, far-left, far-right,, ok, left, right, unknown. The 

generation of logical values was as before (See Section 6.3). The 
-standard 

deviation of all the carry-on examples was computed and the ranges were 

determined by adding the standard deviation to the limits of the ok-range. 

Some attributes were not assigned all the logical values. For example, the 

ripple does not take any, value less than zero, so references to left, close-left, 

far-left are not necessary. Additionally, the ok-range was split into three 

ranges (close-ok, far-ok, middle-ok) for some of the attributes (carrier 

rejection, high stopband, low stopband, low stopband return, high stopband 

return). The reason being that the-expert continued-even if the attributes - 

were within the ok-range (See Table 48). The examples were fed to the Xi- 
_ 

Rule package and 63 rules were generated (without considering the empty 

and the clash rules). The distribution of the rules is given in Table 49. 

7.3.4 Modifying rule set of search two 

No work was performed due to time constraints. 

7.3.5 Simplifying rule set of search two 

No'work was performed due to time constraints. 

171 



Table 49 Distribution of rules per class (passband)' 

Number of rules 

c4, 10 

c4, 4 

c7, 8, 

c7. 4 

tic 

C. 12 

t2, 5 

t3a 12 

t3c 5 

empty 117 

Ih 18 

The character V as in C4. donates the clockvýise direction 
The character 'a' as in C4. donates the anti-clockwise direction 
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7.3.6 Evaluatiofi"of the"quality of the'rules 

Only seven attributes appear on the decision tree. The absent attributes are: 

carrier rejection and insertion loss. This was welcomed as the reasons given 

beneath will demonstrate. 

Somewhere hidden in one of the transcriptions of the protocol analysis the 

following statement appears: if short or long way out (referring to insertion 

loss) reject the 11"Iter. This statement indicates that the insertion loss must be 

within the ok-range for the filter to be accepted but it does not influence the 

choice of the tunable component to be used. The analysis of the values' 

distribution, shown before in Table 48, shows that the values of the carrier 

rejection and for the insertion loss always lie within the ok-range I hTespective 

of whether-it is'an end-of-process or wcarry-on example' This is furkher 

evidence that these'two attributes do not contribute t6 the selection of the 

tunable component. Therefore, the algorithm did, well' to' recognise -the 

irrelevance of these two attributes. 

Sixty three rules (excluding empty and clash rules) were generated. The 

attribute, ripple appeared as the root of the tree. This attribute took. the 

following attribute values: A (34), close-right (15), far-right (7), right (7). The 

number in the bracket indicates in how many rules the attribute ripple with 

the applicable value appeared in the left hand side. Now, if the rules with 

ripple is ok are considered then one would expect the class to be given as 

either C4 or C7, except if the low or high passband is wrong (where component 

should be given as T,, T2, or T3). The reason for that lies in the recognition of 

the contents of the transcripts where the expert said, that: if something is 

wrong with the ripple or the low or high passband then use T-components, for 
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the rest C-components. Twenty seven out, of thirty two rules gave' C- 

components. Seven rules can be judged as wrong due to the above 

observation, but again maybe they hold some special cases. Considering rules 

with the ripple being far-right, right or close-right one again expects T- 

components. This is exactly what happened except for two cases when ripple 

had the value close-right. The induction avoided the generation of non-logical 

rules such as: if the ripple is ok and the low passband is ok then use T,. 

The above remarks reinforced belief in the trustworthiness of the generated 

rules. 

7.4 Conclusions 

The work undertaken in order to reduce the complexity of the rules generated 

by IID3 showed that the ED3 algorithm produces irrelevant rules which had 

to be identified and eliminates manually. Additionaly the use of contingency 

tables proved to be effective when eliminating branches of the decision rules. 

The performance of the reduced rule set was not affected. 

References 

1. Quinlan J. R., Discovering rules by induction from large collections of 

examples, In: Expert systems in the micro-electronic age (Ed. D. Michie), 

Edinburgh University Press, 1979. 

2. Quinlan J. R., Induction of decision trees, Machine Learning, Vol. 1, pp. 81- 

106,1986. 

3. Wirth J., and Catlett J., Experiments on the costs and benefits of 

windowing in ID3, Proceedings of the Fifth International Conference on 

Machine Learning, Morgan Kaufmann, pp. 87-99,1988. 

174 



4. Quinlan J. R., Simplifying decision trees, Knowledge-Based systems, Vol. 1, 

pp. 241-254,1988. 

175 



Chapter Eight 
-I- I- 

Neural Networks for Search 3 of the Stopband 
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8.1 Introduction 

Neural networks offer an alternative approach for constructing learning 

systems and in Chapter 8a detailed chronicle of the development of a multi- 

layer perceptron for the third search (i. e. how far to turn) of the filter tuning 

task is presented. 

The performance of a neural network depends on a number of parameters 

such as the network architecture (i. e. number of hidden nodes), the number 

and presentation of the training examples, when to stop the learning process 

etc. These are usually determined through repeated experiments. The 

network architecture (57-11-10-1) was empirically determined and it was 

found necessary to build four networks (one for each component/direction 

combination) after some data analysis. Each network was trained for 75000 

runs and a record was maintained of those weights that yield the mini urn 

error as encountered during the learning. While the selected sets of weights 

did not manage to perform 100% on the training set. Section 8.7.2 shows that 

the errors were acceptable. In addition it has been cited that over-learning 

resuIts to bad generalisation. 

The lesson learned was that performing data analysis results in more 

selective training data hence better performance. 

8.2 Reasoxis for implementing neural netwOrks 

for search three 

Neural networks are generally implemented for two reasons: understanding 

of the human brain and for achieving goals in computing. The primary 

incentive for implementing neural networks for the third search of the 
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stopband was the computational one. Testing the expert system (see next 

chapter) in a live environment indicated that it will be, beneficial to have 

some sort of hint of how far to turn. It was obvious, during testing, that even 

when the correct outcomes are given for the first two searches if the operator 

turned arbitrarily, the tuning will take some time to terminate. Timing 

consideration was the main motivation. Additionally, initial accomplishments 

using neural networks for the third search -were poor (See Chapter, 5). 

Another motivation arose due to this. The work undertaken, described in this 

chapter, tried to establish if neural networks are generally inapplicable to the 

problem area or -whether the neural networks were incorrectly applied 

previously. The latter is not difficult to do since a change to a parameter (e. g. 

number of input units) effects the network performance. The challenge was 

then to see if there were any network architectures that were more suitable. 

The ultimate goal was to produce a connectionist expert system', meaning an 

expert system interfaced to a neural network with the latter being another 

knowledge source. This was seen as increasingly important - in'. -the 

development of a total solution to the tuning problem. Recent research has 

begun to indicate the merits of such a union' .3 

'3 Collection of the training data, 

It was apparent by now that the expert did not have any knowledge of how 
TI _1 . ,, III-r 

far to turn. It was a matter of trial and error. Therefore, the training data 

consisted of examples generated using the de-tune procedure. The examples 

were created by havingC7 either at its optimum position (i. e. where it was 

placed when the expert finished the tuning) or mal-adjusted in steps of half 

a revolution up to 1.75 revolutions in a clockwise direction or up to 2.5 
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revolutions in an anti-clockwise direction. At each position of C7 the other 

component (Q was mal-adjusted in steps of half a revolution from its 

optimum position up to 1.5 revolutions in a clockwise direction or up to 2.5 

revolutions in an anticlockwise direction). In total 358 examples were 

generated for each filter. Each example comprised fifty seven point samples 

from the frequency range of 1.38 MHZ to 1.42 MHz, plus the class to which 

it belonged (i. e. the distance turned). Nineteen points were sampled from the 

left hand side of the stopband, nineteen from the passband region and the 

rest from the right side of the stopband (see Figure 17). The sample points 

were equally spaced for each part of the response. 

8.4 Software implementation 

Software from an available package (NeuralWare Explorer) was used to 

simulate the learning algorithm on an 80386 based microcomputer. 

8.5 Development of the network architecture 

The software package liberates the builder from the task of writing programs 

but still a group of crucial decisions concerning the architecture of the 

network have to be made. What is the optimal number of processing units in 

each layer? How many layers are to be built? How long should the training 

last? etc are a few of these decisions. Unfortunately, current literature and 

research does not provide a general method to the design issue for a given 

problem area. The following sections describe how the network for the third 

search of the stopband was constructed. 
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8.5.1 Network architecture -. 
The back-propagation architecture described in Section 4.4 was implemented. 

This is a feefforward architecture consisting of a number of processing units, 

with each unit belonging to one of the four available layers. Three layer. 

neural networks (i. e. the input layer is not counted) were constructed. 

8.5.2 Network type 

The back-propagation architecture can be used in two modes: 

(W The auto-associative mode where the network is expected to generate an 

output which is the same as the input. 

(P) The hetero-associative mode where the desired output is different to the 

input. 

The last mode was used since the task of filter tuning falls into the sphere of 

classification. 

8.5.3 Input layer configuration 

The number of processing units in the input layer was set to 57, thus each 

sampled point was assigned to one and only one unit. In the literature it has 

been reported that numerical problems may be avoided by scaling the inputs 

to the [0,11 range. Hence, the input of each input unit was subjected to a 

simple transformation using the software package of the following form 

Transformed input-- Input Value * Scale Factor + Offset 

where the values of 0.01 and 0.1 were used for the scale factor and offset 

respectively. The offset was used to avoid having any zero inputs. The new 

value of each input unit was then transferred to the processing units of the 

first hidden layer. 
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8.5.4 Outjý-ut layer cohfiguration, 
The number of processing units in the output layer was set to 1. The output 

of the single unit is simply the summation of all its inputs, multiplied by 

their associated weights, from the second hidden layer. Hence, the linear 

transfer function was applied. The desired output was represented in the 

learning set using a value from the [0,11 set. Table 50 displays the real 

desired output-and the equivalent coded representation., The result obtained 

was limited to both an upper (1.0) and lower (0.0) bound and then compared 

to the desired output. Using the software package learning was inhibited 

when the error was lower than a pre-set value. This was accomplished with 

the use of a coefficient (C3) Whenever the'absolute difference between the 

desired and obtained output was less than the value of C3the error was set 

to zero. In the use mode (i. e. after learning) the output result was scaled 

using the linear transformation mentioned above in order to transform the 

data into more understandable Units. 

8.5.5 Hidden layers configuration 
The sigmoid function (see Chapter 4) was used as the transfer function. The 

selection of the number of processing units for each hidden layer was not as 

natural and effortless as for the other layers. Their numbers were determined 

empirically (11 and 10 for the first and second hidden layer respectively) and 

no claim is made that they are the most appropriate. In the literature a 

number of approaches have been described. For example enter a large number 

of units and then freeze units to see the effect it has on the performance. This 

is known as skeletonisation. 
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Table 50: Presentation of classes to the neural networks 

'Real 
Valu Coded Value 

O. W 0.0 

0.25 0.1 

I-A 
0.50 0.2 

0.75 0.3 

1.00 0.4 

1.25 0.5- 

1.50 0.6 

1.75 0.7 

2.00 0.8 

2.25 0.9 

2.50 1.0 
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Alternatively, train- the'net with P, uruts, until'sOme- optimum learning has- 

been achieved. Add P2 units to the net, re-train and continue in this way until 

some termination test has been satisfied'. 

In preliminary work the optimum number of hidden units was found by 

adding new hidden units to each layer and"observing the - effe . ct -. The next 

section describes this preliminary work undertaken in order to investigate the 
I 

feasibility of neural networks and the architecture to be used for the tuning 

of electronic filters and search 3 in particular. 

8.6 Determi ing the size of the training set 
One has to be cautious when examples are employed for automatic learning. 

Prior to the neural network implementation variou's questions arose 

concerning the size of the learning set. For example, should the learning set 

include examples generated from 
-different 

filters, should it include examples 

covering de-tuning of both components etc. Before implementing the network 

in full, some experiments were carried out with a smaller example set in 

orderto get a feeling for the process and to assess, the feasibility of the 

networks. 

The training set included eleven examples from one filter generated with the 

C. component mal-adjusted in an anti-clockwise direction. Each example 

contained the 57 points sampled from the response. After running the 

network (57-11-10-1) a number of times (- 100,000) the performance was 

flawless viz. the system had learned to discriminate between those eleven 

classes (Table 51). Then the generalisation capabilities of the network were 

evaluated. This involved testing the network using unseen examples from 

other filters (Table 52). These examples were once again generated under the 
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Table 51: Network training with (100000 runs) 

Desired Values Generated Values 

0.0 0.03 

0.1 0.1 

0.2 0.2 

0.3 0.3 

0.4 0.4 

0.5 0.51 

0.6 0.62 

0.7 0.73 

0.8 0.83 

0.9 0.91 

1.0 0.96 
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Table 52: Network testing 

Desired 

Values 

Generated values for different filters 

0.0 0.06 0.06 0.08. 0.03, 

0.1 0.03 0.008 0.01 0.01 

0.2 0.13 0.1 0.11 0.09 

0.3 0.23, 0.18 0.21 0.16 

0.4 0.3 0.24 0.27 0.22' 

0.5 0.36 0.28 0.34 0.27 

0.6 0.46 0.33 0.39 0.32 

0.7 0.56 0.37 0.45 0.36' 

0.8 0.62 0.41 0.52 0.41 

0.9 0.82 0.43 0.54 0.44 

1.0 0.68 0.45 0.6 0.46 
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same' d, e-tun, e, " p" r- -oc-e - dure'con'ditions. The res-ults7ranged from very goodtto 

useless. Similar results were obtained with different network architectures. 

For instance, when only the 19 sampled points from the left side of the 

stopband were used (19-11-10-1). Table 53 shows the learning results after 

100,000 trials and Table 54 when the network was tested with unseen 

examples. The enigma of this situation (i. e. bad performance during testing 

versus good performance during learning) was resolved by simply plotting the 

responses. The initial positions of each response were all correct but not the 

same. This resulted in overlapping of classes. Figure 18 displays the left hand 

side of the'Stopband of six filter responses all classed as tuned. -For example, --- 

the waveform, generated with. a 0.25 mal-acbustment was above the tuned 

waveform for some filters whereas other filters generated a waveform which 

could be found below the tuned response. The variety of the position of the 

responses which can be considered as tuned created an overlapping of classes. - 

For that reason, it was decided to employ the de-tune data of just one filter. 

This would force the tuning of other filters towards one model solution. 

Additionally, in some cases, maladjustment by more than 2 revolutions 

caused negligible changes in the response (Figure 19). Those -examples-- 

remained in the learning set but they were assigned the class of the earlier 

example. An overlapping of classes similarly occurred when the complete 

learning set was used (i. e all component and direction combinations). 

Responses generated using the left component (C4) with, say, 0.5 turns 

resembled the ones generated using the right component WO With 1.25 turns. 

For that reason it was thought appropriate to break the learning set into four 

sub-sets (Table 55). 

187 



Table 53: Network training with 19-11 -10-1 nodes 

Desired Values Generated Values 

0.0 0.02 

0.1 0.08 

0.2 0.17 

0.3 0.27 

0.4 0.37 

0.5 0.48 

0.6 0.60 

0.7 0.72 

0.8 0.82 

0.9 0.90 

1.0 0.96 
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Table 54: NetWork testing 

Desired 

Values 

G ýerated 
-values using different filters 

0.0 0.03 0.03 0.04 0.01 

0.1 0.01 0.0 0.0 0.0 

0.2 0.09 0.07 0.07 0.06 

0.3 0.16 0.14 0.14 0.12 

0.4 0.22 0.20 0.19 0.17 

0.5 0.27 0.28 0.25 0.21 

0.6 0.32 0.29 0.28, 
Al 

0.26 

0.7 0.37 0.33 0.32 0.30 

0.8 0.41 0.37 0.35 0.34 

0.9, 0.44 0.39 0.37 0.36 

1.0 0.45 0.45 0.39 0.38 
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Figure 18: Six stopband responses (left side only). Nineteen equally spaced values are 

sampled from the left side of the magnitude response between f, = 1.38 MHz and f2 = 1.4 

MHz, in steps of 0.001 MHz. 
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Figure 19: Magnitude responses generated by mal-adjustingC4. The reference 

frequency is denoted by zero at the ftequency-axis. 

Table 55: Leaming sets 

Leaming... C4a C4C C, a C, c 

No, of examples 215 144 216 178 
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8.7 Neural networks in learning mode 

8.7.1 Stopping learning criterion 
For each learning set the network was executed for 75000 runs. Every 1000 

runs the learning was momentarily paused and the total sum of squared 

errors was calculated. The total squared error being the sum of all the 

squared differences between the desired class and the generated class. The 

network with those weights which generated the smallest squared error was 

selected. This way it is suggested that the better a system performs on the 

learning set, the better it will perform on tests. 

8.7.2 Measuring the performance of the 

networks 
Figures 20 to 23 display the learning curve for the four networks. These 

graphs show the plots of the total squared error against iteration number. 

The minimum total squared error (3.3) when learning C4 turned anti- 

clockwise was found in run 56000 (Figure 20). The minimum total squared 

error (0.55) when learning C. rotated clockwise was found in run 66000 

(Figure 21). The minimum total squared error (1.25) when learning C7 turned 

clockwise was located in trial 55000 (Figure 22). Finally, the minimum total 

squared error (4.62) when learning C7 rotated anti-clockwise was located in 

trial 62000 (Figure 23). 

Various indicators can be used to measure the performance of a network. One 

such measure is the fraction of patterns classified correctly. The network for 

learning C4 anti-clockwise is investigated below. Since any generated outcome 
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Figure 21: C4 clockwise learning curve 
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Figure 22: C7 clockwise learning curve 
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Figure 23: C7 and-clockwise learning curve 
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within :t0.04 units from the desired outcome is considered to be correct (for 

example any value between 0.36 and 0.44 is considered right if the desired 

output is 0.4) the optimum minimum total squared error is then 0.3456 U. e 

215 examples times 0.04 2) 
. The minimum total squared error reported above 

was 3.3. This is almost 10 times higher than the optimum. A discussion 

breaking down the results now follows. 

In total 46.8 percent of the examples were assigned the correct number of 

turns. Individual outcomes will be examined below. Looking at all the 

examples with a desired class value of zero (Figure 24) it is obvious that 

except in one case the present set of weights generates the correct results. 

Figures 25(a) to 25(i) show similar plots for classes 0.1 to 0.9 respectively. A 

number of predicted values are not very close to the desired values. Those 

that predict higher are clearly wrong but a wrong action can be corrected 

later, just as in the performance of the human user. A prediction of smaller 

values will force a longer tuning. What was important was for the network 

to discriminate between extremely dissimilar values like 0 and 0.9 rather 

than neighbouring values like 0.8 and 0.9. In each desired class there were 

examples which stood out as being more difficult to learn, hence increasing 

the error. 

At this stage the network was examined against examples not previously 

seen. One testing involved de-tune examples obtained by mal-acIjusting C. in 

a clockwise direction. The expected outcome was 0 (i. e. because C4 does not 

need maladjustment in an anti-clockwise direction) and Figure 26 illustrates 

the output of the network. Figure 26 shows that in the majority of the cases 

the predictions of the neural network were within the correct area. Some 
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Figure 24: output of the neural network for the examples in the training set with class 
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gure 25 (a, b, c, d): Output of the neural network for the examples in the training set 

with class 0.1,0.2,0.3,0.4 respectively 
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Figure 25 (e, f, g, h): Output of the neural network for the examples in the training set 
with class 0.5,0.6,0.7,0.8 respectively 
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Figure 25 (i): Output of the neural network for the examples in the training set with 
class 0.9 
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Figure 26: Testing the C4 anti-clockwise network with previously unseen examples 
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predictions were wrong but the error was not dramatic. These predictions 

were made using examples where the G, component was mal-aduusted. This 

suggests that there is a certain interaction between the two adjustable 

components. f 

Is if then appropriate to stop learning here? Did further trials have to be 

carried out? Questions as such could only be answered'aftý'r the network is 

tested live and only then the capabilities of the four neural networks will be 

known. , 

8.8 Conclusions * 

It was decided to employ neural networks with the back-propagation learning 

rule for the third search of the stopband region. As a training set it was found 

necessary to employ data from the process of de-tuning ofjust one filter. The 

topology of the network was determined empirically but for this particular 

domain two hidden layers were found to be required. One such neural 

network was constructed for each component/direction combination. The 

testing of the learning set showed that a number of predicted values are not 

very close to the desired values but at the same time not dramatically 

erroneous. Agreeing or disagreeing with the learning set was not sufficient 

to determine whether the network made the correct judgement therefore it 

was decided to test the networks on the production line. 
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Chapter Nine 

The AEK system,, - 
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9.1 The AEK system for tuning crystal filters 

The AEK system was developed to semi-automatically assist an operator 

during the tuning of crystal filters on the production line. This chapter 

describes the hardware and software that was used. The operating 

instructions are also given. 

9.1.1 System components 

Figure 27 shows the hardware and software used as well as the flow of 

information between the system components. 

The crystal filter was placed on an HP8721A test chassis. The test chassis 

was connected th'the HP3577A network analyser which was linked with an 

HP9816 computer using the IEEE488 Control bus. Additionally, an MS-DOS 

running Compaq 386/25 computer was employed. The Compaq computer 

contains the Xi-Plus expert system shell and the Knowledge-bases (see below 

for fin-ther information). The HP9816 computer contains the Neural network 

test module (see below for further information) and the HP-Basic program 

employed for interfacing. 

9.1.2 Description of software 

A brief description of the knowledge-bases, the neural network test module, 

and the HP-Basic program now follows. 

1. Name of knowledLe-base: - Searchl 

The rules of this knowledge-base determine if (further) tuning of the stopband 

is required. The decision is based on some or all values of six Peaks (as 

entered by the user) and their differences (as calculated by the system). All 

nume6cal values are assigned logical values taken from a set of eight possible 
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values. Appendix 5 contains a listing of the knowledge-baseý 

2. Name of knowledge-base: Search2 

The rules of this knowledge-base advise which component and in which 

direction to turn. The decision is based on the values of the peaks already 

entered on Searchl or newly requested ones. The values are then re-assigned 

logical values taken from a set of four possible values. Appendix 6 contains 

a list of the knowledge-base. 

3. Name of knowledge-base: Numbers IýI 

This knowledge-base determines if (further) tuning of the passband, and 

therefore of the filter is needed. The resolution is based upon the values of all 

attributes. The numerical values are assigned one logical value each selected 

from a set of eight possible values. Appendix 7 contains a list of the 

knowledge-base. 

4. Name of knowledere-base: Pamod 

This knowledge-base recommends which component and in wl-dch direction 

to adjust. The recommendation is based upon the values as entered previously 

in the Numbers knowledge-base and additional input is not required. The 

attributes are assigned logical values selected from a set of four possible 

values. Appendix 8 contains a listing of the knowledge-base. 

5. Name of Neural Network test module: Last-One 

The neural network test module is an HP-Basic program which contains 

commands for the interfacing with the test equipment in order to acquire the 

input in the form of 57 sampled points taken from the complete amplitude 

response. Furthermore, a data list of all the weights and threshold values for 

the neural networks are present which in turn are used to calculate the 
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output (i. e. how far to turn). This program is used only for the stopband and 

Appendix 9 contains a listing of the program. 

6. HP-Basic program for interfacing- Pbandj 

This is an HPý_Basic program written in order to provide interface with the 

measuring equipment for the measurement and printing of the attribute 

values used for the tuning of the stopband and passband regions of the 

amplitude response. Appendix 10 contains a listing of the program., 

Figure 27 illustrates the configuration of the measuring equipment. 

9.1.3 Operating instructions 

The operator carries out the following procedure. 

A filter is fitted into a temporary alignment can which is connected to the 

measurement equipment. This is set to the approximate frequency and range 

in order to measure the amplitude response. The Xi-Plus expert system shell 

and the first knowledge-base (i. e., stopband search 1) are loaded on to a MS. 

DOS computer. The execution of the first knowledge-base requires the 

operator to allocate and type the values of some or an of the peaks in order 

to determine if the stopband region needs tuning. The peak values are 

measured by the HP-Basic program. In the case where stopband tuning is 

needed the second knowledge-base (i. e., stopband search 2) is loaded 

automatically in order to determine which screw needs turning and in which 

direction to turn. The distance to turn is provided by the neural network test 

module program. The operator then makes the proposed a(bustment. The first 

knowledge-base is automatically re-loaded and the operator enters the values 

taken from the new amplitude response. This is repeated until no further 

stopband tuning is required. Then the third knowledge-base (i. e., passband 
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search 1) is automatically loaded and this requires the operator to use the HP 

program to obtain values of the passband attributes. In the'case'where 

passband tuning is needed then the fourth knowledge-base (i. e. ',, passband 

search 2) is automatically loaded and informes the operator which screw and 

in which direction to turn. The distance to turn is decided by the operator. 

When the adjustment is completed the third knowledge-base is automatically 

re-loaded and the new amplitude response is re-measured. This procedure 

reiterates until no further passband tuning is required. The user then 

connects a new filter and the process re-commences. 
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Chapter Ten 

Verification, Validation and Testing,,, 
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10.1 Introduction ýt . 11 1-I- 
Clearly there is need to evaluate the performance of the system with on-line 

data rather than using examples of the learning set. Without any feedback 

in the form of assessment of performance one cannot judge if the tuning 

process has been learned. In this chapter the testing of the tuning of a 

number of filters is reported. 

Issues such as consistency, validity and usability of the rule set of the expert 

system are discussed. Three approaches are investigated for the tuning of the 

stopband region. These approaches include the rule-based expert system 

attached to the human operator or to the neural network, and a stand-alone 

neural network. Whereas the tuning of the stopband region of a number of 

crystal filters was managed with all approaches the expert system - neural 

network approach provided an increase in the efficiency with which a solution 

was produced. The passband region was tuned in all cases but the operator 

was required to provide the distance to turn. 'Part of this work has been 

published'. 

12 Evaluation criteria 00 

The evaluation of the performance of the system comprised three aspects, 

namely consistency, validity and usability. Consistency referred to the 

reliability of the system in the sense that the system produced similar 

answers to similar questions. Of course a consistent system did not 

necessarily guarantee that the rules were correct. This was examined under 

the validity aspect. The validity term referred to whether the system provided 

the results it should. The system was studied to see if it could deliver 
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everything that was true (completeness) and if what it delivered was true 

(soundness). Usability referred to the user-friendliness of the system, viz. - can 

the system being used by a non-expert in terms of the human-computer 

interaction. 

The AEK system was tested many times by the author and by the author and 

the expert together. The system scored high marks for consistency. ý I I',, 

Initially, a small-scale testing took place to check for complete/correct rules. 

For each testing the system suggested one component/direction combination 

and the operator was allowed to veto prior to execution. In the presence of a 

strong disagreement the decision of the operator was selected. The execution 

was carried out by the operator. In subsequent tests, see Section 10.3, the 

operator was following the instructions of the system. 

The other aspects are considered in the following sub-sections. 

10.2.1 The completeness of the system 

In the AEK system completeness was examined primarily by looking at the 

correctness of the final decision. That was when the system had arrived at an 

end-of-process conclusion, for stopband and/or passband, and the expert was 

consulted. He either then agreed or disagreed with the 'conclusion of the 

system. Second the correctness of the intermediate decisions (component, 

direction) were checked. -Since there are numerous paths to the tuning only 

the prominently wrong were identified and corrected. This also applied for the 

third search when neural networks were employed. 

10.2.2 The soundness of the system 
The system contains rules with incomplete knowledge (empty rules). These 
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are rules which contain a number of conditions with an empty consequent, 

possibly because the particular combination of conditions was not covered 

within the learning'set. When such a rule appears the consequent part is 

overwritten with the action the operator took. 

The system also contains rules with conflicting knowledge (clash rules). These 

are rules delivered by examples from the learning set with different classes. 

When such a rule appears all clashing actions are reported and the decision 

is left to the operator. The decision of the operator can differ from the ones 

advised by the system. The consequent part of the rule is amended in order 

to contain the new action. It was hoped in this way either some actions would 

disappear or new rules would be discovered. 

10.2.3 The usability of the system 

The user communicates with the expert system using a textual user interface. 

The interface displays questions such as Please enter the value'of the first 

peak and some questions are accompanied by instructions. The value read in 

the measurement set by the operator or acquired using Software has to be 

typed. Because the operator has to enter a numerical value (i. e the 

transformation into logical values is performed by the system) no other type 

of communication, e. g a menu, is provided. The, operator can be given an 

initial training in using the shell. Facilities such a's trace can be used if 

necessary to examine the reasoning behind a recommendation. No'extended 

or complicated training is required for running the system. The system is 

programmed to guide the user. 

The neural network system does not have any form of communication with 

the operator other than by providing a conclusion. The system is interfaced 
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with the measuring equipment and the sampling and calculation is performed 

within the software. 

10.3 Deflinition of test cases 
Testing of the tuning of a number of filters was undertaken using three 

different systems. 

Case 1- KnoWledge-based system plus user 
Iý. ý, ýII 

The knowledge-based system provided advice for when to stop the tuning of 

the stopband otherwise the component to turn and the direction to turn. The 

user had to decide on how far to turn. 

Case 2: Hybrid system (Knowledge-based system plus neural network -, 

As for Case 1 but the distance to turn was indicated by the network.. 

Case 3: Neural network - 

Because each component/direction combination had a net associated with it 

then the outcome of the net was used to define all decision levels. 

The above three cases were tested on-line. The neural network was also 

tested with data where the desired outcome was known beforehand. 

'Case 4: Neural network testine usinL, artificially gene ted data -I 

In this case a tuned filter was maladjusted by a known amount of turn using 

one of the two components in a particular direction. For example if the 

maladjustment was done using C4 in a clockwise direction turning half a 

revolution then we would expect the system to provide an output of the same 

form but indicating the opposite direction. I 

10.4 Specific testing criteria 
The following criteria were employed to compare the various systems: 
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" The average number of turns required for the entire tuning 

" The number of successful tunings 

" The number of unsuccessful tunings. 

The last two criteria give rise to other criteria: 

" The number of empty rules which arose at each tuning 

" The number of clash rules which arose at each tuning. 

The term tuning refers to stopband or to passband or to a complete tuning. 

10.5 Example of AEK in action 

The way the AEK system (only the expert system part) arrives at decisions 

is demonstrated by walking through the processing of one tuning case. The 

interaction of the system with the operator, and the formation and reporting 

of conclusions are also illustrated. Italic text is used to show the questions 

asked by the system. Bold text represents the answer typed by the operator. 

Comments in between are included within square brackets. 

The operator enters the Xi-Plus shell and loads the stopband application 

which in turn loads the first knowledge-base of the stopband. This knowledge- 

base determines the continuation or not of the stopband tuning. The loading 

of the knowledge-base is followed by the automatic execution of the outcome 

query. ] 

What is the value of the fourth peak? 1.402852 

[This question is asked in order to determine the distance between the first 

and the fourth peak. At the same time the fourth peak is assigned a logical 

value Oeft)] 

What is the value of the first peak? 1.399494 

[The question is asked for the same reason as previously. The first peak is 
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assigned a logical value (right). Their distance (i. e. peak4-peakl) is calculated 

by the system and a logical ý value is specified (left). Vith these attribute 

values rule 1 of the system with the outcome of carry-on holds. At this point 

the demon rule (13) takes over and resets the current knowledge-base and 

loads the - second' knowledge-base of the stopband. ' This khowledge-base 

determines the component and the direction to be used. It is worth noticing 

at this stage that if the demon rule was absent the search of more rules 

which can apply would have been continued. This continuation would have 

resulted in one of three situations: ý- --:: 1 -11 11ý1 11 1, 

" no other rule applies 

" another rule with a carry-on outcome applies-- 

"a rule with an end-of-process outcome applies. 

The first two situations clearly indicate waste of processing time., As for the 

third situation it was decided in case of such a clash the carry-on rule to have 

priority. Therefore, the demon is required. ], 

Enter the value of the second return level: 48.9 

[Notice that the term return level, was used in order to'-, employ the 

phraseology of the user'and it is synonymous to the term negative peak, as 

used previously. 

The system tries to determine the logical value of the second return level for 

use in rule 122. The allocated logical value (left) satisfies the second condition 

of the rule. The first condition of the rule involves the value of the first peak. 

Since the numerical value was already entered in the first knowledge-base 

the system realises there is no need to question again. The system treats the 

value as volunteering information and automatically allocates a logical value 
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(fright). It is worth remembering that the configuration of the logical values 

of the two knowledge-bases are different (See Chapter 6). 1 

Enter the value of the first return level: 53.2 

[The system checks whether the third condition of rule 122 can be satisfied. 

The attribute is allocated the logical value of close-left which does not satisfy 

the condition. Consequently, the search for another rule which can be 

satisfied with the present information continues. Rule 128 has all its 

conditions satisfied therefore its outcome Ca (i. e. turn component C4 

anticlockwise) is reported. Then the system resets the current knowledge-base 

and re-loads the first. In this case this is repeated twice until the end of 

tuning of the stopband is reached. The system then resets the current 

knowledge-base and the first knowledge-base of the passband is loaded. This 

knowledge-base discovers if there is a need for any tuning of the passband. 

It is worth mentioning the following: 

m The breaking-up of the tuning application into four knowIedge-bases was 

necessary due to the limited memory capacity of the computer used. -- 

m The operator had to locate the peaks and the return levels, on the 

oscilloscope manually. Then the values were read on the display. ] 

Enter the value of the ripple: 5.4' 

[The system asks a series of questions in order to obtain the values'of all the 

attributes used in the passband. The values are calculated using a program 

written in HP-Basic and they are displayed on the screen of the computer. 

Logical values are then assigned to the attributes by the system. Ripple in 

this example takes the logical value of far-right. ] 

Enter the value of the insertion loss: 2.3 
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[The associated logical value is ok] 

Enter the value of the low passband. - 0.6 

[The associated logical value is ok] 

Enter the value of the high passband: 8.1 

[The associated logical value is right] 

Enter the value of the carrier rejection: 28.7 

[The associated logical value is far-ok] 

Enter the value of the low stopband: 59.6 

[The associated logical value is far-ok] 

Enter the value of the high stopband. - 56.9 

[The associated logical value is middle-ok] 

Enter the value of the low stopband return: 59.3 

[The associated logical value is far-ok] 

Enter the value of the high stopband return: 53.3 

[The associated logical value is middle-ok] 

[At this stage the decision of the system is that the passband requires tuning. 

The decision was based on the fact that the ripple and the high passband 

attributes are not within specification. As a result of this the system resets 

the current knowledge-base and loads the second knowledge-base of the 

passband. This knowledge-base provides the component to be used and the 

direction to turn. Since the two knowledge-bases share the same configuration 

of logical values it is not necessary to ask any further questions. The system 

simply searches through the rule set using the allocated logical values from 

the previous knowledge-base. In this case the reported component is Ts in an 

anti-clockwise direction (rule 198). The system then resets the current 
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knowledge-base and the first knowledge-base of the passband is loaded once 

again. This procedure was repeated twice until the end of the passband 

tuning and subsequently of the filter was reached. Then the user was 

requested to connect another filter and the process started again. ] 

10.6 Case I testing for the stopband 

The stopband region of the magnitude response of the filter was tuned using 

the expert system and an expert human operator. The system advised which 

component to turn and in which direction and the operator turned as much 

or little as he wanted. In case of turning too far the operator was asked not 

to correct his action by backtracking. He was also encouraged to provide any 

comments on the decision of the expert system. 

10.6.1 Starting positions of the tunable 

components 

Theoretically, the expert system should be able to assist the operator 

irrespective of how distorted the magnitude response be. The distortion of the 

response obviously depends on the position of the screws. For that reason, the 

testing involved filters for which the initial positions of their components 

were different (Table 56). 

10.6.2 Presentation and discussion of results 

Distribution of successful tunings 

Table 57 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings; categorised per component 

configuration. 
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Table 56: Initial position of tunable components during stopband testing (case 1) 

Configuration C4 position Gy position 

A screwed-in screwed-in 

B screwed-out screwed-out 

C screwed-in screwed-out 

D screwed-out screwed-in 

E halfway halfway 

F as found as found 

t Case I designates the knowledge-based plus human system 
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Table 57 : Tuning attempts per configuration using case I system for the stopbaný 

Configuration Number of attempts Successful tunings Unsuccessful 

tunings 

A 6 3 3 

B 4 4 0 

C 1 0 

D 1 0 

E 1 0 

F 8 8 0 

TO TA L: 21 18 3 

* Case I designates the knowledge-based plus human system 
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The system failed to tune a filter in three cases, all of them with component 

configuration (A). In all three cases the tuning was abandoned due to the 

factthat the system seemed to supply oscillatory advice (i. e. turn C4 anti- 

clockwise followed by C, clockwise). It was interesting to see how these three 

cases contrasted with the three cases of the same component configuration 

where tuning was achieved. Again, it was expected that the system, ideally,, 

should have been able to tune the stopband even if a different number of 

turns were employed for the same situation. Observing all cases it seemed 

that the system managed to tune each filter when the operator turned about 

three revolutions. When he turned less, except for one case, the system failed 

to achieve the objective. Therefore, some blame could also be assigned to the 

amount of turning, hence the need for the provision of some indication of how 

far to turn. 

A number of encouraging points were made concerning the overall 

performance of the system: 

0 When one or both components were screwed all the way in the system 

always gave the direction as anti-clockwise. 

m When one. or both components were unscrewed all the way out the system 

always gave the direction as clockwise. 

m The system did not suggest the end of the stopband tuning where it was 

obviously not appropriate. 

Average number of adiUstments 

Table 58 shows the average number of adjustments taken for the tuning of 

the stopband. These results refer only to the successful tunings. The 

minimum. and maximum number of adjustments are also recorded. The 
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Table 58 : Average number of adjustments using case I system for the stopband 

Average number of turns: 3.22 

Minimum number of turns: I 

Maximum number of turns: 7 

L 

t Case I designates the knowledge-based plus human system 
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reader should recognise that these figures depend on, two related factors: 

(i) The revolutions turned, and(ii) the position of the tunable components. For 

example, when both components were screwed all the way in it took on 

average 3.7 adjustments whereas when they were all the way out it took 5.3 

adjustments on average. 

Examination of end of tuniniz events 

Table 59 shows the rules that were executed for the 18 events where the 

tuning was ended. 

Only 5 out of the 12 end-of-process rules were used. Although only a few 

attributes were considered by each rule (Column 4 of Table 59) it is worth 

noticing that the system had at its disposal the values for all thirteen 

attributes. This-indicated that carry-on rules did not apply, otherwise the 

tuning would had been continued. Initially, rule 45 was an empty rule but its 

action was replaced by end-of-process (by the system builder). In all cases the 

expert operator commented that the right advice was given. 

Examination of tuning stevs by the empty rule categorv 

It was felt appropriate to examine not only the validity of the proposed 

actions but also the completeness of the system. Therefore the number of 

situations where the system could not provide advice (empty rules) or 

provided more than one advice (clash rules - see following heading) were also 

inspected. Table 60 shows the number of occurrences by category of action. 

Table 61 displays, in more detail, the empty rules that were executed together 

with the action taken by the operator. These rules, in most cases, were 

applied on more than one occasion but only the first time is counted as an 

empty step. It is noticeable that the operator always took the same action. 
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Table 59 : End of tuning rules executed using case I system for the stopband 

Rule number Occurrences Rule confidence Number of 

attributes used 

50 1 68.2 2 

27 8 91.7 6 

119 4 60.0 1 

4 3 87.5 3 

45 2 5 

t Case I designates the knowledge-based plus human system 
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Table 60 : Number of occurrences per action using case I system for the stopband 

Action given by the 

system 

Number of occurrences Number of occurrences 

M 

Empty 4 6.9 

Clash 12 20.7 

Component and Direction 42 72.4 

TOTAL: 58 100.0 

Table 61 : Number of occurrences for situations where the system could not provide 

advice for the tuning of the stopband (case 1) 

Rule number Action taken 

106 C7 clockwise x6 

100 C7 clockwise 

53 C7 anti-clockwise x3 

87 C4 clockwise x2 

The character Y as in C4 clockwise denotes multiple occurrences 
Case 1 designates the knowledge-based plus human system 
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Also 3 out of 4 empty actions were replaced with a C7 action, and/or a 

clockwise direction (by the system builder). Since 41 per cent of the 

trainingset were examples with a clockwise class it was expected that more 

situations where a clockwise turn was required would occur. 

Examination of tunina steps by the clash rule categorv 

Table 62 shows the clash rules that were executed together with the action 

taken by the operator. The third column displays the actions taken previously 

(i. e. under training) under the same circumstances. One can observe that a 

clash of actions also occurred during the testing. Re-appearing clash rules 

were left as before, i. e. with a clash outcome. When such a rule executes it 

reports the diverse actions taken previously, including training and testing 

occurrences, and the decision is left to the operator. This is a possible 

shortcoming of the system and the need arises for discovering the reasons 

behind such diversity. 

Examination of tunina steps bv comvonent and direction categorv 

For a significant number of tuning steps (72.4% - Table 60) the system made 

the decision of which component to turn and in which direction. Table 63 

shows the distribution per rule. Rules are in ascending order. Table 64 shows 

the total number of rules and their occurrences. The third column shows the 

available number of rules for each combination. The comparison of the last 

two columns of Table 64 shows that the frequency of a particular action 

occurring is close to its associated percentage of available rules in the rule 

base (especially for the clockwise direction). Additionally, one can observe that 

approximately 51 per cent of the available rules came into use. Combinations 

with an anti-clockwise direction used half or less of their available rules. 
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Table 62 : Number of occurrences of situations where the system provided 

conflicting outcomes for the tuning of the stopband (case 1) 

Rule number Action taken during testing Action taken during 

training 

90 C4 clockwise C4 clockwise x4 

C4 anti-clockwise 

C7 clockwise C7 clockwise x3 

88 C4 clockwise x2 C4 clockwise x2 

C7 clockwise C7 clockwise 

93 C4 anti-clockwise x2 C4 anti-clockwise 

C4 clockwise C7 clockwise 

97 C4 clockwise 
C4 clockwise 

C4 anti-clockwise 
C4 anti-clockwise 

113 C7 clockwise 
C7 clockwise 

C4 clockwise 

The character Y as in C4 clockwise denotes multiple occurrences 
Case I designates the knowledge-based plus human system 
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Table 63 : Distribution per rule for the tuning of the stopband using case I system 

Rule number Number of occurrences Combination 

2 1 C4and-clockwise 

5 2 C4 clockwise 

9 1 C7CIockwise 

15 1 C4 clockwise 

17 3 C7anti-clockwise, 

18 4 C7anti-clockwise 

42 1 C4anti-clockwise 

44 3 C7anti-clockwise 

53 2 C7anfl-clockwise 

70 2 C4anti-clockwise 

76 1 C4anti-clockwise 

87 1 C4clockwise 

101 5 C7clockwise 

102 1 C4clockwise 

103 2 C4clockwise_ 

106 2 C7clockwise 
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Table 63 continued : Distribution per rule for the tuning of the stopband using 

case I system 

Rule number Number of occurrences Combination 

115 2 C7clockwise 

120 2 C7clockwise 

128 2 C4anti-clockwise 

132 1 C4anti-clockwise 

134 1 C4anti-clockwise 

144 2 C4anti-clockwise 

* Case I designates the knowledge-based plus human system 
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Table 64 Total distribution of rules'per combination using ca. se I system for the 

stopband 

Combin- 

ation 

No. of rules Occur- 

rences 

Available 

number of 

rules 

Occur- 

rences (%) 

Availa- 

bility (%) 

C4a 8 11 16 26.2 37.2 

C4 C 5 7 7 16.7 16.3 

C7a 4 12 11 28.6 25.6 

C7 C 5 12 9 28.6 20.9 

The character V as in C4 c denotes the clockwise direction 
The character 'a' as in C4 a denotes the anti-clockwise direction 
Case I designates the knowledge-based plus human system 
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Therefore the possibility of eliminating a number of redundant rules after 

some further extensive on-line testing arises. 

10.7 Case 2 testing for the stopband 
The testing results with case 1 were obtained with an experienced operator 

who had some idea of how far to turn the screws. The objective though was 

to construct a system which could be used by anyone irrespective of his or her 

level of experience and proficiency. An inexperienced operator would probably 

turn the screws too far or too little. This could result in a larger number of 

iterations and while the tuning would eventually be done it would take 

longer. For this reason the stopband region of the magnitude response of the 

filter was tuned using the expert system and the neural networks. The expert 

system advised, as before, on which component to turn and in which direction 

but the operator turned the distance given by the appropriate neural network. 

For example, if the expert system indicated C4 anti-clockwise, then the C4 

anti-clockwise network was used. 

10.7.1 Starting position of the tunable 

components 
For the reasons given in Section 10.6.1 the testing involved filters which had 

different initial positions of their components (Table 65). 

10.7.2 Presentation and discussion of results 
Distribution of successful tunines 

Table 66 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings; arranged per component configuration. 
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Table 65 : Initial positions of tunable components during testing using case 2 system 

(stopband) 

Configuration C4 position C7 position 

A screwed-in screwed-in 

B screwed-out screwed-out 

C screwed-in screwed-out 

D screwed-out screwed-in 

E halfway halfway 

F as found as found 

G halfway screwed-in 

H screwed-in halfway 

screwed-in as found 

screwed-out as found 

* Case 2 designates the knowledge-based plus neural network system 
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Table 66 : Tuning attempts per configuration using case 2 system (stopband) 

Configuration Number of attempts Successful tunings, Unsuccessful, 

tunings 

A 0 1 

B 0 

C I 1 0 

D 0 

E 3 3 0 

F 8 7 

G 0 

H 0 

0 

0 1 

TOTAL:, 19 15 4 

* Case 2 designates the knowledge-based plus neural network system 
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The'hybrid failed to tune a filter in four cases. Unlike the results rep6ited 

previously the failures this time occurred with more than one configuration. 

In all four cases the tuning was abandoned due to the choice of the 

component and direction by the expert system rather than the output of the 

neural network. Of course it is possible that the wrong outcome of a neural 

net in a preceding step contributed in the first place but this was 

uncheckable. It is interesting to notice that in only one case the outcome of 

the expert system was C, anti-clockwise while for the rest of the cases the 

C7 clockwise combination was given. In these situations the system would 

have continued advisingC7 clockwise despite the fact that it was obviously 

the wrong choice. It was likely that the blame can be assigned to theC7 

component rather than the C4 component. The latter component had a 

different position for each unsuccessful tuning and they covered all the 
I 

possible testing positions. On the other hand it seemed that C7 created 

problems when it was placed half-way or screwed all the way in. 

The observations made with case 1 testing about the choice of direction when 

one or both components were in their extreme positions applied here also. 

Average number of adiustments 

Table 67 shows the average number of adjustments required for the tuning 

of the stopband considering only the successful tunings. The minimum and 

maximum number of adUustments are also shown. Comments made in the 

respective section of case 1 testing still apply. 

It is interesting also to compare case 1 and case 2 tests for those filters with 

configuration (F). In both tests the number of attempts was the same (8) but 

case 1 system successfully tuned all attempts whereas case 2 system failed 
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Table 67 : Average number of adjustments using case 2 system (stopband) 

Average number of turns: 3.53 

Minimum number of turns: I 

Maximum number of turns: 8 

t Case 2 designates the knowledge-based plus neural network system 
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in one situation. There is a slight difference in the average number'of 

adjustments and the maximum and minimum number of turns required in 

favour-of the case 2 system (Table 68). 

Examination of end of tuning events 

Table 69 shows the rules that were executed for the 15 situations where the 

tuning was terminated. Six out of the 12 available end-of-process rules were 

utilised. A peculiarity was that with the exception of two rules (119,27) the 

rest of the rules had not appeared with case 1 testing. (Table 59). It is also 

worthwhile to examine the generated outcomes of the neural networks at 

these 15 situations. Table 70 shows the generated outcomes of each network 

for each termination of tuning. The expected outcomes are values close to 

zero. These rules indicate that, allowing a±0.1 error, for the majority of 

cases the expert system and the neural networks agreed. The disagreements 

arose due to the anti-clockwise networks. That was something experienced for 

case 4 testing as will be discussed in Section 10.10. 

Examination of tuniniz step s bv the empty rule category 

Table 71 shows the number of occurrences for each action advised by the 

system. At this testing an increase in the number of occurrences of empty 

rules can be observed in conjunction with a significant drop of execution of 

clash rules. 

Combining the results of Tables 60 and 71 it seems that the expected 

likelihood of the system giving a component -direction combination is 71.2% 

with the rest of the time (28.8%) the output being distributed approximately 

equally between--empty and clash rules (Table 72). -Table 73 shows the 

occurrences of empty situations distributed per rule but only the first time an 

236 



Table 68 : Average number of adjustments using case I and case 2 systems for the 

tuning of the stopband (only asfound configuration is considered) 

Case I Case 2 

Average number of turns: 3.5 2.9 

Minimum number of turns: 2 1 

Maximum number of turns: 7 5 

Table 69 : End of tuning rules using case 2 rules (stopband) 

Rule number Occuffences Rule Confidence 

M 

Number of 

attributes used 

120 2 54.0 1 

46 2 78.8 2 

121 2 56.0 2 

29 3 87.5 4 

119 5 60.0 1 

27 1 91.7 3 

Case I designates the knowledge-based plus human system 
Case 2 designates the knowledge-based plus neural network system 
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Table 70 : Neural networks generated outcomes when tuning was 

terminated ' 

Network Generated values 

C4 C 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

C4a 0 0.3 0 0.2 0.2 0 0 0.1 

C7 C 0 0 01 0 01 0 0 0 

C7a 0 0 0 0 0 0 0 0.6 

Table 70 continued : Neural networks generated outcomes when 

tuning was terminated 

Network ' Generated values 

C4 C 0 0 0- 0.1 0 0 0 

C4a 0.1 0.4 0 0 0 0.1 0 

C7 C 0 0 0 0 0 0 0 

C7a 

1 

0 

1 
0.1 

1 
0 

1 
0 

1 
0 

1 
0 

-1 

0 

The character V as in C4 c denotes the clockwise direction 
The character 'a' as in C4 a denotes the and-clockwise direction 
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Table 71 : Number of occurrences per action using case 2 system (stopband) 

Action Number of occurrences Number of occurrences 

M 

Empty 13 24.1 

Clash 3 5.6 

Component and Direction 37 68.5 

TOTAL: 53 100 

Table 72 : Number of occurrences per action given by case I and case 2 

testing (stopband) 

Action Number of occurrences Number of occurrences 
M 

Empty 17 15.3 

Clash 15 13.5 

Component and Direction 79 71.2 

Case I designates the knowledge-based plus human system 
Case 2 designates the knowledge-based plus neural network system 
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Table 73 : Number of occurrences of situations where the case 2 system could not 

provide an advice (stopband) 

Rule number Action taken 

118 C4anti-clockwise 

107 C4clockwise, C4anti-clockwise 

5 C4clockwise 

119 C4anfi-clockwise 

98 C4clockwise 

95 C7anti-clockwise 

58 C7and-clockwise x6 

021 C7clockwise x2 

43 C4clockwise x2 

85 C7clockwise 

10 C4anti-clockwise 

19 C4and-clockwise 

1 C7anti-clockwise 

The character Y as in C4 clockwise x2 denotes multiple occurrences 
Case 2 designates the knowledge-based plus neural network system 
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empty situation was encountered counted as an empty step. A large number 

of the empty rules appeared only once which makes it difficult to appraise the 

proposed action. For rules that emerged more than once, except in one case 

(Rule 107), the operator followed the same action. 

Examination of tuning steps bv the clash rule categorv 

Table 74 shows the clash rules that were executed and the action taken by 

the operator. The third and fourth coIumns display the actions taken during 

training and where applicable, testing case 1 respectively. Whereas the 

actions taken for circumstances covered by rule 105 seem to be different it is 

interesting to examine the other clash rule. The proposed actions for rule 88 

were equally distributed between the two components with the direction given 

as clockwise for all cases. Rule 88 appeared in five cases during testing. The 

common link being that the execution of the rules occurred either at the 

beginning of the tuning(i. e. the first step) or at the second tuning step. What 

one can conclude is that both actions were correct and most probably both 

actions have to be implemented. 

Examination of tuning stelps by component-and direction-categorv 

Table 75 shows the distribution per rule of the 37 circumstances where the 

system provided an advice. Rules are in ascending order. Four rules (14,41, 

86,109) had not been executed with case 1 testing. Table 76 shows the total 

number of rules, their occurrences and the available number of rules in the 

rule base for each combination. Three observations can be made: 

0 The low numberOf C4anti-clockwise occurrences. Taking into account the 

4 instances of empty rules (which were modified to Qj anti-clockwise) and the 

I one instance of clash rule (which again was modified to C, anti-clockwise) 
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Table 74 : Number of situations per rule where the case 2 system provided 

conflicting advices (stopband) 

Rule 

no. 

Testing Training Testing (case I 

system) 

88 C7 clockwise x2 C7 clockwise C7 clockwise 

C4 clockwise x2 C4 clockwise x2 

105 C4 anti-clockwise C4 clockwise 

C7 clockwise 

The character 'x' as in C4 clockwise x2 denotes multiple occurrences 
Case 2 designates the knowledge-based plus neural network system 
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Table 75 : Distribution of outcomes per rule using case 2 system (stopband) 

Rule number Numbef of occurrences Combination 

14 1 C7 clockwise 

15 1 C4 clockwise 

18 4 C7 anti-clockwise 

41 2 C7 anti-clockwise 

86 1 C4 clockwise 

87 6 C7 clockwise 

101 9 C7 clockwise 

102 5 C4 clockwise 

103E 2 C4 clockwise 

log 109 1 C4 anti-clockwise 

Case 2 designates the knowledge-based plus neural network system 
The C4 component was maladjusted anti-clockwise half a turn (i. e. 0.50). 
The C7 component was maladjusted anti-clockwise half a turn (i. e. 0.50). 

243 



Table 76 Total distribution per combination using case 2 system (stopband) 

Combina- 

tion 

No. of 

rules 

Occur- 

rences 

Available 

rules 

Occur- 

rences 

M 

Availa- 

bility 

C4 a 1 1 16 3.1 37.2 

C4 C 4 9 7 28.1 16.3 

C, 7 a 2 6 11 18.8 25.6 

C 6 50.0, 20.9 

I 

Case 2 designates the knowledge-based plus neural network system 
The character, 'c' as in C4c denotes the clockwise direction 
The character 'a' as in CA denotes the anti-clockwise direction 
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results in a total of six occurrences. This still reflects a low occurrence 

considering that C4 anti-clockwise rules constitute more than a third of the 

available rules. 

" The high number of occurrences (50.0%) for the C7 clockwise combination 

" Only 23.3% of the available rules were executed. 

Testiniz the tuniniz steps in terms of distance turned 

During the testing one filter was found to be tuned, something which was 

recognised by the expert system and the neural networks. Then the tuned 

filter was mal-adjusted by the following actions: 

" C4 anti-clockwise 0.50 turns 

" C7 anti-clockwise 0.50 turns 

Then one expects that the opposite actions (i. e. 0.50 clockwise) would return 

the magnitude response to the initial (i. e. tuned) position. The outputs of the 

hybrid system for each of the four neural networks were: 

" Turn C4 clockwise 0.56 turns. 

" Turn C7 clockwise 0.36 turns. 

" Turn C4 anti-clockwise 0.14 turns. 

" Turn C7 anti-clockwise 0.25 turns. 

Therefore, in total the actions taken were: 

" Turn C4 clockwise 0.42 turns. 

" Turn C7 clockwise 0.11 turns. 

These demonstrate that the hybrid system advised on the right direction for 

both components but only the C4 networks approximately matched the initial 

maladjustment. The estimates of the C7 networks were far below the expected 

adjustments. Another observation was that the Qj networks, in particular, 
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provided two estimates (0.56,0.14) rather than realising that a single 

distance around 0.50 clockwise turns would have been sufficient. Despite that 

in this case the difference between the estimates was implemented the 

following section will show that selecting the largest estimate for each 

direction works better. 

10.8 Case 3 testing for the stopband 
Since the outcome of each net incorporates the component/ direction 

combination they were employed to define all decision levels. For example, if 

the output of the four networks were: 

0 C4 anti-clock-, Aýise network: 0.1 (i. e. 0.25 in real turns) 

0 C, clockwise network 
C7 clockwise network 

: 0.3 (i. e. 0.75 in real turns) 

: 0.5 (i. e. 1.25 in real turns) 

C7anti-clockwise network: 0.6 (i. e. 1.50 in real turns) 

then the outputs could be interpreted in one of the following two ways: 

Implement the difference between the directions for each component. For 

the above example this would mean 
C4, 

clockwise 0.2 (i. e. 0.50 in real tums) 

'C7anti-clockwise 0.1 (i. e. 0.25 in real turns). 

This way the fact that each network was taught using a different training set 

was taken into account. 

N'Select the largest'of each component. In this example, that would had 

meant 

C4 clockwise 0.3 (i. e. 0.75 in real tums) 

C7anti-clockwise 0.6 (i. e. 1.50 in real turns). 

The necessary adjustments for both components were to be implemented one 
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after the other. It was hoped that the pseudo-simultaneous adjustment would 

result in a reduction in the number of tuning steps necessary. 

10.8.1 Implementing the differences 

Five filters were employed. In one filter only the stopband tuning was 

successfully terminated. For the rest of the attempts the tuning was 

abandoned for various reasons. In two situations the differences were close 

to zero indicating that further tuning was not required which was obviously 

wrong. Figure 28 illustrates the tuned position and the two positions where 

the tuning was abandoned. In another situation the same component (C7) was 

constantly chosen which resulted in the worsening of the position of the 

magnitude response (Figure 29). Finally in the last abandoned situation the 

reason was that the networks provided oscillating outputs (Figure 30). 

10.8.2 Selecting the maximum output of each 

component 
Table 77 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings shown. The networks failed to 

converge towards a tuned position due to the assertion of the C., component 

in an anti-clockwise direction after the third tuning step. Figure 31 illustrates 

the fact that the continuation of the this selection resulted in worse 

responses. Table 78 shows the average number of acUustments taken jointly 

with the minimum and maximum number of turns. 
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Figure 28: Illustration of two magnitude responses where the system proposed wrongly 
the end of tuning. The reference frequency is denoted as zero at the frequency axis. 
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Figure 29: Illustration of deterioration of magnitude response due to the constant 
proposal of turning C, component. The reference frequency is denoted as zero at the 
frequency axis 
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Figure 30: Illustration of oscillating adjustments resulting to oscillations. The reference 

frequency is denoted by zero at the frequency axis. 
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Figure 31: Illustration of (a) complete magnitude responses and (b) the right side of the 
responses where the proposal of turning the C, component resulted to non-converge. 
The reference frequency is denoted by zero at the frequency axis. Nineteen equally 
spaced values were sampled from the right hand side of the magnitude response 
between f3 = 1.404 MHz and f4 = 1.42 MHz, in steps of 0.051 MHz. 
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Table 7ý : Number of attempts using case 3 sy- stem for the tuning of the stopband 

Number of attempts: 3 

Successful tunings: 2 

Unsuccessful tunings: I 

Table, 78 : Average number of adjustments using case 3 system for the tuning of the 

passband 

Average number of turns: 10.5 

Minimum number of turns: 7 

Maximum number of turns: 14 
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10.9 Case I vs. Case 2 vs. Case, 3 (stopband 

testing) 

In Table 79 the number of successful and unsuccessful attempts made for the 

tuning of the stopband using the three systems are combined and shown. 

Testing with all three cases resulted in more successful than "unsuccessful 

tunings but the most encouraging results were, obtained with the case 2, 

testing. This was because of the lack of any human intervention (unlike case 

I testing). The results with the case 3 system, when using the nets withthe 

largest outputs rather than their differences, were promising. Concrete 

conclusions about the case 3 system cannot arise due to the small number of 

attempts made and the various problems encountered. Table 80 combines and 

contrasts the three systems in terms of the number of turns required. The 

table compares the performances of the systems and of the human operator. 

The comparison shows that the use of any system did not necessarily reduce 

the required number of tuning steps but the expected benefit will be a 

reduction of the time an operator spends learning about the tuning procedure. 

This is apparent when comparing case 1 and case 2 systems. The results are 

comparable and encouraging. There is no need to have an experienced 

operator. At this stage it is preferable to use the case 2 system rather than 

case 3. The latter system seems to require more steps. There are two probable 

reasons for this. These are firstly the shortcomings of theC7anti-clockwise 

network as experienced during all the testing and secondly the single model 

solution effect (recall that only one tuned magnitude response was used in the 

learning set) which results in each network to aim to one and only solution 
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Table 79 : Number of successful and unsuccessful attempts of the tuning of stopband 

using case 1,2 and 3 systems 

Case I Case 2 Case 3 

Successful 85.7 78.9 66.7 

Unsuccessful 1 14.3 1 21.1 1 33.3 
- 

* Case I designates the knowledge-based plus human system 
t Case 2 designates the knowledge-based plus neural network system 
t Case 3 designates'the neural network system 
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Table 80 : Average number of turns for the tuning of the stopband using case 1, 

2 and 3 systems 

Human Case I Case 2 Case 3 

Average number of turns: 3.67 3.67 3.22 10.5 

Minimum number of turns: 1 7 

Maximum number of turns: 9 9 7 14 

Case I designates the knowledge-based plus human system 
Case 2 designates the knowledge-based plus neural network system 
Case 3 designates the neural network system 
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space. This resulted in oscillating'outputs. ' 

From the test results shown above, it should be noted that it is possible for 

the hybrid system (case 2) and the connective equivalent (case 3) to tune the 

stopband region of the magnitude response. A decrease in the training time 

can be achieved with either system. However, each system has its own 

advantages. The case 2 system can generate basic explanations of its 

reasoning whereas the networks have a faster execution time despite the 

larger number of steps taken. Additionally, with the neural networks 

situations where knowledge would conflict or not exist cannot arise. Both 

systems are then promising but an extensive testing period would be required 

before they be introduced in the production line. 

10-10 Case 4 testing for the stopband 
Tables 81 and 82 show the results obtained when the neural networks were 

tested with data generated from three filters with single, maladjustments. 

Tables 83 and 84 show similar results but with both components being 

maladjusted. Table 85 shows the output of each of the four networks when 

presented with-a tuned filter. Observing the output of the neural networks 
in Tables 81 to 85 and allowing a :t ý0.1 error rate, the, following points can be 

made: 

N The networks for learning C4andC7clockwise both give correct estimates. 

0 The network for learningC4 anti-clockwise tends to under-estimate for 

values greater than 0.5 but worked well for one filter. 

0 The network for leamingC7anti-clockwise does not perform well in general 

except in one case in which it worked correctly for values up to 0.7 but for 

greater values it provided conservative estimates. 
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Table 81 : Comparison of desired vs generated outputs 

C4 a network C7 a network 

Desired Values Generated Values 

for test filter.. 

Generated Values 

for test filter.. 

123 123 

0.1 0.1 0.1 0.1 0.0 0.0 0.0 

0.2 0.1 0.1 0.1 0.0 0.1 0.0 

0.3 0.2 0.2 0.1 0.1 0.5 0.2 

0.4 0.4 0.3 0.3 0.1 0.5 0.2 

0.5 0.6 0.4 0.3 0.1 0.5 0.2 

0.6 0.7 0.4 0.4 0.1 0.6 0.2 

0.7 0.8 0.5 0.5 0.2 0.6 0.2 

0.8 0.9 0.5 0.5 0.2 0.6 0.2 

0.9 0.9 0.6 1 0.6 0.2 0.6 0.2 

1.0 1.0 0.6 0.6 0.2 0.6 0.2 

t The character 'a' as in C4a denotes the anti-clockwise direction 
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Table 82 : Comparison of desired vs generated output 

C4 c network C7 c network 

Desired Values Generated Values 

for test filter.. 

Generated Values 

for test filter.. 

1 2 3 1 2 3 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 

0.2 0.3 0.1 0.3 0.2 0.1 0.1 

0.3 0.4 0.3 0.4 0.3 0.2 0.3 

0.4 0.4 0.4 0.5 0.4 0.4 0.5 

0.5 0.5 0.5 0.6 

0.6 0.7 0.6 0.7 

* The character V as in C4c denotes the clockwise direction 
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Table 83 : Comparison of desired vs generated output 

C4 a network C7 a network 

Desired Values Generated 

Values 

Desired Values Generated 

Values 

0.1 0.1 0.1 0.0 

0.2 0.1 0.1 0.0 

0.3 0.1 0.1 0.0 

0.4 0.3 0.1 0.1 

0.5 0.3 0.1 0.2 

0.6 0.4, 0.1 0.3 

0.7 0.5 0.1 0.3 

0.8 o. 6 0.1 0.3 

0.9 0.6 0.1 0.4 

1.0 0.6 0.1 0.5 

t The character 'a' as in C4a denotes the and-clockwise direction 
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Table 84 Comparison of desired vs generated output 

C4 c network C7 c network 

Desired Values, Generated Values Desired Values Generated Values 

0.1 0.0 0.1 0.0 

0.2 0.1 0.1 0.0 

0.3 0.1 0.1 0.0 

0.4 0.2 0.1 0.0 

Table 85 Generated output with tuned filters 

Desired 

Values 

Sample of generated values 

0.0 0.0 '0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. '0, 

0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 

0.0 0.0 01.0 0.0 0.0 0.0 0.0 0.0, q. 0 0.0 

0.0 0.01 0.0 0.01 I 0.0 0.0 

- 

0.0 0.0 0.0 0.0 LI 

The character V as in C4cdenotes the clockwise direction' 
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0 All networks recognise a tuned state. 

It seems that networks for learning the clockwise maladjustment for both 

components operated better. It is noticeable that both had fewer examples in 

their learning sets and less classes were represented than for the ones with 

anti-clockwise mala(bustments. This testing also indicated that there is an 

interaction between the two components and if the neural networks were to 

be used on their own then the four learning sets must be combined together. 

This though will create problems as already have been discussed in Section 

8.5., 

10.10.1 Experiments to investigate the :t0.1 

error 
Two types of experiments Were performed in order to identify the probable 

source of the : t-0.1 error. First, multiple measurements were taken from an 

amplitude response without any adjustments in between. In that experiment 

the amplitude response represented a tuned state therefore the outcome of 

the neural network test module (See Section 10.1.1 for further explanation) 

should produce four values equal or close to zero indicating that no tuning is 

needed. The outcome of this experiment was expected to show if the ± 0.1 

error could be allocated to the sampling. The second experiment involved 

adjusting one component in an arbitrary direction and then turning the same 

screw the opposite direction using the same number, of turns. The goal of this 

experiment was to investigate if blame can be designated to the actual 

turning of the screw, owing either backlash in the screw'or the inexactness 

of the operator. 

260 



Table 86presents the results of the first experiment which showed that there 

is a certain element of error due to sampling but it is negligible. Table 87 

provides the results of the second experiment for when only the C4 component 

was adjusted in an anti-clockwise direction. The table presents the output of 

each of the four neural networks for two trials. For each trial four rows show 

the output of the networks initially, when mal-adjusted, when adjusted back 

and finally the difference between the predictions. The table shows that the 

turning of the screw affects mainly the performance of the C4anti-clockwise 

neural network approximately 0.17 turns. This of course does not mean that 

other combinations of adjustments would not result to similar results for the 

other networks. 
ýhe number 0.17 is the mean of the two differences which is 

in excess of the :t0.1 error as experienced during the case 4 testing. The error 

can then be allocated to the screw backlash. 

10.11 Case I tipsting for the passband 

The passband region of the magnitude response of the filter was tuned using 

the expert system and an expert human operator. The system advised on the 

component to employ and in which direction to turn. The operator turned as 

much or as little as he wanted. 

10.11.1 Presentation and discussion of results 
Distribution of successful tunings 

It is worth remembering that at the start of each passband tuning the 

following were true: 

m The three tunable components (i. e. TI, T2, Ts) for the passband were 

screwed all the way in. 
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Table 86 : Neural networks output when sampling a amplitude response without 

any adjustment in between 

Network output for... 

Sampling 

Number 

C4 anti- 

clockwise 

C4 clockwise , 
C7 anti- 

clockwise 

C7 clockwise 

1 0.052 0.007 0.091 0.065 

2 0.051 0.008 0.085 0.065 

3 0.051 0.007 0.105 0.070 

4 0.052 0.0 0.105 0.064 

5 0.052 0.012 0.095 0.068 

V6 0.052 0.011 0.097 0.070 

Mean 0.052 0.008 0.096 0.067 

Standard 

r eviation 

0.00047 0.0038 0.0072 0.0024 
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Table 87 : Comparison of neural network outputs after adjusting the screws back 

and forward (Each adjustment equals two turns) 

Neural network output for... 

Position C4 anti- 

clockwise 

C4 clockwise C7 anti- 

clockwise 

C7 clockwise 

tuned 0.052 0.026 0.0 0.0 

C4 anti-clockwise 0.830 0.072 0.532 0.097 

C4 clockwise 0.262 0.0 0.003 0.0 

Difference: 0.210 0.026 0.003 0.0 

tuned 0.262 0.0 0.003 0.0 

C4 anti-clockwise., 1.596 0.078 0.706 0.452 

C4 clockwise 0.136 0.0 '0.0 0.0 

Difference: 0.126 0.0 0.003 0.0 

Mean of 

Differences 

0.168 0.013 0.003 0.0 
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The stopband'was already tuned. Therefore I C4 and C7 remained'at the 

positions where found. 

Table 88 shows the total number of attempts made together with the number 

of successful and unsuccessful tunings. The system managed to tune the 

passband region in all cases. Other observations made were: 

m For the first tuning step the system always advised aT component in an 

anti-clockwise direction. 

0 The system advised T components at the beginning of the tuning (on 

average for two to three steps) and then, if necessary, C components. A 

situation where, for example, aT component was used, followed by aC 

component and then aT component was re-used did not arise. This resembles 

how the human operator proceeds. 

Average number of adiustments 

Table 89 shows the average number of adjustments required for the tuning 

of the passband. The minimum and maximum number of adjustments are 

also recorded. The equivalent figures for the performance of the human 

operator are given as well. In some filter tuning attempts the human seems 

to require one more step but on average a slight decrease of tuning steps 

required does appear to have been achieved. 

Examination of tuninz steps bv the emvtv rule catezorv 

Table 90 shows the number of steps for each action advised by the system. 

Table 91 displays, in more detail, the empty rules that were executed together 

with the action taken by the operator each time. Again, only, the first time of 

an empty rule appearance is counted. It is noticeable that the operator always 

took the same action and that most empty rules were substituted with aC 
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Table 88 : Number of attempts for the tuning of the passband using case I system 

Number of attempts: 26 

Successful tunings: 26 

Unsuccessful tunings: 0 

t Case I designates the knowledge-based plus human system 
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Table 89 : Average number of turns for the tuning of the 

passband using case 1 system 

Human Case I 

Average number of turns: 4.03 4.3 

Minimum number of turns: 2 2 

Maximum number of turns: 11 9 
1 

8 
. 

Table 90 : Number of occurrences per action using case I system (passband) 

Number of occurrences Number of occurrences 

Empty 14 12.4 

Clash 23 20.4 

Component and 

Direction 

76 67.2 

t Case 1 designates the knowledge-based plus human system 
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Table 91 : Number of rules executed at situations where the case I system could not 
1 provide an advice for the tuning of the passband 

Rule number Proposed action 

165 T3anti-clockwise 

71 C7clockwise X2 

130 C4anti-clockwise 

203 T3anti-clockwise X3 

81 T3anti-clockwise 

66 C4anti-clockwise 

84 C4anti-clockwise X2 

89 C4anti-clockwise 

75 C4anti-clockwise 

91 C7clockwise 

Case 1 designates the knowledge-based plus human system 
The character Y as in C4 clockwise x2 denotes multiple occurrences 
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component. This was expected since only 38.8% of the training exampIes had 

aC component class. 

Examination of tunina steps b-v the clash rule cateaorv 

Table 92 shows the clash rules that were executed together with the action 

taken each time by the operator during the testing and the training. For the 

majority of the cases clashes also occurred during the testing. One noticeable 

exception is rule 77 which appeared five times and the action taken was 

identical for all of them. 

Examination of tuning steps by component and direction-cateorv 

Table 93 shows the distribution per rule of the 76 situations where the 

sYstem provided an advice. Rules are in ascending order. Table 94'shows the 

total number of rules, their occurrences and the available number of rules in 

the rule base for each combination. The following observations can be made: 

0 Only 29.2% of the available rules were used with the C component rules 

having the smaller percentage. 

" The vast majority of the executed rules had an anti-clockwise direction part. 

" The component T, was rarely used. 

" The probable frequency of a particular combination arising is independent 

of the number of available rules in the rule set. 
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Table 92 : Number of rules providing conflicting advice for the tuning of the 

passband using case I system 

Rule number Testing Training 

163 T2 clockwise C7 clockwise 

T2 anti-clockwise T2 anti-clockwise 

129 C7 clockwise x3 C7 clockwise x2 

T2 anti-clockwise T3 clockwise 

51 C7 anti-clockwise x2 T2 anti-clockwise 

C4 anti-clockwise C4 anti-clockwise 

68 C7 anti-clockwise x2 C7 anti-clockwise 

C7 clockwise 

C4 anti-clockwise 

176 T2 anti-clockwise X2 T2 anti-clockwise 

C7 clockwise C7 anti-clockwise 

77 C4 anti-clockwise X5 C4 anti-clockwise 

T2 clockwise x2 

T2 anti-clockwise 

Case I designates the knowledge-based plus human system 
The character Y as in C4clockwise x2 denotes multiple occurrences 
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Table 92 continued : Number of rules providing conflicting advice for the tuning 

of the passband using case I system 

Rule number Testing Training 

102 C4 clockwise C4 clockwise 

C7 anti-clockwise C7 anti-clockwise x2 

T3 anti-clockwise 

T2 clockwise 

C4 anti-clockwise x2 C4 anti-clockwise 

C7 anti-clockwise 

Case I designates the knowledge-based plus human system 
The character Y as in C4 clockwise x2 denotes multiple occurrences 
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Table 93: Distribution per rule for the tuning of the passband using case I 

system 

Rule number Number of occurrences Combination 

11 2 C7 anti-clockwise 

44 1 T3 clockwise 

45- 1 C4 anti-clockwise 

47 2 C4 anti-clockwise 

52 5 C4 anti-clockwise 

58 2 C7 anti-clockwise 

90 6 C4 anti-clockwise 

112 1 T2 clockwise 

117 2 C7 clockwise 

118 

119 

1 

1 

T3 clockwise 

T2 anti-clockwise 

136 2 T, anti-clockwise 

151 2 T2 anti-clockwise 

156 2 T2 anti-clockwise 

164 11 T2 anti-clockwise 

t Case 1 designates the knowledge-based plus human system 
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Table 93 continued Distribution per rule for the tuning of the passband using 

case I system 

Rule number Number of occurrences Combination 

177 4 T2 anti-clockwise 

179 3 T2 anti-clockwise 

194 3 T3 anti-clockwise 

195 3 T3 anti-clockwise 

197 1 T3 anti-clockwise 

198 18 T3anti-clockwise - 

Case I designates the knowledge-based plus human system 
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Table 94 : Distribution of rules per combination for the tuning of the passband 

using case I system 

Combin- 

ation 

No. of 

rules 

Occur- 

rences 

No. of 

available 

rules 

No. of 

occur- 

rences 

M 

No. of 

available rules 

M 

T, a 1 2 3 2.7 4.2 

T, c 0 0 0.0 

T2 a 6 26 02, 60.5 16.7 

T2 c 1 1 5 1.4 7.0 

T3 a 4 25 14 34.2 19.2 

T3 c 2 2 5 2.7 7.0 

C4 a 4 14 15 19.2 20.8 

C4 C 0 0 4 0.0 5.6 

C7 a 2 4 9 5.6 12.5 

C7 C 1 2 5 2.7 7.0 

The character V as in T3 c denotes the clockwise direction 
The character 'a' as in T3'a denotes the anti-clockwise direction 
Case I designates the knowledge-based plus human system 
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10-12 Summary of results 

Using the expert system-neural network system combination, the stopband 

regions of 79% of the filters were successfully tuned with typically 3 

adjustments needed., The passband regions of all filters were'successfully 

tuned with typically 4 adjustments needed. The results are given separately 

for the two regions because for the passband region how far to turn was 

provided by the operator. Typically 80% of the filters were tuned completely 

(i. e., both stopband and passband) requiring'on average 7 adjustments. ,' 

The results presented above demonstrate that no one system out-performed 

the rest, considering all the performance criteria stated in Section 10.4. 

Comparing the three systems with the results obtained solely with a human 

operator one can deduce that there was not an increase in the efficiency with 

which the tuning was produced. The number of required adjustments, except 

for when the neural network were used on their own, remained about the 

same but the argument is that they can be used by non-experts viz. reducing 

the training time. 

The employment of the expert system displays, similar dynamics 'to the 

human operator including shortcomings such as the empty or clash situations. 

Neural networks on the other hand do not suffer from these shortcomings. An 

answer, not necessarily the correct one, is always given. Since in the filter 

tuning application checking the neural network predictions was not always 

possible then this advantage of neural networks is questionable. 

The selection of the best system cannot depend only on the accuracy and 

speed of tuning but must also depend on the speed of training of the 

classifiers and the amount of effort that goes into their training, their ease 

274 



of use and implementation. 

10.13 Conclusions 

The evaluation of the performance of the three approaches for the tuning of 

the stopband region using on-line data showed that the hybrid system 

provided good results with an increase in the efficiency with which a solution 

was produced. 

After using the neural networks as stand-alone systems with on-line data 

demonstrated that the actions given by the networks with the largest 

prediction values should be followed. When de-tune data was employed none 

of the networks which recognize a tuned position or the clockwise adjustment 

gave an incorrect result that was off by more than 0.1 unit. On the other 

hand results for the anti-clockwise a(bustment were not as well-defined 

usually giving correct predictions up to a level and then under-estimating. 

The experiments which were performed in order to identify the probable 

source of the 0.1 error showed that the error arose mainly due to the screw 

backlash. 

On the other hand the tuning of the passband region was performed 

successfully in all cases but the operator was required to provide the distance 

to turn. 
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Chapter Eleven 

General Observations and Conclusions 
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11.2 General observations -, 

The knowledge acquisition bottleneck is a huge obstacle to the development 

of expert systems. This was also proven in the task of tuning electronic 

filters. The hybrid system AEK, as described in this thesis, uses knowledge 

in rule form for determining which component to turn and in which direction 

and in weight form for determining how far to turn. Rules were induced 

automatically using the ID3 learning algorithm and weights were derived 

after teaching feed-forward neural networks using the back-propagation 

learning algorithm. Sets of training examples representing past experience 

were at the disposal of the algorithms. The training examples presented to 

the neural networks were sampled values of the raw magnitude response 

while for ED3 the examples consisted of representations of the raw responses 

in term of waveform peaks. During the implementation of the two learning 

algorithms a number of issues were observed and they are silmmarise'ý below 

in order to serve other researchers in the field. 

N When using ID3 with attributes which take numerical rather than 

categorical values it is strongly advisable to introduce some inexact modelling 

by creating ranges of values and introducing linguistic values to label them. 

The reason for that is that the algorithm comprehends two numerical values 

like 1.75 and 1.76 as two different concepts when most of the time a human 

will consider both values as equal. The cut-off points of the decision tree are 

very dependent on the examples present in the training set whereas this 

dependency is greatly reduced with the introduction of ranges. Therefore, 

when the following are true: 

(i) A complete set of examples is not available, and 
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(ii) the present set is somehow representative, and 

(iii) it is expected to introduce new examples as the time passes on 

then by employing attributes with linguistic variables one stabilises the 

appearance of the decision tree. This was observed during the comparisons 

of decisions trees as described in Chapter 6 and it held true especially for the 

top part of the trees. 

0 The algorithms depend on the examples of the training set and whereas the 

question of training set size is important one must also pay attention to the 

available examples as well. A statistical detection of peculiar data is therefore 

useful and essential since their use will cause poor results. This can involve 

the discovery of data corrupted by noise and spikes or outliers using basic 

statistical concepts (e. g. the mean) and graphical representations. For 

example, an attribute value three standard deviations away from the mean 

is a candidate for further exploration of its validity.,, The"'drawing of 

scattergrams (see Chapter 8) was a simple method of looking at the data and 

demonstrated its usefulness by discovering the'overlapping of classes. 

m ID3 assists but is fallible. One must always examine the generated decision 

tree. This due to the irrelevant branching problem as discussed in Chapter 

7 which causes the algorithm to branch out for situations which can never 

hold. 

m For applications where data interpretation is desirable the output of ED3 

is much more useful. A decision tree is more useful for understanding the 

structure of the data than the output of a neural network which has a much 

less clear (approaching zero) usefulness for interpretation. 

0 Experiments for determining the topology of the networks showed that the 
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influence of the manner of representation of the data was critical and that 

scaling of the inputs and outputs was beneficial. In order to avoid confusion 

to the users and because response time in-the filter tuning, domain is 

important a simple procedure which required modest computation was 

followed. In fact, most time was spent in the design of the means for 

representing the data for both algorithms rather than the actual learning. 

m The use of commercially available packages (Xi-Plus, - M-Rule, and 

Neurafforks Explorer) for the research period permits some assessment. The 

assessments that follow concern only the stated versions of the software 

packages. 

Xi-Plus provides a good user interface and a good diagrammatic 

representation of conclusions. The drawbacks of the shell are: 

(i) The use of a lot of memory which can cause the crash of the system. 

(ii) The limit of the number of rules per knowledge base. This and the 

previous drawback can be avoided by creating an application layer with a 

number of knowledge bases calling each other. This was followed in AEK but 

revealed the following shortcoming. 

(iii) When the execution of one knowledge-base terminates and another 

knowledge-base is called the conclusions of the previous knowledge-base can 

be kept but the explanations are missing. The explanation provided by the 

system is a single line stating that the conclusion was inferred during the 

execution of the previous knowledge-base. 

(iv) The shell is lacking in the provision of mathematical fimctions and 

graphical facilities. 

(v) The shell can -be interfaced with other software but it, is rather 
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complicated. Using the Lotus interface with AEK revealed that one can read 

one or more fines of the spreadsheet and assign the values of each 

spreadsheet cell to variables but if one desires to do a sequential reading this 

is impossible. 

(vi) The assignment of certainty factors to the conclusion of the rules is not 

possible. Therefore, when one faces a situation where more than one rule 

holds it is not feasible for the system to perform the conflict resolution. 

(vii) The ordering of the rules is important thus one has to be careful where 

the rules are located. 

(viii) Xi-Plus is menu-based but a mouse driver is not available therefore a 

lot of keyboard usage cannot be avoided during execution. 

Ux) Xi-Plus lacks the ability to represent knowledge acquired in the most 

suitable representation format since it provides only the production rule 

format. 

Xi-Rule is based on the I1D3 algorithm and creates decision trees easily and 

quickly. The user has only to provide the names of the attributes, to decide 

on the attribute values and either to type the examples or to read them in 

from an ASCII file. It does not provide a windowing facility or any pruning 

facilities. The decision tree can be easily sent to Yd-Plus transforming each 

leaf to a production rule. This is not possible though for leaves assigned an 

empty or a clash class and had to be done by hand., 

NeuralWorks Explorer can generate a number of standard network types 

from an extensive library with more than enough summation, error, output 

and transfer functions. The use of the package is painless but the learning 

process will benefit in future with the introduction of graphical representation 
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of the weights, the output etc. as learning progresses. 
j 

11.3 Future work 
The AEK system incorporating knowledge-bases and neural networks is 

proposed-for now. At its present state the system still has one problem, 

namely that of the third search. This is particularly true for the tuning of the 

passband region where at the moment how far to turn is determined by the 

user. For eventual use in industry future work. must concentrate on the 

following: 

(i) Automation of the instrumentation by using for an example a robotic arm. 

This will be useful during the gathering of de-tune data for use by the neural 

networks. 

(ii) Transferring the knowledge-bases to the Hewlett-Packard computer. This 

will increase the speed of execution of the rules since an interface between 

the measuring equipment and the Hewlett-Packard computer can be easily 

constructed. This has the disadvantage of being difficult to maintain, change 

and inspect the knowledge-bases. 

(iii) Algorithms must be investigated and programs must be written in order 

to locate the peaks automatically. 

All the above suggestions, will contribute towards a fully-automatic system. 

Additionally, further work can be done in order to improve the performance 

of the neural networks. For example some form of pre-processing, such as 

filtering of the magnitude response using Fourier transforms, might improve 

the results. 
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11.4'Conclusion's 

This thesis presented the work undertaken in order to create a prototype 

expert system which is hoped to be of benefit to the industry. The system is 

taking the role of an advisor during the tuning of crystal filters. 

Two main conclusions were drawn concerning the use of ED3. 

(i) When using I1D3 with attributes which take numerical rather than 

categorical values it is strongly advisable to introduce some inexact modelling 

by creating ranges of values and introducing linguistic values to label them. 

(ii) It was not possible to create rules to predict how far to turn (i. e., search 

3) using ED3 because of the vast number of attributes the class attribute can 

take. Information would have been lost if linguistic values were introduced. 

Therefore an alternative method was needed. Multi-layer neural networks 

learning using the back-propagation algorithm were constructed for the third 

search of the stopband sub-task. Hence, a hybrid expert system-neural 

network system was formed. 

The testing and evaluation of the performance of three systems (see Chapter 

10) showed that: 

W For case 1 (i. e., the expert system-operator system combination), the 

stopband regions of 86% of the filters were successfully tuned with typically 

3 adjustments needed. The passband regions of all filters were successfully 

tuned with typically 4 adjustments needed. 

(ii) For case 2 (i. e., the expert system-neural network system combination), 

the stopband regions of 79% of the filters were successfully tuned with 

typically 3 adjustments needed. 

(iii) For case 3 (i. e., the neural network system), the stopband regions of 67% 
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of the filters were successfully tuned with typically 10 adjustments needed. 

The results are given separately for the two regions because for the passband 

region how far to turn was provided by the operator. Typically 80% of the 

filters were tuned completely (i. e., both stopband and passband) requiring in 

average 7 adjustments. 

The production of the hybrid system (i. e., case 2) indicated that the choice of 

which component to use and in which direction to turn can be easily 

determined. How far to turn presents a more complex problem. 

The second system is recommended for use now with the third system being 

the most promising for the future. The results presented in the thesis concern 

only one type of crystal filter but the generic methodology can be applied to 

other types with little problem. 
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Appendix One 

Transcription of video-tape for filter 4716 

Taped at Newmarket 20.. 22 June 1988 
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These are the end coils they are just straight inductors effectively, in the center 
there is a center-tap coil which acts as the bridge circuit in the middle there. 
There are two trimmer capacitors which are used to acUust the stopband. The 
stopband is an asymetric one. It is an unusual shape. It is made this way to 
provide a single side band type of performance from what it is normally just a 
four-pole elliptic. 

Stick it and we can have a go. Set the frequency to IAMHz coarse frequency 
that is. Adjust the display on log scale to give me a whole responce of the filter. 
Looking at,, let me check that is locked on. Looking at the responce on the 
screen I want to increase, the amount I am, seen so I am reducing the 
sweep-width down to about 3.5 KHz, that is +-3.5 and then just centring up 
using the fine frequency control. 

Now we see the basic untuned filter. If I can get my head out of the way. Right 
now the first thing I am gonna do is to adjust the trimmer capacitors to arrange 
these peaks into a more reasonable place because I once have done that I know 
the stray balancing capacitor in the circuit is more or less right and it is not 
going to effect the passband responce too much later on. It does not matter 
which end you do first. Turn the trimmer capacitor (R) anticlockwise and pull 
the peaks out on the other side. That is done one. Now move to the other end 
(L) turning anticlockwise again and pull that out just off the screen. 

Increase the sweep-width to +-7KHz and see the two peaks have been moved 
off to one side and we are looking more like a decent asymetric single side band 
responce where the carrier frequency is against this edge. 

Now ready to begin and try to tune the end coils to flatten the ripple. Again it 
doesn't matter which end you start from. I'll go left hand end and turn clockwise 
and see what happens and the ripple drops. Keep on turning, it is getting worst 
again III stop there. Go to right hand end turn the slug clockwise. Watch the 
ripple drop. So we are getting close to the theoretical shape now. Change now 
to a linear display about there and increase the bandwidth, reduce the 
bandwidth rather to something I cannot actually read 1.75,1 think. Centre up 
the display. Right now I'm ready, to tune the centre coil and Ill need to go and 
get a tuner. 

It should bring down the lump on the upper side, we hope. I'm turning 
clockwise and that is going too far so I come back again anticlockwise again and 
that is going too far. So about there it looks about right. Now give the end coils 
another adjust just to make sure they are where they ought to be. If I screw in 
they get worst if I turn anticlockwise they get betten, Turn this one 
anticlockwise as well that is too bad. So I go back again clockwise. Just put a 
bit of ripple it doesn't want to be too flat. The flatter you make your passband 
the less stopband attenuation you get so you want to put a little bit of ripple 
just to help you along. Right now what we'll do. 
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I think at this stage i will actually measure the passband to see what we've got, 
so I'll stop the sweep. Find the maximum power transmission, lowest point of 
passband which is there. Set the needle to zero with the generator output level. 
I can now measure the 4db bandwidth on the upper side it is, change that 
quickly, is 2.7 on the spec is 2.55 we are A there. Go back to the other side 4db 
on the meter gives us +4.34 and we are looking for less than 4.5. That is ok, a 
bit tight but it is ok. 
Um, right if I resume sweeping again and change the level to 40 (10,20,30,40) 
increase the sweepwidth, center the passband again, what III try to do now is 
to adjust the peaks so these return levels come to about, what we've got, about 
48db. Check and see where they are at the moment. That one is at 53 and that 
one is about 57. If I sweep there and then just try to acIjust the trimmer 
capacitors that effect those peaks in. ie. drop the return levels down. This is the 
LH one turning clockwise looks what I want to do it is coming down, probably 
too much now. III check the level again. That is 50 that is 50.111 say that is 
probably about right. 

Right, I can go back now to the passband and measure the whole filter right 
through make sure we are in spec still. So it is to the lowest point of the 
passband. Set to zero the meter. Measure 4db which is 2.6 and we are looking 
for 2.55 that is ok. Set to the other side that is 0.43 we are looking for 4.5, less 
than 4.5 that is ok, 0.45 beg your pardon, that is ok. The next thing is the 
where are we, carrier rejection I think yes if I set the frequency exactly on 1.4 
MHz ie. zero on the counter as it stands at the moment, about there somewhere, 
the attenuation should be better than 15 so that is 10 we've got 24 so that is 
fine. Right now we are up to 20 on that scale. I'm' gonna increase that to 40 and 
check the 45 db points. I think well have to change the bandwidth. Now there 
is this time 10's multiplier that comes on certain ranges of the bandwidth so 
now switched in the times 10's. 

III have to readjust the fine frequency to put the filter back in the middle of the 
screen, that is, stop the sweep go to find the 45db points. That is the low one 
there which is -4.52 and we are looking for something better than 600, so that 
is okay. This side is +3.9 and we want it less than +4.8 that is A too. So just 
a quick sweep there just to check the return levels. That is 50db, that is 50db. 

LH capacitor trimmer effects the closest upper stopband peak, this will effect 
the upper 45db point more than anything else it also effects the return level but 
that can be compensated later. 

On the LH trimmer both outer peaks on each side move and this will tend to 
leave the 45db frequencies where they are but they will effect the return levels. 

So if you want to adjust the return levels your best bet is with the RH trimmer 
- if you want to adjust the upper 45db point your best bet is with the LH 
trimmer. 
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Appendix Two 

Instructions given to the operator 
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Dear Sir, 

We are making a study of the filter tuning process. We believe you are 
especially well qualified to tell us about the process as a whole, but at the 
present we would like you to concentrate only on the following task. You are 
just about ready to start tuning a filter. During the process you probably 
make some decisions based on something. 

Those something are what we would like you to write down on a piece of 
paper as they occur. Please use your own terminology. 

For example, consider the situation where you try to decide if an umbrella 
will be required to be taken to work. The decision might be made by just 
looking at the sky. Well, the sky is the something. Note that they do not have 
to be single words. 

One thing we would like you to know is that there are no right or wrong 
answers. Different people judge things in different ways. We are interested 
in your results as an individual. 

Please take as much time as you require. 

Yours faithfully 

Dimitris Tsaptsinos 
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Appendix Three 

Transcription of video-tape for filter 4716 

Taped at Newmarket 20.. 22 June 1988 
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These are the end coils 
they are just straight inductors effectively, 
in the center there is a center-tap coil 
which acts as the bridge circuit in the middle there. 
There are two trimmer capacitors 
which are used to adjust the stopband. 
The stopband is an asymetric one. 
It is an unusual shape. 
It is made this way to provide a single side band type of 
performance from what it is normally just a four-pole elliptic. 
Stick it and we can have a go. 
Set the frequency to 1.4MHz coarse frequency that is. 
Adjust the display on log scale 
to give me a whole responce of the filter. 
Looking at, let me check that is locked on. 
Looking at the responce on the screen I want to 
increase the amount I am seen 
so I am reducing the sweep-width down to about 3.5 KHz, that is 
+-3.5 
and then just centring up 
using the fine frequency control. 
Now we see the basic untuned filter. 
If I can get my head out of the way. 
Right now the first thing I am gonna do is to 
adjust the trimmer capacitors 
to arrange these peaks into a more reasonable place 
because I once have done that 
I know the stray balancing capacitor in the circuit is more or 
less right and it is not going to effect the passband responce 
too much later on. 
It does not matter which end you do first. 
Turn the trimmer capacitor (R) anticlockwise 
and pull the peaks out on the other side. 
That is done one. 
Now move to the other end (L) turning anticlockwise again 
and pull that out just off the screen. 
Increase the sweep-width to +-7XHz and 
see the two peaks have been moved off to one side and 
we are looking more like a decent asymetric single side band 
responce where the carrier frequency is against this edge. 
Now ready to begin and 
try to tune the end coils 
to flatten the ripple. 
Again it doesn't matter which end you start from. 
III go left hand end and turn clockwise and 
see what happens and 
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the ripple drops. 
Keep on tuming, 
it is getting worst again 
i'll stop there. 
Go to right hand end tum the slug clockwise. 
Watch the ripple drop. 
So we are getting close to the theoretical shape now. 
Change now to a linear display about there 
and increase the bandwidth, reduce the bandwidth rather to 
something I cannot actually read 1.75 J think. 
Centre up the display. 
Right now i'm ready to tune the centre coil 
and i'll need to go and get a tuner. 
It should bring down the lump on the upper side, 
we hope. 
I'm tuming clockwise 
and that is going too far 
so I come back again anticlockwise agami 
and that is going too far. 
So about there it looks about right. 
Now give the end coils another adjust 
just to make sure they are where they ought to be. 
If I screw in they get worst 
if I turn anticlockwise they get better. 
Turn this one anticlockwise as well 
that is too bad. 
So I go back again clockwise. 
Just put a bit of ripple it doesn't want to be too flat. 
The flatter you make your passband the less stopband attenuation you get 
so you want to put a little bit of ripple just to help you along. 
Right now what well do. 
I think at this stage 
I will actually measure the passband 
to see what we've got, 
so i'll stop the sweep. 
Find the maximum power transmission, 
lowest point of passband which is there. 
Set the needle to zero 
with the generator output level. 
I can now measure the 4db bandwidth on the upper side it is, 
change that quickly, 
is 2.7 on the spec is 2.55 
we are A there. 
Go back to the other side 
4db on the meter gives us +4.34 
and we are looking for less than 4.5. 
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That is ok, a bit tight but it is ok. 
Um, right 
if I resume sweeping again and 
change the level to 40 (10,20,30,40) 
increase the sweepwidth, 
center the passband again, 
what Al try to do now is to 
adjust the peaks 
so these return levels come to about, what we've got, about 48db. 
Check and see where they are at the moment. 
That one is at 53 and that one is about 57. 
If I sweep there and 
then just try to adjust the trimmer capacitors 
that effect those peaks in. 
ie. drop the return levels down. 
This is the LH one turning clockwise 
looks what I want to do it is coming down, 
probably too much now. 
III check the level again. 
That is 50 that is 50. 
III say that is probably about right. 
Right, I can go back now to the passband and 
measure the whole filter right through 
make sure we are in spec still. 
So it is to the lowest point of the passband. 
Set to zero the meter. 
Measure 4db which is 2.6 and we are looking for 2.55 
that is ok. 
Set to the other side that is 0.43 we are looking for 4.5, less 
than 4.5 
that is ok, 0.45 beg your pardon, that is ok. 
The next thing is the where are we, carrier rejection 
I think yes 
if I set the frequency exactly on 1.4 MHz 
ie. zero on the counter as it stands at the moment, 
about there somewhere, 
the attenuation should be better than 15 so that is 10 we've got 
24 
so that is fine. 
Right now we are up to 20 on that scale. 
I'm gonna increase that to 40 and 
check the 45 db points. 
I think we'll have to change the bandwidth. 
Now there is this time 10's multiplier that comes on certain 
ranges of the bandwidth 
so now switched in the times 10's. 
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III have to readjust the fine frequency 
to put the filter back in the middle of the screen, that is, 
stop the sweep 
go to find the 45db points. 
That is the low one there which is -4.52 and we are looking for something better 
than 600, 
so that is okay. 
This side is +3.9 and we want it less than +4.8 
that is A too. 
So just a quick sweep there 
just to check the return levels. 
That is 50db, that is 50db. 
LH capacitor trimmer 
effects the closest upper stopband peak, 
this will effect the upper 45db point more than anything else 
it also effects the return level but 
that can be compensated later. 
On the LH trimmer 
both outer peaks on each side move and 
this will tend to leave the 45db frequencies where they are but 
they will effect the return levels. 
So if you want to adjust the return levels 
your best bet is with the RH Uimmer - 
if you want to adjust the upper 45db point 
your best bet is with the LH trimmer. 
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Appendix Four 

Sample lexicon 
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Attenuation: A general term used to denote a decrease in signal magnitude in 
transmission from one point to another. May be expressed as a scalar ratio of the 
input magnitude to the output magnitude or in decibels. 

Active filter: A filter network containing one or more active devices (usually an 
operational amplifier) in addition to passive elements (resistors, capacitors). 

Coil: One or more loops of wire wound spirally, often around a cylindrical 
cardboard or iron core, and exhibiting the property of inductance. Also called an 
inductor. 

Passband: A band of frequencies that pass through a filter with little loss. 

Ripple: The variations on a frequency plot of an impedance function or of a 
transfer function. 
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Appendix Five 

Listing of knowledge-base of the stopband (search 1) 
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fact dl = peak2 -ý peakl 
fact d2 = peak3 - peakl 
fact 0= peak4 - peakI 
fact d4 = peak3 - peak2 
fact d5 = peak4 - peak2 
fact d6 = peak4 - peak3 
fact V= level2 - levell 
question peak4 

1 to 100 , unknown 
question text what is the value of the fourth peak ? 

and ( if r2 exists give the max on the right value 
question peakl =, 

1 to 100 , unknown 
question text what is the value of the first peak ? 

question peak3 = 
1 to 100 , unknown 

question text what is the value of the third peak ? 
question peak2 = 

1 to 100 , unknown 
question text what is the value of the second peak ? 

question levell = 
1 to 100 , unknown 

question text what is the value of the first return level ? 
question leve12 = 

I to 100 , unknown 
question text what is the value of the second return level' 
when outcome is carry - on 
then command reset pl 
and command reset p2 
and command reset p3 
and command reset p4 
and command reset rl 
and command reset r2 
and command reset dl 
and command reset d2 
and command reset 0 
and command reset d4 
and command reset d5 
and command reset* d6 
and command reset V 
and command load c: \newmarket\search2 

when peak4 = unknown 
then force outcome is carry - on 
when peakI = unknown 
then force outcome is carry - on 
when peak2 = unknown 
then force outcome is carry - on 
when peak3 = unknown 
then force outcome is carry - on 
when levell = unknown 
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then force outcome is carry - on 
when level2 = unknown 
then force outcome is carry - on 
when outcome is end 
then command load a: \numbers 
if diff3 is left 
then outcome is carry - on 
and report EXAMPLES USED 34 138 24.61% 
and confidence = 98.5 

if diff3 is right 
and p2 is left 

then outcome is empty 
if p2 is right 
then outcome is carry - on 
and report EXAMPLES USED 3 138 2.17% 
and confidence = 91.3 

if diffB is right - 
and p2 is ok 

then outcome is end 
and report EXAMPLES USED 4/ 138 2.9% 
and report END - OF - PROCESS 
and confidence = 87.5 

if diff3 is ok 
and p3 is left 
and p2 is left 

then outcome is empty 
if pl is left 
then outcome is carry - on 
and report EXAMPLES USED 2 138 1.45% 
and confidence = 75 

if diffl is ok 
and p3 is left 
and p2 is right 
and diffl is right 
and pl is right 

then outcome is empty 
if p3 is left 
and p2 is right 

then outcome is carry - on 
and report EXAMPLES USED 6 138 4.35% 
and confidence = 97.2 

if p3 is left 
then outcome is carry - on 
and report EXAMPLES USED 1 138 0.72% 
and confidence = 92.4 

if difM is ok 
and p3 is left 
and p2 is ok 
and diM is right 

then outcome is empty 
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if diff3 is ok 
and p3 is left 
and p2 is ok 
and dffF1 is A 
and pl is left 

then outcome is empty 
if diff3 is ok 
and p3 is left 
and p2 is ok 
and dffF1 is ok 
and pl is ok 
and diff7 is left 

then outcome is empty 
if diff3 is ok 
and p3 is right 
and diffl is left 

then outcome is empty 
if p3 is right 
and diffl is right 

then outcomeis carry - on 
and report EXAMPLES USED 2 138 1.45% 
and confidence = 87.5 

if p3 is right 
and diffl is A 

then outcome is end 
and report EXAMPLES USED 5 138 3.62% 
and report END - OF - PROCESS 
and confidence = 91.7 

if diffB is ok 
and p3 is ok 
and diffl is left 

then outcome is end 
and report EXAMPLES USED 4/ 138 2.90% 
and report END - OF - PROCESS 
and confidence = 87.5 

if diff3 is ok 
and p3 is ok 
and diff'l is right 
and r2 is right 

then outcome is empty 
if diff3 is A 
and p3 is ok 
and dffT1 is right 
and r2 is ok 
and diff4 is right 

then outcome is empty 
if diffl is right 
then outcome is carry - on 
and report EXAMPLES USED 2 138 1.45% 
and confidence = 75 
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if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is left 

then outcome is empty 
if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is right 
and p2 is left 

then outcome is empty 
if diff7 is right 
then outcome is carry - on 
and report EXAMPLES USED 2 138 1.45% 
and confidence = 86.5 

if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is right 
and p2 is right 
and diff7 is left 

then outcome is empty 
if diff3 is ok 
and p3 is ok 
and difIl is ok 
and r2 is ok 
and p2 is left 

then outcome is empty 
if p3 is ok 
and r2 is ok 

then outcome is end 
and report EXAMPLES USED 2 138 1.45% 
and report END - OF - PROCESS 
and confidence = 78.8 

if diff3 is ok 
and p3 is ok 
and diffl is ok 
and r2 is ok 
and p2 is ok 
and rl is right 

then outcome is empty 
if r2 is ok 
and diff7 is ok 

then outcome is end 
and report EXAMPLES USED 12 138 8.70% 
and report END - OF - PROCESS 
and confidence = 68.2 

if diff3 is ok 
and p3 is ok 
and diffl is ok 

A-17 



and r2 is ok 
and p2 is ok 
and rl is ok 
and dfff7 is left 

then outcome is empty 
if pl is ok 
then outcome is end 
and report EXAMPLES USED 1/ 138 0.72 % 
and report END - OF - PROCESS 
and confidence = 0.60 

if p2 is ok 
then outcome is end 
and report EXAMPLES USED I/ 138 ( 0.72 % 
and report END - OF - PROCESS 
and confidence = 0.54 

if diff7 is ok 
then outcome is end 
and report EXAMPLES USED 1/ 138 0.72 % 
and report END - OF - PROCESS 
and confidenpe = 0.56 

if peakl >= 1.397156 
and peakl <= 1.398220 

then pl is ok 
if peakl < 1.397156 
then pl is left 
if peakl > 1.398220 
then pl is right 
if d3 >= 0.008236 
and d3 <= 0.032018 

then difM is ok 
if d3 < 0.008236 
then diff3 is left 
if d3 > 0.032018 
then diffl is right 
if peak2 >= 1.399327 
and peak2 <= 1.399546 

then p2 is ok 
if peak2 < 1.399327 
then p2 is left 
if peak2 > 1.399546 
then p2 is right 
if peak3 >= 1.404048 
and peak3 <= 1.405241 

then p3 is ok 
if peak3 < 1.404048 
then p3 is left 
if peak3 > 1.405241 
then p3 is right 
if peak4 >= 1.406214 
and peak4 <= 1.429488 
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then p4 is A 
if peak4 < 1.406214 
then p4 is left 
if peak4 > 1.429488 
then p4 is right 
if levell >= 56 
and levell <= 64 

then rl is A 
if levell < 56 
then rl is left 
if levell > 64 
then rl is right 
if level2 >= 58 
and level2 <= 65 

then r2 is A 
if level2 < 58 
then r2 is left 
if level2 > 65 
then r2 is right 
if dl >= O. OQ1188 
and dl <= 0.002309 

then diffl is A 
if dl < 0.001188 
then diM is left 
if dl > 0.002309 
then diftl is right 
if d2 >= 0.006105 
and d2 <= 0.007807 

then diM is A 
if d2 < 0.006105 
then diff2 is left 
if d2 > 0.007807 
then diM is right 
if d4 >= 0.004522 
and d4 <F 0.005894 

then diff4 is A 
if d4 < 0.004522 
then diff4 is left 
if d4 > 0.005894 
then diff4 is right 
if d5 >= 0.006767 
and d5 <= 0.030062 

then difT5 is A 
if d5 < 0.006767 
then diffB is left 
if d5 > 0.030062 
then diff5 is right 
if d6 >= 0.001616 
and d6 <= 0.024798 

then diffra is A 
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if d6 < 0.001616 
then diffra is left 
if d6 > 0.024798 
then diff6 is right 
if V >= 0 
and V <= 6 

then diff7 is A 
if d7<0 
then diff7 is left 
if d7>6 
then diff7 is right 
if levell > level2 
then V= levell - level2 

query outcome is 
query options auto 
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Appendix Six 

Listing of knowledge-base of the stopband (search 2) 
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fact liml = 0.0001 
fact lim2 = 0.001 
question peakl = 

1 to 100 , unknown 
question text enter the value of the first peak 

question peak2 = 
1 to 100 , unknown 

question text enter the value of the second peak 
question peak3 = 

,1 to 100 , unknown 
question text enter the value of the third peak 

question peak4 = 
1 to 100 , unknown 

question text enter the value of the fourth peak 
question levell = 

1 to 100 , unknown 
question text enter the value of the first return level 

question level2 = 
1 to 100 , unknown 

question text e, nter the value of the second return level 
question observe is 

yes 
no 

question text Would you like to see the results ? 
when componen is X 
then report Component to be used is 
and command reset peakl 
and command reset peak2 
and command reset peak3 
and command reset peak4 
and command reset levell 
and command reset level2 
and command reset pl 
and command reset p2 
and command reset p3 
and command reset p4 
, and command reset ri 
and command reset diffl 
and command reset diff2 
and command reset diff5 
and command reset difT3 
and command reset diff4 
and command reset difF6 
and command reset diM 
and command reset r2 
and command reset outcome 
and command reset componen 
and command load c: \newmarket\searchl 

when peakl = unknown 
then force pl is absent 
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when peak2 = unknown 
then force p2 is absent 
when peak3 = unknown 
then force p3 is absent 
when peak4 = unknown 
then force p4 is absent 
when levell = unknown 
then force rl is absent 
when level2 = unknown 
then force r2 is- absent 
if pl is left 
and p2 is left 

then componen is empty 
if pl is left 
and p2 is right 

then componen is c4a 
if pl is left 
and p2 is A 
and rl is left 

then compone ,n 
is empty 

if pl is left 
and p2 is A 
and rl is right 

then componen is empty 
if pl is left 
and p2 is A 
and rl is A 

then componen is c4c 
if pl is left 
and p2 is A 
and rl is absent 

then componen is empty 
if pl is left 
and p2 is A 
and rl is fleft 

then componen is empty 
if pl is left 
and p2 is A 
and rl is fright 

then componen is empty 
if pl is left 
and p2 is A 
and rl is cleft 

then componen is c7c 
if pl is left 
and p2 is A 
and rl is cright 

then componen is empty 
if pl is left 
and p2 is absent 
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then componen is empty 
if pl is left 
and p2 is fleft 

then componen is empty 
if pl is'left 
and p2 is fright 

then componen is empty 
if pl is left 
and p2 is cleft 

then componen is c7c 
if pl is left 
and p2 is cright 

then componen is c4c 
if pl is right 
and p2 is left 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is left 

then componen is c7a 
if pl is right 
and p2 is right 
and p4 is A 

then componen is c7a 
if pi is right 
and p2 is right 
and p4 is absent 

then componen is empty 
if pl is right 
and p2 is right, 
and p4 is fleft 
and rl is left 

then componen is c4a 
if pI is right 
and p2 is right 
and p4 is fleft 
and rl is right 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is A 

then componen is c4a 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is absent 

then componen is empty 
if pl is right 
and p2 is right 
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and p4 is fleft 
and rl is fleft 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is fright 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is left 

then componen is c7a 
if pl is right 
and p2 is right 
and p4 is fleft 
and ri is cleft 
and r2 is right 

then componen is empty 
if pi is right 
and p2 is right 
and p4 is fleft 
and ri is cleft 
and r2 is A 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is absent 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is fleft 

then componen is c4a 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is fright 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is cleft 

then componen is clash 
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if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cleft 
and r2 is cright 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is fleft 
and rl is cright 

then componen is empty 
if pl is right 
and p2 is right 
and p4 is cleft 

then componen is empty 
if pl is right 
and p2 is A 

then componen is c4a 
if pi is right 
and p2 is absent 

then componen is empty 
if pi is right 
and p2 is fleft 

then componen is empty 
if pi is right 
and p2 is fright 

then componen is empty 
if pl is right 
and p2 is cleft 

then componen is empty 
if pi is right 
and p2 is cxýight 

then componen is c7a 
if pl is A 
and r2 is left 

then componen is c4a 
if pl is A 
and r2 is right 

then componen is empty 
if pl is A 
and r2 is A 

then componen is c7a 
if pl is A 
and r2 is absent 
and p2 is left 

then componen is c4c 
if pl is A 
and r2 is absent 
and p2 is right 

then componen is empty 
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if pl is A 
and r2 is absent 
and p2 is A 

then componen is c7c 
if pl is A 
and r2 is absent 
and p2 is absent 

then componen is empty 
if pl is A 
and r2 is absent 
and p2 is fleft 

then componen is empty 
if pl is A 
and r2 is absent 
and p2 is fright 

then componen is empty 
if pl is A 
and r2 is absent 
and p2 is cleft 

then componeii is empty 
if pl is A 
and r2 is absent 

, and p2 is cright 
then componen is empty' 
if pI is A 
and r2 is fleft 
and rl is left 

then componen is c7a 
and report This was an empty rule before 

if pl is A 
and r2 is fleft 
and rl is right 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is left 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is right 

then componen is c7a 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is A 

then componen is empty 
if pl is A 
and r2 is fleft 
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and rl is A 
and p2 is absent 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is fleft 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is fright 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is A 
and p2 is cleft 

then componen is empty 
if pl is A 
and r2 is fleft. 
and rl is A 
and p2 is cright 

then componen is clash 
and report component previously used 
and report c4c 1 examples during elicitation 
and report c7a 1 examples during elicitation 
and report c7a I examples during testing 

if pI is A 
and r2 is fleft 
and rl is absent 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is fleft 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is fright 

then componen is empty 
if pl is A 
and r2 is fleft 
and rl is cleft 

then componen is c4a 
if pl is oký 
and r2 is fleft 
and rl is czight 

then componen is empty 
if pl is A 
and r2 is fright 

then componen is empty 
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if pl is A, 
and r2 is cleft 
and p2 is left 

then componen is empty 
if pl is A 
and r2 is cleft 
and p2 is right 

then componen is c4a 
if pl is A 
and r2 is cleft 
and p2 is A 

then componen is c7a 
if pl is A 
and r2 is cleft 
and p2 is absent 

then componen is empty 
if pl is A 
and r2 is cleft 
and p2 is fleft 

then componerx is empty 
if pl is A 
and r2 is cleft 
and p2 is fright 

then componen is empty 
if pl is A 
and r2 is cleft 
and p2 is cleft 

then componen is empty 
if pl is A 
and r2 is cleft 
and p2 is cright 

then componen is c4a 
if pI is A 
and r2 is cright, 
and p2 is left 

then componen is empty 
if pl is A 
and r2 is cright 
and p2 is right 

then componen is empty 
if pl is A 
and r2 is cright 
and p2 is A 

then componen is c4c 
if pl is A 
and r2 is cright 
and p2 is absent 

then componen is empty 
if pl is A 
and r2 is cright 
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and p2 is fleft 
then componen is empty 
if pI is A 
and r2 is cright 
and p2 is fright 

then componen is empty 
if pl is A 
and r2 is cright 
and p2 is cleft 

then componen is empty 
if pI is A 
and r2 is cright 
and p2 is cright 

then componen is clash 
if pl is absent 
and p2 is left 
and p3 is left 

then componen is empty 
if pl is absent 
and p2 is left, 
and P3 is right 

then componen is c4c 
if pl is absent 
and P2 is left 
and p3 is A 

then componen is empty 
if pl is absent 
and P2 is left 
and p3 is absent 

then componen is clash 
and report components previously used 
and report c4c (2 examples during elicitation 
and report c7c (1 examples during elicitation 
and report c7c (1 examples during testing 
and report c4c (2 examples during testing 

if pl is absent 
and p2 is left 
and p3 is fleft 

then componen is empty 
if pl is absent 
and p2 is left 
and p3 is fright 

then componen is clash 
and report component previously used 
and report c7c (4 examples during elicitation ) 
and report c4c (4 examples during elicitation ) 
and report c4c (I examples during testing 

if pl is absent 
and p2 is left 
and p3 is cleft 
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then componen is empty 
if pl is absent 
and p2 is left 
and p3 is cright 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is left 

then componen is clash 
and report component previously used 
and report c4a 1 examples during elicitation 
and report c7c 1 examples during elicitation 
and report c4c 2 examples during testing ) 
and report c4a 2 examples during testing ) 

if pl is absent 
and p2 is right 
and p3 is right 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is ok 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is absent 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is fleft 

then componen is clash c4a c4c 
and report THERE IS A CLASH 
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used: C4A 2.75 ex. 12 
and report: C4C ( 2.50 ex. 82 

if pl is absent 
and p2 is right 
and p3 is fright 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is cleft 

then componen is empty 
if pl is absent 
and p2 is right 
and p3 is cright 

then componen is c7c 
and report This was an empty rule before 

if pl is absent 
and p2 is ok 

then componen is c7c 
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if pl is absent 
and p2 is absent 

then componen is c4c 
if pl is absent 
and p2 is fleft. 

then componen is c4c 
if pl is absent 
and p2 is fright 

then componen is empty 
if pl is absent 
and p2 is cleft 

then componen is clash 
and report component previously used 
and report c4c (1 examples during elicitation 
and report c7c (1 examples during elicitation 
and report c4c (1 examples during testing 

if pl is absent 
and p2 is cright 

then componen is c7c 
and report This was an empty rule before 

if pl is fleft 
and r2 is left 

then componen is empty 
if pl is fleft 
and r2 is right 

then componen, is empty 
if pl is fleft 
and r2 is A 

then componen is c4a 
if pI is fleft 
and r2 is absent 
and p3 is left 

then componen is empty 
if pl is fleft 
and r2 is absent 
and p3 is right 

then componen is c7c 
if pI is fleft 
and r2 is absent 
and p3 is A 

then componen. is empty 
if pl is fleft, 
and r2 is absent 
and p3 is absent 

then componen is clash 
if pl is fleft 
and r2 is absent 
and p3 is fleft 

then componen is empty 
if pI is fleft 
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and r2 is absent 
and p3 is fright 

then componen is c7c 
if pl is fleft 
and r2 is absent 
and p3 is cleft 

then componen is empty 
if pl is fleft 
and r2 is absent 
and p3 is cright 

then componen is empty 
if pl is fleft 
and r2 is fleft 

then componen is empty 
if pl is fleft 
and r2 is fright 

then componen is empty 
if pl is fleft 
and r2 is cleft 

then componeiR is c7c 
if pl is fleft 
and r2 is czight 

then componen is empty 
if pl is fright 
and r2 is left 
and rl is left 

then componen is empty 
if pl is fright 
and r2 is left 
and rl is right 

then componen is empty 
if pl is fright 
and r2 is left 
and rl is ok 

then componen is clash 
and report THERE IS A CLASH 
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used: C7A 1.50 ex. 46 
and report: C4A ( 1.75 ) ex. 53 
and report: C7A ( 0.75 ) ex. 57 

if pl is fright 
and r2 is left 
and rl is absent 

then componen is empty 
if pl is fright 
and r2 is left 
and rl is fleft 

then componen is empty 
if pl is fright 
and r2 is left 
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and rl is hight, 
then componen is empty 
if pl is fright 
and r2 is left 
and rl is cleft 

then componen is c4a 
if pl is fxight 
and r2 is left 
and rl is cright 

then componen is empty 
if pI is fright 
and r2 is right 

then componen. is empty 
if pI is fright 
and r2 is A 

then componen is c4a 
if pl is fright 
and r2 is absent 

then componen. is c4a 
if PI is fright 
and r2 is fleft 
and p2 is left 

then componen is empty 
if pl is fright 
and r2 is fleft 
and p2 is right 

then componen is c4a 
if pl is fright 
and r2 is fleft 
and p2 is A 

then componen. is empty 
if pl is fright 
and r2 is fleft 
and p2 is absent 

then componen is empty 
if pl is fright 
and r2 is fleft 
and p2 is fleft 

then componen is empty 
if pl is fright 
and r2 is fleft 
and p2 is fright 

then componen is empty 
if pl is fright 
and r2 is fleft 
and p2 is cleft 

then componen is empty 
if P1 is fright 
and r2 is fleft, 
and p2 is cright 
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then componen is c7a 
if pl is fxight 
and r2 is fright 

then componen is empty 
if pl is fright 
and r2 is cleft 

then componen is c7a 
if pl is fright 
and r2 is cright 

then componen is clash 
and report THERE IS A CLASH 
and report CLASH OCCURS AT THE START OF THE PROCESS 
and report components used: C4A 2.50 ex. 4 
and report: C7A ( 2.00 ) ex. 8 
and report: C7A ( 1.50 ) ex. 33 
and report: C4A ( 2.25 ) ex. 41 
and report: C4A ( 2.75 ) ex. 96 

if pl is cleft 
then componen is c4a 
if pl is crig4t, 
and p2 is left 

then componen is empty 
if pl is cright 
and p2 is right 

then componen is empty 
if pl is cright 
and p2 is ok 

then componenis c4a 
if pl is cright 
and p2 is absent 

then componen is empty 
if pl is cright 
and p2 is fleft 

then componen is empty 
if pl is cright 
and p2 is fright 

then componen is empty 
if pl is cright 
and p2 is cleft 

then componen is empty 
if pl is cright 
and p2 is cright 

then componen is c7a 
if peakl >= 1.397516 
and peakl <= 1.39822 

then pl is ok , 
if peakl < 1.397516 
and 1.397516 - peakl < liml 

then pl is cleft 
if peakl < 1.397516 
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and 1.397516 - peakI >= liml 
and 1.397516 - peakl < lim2 

then pl is left 
if peakl < 1.397516 
and 1.397516 - peakl >= lim2 

then pl is fieft 
if peakl > 1.39822 
and peakl - 1.39822 < hml 

then pl is cright 
if peakl > 1.39822 
and peakl - 1.39822 >= liml 
and peakl - 1.39822 < lim2 

then pl is right 
if peakl > 1.39822 
and peakl - 1.39822 >= lim2 

then pl is fright 
if peak2 >= 1.399327 
and peak2 <= 1.399546 

then p2 is A 
if peak2 < 1,399327 
and 1.399327 - peak2 < liml 

then p2 is cleft 
if peak2 < 1.399327 
and 1.399327 - peak2 >= liml 
and 1.399327 - peak2 < lim2 

then p2 is left 
if peak2 < 1.399327 
and 1.399327 - peak2 >= lim2 

then p2 is fleft 
if peak2 > 1.399546 
and peak2 - 1.399546 < liml 

then p2 is cright 
if peak2 > 1.399546 
and peak2 - 1.399546 >= liml 
and peak2 - 1.399546 < lim2 

then p2 is right 
if peak2 > 1.399546 
and peak2 - 1.399546 >= lim2 

then p2 is fright 
if peak3 >= 1.404048 
and peak3 <= 1.405241 

then p3 is A 
if peak3 < 1.404048 
and 1.404048 - peak3 < liml 

then p3 is cleft 
if peak3 < 1.404048 
and 1.404048 - peak3 >= liml 
and 1.404048 - peak3 < lim2 

then p3 is left 
if peak3 < 1.404048 
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and 1.404048 - peak3 >= lim2 
then p3 is fleft 
if peak3 > 1.405241 
and peak3 - 1.405241 < liml 

then p3 is cright, 
if peak3 > 1.405241 
and peak3 - 1.405241 >= liml 
and peak3 - 1.405241 < lim2 

then p3 is right 
if peak3 > 1.405241 

, and peak3 - 1.405241 >= lim2 
then p3 is fright 
if peak4 >= 1.406214 
then p4 is A 
if peak4 < 1.406214 
and 1.406214 - peak4 < liml 

then p4 is cleft 
if peak4 < 1.406214 
and 1.406214 - peak4 >= liml 
and 1.406214 - peak4 < lim2 

then p4 is left 
if peak4 < 1.406214 
and 1.406214 - peak4 >= lim2 

then p4 is fleft 
if levell >= 56 
and levell <= 64 

then rl is A 
if levell < 56 
and levell >= 49 

then rl is cleft 
if levell < 49 
and levell >= 42 

then rl is left 
if levell < 42 
then rl is fleft 
if levell > 64 
and levell <= 71 

then rl is cright 
if levell > 71 
and levell <= 78 

then rl is right 
if levell > 78 
then rl is fright 
if leve12 >= 58 
and level2 <= 65 

then r2 is A 
if leve12 < 58 
and level2 >= 52 

then r2 is cleft 
if leve12 < 52 

A-37 



and level2 >= 46 
then r2 is left 
if level2 < 46 
then r2 is fleft 
if level2 > 65 
and level2 <= 72 

then r2 is cright 
if level2 > 72 
and level2 <= 78 

then r2 is right 
if level2 > 78 
then r2 is fright 

query componen is 
query options auto 

query componen. 
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Appendix Seven 

Listing of knowledge-base of the passband (search 1) 
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when done process 
then command load c: \newmarket\pamod 
when process is end 
then report Please connect another filter 
and command reset data 
and command load c: \newmarket\searchl 

if vripple >= 0.0 
and vripple <= 1.0 

then ripple is A 
if vripple >1 
and vripple <= 2.60 

then ripple is closerigt 
if vripple > 2.60 
and vripple <= 4.20 

then ripple is right 
if vripple > 4.20 
then ripple is farright 
if vinloss >= 0.0 
and vinloss < 0.5 

then inloss is closeleft 
if vinloss >= 0.50 
and vinloss <= 5.0 

then inloss is A 
if vinloss > 5.0 
and vinloss <= 5.33 

then inloss is closerigt 
if vinloss > 5.33. , 
and vinloss <= 5.66 

then inloss is right 
if vinloss > 5.66 
then inloss is farright 
if vlowpb >= 0.0 
and vlowpb <= 4.0 

then lowpb is A 
if vlowpb > 4.0 
and vlowpb <= 5.05 

then lowpb is closerigt 
if vlowpb > 5.05 
and vlowpb <= 6.1 

then lowpb is right 
if vlowpb > 6.1 
then lowpb is farright 
if vhighpb >= 0.0 
and vMghpb <= 4.0 

then highpb is A 
if vhighpb > 4.0 
and vhighpb <= 6.93 

then highpb is closerigt 
if vhighpb > 6.93 
and vhighpb <= 9.86 
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then highpb is right 
if vhighpb > 9.86 
then highpb is farright 
if vcarret < 5.8 
then carret is farleft 
if vearret >= 5.8 
and vcarret < 7.9 

then carret is left 
if vcarret >= 7.9 
and vcarret < 10 

then carret is closeleft 
if vcarret >= 10 
and vcarret <= 12.10 

then carret is closeok 
if vcarret > 12.1 
and vcarret <= 14.20 

then carret is A 
if vcarret > 14.20 
then carret is farok 
if vlowsb < 32.6 
then lowsb is farleft 
if vlowsb >= 32.6 
and vlowsb < 38.8 

then lowsb is left 
if vlowsb >= 38.8 
and vlowsb < 45 

then lowsb is closeleft 
if vlowsb >= 45 
and vlowsb <= 51.2 

then lowsb is closeok 
if vlowsb > 51.2 
and vlowsb <= 57.4 

then lowsb is middleok 
if vlowsb > 57.4 
then lowsb is farok 
if vhighsb < 27.5 
then highsb is farleft 
if vhighsb >= 27.5 
and vhighsb < 36.25 

then bighsb is left 
if vhighsb >= 36-25 
and vhighsb < 45.0 

then highsb is closeleft 
if vhighsb >= 45.0 
and vhighsb <= 53.75 

then highsb is closeok 
if vhighsb > 53.75 
and vhighsb <= 62.5 

then highsb is middleok 
if vhighsb > 62.5 
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then highsb is farok 
if vlowsbret < 33.76 
then lowsbret is farleft 
if vlowsbret >= 33.76 
and vlowsbret < 39.38 

then lowsbret is left 
if vlowsbret >= 39.38 
and vlowsbret < 45.0 

then lowsbret is closeleft 
if vlowsbret >= 45.00 
and vlowsbret <= 50.62 

then lowsbret is closeok 
if vlowsbret > 50.62 
and vlowsbret <= 56.24 

then lowsbret is middleok 
if vlowsbret > 56.24 
then lowsbret is farok 
if vhighsbret < 35.96 
then highsbret is farleft 
if vhighsbret >= 35.96 
and vhighsbret < 40.48 

then highsbret is left 
if vhighsbret >= 40.48 
and vhighsbret < 45.00 

then highsbret is closeleft 
if vhighsbret >= 45.00 
and vhighsbret <= 49.52 

then highsbret is closeok 
if vhighsbret > 49.52 
and vhighsbret <= 54.04 

then highsbret is middleok 
if vhighsbret > 54.04 
then highsbret is farok 
if ripple is A 
and inloss is A 
and lowpb is A 
and highpb is A 
and carret is A or middleok or farok or closeok 
and lowsb is A or middleok or farok or closeok 
and highsb is A or middleok or farok or closeok 
and lowsbret is A or middIeok or farok or closeok 
and highsbret is A or middleok or farok or closeok 
and difference <= 3.0 

then process is end 
if vlowsbret >= vhighsbret 
then difference = vlowsbret - vhighsbret 
if vlowsbret < vhighsbret 
then difference = vhighsbret - vlowsbret 
if check process 
then check ripple 
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and check inloss 
and check lowpb 
and check highpb 
and check carret 
and check lowsb 
and check highsb 
and check lowsbret 
and check highsbret 
and check difference 

default process is noend 
query process 

query options auto 
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Appendix Eight 

Listing of knowledge-base of the passband (search 2) 
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when tuner is X- 
and process is Y 

then report component to be used (tuner] 
and report process to be used [Y] 
and report .... .. end of testing ...... 
and command reset data 
and command load aAnumbers 

if ripple is A 
and lowsbret is farleft 

then tuner is clash 
and report components previously used 
and report t2c (1 example during elicitation 
and report t1c (I example during elicitation 

if ripple is A 
and lowsbret is left 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is left 
andlowsbis left 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is closeleft 
and highsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is closeleft 
and highsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is closeleft 
and highsb is closeleft 

then tuner is clash , 
and report components previously used 
and report c7c (1 examples during elicitation 
and report t2a (1 examples during elicitation 
and report t1a (1 examples during elicitation 
and report t3a (1 examples during elicitation 

if ripple is A 
and lowsbret is left 
and lowsb is closeleft 
and highsb is closeok 

then tuner is c4a 
if - ripple is A', 
and lowsbret is left 
and lowsb is closeleft 
and highsb is middleok 
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then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is closeleft 
and highsb is farok 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is closeok 

then tuner is empty 
if ripple is A 
'and lowsbret is left 
and lowsb is middleok 
and highpb is A 

then tuner is c7a 
if ripple is A 
and lowsbret is left 
and lowsb is middleok 
and highpb is closerigt 

then tuner is, t2c 
if ripple is A 
and lowsbret is left 
and lowsb is middleok 
and highpb is right 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is middleok 
and highpb is farright 

then tuner is empty 
if ripple is A 
and lowsbret is left 
and lowsb is farok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is left 
and highsbret is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is left 
and highsbret is left 

then tuner is c7a 
if ripple is A 
and lowsbret is closeleft 
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and highsb is left , 
and highsbret is closeleft 

then tuner is c7a 
if ripple is A 
and lowsbret is closeleft 
and highsb is left 
and highsbret is closeok 

then tuner is clash 
and report components previously used 
and report c4c 1 examples during elicitation 
and report c7a 1 examples during elicitation 

if ripple is A 
and lowsbret is closeleft 
and highsb is left 
and highsbret is middleok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is left 
and highsbript is farok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is closeleft, 

then tuner is c4a 
if ripple is A 
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and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is closeok 

then tuner is t2a 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is middleok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeleft 
and highsbret is farok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is closeok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is left 

then tuner is empty 
if ripple is A' 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is closeleft 

then tuner is clash 
and report components previously used 
and report c7a I examples during elicitation 
and report c7c I examples during elicitation 

if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is closeok 

then tuner is clash 
and report components previously used 
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and report c7a 1 example during elicitation 
and report c7c 1 example during elicitation 

if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
-and lowsb is middleok 
and highsbret is middleok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is middleok 
and highsbret is farok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is A 

then tuner is clash 
and report components previously used 
and report c7c (2 examples during elicitation 
and report t2a (1 examples during elicitation 

if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is closerigt 

then tuner is t3c 
if ripple is A 

-and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is right 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeleft 
and lowsb is farok 
and highpb is farright 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeok 

, and lowsb is farleft 
then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is left 
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then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeleft 

then tuner is t3c 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is middleok 

then tuner is clash 
and report components previously used 
and report c4a (1 example during elicitation 
and report c7a (I example during elicitation 
and report c4a (1 example during testing 

if ripple is oi 
and lowsbret is closeleft, 
and highsb is closeok 
and lowsb is farok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft, 
and highsb is middleok 
and lowsb is closeok 

then tuner is clash 
and report components previously used 
and report t2a (1 example during elictation ) 
and report c4a (1 example during efictation ) 
and report c7a (2 example during testing 
and report c4a (1 example during testing 
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if ripple is A 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is middleok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is farleft 

then tuner is empty 
if ripple is Aý 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is left 

then tuner is, empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is closeok 

then tuner is empty 
if ripple is A 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is middleok 

then tuner is c7a 
if ripple is A 
and lowsbret is closeleft 
and highsb is farok 
and lowsb is farok 

then tuner is c7c 
if ripple is A 
and lowsbret is closeok 
and highsbret is farleft 

then tuner is empty 
if, ripple is A 
and lowsbret is closeok 
and highsbret is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
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and highsbret is closeleft 
then tuner is c4c 
if ripple is A 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is closeok 
andlowsbisleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbrpt is closeok 
and lowsb is closeok 

then tuner is c4a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is middleok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeok 
and highsbret is closeok 
and lowsb is farok 

then tuner is clash 
and report components previously used 
and report c7c (1 example during elicitation ) 
and report c4a (I example during elicitation ) 
and report c7a (I example during elicitation ) 
and report c7a (1 example during testing 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is left 

then tuner is empty 
if ripple is A- 
and lowsbret is closeok 
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and highsbret is middleok 
and highsb is closeleft 

then tuner is c7c 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
andlowsbisleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeok 

then tuner is c4a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is middleok 

then tuner is c4a 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farok 

then tuner is C4a 
and report previously component used 
and report t2c (2 examples during elicitation 
and report t2a (1 examples duzing elicitation 
and report c4a (1 examples during elicitation 
and report c4a (3 examples during testing 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
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and lowsb is farleft 
then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is closeok 

then tuner is, t3a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is middleok 
and lowsb is middleok 

then tuner is clash 
and report components previously used 
and report c7a 1 examples during elicitation 
and report t2a 1 examples during elicitation 

if ripple is A 
and lowsbret is closeok 
and highsbret is middIeok 
and highsb is middleok 
and lowsb is farok 

then tuner is clash 
and report components previously used 
and report t3a (1 example during elicitation 
and report t2a (2 example duzing elicitation 

if ripple is A 
and lowsbret is closeok 
and highsbret is middleok 
and highsb is farok 

then tuner is c4a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is farleft 

then tuner is empty 
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if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is closeok 

then tuner is t2a 
if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is middleok 

then tuner is c4a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is closeok 
and highsbret is farok 
and lowsb is farok 

then tuner is c4a 
if ripple is A 
and lowsbret is middleok 
and highsbret is farleft 

then tuner is c7c 
and report This was an empty rule before 

if ripple is A 
and lowsbret is middleok 
and highsbret is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeleft 

then tuner is c7a 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is left 

then tuner is empty 
if ripple is A 
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and lowsbret is middleok 
and highsbret is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is closeok 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is middleok 

then tuner is c4c 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is farleft 

then tuner is, empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is closeok 

then tuner is clash 
and report components previously used 
and report t3a (1 example during elicitation 
and report c7a (2 example during elicitation 
and report t2c (1 example during elicitation 
and report c4c (1 example during elicitation 
and report c4c (1 example during testing 

if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is middleok 

then tuner is c7a - 
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if ripple is A 
and lowsbret is middleok 
and highsbret is closeok 
and lowsb is farok 
and highsb is farok 

then tuner is c7a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is rniddleok 
and highsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbre 

,t 
is middleok 

and highsb is closeleft 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is niiddleok 
and highsb is closeleft 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowshret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb, is closeok 

then tuner is empty 
if ripple is A 
and lowshret is middleok 
and highsbret is middleok 
and highsb is closeleft 
and lowsb is middleok 

then tuner is c4c 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
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and highsb is closeleft 
and lowsb is farok 

then tuner is t2c 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is. closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is closeok 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is middleok 

then tuner is c7c 
if, ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is closeok 
and lowsb is farok 

then tuner is t3c 
if ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is middleok 

then tuner is t2a 
if, ripple is A 
and lowsbret is middleok 
and highsbret is middleok 
and highsb is farok 

then tuner is empty 
if ripple is A 

A-58 



and lowsbret is middleok 
and highsbret is farok 
and lowsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is closeok 

then tuner is empty 
if ripple is qk 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is middleok 

then tuner is c4c 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is left 

then tuner is empty 
if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is closeleft 

then tuner is clash , 
and report components previously used 
and report c7c 1 examples during elicitation 
and report t3a 1 examples during elicitation 

if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is closeok 
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then tuner is clash 
and report components previously used 
and report t3c (1 example during elicitation 
and report c7c (2 example during elicitation 
and report c7c (2 example during testing 
and report t2a (1 example during testing 

if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is middleok 

then tuner is c4a 
and report This was an empty rule before 

if ripple is A 
and lowsbret is middleok 
and highsbret is farok 
and lowsb is farok 
and highsb is farok 

then tuner is empty 
if ripple is o, k 
and lowsbret is farok 
and highsbret is farleft 

then tuner is empty 
if ripple is A 
and lowsbret is farok 
and highsbret is left 

then tuner is empty 
if ripple is A 
and lowsbret is farok 
and highsbret is closeleft 

then tuner is empty 
if ripple is A 
and lowsbret is farok 
and highsbret is closeok 

then tuner is c7a 
if ripple is A 
and lowsbret is farok 
and highsbret is middleok 

then tuner is t1a 
if ripple is A 
and lowsbret is farok 
and highsbret is farok 

then tuner is c7c 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is A 

then tuner is t3c 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is closerigt 
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then tuner is c7a 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is right 

then tuner is empty 
if ripple is closerigt 
and lowsbret is farleft 
and lowpb is farright 

then tuner is empty 
if ripple is closerigt 
and lowsbret is left 

then tuner is t3a 
if ripple is closerigt, 
and lowsbret is closeleft 
and highsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is left 

then tuner is t3c 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeleft 

then tuner is clash t2a / t2c 
and report component previously used 
and report t2a 1 examples during elicitation 
and report t2c 1 examples during elicitation 

if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is left 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is closeok 

then tuner is t3a 
if ripple is closerigt, 
and lowsbret is closeleft 
and highsb is closeok 
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and lowsb is middleok 
then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is closeok 
and lowsb is farok 

then tuner is t2a 
if ripple is closexigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is left 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is closeok 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is middleok 
and lowsb is farok 

then tuner is c4a 
if ripple is closerigt 
and lowsbret is closeleft 
and highsb is farok 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is left 
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then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is closeok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is middleok 

then tuner is clash 
and report components previously used 
and report c7c (1 example during elicitation 
and report t2a (1 example during elicitation 
and report t2c (I example during testing 
and report t2a (1 example during testing 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is A 
and highsbret is farok 

then tuner is t2a 
if ripple is closerigt, 
and lowsbret is closeok 
and highpb is closerigt 

then tuner is t3a 
and report This was an empty rule before 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is right 

then tuner is clash 
and report component previously used 
and report t2a (1 examples during elicitation 
and report t1a (1 examples during elicitation 

if ripple is closerigt 
and lowsbret is closeok 
and highpb is farright 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is left 

then tuner is empty 
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if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeleft 

then tuner is t2c 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is farleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middIeok 
and highsb is closeok 
and highsbret is left 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is closeleft 

then tuner is empty 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is closeok 

then tuner is empty, 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is closeok 
and highsbret is farok 

then tuner is clash 
and report component previously used 
and report c7a (I examples during elicitation 
and report t2a (I examples during elicitation 
and report c7c (1 examples during testing ) 
and report t2a (1 examples during testing ) 

if ripple is closerigt 
and lowsbret is middleok 
and highsb is middleok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is middleok 
and highsb is farok 

then tuner is t2a 
if ripple is closerigt 
and lowsbret is farok 

then tuner is t2a 
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if ripple is right -, 
and lowsbret is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is left 

then tuner is empty 
if ripple is right 
and lowsbret is closeleft 

then tuner is t2a 
if ripple is right 
and lowsbret is closeok 
and highsb is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is closeok 
and highsb is left 

then tuner is empty 
if ripple is right 
and lowsbret is closeok 
and highsb is. closeleft 

then tuner is t1a 
if ripple is right 
and lowsbret is closeok 
and highsb is closeok 

then tuner is t3a 
if ripple is right 
and lowsbret is closeok 
and highsb is middleok 

then tuner is t3a 
if ripple is right 
and lowsbret is closeok 
and highsb is farok 

then tuner is empty 
if - ripple is right 
and lowsbret is middleok 
and lowsb is farleft 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is left 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is closeleft 

then tuner is empty 
if ripple is right 
and lowsbret is middleok 
and lowsb is closeok 

then tuner is empty 
if ripple is right 
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and lowsbret is middleok 
and lowsb is middleok 

then tuner is t3a 
if ripple is right 
and lowsbret is middleok 
and lowsb is farok 

then tuner is t3a 
if ripple is right 
and lowsbret is farok 

then tuner is t3a 
if ripple is farright 
and lowpb is A 
and highpb is A 

then tuner is t3a 
if ripple is farright 
and lowpb is A 
and highpb is closerigt 

then tuner is t3a 
if ripple is farright 
and lowpb is, A 
and highpb is right 

then tuner is t3a 
if ripple is farright 
and lowpb is A 
and highpb is farright 
and highsb is farleft 

then tuner is empty 
if ripple is farright, 
and lowpb is A 
and highpb is farright 
and highsb is left 

then tuner is empty 
if ripple is farright 
and lowpb is A 
and highpb is farright 
and highsb is closeleft 

then tuner is empty 
if ripple is farright 
and lowpb is A 
and highpb is farright 
and highsb is closeok 

then tuner is t2c 
if ripple is farright 
and lowpb is A 
and highpb is farright 
and highsb is middleok 

then tuner is t3a 
and report This was an empty rule before 

if ripple is farright 
and lowpb is A 
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and highpb is farright 
and highsb is farok 

then tuner is t3a 
if ripple is farright 
and lowpb is closerigt 

then tuner is t2c 
if ripple is farright 
and lowpb is right 

then tuner is t1a 
if ripple is farright 
and lowpb is farright 

then tuner is empty 
query tuner 

query options auto 
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Appendix Nine 

Listing of HP-Basic program which displays the output of the 
networks 
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I! THIS IS THE LAST VERSION AT 25/6/91 
2! IT SENDS THE RESULTS TO DISC 
3 
4 
10 INTEGER Layer, Node, Max_node, Prev_max_node, Prev_node, 

NexLnode, Loopx 
20 DIM Inputx(57,4), Weight(57,11,3), Threshold(11,3) 
40 DIM Frx(50), Mrk(50), Binno(50), 
41 DIM M$[401, F$[20], A(100,2), Name$[61 
42 ! 
43 ASSIGN @Na, TO 711 
44 ASSIGN @Prt TO 1 
45 Prt=l 
46 PRINTER IS 1 
47 ! 
48 ASSIGN @Nanofmt TO 711; FORMAT OFF 
49 Meas_complete=4 
50 
51 
52 CLEAR @N4, 
53 OUTPUT @Na; "IPR; " 
54 OUTPUT @Na; "IAR; IA1; IR1; I]Bl; " 
55 OUTPUT @Na; "BPO; " 
56 ! 
57 OUTPUT @Na; "ST5; SMI; SFR1401500HZ; DF7; DIVlDBR; REFODBR; " 
58 OUTPUT @Na; "SAM+5.8DBM; FM2; " 
59 OUTPUT @Na; "RPS50%; BW3; AVO; " 
60 ! 
61 DISP Insert SIC and press 'CONT"" 
62 PAUSE 
63 DISP 
64 ! 
65 OUTPUT @Na; "DM1; TRG; " 
66 Meascomp 
67 ENTER @Na USING "%, 2A"; Junk$ 
68 ENTER @Na_nofmt; Sc_ref 
69 PRINT "Ref "; Sc_ref 
70 OUTPUT @Na; "DIV5DBR; REF-26DBR-" 
71 
72 DISP Insert unit and press 'CONT"' 
73 PAUSE 
74 DISP .... 
75 OUTPUT @Na; "DM1; TRG; " 
76 Meascomp 
77 ENTER @Na USING "%, 2A"; Junk$ 
78 ENTER @Na_nofmt; Insjoss 
79 PRINT "Approx. Insertion loss "; -Insjoss-26 
80 ! 
81 Again: 1 
82 PRINTER IS 1 
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83 Menul: ! 
84 OUTPUT @Na; "DF7; SAM+5.8DBM; FMI; ST1; SWTISEC; 

DIV10DBR; RPS100%; " 
85 OUTPUT @Na; "REF-26DBR; " 
86 OUTPUT @Na; "FRC1401500HZ; FRS40KHZ; SMI'-BW3; '. ' 
87 LOCAL 711 
88 !" 
89 Sband: 
90 Menu2: 
91 DISP "PRESS'CONI"TO MEASURE" 
92 PAUSE 
93 ! 
94 Sweep: 1 
95 DISP "" 
96 FOR I=l TO 21 
97' A(I, 1)=O 
98 A(I, 2)=O 
99 NEXT I 
100 ! ............... . ..................... LO 
102 -I=O 
104 Fl=1.380000 
105 F2=1.400000 
106 Screenl=O 
107 Screen2=400 
108 Screeri_step=Screen2/20 
110 ! 
ill OUTPUT @Na: "ST1: SM2: SWTlSEC: FRA"&VAL$(Fl)&"MHZ: FRB" 

112 
113 
114 
116 
118 
119 
120 
121 
122 
123 
124 
125 
126 
128 
129 
132 
133 
0 rl uv 

136 
150 
151 
152 

&VAL$ýF2) iz"MH'Z; FM1; " 'I- 
OUTPUT @Na; "RPS50%; REF-45DBR; DIVIODBR; TRG; " 
Measready 
FOR S=Screenl TO Screen2 STEP Screen_step 

I=I+1 - OUTPUT @Na; "MKP"&VAL$(S)&"; " 
OUTPUT @Na; "DM1; " 
ENTER @Na; Level 
OUTPUT @Na; "M? I; " 
ENTER @Na; Freql 
A(I, I)=Freq/1000 
A(I, 2)=-Level+Ins-loss+. 6 

NEXT S 
Loopl=O 
FOR J=l TO 19 

Loopl=Loopl+l 
Inputx(Loopl, l)=A(J, 2) 

PRINT USING Image 1 I; J, A(J, 1), Loop 1, Inputx(Loopi, 1) 
NEXT J 
-------------------------------------------- - -- MID 
Fl=1.400000 
F2=1.404000 
Screenl=O 
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153 Screen2=400 
154 Screenstep=Screen2120 
157 Lmin=+1000 
158 ! 
159 OUTPUT @Na; "STI; SM2; SWTlSEC; FRA"&VAL$(Fl)&"MHZ; FRB" 

&VAL$(F2)&"MHZ; FM1; " 
160 OUTPUT @Na; "RPS50%; REF-45DBR; DlVlODBR; TRG; " 
161 Measready 
162 I=O 
164 FOR S=Screenl TO Screen2 STEP Screenstep 
165 I=I+l 
168 OUTPUT @Na; "MEP"&VAL$(S)&"-" 
169 OUTPUT @Na; "DM1; " 
170 ENTER @Na; Level 
171 OUTPUT @Na; "MP1; " 
172' ENTER @Na; Freql 
173 A(I, 1)=Freq/1000 
174 A(I, 2)=-Level+Insjoss+. 6 
175 NEXT S 
177! PRINT 
178 FOR J=l TO 19 
179 Loopl=Loopl+l 
182 Inputx(Loopl, l)=A(J, 2) 
183! PRINT USING Imagell; J, A(J, 1), Loopl, Inputx(Loopl, l) 
185 NEXT J 
186! ---- --- --------------- - ---- --- -- HI 
187 FI=1.404000 
188 F2=1.420000 
189 Screenl=O 
190 Screen2=400 
191 Screen_step=Screen2/20 
192 Lmin=+1000 
193 ! 
194 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA"&VAL$(Fl)&"MHZ; FRB" 

&VAL$(F2)&"MHZ; FM1; " 
195 OUTPUT @Na; "RPS50%; REF-45DBR; DlVlODBR; TRG; " 
196 Measready 
197 I=O 
198 FOR S=Screenl TO Screen2 STEP Screen-step 
199 I=I+l 
200 OUTPUT @Na; "MKP"&VAI, $(S)&", 
201 OUTPUT @Na; "DMI; " 
202 ENTER @Na; Level 
203 OUTPUT @Na; "MP1; " 
204 ENTER @Na; Freql 
205 A(1,1)=Freq/1000 
206 A(I, 2)=-Level+Ins_loss+. 6 
207 NEXT S 
208 Imagell: IMAGE DD, 2X, DDDD. DDD, 2X, DD, 2X, DDD. D 
210 FOR J=l TO 19 
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211 Loopl=Loopl+l 
214 Inputx(Loopl, l)=A(J, 2) 
215! PRINT USING Image 1 1; J, A(J, 1), Loop 1, Inputx(Loopl, 1) 
217 NEXT J 
218 ! 
219! 
222 PRINT 
223 PRINT 
224 INPUT "ENTER FILENAME FOR 57 POINTS", File$ 
226 CREATE ASCII File$, 50 
227 ASSIGN @Disk TO File$ 
228 FOR I=l TO 57 
229! PRINT I; Inputx(l, l) 
230 OUTPUT @Disk; Inputx(I, l) 
232 Inputx(I, I)=((Inputx(I, I)*. 01)+0.1) 
234 ! PRINT I; Inputx(I, l) 
235 NEXT I 
236 ASSIGN @Disk TO *1 
237 
238 
239 
240 RESTORE 
241 
242 
243 FOR No-olLouLnodes=l TO 4 
244 FOR Loopl=l TO 11 
245 FOR Loop2=1 TO 57 
246 READ Weight(Loop2, Loopl, l) 
247! PRINT Weight(Loop2, Loopl, l) 
248 NEXT Loop2 
249 NEXT Loopl 
250 FOR Loopl=l TO 10 
251 FOR Loop2=1 TO 11 
252 READ Weight(Loop2, Loopl, 2) 
253! PRINT Weight(Loop2, Loopl, 2) 
254 NEXT Loop2 
255 NEXT Loopl 
256 FOR Loopl=l TO 10 
257 READ Weight(Loopl, 1,3) 
2581 PRINT Weight(Loopl, 1,3) 
259 NEXT Loopl 
260 FOR Loopl=l TO 11 
261 READ Threshold(Loopl, l) 
262! PRINT Threshold(Loopl, l) 
263 NEXT Loopl 
264 FOR Loopl=l TO 10 
265 READ Threshold(Loopl, 2) 
266! "PRINT Threshold(Loopl, 2) 
267 NEXT Loopl 
268 READ Threshold(1,3) 
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269 FOR Layer=l TO 3 
270 SELECT Layer 
271 CASE 1 
272 Max-node=11 
273 Prevý_maX_node=571 
274 CASE 2 
275 Max_node=10 
276 Prev_max. 

_node=11 277 CASE 3 
278 MaX_node=l 
279 Prevý_max_node=10 
280 END SELECT 
281 FOR Next_node=l TO Max-node 
284 Sumx=O. 
285 FOR Prev-jiode=l TO Prevý_max_node 
286 Sumx= Sumx+Inputx(Prevý_node, Layer)* 

Weight(Prev-node, NexLnode, Layer) 
287 NEXT Prev_node 
288 Sumx=Sumx+Threshold(Next_node, Layer) 
289 IF Layer<3 THEN 
290 InputxýNext-node, Layer+l)=(l/(l+EXP(-Sumx))) 
291 ELSE 
292 Inputx(Next_node, Layer+l)=Sumx 
293 END IF 
294 SELECT Layer 
295 - CASE 3 
296 PRINT USING "10A, D. DDD"-"OUTPUT =", Inputx(Next_node, p Layer+l) 
297 END SELECT 
299 NEXT Next-node 
300 NEXT Layer 
301 NEXT No_of ouLnodes 
302 GOTO Menu2 
3031 
3041 
308! 
309! THIS IS DATA FOR DOING C4C (LEARNED ON C4A) 
3101 
3111 WEIGHTS FROM IST INPUT NODES TO FIRST NODE OF IND 
LAYER 
32DATA 
1.7054,1.6862,1.8178,1.656,1.7115,1.5767,1.6291,1.3468,1.5618,1.4923,1.275 
6,1.3185,1.3777,1.4325,1.5456,1.52,1.5833,1.5493, -0.86580 
313DATA 
1.5812,0.1820, -0.6985, -0.6548, -0.7964, -0.8214, -0.7573, -0.6252, -0.5864, -0.667 
, -0.7946, -0.5579, -0.0432,1.5602,1.368, -0.0346, -0.2067 
314DATA 
-0.5331, -1.8867,0.2903,0.3879, -1.6108, -2.3090, -1.9934, -4.1147, -3.7425, -1.345 
8, -0.5457,0.2033,0.0654,0.0584,0.0998,0.2333,0.1874,0.09160 
315 DATA 0.1709,0.0974,0.23860 
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316 ! WEIGHTS FROM 1ST INPUT NODES TO SECOND NODE OF IND 
LAYER 
317DATA 
2.5158,2.3952,2.3875,2.4159,2.4248,2.4999,2.4166,2.1193,2.2126,2.3709,2.16 
15,2.1193,1.967,2.2638,2.1276,2.1899,2.0721,1.58628 
318DATA 
-1.6029,1.8458,0.1827, -0.945, -0.909, -0.8244, -0.9231, -0.9592, -0.8964, -0.8545#- 0.7511, -0.8708, -0.6894,0.1577,2.4668,1.9297, -0.457 
319DATA 
-1.398, -0.979, -2.4885,0.271,0.1042, -2.6323, -3.291, -2.7768,, 5.1375, -4.7547, -1. 
7416, -0.978, -0.0323, -0.0941, -0.0516,0.0489,0.11587 
320 DATA 0.1884,0.1211,0.0283,0.1399,0.1733 
321 ! WEIGHTS FROM 1ST INPUT NODES TO THIRD NODE OF IND 
LAYER 
322DATA 
1.2599,1.5166,1.4285,1.7237,0.7171,0.345,0.3048, -0.2053, -0.2489, -0.7161, -0. 
9294, -1.0911, -1.4691, -1.6038, -1.6178, -0.9569, -0.1923 
323DATA 
0.7266, -0.7471,1.6313, -0.1382, -1.3494, -1.1822, -1.2035, -1.1812, -1.1775, -1.024 
9, -0.9898, -0.956 , 

2, -1.0977, -1.0489, -0.5762,1.063,1.846 
324DATA 
2.6369,1.3001,1.6308,0.6172,0.8608,2.4969, -0.0971, -0.6238,0.5247, -1.9494, -1 
. 2785,1.4571,1.8799,2.7754,2.0713,1.8505,1.428,1.2671,1.110 
325 DATA 0.9573,0.5478,0.6825,0.4302 
326 ! WEIGHTS FROM 1ST INPUT NODES TO FOURTH NODE OF IND 
LAYER 
327DATA 
0.9649,1.1817,1.2409,1.47,0.5352,0.3692,0.3159, -0.0002, -0.1967, -0.4514, -0.7 
641, -1.0861, -1.1949, -1.3355, -1.2471, -0.3539,0.9004,2.518 
328DATA 
2.1994,1.9063,0.0436, -1.0038, -0.9388, -0.8094, -1.0623, -0.8029, -0.9177, -0.8008 
, -0.716, -0.7886, -0.8073, -0.2346,1.6015,1.6073,2.0828,1.1075 
329DATA 
1.2788,0.2272,1.1158,2.1758,0.0525, -0.7542, -0.0288, -2.3981, -1.9523,0.2939,0 
. 7205,1.5084,1.2459,0.8794,0.6516,0.6521,0.4521,0.4783 
330 DATA 0.175,0.2357,0.1441 
331 ! WEIGHTS FROM IST INPUT NODES TO FIFTH NODE OF IND 
LAYER 
332DATA 
1.9901,1.7912,1.8668,1.8065,1.8999,1.7316,1.5983,1.5832,1.548,1.6979,1.586 
2,1.5071,1.4992,1.5322,1.5582,1.789,1.7337,1.6234, -0.9936 
3-3'3DATA 
1.6702,0.0718, -0.8268, -0.6721, -0.6783, -0.8339, -0.7771, -0.7426, -0.6866, -0.637 
0, -0.7639, -0.566, -0.0264,1.8716,1.5631,0.0763, -0.3124, -0.6324 
334DATA 
-2.026,0.1063,0.467, -1.7374, -2.4888, -2.1225, -4.4329, -3.9213,. 1.4887, -0.711l, 
0.0514,0.2415,0.1864,0.0704,0.2061,0.0643,0.1558,0.2082 
335 DATA 0.1447,0.2068 
336 ! WEIGHTS FROM IST INPUT NODES TO SIXTH NODE OF IND 
LAYER 
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337DATA 
1.5819,1.3994,1.5173,1.2064,1.7098,2.0028,1.5771,1.8332,1.9508,2.2222,2.53 
38,2.5665,2.6559,2.9872,2.7367,1.5754, -0.3105, -2.7309 
338DATA 
-6.5742, -0.646, -0.5992, -0.7228, -0.5495, -0.4839, -0.5621, -0.6491, -0.5607, -0.641 
6, -0.5584, -0.4884, -0.5631, -0.4482, -0.0655,0.6264, -0.8728 

DATA 
-0.7563, -1.0207, -1.7276, -1.1338, -1.1366, -2.2394, -2.5464, -2.3386, -3.7755, -3.55 
37, -1.8299, -0.9768, -0.1829, -0.0315,0.0681, -0.0083,0.2607 
340 DATA 0.2001,0.1831,0.2386,0.3356,0.5613 
341 ! VVTEIGHTS FROM 1ST INPUT NODES TO SEVENTH NODE OF IND 
LAYER 
342DATA 
1.2214,1.5381,1.4747,1.75,0.6924,0.5081,0.4486,0.0486, -0.1136, -0.5959, -0.78 
09, -1.0821, -1.3284, -1.6308, -1.5428, -0.5304,0.7299,2.1261 
343DATA 
1.3985,1.8813, -0.0006, -1.3246, -1.0367, -1.086, -1.1192, -1.0132,. 1.0403, -1.0240 
, -0.9412, -1.1037, -0.8656, -0.3417,1.5146,1.8954,2.5244 
344DATA 
1.2452,1.5969,0,7091,1.0204,2.3797, -0.0837, -0.6935,0.0792, -2.2889'. 1.8771,0 

. 5788,1.0701,1.9302,1.4296,1.1358,0.9263,0.8606,0.6705 
345 DATA 0.4769,0.3369,0.2451,0.1678 
346 ! WEIGHTS FROM 1ST INPUT NODES TO EIGHTH NODE OF IND 
LAYER 
347DATA 
1.0236,1.3993,1.3658,1.6092,0.8041,0.4712,0.3225,. 0.0785, -0.0848, -0.5058,. 0 

. 793, -1.0316, -1.1897, -1.3756, -1.4596, -0.5494,0.7615,2.3191 
348DATA 
1.6652,1.8015, -0.0424, -1.111, -0.9029, -0.935, -0.9671, -1.0377, -0.9534, -0.8302,. 
0.8324, -0.9532, -0.7524, -0.2031,1.5052,1.7483,2.318,1.22753 
349DATA 
1.4594,0.4527,1.0866,2.3117, -0.0529, -0.7106,0.0588, -2.2574, -1.7795,0.454,0. 
8475,1.6529,1.3089,0.9748,0.8728,0.6793,0.6074,0.4943,0.2523 
350 DATA 0.218,0.086 
351 1 WEIGHTS FROM 1ST INPUT NODES TO NINETH NODE OF IND 
LAYER 
352DATA 
1.2672,1.3552,1.5325,1.6085,0.6318,0.3876,0.3591, -0.0145, -0.2325,. 0.4929,. 0 

. 7531, -1.1901, -1.3432, -1.4546, -1.6355, -0.9454, -0.0191,0.9993 
353DATA 
-0.2964,1.6265, -0.1868, -1.2415, -1.0215, -l. ol9l, -1.0779, -1.1247, -1.1679, -l. 08 
23, -1.0482, -1.089, -0.9349, -0.5188,1.2855,1.8188,2.5913 
354DATA 
1.2689,1.641,0.5635,0.8944,2.4673, -0.1465,. 0.5923,0.3818, -1.9583, -1.4859,1. 
3146,1.6137,2.432,1.9992,1.6747,1.3028,1.1504,0.8553 
355 DATA 0.7551,0.6142,0.4887,0.4092 
356 ! Vv`EIGHTS FROM 1ST INPUT NODES TO TENTH NODE OF IND 
LAYER 
357DATA 
0.5466,0.7718,0.6676,0.9327,0.3583,0.1768,0.1418, -0.1721, -0.2081, -0.3505, -0 
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. 6532, -0.8608, -0.9692, -0.8972, -0.8145,0.027,1.0047,2.30349 
358DATA 
2.1322,1.6969,0.2209, -0.7477, -0.7777, -0.6731, -0.6739, -0.7427, -0.725, -0.587l, 
-0.6055, -0.5663, -0.5534, -0.213,1.3218,1.2017,1.3019,0.76643 
359DATA 
0.6119, -0.2955,1.1374,1.7687,0.2226, -0.4985, -0.2279, -2.2104, -1.7272, -0.1902, 
0.4874,1.079,0.8319,0.6921,0.4226,0.4785,0.4155,0.28257 
360 DATA 0.0433,0.0525, -0.0206 
361 ! WEIGHTS FROM 1ST INPUT TO ELEVENTH NODE OF 1ND 
LAYER 
362DATA 
0.5865,0.5576,0.6355,0.8511,0.3259,0.1207,0.1536, -0.0052, -0.0984, -0.3556, -0 
. 454, -0.6591, -0.7156, -0.6406, -0.7134, -0.0677,0.7952,1.8213 
363DATA 
1.6868,1.4035,0.298, -0.5292, -0.5705, -0.5756, -0.5439,. 0.6292, -0.5922, -0.48091 
-0.583, -0.668, -0.4791, -0.1398,0.9935,1.1301,0.9148,0.5805 
364DATA 
0.4682, -0.3096,1.1135,1.5773,0.3575, -0.3853, -0.439, -2.0493, -1.7594, -0.2621,0 
. 31,0.8143,0.6283,0.6007,0.3624,0.2647,0.227,0.3153,0.13563 
365 DATA 0.. 0985,0.0927 
366 1 WEIGHTS FROM IST LAYER NODES TO FIRST NODE OF 2ND 
LAYER 
367DATA 
-0.4260, -0.8936, -1.2925, -0.7822, -0.3524,1.4944, -0.9189, -0.8249, -1.2242, -0.64 
65, -0.3090 
368 ! WEIGHTS FROM 1ST LAYER NODES TO SECOND NODE OF 2ND 
LAYER 
369DATA 
-0.3681, -0.5297, -1.3782, -0.6117, -0.3637,1.2812, -0.7503, -0.5911, -1.0642, -0.42 
26, -0.2374 
370 ! WEIGHTS FROM 1ST LAYER NODES TO THIRD NODE OF 2ND 
LAYER 
371DATA 
-0.3703, -0.5028, -1.2933, -0.5446, -0.4311,1.2952, -0.7872, -0.5846,, 1.1442, -0.42 
56, -0.403 
372 ! VvrEIGHTS FROM 1ST LAYER NODES TO FOURTH NODE OF 2ND 
LAYER 
373DATA 
-0.3571,. 0.4842, -1.3277, -0.5512, -0.3569,1.2426, -0.7175, -0.5436, -1.105, -0.461 
4, -0.4473 
374 ! WEIGHTS FROM IST LAYER NODES TO FIFTH NODE OF 2ND 
LAYER 
375DATA 
-0.386, -0.6443, -1.3222, -0.606, -0.4141,1.3604, -0.7894, -0.6911, -1.2168, -0.3903, 
-0.28053 
376 ! WEIGHTS FROM IST LAYER NODES TO SIXTH NODE OF 2ND 
LAYER 
377DATA 
-0.2893, -0.747, -1.2615, -0.5905, -0.3922,1.3591, -0.7614, -0.713, -1.2423, -0.4798P 
-0.43833 
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378 ! WEIGHTS FROM 1ST LAYER NODES TO SEVENTH NODE OF 2ND 
LAYER 
379DATA 
-0.273, -0.1772, -1.3838, -0.3308, -0.4379,1.0309, -0.64, -0.5318, -1.2122, -0.2999,. 0.5106 
380 ! WEIGHTS FROM 1ST LAYER NODES TO EIGHTH NODE OF 2ND 
LAYER 
381DATA 
-0.268, -0.9124, -1.3525, -0.7842, -0.3672,1.4543, -0.8172, -0.8422,. 1.205, -0.4682, 
-0.37493 
382 ! WEIGHTS FROM 1ST LAYER NODES TO NINETH NODE OF 2ND 
LAYER 
383DATA 
-0.3792, -0.7339, -1.2309, -0.6663, -0.4636,1.4558, -0.8864, -0.838, -1.148, -0.5701, 
-0.39593 
384 ! WEIGHTS FROM IST LAYER NODES TO TENTH NODE OF 2ND 
LAYER 
385DATA 
-0.3314,0.106, -1.4582, -0.3749, -0.3677,0.7514, -0.5944,. 0.3731, -1.1957, -0.3436 
, -0.49773 
386 ! WEIGHTS FROM 2ND LAYER NODES TO FIRST NODE OF 3ND, 
LAYER 
387DATA 
2.1717,2.0299,2.042,2.011,2.0901,2.0886,1.9205,2.1465,2.1407,1.8425 
388 ! THRESHOLDS OF IST LAYER 
389DATA 
-5.7925, -7.0155, -9.749, -7.4551, -6.0775, -5.468, -8.7614, -8.1127, -9.4196, -5.3607 
, -4.6895 
390 ! THRESHOLDS OF 2ND LAYER 
391DATA 
-2.2662, -2.4902, -2.4485, -2.4863, -2.4021, -2.3821, -2.62991-2.3498, -2.3166, -2.729- 392 THRESHOLDS OF 3ND LAYER 
393 DATA 0.0393 
394 
395 THIS IS DATA FOR DOING C4A (LEARNED ON C4C) 
396 
397 WEIGHTS FROM INPUT LAYER TO FIRST NODE OF 1ST LAYER 
398DATA 
-0.5326, -0.4641, -0.3858, -0.5713, -0.5249, -0.5759, -0.519, -0.6862, -0.5337, -0.706 
5, -0.7948, -0.7885, -0.7038, -0.9384, -0.8808, -1.1824, -1.349 
399DATA 
-2.2014, -2.2053,0.7106,1.0498,0.4152,0.1029,0.1971,0.1146, -0.0151,0.073,0.0 
914, -0.0054, -0.03,0.1736, -0.3038, -1.3411, -0.5053,1.7871,0.5646 
4010DATA 
-0.7283,2.5025,1.9539,2.8437, -1.0475, -0.1296,1.6436,2.2876,1.5952, -0.29110- 
0.8008, -0.3687, -0.1418,0.3828,0.3909,0.326,0.4262,0.5074 
401 DATA 0.5397,0.3043,0.62429 
402 WEIGHTS FROM INPUT LAYER TO SECOND NODE OF IST LAYER. 
403DATA 
-0.0156, -0.0662, -0.1083, -0.0965, -0.1372,0.0124, -0.0442, -0.2562, -0.2206, -0.16 
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09, -0.2517, -0.3201, -0.4272, -0.3864, -0.4978, -0.5273, -0.61276 
404DATA 
-1.1385, -0.0751, -0.5378, -0.281, -0.2515, -0.0751,0.0345, -0.0467, -0.19, -0.1683, - 
0.1608, -0.0845, -0.0645,0.0709,0.2902,0.2282,0.5861,0.33836 
405DATA 
-1.071, -2.338, -1.7791, -0.3594,0.0113, -0.3735, -0.2001,0.8384,1.4309,1.1215, -0. 1026, -0.4446, -0.0423,0.0379,0.4695,0.5496,0.4504,0.67798 
406 DATA 0.7637,0.6533,0.5304,0.8088 
407 WEIGHTS FROM INPUT LAYER TO THIRD NODE OF 1ST LAYER 
408DATA 
-0.4098, -0.2758, -0.3983, -0.3596, -0.3766, -0.4773, -0.4199, -0.5553, -0.4596, -0.64 
99, -0.5813, -0.5456, -0.7233, -0.7536, -0.7135, -0.8807 
409DATA 
-1.0333, -1.7112, -1.4021,0.3085,0.4775, -0.0348, -0.0642,0.0594,0.0713, -0.1167, 
0.0081,0.0274,0.0175,0.0117,0.0694, -0.1716, -0.719,0.01738 
410DATA 
1.5695,0.1179, -0.8575,1.2039,0.6631,1.5948, -0.8081,0.1849,1.5235,1.8821,1.4 
287, -0.1598, -0.5391, -0.1113, -0.0022,0.5076,0.3472,0.2551 
411 DATA 0.4374,0.5731,0.3794,0.4081,0.48361 
412! WEIGHTS FROM INPUT LAYER TO FOURTH NODE OF IST LAYER8 
413DATA 
0.2749,0.3397,0.3018,0.2705,0.0529,0.2349,0.1193,0.1067,0.0316,0.0139, -0.0 
646, -0.2138, -0.2066, -0.2887, -0.2646, -0.4372, -0.7195'. 1.3677 
414DATA 
0.278, -0.7011, -0.6183, -0.4273, -0.0564,0.1107, -0.143, -0.0468, -0.2005, -0.102l, - 
0.0611,0.046,0.1277,0.4614,0.697,0.5526,0.1028, -1.4833, -3.1431 
41.5DATA 
-2.7204, -0.7787, -0.3658, -0.5334, -0.9808,0.908,1.4979,1.245, -0.4564, -0.9148,. 
0.4047, -0.0301,0.5188,0.5333,0.5361,0.7638,1.233,0.9995 
416 DATA 0.7796,1.3581 
417! WEIGHTS FROM INPUT LAYER TO FIFTH NODE OF 1ST LAYER 
418DATA 
0.1698,0.0275,0.0619, -0.0168,0.043, -0.0342, -0.1489, -0.0825, -0.1714, -0.093, -0. 
116, -0.2271, -0.2142, -0.4397, -0.4385, -0.3944, -0.60561,1.13214 
419DATA 
-0.028, -0.5537, -0.4796, -0.3545,0.0567,0.0923, -0.0745, -0.1305, -0.142, -0.1166, - 
0.0912, -0.0664,0.1726,0.3232,0.4199,0.6243,0.3158, -1.28942 
420DATA 
-2.7291, -2.0121, -0.6189, -0.034, -0.445, -0.4828,0.9135,1.5243,1.231, -0.348, -0.6 
433, -0.3037,0.1298,0.6035,0.5145,0.4979,0.5783,0.90692 
421 DATA 0.9259,0.6028,1.03081 
422! WEIGHTS FROM INPUT LAYER TO SICKTH NODE OF 1ST LAYER 
423DATA 
-0.0875, -0.0378,0.0738, -0.0998,. 0.0653,0.0055, -0.2018, -0.1212, -0.1955P, 0.182 
7, -0.1806, -0.3219, -0.3358, -0.4082,. 0.4222, -0.5398, -0.5209 
424DATA 
-0.9498, -0.102, -0.4682, -0.2871, -0.3704, -0.012,0.0743, -0.0329, -0.1413, -0.0679, 
-0.1646, -0.0854,0.0383,0.1307,0.2465,0.2097,0.4868,0.13582 
425DATA 
-1-0954, -2.31, -1.5477, -0.2604,0.1336, -0.3097, -0.225,0.6996,1.1924,0.9046, -0.2 
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234, -0.4206, -0.1335,0.1281,0.5281,0.447,0.4547,0.55341 
426 DATA 0.6782,0.6076,0.5109,0.8672 
427! WEIGHTS FROM INPUT LAYER TO SEVENTH NODE OF 1ST LAYER 
428DATA 
0.1572,0.2916,0.1445,0.1172, -0.0388,0.1299,0.0561,0.0025, -0.0226, -0.2077, -0 
. 1438, -0.2164, -0.297, -0.4696, -0.371, -0.4143, -0.5833, -1.25092 
429DATA 
0.143, -0.5725, -0.4267, -0.51, -0.019, -0.0251, -0.0468, -0.1058, -0.1676, -0.17011,0. 
1363, -0.1242,0.1819,0.3923,0.5006,0.6726,0.1198, -1.4248 
430DATA 
-2.9161, -2.287, -0.6503, -0.2219, -0.5227, -0.6062,0.9047,1.5765,1.2941, -0.3935, 
-0.7445, -0.272, -0.0844,0.5016,0.5601,0.5352,0.7701,0.9858 
431 DATA 0.9752,0.6361,1.16750 
432! WEIGHTS FROM INPUT LAYER TO EIGHTH NODE OF 1ST LAYER, 
433DATA 
-0.3254, -0.1115, -0.2156, -0.2542, -0.2014, -0.1991, -0.3525, -0.4048, -0.2809, -0.39 
67, -0.3986, -0.3974, -0.368, -0.3959, -0.4309, -0.4571, -0.36882 
434DATA 
-0.3643, -0.181,0.341,0.3785,0.0768, -0.0159,0.1037,0.0913, -0.1661, -0.1132,0.0 
093, -0.0350, -O. Q734,0.0306, -0.3257, -0.8837,0.3807,1.52818 
435DATA 
0.2107, -0.6054,1.0688,1.967,1.7485,0.195,0.1963,0.9246,1.0195,0.9631,0.344 
7,0.1201,0.3338,0.4218,0.495,0.5844,0.4614,0.5894,0.65298 
436 DATA 0.5654,0.4654,0.56558 
437! WEIGHTS FROM INPUT LAYER TO NINETH NODE OF 1ST LAYER3 
438DATA 
0.4098,0.3752,0.4829,0.2944,0.1844,0.2507,0.2499,0.1964,0.1135,0.0875,0.05 
09, -0.2053, -0.1966, -0.286, -0.4151, -0.5957, -0.8385, -1.8335 
439DATA 
0.3622, -0.7584, -0.6493, -0.5039,0.0924,0.1294,0.0543, -0.1606, -0.2418, -0.1786, 
-0.1906, -0.0166,0.3264,0.6636,1.0511,0.9389,0.2585,. 1.77132 
440DATA 
-3.6126, -3.2705, -0.8187, -0.5098, -0.9113, -1.3164,1.1003,2.1909,1.7122, -0.7046 
, -1.3023, -0.68, -0.1774,0.7294,0.7107,0.5689,0.8784,1.3602 
441 DATA 1.3411,0.8554,1.64651 
442! WEIGHTS FROM INPUT LAYER TO TENTH NODE OF IST LAYER 
443DATA 
0.1671,0.3047,0.1039,0.1909,0.0772,0.1578,0.0661, -0.0354,0.0021, -0.0044, -0. 
1382, -0.2716, -0.3226, -0.2841, -0.3311, -0.3851, -0.7302,. 1.4478 
444DATA 
0.0452, -0.6138, -0.5008, -0.449, -0.1111,0.0359,0.0122, -0.2012, -0.222, -0.1018, - 
0.1507,0.054,0.2,0.399,0.6769,0.5519,0.1469, -1.3691, -3.1044 
445DATA 
-2.516, -0.6089, -0.262, -0.5085, -0.7724,0.9636,1.5773,1.3221, -0.5286, -0.7090, - 
0.2781, -0.0226,0.644,0.5462,0.5618,0.8575,1.1261,0.8955 446 DATA 
0.6466,1.1687 
447! WEIGHTS FROM INPUT LAYER TO ELEVENTH NODE OF 1ST 
LAYER 
448DATA 
0.3928,0.3108,0.295,0.3698,0.1567,0.1686,0.1451,0.1413,0.0938p-0.085,. 0.063 
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4, -0.2354, -0.2494, -0.25, -0.439, -0.5266, -0.7649, ý1.5522 
449DATA 
0.2352, -0.6836, -0.4494, -0.3954,0.01,0.0473,0.0402, -0.1804, -0.1806, -0.08739-0. 
2113, -0.1296,0.246,0.5765,0.768,0.7136,0.0733, -1.574 
450DATA 
-3.3648, -2.8066, -0.6694, -0.3297, -0.5991, -1.0349,0.8207,1.8019,1.3402, -0.5662 
, -0.8967, -0.462, -0.1508,0.693,0.6144,0.4403,0.7863,1.3153 
451 DATA 1.0977,0.7681,1.42266>452 
WEIGHTS FROM 1ND LAYER NODES TO FIRST NODE OF 2ND LAYER 

453DATA 
. 0.6997, -0.7052, -0.53, -0.8284, -0.6257, -0.4957, -0.7538, -0.9141, -1.2098, -0.8673 
j. 0.8674 
454! WEIGHTS FROM 1ST LAYER NODES TO SECOND NODE OF 2ND 
LAYER . 455DATA 
-0.6751, -0.5507, -0.6291, -0.9774, -0.657, -0.6176, -0.8019, -0.9977, -1.0779, -0.839 
9,4841 
456! WEIGHTS FROM IST LAYER NODES TO THIRD NODE -OF 2ND 
LAYER 
457DATA 
-0.6516, -0.547, -0.5104, -0.8806, -0.7, -0.5273,, 0.812, -0.9887, -1.1175, -0.8106, -0. 
95148 
458! WEIGHTS FROM 1ST LAYER NODES TO FOURTH NODE OF 2ND 
LAYER 
459DATA 
-0.6236, -0.6264, -0.5007, -0.9323, -0.6357, -0.5308, -0.758, -0.9689, -1.0525, -0.859 
5, -0.97620 
460! WEIGHTS FROM 1ST LAYER NODES TO FIFTH NODE OF 2ND 
LAYER 
461DATA 
-0.6901, -0.601, -0.5791, -0.8536, -0.7098, -0.5652, -0.7668, -0.985, -1.2262, -0.7416 
, -0.8723 
462! WEIGHTS FROM IST LAYER NODES TO SIXTH NODE OF 2ND 
LAYER 
463DATA 
-0-55, -0.672, -0.4992, -0.8046, -0.6347, -0.5274, -0.7132, -1.0383, -1.2134p, 0.7899'. 
0.97583 
464! WEIGHTS FROM IST LAYER NODES TO SEVENTH NODE OF 2ND 
LAYER 
465DATA 
-0-5554, -0.6472, -0.4716, -0.8255,. 0.7974, -0.5622, -0.7302P. 1.0351, -1.1127, -O. 73 
47, -0.9875 
466! WEIGHTS FROM 1ST LAYER NODES TO EIGHTH NODE OF 2ND 
LAYER 
467DATA 
-0-5508, -0.6301, -0.6329, -0.8615, -0.6152,. 0.6101, -0.6812, -1.0152, -1.1999, -0.72 
21, -0.9752 468! WEIGHTS FROM 1ST LAYER NODES TO NINETH NODE OF 2ND 
LAYER 
469DATA 
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-0.5986, -0.5131, -0.4663, -0.8055, -0.7053, -0.5212, -0.793, -1.0249, -1.1406, -0.857 3, -0.97052 
470! WEIGHTS FROM IST LAYER NODES TO TENTH NODE OF 2ND 
LAYER 
471DATA 
-0.6881, -0.5584, -0.5557, -0.9544, -0.7613,. 0.6177, -0.7256, -0.9783, -1.0858, -0.79 ll, -0.9124 
472! WEIGHTS FROM 2ND LAYER NODES TO FIRST NODE OF 3RD 
LAYER 
4-73DATA 
1.4987,1.4891,1.4934,1.4942,1.4948,1.4988,1.495,1.5009,1.4998,1.48758 
474! THRESHOLDS OF 1ST LAYER 
47ý5DATA 
0.1063, -1.1184, -0.7053, -1.4004, -1.247, -1.1718, -1.2812, -0.733, -1.4439, -1.2136, 
-1.32971 
476! THRESHOLDS OF 2ND LAYER 
477DATA 
-1.592, -1.4998, -1.5475, -1.5828, -1.5153, -1.5493, -1.5548, -1.5442, -1.554, -1.5244 
478! THRESHOLDS OF 3RD LAYER 
479 DATA -0.1369 
480! 
481! THIS IS DATA FOR DOING C7C (LEARNED ON C7A) 
482 
483! WEIGHTS FROM INPUT NODES TO FIRST NODE OF 1ST LAYER 
484DATA 
-2.4549, -2.3229, -1.7672, -2.0566, -0.7999, -0.071,0.0644,0.8988,1.0743,1.5834, l 

. 7837,1.97,1.9369,1.8503,1.6613,0.8948,0.0603, -0.2645 
485DATA 
-1.4781, -2.2384, -1.7873, -1.3837, -0.6214, -0.3756, -0.457, -0.7985, -0.6755, -0.889 
5, -0.7821, -0.7362, -0.4108,0.0223,0.357,0.7908,1.2379 
486DATA 
1.3089,0.8573,0.9444,0.9907,1.7586,0.4414, -0.2865,0.4228,2.1211,0.6179,0.2 
744, -0.4988, -1.827, -0.4668, -0.1557,0.1135,0.0363,0.4529,0.76554 
487 DATA 0.8196,1.0777,1.3797 
488! WEIGHTS FROM INPUT NODES TO SECOND NODE OF 1ST LAYER 
489DATA 
-2.0541, -2.106, -1.5474, -1.8677, -0.7691, -0.369, -0.1108,0.4884,0.655,1.1395,1.2 
752,1.3716,1.3908,1.5975,1.267,0.6413, -0.1168, -0.58480 
490DATA 
-1.4955, -1.6476, -1.147, -0.7323, -0.3485, -0.0558, -0.2692, -0.4032, -0.46, -0.3872,. 
0.3747, -0.4, -0.0822,0.2756,0.5947,0.7053,0.9488,0.83967 
491DATA 
0.2414,0.0677, -0.0524,0.3022, -0.2929, -0.533,0.4376,2.0498,0.8888,0.4058, -0. 
4799, -1.5975, -0.379, -0.0126,0.1803,0.2904,0.385,0.6176,0.888 
492 DATA 0.9841,1.1557 
493! WEIGHTS FROM INPUT NODES TO THIRD NODE OF IST LAYER 
494DATA 
-2.2205, -2.177, -1.6166, -1.8605, -0.9124, -0.1141, -0.0908,0.5961,0.7769,1.4067, 
1.479,1.6885,1.6628,1.7774,1.5696,0.8319,0.1908, -0.0558 
495DATA 
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-1.1411, -2.1293, -1.6146, -1.3761, -0.5961, -0.386, -0.6235, -0.7741, -0.8038,. 0.798 
l, -0.784, -0.7281, -0.4498, -0.0232,0.2436,0.6066,1.10098 
496DATA 
1.2828,1.0072,1.169,1.1696,1.9512,0.5972, -0.1957,0.607,2.1647,0.605,0.3949, 
-0.3808, -1.7226, -0.4611, -0.1145,0.0666,0.1752,0.4665,0.62588 
497 DATA 0.8465,1.0651,1.49331 
498! WEIGHTS FROM INPUT NODES TO FOURTH NODE OF IST LAYER 
499DATA 
-2.3365, -2.1853, -1.7966, -2.0085, -0.7929, -0.2523,0.0974,0.7532,0.822,1.2038, l 
. 5779,1.5976,1.6935,1.6399,1.3763,0.5414, -0.3404, -1.18315 
500DATA 
-2.1653, -1.492, -0.8904, -0.6549, -0.1681,0.188,0.0385, -0.3335, -0.3476, -0.4173,. 
0.2531, -0.0991,0.1081,0.45,0.82,1.0522,1.0021,0.7233 
501DATA 
-0.1828, -0.5565, -0.6757, -0.478, -0.7705, -0.6349,0.4558,2.1462,0.83,0.4568, -0.5 
369, -1.5014, -0.4109, -0.1177,0.0812,0.2625,0.4183,0.58665 
502 DATA 0.9168,0.8719,1.15527 
503! WEIGHTS FROM INPUT NODES TO FIFTH NODE OF IST LAYER 
504DATA 
-2.3222, -2.1726,1-1.7156, -2.0303, -0.8267, -0.1403,0.0439,0.6137,0.9064,1.3188, 
1.6533,1.6931,1.7687,1.7163,1.3851,0.8667, -0.0694, -0.3665 
505DATA 
-1.5029t, 1.962, -1.4459, -1.1398, -0.4466, -0.2435, -0.432, -0.585,. 0.6589, -0.6034,. 
0.6864, -0.5277, -0.3235,0.0679,0.3627,0.8292,1.1703,1.1352 
506DATA 
0.6329,0.6329,0.5708,1.0458,0.0594, -0.2808,0.589,2.3975,0.8521,0.5238, -0.50 
27, -1.6903, -0.4719, -0.1352,0.0368,0.1447,0.4171,0.7336 
507 DATA 0.8309,0.9825,1.3243 
508! WEIGHTS FROM INPUT NODES TO SIXTH NODE OF 1ST LAYER 
509DATA 
-2.0594, -2.0273, -1.6004, -1.7756, -0.9104, -0.2596, -0.1565,0.4882,0.7258,1.0906 
, 1.227,1.3038,1.3378,1.4895,1.2035,0.7819,0.0554,0.1624 
510DATA 
-0.8118, -2.056, -1.5817, -1.1657, -0.5425, -0.2208, -0.5213, -0.7342, -0.7013, -0.722 
6p-0.7162, -0.5851, -0.4758, -0.0239,0.1489,0.7276,1.0109 
511DATA 
1.0914,0.8567,0.8182,0.9086,1.8964,0.4671, -0.1147,0.7187,2.3509,0.8245,0.4 
296, -0.3751, -1.7182, -0.3116,0.014,0.034,0.1347,0.4271,0.82452 
512 DATA 0.8845,1.0677,1.4463 
513! WEIGHTS FROM INPUT NODES TO SEVENTH NODE OF IST 
LAYER 
514DATA 
-2.3966, -2.2665, -1.8559, -2.0819, -0.7752, -0.336,0.029,0.7857,0.9069,1.4918, l. 
696,1.8527,1.7349,1.7966,1.5595,0.7518, -0.4661, -1.44398 
515DATA 
-2.5469, -1.5388, -0.9324, -0.6174, -0.191,0.1977, -0.0891, -0.1604, -0.2451, -0.344 
9, -0.2647, -0.1701,0.1665,0.5167,0.9031,1.1728,1.1858,0.7324 
516DATA 
-0.1584, -0.621, -0.8985, -0.6585, -0.8554,. 0.7915,0.3019,2.1923,0.8148,0.3069'. 
0.6116, -1.5131, -0.4926, -0.1195,0.1761,0.2013,0.4422,0.73144 517 DATA 
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0.8374,0.961,1.2423 
518! WEIGHTS FOM INPUT NODES TO EIGHTH NODE OF 1ST LAYER 
519DATA 
-2.27, -2.1913, -1.7951, -1.8872, -0.7494, -0.3147,0.0712,0.5673,0.785,1.245,1.36 
31,1.5176,1.656,1.6464,1.4321,0.7296, -0.2586, -0.9207, -1.726 
520DATA 
-1.7326, -1.077, -0.8729, -0.3666,0.1304, -0.2524, -0.2846, -0.4304, -0.5409, -0.488 3, -0.2885, -0.0793,0.3347,0.6603,0.9439,1.0866,0.862,0.06776 
521DA ýT A 
-0.1728, -0.287,0.0996, -0.3965, -0.5418,0.5162,2.1123,0.8764,0.3014, -0.4558, -1 
. 6334, -0.3393, -0.1511, -0.0012,0.2441,0.5583,0.7366,0.8619AY522 DATA 
0.975,1.16158 
523! WEIGHTS FROM INPUT NODES TO NINETH NODE OF 1ST LAYER. 
524DATA 
-2.0763, -1.9956, -1.5501, -1.8702, -0.8286, -0.3852, -0.1505,0.5199,0.7156,0.984, 
1.2007,1.3342,1.3994,1.4234,1.0896,0.4892, -0.3623, -0.8381 
525DATA 
-1.5269, -1.3491, -0.826, -0.5802, -0.1197,0.0171, -0.0419, -0.198, -0.3489, -0.4277t 
-0.3102, -0.1332,0.0733,0.3651,0.5798,0.7989,0.9625,0.52996 
52,6DATA 
-0.1982, -0.5123, -0.6372, -0.2606, -0.5259, -0.5704,0.5704,2.0671,0.9193,0.49631 
-0.5671, -1.4984, -0.4451,0.0318,0.1229,0.2422,0.4742,0.70396 
527 DATA 0.6845,0.8876,1.16853 
528! WEIGHTS FROM INPUT NODES TO TENTH NODE OF 1ST LAYER 
529DATA 
-2.3691, -2.4287, -1.6102, -1.9907, -0.9324,0.1755,0.1388,0.9689,1.1364,2.021,2. 
1585,2.2389,2.0843,2.2313,2.0233,1.4583,1.0039,1.1644 
530DATA 
-0.6229, -2.9251, -2.4377, -2.1163, -1.1042, -0.7743, -0.91731-1.2808,. 1.2675,. l. 34 
53, -1.3317, -1.1432, -0.9855, -0.5851, -0.075,0.7128,1.75313 
531DATA 
2.5853,2.6601,3.6818,3.3754,4.8412,1.7359,0.0584,0.227,1.5901, -0.04047, -0.0 
754, -0.6222, -2.2901, -0.7356, -0.316, -0.2509, -0.1646,0.23133(532 DATA 
0.6245,0.7099,1.0856,1.5502 
533! WEIGHTS FROM INPUT NODES TO ELEVENTH NODE OF IST 
LAYER 
534DATA 
-2.049, -2.0172, -1.5801, -1.9052, -0.8557, -0.3014, -0.1578,0.4403,0.7366,1.0346, 
1.3028,1.5043,1.4334,1.3765,1.2798,0.7018, -0.2366, -0.6496 
535DATA 
-1.4868, -1.5719, -1.0311, -0.717, -0.3585,0.0755,. 0.1657, -0.3153, -0.3121, -0.534 
7, -0.3902, -0.2527, -0.0415,0.2946,0.4348,0.7717,1.0438 
536DATA 
0.7211,0.0378, -0.1041, -0.1625,0.2107, -0.2577,. 0.4444,0.4441,2.0777,0.8093,0 

. 4254, -0.5664, -1.5171, -0.2804, -0.0315,0.0678,0.1856,0.4705(537 DATA 
0.7647,0.8119,0.9431,1.13699 
538! WEIGHTS FROM 1ST LAYER NODES TO FIRST OF 2ND LAYER 
5-39DATA 
-0.8475, -0.585, -0.731, -0.6812, -0.6928, -0.7487, -0.8038, -0.6847, -0.689, -1.8663'. 
0.55615 
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540! WEIGHTS FROM 1ST LAYER NODES TO SECOND OF 2ND LAYER 
541DATA 
-0.8412, -0.7079, -0.882, -0.7897, -0.5838, -0.6889, -0.8388, -0.6237, -0.60621- 
. 8384, -0.61299 
542! WEIGHTS FROM 1ST LAYER NODES TO THIRD OF 2ND LAYER 
543DATA 
-0.9104, -0.685, -0.8591, -0.6715, -0.7306, -0.6571, -0.7861, -0.7696, -0.65870-1.766 
9, -0.61166 
544! V*TEIGHTS FROM 1ST LAYER NODES TO FOURTH OF 2ND LAYER 
545DATA 
-0.8436, -0.5366, -0.7936, -0.6537, -0.674, -0.7443, -0.6561, -0.7003, -0.6281, -l. 851 
1, -0.542969 
546! WEIGHTS FROM 1ST LAYER NODES TO FIFTH OF 2ND LAYER 
547DATA 
-0.8472, -0.5668, -0.7739, -0.6989, -0.7306, -0.818, -0.6649, -0.6287, -0.5587, -l. 801 
4, -0.69 
548! WEIGHTS FROM IST LAYER NODES TO SIXTH OF 2ND LAYER 
549DATA 
-0.8641, -0.4888, -0.8474, -0.5939, -0.6401, -0.6992, -0.6494, -0.5855, -0.6507, -l. 84 
76, -0.69365 
550! WEIGHTS FROM 1ST LAYER TO SEVENTH OF 2ND LAYER 
551DATA 
-0.7469, -0.7109, -0.8796, -0.7143, -0.624, -0.6439, -0.7248, -0.7509, -0.6212, -l. 871 

, -0.67454 
552! WEIGHTS FROM 1ST LAYER TO EIGHTH OF 2ND LAYER 
553DATA 
-0.7396, -0.5717, -0.8012,. 0.7935, -0.6616, -0.7657, -0.7144, -0.6518, -0.6867, -1.88 
72, -0.58044 
554! WEIGHTS FROM IST LAYER TO NINETH OF 2ND LAYER 
555DATA 
-0.9384, -0.6431, -0.741, -0.648, -0.6272, -0.704, -0.7319, -0.7290, -0.6116, -1.82530. 
0.732283 
556! WEIGHTS FROM 1ST LAYER TO TENTH OF 2ND LAYER 
557DATA 
-0.7544, -0.7124, -0.7308, -0.7603, -0.7567, -0.7526, -0.7934, -0.6061, -0.6788, -l. 86 
65, -0.65493 
558! WEIGHTS FROM 2ND LAYER TO FIRST OF 3RD LAYER 
559DAT "A 
2.6083,2.6096,2.603,2.6003,2.5978,2.5988,2.6103,2.6091,2.605,2.6115 
560! THRESHOLDS FOR 1ST LAYER 
561DATA 
-7.0838, -4.0887, -7.3075, -2.9892, -5.9418, -6.7417, -2.8443, -3.8748, -2.9295, -l1.9 
581, -3.8993 
562! THRESHOLDS FOR 2ND LAYER 
563DATA 
-3.0054, -2.9972, -2.9975, -3.0242, -3.0239, -3.0283, -3.0007, -3.0058, -3.0059, -2.99 
45 
564! THESHOLDS FOR 2RD LAYER 
565 DATA -0.2864 
566! 
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567! THIS IS DATA FOR DOING C7A (LEARNED ON C7C) 
568! 
569! WEIGHTS FROM INPUT NODES TO FIRST OF IST LAYER 
570DATA 
0.0245, -0.012,0.143, -0.0152,0.0779, -0.0341,0.0989, -0.0829,0.1114,0.1167, -0.1 
021, -0.0673,0.129, -0.0702, -0.021, -0.05,0.1476,0.8239,1.1887 
571DATA 
-0.7831,0.1762,0.3917, -0.2555, -0.3097, -0.2127, -0.1903,, 0.1175, -0.0993, -0.223 
3, -0.3718, -0.6457, -1.3497, -2.8493, -3.3415, -0.6554,0.03848 
572DATA 
-0.6746, -0.3119,0.1448,1.2777,2.0556,0.1991, -0.3452, -0.1753, -0.9051, -1.2434, 
-0.6402, -0.2249, -0.1245, -0.2233, -0.1151,0.2727,0.3044 
573 DATA 0.2578,0.47,0.2784,0.63436 
574! WEIGHTS FROM INPUT NODES TO SECOND OF 1ST LAYER 
575DATA 
-0.0125, -0.109, -0.1087, -0.0686, -0.0506,0.0553,0.0524, -0.1369, -0.0861,0.0839, 
-0.0652, -0.1006, -0.1497, -0.0711, -0.1997, -0.0647,0.07538 
576DATA 
0.3684,0.657, -0.5451,0.2609,0.4094, -0.1704, -0.087, -0.0407, -0.1083, -0.0912, -0. 
0775, -0.0237, -0., 1318, -0.4361, -0.7741, -1.7463, -2.1906 
577DATA 
-0.6078,0.4031, -0.381, -0.3545,0.096,0.8345,1.1991,0.0125, -0.3962, -0.20761,0. 
5859, -0.8013, -0.7454, -0.4805, -0.441, -0.4812, -0.34358 
578 DATA -0.1361,0.0393, -0.0146,0.0696,0.0957,0.22235 
579! WEIGHTS FROM INPUT NODES TO THIRD OF 1ST LAYER2 
580DATA 
0.0434,0.1005,0.0405,0.996,0.115, -0.041,0.0779, -0.0652,0.0678,0.0156, -0.032 
, 0.0352, -0.0309, -0.0748, -0.04,0.0263,0.1655,0.7185,1.22658 
581DATA 
-0.7209,0.1365,0.1842, -0.4024, -0.3423, -0.1730, -0.2489, -0.1409, -0.1178, -O. l50 
4, -0.2922, -0.7206, -1.4163, -2.7997, -3.0903, -0.5363, -0.2007 
582ýD, ATA 
-0.6491, -0.3695,0.2329,1.4138,2.0489,0.2162, -0.2292, -0.2076, -0.784, -1.2382, - 
0.6269, -0.1089, -0.0487, -0.0454, -0.1215,0.1833,0.3279,0.3701 
583 DATA 0.3287,0.3766,0.527326 
584! WEIGHTS FROM INPUT NODES TO FOURTH OF 1ST LAYER 
585DATA 
0.092,0.0837,0.1127,0.1066, -0.0154,0.093,0.0542,0.0727,0.0304,0.1647,0.021 
7, -0.0942,0.0406, -0.0086, -0.0109,0.0158,0.096,0.7265,1.1663 
586DATA 
-0.7372,0.0704,0.3224, -0.347, -0.1379, -0.2465, -0.0758, -0.2385, -0.1296, -O. ll05 

, -0.1895, -0.7081, -1.319, -2.5585, -3.2702, -0.5217,0.09696 
587DATA 
-0.55, -0.3968, -0.0083,1.19,1.9717,0.0667, -0.2771, -0.3436, -0.8617P-1.1017, -0.7 
612, -0.323, -0.048, -0.2612, -0.2368,0.1745,0.1862,0.3786 
588 DATA 0.3408,0.3319,0.595435 
589! WEIGHTS FROM INPUT NODES TO FIFTH OF 1ST LAYER, 
590DATA 
-0.0386, -0.2248, -0.1484, -0.1883, -0.0519, -0.1683, -0.222, -0.1231p'0.1972,0.002 
1, -0.0613, -0.1292, -0.0623, -0.214, -0.2223, -0.0074,0.0275 
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591DATA 
0.3419,0.3392, -0.235,0.2874,0.453,0.0862,0.0545,0.0189,0.0525,0.0406,0.071 7,0.0712, -0.0242, -0.2056, -0.4936p, 1.0006, -1.5154, -0.23425 
592DATA 
0.8986, -0.1837, -0.3076, -0.205,0.5636,0.7807, -0.3094, -0.5001, -0.3569, -0.57690 
-0.8743, -0.839, -0.7563, -0.4327, -0.5179, -0.5653, -0.284351 
593 DATA -0.3014, -0.1765,0.0529, -0.058,0.0968 
594! WEIGHTS FROM INPUT NODES TO SIXTH OF 1ST LAYER 
595DATA 
0.064, -0.0175,0.153, -0.0111,0.0684,0.0699, -0.0861,0.0028, -0.047,0.0901, -0.01 65, -0.146, -0.0543, -0.1661, -0.2121, -0.1465,0.1596,0.8206 
596DATA 
1.3595, -0.8483,0.1541,0.1844, -0.3923, -0.2206, -0.2088, -0.2671, -0.2127, -0.3005 
, -0.2379, -0.2792, -0.7322, -1.5127, -3.0642, -3.2363, -0.81533 
597DATA 
-0.4224, -0.8158, -0.3201,0.3242,1.697,2.3992,0.4064, -0.2883, -0.1965, -1.0112, - 
1.4027, -0.6572, -0.1271,0.2110,0.1041,0.0579,0.4539,0.4409 
598 DATA 0.4365,0.483,0.4331,0.776837 
599! WEIGHTS FROM INPUT NODES TO SEVENTH OF IST LAYER 
600DATA 
-0.0998, -0.0856, -0.1548, -0.194, -0.2965, -0.2465, -0.2582, -0.31290-0.3448, -0.356 
8, -0.4875, -0.555, -0.5793, -0.782, -0.6767, -0.448, -0.1297 
601DATA 
0.8478,1.9259, -0.8578,0.2959,0.1291, -0.7311, -0.5154, -0.4217, -0.4512, -0.545, - 
0.5328, -0.5081, -0.7359, -1.1587, -2.2433, -4.1042, -3.32257 
602DATA 
-0.8171, -0.8644, -0.7449, -0.6617,0.4182,2.3219,4.041,1.063, -0.0127, -0.07471,1. 
4394, -1.9763, -0.3535,0.8045,1.1853,1.0692,1.0007,1.42489 
603 DATA 1.7559,1.0772,1.0325,0.6618,1.153546 
604! WEIGHTS FROM INPUT NODES TO EIGHTH OF IST LAYER 
605DATA 
-0.4203, -0.2698, -0.3265, -0.2915, -0.1777, -0.1976, -0.3208, -0.3167, -0.0864, -0.04 
81, -0.155, -0.1317,0.1765,0.0123, -0.2389, -0.1276,0.0037 
606DATA 
0.6832,0.1658,0.6967,2.0149,1.574, -0.009,0.1473,0.3127,0.1496,0.1726,0.300 
7,0.2196, -0.0018, -0.637, -2.1045, -4.484, -0.8386,2.8081,3.29761 
607DATA 
3.1827,1.8214,3.0407,3.4279,1.4383, -1.9137, -2.2437, -1.0049, -0.6885, -1.1091t- 
0.6502, -0.0257, -0.2596, -1.3008, -1.3405, -1.003, -0.6684 
608 DATA -0.7209, -0.7334, -0.8471, -0.41776 
609! WEIGHTS FROM INPUT NODES TO NINETH OF 1ST LAYER 
610DAT -A 
-0.0399, -0.2013,0.0012p-0.1922, -0.2003, -0.2624,, 0.1673, -0.2038, -0.2801, -0.10 
44, -0.2987, -0.5289, -0.4259, -0.476, -0.5903, -0.4715, -0.1232 
611DATA 
0.8217,1.8245, -0.8881,0.1635,0.229, -0.6114, -0.3822, -0.3123, -0.4737, -0.5781, - 
0.4994, -0.5227, -0.6184, -1.0763, -2.5185, -3.8384, -3.36982 
61ý2DATA 
-0.6727, -0.8107, -0.723, -0.7565,0.4388,2.279,3.6228,0.9014, -0.0389, -0.0222,. l. 
3556, -1.7643, -0.4167,0.5833,1.0759,0.9547,0.8008,1.15522 
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613 DATA 0.9138,0.9485,0.9962,0.6273,1.088135 
614! WEIGHTS FROM INPUT NODES TO TENTH OF 1ST LAYER 
615DATA 
0.0335,0.0834, -0.432,0.0577,. 0263,0.021,0.0047, -0.0767, -0.0091,0.1423, -0.09 
02, -0.1978, -0.1206, -0.0772, -0.1455,0.0232,0.0778,0.77275 
616DATA 
1.3712, -0.8199,0.1232,0.2317, -0.547, -0.3027, -0.1871, -0.339, -0.3765, -0.2443,. 
0.3111, -0.3103, -0.8083, -1.6881, -3.1039, -3.5085, -0.63095 
617DATA 
-0.2613, -0.7899, -0.4202,0.2656,1.5939,2.6045,0.4085, -0.2042, -0.2717, -1.0349, 
-1.5266, -0.5652,0.0085,0.25,0.1609,0.0629,0.5192,0.5626 
618 DATA 0.567,0.4868,0.3797,0.679528 
619! WEIGHTS FROM INPUT NODES TO ELEVENTH OF 1ST LAYER 
620D, ATA 
0.1804,0.0187,0.0755,0.1723,0.0603, -0.0076,0.0529,0.0795,0.062,0.0436, -0.00 
51, -0.1409, -0.0322,0.0163, -0.1906, -0.0607,0.102,0.7005 
621DATA 
1.2103, -0.7533,0.2083,0.3352, -0.3232, -0.2378, -0.0945, -0.2374, -0.2468, -0.1428 
, -0.2874, -0.4031, -0.6521, -1.3216, -2.6667, -3.1689, -0.71532 
622DATA 
-0.1007, -0.7077, -0.4002,0.2231,1.4014,2.1345,0.2327, -0.3838, -0.1674, -0.9147, 
-1.1823, -0.6173, -0.2674, -0.0742, -0.0728, -0.146,0.1058 
623 DATA 0.2092,0.4318,0.4171,0.3094,0.612203 
624! WEIGHTS FROM 1ST LAYER TO FIRST OF 2ND LAYER 
625DATA 
-0.6856, -0.655, -0.5701, -0.5135, -0.5899, -0.624, -1.1072, -0.4819, -1.0934, -0.7625 
, -0.50824 
626! WEIGHTS FROM 1ST LAYER TO SECOND OF 2ND LAYER 
627DATA 
-0.6415, -0.511, -0.6629, -0.6789, -0.6377, -0.7609, -1.17079-0.5919, -0.9819, -0.758 
5, -0.4999.3 
628! WEIGHTS FROM IST LAYER TO THIRD OF 2ND LAYER 
629DATA 
-0.6167, -0.5128, -0.5556, -0.5993, -0.6883, -0.6747, -1.1941'. 0.5544, -1.0422, -0.73 
88, -0.62614 
630! WEIGHTS FROM IST LAYER TO FOURTH OF 2ND LAYER 
631DATA 
-0.5993, -0.5907, -0.5529, -0.6479, -0.6188, -0.6775, -1.1341, -0.5158, -0.972, -0.784 
2, -0.647513 
632! WEIGHTS FROM 1ST LAYER TO FIFTH OF 2ND LAYER 
633DATA 
-0.6721, -0.5612, -0.6241, -0.5618, -0.6884, -0.7122, -1.1498, -0.5768, -1.1434,. 0.66 
62, -0.53573 
634! WEIGHTS FROM 1ST LAYER TO SIXTH OF 2ND LAYER 
635DATA 
-0.5415, -0.6448, -0.5655, -0.5454, -0.6292, -0.6935, -1.1252, -0.5951, -1.1731, -0.74 
36, -0.67345 
636! WEIGHTS FROM 1ST LAYER TO SEVENTH OF 2ND LAYER 
637DATA 
-0.5922, -0.6236, -0.5718, -0.5682, -0.7875, -0.7465, -1.1615, -0.5842, -1.0865, -0.7, - 
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0.689574 
638! WEIGHTS FROM 1ST LAYER TO EIGHTH OF 2ND LAYER 
639DATA 
-0.547, -0.5956, -0.6823, -0.5825, -0.5996,. 0.7686t-1.0753, -0.5888, -1.1352, -O. 660 
1, -0.655444 
640! WEIGHTS FROM IST LAYER TO NINETH OF 2ND LAYER 
641DATA 
-0.638, -0.4725, -0.5509, -0.5237, -0.6798, -0.6825, -1.1983, -0.6198, -1.0891, -0.795 4, -0.6553 
642! WEIGHTS FROM 1ST LAYER TO TENTH OF 2ND LAYER 
643DATA 
-0.6326, -0.533, -0.5945, -0.6768, -0.759, -0.7709, -1.1034, -0.5356, -1.0046, -0.7246 
, -0.59033 
644! WEIGHTS FROM 2ND LAYER TO FIRST OF 3RD LAYER 
645DATA 
1.8659,1.88,1.878,1.8692,1.8841,1.8863,1.8927,. 8818,1.8922,1.8759 
646! THRESHOLDS OF IST LAYER 
647DATA 
-1.7985, -0.4371, -2.1599, -1.7573,0.4019, -2.5127, -4.6869,1.837, -4.4738, -2.6227 
, -1.94113 
648! THRESHOLDS OF 2ND LAYER 
649DATA 
-2.6343, -2.55, -2.5803, -2.5984, -2.5636, -2.5535, -2.5385, -2.5551, -2.5454, -2.5689 
650! THRESHOLDS OF 3RD LAYER 
651 DATA -0.2069 
652 END 
653! 
654 Measready: 
655 SUB Measready 
656 REPEAT 
657 Stat--SPOLL(711) 
658 UNTIL BINAND(Stat, 16) 
659 SUBEND 
660! 
661 Meascomp: 
662 SUB Meascomp 
663 REPEAT 
664 Stat=SPOLL(711) 
665 UNTIL BINAND(Stat, 4) 
666 SUBEND 
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Appendix Ten 

Listing of HP-Basic program which displays the values of the 
attributes of the stopband and passband regions 
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1000 DIM Frx(50), Mrk(50), Binno(50) 
1010 DIM M$[40], F$[201, A(100,2), Name$[61, File-name$[201 
1020 
1021! MASS STORAGE IS ": CS80,700,0" 
1030 ASSIGN @Na TO 711 
1040 ASSIGN @Prt TO 1 
1050 Prt=1 
1060 PRINTER IS 1 
10701 
1080 ASSIGN @Na_nofxnt TO 711; FORMAT OFF 
1090 Meas_complete=4 
1100! 
1110! 
1120! GOTO Pband 
1130! 
1140! 
1150 CLEAR @Na 
1160 OUTPUT @Na; "IPR; " 
1170 OUTPUT @Na; "IAR; IAI; IR1; I]Bl; " 
1180 OUTPUT @Na; "BPO; " 
1190 ! 
1200 OUTPUT @Na; "ST5; SM1; SFR1401500HZ; DF7; DIVlDBR; REFODBR; " 
1210 OUTPUT @Na; "SAM+5.8DBM; FM2; " 
1220 OUTPUT @Na; "RPS50%; BW3; AVO; " 
1230 ! 
1240 'DISP Insert SIC and press 'CONT"' 
1250 PAUSE 
1260 DISP 
1270 ! 
1280 OUTPUT @Na; "DM1; TRG; " 
1290 Meascomp 
1300 ENTER @Na USING "%, 2A"; Junk 
1310 ENTER @Na-nofint-, Sq_ref 
1320 PRINT "Ref , "; Sq_reff 
1330 OUTPUT @Na; "DIV5DBR; REF-26DBR; " 
1340 
1350 DISP Insert unit and press 'CONT"' 
1360 PAUSE 
1370 DISP "" 
1380 OUTPUT @Na; "DM1; TRG; " 
1390 Meascomp 
1400 ENTER @Na USING "%, 2A"; Junk$ 
1410 ENTER @Nanofint; lnsjoss 
1420 PRINT "Approx. Insertion loss "; -Ins-loss-26 
1430 
1440 GOTO Singles 
1450 Again:! 
1460 PRINTER IS 1 
1461 Cnt=O 
1470 MenuV 
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1471 INPUT "ENTER SERIAL STRING (5 CHRS MAX) ", Name 
1472 MASS STORAGE IS ": CS80,700,1" 
1474 ON ERROR GOTO Jumpa 
1475 PURGE Narne$ 
1476 Jumpa: 
1477 OFF ERROR 
1478 CREATE ASCII Name$, 100 
1479 ASSIGN @Disk TO Name$ 
1480 Flagp=O 
1490 Flags=O 
1500 OUTPUT @Na; "DF7; SAM+ 5.8DBM; FM1; STI; SWT1SEC; 

DIVIODBR; RPS100%; " 
1510 OUTPUT @Na; "REF-26DBR; " 
1520 OUTPUT @Na; 'TRC1401500HZ; FRS40KHZ; SM1; BW3; " 
1530 LOCAL 711 
1540! 
1550 OFF KEY 
1560 DISP "SELECT DISPLAY AREA ....... 
1570 ON KEY 5 LABEL "PASSBAND" GOTO Pband 
1580 ON HEY 9 LABEL "STOPBAND" GOTO Sband 
1590 Idlel: GOTO IdlelL 
1600 ! 
1610! 
1620 
1630 
1640 Sband:! 
1650 Flags=O 
1660 DISP "" 
1670 OFF KEY 
1680 Menu2:! 
1690 DISP "SELECT POINT WITH MARKER ....... 
1700 OUTPUT @Na, SM2; " 
1710 LOCAL 711 
1720 ON KEY 0 LABEL "PEAK 1" GOTO P1 
1730 ON KEY 1 LABEL "PEAK 2" GOTO P2 
1740 ON KEY 2 LABEL "PEAK 3" GOTO P3 
1750 ON KEY 3 LABEL "PEAK 4" GOTO P4 
1760 ON KEY 5 LABEL "RTN 1" GOTO R1 
1770 ON KEY 6 LABEL "RTN 2" GOTO R2 
1780 ON KEY 7 LABEL "SKIP" GOTO Blank 
1781 ON KEY 8 LABEL "SWEEP" GOTO Sweep 
1790 ON KEY 9 LABEL "MENU" GOTO Lf 
1800 Idle2: GOTO Idle2 
1810! 
1820 PV 
1830 IF Flags=O THEN PRINT "Stopband" 
1840 PRINTER IS Prt 
1850 Flags=1 
1860 OUTPUT @Na; "DM1; " 
1870 ENTER @Na; Level 
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1880 OUTPUT @Na; "MP1; " 
1890 ENTER @Na; Freq 
1900 Imagel: IMAGE "Peak 1 Freq ", DDDDD. DDD, " kHz Level 

DDDD. D, " dB" 
1910 PRINT USING Imagel; Freq/1000, -Level+Ins-loss 
1911 OUTPUT 703 USING Imagel; Freq/1000, -Level+lns_loss 
1920 GOTO Menu2 
1930 P2:! 
1940 IF Flags=O THEN PRINT "Stopband" 
1950 PRINTER IS Prt 
1960 Flags=1 
1970 OU'I`PUT @Na; "DM1; " 
1980 ENTER @Na; Level 
1990 OUTPUT @Na; "MP1; " 
2000 ENTER @Na; Freq 
2010 Image2: IMAGE "Peak 2 Freq ", DDDDD. DDD, " kHz Level 

DDDD. D, " dB11 
2020 PRINT USING Image2; Freq/1000, -Level+Insjoss 
2021 OUTPUT 703 USING Image2; Freq/1000, -Level+Ins_loss 
2030 GOTO Menu2 
2040 PV 
2050 IF Flags=O THEN PRINT "Stopband" 
2060 PRINTER IS Prt 
2070 'Flags=l 
2080 OUTPUT @Na; "DM1; " 
2090 ENTER @Na; Level 
2100 OUTPUT @Na; "MP1; " 
2110 ENTER @Na; Freq 
2120 Image3: MGE "Peak 3 Freq ", DDDDD. DDD, " kHz Level 

DDDD. D, " dB" 
2130 PRINT USING Image3; Freq/1000, -Level+Insjoss 
2131 OUTPUT 703 USING Image3; Freq/1000, -Level+Insý_loss 
2140 GOTO Menu2 
2150 P41 
2160 IF Flags=O THEN PRINT "Stopband" 
2170 PRINTER IS Prt 
2180 Flags=1 
2190 OUTPUT @Na; "DM1; " 
2200 ENTER @Na; Level; 
2210 OUTPUT @Na; "MP1; " 
2220 ENTER @Na; Freq 
2230 Image4: MGE "Peak 4 Freq ", DDDDID. DDD#" kHz Level 

DDDD. D, " dB" 
2240 PRINT USING Image4; Freq/1000, -Level+Ins_loss 
2241 OUTPUT 703 USING Image4; Freq/1000, -Level+Ins_loss 
2250 GOTO Menu2 
2260 RV 
2270 IF Flags=O THEN PRINT "Stopband" 
2280 PRINTER IS Prt 
2290 Flags=1 
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2300 OUTPUT @Na; "DMI; " 
2310 ENTER @NA; Level; 
2320 OUTPUT @Na; "MP1; " 
2330 ENTER @Na; Freq 
2340 Image5: UAAGE "Return 1 Freq ", DDDDD. DDD, " kHz Level 

DDDD. D , IM" 
2350 PRINT USING Image5; Freq/1000, -Level+lnsý_loss 2351 OUTPUT 703 USING Image5; Freq/1000, -Level+lný_loss 2360 GOTO Menu. 2 
2370 R2:! 
2380 IF Flags--0 THEN PRINT "Stopband" 
2390 PRINTER IS Prt 
2400 Flags=1 
2410 OUTPUT @Na; "DMI; " 
2420 ENTER @Na; Level 
2430 OU7? UT @Na; "NPI; " 
2440 ENTER @Na; Freq 
2450 Image6: BUGE "Return 2 Freq ", DDDDD. DDD, " kHz Level 

DDDD. D, cIB" 
2460 PRINT USING Image6; Freq/1000, -Level+lnsý_loss 
2461 OUTPUT 703 USING Image6; Freq/1000, -Level+InsL_Ioss 
2470 GOTO Menu2 
24711 
2473 SweeP: 
2474 OFF KEY 
2475 DISP "" 
2477 Cnt--Cnt+l 
2478 File-name$=Name$&VAL$(Cnt) 
2479 PRRqT"<"&File-name$&">" 
2487 FOR 1=1 TO 21 
2488 A(1,1)--O 
2489 A(1,2)--O 
2490 NEXT 1 
2491 FI=1.380000 
2492 F2=1.400000 
2493 Screeni--0 
2494 Screen2=400 
2495 Screen-step=Screen=0 
2497 ! 
2498 OUTPUT @Na; "STI; SM2; SWTISEC; FRA"&VAL$(Fl)&" MHZ, FRB" 

&VAL$(F2) &"MHZ; FMI; " 
2499 OUTPUT @Na; "RPS50%; REF-45DBR; DIVIODBR; TRG; " 
2500 Measready 
2501 1--o 
2502 FOR S=Screen I TO Screen2 STEP Screerk-step; 
2503 1=1+1 
2504 OUTPUT @Na; "NIHP"&VAL$(S)&"; " 
2505 OUTPUT @Na; "DM1; " 
2506 ENTER @Na; Level 
2507 OUTPUT @Na; "Wl; " 
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2508 ENTER @Na; Freq 
2509 Aa, l)=Freq/1000 
2510 A(1,2)=-Level+lns3oss+. 6 
2511 NEXT S 
2512 PRINT "Lo Freq retums" 
2513 ! OUTPUT 703; "Lo Freq retums" 
25151 OUTPUT 703; CHR$(10) 
2516 FOR J=1 TO 19 STEP 3 
2517 PRINT USING Image 1 1; A(JI); A(J, 2), A(J+ 1,1); A(J+1,2), A(J+2, I); 

A(J+2,2) 
2518 ! OUTPUT 703 USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), 

A(J+2, l); A(J+2,2) 
2519 NEXT J 
2520 OUTPUT @Disk; File-name$ 
2521 OUTPUT @Disk; ' 
2523 FOR J=l TO 21 
2524 OUTPUT @Disk; A(J, 2) 
2525 NEXT J 
2526! 
2527 PRINT 
2528 PRINT 
2529 FI=1.404000 
2530 F2=1.420000 
2531 Screenl--0 
2532 Screen2=400 
2533 Screen_step=Screen2/20 
2534 Lmin=+1000 
25351 
2536 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA", &VAL$(Fl)&"MHZFRB" 

&VAL$(F2)&"MHZ; FM1; " 
2537 OUTPUT @Na; "RPS50%; REF-45DBR; DIVIODBR; TRG; " 
2538 Measready 
2539 1--o 
2540 FOR S=Screenl TO Screen2 STEP Screenstep; 
2541 1=1+1 
2542 OUTPUT @Na; "AlKP"&VAL$(S)&"; " 
2543 OUTPUT @Na; "DMI; " 
2544 ENTER @Na; Level 
2545 OUTPUT @Na; "M[Pl; " 
2546 ENTER @Na; Freql 
2547 A(1,1)=Freq/1000 
2548 A(1,2)=-Level+lnsjoss+. 6 
2549 NEXT S 
2550 Imagell: IMAGE 3(DDDDJ)DD, 2)ýDDD. D, 3X) 
2551 PRINT "lli Freq retums" 
2552 ! OUTPUT 703; "M Freq retums" 
25531 OUTPUT 703; CHR$(10) 
2554 PRINT 
2555 FOR J=l TO 19 STEP 3 
2556 PRINT USING Image I 1; A(ii); A(J, 2), A(J+I, 1); A(J+1,2), A(J+2,1); 
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A(J+2,2) 
2557 ! OUTPUT 703 USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), 

A(J+2,1); A(J+2,2) 
2558 NEXT J 
2559 OUTPUT @Disk; " to 
2560 FOR J=1 TO 21 
2561 OUTPUT @Disk; A(J, 2) 
2562 NEXT J 
2563 
2564 
2565 
2567 F1=1.400000 
2568 F2=1.404000 
2569 Screen1=0 
2570 Screen2=400 
2571 Screen-step=Screen2/20 
2572 Lmin=+1000 
2573 ! 
2574 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA"&VAL$(Fl) &"NIHZ; FRB" 

&VAL$(F2)&"MHZ; FM1; ") 
2575 OUTPUT @Na; "RPS50%; REF-45DBR; DlVlODBR; TRG; " 
2576 Measready 
2577 I=O 
2578 FOR S=Screenl TO Screen2 STEP Screenstep; 
2579 I=I+1 
2580 OUTPUT @Na; "MKP"&VAL$(S)&"; " 
2581 OUTPUT @Na; "DM1; " 
2582 ENTER @Na; Level 
2583 OUTPUT @Na; "MP1; " 
2584 ENTER @Na; Freql 
2585 A(I, 1)=Freq/1000 
2586 MI, 2)=-Level+Ins-loss+. 6 
2587 NEXT S 
2589 PRINT "Pass band levels" 
2590 OUTPUT 703; "Passband levels" 
2591 OUTPUT 703; CHR$(10) 
2592 PRINT 
2593 FOR J=1 TO 19 STEP 3 
2594 PRINT USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), A(J+2,1); 

A(J+2,2) 
2595! OUTPUT 703 USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), A(J+2,1); 

A(J+2,2) 
2596 NEXT J 
2597 OUTPUT @Disk; " 
2598 FOR J=1 TO 21 
2599 OUTPUT @Disk; A(J, 2) 
2600 NEXT J 
2603 GOTO Menu2 
26041 
2605 Blank:! 
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2606 PRINTER IS Prt 
2607 IF Flags=O THEN PRINT "Stopband" 
2608 Flags=l 
2609 PRINT 
2610 PRINTER IS 1 
2611 GOTO Menu2 
2612! 
2613! 
2614 
2615 Lf.! 
2616 PRINTER IS Prt 
2617 PRINT CHR$(15) 
2618 PRINT CHR$(15) 
2619 PRINT CHR$(15) 
2620 PRINT CHR$(15) 
2621 PRINTER IS 1 
2622 ASSIGN @Disk TO 
2624 GOTO Again 
2625 
2626 -- -------------- -------------------------- 
2627 
2628 M 
2629 Pband: 
2630 ! 
2631! GOTO Singles 
2632 
2633 OFF KEY 
2634 PRINTER IS Prt 
2635 DISP "" 
2636 Bw=30000 
2637 Bw2=Bw/2 
2638 F1=1400000 
2639 F2=1403000 
2640 F9=(F2-Fl)/50 
2641 Screen1=0 
2642 Screen2=400 
2643 Screen_step=Screen2/50 
2644 Lmax=-1000 
2645 Lmin=+1000 
2646! 
2647 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA1.4MHZ; FRB1.403MHZ; 

FM1; " 
2648 OUTPUT @Na; "REF-26DBR; DIV2DBR; TRG; " 
2649 WAIT 1.5 
2650 I=O 
2651 FOR S=Screenl TO Screen2 STEP Screen-stepl 
2652 I=I+l 
2653 OUTPUT @Na; "MKP"&VAL$(S)&"; " 
2654 OUTPUT @Na; "DM1; " 
2655 ENTER @Na; Level 
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2656 OUTPUT @Na; "MP1; " 
2657 ENTER @Na; Freql 
2658 A(I, 1)=Freq/1000 
2659 A(I, 2)=-Level 
2660 IF S=O THEN Carrier=-Level 
2661 IF -Level<Lmin THEN Lmin=-Level 
2662 IF S>=104 AND S<=272 AND -Level>Lmax THEN Lmax=-Level 
2663 PRINT S; Freq/1000; -Level; Lmin; Lmax 
2664 NEXT S 
2665 InserLloss=Lmin-26 
2666 Ripple=Lmax-InserLIoss-26 
2667 FOR J=1 TO 51 STEP 1 
2668! PRINT J; A(J, 1); 
2669 A(J, 2)=A(J, 2)-Insertjoss-26 
2670! PRINT A(J, 2) 
2671 NEXT J 
2672 ImagelOZIAGE 3(DDDD. DDD, 2XDD. D, 3X) 
2673 ! FOR J=1 TO 51 STEP 3 
2674 ! PRINT USING ImagelO; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), A(J+2,1); 

A(J+2,2) 
2675! NEXT J 
2676 PRINT I 
2677 PRINT USING "20A, DDD. D, 3X'; "Insertion loss ", Insert_loss, " dB" 
2678 PRINT USING "20A, DDD. D, 3A! '; "Ripple", Ripple, " dB" 
2679 OUTPUT 703 USING "20A, DDD. D, 3A"; "Insertion loss", InserLIoss, " 

dB" 
2680 OUTPUT 703 USING "20A, DDD. D, 3A"; "Ripple", Ripple, " dB" 
2681 Offset=InserLloss+26 
2682 ! 
2683 B:! 
2684 Singles:! 
2685 ! 
2686 OUTPUT @Na; "IPR; " 
2687 OUTPUT @Na; "LAR; IA1; IR1; lBl; " 
2688 OUTPUT @Na; "BPO; SAM5.8DBM; " 
2689 OUTPUT @Na; "ST5; SM1; SFR1400500HZ; " 
2690 OUTPUT @Na; "DF7; DlVlDBR; REF-26DBR; " 
2691 OUTPUT @Na; "RPS50%; BW3; AVO; FM2; TKM; " 
2692 Measready 
2693 OUTPUT @Na; "DM1; TRG; " 
2694 Meascomp - 
2695 ENTER @Na USING "%, 2A"; Junk$ 
2696 ENTER @Na_nofhit; Level" 
2697 PRINT USING "20A, DDD. D, 39'; "Lo P/B", -Level-Offset, " dB" 
2698 OUTPUT 703 USING "20A, DDD. D, 3A"; "Lo P/B", -Level-Offset, " dB" 
2699 ! 
2700 OUTPUT @Na; "SFR1402500HZ; TKM; " 
2701 Measready 
2702 OUTPUT @Na; "DM1; TRG; " 
2703 Meascomp 
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2704 ENTER @Na USING "%, 2A"; Junk$ 
2705 ENTER @Na_nofint; Level" 
2706 PRINT USING "20A, DDD. D, 3A"; "Hi P/B", -Level-Offset, " dB" 
2707 OUTPUT 703 USING "20A, DDD. D, 3A"; "Hi P/B", -Level-Offset, " dB" 
2708 ! 
2709 OUTPUT @Na; "SFR1400000HZ; TKM; " 
2710 Measready 
2711 OUTPUT @Na; "DM1; TRG; " 
2712 Meascomp 
2713 ENTER @Na USING "%, 2A"; Junk$ 
2714 ENTER @Na_nofint; Level" 
2715 PRINT USING "20A, DDD. D, 3A"; "C/R ", -Level-Offset, " dB" 
2716 OUTPUT 703 USING "20A, DDD. D, 3A"; "C/R ", -Level-Offset, " dB" 
2717 ! 
2718 OUTPUT @Na; "SFR1399300HZ; TKM; " 
2719 Measready 
2720 OUTPUT @Na; "DM1; TRG; " 
2721 Meascomp 
2722 ENTER @Na USING "%, 2A"; Junk$ 
2723 ENTER, @Na_nofint; Level" 
2724 PRINT USING "20A, DDD. D, 3A"; "Lo S/B", -Level-Offset, " dB 
2725 OUTPUT 703 USING "20A, DDD. D, 3A"; "Lo SM", -Level-Offset, " dB" 
2726 ! 
2727 OUTPUT @Na; "SFR1405000HZ; TKM; " 
2728 Measready 
2729 OUTPUT @Na; "DM1; TRG; " 
2730 Meascomp 
2731 ENTER @Na USING "%, 2A"; Junk$ 
2732 ENTER @Najiofmt; Level" 
2733 PRINT USING "20A, DDD. D, 3A"; "Hi S/B", -Level-Offset, " dB" 
2734 OUTPUT 703 USING "20A, DDD. D, 3A"; "Hi 'Wee -Level-Offset, " dB" 
2735 ! 
2736 FOR 1=1 TO 51 
2737 A(1,1)=o 
2738 A(I, 2)=O 
2739 NEXT I 
2740 Fl=1.380000 
2741 F2=1.398000 
2742 Screenl=o 
2743 Screen2=400 
2744 Screen-step=Screen2/30 
2745 Lmin=+looo 
27461 
2747 OUTPUT @Na; "ST1; SM2; SWTISEC; FRA" &VAL$(Fl) &"MHZ; FRB" 

&VAL$(F2) &"MHZ; FM1; ") 
2748 OUTPUT @Na; "RPS50%; REF-45DBR; DIVIODBR; TRG; " 
2749 Measready 
2750 1=0 
2751 FOR S=Screenl TO Screen2 STEP Screenstep; 
2752 I=I+l 
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2753 
2754 
2755 
2756 
2757 
2758 
2759 
2760 
2761 
2762 
2763 
2764 

2765 
2766 
2767 
2768 
2769! 
2770 
2771 
2772 
2773 
2774 
2775 
2776 
2777 

2778 
2779 
2780 
2781 
2782 
2783 
2784 
2785 
2786 
2787 
2788 
2789 
2790 
2791 
2792 
27931 
2794 ! 

2795 
2796 
2797 
2798 
2799 

OUTPUT @Na; "NEKP"&VAL$(S)&"; " 
OUTPUT @Na; "DM1; " 
ENTER @Na; Level 
OUTPUT @Na; "MP1; " 
ENTER @Na; Freql 
A(I, 1)=Freq/1000 
A(I, 2)=-Level-Offset 
IF -Level-Offset<Lniin THEN Lmin=-Level-Offset 

NEXT S 
Retunjevel=Lmine 
FOR J=1 TO 31 STEP 3 

PRINT USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), A(J+2,1); 
A(J+2,2) 

NEXT J 
PRINT 
PRINT USING "20A, DDD. D, 3A"; "Lo return level ", Lmin, " dB" 
OUTPUT 703 USING "20A, DDD. D, 3A"; "Lo return level ", Lmin, "dB" 

Fl=1.406000 
F2=1.42POOO 
Screenl=O 
Screen2=400 
Screeri. step=Screen2/30 
Lmin=+1000 

OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA" &VAL$(Fl)&"MHZ; FRB" 
&VAL$(F2)&"MHZ; FM1; " 

OUTPUT @Na; "RPS50%; REF-45DBR; DIV10DBR; TRG; " 
Measready 
I=O 
FOR S=Screenl TO Screen2 STEP Screenstep; 

I=I+1 
OUTPUT @Na; "MKP"&VAL$(S)&"; " 
OUTPUT @Na; "DM1; " 
ENTER @Na; Level 
OUTPUT @Na; "MP1; " 
ENTER @Na; Freql 
A(I, 1)=Freq/1000 
A(I, 2)=-Level-Offset 
IF -Level-Offset<Lmin THEN Lmin=-Level-Offset 

NEXT S 
ReturrLIevel=Lmine 
FOR J=1 TO 31 STEP 3 

PRINT USING Imagell; A(J, 1); A(J, 2), A(J+1,1); A(J+1,2), A(J+2,1); 
A(J+2,2) 

NEXT J 
PRINT 
PRINT USING "20A, DDD. D, 3A"; "Hi return level ", Lrnin, " dB" 
OUTPUT 703 USING "20A, DDD. D, 3A"; "Hi return level ", Lniin, " dB" 
GOTO Menul 
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2800 ! 
2801 ENDO 
2802 
2803 
2804 Measready:! 
2805 SUB Measready 
2806 REPEAT 
2807 Stat--SPOLL(711) 
2808 UNTIL BINAND(Stat, 16) 
2809 SUBEND 
2810 ! 
2811 Meascomp:! 
2812 SUB Meascomp 
2813 REPEAT 
2814 Stat--SPOLL(711) 
2815 UNTIL BINAND(Stat, 4) 
2816 SUBEND 
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Appendix Eleven 
Listing of HP-Basic program which samples the magnitude response 
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1000 DIM Frx(50), Mrk(50), Binno(50) 
1010 DIM M$[401, F$[201, A(100,2), Name$[61, Fileý_name$[201 
1020 
1030 ASSIGN @Na TO 711 
1040 ASSIGN @Prt TO 1 
1050 Prt--1 
1060 PRINTER IS 1 
1070 ! 
1080 ASSIGN @Nanofmt TO 711; FORMAT OFF 
1090 MeasLcomplete=4t 
1100! 
1110! 
1150 CLEAR @Nal 
1160 OUTPUT @Na; "IPR; " 
1170 OUTPUT @Na; "IAR; IA1; IR1; EB1; " 
1180 OUTPUT @Na; "BPO; " 
1190! 
1200 OUTPUT @Na; "ST5; SM1; SFR1401500HZ; DF7; DIVIDBR; REFODBR; " 
1210 OUTPUT @Na; "SAM+5.8DBM; FM2; " 
1220 OUTPUT @Na; "RPS50%; BW3; "O; " 
1230 
1240 DISP Insert SIC and press 'CONT"" 
1250 PAUSE 
1260 DISP ... 
1270 ! 
1280 OUTPUT @Na; "DM1; TRG; " 
1290 Meascomp 
1300 ENTER @Na USING "%, 2A"; Junk$ 
1310 ENTER @Nanofint; Sc-ref 
1320 PRINT "Ref "; Sc-reff 
1330 OUTPUT @Na; "DIV5DBR; REF-26DBR; " 
13401 
1350 DISP Insert unit and press 'CONT"" 
1360 PAUSE 
1370 DISP "" 

N. 91 1380 OUTPUT @Na; "DM1; TR(; r, 
1390 Meascomp 
1400 ENTER @Na USING "%, 2A"; Junk$ 
1410 ENTER @Na_nofint; Ins-loss 
1420 PRINT "Approx. Insertion loss "; -Ins_loss-26R 
1430 ! 
1450 Again:! 
1460 PRINTER IS 1 
1470 MenuV 
1500 OUTPUT @Na; "DF7; SAM+5.8DBM; FM1; ST1; SWT1SEC; DIV10DBR; 

RPS100%; " 
1510 OUTPUT @Na; "REF-26DBR; " 
1520 OUTPUT @Na; "FRC1401500HZ; FRS40KHZ; SM1; BW3; " 
1530 LOCAL 711 
1540! 
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1640 Sbandl 
1680 Menu2:! 
1781 ON KEY 8 LABEL "SWEEP" GOTO Sweep; 
1800 Idle2: GOTO Idle2 
1810! 
2473 Sweep: 
2474 OFF KEY 
2475 DISP .... 
2487 FOR I=l TO 21 
2488 A(I, I)=02 
2489 A(I, 2)=02 
2490 NEXT I 
2491 FI=1.380000 
2492 F2=1.400000 
2493 Screenl=O 
2494 Screen2=400 
2495 Screen_step=Screen2/20 
2497 ! 
2498 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA"&VAL$(Fl)&"MHZ; FRB 
"&VAL$(F2)&"MHZ; FM1; " 

2499 OUTPUT @Na; "RPS50%; REF-45DBR; DlVlODBR; TRG; " 
2500 MeasreadY 
2501 I=O 
2502 FOR S=Screenl TO Screen2 STEP ScreerLstep; 
2503 I=I+l 
2504 OUTPUT @Na; "NJKP"&VAL$(S)&"; " 
2505 OUTPUT @Na; "DM1; " 

. 2506 ENTER @Na; Level 
2507 OUTPUT @Na; "M]Pl; of 
2508 ENTER @Na; Freq 
2509 A(I, 1)=Freq/1000 
2510 A(I, 2)=-Level+Insjoss+. 6 
2511 NEXT S 
2512 PRINT "Lo Freq Retums" 
2516 FOR J=1 to 19 STEP 3 
2517 PRINT USING Imagell; A(J, 1); A(J, 2); A(J+1,1); A(J+1,2), A(J+2,2) 
2519 NEXT J 
25261 
2527 PRINT 
2528 PRINT 
2529 Fl=1.404000 
2530 F2=1.420000 
2531 Screenl=O 
2532 Screen2=400 
2533 Screen_step=Screen2/20 
2534 Lmin=+1000 
2535 ! 
2536 OUTPUT @Na; "ST1; SM2; SWTlSEC; FRA" &VAL$(Fl) &"MM; FRB 

#I& VAL$(F")&"MBX; FM1; " 
2537 OUTPUT @Na; "RPS50%; REF-45DBR; DIV10DBR; TRG; " 
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2538 Measready 
2539 I=O 
2540 FOR S=Screenl TO Screen2 STEP Screen-step; 
2541 I=I+1 
2542 OUTPUT @Na; "MHP"&VAL$(S)&"; " 
2543 OUTPUT @Na; "DM1; " 
2544 ENTER @Na; Level 
2545 OUTPUT @Na; "MP1; " 
2546 ENTER @Na; Freq 
2547 A(I, 1)=Freq/1000 
2548 A(I, 2)=-Level+Insjoss+. 6 
2549 NEXT S 
2550 Imageii: IMAGE 3 (DDDD. DDD, 2X, DDD. D, 3X) 
2551 PRINT "Hi Freq Returns" 
2554 PRINT 
2555 FOR J=1 to 19 STEP 3 
2556 PRINT USING Imagell; A(J, 1); A(J, 2); A(J+1,1); A(J+1,2), A(J+2,2) 
2558 NEXT J 
2565 ! 
2567 Fl=1.400000 
2568 F2=1.404000 
2569 Screen1=0 
2570 Screen2=400 
2571 Screen-step=Screen2/20 
2572 Lmin=+1000 
2573 ! 
2574 OUTPUT @Na; "ST1; SM2; SWTISEC; FRA" &VAL$(Fl) &"NHZ; FRB 

"& VAL$(F")&"MIHX; FM1; " 
2575 OUTPUT @Na; "RPS50%; REF-45DBR; DIVIODBR; TRG; " 
2576 Measready 
2577 I=O 
2578 FOR S=Screenl TO Screen2 STEP Screen_step; 
2579 I=1+1 
2580 OUTPUT @Na; "MKP"&VAL$(S)&"; " 
2581 OUTPUT @Na; "DM1; " 
2582 ENTER @Na; Level 
2583 OUTPUT @Na; "MP1; " 
2584 ENTER @Na; Freq 
2585 A(I, 1)=Freq/1000 
2586 A(I, 2)=-Level+Insjoss+. 6 
2587 NEXT S 
2589 PRINT "Pass band levels" 
2592 PRINT 
2593 FOR J=1 to 19 STEP 3 
2594 PRINT USING Image 1 1; A(J, 1); A(J, 2); A(J+ l, l); A(J+1,2), A(J+2,2) 
2596 NEXT J 
2603 GOTO Menu2 
2800 ! 
2801 END 
28021 
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LEARNING BY ANALYTICAL METHODS OR INDUCTION :A CASE STUDY 

D. Tsaptsinos, B. W. Jervis and A. R. Mirzai 

Abstract 

An expert -system is under construction for the application of tuning 
electronic filters. Machine learning techniques were used to enhance knowledge 
elicitation and experiences gained In implementing them are presented in terms 
of learning, testing, and learning refinement. 

The aDDlication 

The tuning of an electronic filter is typically performed manually. Initial 
knowledge elicitation using protocol analysis revealed the nature of the 
problem domain. An operator monitored the magnitude response of the filter and 
when tuning was required a set of tunable components was adjusted. This was 
followed by determining a number of frequency and attenuation points. 

Initial knovledize elicitation 

The tuning of two filters of the same characteristics was video-taped. The 
analysis of the transcripts resulted In the Identification of the activity 
classes, a domain dictionary, the reasoning process of tuning and the order of 
specification checking. It is interesting to note that the justifications for 
the actions taken comprised of a mixture of symbols (eg. the left peak), 
abstractions (eg. the peak is too far out) and numerical parameters (especially 
during testing). When the operator was prompted for further elaboration (eg. 
can you define the value, or range of values, where the peak should be) the 

, 
answers did not provide any further information. This made the knowledge 
elicitation even more difficult. It was found necessary to separate the process 
into two tasks (stopband and passband tuning) and to recognise which components 
to employ for each task. 

Machine learning technIgues 

To aid the knowledge elicitation for the task of stopband tuning, for which 
two tuning components were applicable, three machine learning techniques were 
applied, namely, ID3 [1), an adaptive combiner [2) and a neural network [3]. A 
set of examples was generated. Each example was described in terms of six 
attributes derived from the magnitude response. Each attributel in turnp 
contained a numerical value with six significant figures. In a series of 
experiments, the three techniques were compared and ID3 was elected for further 
use 141. Moreover, a number of experiments took place which compared the ID3 
performance using different numbers of attributes in different formats (logical 
or numerical). The results are reported in reference [5). 
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Problems encountered 

The presentation of attributes holding numerical values to ID3 Introduced 
the following problem. The enlargement of the learning set resulted, at best, 
in a slight change of the threshold values of the decision tree. This led to 
different classifications of a number of testing examples. In addition, new 
attributes were introduced or old attributes were excluded from the newly 
generated decision tree. The grouping of numerical values Into logical ranges 
[51 resulted in more stable decision trees in terms of attributes and 
thresholds. The introduction of further examples to the adaptive combiner or 
the neural net did not alter the architectural structure but strengthened or 
weakened the individual nodes. 

The task of stopband tuning vas divided into three searches. Each search 
had a different goal. Search one contained rules on how to recognise a tuned 
state (ie. 2 classes). Search two Incorporated rules for which component to 
tune and in which direction (ie. 4 classes). Search three determined the amount 
of turn (ie. 11 classes). Unlike adaptive combiners or neural networks which 
can provide continuous output ID3 had to be presented with examples covering 
all eleven classes. The large number of classes meant that the examples were 
less representative with the consequence of poor performance. This deficiency 

was the reason for dividing the task into three searches in the first place. 

To improve the adaptive combiner performance it was necessary to manipulate 
the attribute set. The manipulation took the form of scaling the attribute 
values and/or the introduction of second order features. The scaling of the 
attribute values was Important. Without a proper scaling an ill-conditioned 

problem was created in terms of the auto-correlation matrix In the RLS 
algorithm [6]. It was possible to find if the problem was ill-conditioned by 

using eigenvalue analysis [7). The adaptive combiners are linear structures and 
they cannot directly model non-linearity. Therefore it was necessary to 
introduce second order features (ie. attribute squared) to handle the non- 
linearities. Scaling was also required for the neural network implementation. 
All three techniques produced comparable results but the use of ID3 was less 
time consuming. The actual learning time for the combiner was small but some 
extra time was required to Identify the right format of the attributes and 
their values. Neural networks were also time consuming. A lot of time was spend 
in investigating different architectures and the learning time for some 
architectures ran Into hours. 

The structure of the learning set was of some importance. Initial work with 
neural networks and ID3 employed examples generated while tuning a number of 
filters. When both techniques were tested using unseen examples ID3 performed 
better. Neural nets failed to classify correctly a number of testing examples. 
Those examples contained at least one attribute with a value previously found 
in an example with a different classification. Because of the large range of 
numerical values each attribute can take, a different set of learning examples 
was required which included either all likely values or the extreme values (je. 
maximum or minimum). This was also necessary when using the adaptive combiners. 
The new training set missed out the heuristics employed by the operator but'vas 
appropriate for the comparison. Unlike ID3 which learned by considering all 
examples at once, adaptive combiner and neural network implementations learned 
in an incremental fashion. The weights were updated with each example 
presented. For that reason the order of Introduction of the examples was 
critical. Examples with different class were presented alternatively. In this 
way a better performance was achieved. 

The set of rules produced by ID3 can be examined to Identify the 
relationships that exist between the attributes. The outcomes of the adaptive 



combiner or neural network (vector of weights) can be also examined. Weights 
can be transformed into rules but this presents a more difficult challenge 
[6]. 

Testing the rules generated by ID3 was more time consuming than testing the 
two other techniques. More Importantly, though, was that in running the ID3 
algorithm, examples with unknown attribute values could not be used When 
numerical attributes were employed. A notation to Indicate that the attribute 
value was not significant was available but not to indicate that an attribute 
value was unknown. It was then Impossible to use both numeric and symbolic 
descriptions for an attribute. If at any point an attribute value was requested 
and this value was unknown then the system failed completely. Using the other 
two techniques this could not happen. Unknown values were represented with a 
constant. During testing the network might not perform appropriately but it 
would not fail. 

Conclusions 

ID3 and adaptive combiners learned faster than neural networks once the 
structure of the learning set had been established. Testing adaptive combiners 
and neural nets was quicker than testing ID3. The problems with ID3 testing and 
refining when numerical attribute values were used were by-passed with the -use 
of logical attribute values. Introducing new examples did not alter the 
architecture of adaptive combiners or neural nets. 
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ARTIFICIAL INTELLIGENCE IN SIGNAL PROCESSING 

Comparison of knowledge elicitation techniques in 
the domain of electronic filter tuning 
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indexing terms: Algorithms, Artificial Intelligence, Filters. Manufacturing 

Abstract: The work done towards the construc- 
tion of an expert system to assist an operator in 
the identification of the corrective action to be 
applied during tuning of electronic filters is 
described. The first part of the paper introduces 
two algorithms for induction by examples (ID3 
and adaptive combiner) and their relationship to 
expert systems. The two algorithms were applied, 
in a series of tests which involved an incremental 
presentation of a number of examples, to the task 
of filter tuning. The reported results suggest the 
use of ID3 when a small number of classes is 
present. The second part of the paper presents 
subsequent work with ID3. Results are reported of 
using this algorithm for filter tuning with exam- 
ples containing either numerical or logical attrib- 
ute values. A comparison of the results showed 
that improved test performance was achieved by 
using logical values. 

Introduction 

Artificial-intelligence techniques, such as expert systems 
and machine learning, have been applied to engineering 
applications (1]. This paper reports work on the applica- 
tion of the expert system concept in the field of signal 
processing by electronic filters. In particular, an expert 
system is being constructed to assist in the tuning of 
filters after manufacture. Ile filter employed for this 
study is an asymmetric bandpass crystal filter, whose top 
view is shown in Fig. 1. At present, filter tuning is typi- 
cally a manual process involving an operator who 
inspects the performance of the filter (e. g. the amplitude 
response (Fig. 2)) and applies the necessary successive 
adjustments to a set of tunable components (e. g. coils) 
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until the performance satisfies the specification. Effec- 
tively the operators act as signal interpreters who base 
their skills not on any theory but on the combination of 
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Fig. I Top view offilter 
C4. CT am Uimmer capedton; T,. Tj, T, am iDducton 
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a strong capability for pattern recognition and know. 
ledge acquired from past experience. Although manual 
tuning is successful the advantages of providing com- 
puterised assistance to an operator have been recognised 
[Z 3]. Initial knowledge elicitation by protocol analysis 
[4] revealed the problems to be solved by the expert 
system-builder (e. g. why component X should be adjust- 
ed rather thin component Y at a particular instant) and 
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indicated the need for an alternative to protocol analysis 
for articulating knowledge. Thus it was found necessary 
to integrate machine learning into knowledge elicitation. 
In this paper experiments which were carried out to 
investigate and compare the applicability of the ID3 and 
adaptive-combiner techniques to the field of filter tuning 
are discussed. Furthermore, the results of empirically 
comparing various decision trees generated using ID3 are 
reported. 

Expert and machine-learning systems 

Several expert systems have been constructed [5] and 
their number is rapidly increasing. The purpose of such a 
system is to incorporate, in an organised way, the sub- 
stantial knowledge of one or more specialists in a specific 
field so that the system performs in a similar fashion to 
the specialists. A classical method for the construction of 
an expert system involves an iterative interaction between 

the system builder and the specialist and the encoding of 
the elicited knowledge in rule form. A number of tech- 
niques have been identified as aids to the knowledge elic- 
itation process (6]. Expert systems perform in a 
deductive format [7, p. 4], i. e. the conclusions always 
depend on the knowledge supplied. The presence of an 
incorrect conclusion can generally only be corrected by 
the buildees interference and not by the system itself. 
(Even methods for refining existing knowledge bases [8] 
require additional interaction with the expert. ) In con- 
trast, machine-learning systems improve the quality of 
their performance with time. Three major research para- 
digms can be identified: neural modelling and decision- 
theoretic techniques; symbolic concept acquisition 
(SCA); and knowledge-intensive, domain-specific learning 
[7, p. 12]. Each paradigm is based upon the same prin- 
ciple, namely that of inferring conclusions given a priori 
knowledge, and differs from others only in the amount of 
information required and in the way the knowledge is 
represented and modified. 

A number of learning strategies have been documented 
[7, p. 131 but in the work reported here techniques which 
learn from data composed of a number of independent 
examples have been implemented. Each example is 
described in terms of a number of attribute values, 
together with an additional attribute, known as the class, 
which allocates the examples to a particular Category 
(supervised learning). A number of different techniques 
were available, e. g. neural networks [91, genetic algo- 
rithms [10] and AQ II (I I]. The techniques chosen were 
ID3 and adaptive combiners and these are outlined 
briefly in the following sections. ID3 is an example of an 
SCA system and adaptive combiners can be considered 
as a subset of neural networks. The difference between 
them, apart from the algorithm employed, lies in the way 
the knowledge is represented. In ID3 the knowledge is 
held within a decision tree, in adaptive combiners it is 
held in a weight matrix. The reasons for choosing these 
two techniques were more practical than theoretical. 
Extensive expertise and previous work using adaptive 
combiners in the field of filter tuning by one of the 
authors, in addition to the availability of a commercial 
package implementing ID3, were the main factors behind 
the decision. It has also been reported that ID3 is faster, 
in. terms of induction, than AQ II[ 12] or a genetic algo- 
rithm (13] with the same performance rate. Two- and 
three-layer neural networks using the back-propagation 
technique [14] have also been considered and the results 
are reported in Reference 15. 
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The use of machine learning techniques was intended 
to enhance the initial knowledge elicitation and to over. 
come the problem of selecting the appropriate com- 
ponent to tune. 

21 The ID3 algorithm 
ID3 (iterative dichotomiser 3) was developed by Quinlan 
[16] in 1979. The goal of the algorithm is to induce a decision tree (which can easily be transformed into rules 
of the form 'if x then yj from a set or examples. The 
decision tree can then be used to classify an unseen 
example. A diagrammatic description of the algorithm is 
shown in Fig. 3. The algorithm selects the most informa- 
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tive attribute (i. e. creates the root of the decision tree) and 
either forms subsets equal in number to the number of 
values the attribute takes (i. e. creates the branches of the 
decision tree) or forms a binary split (cutoff points) when 
the attribute holds numerical values (e. g. >S, 45). For 
each subset the algorithm checks whether all the exam- 
ples belong to the same class. -If they do then the algo- 
rithm labels that subset with the name of the class (i. e. 
creates a leaf of the decision tree) and partitioning stops 
for that subset; otherwise the algorithm creates further, 
smaller subsets. The algorithm stops when no more 
subsets can be created. Tbc key principle underpinning 
the algorithm lies in the selection of the most informative 
attribute. This is based on information theory; it may be 
stated that the most informative attribute is the one that 
maximises the difference between the expected informa- 
tion of the whole set of examples and the expected infor- 
mation of the whole set of examples when only attribute, 
X, is considered. A detailed explanation of the formulas 
used can be found in Reference 17. It is worth noticing 
that the algorithm may label a leaf as 'empty' or 'clash. 
'Empty'appears when there are no examples that can be 
used for that particular branch. 'Clash' emerges when 
there are two (or more) examples covering that specific 
branch but their classes are distinct. 

22 Adaptive combiners 
In recent years one class of adaptive architectures, linear 
combiners, has been used for the design of intelligent 
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systems (18]. Fig. 4 illustrates a simple combiner struc- 
ture. Each example is presented to the algorithm by a 
matrix containing the attribute values (the Jrs) and the 
class y. The goal of the learning algorithm is to estimate 
the weight vector (the Ws) in such a way that, when the 

system is presented with a previously unseen example, it 

can predict the correct class. In other words, the weight 
vector in the combiner represents the knowledge relating 
the attributes to the classes. For each example an esti- 
mated class is calculated by simply multiplying the attri- 
bute values (in a transposed form) and the weight vector. 
The difference between the estimated and the desired 
class is the error. The recursive least squares (RLS) algo- 
rithm is then used to estimate a new weight vector to 
minimise the mean squared error. The weights are func- 
tions of all the examples in the training set. The formulas 

used can be found in reference [9]. The RLS algorithm 
can be slightly modified by introducing a 'forgetting' 
factor in the range 0.9 to 1.0. This has the effect of giving 
greater importance to more recent examples than older 
ones and allows relearning of the same training set. The 
adaptive combiner structure can be thought of as a one. 
layer connectionist network. The main difference is that 
the combiners are linear structures and cannot be directly 
applied to nonlinear systems. However, the nonlinearity 
can be treated by manipulating the attributes, i. e. by 
using second- or third-order attributes depending on the 
degree of nonlinearity. 

3 Comparison of machine learning techniques 

The results of experiments to determine the more suitable 
of the two techniques (ID3 and combiners) for filter 
tuning are presented in this Section. 

3.1 Selection of attributes and generation of 
examples 

To use either technique one has to select a set of attri- 
butes and to generate a set of examples. 

Attributes can be thought of as those relevant factors 
(features) used in reaching a decision. As a result of the 
protocol analysis the tuning of the filter was divided into 
two primary tasks, namely the tasks of tuning the stop- 
band and the passband regions. Additionally, it was 
established that only the two trimmer capacitors were to 
be used for the stopband region. In this paper results are 
presented for this region only. Six relevant attributes 
were identified as having strong significance. These were: 

(i) locations of sharp positive peaks of the waveform 
(identified as P1 - P2 9 P3 and p4 in Fig. 2 and measured in 
megahertz units) 

(ii) relative magnitudes of sharp negative peaks of the 
wavelorm (identified as r, and r2 in Fig. 2 and measured in decibels). 

This identification was based on the transcripts derived 
from the protocol analysis. The operator's reasoning was 
revealed by sentences such as '... arrange these peaks into a more reasonable place' and '... pull that peak out 
of the screen. Further discussion with the operator sup- 
ported the selection. 

The second step was to obtain a set of examples. For 
the purpose of comparing the two machine-learning tech- 
niques the detune procedure was employed. This pro- 
cedure ensured that a set was obtained which covered 
most of the attribute values likely to arise, a feature 
which is especially valuable in work in which numerical 
attributes are used. The process involved an operator 
tuning the stopband region of a filter and recording the 
attribute values together with the class 'end-of-process'. 
This was followed by a systematic detuning in which one 
of the tunable components was kept constant and the 
other was misadjusted in a certain direction (i. e. clock- 
wise or anticlockwise) in quarter-turn steps. For each 
turn the attribute values, together with the component 
direction of turn and how far the component was turned, 
were recorded. The process was then repeated by mis- 
adjusting in a different direction and by using the other 
component. Obviously, the filter was retuned in be- 
tween. In this way 43 examples were collected for one 
filter. The tuning of six filters resulted in a total of 258 
examples. 

3.2 Levels of classification 
Two typical recorded examples took the following form 

1.39678 1.40234 1.41967 1.42003 45 53 C4aO. 5 

1.39756 1.40856 1.41325 1.43256 48 51 end-of-process 

which can be translated as 'turn the C, component anti- 
clockwise by half a turn' (first example) and 'no further 
tuning is required' (second example) 'when the attributes 
have the given values. It is clear that the first example 
points to another decision, that of continuing the tuning. 
Previous work resulted in the identification of three 
search spaces: 

(i) search space 1: to carry on or to end the tuning (2 
classes) 

(ii) search space 2: which component to adjust and 
which direction (4 classes) 

(iii) search space 3: how far to turn (I I classesý 
Thus, given a set of attribute values the system is to 
decide if further tuning is required. If it is, the same 
attribute values are to be used to define the component, 
direction and distance to turn; otherwise the process can 
be repeated with a new set of values of another untuned 
filter. 

3.3 Presentation of examples 
The attribute values were used in the two techniques in 
their recorded format. Initially eight examples were used 
in the learning set. These comprised four 'end-of-process' 
examples and four 'carry on' examples for the same filter. 
The latter included those examples generated when the 
components were adjusted to their maximum positions in 
both directions. Four more examples were then intro- 
duced, namely those generated when the components 
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were turned half way. Finally, the four examples which 
arose when the components were adjusted to their 

. mmal positions were presented. For the second and 
third search the same examples were presented but with 
the 'carry on' class replaced by either the component/ 
direction or the distance, respectively. The 'end-of- 
process' examples were replaced by the examples gener- 
ated with the minimum turn. At each stage the generated 
decision tree or weight vector was tested against the 
training set S, the remaining unseen examples of the 

. -ame filter S2 and the unseen examples of the rest of the 
filters S3. Finally, the total performance was calculated 
(Total). 

3.4 Comparison criteria 
Machine learning involves generalising from a set of 
examples and identifying those attributes and attribute 
values that can be used to discriminate between classes. 
The quality of generalisation depends heavily on the 
selected attributes (sufficient or inadequate? ) and the 
number of examples present. At this stage of the work the 
hypothesis was that the chosen attributes were adequate. 
However, the number of examples necessary was 
unknown. The objective of the comparison was to iden- 
tify the technique which used the least number of exam. 
ples while giving a satisfactory performance. Note that in 
using the set of examples, either to learn or to testý the 
assumption is being made that, given a set of attribute 
values, the only correct action is the one as defined by the 
example. By 'correct' action is meant that action which 
would have resulted in tuning the stopband in the least 
number of steps. 

3.5 Search I comparison 
The following points can be made regarding the results 
obtained (Table 1). ID3 is seen always to be capable of 
predicting accurately those examples presented to it in 
the training set S1. Furthermore, by taking into account 
the percentage success rate it can be concluded that a 
satisfactory generalisation has been achieved with few 
examples. Introducing extra examples tends to improve 
the generalisation even further. Unfortunately, this is mis- 
leading. Closer inspection of the test results shows that 
the high success rate was due to the presence of a large 
number of 'carry on' examples. ID3 successfully predicted 
the 'carry on' examples but failed to recognise the 'end- 
of-proccss' ones, i. e. there was no true classification. 

'Me only option for improving the ID3 performance 
was to introduce further 'end-of-process' examples. It was 
found that by increasing the learning set to 18 the objec- 
tive was achieved with a 96% success rate (row 4 of 
Table I). 

The performance (Table 1) of the adaptive combiner 
with a forgetting factor of 0.9 also tends to improve with 
the presentation of extra examples, the performance of 
the training set S, being the exception. Unfortunately, 
like ID3, a large number of 'end-of-process' examples 

were misclassified. Therefore. experiments were carried 
out to investigate the effects of varying the forgetting 
factor and of retraining the combiner with the same 
training set. Table 2 shows the predictive accuracy of the 

Table 2. Combiner predictive accuracy for Search I and 
adjusted parameters (nine relearning loops and forgetting 
factor - 0.9) 

Number of learning %rate of successon 
examples 

S, S, S. Total 

is 94 100 91 92 

combiner when the forgetting factor equals 0.9 and the 
training set was presented to the combiner nine times. 
Further experiments involved manipulation of the attri- 
butes and the presentation of the attribute values. Table 
3 shows the results obtained when only four attributes 
Table 3: Combiner predictive accuracy for Search I and 
reduced set of attributes (four positive peaks) and scaled 
values (0-100) 

Number of learning % rats of success on 
examples 

S, S, S, 7.0(81 

100 88 90 90 
12 100 91 84 85 
16 94 98 85 87 

were used (the four positive peaks) with values scaled 
between 0 and 100. In this case, it is interesting to notice 
that the combiner performed best when only eight exam- 
ples were used. Ibis is mainly due to the fact that, when a 
large number of examples from one filter are shown to 
the combiner in the training mode, it cannot recognise 
examples of the other filters; (S3) very well. In both cases 
(rables 1,2) the 'end-of-process' examples were recog- 
nised. 

36 Search 2 comparison 
The three learning sets were introduced to the ID3 algo- 
rithm. Table 4 shows the results obtained. Note that even 

Table 4: ID3 Predictive accuracy for Search 2 

Number of learning % rate of success on 
examples 

S, S, S, Total 

100 100 88 91 
12 100 100 88 91 
16 100 100 88 91 

when eight examples were used the prediction rate was 
acceptable and that the performance did not improve 
with the introduction of further examples. This is prob- 
ably an indication that further attributes are required if 
better performance is to be achievedL 

Table 1: ID3 and adaptive combiner predictive accuracy for Search I 
(forgetting factor . o. 9) 

Number of learning % rate of success on 
examples 

S, S2 S3 Total 

ID3 combiner ID3 combiner ID3 combiner ID3 combiner 

8 100 87 82 57 80 67 81 67 
12 100 100 81 77 so 82 81 82 
16 100 75 100 100 93 91 94 91 
18 100 100 96 97 
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As for Search 1, it was found necessary to present the 
combiner with a reduced number of attributes (the four 

positive peaks) and to scale the values between 0 and 100 

to improve the performance. It was also necessary to 
include 'end-of-process' examples as well. The first train- 
ing set contained five examples, i. e. one 'end -of- process' 
plus four examples when the screws were misadjustcd to 

their maximum positions. Then the examples correspond- 
ing to the minimum positions of the screws were added 
to the learning set (i. e. nine examples in all) and finally 

the examples corresponding to the half-way mis- 

adjustments of the screws plus one more 'end -of- process' 

example were added, resulting in 14 examples. The per- 
formances of the combiners for the three learning sets are 

summarised in Table 5. Introducing more examples from 

Table 5: Combiner predictive accuracy for Search 2 and 
reduced set of attributes (four positive peaks) and scaled 
values (0-100) 

Number of learning % rate of success on 
examples S, S, S, Total 

5 100 93 75 78 
9 100 93 81 83 

14 93 95 58 64 

one filter resulted in an acceptable performance when 
testing examples from the filter that the training examples 
were taken from. Instability in the learning occurred for 
examples generated from different filters. Again, the com- 
bincrs successfully recogniscd all the 'end-of-process' 
examples but their total percentage rate of success was 
not as high as for the ID3 algorithm. 

3.7 Search 3 comparison 
Problems arose when ID3 was implemented for Search 3. 
it is not reasonable to expect a prediction of, say, 2.25 
when only examples with 0.25 and 2.75 classes were pre- 
sented. This implies the necessity of a large training set 
consisting of all the examples of one filter. Howcver, due 
to the large number of classes (11), the problem of bushy, 
unstructured decision trees arose and this resulted in a 
very poor performance. The inability of ID3 to perform 
successfully when a large number of classes are present 
was the main factor in deciding to split the search into 
three separate searches, as reported previously. 

The main advantage of the combiner architecture over 
that of ID3 is due to its ability to produce continuous 
output. For this search space, it was decided to train the 
combiners on the exact values of misadjustments for both 
screws. Again, the reduced set of attributes and the scaled 
values were used. Figs. 5a and 5b show the correct mis- 
adjustment levels for screws C, and C,, respectively. 
Figs. 5c and 5d illustrate the output of the combiners 
when five learning examples were used, i. e. one 'cnd-of- 
process' and four for the maximum misadjustments of the 
screws. Figs. 5e and 5f show the same outputs when nine 
learning examples were used and, finally, Figs. 5g and 5h 
show the outputs with 14 learning examples. Although 
not one hundred per cent accurate, with this limited 
number of examples the combiners have managed to 
track the desired outcomes (Figs. 5g and 5h) as evidenced 
by the similarities between Figs. 5g and 5a and between 
Figs. Sh and 5b. 

3.8 Discussion of performance 
The difference between the two techniques, apart from 
the algorithmic approach used, is that adaptive com- 

bincrs learn in an incremental fashion whereas ID3 sees 
all the examples at the same time. For Search I both 
techniques showed a tendency to improve their total per- formance when further examples were introduced. ID3 
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performed as well and sometimes better than the com- 
bincr. Also both techniques were plagued with the same 
problem of not recognising the 'end -of- process' class. 
Finally, this problem was solved (see Section 3.5) when it 

was found that ID3 sometimes gave slightly better results 
with less inconvenience. To produce an acceptable per- 
formancc with adaptive combiners a considerable 
amount of time had to be spent manipulating the number 
of attributes, the format of the attribute values and even 
the order of introduction of the examples. 

Two interesting points arose for Search 2. Firstly, the 
performance of ID3 was independent of the number of 
examples, and secondly ID3 had a higher percentage 
testing success than the combiner. The reason behind the 
much lower total performance of the combiner lies in the 
low percentage rate of success when examples of other 
filters arc tested (S. in Table 5). It is known that two 
filters of the same family arc not identical. Tolerancing 

errors and parasitic effects result in different attribute 
values. It seems that the combiner could not handle these 

situations whereas selected cutoff points of ID3 divided 

the N-dimcnsional space of the N-attributcs properly. 
ID3 failed significantly for search 3. This was due to 

the large number of classes (11) together with the relatively 
small number of examples (43). Less than four examples 
contributed to each class. Even the introduction of a 
larger training set did not ensure success. The ID3 algo- 
rithm was originally constructed to deal with binary clas- 
sification and it seems that better performances are 
achieved with a low number of classes. On the other 
hand (he ability of adaptive combiners to handle contin- 

uous output produced better results with fewer examples. 
To improve the performance of the combiner for this 

search space, it would be necessary to include learning 

examples generated when both screws arc misadjusted 
together. Additionally, combiners can be used to indicate 

both the magnitude and the direction of the adjustments 
of both screws, (hcreforc eliminating the need for three 

search spaces. However, this is not possible if one 

requires the use of a training set which might be incom- 

plcte. 
Some general points can be made which apply irrc- 

spectivc of the application. Unlike the combiners, ID3 

always gave correct predictions for the examples used in 

the training set. ID3 also generated decision trees which 
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could be transformed in the form of IF ... 
THEN rules. 

These rules can be used directly to explain the relation- 
ships between the attributes and the decisions made. 
Using adaptive combiners the knowledge is represented 
in the weights and direct explanation is not feasible. 
Some work along these lines has been reported [ 19, chap. 
51. ID3 runs (i. e. learns) faster than the combiners. A 
drawback in using ID3 is that introducing further exam- 
ples means the regeneration of a decision tree that may 
result in changes in the cutoff points and/or the attributes 
used etc. The experiments reported in the text below 

attempted to deal with this problem. New examples will 
not effect the structure of the combiners and only the 

weights will be updated. 

Comparison of decision trees generated using 
ID3 

The use of numerical attribute values resulted in a 
problem associated with the cutoff point. The algorithm 
produced rules of the form 

IF attribute X is less than cutoff point T THEN 
.. 

The cutoff point, which took values such as 1.39765, was 
calculated using those values that were currently present 
in the training set. When new examples with previously 
unseen values were introduced, in most cases the cutoff 
point changed, resulting in a new set of rules. 

In this Section the results obtained in an attempt to 
identify any advantages in using one attribute presen- 
tation form over another are reported. The investigation 
involved the evaluation and comparison of decision trees 
produced by using logical and numerical attribute values 
for the first two searches. 

4.1 Further selection of attributes and generation of 
examples 

It was considered that the inclusion of further attributes 
might be helpful- In total, seven more attributes were 
introduced- These took the form of the six differences 
between positive peaks, for example PI - P2, P3 -_ P4, 
and the difference between the two negative peaks. A new 
set of examples was collected. This time the 'tune' pro- 
cedure was employed. This was necessary since, although 
the original 'detune' data was applicable, the previous 
comparison omitted the heuristics (short cuts) of the 
operator. Therefore, the operator was requested to tune a 
number of filters and the data were recorded as pre- 
viously. In this way 34 filters were tuned (only in the 
stopband) resulting in 138 examples. 

4.2 Generation of logical values 
Schemes have been proposed [20] which attempt to 
define supplementary cutpoints for each cutoff point. 
Producing such confidence intervals enhances the classi- 
fication of examples with values near the cutoff points. 
An alternative scheme was followed in our work. Instead 
of using the raw numerical values a transformation was 
applied. The numerical values were placed into ranges 
which were given logical names. Due to the absence of a 
priori knowledge for determining the ranges within which 
attribute values must lie for the filter to be considered 
tuned, ranges were calculated by employing the mean m 
and the standard deviation sd value of each attribute 
[21] using only those examples with 'end -of- process' as 
their class. In this way eight (ok, farleft, farright, closeleft, 
closeright, left, right, absent) or four (ok, left, right, 
absent) logical values were generated and assigned to 

each numerical value '11111" tlllc'* "'! is ()f MIMPles were 
available for cacti search space (i. e. numerical, 8-logical, 
4-logical). The label 'abscnC was used when a value for 
an attribute could not be determined (i. e. when a peak 
was absent) and not because it was unknown. The 'ok' 
label was given to those values which lay within the 
range (m -- sd) to (m + sd). Furthermore, values within 
the range (m - 2sd) to (m sd) were labelled I closeleft" 
which in the case of 4-logical values were assigned 'left' 
etc. 

4.3 Criteria for the evaluation of decision trees 
The evaluation and comparison was based on the follow- 
ing criteria: 

(i) percentage errors on classifying unseen examples 
(ii) number of branches in the decision tree 

(iii) number of rules in the rule base 
(i V) number of clash-labelled leaves 
(v) number of empty-labelled leaves 

(vi) total number of preconditions in the rule base. 

The first criterion assessed the performance of a decision 
tree in terms of accuracy in classifying unseen examples. 
This indicated how good the generalisation was. The rest 
of the criteria are of secondary importance and can be 
applied to determine the complexity and intelligibility of 
a decision tree. Fig. 6 displays a decision tree and Table 6 

d3 (root) 

II, II 
(branches) 

absent right felt ok (altnbule values) 
Pý eiýxl carryl on d7 

IT-7111 

absent right left ok absent right tell ok 
I 

car ry on 
I 

cady on 
I 

e4l y clQIsh er)d enl d (leaves) 
-Vty 

P3 

-L-, 

Fig. 6 Subset of a decision tree generated mth four-valued loqical 

attribute. % 

Table 6: Set of rules produced using the decision tree of 
Fig. 6 

IF d, is absent IF d, is left 
AND p, is absent THEN class is carry-on 
THEN class is carry on 
IF d,, is absent IF d. is ok 
AND p, is left AND d, is left 
THEN class is carry on THEN class is end 
IF d, is right IF d, is ok 
THEN class is end AND d, is ok 

THEN class is and 

the equivalent set of rules. They both illustrate the terms 
used in the critcria. 

4.4 Presentation of tuned examples 
The objective of this part of the work was the identifica- 
tion of the 'best' configuration for the two first search 
spaces. By 'configuration' is meant the choice of attri- 
butes to be used and their format (e. g. numerical, logical). 
The six configurations used are summarised in Table 7. 
To test how well the six configurations measured up to 
the criteria, the available examples were divided into 
three randomly chosen batches. The first batch included 
42 examples, the second 43 and the third 53. Initially, the 
first batch was used as the training set and the other two 
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Table 7: Configurations key 
Configuration Description Number of 
number atrributes 
F, 
F numerical attributes 

tes ib 
13 
13 2 u 4 logical-value attr F3 

8 logical-value attributes 13 
F, numerical attributes 6 
F, 4 logical-value attributes 6 

F. 8 logical-value attributes 6 

as the testing set (Test 1). This was followed by intro- 

duction of the second batch into the training set, which 

was then tested against the third batch (Test 2). Both 

tests were evaluated for all configurations for each search 

space. In total, 54 decision trees were generated, i. e. 18 

per search space (Fig. 7). 

set I 
13 attributes I L--- 
used týsetý 

numerical attributes 

8 loqioal attnbutes 

trainingset3 ýý4 logical attributes 

search I 
4 trQinvm set II 

6 attributes al attributes 
ý-TLýý I nuýý used 

trxuning set 34 togical cittnbutes 

Fig. 7 Configuration ofgenerated decision trees 

4.5 Evaluation of results and discussion (Search I) 
Table 8 shows the results for each configuration for both 
tests, expressed as the percentage error of misclassifica- 
tion. From Table 8 the following can be established: 

Table 8: Misclassification errors 

Configuration Test 1 Test 2 Classification 
% error % error improvement, % 

F, 42.7 41 ý5 1.2 
F2 31.3 22.6 8.7 
F, 20.8 28.3 -7.5 
F. 42.7 41.5 1.2 
F, 31.3 26.4 4.9 
F. 27.1 22.6 4.5 

(i) All performances but one improve as the size of the 
training set increases. 

(ii) The amount of classification improvement varies 
between configurations. Trees generated using logical- 
value attributes seem to perform better than those pro- 
duced using numerical attributes. The drawback of 
numcrical-value decision trees is their inability to handle 
examples with absent attribute values. 

(iii) Upon increasing the number of attributes no 
major differences are seen with configurations F, and F, 
in terms of improvements in their classification capabil- 
ities. 

(iv) With 13 attributes it can be seen that the per- 
formance improves further with the F. configuration. 

The results suggest the use of logical values for Search 1. 
Furthermore, 13 attributes, each one expressed with four 
logical values, tend to produce better results. 

For the algorithm to be effective, the number of situ- 
ations in which knowledge does not appear to have been 
learned (empty leaves) or there are contradictions (clash 

leaves) must be kept to a minimum. If cithei number is 
large a poor performance during testing results. 

Table 9 shows the results obtained using these two cri- 
teria. It is worth noting that when numerical attributes 
are used there are neither empty nor clash situations. 

Table 9: Number of leaves with 'empty'or 'Clash' label 

Configuration Test 1, ' Test 21 Test 3/Batch 
Batch 1 Batch 1+21 +2+3 

number of number of number of 
leaves leaves leaves 

empty clash empty clash empty clash 

F, 0 0 0 0 0 0 
F, 6 0 15 3 29 2 
F, 16 0 66 3 100 2 
F4 0 0 0 0 0 0 

F, 6 0 14 4 24 8 
F. 20 0 58 4 69 6 

This is to be expected. With numerical values the algo- 
rithm branches using cutoff points which inevitably cover 
every example. It is also unlikely for a clash to occur 
when numerical values with six significant figures are 
employed. The conclusion that can be made here is that 
by increasing either the number of attributes (from 6 to 
13) or the number of logical descriptors (from 4 to 8) an 
increasing number of empty situations is generated. This 
is because the use of a large number of attributes or 
attribute values renders the training set less representa- 
tive. This is influenced by a recognised drawback of the 
algorithm [22]: the algorithm has no means of determin- 
ing if it is necessary to branch for all defined values of an 
attribute. Attributes and attribute values are sometimes, 
but not always, relevant. When the number of attributes 
was six the number of clashes increased as further exam- 
pies were introduced. With a larger set of attributes the 
number of clashes tended to stabilise, irrespective of the 
number of logical values. 

The analysis of the results obtained for the remaining 
criteria (number of rules, branches, preconditions) were 
also complicated by the problem of irrelevance branch- 
ing. Decision trees generated using numerical attributes 
produce a smaller number of branches, less preconditions 
and fewer rules. 

4.6 Selection of configuration for Search 1 
Taking into account all the criteria, with equal weighting 
attached to each, suggested the use of numerical attri- 
butes since they produced smaller trees etc. However, the 
most important criterion, namely the percentage oferrors 
in the classification of unseen examples, showed the use 
of numerical values to be unsatisfactory. The misclassifi- 
cation error of approximately 42% was too large to be 
ignored. The use of logical values resulted in a more 
acceptable error rate. It was necessary to select between 

the choice of 6 or 13 attributes. There was not much dif- 
ference between their performances as far as the second- 
ary criteria were concerned, but the use of F, almost 
doubled the classification improvement. Therefore F, 

was selected as the most promising configuration. 
Further work with the chosen configuration resulted in 

an improvement in the performance of the secondary cri- 
teria. By taking into account a priori knowledge, the 

clashes were eliminated and the number of leaves was 
greatly reduced. Pruning the rule base 123] resulted in a 
reduction of preconditions and rules while maintaining 
the same performance. 
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4.7 Selection of configuration for Search 2 
A similar analysis took place for the second search space 
and configuration F6 was found to perform best. 

Conclusions 

Advances have been made in applying the techniques of 
expert systems with rule induction by the ID3 algorithm 
and of adaptive combiners to the tuning of the stopband 
of crystal filters. 

ID3 was chosen as the preferred technique for the first 

two searches. The main advantages of the ID3 algorithm 
over adaptive combiners were faster learning, the gener- 
ation of better results, and less manipulation of the 

attributes. Additionally, with ID3, decision tree rules 

were generated which made the relationships between the 

attributes more visible, the order of introduction of 

examples was not critical, and, finally, a 100% correct 

prediction for the training set was obtained. These 

advantages did not hold for the third search, where a 
larger number of classes was present. Further work with 
ID3 indicated that it was more efficeint to use logical 

than numerical attribute values when testing unseen 

examples. Logical configurations were identified for each 

search space. It seems that ID3 is a valuable aid to the 
knowledge elicitation stage and, particularly, when a 
small number of classes and logical values are present. 
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PRACTICAL ASPECTS OF USING AN EXPERT SYSTEM-NEURAL NETWORK 
HYBRID SYSTEM FOR TUNING CRYSTAL FILTERS 

D. Tsaptsinos', B. W. Jervist, A. R. Mirzai 

Sheffield City Polytechnic', Polytechnic of Central London, UK 

A knowledge-based system in a rule format, 
has been developed in order to help an opera- 
tor during the post-assembly tuning of crystal 
filters. The generation of the rules was accom- 

plished using the ID3 learning by examples 
algorithm. A consultation with the system 

provides the operator with advice as to 

whether the filter is tuned or as to which screw 
to turn and in which direction. Unfortunately it 
was not possible to use ID3 to generate rules 
for the distance to turn. The distance can be 

any value in the range of 0 to 2.5 revolutions 
inclusive and ID3 cannot handle such a large 

number of classes (Tsaptsinos et al (1)). It is 

thereforr left to the operator to judge how far 

to turn the screw. Initial testing rrsults were 
obtained with an experienced operator who 
had some idea of how far to turn the screw. 
The objective though was to construct a sys- 
tem which could be used by anyone irrespec- 

tive of his level of experience and proficiency. 
An inexperienced operator would probably 
turn the screws too far or too little. This could 
result in a larger number of iterations and 
while the tuning would eventually be done it 

would take longer. For this reason, neural 
networks were investigated in order to provide 
the operator with an indication of how far to 
turn the screws. 'ne results below are for one 
sub-process of tuning, namely the stopband 
tuning of the filter. For this sub-process two 
adjustable components are used, C4 and C7. 

A number of filters were de-tuned. De-tuning 
means moving from a tuned response to an 
untuned one. Ilie examples were created by 

having C7 either at its optimum position (i. e. 
where it was placed when the expert finished 
the tuning) or maladjusted in steps of half a 
revolution up to 1.75 revolutions in a clock- 
wise direction or up to 2.5 revolutions in an 
anti-clockwise direction. At each position of 
q the other component C,, was maladjusted in 
steps of half a revolution from its optimum 
position up to 1.5 revoulutions in a clock-wise 
direction or up to 2.5 revolutions in an 
anti-clockwise direction. In total 358 examples 
were generated for each filter. Each example 
consisted of fifty seven sampled values of the 
amplitude response (dB) plus the class to 
which it belongs (i. e. the distance turned). 

Ile 57 sampled amplitude data were pre- 
sented to the neural network without transfor- 
mation. I'he class value for each example was 
coded with a value between 0 and 1. For 
example, real values of 0,0.25,0.50 became 
0,0.1,0.2 respectively. 

Various questions arose prior to the neural 
network implementation concerning the size 
of the learning set. For example, should the 
learning set include examples generated from 
different filters, and/or should it include 

examples covering de-tuning of both compo- 
nents etc.? 11iis section deals with these 
questions. The variety of the position of the 
responses which can be considered as tuned 
created an overlapping of classes. For this 
reason, it was decided to employ the dc-tune 
data of just one filter. This will force the 
tuning of other filters towards the model 



'solution'. Additionally, in some cases, malad- 
justment by more than two revolutions caused 
negligible changes in the response. Overlap- 

ping of classes similarly occurred when the 
complete learning set was used. Responses 
generated using the left component (C) with, 
say, 0.5 turns resembled the ones generated 
using the right component (q) with 1.25 
turns. For this reason it was thought appropri- 
ate to break the learning set into four sets 
(Table 1). 

Learning Number of 
maladjustment examples 

C, anti-clockwise 215 
C, clockwise 144 

anti-clockwise 216 
clockwise 178 

Software from a commercially available 
package was used to simulate the learning 

algorithm on a 80386 based computer. 

A three layer feedforward network 
(57-11 - 10- 1) using the generalised delta 
learning rule (Rumelhart et al (2)) was em- 
ployed for each of the four learning sets. The 
learning rate and the momentum term were set 
at 0.9 and 0.6 respectively. The number of 
processing units in the input layer was set to 
57, thus each sampled point was assigned to 
one and only one unit. The input of each input 
unit was subjected to a simple linear transfor- 
mation using the software package, of the 
following form 
Transformed input = Input value Scale 
factor + Offset 
where the values of 0.01 and 0.1 were used for 
the scale factor and offset respectively. The 
offset was used to avoid having any zero 

inputs. 

The number of processing units in the output 
layer was set to 1. The output of the single 
unit is simply the summation of all its inputs, 
multiplied by their associate weights, from the 
second hidden layer. '17he obtained result was 
limited to both an upper (1 -0) and lower (0.0) 
bound and then compared to the desired 
output (i. e. how far to turn). Using the soft- 
ware package learning was inhibited when the 
error was lower than a pre-set value. 

The sigmoid function was used as the transfer 
function for the two hidden layers. 'I'he selec- 
tion of the number of processing units for each 
hidden layer was not as natural and effortless 
as for the other layers. Their numbers were 
determined empirically (I I and 10 for the first 
and second hidden layer respectively) and no 
claim is made that they are the most appropri- 
ate. Initial connection weights were set to 
small random values and they were updated 
after each presentation of an example. 

For each learning set the network was cx- 
ecuted for 75000 runs. Every 1000 runs the 
learning was momentarily paused and the total 
sum of the squared errors was calculated. 'Ilie 
error was the absolute difference between the 
desired and the obtained value. TIosc weights 
which generated the smallest error were 
selected for the network. For example, when 
using the learning set generated with C, mal- 
adjusted anti-clockwisc from the tuned posi- 
tion the smallest error occurred in run 56000. 
One of the criteria used to test the suitability 
of the above network based on anti-clockwise 
maladjustments was to test the network with 
dc-tuned examples obtained by maladjusting 
C,, in a clockwise direction. Ilie expected 
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outcome was 0 (since C,, does not need malad- 
justment in an anti-clockwise direction) and 
for the majority of the test cases a value close 
to zero was produced. 

Testing of the tuning of a number of filters 

was undertaken using three different systems. 

System 1* Knowledge-based system plus use 
The knowledge-based system provided advice 
on when to stop the tuning of the stopband, 
otherwise which component to turn and the 
direction to turn. T'he user had to decide on 
how far to turn. 

System I Hybrid system As for system I but 
the distance to turn was indicated by the 
appropriate net. For example, if the expert 
system indicated C4 clockwise, then the C, 

clockwise neural network would be used. 

System 3: Neural network Because each 
component/direction combination had a net 
associated with it then the outcome of each net 
was used to define all decision levels. For 
example, if the output of the four networks 
were: 
C4 anti-clockwise network: 0.1 (i. e. 0.25 in 

real turns) 
C4 clockwise network 0.3 (i. e. 0.75 in real 
turns) 
q anti-clockwise network: 0.6 (i. e. 1.50 in 
real turns) 
q clockwise network 0.5 (i. e. 1.25 in real 
turns) 
then the largest of each component was se- 
lected. In this example, that would had meant 
turn C4 clockwise 0.75 turns md C7 
anti-clockwise 1.50 turns. 

17he following criteria were employed to 
compare the various systems. 
(i) 17he average number of turns required for 
the entire tuning 
(ii) The number of successful tunings 
(iii) 'Me number of unsuccessful tunings 
In this paper the term tuning refers to the 
stopband tuning. It is worth noticing that the 
final result (i. e. the tuning) was examined 
rather than the intermediate actions. 77his was 
due to the fact that there exist numerous paths 
to the tuning and only the prominently wrong 
actions could be identified. 

Table 2 shows the number of attempts made 
for tuning the stopband. Table 3 shows the 
comparison of the systems in terms of the 
number of turns requirrd. ne table compares 
the performances of the systems and of the 
human operator. 
The comparison shows that the use of any 
system did not necessarily reduced the number 
of steps but the expected bencfit will be a 
reduction of the time an operator spends 
learning about the tuning procedure. This is 
apparent when comparing system I and sys- 
tem 2. The results are comparable and encour- 
aging. There is no need to have an expcri- 
cnced operator. At this stage it is preferable to 
use system 2 rather than system 3. The latter 
system seems to require more steps. There are 
two probable reasons for this. Firstly the 
shortcomings of the C7anti-clockwise network 
as experienced during all testing and secondly 
the attempt of each network to target to a 
single model solution. This resulted in oscil- 
lating outputs. 
The neural networks were also tested with 
data where the desired outcome was known 
beforehand. Observing the output of the neural 
networks the following points were made: 
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(i) 'nie networks for learning C4 and q clock- 
wise both gave correct estimates 
(h) The network for learning C4 

anti-clockwise tends to underestimate for 

values greater than 0.5 
(iii) Tle network for learning C7 

anti-clockwise did not perform well in general 
except in one case in which it worked cor- 
rectly for values up to 0.7 but for greater 
values it provided conservative estimates 
(iv) All networks recognise a tuned state 
(v) Networks for learning the clockwise 
maladjustment for both components operated 
better. Both had fewer examples in their 
learning sets and less classes represented than 
the ones with anti-clockwisc maladjustments. 

From the test results shown above, it should 
be noted that it is possible for the hybrid 
system (system 2) and the connective equiva- 
lent (system 3) to tune the stopband region of 
the magnitude response. A decrease in the 
training of operators can be achieved with 
either system. 

However, each system has its own advantages. 
Ile case 2 system can generate basic explana- 
tions of its reasoning whereas the networks 
have a faster execution time despite the larger 
number of steps taken. Both systems are then 
promising but an extensive testing period 
would be required before they be introduced 
in the production line. 
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Manual System I System 2 System 3 

Number of attempts 34 21 19 3 
Successful tunings 34 18 15 2 
Unsuccessful tunings 0341 

Manual System I System 2 System 3 

Average number of turns 3.67 3.22 3.53 10.50 
Minimum number of turns I 1 17 
Maximum number of turns 9 7 8 14 
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ABSTRACT 

Filters can be used in a variety of applications. In practice, 
manual tuning of the components is required in order to achieve 
a specified performance. An expert system is being constructed 
to assist the operator during the tuning phase. Protocol 
analysis was employed originally but failed to provide the 
whole spectrum of the operator's knowledge. Experiments were 
carried out to investigate and compare the applicability of 
three machine learning paradigms (ID3, adaptive combiners, 
neural nets) as the means of automated knowledge elicitation. A 
brief description of the techniques, a comprehensive analysis 
of the experiments and the reasons behind ID31s selection are 
described in this paper. 

INTRODUCTION TO THE DOMAIN 

At present, the tuning of electronic filters is performed 
manually. The objective of our work is to develop the expert 
system paradigm in this domain in order to partly or completely 
automate the process. 

Electronic filters are available in various types but 
irrespective of the type the function of an electronic filter 
remains the same. That is, to retain all frequencies within 
certain limits (passband regions), while rejecting all other 
frequencies (stopband regions). 

A produced filter will not always meet the desired 
specification, thus manual tuning is required to adjust 
component values to achieve the required performance. There 
does not appear to be a theory of the practical tuning of 
filters. Through an initial training and with acquired 
experience the operator is transformed into a skilled operator. 
Despite the variations between operators, which can be found in 



detail, the general pattern is the same. An operator checks the 
performance of the filter (eg. magnitude response [Figure 11), 
decides if tuning is required and, if so, performs the 
necessary adjustments to a tunable component. These steps are 
then repeated as many times as necessary until the performance 
satisfies the requirements. Effectively the operators act as 
signal interpreters and perform a human real-time optimisation 
attempting to reduce the total and individual errors of the 
features of interest. 
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The filter employed as the test benchmark is an asymmetric 
bandpass crystal filter [Figure 2]. The filter consists of two 
types of adjustable components, namely trimmer capacitors (C4 

and C7) and inductors (TI, T2, T3). 

INITIAL KNOWLEDGE ELICITATION 

Several expert systems have been constructed (Bramer [11), and 
their number is rapioly increasing for engineering domains 
(Computer [2]). The construction of an expert system is a 
painstaking process. Eliciting, analysing, interpreting, 

representing, administering and utilising the knowledge that a 
human expert uses presents problems to the builder. 

The knowledge elicitation technique chosen for the filter- 
tuning project was the protocol analysis approach. Protocol 
analysis was first described by Newell and Simon [31 and, in 
recent years, by Ericsson and Simon [4]. The reason to employ a 
verbal on-line technique becomes more visible when one 
considers the nature of the decision process. The operator 
interprets, plans and executes tasks by visually inspecting the 
measurement set which displays the magnitude response of the 
connected filter. By adjusting the set the operator is able to 
inspect the full response or part of it. It was felt that the 
operator would have found it impossible to describe the 
response in a verbal off-line format. 

The tuning of the chosen filter was then video-taped twice. 
The expert was instructed to "think-aloud" about the process 
and to include not only his mental skills but also his manual 
skills. Manual means the skills needed to operate the measuring 
set. Mental means the reasons behind each action taken, such as 
why to turn component X instead of Y. Then the process of 
transcribing the video-tapes and analysing the transcripts 
commenced. The benefits of the transcription analysis were as 
follows :- 

Identification of order for specification checking ie. what 
features and in what order were checked. Possible corrective 
actions were also identified. 

Identification of the classes of activity the operator was 
involved with. 

Identification of objects which resulted in the production of a 
dictionary. By objects is meant the most primitive words that 
the expert uses to express domain knowledge (eg. frequency, 
coils etc. ). 

Clustering of objects and identification of their relations. 

Identification of the expert's tuning process. 



What failed to surface is best described by the following 

scenario. It was identified that the expert begins with the 
tuning of the stopband region of the magnitude response. Also, 
it was found that only the trimmer capacitors were of any use 
for this region. Although there are only two candidates the 
expert failed to provide a theory for which one to pick, which 
direction to tune and by how far to turn at certain situations. 
To overcome that problem the possibility of automatically 
acquiring and updating the knowledge was considered. This 
involved the implementation and comparison of three paradigms 
which learn through the use of examples. 

GENERATION OF EXAMPLES 

The three techniques (ID3, adaptive combiners and neural nets), 
function according to a similar principle. They require a set 
of examples, referred to as the learning set. Each example is 
described in terms of attributes, with each attribute in turn 
specified by a value, together with a class identifier. The 
purpose of the techniques is to determine the relationships 
between the attributes which then can be used for 
classification of other examples. 

A database of examples was not readily available, therefore 
a set of examples was collected using the "de-tune" procedure. 
This procedure misses out the heuristics employed by the expert 
but a more complete set of examples can be collected. By 
complete is meant a learning set which contains most attribute 
values likely to arise thus eliminating the possibility of 
having only extreme or rare values. 

Prior to the generation of the learning set using the 
previous transcript analysis and further discussions with the 
expert the following suitable attributes were identified: - 

(i) Locations of sharp positive peaks of the waveform 
(number=4, MHz units) 
(ii) Relative magnitudes of sharp negative peaks of the 
waveform (number=2, dBs units). 

During the de-tuning the expert was asked to tune the 
stopband region. Then the attribute values were recorded 
together with the class "end-of-process". A systematic de- 
tuning followed. That was achieved by keeping one tunable 
component constant and mis-adjusting the other one. This was 
reapeated by misadjusting in a different direction and by using 
the other component. Obviously, the filter was re-tuned in 
between. For those examples the component, direction of turn 
and how far the component was turned were recorded. In this 
way 43 examples were collected for one filter. Six filters were 
de-tuned resulting in a total of 258 examples. 



THE ID3 ALGORITHM 

ID3 (Iterative Dichotomiser 3) was developed by Quinlan [5] in 
1979. The goal of the algorithm is to induce a decision tree 
(which can easily be transformed into rules of the form IF x 
THEN y). A decision-tree is then generated from a collection of 
examples by recursively sub-dividing this collection into 
smaller subsets. A decision tree consists of a number of nodes 
( the "IF" part) representing attribute-based tests together 
with a number of terminal nodes, also known as leaves. The 
terminal nodes (the "THEN" part) may take the label of a class, 
or be labelled "empty" or "clash". Empty appears when there are 
no examples which can be used for that particular branch. Clash 
emerges when there are two (or more) examples covering that 
specific branch but their classes are distinct. 

In order to illustrate the technique, a simple example will 
be used. The objective is to obtain rules to help us identify 
the class to which a filter belongs. By class is meant 
highpass, lowpass, bandpass or bandreject. Those classes are 
then the outcomes. For attributes the following were used: 

(i) Number of stopband regions (abbreviation: nostop) 
(ii) Number of passband regions (abbreviation: nopass) 
(iii) Number of transition regions (abbreviation: notrans) 

Table I shows the examples used. Using a commercial package Xi- 

NOSTOP 
I 

NOPASS NOTRANS 
I 

OUTCOME 

one one one highpass 
one one one lowpass 
two one two bandpass 
one two two bandreject 

Table 1. Examples 

Rule, which implements the algorithm, the decision tree in 
Figure 3 was generated. Certain observations can be made: - 

notrans = two 
nostop = one: bandreject 

I -- two: banpass 
one (Clash) 

Figure 3 Decision tree 

(i) When the number of transitions is less than two, a clash 
exists. This is due to the fact that the first two examples 
have the same attribute values but different classes. This 



means that more attributes are needed in order to discriminate 

between highpass and lowpass filters. 

(ii) The attribute "number of passband regions" is. redundant. 
The attribute can be eliminated and the rules will be the same. 

From the decision tree rules can be generated by simply 
following a branch through the tree to one of the leaves. Table 

2 contains the two rules extracted from the decision tree in 

IF notrans IS two 
AND nostop IS one 
THEN outcome IS bandreject (Rule 1) 

IF notrans IS two 
AND nostop IS two 
THEN outcome IS bandpass (Rule 2) 

Table 2. Generated example rules 

Figure 3. What has to be remembered is that induced rules do 
not generate new knowledge but prompt to what the rules appear 
to be. For example, on observing Table 2, one can see that the 
condition for attribute "notrans" is not required. 

ADAPTIVE COMBINERS 

In recent years one class of adaptive architectures, linear 
combiners, has been used for the design of intelligent systems 
(Mirzai [6]). Figure 4 illustrates a simple combiner structure. 

y(k) 

Figurr. 4 Adaptive combiner architecturt 

Given knowledge about a particular problem in the form of input 
attributes, and the class, it is desirable to estimate the 
weight vector in such a way that, when the system is presented 
with a new set of examples, it can predict the correct outcome. 



The adaptive combiner structure used here can be thought of as 
a one layer connectionist network and the recursive least 
squares (RLS) algorithm is employed for the estimation of the 
weight vector. 

NEURAL NETWORKS 

only recently research in neural networks was revived resulting 
in the development of various techniques (Pollack [71) which 
attempt to eliminate the original shortcomings. Back- 
propagation is a such technique, which was developed 
independently by several people (LeCun [81, Parker 191, 
Rumelhart [10]). Figure 5 illustrates a three layer network 

i j+2 yk 

output 

layer 

hidden 
layer 

hidden 
layer 

input 
layer 

x 42 

Figurr5 neuml net architectitre 

which consists of an input layer, an output layer and two 
hidden layers. The input layer contains the information coming 
from the features (attributes) from each example. The hidden 
layers perform a recoding of the original feature-set which is 
then passed to the output layer for the generation of a pattern 
(class). The characters written on the arrows represent the 
connectionist strength of the weights. The characters in the 
circles represent the thresholds of each unit. The back- 
propagation algorithm uses the sigmoid function which results 



in a continuous threshold. By initialising all weights and 
thresholds to small random values and using the sigmoid 
function the outputs are calculated. Then the algorithm 
recursively adjusts the weights and the thresholds. 

, 
Reference 

(Rumelhart [101) provides a more detailed mathematical analysis 
of the technique. 

To illustrate the technique we adopt the example used by 
Lippman [11]. Eight examples representing two classes I and 0 
(Table 3) were introduced as the learning set. Examples from 

xi 
I 

X2 
I CLASS 

1 2 0 
1 1 1 
1 3 0 

1 -3 0 
1 -1 1 
1 -4 0 

Table 3. Learning set 

class I were distributed to the edges of a circle of radius 1 
centered at the origin. Examples from class 0 were distributed 
outside the circle. After 548 iterations using a two-layer 
network with two hidden nodes the weights and thresholds were 
calculated. Then the network was tested with eleven previously 
unseen examples (Table 4). The results were satisfactory for 
either class except those examples, of class 0, with values 
close to the circle. 

X1 X2 Desired class roduced class 

0 0 1 0.97 
3 1 0 0.85 

-0.5 -0.9 1 0.96 
1.1 1 0 0.92 

-0.1 0 1 0.97 

-1.1 -1.1 0 0.95 
5 5 0 0.04 

1.1 1.1 0 0.89 
1 1.1 0 0.89 

Table 4. Testing set 

In the above example and in the investigation the three 
techniques are trained to function as classifiers. The goal is 
to learn to classify correctly during training so that in 
future use they will be able to classify correctly new 
examples. 



PRESENTATION OF EXAMPLES 

Previous work resulted in three search spaces for the tuning of 
the stopband. 

M search space one: to carry-on or to end the process 
(ii) search space two: which component to adjust and which 

direction 
(iii) search space three: how far to turn. 

The examples were introduced to the techniques in an 
incremental fashion. The reader should note that the same 
examples were presented to each technique for every search. The 
number of classes were different in each search. Search one has 
two classes, search two has four classes, search three has 
eleven classes. Initially 8 examples were used in the learning 
set. They comprised of 4 "end-of-process" and 4 "carry-on" 
examples of the same filter. The latter included those examples 
generated when the components were adjusted to their maximum 
positions in both directions. Then, 4 more examples were 
introduced, the ones generated when the components were turned 
halfway. Finally the 4 examples which arose when the components 
were adjusted to their minimal positions were presented. 

At each stage of the procedure the generated set of rules 
or weights was tested against the learning set (SI), the 
remaining unseen examples of the same filter (S2) and the 
unseen examples of the rest of the filters (S3). Finally, the 
total performance was calculated (TOTAL). In this way it could 
be determined how well the algorithms learnt and generalized. 

An obtained example took the following form, 

1.39678 1.40234 1.41967 1.42003 45 53 C4aO. 5 

which can be translated as "turn the C4 component anti- 
clockwise, half a revolution when the attributes have the given 
values". The exact numbers were presented to the three 
techniques as above. The presentation of the classes was 
different for the combiner and neural net. For example, in 
search three class 0.5 was presented to the neural net as 4 
nodes (eg. 001 0). In search two, class C4a was presented to 
the adaptive combiner as two nodes (eg. -1 0). 

CRITERIA OF PERFORMANCE 

The comparison was based on two criteria. The percentage of 
examples used in the final learning set and the predictive 
accuracy of the final learning set. The reason for using those 
two interrelated criteria is that an expert system's knowledge 
base is constantly refined. This is due to that the correct 
number and nature of examples to be used is unknown. The need 



arises to identify that technique which uses the lesser number 

of examples in conjunction with a satisfactory performance. 

SEARCH ONE COMPARISON 

The following points can be concluded regarding the results 

obtained using ID3 (Table 5). ID3 seems to perform better when 

a small learning set was used and it is always capable of 

predicting accurately those examples presented to it in the 
learning set. 

NUMBER OF LEARNING (%) RATE OF SUCCESS ON ... 
EXAMPLES si S2 S3 TOTAL 

8 100 82 80 81 
12 100 81 80 81 
16 100 100 93 94 
18 100 100 96 97 

Table 5. ID3 Predictive accuracy (Search I) 

The satisfactory success rate achieved when 16 examples were 
used can be misleading because the success rate was due to the 
presence of a large number of "carry-on" examples. ID3 
predicted succesfully the "carry-on" examples but failed to 
recognize the "end-of-process" ones. The only option available 
to improve the ID3 performance was to introduce further "end- 
of-process" examples. It was found that by increasing the 
learning set to 18 the objective was achieved (Row 4 of Table 
5). 

Obtained results employing the adaptive combiner 
architecture are displayed in Table 6. Despite unstable 
behaviour of the learning set, the success rate of the total 

NUMBER OF LEARNING (%) RATE OF SUCCESS ON 
EXAMPLES si S2 S3 TOTAL 

8 87 57 67 67 
12 100 77 82 82 
16 75 100 91 91 

Table 6. Combiner predictive accuracy (Search I) 

test was improved. Unfortunately, like ID3, a large number of 
"end-of-process" examples were mis-classified. Experiments were 

carried out to improve the performance of the combiner. That 

took the form of manipulating parameters and the presentation 

of the attribute values. Table 7 shows the predictive accuracy 

of the combiner when the forgetting factor equals 0.9 and the 



learning set was presented to the combiner 9 times. Similarly, 
Table 8 shows the results when the attribute values were re- 
scaled between 0 and 1. In both cases the misclassification 
problem was resolved. 

I 
FORGETTING FACTOR : 0.9 1 RE-LEARNING LOOPS :91 

NUMBER OF LEARNING (%) RATE OF SUCCESS ON 
EXAMPLES 

I 
si S2 S3 TOTAL 

I 

1 16 94 100 91 92 1 

Table 7. Combiner predictive accuracy (Search I) 
(Adjusted Parameters) 

NUMBER OF LEARNING (. ) RATE OF SUCCESS ON 
EXAMPLES si S2 S3 TOTAL 

8 100 88 90 90 
12 100 91 84 85 
16 94 98 85 87 

Table 8. Combiner predictive accuracy (Search I) 
Scaled Values 

There are some obstacles in using neural networks. one does 
not know how many hidden units are required, with what values 
to initialise the weights etc. Using Table 9, where some 
results are displayed, various points can be made. When the 

(%) RATE OF SUCCESS ON ARCHITEC URE 
LEARNING SET (Sl) 

72 6-4-4-1 
71 6-3-5-1 
74 6-4-5-1 

Table 9. Neural net predictive accuracy 
(Search I- Eight examples) 

examples were eight the prediction performance averaged 72 per 
cent. At the same time 10 out of 24 "end-of-process" examples 
were mis-classified. An increase of 4 examples produced an 
average performance of 78 per cent. Again the mis- 
classification rate of "end-of-process" examples was 50 per 
cent except when the number of hidden nodes in the first layer 
was four (Table 10). That was irrespective of the number of 
nodes in the second layer. The best true classification was 



(Z) RATE OF SUCCESS ON ARC13ITECTURE 
LEARNING SET (I 

77 6-2-2-1 
78 6-3-2-1 
78 6-4-2-1 
77 6-2-3-1 
78 6-3-3-1 
77 6-4-3-1 
77 6-2-5-1 
77 6-3-5-1 
78 6-4-5-1 
78 6-4-4-1 

Table 10. Neural net predictive accuracy 
(Search I- Twelve examples) 

achieved when the 6-4-4-1 architecture was employed. Increasing 
the examples in the learning set to 16 produced an average 
performance of 93 per cent with a mis-classification rate of 4 
examples out of 24 (Table 11). 

(%) RATE OF SUCCESS ON 
LEARNING SET (Sl) 

ARCHITECTURE 

93 6-4-2-1 
91 6-4-3-1 
93 6-5-2-1 
93 6-5-3-1 
93 6-6-2-1 
93 6-6-3-1 
93 6-4-4-1 
93 6-5-4-1 
93 6-3-5-1 
93 6-4-5-1 
94 6-5-5-1 

Table 11. Neural net predictive accuracy 
(Search I- Sixteen examples) 

SEARCH TWO COMPARISON 

The three learning sets were introduced to the ID3 algorithm. 
This time the "end-of-process" examples were replaced with 
those examples generated with the minimum mis-adjustment. Table 
12 shows the results obtained. Note that even when eight 



NUMBER OF LEARNING I (Z) RATE OF SUCCESS ON ... 
EXAMPLES si S2 S3 TOTAL 

8 100 100 88 91 
12 100 100 88 91 
16 100 100 88 91 

1 

Table 12. ID3 Predictive accuracy (Search II) 

examples were used the prediction rate was acceptable and that 
the performance did not improve with the introduction of 
further examples. This is probably an indication that further 
attributes are required if better performance is to be 
achieved. 

When the three learning sets used for ID3 were presented to 
the combiner the results were very poor. The reason being the 
need to have examples which can act as reference points. That 
role was played by the "end-of -process" examples. The combiners 
were trained to indicate the "end -of -process", as well as which 
screw to adjust and in what direction. The first learning set 
contained 5 examples, ie. one "end-of-process" plus four 
examples when the screws were mis-adjusted to their maximum 
positions. Then the examples corresponding to the minimum 
positions of the screws were added to the learning set (ie. 9 
examples all together) and finally the examples corresponding 
to the half way mis-adjustments of the screws were added 
resulting in 13 examples. The performance of the combiners was 
again poor. For that reason the attribute values were re-scaled 
as before, and an extra "end-of-process" example was introduced. 
This greatly improved the performance. The performances of the 
combiners for the three learning sets are summarised in Table 
13. Again, the combiners successfully recognised all the "end- 
of-process" examples. 

NUMBER OF LEARNING (Z) RATE OF SUCCESS ON 
EXAMPLES si S2 S3 TOTAL 

5 100 93 75 78 
9 100 93 81 83 

14 93 95 58 64 

Table 13. Combiner predictive accuracy 
(Search II - Scaled Values) 

The three layer networks produced an average performance of 
76 per cent with 6-3-3-2 architecture gaining the highest (80% 

with 8 examples). Note that adding an extra node at either 
layer did not produce a better performance. By increasing the 

examples the performance improved with architecture 6-5-3-2 



reaching the highest (92X) using 16 examples. Irrespective of 

the number of examples and number of nodes used the nets 

produced a better performance for the direction to turn than 

the component to be used. Table 14 displays a sample of 

results. 

NkUMBER OF 
EXAMPLIES 

(Z) 
SI 

: RýAATE OF 
Component 

SUCCESS ON 
Directioni 

ARCHITECTURE 

8 72 72 98 6-4-3-2 
8 80 80 97 6-3-3-2 
8 77 77 98 6-3-4-2 

12 77 77 98 6-3-2-2 
12 81 81 97 6-3-3-2 
12 74 74 97 6-5-5-2 
16 93 93 98 6-5-3-2 
16 92 92 97 6-8-4-2 
16 87 87 97 6-3-3-2 

Table 14. Neural net predictive accuracy 
(Search II) 

SEARCH THREE 

Problems arose when ID3 was implemented for search three due to 
the presence of a large number of classes (11). The necessity 
of a learning set consisting of all examples of one filter 
produced the problem of bushy, unstructured decision trees 
arose which resulted in a very poor performance. The inability 
of ID3 to perform succesfully when a large number of classes 
are present was the main factor in deciding to split the search 
into three separate searches, as reported previously. 

The main advantage of the combiner architecture over that 
of ID3 is due to its capability of producing continuous output. 
For this search space experiments were carried out with un- 
scaled values as well. When re-scaling took place the combiner 
performance improved. Again "end-of-process" examples were 
required. Figure 6a and 6b show the correct mis-adjustment 
levels for screws C4 and C7 respectively. Figure 6c and 6d 
illustrate the output of the combiners when 5 learning examples 
were used (ie. one "end-of-process" and four for the maximum 
mis-adjustments of the screws). Figure 6e and 6f show the same 
outputs when 9 learning examples were used and finally 6g and 
6h show the outputs with 14 learning examples. With this 
limited number of examples the combiners have managed to track 
the desired outcomes (Figure 6g and 6h) although not to 100 per 
cent accuracy. 



C4 

44 

ew 44 

.... .... .. 9 

44 

C7 
3 

0b 

3 

0... ...... I ...... d 

44 

-3,27-44 
3 

0 ............ I ...... h 

36 
22 44 

Figure 6 Adaptive combiner results 

Unfortunately, the three layer network did not produce very 
good results. At this stage our aim was not to identify the 
most appropriate architecture but to determine how easy or 
feasible that job is. For that reason when over one hundred 
nets were run before further investigation was suspended. An 
interesting, and somewhat expected, fact arose with the use of 
the nets. Increasing the hidden nodes drastically improved 
(Table 15) the performance for each individual node. It is 
probable that additional re-learning of the learning set will 
produce better results in the future. 

NUMBER OF NUMBER OF CORRECT PREDICTIONS ON ARCHITECTURE 
EXAMPLES: 39 NODE 1 23 4 

20 00 0 6-1-3-4 
25 36 0 6-2-3-4 
21 22 5 0 6-4-5-4 
29 28 16 8 6-20-10-4 
23 16 9 3 6-10-20-4 

Table 15. Neural net predictive accuracy 
(Search III) 

DISCUSSION 

Although the three techniques are different, a comparison was 
possible. ID3 performed slightly better than the other two for 
the first two searches. For the third search ID3 failed 



significantly. This was due to the inability of the algorithm 
to handle a large number of classes. The use of ID3 for the 

first two searches was elected. The decision was based on the 
following advantages of ID3, as seen by the authors. 

T An expert system cannot ever be completed. Such systems 

should append their knowledge through time. The incremental 

presentation of examples demonstrated that running ID3 was 
faster. Neural networks took a long time to train. Some 

architectures took up to 17 hours to train. 

I ID3 always gives correct predictions for the examples 
used in the learning set. This is not quaranteed with the 
other two techniques. 

I ID3 generated decision trees which can be transformed in 
the form of rules. These rules can be used directly to 
explain the relationships between the attributes and the 
decisions made. With weights a direct explanation is not 
feasible. 

-1 ID3 obtained slightly better results with less 
manipulation of parameters and without the need to worry 
about the order of introduction of the examples. With 
adaptive combiners a lot of time was spent in experimenting 
with parameters. The problem with neural nets was the 
absence of any theory in determining the architecture. 

The adaptive combiner performed well for the third search. 
The advantage of the combiner over ID3 is as follows. The only 
available option of improving ID31s performance is by 
introducing further examples. This results to the re-generation 
of a decision tree which may result in a different set of 
rules. One has further options using the combiners. Employing 
the same learning set one can experiment with the forgetting 
factor and/or re-introduce the same learning set. This was done 
for the first search and resulted in a better performance. New 
examples will not effect the structure of the combiners and 
only the weights will be updated. 

In future, neural nets will be further investigated as a 
solution to the third search space problem and a connective 
expert system will be tested live on the filter and on other 
similar filter designs. 

CONCLUSIONS 

ID3 is recommended for the first two searches having the better 

performance and requiring little time to up-date. Also, rules 
may be derived from the decision trees. Adaptive combiners are 
prefered for search 3, for which ID3 is inapplicable and for 

which neural networks require excessive training time. 
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