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' SUMMARY

As an aid to jet pump design and performance analysis,
a theoretical investigatibn on turbulent confined jet mix-
ing in a non-uniform axisymmetric duct typically used in
jet pumps'and ejectors has‘been undertakeh. A so-called
Prandti-Kéimogorov two-equation turbulence model, with
tﬁrbulent kinetic energy k and turbulent energy dissipation
rate € as the two parameters, is incorporated into the
time-mean Navier-Stokes equations to form‘a complete set
of partial differential equations which describes the .
turbulent flow mathematically. The equatio?s.are solved
numerically via a primitive pressure-velocity finite-
difference procedure using a digital computef. The time-
mean static pressure, velocities, turbulent kinetic energy
and dissipation rate are preéicted directly throughout the
whole flow field.

To validate the computer model, predicted time-mean .
static preSsuré and velocity as well as turbulent shear
Aétress for flow in a uniform bore mixing tube.are conmpared
with the published results. The method is then exteénded
to predict flbws in conical diffusers and t&ﬁical jet
pumps} The predictions are also compared with the availa-
ble experimental data. | |

A laser Doppler anemometer is used to measure the
mean and fluctuating velocities of water jet mixing in a

uniform perspex mixing tube with a centrally located

vii



nozzle. The measured data which enable turbulent kinetic
energy to Be evaluated, are compared with the computer
predictionéjtd further consolidate the theoretical model.
Finally, the computer model is used to predict the
performance of a proposed jet pump and to investigate the
influence‘of various geometricai parameters on jet pump
perfbrmance. The capabiiity of the computer model as
a useful design tool is also demonstrated via an optimi-
zation procedure to give the optimum‘geometry for a given

design specification.
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NOMENCLATURE

The symbols are explained as they are introduced

throughout the thesis. Inevitably, some of the symbols

are used to represent more than one quantity. Unless

otherwise stated, the symbols will have the following

meanings.

ngbol

Apsdps by Ay

Meaning

Coefficients in the general difference
equation

Surface areas of control volumes for
U and V

Coefficients of the general algebraic
equation for ¢ in tri~-diagonal matrix
form

Constants in the source terms for
turbulent energy dissipation €

Constant in the source term for turbulent
kinetic energy

Coefficients in the convective terms of
the difference equation

Craya-Curtet Number for confined jet flow

A constant in the equation for turbulent
viscosity

Velocity of light

Coefficients in the diffusive terms of
the difference equation .

Diameter

A function of wall roughﬁeSs in the
logarithmic velocity distribution near
the wall

Force

Frequency of light

ix



=

=

= KRR

Doppler frequency

Turbulent energy produétion term
Total head

Incident angle of a light beam
Tuibulent kinetiec energy
Unit-vector

Roughness parameter of a wall

Length in general or length scale in
the turbulence models

Mixing length in Prandtl's model
Flow ratio of a jet pump

HMass flow rate

Head ratio of a jet pump
Time-mea@ static pressure

Instantaneous and fluctuating static
pressures

Primary and secondary flow rates of a
jet pump

Radii of curvature of the nozzle wall
and inlet duet wall respectively; also -
refer to inner and outer pipe radii in
Chapter 6 . -

Reyndlds number

 Distence of a point from the axis of

symmetry; also represents refractive

~angle in Chapter 6

Radii of the central jet and mixing duct
for an uniform mixing duct

Radii of curvature for x and y surfaces
respectively ‘

Source term in the differental equation
for ¢ :

Source terms in the difference equation

for ¢



Spacing. between nozzle exit and m1x1ng
tube inlet

Time in general; also thickness of a
perspex wall in Chapter 6

Time-mean velocities in the x and y
directions

Area-mean velocity of a duct

Instantaneous velocities in x and y
directions

Fluctuating velocity components in three
orthogonal directions

Turbulent velocity
Velocity vector
Streamwise and cross-stream coordinates

for a general 2-D orthogonal azlsymmetrlc
coordinate system

2-D Cartesian coordinates

. A turbulent quantity, ™M where m,n are

constants; also represents the axial
direction of cylindrical polar coordinates

Angle between the axis of symmetry and
dlrectlon X

~Efflclency, also represents refractive

index in Chapter 6
Diffuser included angle
Wave length of light

Lamlnar, turbulent and effectlve v1scos1-
ties of the fluid :

‘Density

Turbulent Prandtl/Schmldt numbers for
k and &

Turbulent energy dissipation rate
Shear stress
Kinematicvviscosity

A variable represents U,V,k or £
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?

Subscripts

o)

A

in'
J
N,S,E,W

n

N,S,€,W
o}
P
Y

S

<k

von Karman constant in the logarithmic
velocity distribution :

Beam intersecting éngle

Mixing tube inlet section
Diffuser inlet section
Quantity measured in air
Centre-line value
Diffuser

Entrained quantity

Refers to inner in general; also refers
to incident beam in Chapter 6

Inlet condition

Primary jet

Pertaining to neighbouring nodes which
lie respectively north, south, east and
west of node P

Nozzle exit

Pertaining to the four sides of the
control volume surrounding node P

Quter S
Pertaining to node P

Quantity measured in perspex wall

- Secondary inlet section; also refers to

scattered beam in Chapter 6
Mixing tube
Quantity measured in water

Refers to section at a distance x downé
stream of mixing tube inlet ‘

xii



- INTRODUCTION

Confined jét mixing is a fundamental fluid flow
phenomenon of practical engineering importance. It is
concerned with the mixing of a high velocity jet with a
slow-moving fluid stream in a duct. TheAdesign‘of many
devices sﬁgh as jet pumps and.ejectors, gas turbine
combustors, gas burners, etc., are all benefited Ifrom
the understanding of the mechanism of such flow. Despite
the wide application of confined jet mixing, the subject
’received‘relatively little attention in the past as com-
pared with free jetvflow or other boundary layer flows.
The present study is mainly aimed at confinéd jet mixing
related to jet pump design and performance analysis.

Jet pumps and ejectors are simple pumping devices
directly derived from the pfinciple of confined jet
mixing. When a high velocity jet ejects into a mixing
chamber, the slow~moving~adjacegp fluid is dragged along .
in the jJet dirécﬁion. 'The mixing between the}driving‘and
" entrained fluid results iﬁ momentum transfer from.the
high velocity driving jet to the low speed enfréined -
fluid. It is obvious that the increase in %élocity in
the entrained fluid is achieved at the expense of the
energy of the driving jet. |

. Unlike other pumping devices such as.positi€e dis-
placement; centrifugal or rotary pumps, & jet pump does
not require any moving part. Its working principle is

based on a purely fluid dynamic phenomenon. No mechanical



energy is being used to increase the energy-of the entrained
fluid., The advantages of such a primitive device are its
simplicity, reliability, absence of moving parts, and
cheapness.,
Jet pumps are being used in many areas, such as
process industries; STOL aircraft augmentation and space-
oriented syétems; recirculation devices in nuclear reactors;
and more common, in deep-well pumping, booster pumping as
well as dredging andbpriming devices. Because of their low
cost and easily replaceable nature, jet pumps are especially '
suitablé for pumping hostile fluids such as slurry which
might be harmful to other expensive pumps.
A typical jet pump consists essentially of a primary
nozzle, a suction chamber, a mixing tube and a diffuser
as shown in Fig.0-1. The‘nozzle and the suction chamber
are connected to the driving iine and suction line respec-
tively. The two fluids undergo turbulent mixing in a
mixing tube and the combined fluids then pass through a
diffuser which serves as a pressure head recovery device.
' The relevent geometries and flow conditions are also
indicated in the diagram. o
The four fundamental parameters used for jet pump
design and performance analysié afe usuallykpresented in
non-dimensional forms. These are:
(1) the ratio of the entrained flow rate to the
brimary flow rate, knovn as the flow ratio M3
Qo

¥ = "QT



(ii) the ratio of total head gained by the entrained

fluid to total head lost by the primary fluid,

known as the head ratio Nj;

Hd - Hs

N = o=

(iii) the area ratio of nozzle to mixing tube, R;’

and (iv) the efficiency rl s Wwhich is equivalent to the

output power divided by the net input power

-
driving g, : Y I
line N Le g |
'S
- l ' T %
Hj P b ‘ i&ﬁ‘_N“*“‘§;:E?
1
suction nozzle - |
-chamber
\ 7 ) entrance | mixing tube diffuser, |
region ~ ‘ ’
suction

line

Fig.0-1 Typical Jet Pump Configuration

Other geometrical variables of significant importance

on performance and design are mixing tube length lt’

nozzle to mixing tubé spacing s and diffuser included



angle 9 o Wall profiles of the Secondary‘entrance region’
may also have some influence over the performance.

Al though jet pumps have been the subject of extensive
experimental studies, very few investigations have dealt
with the basic flow‘behaviour. The inadequacy of theore-
tical and experimental studies on confined jet mixing has -
led to a sifuation whereby the designs of jet pumps and
ejectors in the pasthavelargely relied on empirical
data obtained from model pump testing. Performance
prediction is unreliable as it varies for eéch individual
design.. Owing to_the large number of geometrical parame-
.ters iﬁvolved, the previous research has not been able to
provide consistent design recommendations. There is also
- a lack of a satisfactory explaination on the limitation of
- jet pump performance such‘asAlow head rise, low entrain-
ment ratio or low efficiency..

This thesis reports the research work carried out
by the author. The thesis can be divided into three
parts: -
A(i) The development of a set of computervmodels

which predict flows in (a) the mixiﬁgffube‘

région; (b) the entrance region; and (c) the

- diffuser region of a typicalbjet pump device.
(ii) Experimental studies of turbulent confined‘jet
B mixing using a laser Doppler anemometer‘for the
‘measurements of meén anﬂvfluctuating velocities.
(iii) The application of the computer prediction tech-

nique to the deSign and performance prediction'



of jet pumps.

The present theoretical approach, ﬁnlike the previous
analytical methods which relied on large amount of empiri-
cal input data, is to incorporate the Prandtl-Kolmogorov
two equation k- € turbulence model into the time-mean
Navier Stokes equations to form a set of partial differ-
ential equations. The equations, which are elliptic in
character, are solved numerically by a finite difference
procedure uSing a semi~-implicit line by line method to-
gether with a tri-diagonal matrix algorithm. The primitive
.variables,pressure and velocity are solved directly rather
thanlusing the vorticity-stream function approach.

"The flows in the entrance region, mixing tube and
diffuser are solved thfough uéing similar but separate
cdmputér ptograms. This enables the use of the most
aﬁpropriate co~ordinates system for each flow configura-
tion és well as avoids the excessive storage requirement
on the computer. The computed time-mean velocity, turbu-

lent shear stress and static pressure distributions in
‘thesé flow regions are compared with the exist%pg experi-
mental results from varioué sources. » \

The laser Doppler anemometry (L.D.A.) technique is
employed to measure the‘time-mean and fluctuating T.MeSe.
velocities in the'mixing tube where turbulent mixing of
. two co-axial jet streams takes place., The turbulent

kinetic energy in the mixing tube is calculated from

the three orthogonal‘r.m.s. velocities. The measured



time-mean velocity and turbulent kinetic energy are then
compared with the computer prediction. The accuracy and
limitation of using the L.D.A. for the measurement of turbu-.
lent water Jet mixing are also discussed.

Tinally, the computer programs are used to predict
pressure and velocity fields for various geometrical
‘combinations,'i,e. area ratio, hozZle spacing, mixing
tube length and diffuser included angle. The effect of
varying any geometrical parameter on jet pump performance
is also studied. The final development computer model
provides a useful tool for jet pump and ejector désign.
The designer heeds only to specify geometry and required
flow ratio in order to obtain information such as pressure
rise, thrust augmentation, and efficiency. An optimiga-
tion procedure is also developed to enable the designer
to obtain optimum geometrical combination with Best

efficiency for a given design requirement.



CHAPTER 1
PREVIOUS RELATED STUDIES

1.1 Historical Development of the Theory of Jet Pumps

The use of water jet pumps has existed for more than
a hundred years., The first knowvn application of a water
Jjet pump was made by James Thomson in 1852. Since then,
numerous theoretical and experimental studies on jet pump
design and performance have been carried out. The theory
of pumping through the mixing of two jet streams was first
developed by J. M. Rankine (1870) based on the one-
dimensional continuity and momentum equations. This
concept of analysis is still widely used at the present
time, with little or nd addition to improve the prediction.

~ Gosline et al (1934) applied the one-dimensional

concept to derive the head ratio and efficiency for water
jet pumps with cylindrical mixing chambers. The details
of-the'deriﬁation are described in Appendix A.71. Reasonable
prediction of performance was obtained by the aﬁthors
uusing the analysis bﬁt only by assuming empirical loss
coefficients for_the driving line, suction 1;né; miiing
tube and diffuser. The treatment is a simple method used
in general fluid flow analysis which ignores the details -
of the mechanism by which the two streams mix with'one
- anpthef. No generality can be claimed by such an analysis
as its prediction is based on the experimental-determined

loss-coefficients on specific jet pumps. However, owing



to its simplicity, the method was employed by many other
workers, including Cunningham et al (1954), Mueller (1964),
Reddy et al (1968), and Sanger (1968a, 1971) etc. An
- attempt was made by Mueller to improve the prediétion
using two frictional loss-coefficients to account for
the developing and developed flows in the mixing tube,
but the modified versidn did not improve the prediction
(Sanger, 1968a). A method of designing liquid-to-liquid
jet pumps using a simple computer program based on the
one-dimensional analysis was developed by Sanger (1971).
Cunningham (1975) also derived a modified head ratio
{expression which took into account the 'jet loss' due to
the space between the nozzle and the mixing_tube. It.was
found that the iﬁprovement in prediction was onlj marginal
énd not applicaﬁle to all cases., -
Two-dimensional analysié of axisymmetric confined
jet mixing using momentum integral methods has been carried
out by several résearchers. The earlier works of this
kind can be found in Curtet gj958), and Dealy (1964).
" More comprehenSiVe theoretical analysis was ddne by
P. G. Hi11‘(1965, 1967). After assuming a virtual source
located a%inozzle exit plene; Hill divided the -dowvmstream
into three distinct floﬁ regioné, namely, potential outer
flow region,‘reoiroulaﬁion region and wall-jet interaction
region as’éhown in Pig. 1.1-1. He was able to predict}the
mean velocity and'pressu:e distributions using empirical
data of wvelocity andvturbulent shear stress distribution

from a round free jet. However, Hill's method was limited



- to confined jet flow with rela%ively small nozzle diameter
aé compared with that of mixing tube. The main deficiency
was thus its inability to predict the flow behaviour in
~ the potential core region for high nozzle to mixing tube
diameter ratios frequently used in jet pumps and ejectors.

The analysis is fully described in Appendix A.2.

Nozzle Mixing Duct

Sy D

N =
PPE

A ' B : c
A : Potential outer flow region
B : Recirculation region
C :

Wall~je? interaction region

Fige1s1~1 Flow Regimes of Hill's (1965) Analysis

' The de?elopment_of momentum integral method waé
carried a step forward by B. J. Hill (1971, 1973). He
. extended the analysis to include the potential core region
and used empirical.data directly derived from jet pump,
measurement. The méjor Shortcoming of the integral method
is the neceséity to use a large amount of empirical input
data. The‘accuracy of analysis thus depends on the range
of geometribal and.flow conditions under which the empiri-‘
"~ cal dafa was evaluated.
vMore.recent theoretical development of jet pump and

confined jet mixing is focused on solving turbulent trans-



port equations using finite difference procedures.
Hedges et al (1972, 1974) devised a finite difference
model_based on the conservation equationé and Prandtl's
mixing length hypothesis to predict the mean velocity
and pressure distributions. Pope (1972) also used the
Patankar-gpalding finite difference prodedure (1967)
incorporating a mixing-length hypothesis to solve for
the mean flow behayiour. However, no prediction of
turbulent shear étress or other turbulent quantity is
reported. It is dlear that in order to study the
turbulent natufe of confined Jjet mixing and to predict
jet pump flow more reliably, a more advancéd turbulence

model must be employed.

1.2 DMNumerical ﬂethods for Predicting Turbulent Flows.

| In the past twenty years, following the development
and application of high speed digital computers, tremen-
dous amount of research works have been devoted to the
field of numerical methods for predicting furbulent
flows. To summarized the various methods being used
and published, it WOuld require a relatively long
chapter., . However, despite +the great variefy of methods,
it is possible tb divide them, according to the computa-
tional procedurés involved, into two main categories,
i.e.,(i)integral methods, and (ii) finite-difference
methods. _
1.2.1 The Integral Methods

The integral methods require empirical data obtained

10



from experimental measurements, such as the.shape of the
velocity profile, the shear stress distribution and skin
frictioh coefficient for the 'solid wall, to incorporafe
into the integral equations of conservation. The result-
ing set of ordinary differential equations are then solved
by some appropriate numerical integration procedures such
as Runge«Kuéta method. The applications of these methods
to predict turbulent boundary layer flows were reported
by Truckenbrodt (195é), Head (1960), Escudier and Spalding
(1965) and Escudier and Nicoll (1966). Curtet (1958),
Hikhail -(1960); Dealy (1964), Hill (1965), Exley and
Brighton (1971) and Hill (1973) have applied the integral
methods to predict confined jet flows. The detail des-
cription of Hill's (1965),approach which is a typical
integral method is included in Appendix A.2.

| The widespread use of integral methods lies on the
fact that much less computer time is required as compared
with the finite difference methods. However, the‘inte~
gral methods are lacking in generality and large amount
“bf empirical information is required. In oxder to
predict different flow regions, various empiriéél forms
for velocity profile and‘shear stress distriﬁution to
suit various flow components are therefore needed as
input data to obtain reasonabie result. In view of
these deficiencies, the search for more general methods
%o predict’turbulent flows- through solving the governing
partial differential equations numerically was the main

' éoncern_in this field for the past two decades.

11



1.2.2 The Tinite Difference lMethods

The solving of partial differential equations of
mass, momentums and other variables for turbulent flows
could only be achieved if the flow couvld be treated as
obeying the Newton's viscosity law with an apprdpriaté
effective viscosity. Such concept of "turbulent" or:
Yeddy" viscésify was first introducéd by Boussinesg in
1877. He proposed that the effective tuibulent shear
stress T: could be replaced by the product of the time~

mean velocity gradient and the turbulent viscosity'/ut
_u 2U -

where U is the time—meanyvelocity and}y'is the cross-
stream distance.

The introduction of the turbulent viscosity concept
does not solve the problem completely but at least
provides a basis for turbulence modelling. The main
task left behind is to express the turbulent viscosity
_in terms of quantities which cen be determined, either
by sol#ing some élgebraic equétions’or partial,diffgren—

tial equations. -

Prandtl's mixing length hypothesis Based on the analogy
to the kinetic theory of gases, i.e., the viscosity is
vproportionalito the product of the densitj, the TeMeSe
velocity of the molecules and the mean free path,
Prandtl (1925) proposed that the turbulent viscosity

mightbbe determined by the local product of the density

12



the turbulent velocity u, and a length 1, caelled mixing

t
length,

yn =.le“’c A (1-2-2)

He then further proposed that the bturbulent velocity.was’
equal to the mixing length lm times the longitudinal time-

mean velocity gradient,
= U - -

Thus, the complete mixing-length hypothesis will

have the following mathematical relationship

g elmzl»g-gl (1.2-4)
Prandtl went on to suggest that lm_was proportional'to
the distance from the nearest wall. 1In the case of

free turbulent flows, Prandtl made an assumption that
"glm was ﬁroportional to the Qidth'of the fturbulent

nixing zone and thus only dependent upon the distance
along the main flow direction but not the lateral
direction,

Piandtl's,mixing‘length hypothesis was inporporated
into the parfial differential equations of conservation
for boundary layer flows and solved numerically by
PatankarAand Spalding (1967). The predictions of

time-mean velocity distribution in free Jjets and in
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- turbulent flow on flat-plate were found to agree reasona-
bly well with measurements. The method was also extended
to predict the temperature, mass concentration in boundary
~layer flows by the same authors. Application of the method
to predict mean flow béhaviour of jet pump was reported
by Pope (1972). |

The main shortcomihgs of the mixing length hypothesis
are (1) turbulent viscosity is zero at those location
where %H = 0 whereas experiments have shown otherwise;
(2) no account is taken of the processes of convection
apd diffusion of turbulence in which the local turbulent

velocity is affected by the neighbouring fluids.

One-ecuation models of turbulence The shortcomings of

the mixing léngth hypothesis was overcome by the proposals
of Prandtl (1945) and Kolmogorov (1942) who independently
suggested that the turbulent viscosity was proportional

,fo the square root of the turbulent kinetic energy k. as

M =__'9k%“1 (1.2 -5)

where - k = %(u?z + 712 . w'z) oo

ut!, v! andAw'_ére the three orthogonal r.m.S. velocities,
1l is a length scale and k is to be de%ermined‘from a. |
transpoft~equation. Prandtl and Kolmogorov derived the
k-transport equation separately from the Navier-Stokes
équations. ‘The final approximated form of the k-equation

can then be solved simultaneously with the momentum and

continuity equations. The model was used by Runchal(1969)
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to predict the turbulent flow in a sudden eﬁlarged pipe
and by Wolfshtein (1968) in predicting the impinge jet
flow. Pun and Spalding (1967) also succeeded in apply-
ing the similar model to predict turbulent confined jet
mixing in cylindrical combustion chamber.

Instead of using the concept of turbuvlent viscosity,
Bradshaw et al.(1967) assumed that the turbulent shear
stress is proportional to a variable called turbulent

enexrgy k',

Ty = Ok’
where C is a constant. They derived a tramnsport equation
for k' which was then solved together with other conser-
vation equations. SatiSfactory predictions were obtained
- for a number of external wall‘boundary layer flows. Nee
and‘Kovasznay (1969) also proposed that the kinematic
turbulent viscosity should be determined directly by a
transport equation. All the above methods are always
referred to as,one—equation,modelé of turbulence. The
'major shortcoming of these models is that the;length
scale 1 which always appeared in the transportkéqua%ion is
needed 4o be prescribed algebraically. A ﬁfécise pres-
cription of 1 is, however, férely possible except for

boundary~layer flowvs.

Two-equation models of turbulence The deficiency of the
one-equation models has led to the search for more compe-
tent models to be able to predict turbulent flows with-

out prescribing the length scale algebraically. Such
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models require that another’variable relatea to the
length scale should be determined by an additional
transport equation and can thus be referred to as two-
equation models. Perhaps Komogorov (1942) was the first
person to propose the idea of two-equation model. In
1942, he suggested that the turbulent viscosity could
bé determinéd by the turbulent kinetic energy k and the
characteristic frequency of energy-containing motions f

so that

My =5 (1.2-6)

Both k and f should be détermined from separate differen-
tial transport equatiohs. Comparing equation (1.2-6)
with equation (1 2=~ 5), it can easily be seen that Komo-
gorov actually chose kz/l as his second dependent variable.
From then onwards, many authors have proposed various
two-equation models using different dependent variables,
among them are Rotta(1951) and Spalding (1967) who used
% and 1; Harlow and Nakayama (1968) who used k and k?/z/l
Rotta (1971), Ng and Spalding'(1972) who used k“énd i
and Spalding (1969) who used k and k/l?. It’is apparent
that the difference among various two-ecquation models is
the choice of the second dependent variable to ‘determine
the length scale. 1If the second variable is desighated by
= ¥™M™ with m and n being constants, a summary of various

two—equatlon model can be listed in Table 1.2-~1.

16



Proposer(s) ' z Symbol

EX
Kolmogorov o (1942) k?/1 f
Harlow-Nakayama (1968) /21 €
Rotta ‘(1951)
- N 1 l
Spalding (1967)

Rodi-Spalding . (1970)
Ng-Spalding (1972)

2 W

Spalding = (1969) k/1

Table 1.2-1 Some pronosals for the dependent variable

of the second eqvatlon

A1l the two- -equation models provide facility for
both variables k and 1 to appear in the Prandtl-Kolmogorov
formula for‘ﬂt’and they are both determined by solving
the appropriate transport equations.

The successful applications of two-equatioh ﬁodels,
-esPecially the k-g model, for predicting turbulent flows,
both boundary layef type and recirculating typé; were
- reported by many authors. The decay of a plane jet in a
moving stream was predicted by Launder et al (1972) and
the agreement.with experimental data was found to be
mu.ch betﬁer as cdmpaﬁed with predictions using mixing-
length and one-equation mbdels. Other boundary layer
flows predictions include the turbulent pipe flows

obtained by Jones and Taunder (1973) and wall-jet flow
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~predicted by Sharma (1972). Iﬁ recirculating flows,
prédiction‘of film cooling was obtained by Matthews and
Whitelaw (1971), cylindrical furnace flow was predicted
' by Elghobashi and Pun (1974) and forced cavity fiow was
.reported by Hielson (1973).

Multi-eguation medels of turbulence Other turbulence

models‘being proposed include the three-equation model of
Hanjalic (1970) who used k, £ and u'v' as dependent
variables and the'five-equation model of Daly and Harlow
(1970) in which the normal turbulent stressesgjﬁ , V!

‘and Wt together with WvT and € are determined by five
‘differential transport equations. However, few successful
prediction based on the multi-equation models has been
reported. This'suggesfs that a model of such complexity

is not yet well established for general application.

The solution procedures employed Almost all the early

solution procedures for calculating turbulent flows

using finité-difference method were based on the,computeﬁ
code developediby Patankar and Spalding (1967) and

V\Gosman et al (1969).} The former solved parabplic eguations \

in boundary layer flows and the later solved eiiipticA

equations in reéirculating flows. Both pro;edures employ-

ed the stream function—vdrticity approach which solved the

stream—fﬁnction and vorticity together wifh the turbulent

parameters and then transformed back to time-mean velocities

and pressure. New solution ?rocedures which solved the

primitive variables,velocities and pressure,were develop-

ed by Patankar and Spalding (1972) and Caretto et al (1972).
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They were widely tested in many flow predictions as
reported by Gosman and Pun (1974) and Pun and Spalding
(1976).

13 Previous Bxperimental Studies

" 1.3.1 Experimental Studies on Confined Jet Mixing

The éarly experimental studies of confined Jet
mixing were mainly concerned with meanyflow_behavioﬁr.
The centre-~line velocity, the static pressure and the
velocity profiles were the main interests to many
researchers. HMeasurements of centre-line velocity
.decay and velocity profiles across various sections in .
uniform duct were first obtained by Forstali and Shapiro
(1950). Static pressure along the duct wall and velocity
profiles were measured by Helmbold et al (1954) who used
both uniform and non-uniform.mixing ducts. Other similar
measvrements: of mean flow behaviour inelude those made by
Mikhail (1960), Becker, Hottel and Williams (1962), Dealy
(1964), etec., 211 using Pitot static tube for their velo-
‘“city measurements., | |

Turbulenf.fluctuating velocities in both longitudinal
and rédial direction of a confined jet flow were first
measured by Curtet and Ricou (1964) using a constant-
temperature hot-wire anemometer. The most complete
measurement of confined jet mixing to daté was probably
done by Razinsky and Brighton (1971) who measured the

centre~line velocity, the wall static pressure, the

velocity profiles, the longitudinal r.m.s. velocity as
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well as the Reynolds stress. The mean velobity was
measured by a Pifot static tube and the turbulent gquanti-
ties were measured by a constant-temperature hot-wire
anemometer, All these works have contributed a great
deal to the understanding of the mixing behaviour in
ducté.

1.3.2 Experimental Studies on Jet Pumps and Biectors

Large amounts of literature on experimental studies
of Jjet pumps and ejéétors have been accumulated in the
past fifty years. Most of the literature is summarised
in a BHﬁA Reviéw compiled by Bonnington and King (1972).
The earlier works on jet pumps are mainly concerned with
'performance tests and pressure rise measurement along
the duct wall, Typioal wqus"of such are those of Gosline
et al (1934), Keenan et al (1942), Tolsom (1948) and
Kasfner et al (1950).

Many experimental investigetions have also been
devoted to various geometrical effects on jet pump
performance. Gosline et_al,(1954), Vogel (1956),
Mueller (1964) and Hansen et al (1965) carried ouib'
experimental tests and recommended "a mixing tube
length ranging from 3.5 to 8.0 diameters foé‘optimum
performance. As fof the effect of nozzle to mixing
tube spacing, Schulz (1952) established that the |
optimum spacing lie between 1 and 2 nozzle diameters
whereas Hansen et al (1965) recommended a value between
0.8 and 1.4. -Schulz (1958) and Mueller (1964) also

discovered that a bétter performance was obtained by
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having the secondary flow inlet in the shaée of a round-
ed bell mouth. The diffuser angle is another geometrical
variable which many workers have made considerable experi-
mental studies in order to give a recommendation to achieve
a good performance. HMueller (1964) recommended a 50
diffuser included angle for best efficiency whereas an
8% included angle was proposed by Vogel (1956). It is
clear that although many efforts have been devoted to the
investigation of geometrical effects on jet punp perform-
ance, no consistent recommendation of optimum geometrical
cohfigufation has been made. The facts that a large number
of geometrical variables are involved and their interre-
lated effects on the flow behaviour in mixing tube and
diffuser meke it extremely difficult to gemeralize the
' pfoblem.

| IExperimental studies of several low-area-ratio water
jet pumps were carried out by Sanger (1968a, 1968b, 1970).
Statig'pressure and efficiency were obtained for ﬁwo area
ratios of 0.066 and 0.197. _The mixing tube lengths used
were 7.25 and 5.66 diameters whereas nozzlé spacing rang-
ing from O to 2.9 tube diameters. It was obéei&ed that
the efficiency for the shorter mixing tube bﬁmp was about
2% higher for both area ratios which suggested that
for these area ratios, mixing tube length. between 5 and
6 diameters was sufficient for optimum mixing. However,
it was concluded by the author that because of thé inter-
dependence among the various geometrical pafameters, no

optimum geometries,dan be established for all jet pumps.
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Other experimental studies on jet pumps are concerned
with applications of jet pump devices under various operat-
ing conditions, cavitation studies and using jet pumps to

" pump a dissimilar fluid.

1¢4 Previous Applications of Taser Doppler Anemometry on

Related Flow Ieasurements

| The first successful appnlication of laser Doppler
anemometry to. the measurement of fluid velocity can be
attributed to Yeh and Cummins (1964). In their pionecering
work, theyvmeasured the velocity in a fully developed
‘laminar pipe flow of water. The technique was later
abplied to turbulent water flows by others inoluding
Goldstein and Hagen (1967), Welch and Tomme (1967), etc.
A The measurement of turbulent air flow was carried out by ..
ﬁewis, Foreman, Watson and Thornton (1968) and Haffaker,
Fuller and Tawrence (1969). The technique has been used,
for exémple, by Durst and VWhitelaw (1971) to measure the .
mean and fluctﬁating‘velocities of an axisymmetric air
~'jet§.by Melling and Whiteiaw (1973) to measure the three
orthogonal comﬁonents~of mean and r.m.s. flucfﬁéting“
velocities of a rectangular water channel fibw. lMeasure-
mencs of-furbulent'Shear stresses in pipe flow using two
trackers and a correlator were obtained by Bourke et al
(1971) and Morton and CGlark (1971). |

More recently, laser Doppler anemometry has been

~applied to measure some highly turbulent flows using

frequenoy shifting techniques, Durst, Wigley and Zaire
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(1974) carried out measurement of mean and fluctuating
velocities downstream of a square flow obstacle with
turbulent intensity up to 50%. Baker (1974) reported the
measurement of three orthoéonal r.m.S. velocities in the
fully developed region of a turbulent jet. The mean and
fluctuating velocities downstream of an annular jet with
substantial'reoirculation were méasured by Durao and
Whitelaw (1974). It is dbvious that the laser Doppler
anemomefry, although a rather new technique,'will emerge 
as a very powerful tool in the future fluid flow measure-

ments.
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CHAPTER 2
THE MATHEMATICAT, MODEL

In this chapter, the partial differential equations
»governing the basic_laws of conservation of mass and
momentum for a incompressible viscous fluid are first
described. The equations, when apply to a turbulent
flow, require the additional terms to account for the
fluctuating components of the variables. A two-equation
k- € turbulénqe model which provides informations foxr the
extra terms is incorporated into the time-mean differeﬁ—
tial equations to form a complete mathematical model for
the two—dimensidnal axisymmetric turbulent flows. Appro-
pr@ate boundary.conditions which simulate the practical
vjet pump sifuation in order ﬁo obtain realistic brediction

are discussed.

2.1 The Equations of lMotion fo1 an Incompressible Viscous |

The derivation of the eqﬁations of motion based'on
the basic lawé of 6onserVation ére readily avaiiablé in
many standard text books on fluid mechanics such as
Schlichﬁing (1960) and Hinze (1975). The equations,

according to Hinze (1975), when expressed in a tensor

notation using Cartesian coordinates takes the following

forms:
éon”binui‘by: 4 gg + %@uj = 0 (2.1_1)
. | 5

j = 1, 2, 3
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Momentum equation in xi-direction:

Du,
i '3

s e . . 2' "'2
j = 19 2’ 3

where G&i is the stress in the Xi~direction operates in a
plane which is perpendicular to the direction x4 P, is
an external force per uﬁit volume acting on the fluid
in xi~direction°

For an incompressible fluid,

g -2, 2 [0, 2%
axjoxji - 'ax ’axj[:/l(axj 4Bxi)

equation (2.1-2) can be written as

i - D oty Uy
5t = - 2%, * Bx._[/u(bx. + Dxi) + Py (201-3)

=1, 2,3
where p is the statlc pressure and/u.ls the dynamlc

- 'viscosity of the fluid, Equations (2.1-1) and (2.1-3) are
usually referred to as the Navier-Stokes equations which
form the basis of the whole theory of viscous fluid mecha-

nicse.

2.2 The Need for Turbulence Modelling = -~

The eqﬁations of motion described in section 2.1 |
are generally applicable to 1aminar.fiows but not turbu-
lent flows; ‘In brief, a turbulent flow is defined as an
irregular fiuid motion in which the various quantities
show a random variation with time and space coordinates.

Turbulent flows can occur when fluids flow through
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conduits (turbulent pipe flow), pass over solid bodies
(wake), or when neighbouring stream.of the fluids wifh
different felocities pass over one another (jet mixing).
At present, one is unable to obtain solution for the time~
dependent turbulent flow field using existing computers.
Eortunateiy, it is possible to describe turbulent flow
with distinct average values of various gquantities such
as velocity, preésure and temperature, etc. If a turbu-
lent flow field is gquasi-steady, averaging with respect to
time can be used. But for a homogeneous turbulent flow
field, averaging with respect to space is preferred. In
_most of the engineering-prbblems,-time—avéraged values
are more useful for engineers and designers.'

The instantancous values of velocity and pressure can
be written as |

w, = U, + u,’! - (2.2-1)

and ' P

]

P+ p! (2.2-2)

where Ui and 2 are the time-mean values and uii, p' are
the fluctuating values, . B |

~° The equations of motion for the averagé.values in
turbulent flow weré first derived by Osborne Reynolds.

He substituted the instantaneous values of u; and p into

the equation (2.1-3) to give the following form.

DU, ' U, 20,  ____
i 0P N ) i . 1y 1o 1 . (2.2-—3)
- Oy = oxy [:/1(33:]. t ?xi) f’uiuj)]* i

j=1,2,3
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'Cbmpare this equation with the original momentum equation
(2.1-3), it can be seen that the extra-terms - pE;TEgT
are required to add to the viscous stresses in order
that the instantaneous variables can be substituted by
their time-mean values. Because Reynolds was the first
person to derive the equation for turhulent flow in this

form, the turbulent terms-eui'u.' are often called Rey-

nolds stresses. :
To solve equation (Z.Z—S)f_the tefms'-@{Z{VEET must
be known. Since there is no direct way of knowing the
magnitude of these terms, a mathematical model to“relate
effect with known quantities is therefore required. Thus,
a model of ‘turbulence, in the words of Launder and Spalding
(1972) will 'propose a set of equations which, when solved
with the mean-flow equations, allows calculation of the

relevant correlations and so simulates the behaviour of

real fluid in important respects'.

2.3 The Differential Eauations of Counservation Applied

to Two-Dimensional Axisymmetrical Flows

—

2.3.1 Thie Coordinate System

Before making any attempt to express any equation for
a particular flow configuration, an appropriate coordinates_
system>must be chosen. In this thesis, owing to the fact
that fluid flows take place at various flow components,

the most general two-dimensional orthogonal axisymmetrical
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coordinate system is used. Fig. 2.3-1 illustrates such
a coordinate system in which the coordinates X and ¥y
characteriée the members of two orthogonal families of
surfaces of revolution. T, and Ty are the radii of cur-

vature for x and y surfaces intercepting at point P and

r is the distance from P to the axis of symmetry.

Iy

i 2

4£iié~ Axis of symmetry

| Pig.2.3-1 The Orthogonal Axisymmetric Coordinate
System.

The merit of using such a general arbitrary orﬁho—

gonal coordinate system is that the coofdiﬁates céﬁ bé'.

so chosén that all the flow boundaries are parailel to

the grid surfaces. In the present investigation, a

typical jet pump flow field consists of (i) an annular

entrénce region,(ii) a cylindrical mixing tube and (iii)

a difoser.‘ By using the coordinate system outlined above)

a grid Paﬁtern can be devised to accommodate all the three
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~flow regions as shown in Fig.2.3-2.

In general,‘rx

configuration

84 o
mixing tube diffuser
/7 <= :
\Y o
/ ~X SAAANANS S A S AN AL A S A AN AN AANY AN Y >
: i
f ;
| : T
z s of symmet
secondary Az Y
cinlet primary
inlet
FPig.2.3-2 The coordinate system applied to jet pump

, . and r are function of x and y.

y

In the uniform mixing tube region,

= ©o°
= o0

= ¥

= 00 _ _

X 4+ X
o

]

(k + xo)sin@

(2;3-1)

(2.3—2)

where'xd and Fg are given in Figure 2.%-3 and their values

depend on the diffuser included angle and the inlet diame~-

ter.
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—
e |
: |  Axis of symmetry
diffuser '
inlet

Fig.2,3-3 Diffuser geometry
In the annular entrance region, explicit expressions for
Tys ry and r are much more cumbersome. However, all the

variables x, v, Tys T and r can conveniently be calcula-

y
ted in terms of Cartesian coordinates. Details of the

calculation will be illustrated in section 4.3.2.

2.3.2 The Differential Fouations of Conservation

. The equations for conservation of mass and momentum,
when expressed in the general orthogonal X, y coordinate
system described above for a steady flow, will take the
following forms. e |

‘ The continuity equation,
Z (pr0) + & (Erv) =0 (2.3-3)

The momentum equation in x-direction,

112, 2 2 Wy D 20
'f[?iz(f’UrU) + 55070 = o2 (r torefy) - ﬁ(rﬂeffay)]
| =-§§ + Su‘
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where

SU. U)

k. Lbf /%lfb (f%bffa\)]
Z/ueff(Us;n{e, + Vcos{8)

T

sing (2.3-4)

The momentum equation in y-direction,

%—{%(?Urv) + %((’VTV) ax(r/uei‘fgx (r/””eff ]

,_.._RE.;.SV

oy

: 2
v_J1]|2 Uy . 2 oV LU
S = T [bx(r/u‘effay) * by(r/'l“effay)] *tr

2/ueff(Usinﬁ + Vcosﬁ)
- 2

T

X

cosB (2.3-5)

where U,.V, P are time-mean velocities and static pressure.
The full derivation of the momentum equations is given in
Appendix A.3.

The momentum equations are obtained by assuming that
the fluid is treated as obeying Newton's viscosity law.
‘AFor a ‘turbulent flow,/ueff accounts for both viscous
bstress and Reynolds stress. By comparing equatlon (2 3-4)

with equat1on (2 2-3), one can write
( ) = ( ?—1) - ﬁ'u' (2.3-6)
_/uei‘f 'ax 'bx /Jl OUi¥5 y

An appropriate model of turbulence is thus required to
relate the turbulent stresses .- - pui'uj' to some

- known quantities throughout the flow field.
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2.4 The Choice and Application of Two-Equation k- £ Model

It was first proposed by Boussinesq in 1877 that the
turbulent shear stress could be replaced by the product

of the time-mean velocity gradient and the turbulent vis-

cosity/ut, ie€ey

>U

, o U
- Pujuy = M5z

L .) | |
. 2.4~1
j bxi (2.4 ;)
Subs%ituting Equation (2.4-1) into (2.3%-6), one gets

| /"‘eff =/,l + /l,l,t » (2-4—2)

1

Thus, the effective viscosity in a burbulent flow is
equal to the sum of the molecular viscosity-and the
turbulent viscosity. Unlike the molecular viscosity
which is the real property of the fluid, the turbulent
viscosity can become effective onlvahen there is flow
and its velue varies from point to point in the flbw
depending upon the turbulent strﬁcture at that partiéularA
location. | |
Many turbulence models have been proposed to relate
'ﬂ% to some quantities which can be-determined.”_The\out—
line of various modéls and their merits and . shortcomings-
have been described in section 1.2.2. In the present
studies bf‘confined jet mixing and jet pump flows, owing
to the intéraction between the mixing shear region and the
wall shear region, the length scale profile is unable to be
prescribedthroughout the flow field. The mixing length

and one-equation models will not be able to predict these
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- flows satisfactorily. However, in view of the fact that
the multi-équation models are far less established and
more compufing time is required, the choice of a two-
equation model is a compromise of accuracy and economics
unless a more complicated multi-equations model is proved
to be necéssary. ‘

The Prandtl-Komogorov two-equation model states that

the turbulent viscosity/ut can be written as

My = ?/lpkél (2.4-3)

where k = %(u'2 + 12 w‘z), 1 is the length scale and

gu,is a constant. %k and 1 are to be determined by their
transport equations. However, it turns out that the
length scale itself is not the most appropriate dependent
vafiable. Various workers have selected different com-
binafions of m and n of a quantity ¥™™ as their second
dependent variable instead of using 1 itself. (See

Table 1.2-1). A quantity, called turbulence energy
"dissipation rate € , first proposed by Harlow and
Nakayama (1968) and subsequently favoured by ﬁéhy othér
workers -is chosen as the second dependent vériablés in

the present work where

£= - (2.4-4)

The reasons for this choice are : (i) it is relative-

ly easy to derive the exact equation for € ; (ii) € appears
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directly as an unknown in the transport equétion for k3
(iii) the effective turbulent Prandtl Number O appeared
in the £ -equation os a constant irrespective of the
distance from the wall whereas for other combinations,
such as k1 and k/l%ﬂhuisnot so, as proved by Launder
and Spalding (1973). |

. Turthermore, the k-£ model are well established and
has been incorporated into standard computer code by
Gosman and Pun (1974) for sélving turbulent recirculating
flows. The model was widely tested and enjoyed satisfac-
tory predictioné for a wide range of flows. Examples
of such applications of k- £ model can be found in the
works of Hanjalic (1970), Elghoboshi and Pun (1974),
Matthews and Whitelaw (1971) and Wielson (1973).

The k- and £~ equations, when using a general
orthogbnal axisymnetric coordinate system described in
section 2.3.1, may be expressed in the following form at
high Reynolds numbers.

k-equation: o o

( /“eff ak) ( /U‘eff gl;)]

112 P
;E—i(pllrk) + -5—3}-( erk)
= G’ - CDPE » (2o4"'5)
g€-equation:

%[5%( OUrE ) + (evre) - (2L i L 25) - 2 (Zfets ?é)]

oy o oY

= C,E6/k - C,eE%/k (2.4~6)
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where

G=/“JC< [(a,) G+ =GR+ P")}
1 V2 - v
+ (50 5 } (2.4-T)

These équations are modified from the cylindrical polar
forms used by Gosman and Pun (1974). They differ in the
expression of the turbulent energy production term G.
The derivation of G, equation (2.4-7) is given in Appendix
A4, | ' | |

. By .combining equations (2.4-3) and (2.:1,_’-4),'}@t is

related to k and £ as
' - 2 ‘ _ o
My = C/J e k /€ (2.4-8)

It is now p0831b1e to obtain the five unknown varia-
bles, neamely, U, V, P, k, £ by solving five 51mu1taneous
equations (2.3-3), (2.3-4), (2.3~5), (2.4-5) and (2 4-6)
with the help of the auxilliary equations (2.4-2) and
. (2.4-8). | o

The values qf_the constants QP" CD, 01,‘02, Gk and
O¢ must be prescribed to complete the specification of

. the model. At high Reynolds, these constants are given
the values listed in Table 2.4-1 as recommended by _
Leunder and Spalding (1973) and Gosman and Pun (1974).
This set .of values has been widely used in various

flow problems and is generally accepted for flows of
plane jets, mixing layers and the plane and axisymmetric

wall flows.

~
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p p C4 Cy Ty Te
0.09 1.00 1,44 1.92 1,00 1.21

Table 2.4-1 Thé values of the constanté used in the
k- £ model

In the present study of jet pump flows, these values
are chosen for the whole flow field without any modifica-

tion.

2,5 Modification of the Model for 'Near Wall' Flow

The model described in section 2.3 and 2.4 is only
valid for fully turbulent flow. When close to a solid
wall, there are regions where viscous effect are signi-
ficant compared with turbulent effect; In these regions,
some modifications on the transport equafions are there-
fore necessafy. |

2.5.1 The 'Taw of the Wall'!

In the vicinity of a solid wall, the flow_is‘deter-
_mined by (i) wall shear stress, and (ii) roughness. The.
mean velocity component U in this region, acco#ding to
the classical theory of turbulent boundary layer along

a flat plate (Hinze, 1975), is a function of (i) wall
shear stress Ty’ (ii) roughness parameter kf; (iii)
normal distance from the wall y and (iv) kinematic vis-

cosity V .

ioeo ’ ﬁ'r
' U ='F(""‘9kf7\)9Y) (2'5"1)
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where G has the dimension of velocity and is usually

P
referred to as wall-friction velocity or wall shear stress
velocity U¥*, i.e.,
Gy

~ * 2,5=2
3 ,U | (2.5-2)

Irom the dimensional analysis,

U _ Uy _ £ -
gE = IS, =) (2.5-3)
For a smooth wall where kf = 0
U *¥ '
gE = f(Uv ) . (2°5'4)
In the viscous sublayef,
2U
My = Ty
and Ty

From equation (2.5-2), it follows that

()

= 5 - (245-5)

If it is assuméd that, for the wall region, the
shear stress remain constant and equal to the wall shear
stress, the following relationship can be written for the

turbulent part of the wall region,
U _ - | -
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In the neighbourhood of the wall, it may be assumed that
turbulent viscosity is proportional to the distance from

the wall. TFrom dimensional analysis,

My = KQU¥y (2.547)

where K is a dimensionless constant called von Karman
constant and having a numerical value of 0.4187. Subs-
tituting equation (2.5-7) to equation (2.5-6) gives

vy = v

é:
Using the dimensionless expression gt = %% and y+ = Eﬁl ’

one gets

. + .
Ky* E-I—I-; =1 (2.5-8)
oy
The solution obtained by integration is
Uf =-%1ny+"+ const. (2.5-9)

For a rough wall with roughness parameter kf, a similar

solution can be obtained

+ 1 +
U" = <1nd~ + const. - - (2.5-10)
Kk

Equation (2.5-9) and (2.5-10) can be combined into a

general form



‘where E is a function of the wall roughness. According
to Launder and Spalding (1973), E approximately equal to
9.0 for a smooth wall. |

Equation (2.5-11) is the well-known expression of the
logarithmic 'law of the wall' applied to the turbuleﬁt
part of the wall region and only determined by the wall
: roughness and'the distanée from the wall. Even in the
outer regibn of the boundary layer, the logarithmic ve-
locity distribufion only deviates slightiy from the actual
experimental résults. Thus, from a pfactical engineering
viewpoint, the logarithmic velocity distribution can pro-
vide acceptable mean-velocity profile for turbulent flows
in a pipe or boundary layer.

In the near—wail'region where generation and dissi-

pation of energy are in balance, it can be shown that

L
€

Combining equations (2.5-12) and(2.5-11) gives

(0% (2.5-12)

U.

~

z
(___(_'»1 (C/U_C‘D) k% = )
e .

where

This is the final expression where the turbulent wall .
shear stress can be evaluated from the values of k, y and

U adjacent to the wall, If the value of y© is less than
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11.63, the laminar shear stress expression is used

To= Ay (2.5-14)

The wall shear stress is then incorporated into the
source term S* of the U-momentum equation (293—4)'for flow

next to the duct wall.

2.5.2 HModification of k and € in the 'Near Well' Region

| In the near wall region the shear stress components
can no longer be calculated from the fully developed
turbulent flow. Thus the turbulent energy production
’term G appeéred in k- and £- equations has to be modified.

Using the original G term from Appendix A.4,

G = T - (2.5-15)

The normal stress components’txx and T&y remain

unchanged ,

. (2.5-16)‘

' UV
TXX=2/.Lb('-‘3§+'f"X)
L Ty .
.Ty_y = 2/”‘6(337' + ry) (2.5 ‘1 7)

The shear stress components ‘rﬁx and T;y should be cal-
culated from equation (2.5-13) or (2.5-14). The modified
G near the wall then takes the following form:
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_ 2 V2 ¥ 20y , U 3V
G = 2/#% (5§) + (ay) + E;(BX) + ry(ay)

ou . oYy -
T, % + 5% | - (2.5-18)

To determine the near Wall value of £ , equation

(2.5-7) is substituted into equation (2.4-8),

Cule”
€= v
KU*y
From equation (2.5-12)
I ERES
U* = ?g = (Culp)* ¥°

the near-wall £ - value can now be expreséed as follows ¢

N3 3/2
) (c/uoD)4 k

£ = CDK/y

(205-19)

It should be noted that equation (2.5-19) does not give
the value of € at the wall but the value of ¢ at the
point P next to the wall as shown in Fige2.5-1.

LLLL2LLLL2 L L L 2222820242080

a
P |

Fig.2.5-1 The 'near wall'! node
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2.6 The Boundary Conditions

~There are basically fouf different types of boundary
conditions needed to be specified so as to complete the
 flow description. They are: (1) the wall boundary, (2)
the axis of symmetry, (3) the inlet flow condition, and

(4) the outlet flow condition.

At a solid wall, both velocities along the wall U
and normal to the wall V are set to zero for no-slip
and non-permeable conditions. The shear stress at the
wall is calculated from equation (2.5-13) or (2.5-14)
so that it can be included in the source term S% for
those grid nodes adjacent to the wall. _
ForAk and 8‘, the near-wall values are calculated
 with a modified. G-terms and the modified & values, i.€.,
equations (2.5-18) and (2.5—19) respectively,

On the axis of symmetry, radial velocity V is zero
and the gradients %% s %% and %§ are all gero too.

Appropriate profiles for U, V, k and £ are necessary
_to specify in the inlet section. The outlet U-velocity
is specified by éonsidering the overall mass c?nservation, .
V can be set tb zefo and k and & are assumed to be fuily
de&eloped. The assumption fdr outlet flow specification
is adceptable when the outlet section is fixed beyond the

.region of interest.
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CHAPTER 3
THE NUMERICAL METHODS

3.1 The Finite Difference Equétions

The steady two-dimensional axisymmetrical turbulent
f1low without swirl which occurs in jet pumps can be des-
cribed‘by the five partial differential equations given
inVCﬁapter 2, It is possible to solve these equations
by some appropriate finite-difference techniques. There
are basically two distinct methods of solution. In the
first method, the continuity and the momentum equations
kare trénsformed into two partial differential equations |
of stream functibn Y and vorticity w to eliminate the
pressure. Together with k and € , the four partial'diff-
erential equations are solved numerically throughout'the

“flow field first and the pressure field is then deduced
separately. The second method is based-on a novel proce—
dure known as SIMPLE (Semi-Implicit Method for Pressure

Linked Equations) déveloped by Patankar and Spalding
(1972), Caretto et al (1972), etc., which solvgufor.the
prinitive variables U, V and P together with k and € ..

The advantage of the veiooity-pressure approach over
the sfréam'function-vorticity approach is that flows with
pressure-dependent density can be handled which provides
wider scope of apﬁlications to compressible flows; In
an attempt to compare the two procedures, Ha Minh et al

(1978) applied both methods to predict flow in a sudden

43



enlarged pipe and observed that the velocity~pressure
approach gave better predictions of pressure and turbu-
lent properties (k and u'v') as compared with measuring
data. It is the velocity-pressure approach which is
being employed in the present work and is to be discuss-
ed iﬁtthe fqllowing sections.

3.1.1 The Staggered Grid and Control Volume

Before deriving»the finite difference equations
from the governing partial differential equations , a
gird arrangement and the contfol volumes for the varia-
bles have to bé specified. TFig.3.1-1 illustrates part
of the grid arrangement for a general 2-D orthogonal

coordinate system. The intersections of the solid lines

 \3

e Pk, g
—rv'
b v

Fig.%.1-1 A typical grid arrangement

mark the grid'nodes where all the scalar variables (i.e.,

Py, k, € ) are calculated and stored. The U and V velocity

44



components are computed and stored at the midway between
a node and its upstream neighbour as shown by the arrows

— and 1} vrespectively. The conﬁrol volume boundaries
are placed midway between the locations where the values
of the variable are stored. Thué, for any point P, there
are three different control volumes as shown in Fig.3.1-2.

Such a grid arrangement is often referred to as staggered

grid.
N | N
|
T ) W :: E
I
W E P I E r—_NFf—j
1 I l :
. I t
| s |
S | SRR P ——— |
(a) i
- ___IN
ro T HE | (c)
o W . §P - E - |
i i' - Fig. 3.1-2 Control volume
L_”"f“’J' ‘, for (a)P,k, € (b) U and
-~ Is  (c) V.
(b)

The advantages of the staggered grid are: (i) From
a computational viewpoint, since the U anﬁ V velocities
are placed between the pressures which featured in the

momentum balance, the pressure gradients can be evaluated
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directly without interpolation; (ii) based on the same
argument, these velocities lie on the boundaries of the
control volumes of P, £ and k and can therefore be used
directly for the calculation of convective fluxes across
these boundaries; (iii) the floﬁ boundaries which are
located midway between the grid 1ines’can easily be
simulated by specifying the U and V values.

3.1.2 The General Bxpression of the Finite Difference

Equation
. The partial differential equations for U, V, k and

€ are in fact similar and can be expressed in a general
form for a 2-D orthogonal axisymmetrical coordinates des-
cribed in Chapter 2, i.es,
C119 2 2 FMert 24y D Tforf 24

r[aX(E’UNP) + 55(07re) - 5% A 5%) = 35¢ & 55
::Sq) . (301—1)

where ¢ is a dependent variable stands for U, Vv, k or € .

- O¢ and S¢ have the values given in Table 3.1-1.

K S 5
| oP u
U ) 1 . —-5?{ + S
P v
V' 1 -':55; + S
o 0 ¢ - CyPE
e % (C,£C - C0E°)/k

Table 3.1-1 Values of T4 and S¢ for U, V, k and E
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A finite difference equation for ¢ can then be deriv-
ed by integrating equation (3.1-1) over a control volume
enclosing a point P in the flow field. Fig. 3.1-3 shows

a curvilinear orthogonal grid around P of which the double

Axis of symmetry

Fig. 3.1-3 Control volume around point P.

integration will take place. N, S, E, W represent the
four neighbouring points arpund P. The control volume

“boundaries in x and y directions are placed at midway
of the main gfid lines, Integrating equation-(3.1-1)
with respedt to x and y over the control volume bounda-
ries surrounding P and rearranging gives (detailed

integrations are given in Appendix A.5),
-C + 0 - - g¢
[(AE + Ay +'AN + As) + (Ce c, +C, _Cs) : SP] qu

= Ay Pp + Mgy + Apdy + Ag g + S P o (3.1-2)
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where the A's are the coefficients expressing the comb=-
ined effects of convection and diffusion and the C's
are the convective -coefficien'ts account for the mass
flow rate across the surfacesof the control volume

surrounding P, i.e.,

C, = (QUrdy),
Cy = (PUI‘&*Y)W
(3.1~3)
¢, = (pvréx)
Cy = (QVréx)s

The subscripts e, w, n, s denote the four surfaces of
the control volume as shovfn in Pig.3.1-3. The values
of A's depend 'on the differencie scheme. If the central
difference scheme is employed to evaluate the convective

terms,

D_ - 0.5 Ce

g = Do
Ay =D, + 0.5C, B (3.1-4)

AN-.-_-Dn—O.S Cn

i
=
+

S g 0.5 Cs

where the D's are the diffusive coefficients given as

f ovll ovIs
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_ ?ﬂeffSY)
e " opbx ‘e

- (réefféy )

Dy, cp6X )w (3.1-5)

Thersd%

D, = (55

D = f_/_l.e_.__._ffgx)
s 033y S
If, instead, é upwind difference scheme is used to

evaluate the convective terms, the A's will take the

following values{

Ay = D + 0.5¢( Col - ce)

Ay =D, + 0.5( Cw + Cw) (3.1-6)
¢ ‘

Ag =D + 0.5( Cyl - cn)

Agq = D + 0.5¢( Cg| + cs)

xSﬁ¢ and Su¢ are obtained from 1inearizing the source

term S¢ listed in Table 3.1-1 such that

In (%e

rS¢ dxdy = Sp‘?gb + Su‘? (3.1-T)
Vs v ¥y

The complete derivation of equation (3.1=2) as well

as all the coefficients above are given in detail in
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Appendix A.5.

The choice of central or upwind difference scheme
depends on fhe contribution from the convective term.
If the contribution from the convective term is gréater
than that of the diffusive term,:upwind difference is
used. Otherwise, central difference should be employed.
Such choice is based on fhe fact that as the convective
contribution is greater than the diffdsive contribution,
the directional effect is important. The upwind differ-
ence scheme which streéses more on the influence of the
upstream conditions is thus preferred. The combined
effect can be expressed in the following mathematical

relationships

{De - 0.50, if [0.5C,] < D,
D - 0.5C, + 0.5 cel if {0.50¢,| » D,
. D, + 0.5C, if [0.50,| < D
W= | |
D + 0.5C + o.slcW if |0.50, | > D, (3.1-8)
R ~{Dn - 0,50, if |0.50, & D
.
D~ 0.5C, + o.5|0n| if |o.5¢ | < D
. D, + 0.5C, 1£ 0.50,| < Dy
S B N
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The term Ce - Cw + Cn - CS appeéring in the left-
hand-side of equation (3.1-2) is the net mass flow rate
out from the control volume. " If the continuity equation
is satisfied, i.e., when the final solution is reached,
this shbuld be zero. But in the intermediate iteration,
the net mass flow rate may.not be zero and a false source
can‘be calculated from the previous value of q@P, if

Mp = G = G, + G = C (3.1-9)

e S

then the false source = ﬁP¢P°1d

value of ¢ at P evaluated from the last iteration. The

, where ¢§°ld is the

finite difference equation (3.1-2) becomes

. ' . old
(ZAj + Mp - Sl‘f)qbp = ZAjgbj + mP¢,~P + Su¢

j=E,VI,N’S j=E,Xq,N,S 4 (301-10)

The inclusion of ﬁP¢? and ﬁP¢?01d into the finite
~difference equation will not affect the final solution as
when the solution is approached, both ﬁP and (¢p -‘¢§°1d)
- are small. It will only be necessary to include thése
terms if fhey can help to stabilize the iteration process.

Since the convergence criteria for the above equation 1is

. - s. ¢
(Z%+m% SP) ZZ%
J=E,VW,N,S ' j=BE,W,N,S
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it is clear that only when th is positive will the terms

old

np¢p and my¢y be included in the equation. Thus, the

complete finite difference cquation for gbcan be written

as
Ap@p = zAjcj)j + Suﬁb
j =N, S, B, W
where | (3.1-114)
Ap = z./s.j - SP¢
j = N, S’ E, VI
for ﬁP < 0
and -
< : old ¢
APSbP = ZAJ. ¢j + qubP + 8,
j=N, VW, E, W
where ' (3.1-11B)
Ap = T Ay + Mg - SP¢
j = N, S,_'E’ VVI
for mP>O

Equations (3.1-11) are the general forms of all the
fihite'difference equations for U, V, k and € . The
equations differ in the source term expressions SPq’ and
Su‘:’? which can be obtained by integrating Sg listed in
Table 3.1-1 via equation (3%.1-7). If ¢ is a velocity
' compohent, S&"has two distinet parts, a pressure-gradient

term and an additionél term due to radius of curvature.
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The pressure is a unique'variaﬁle in this solution proce-
dure as it is not governed by a transport equation but
enters through the momentum source term. The values of
Su¢ and SP¢ appropriate for the present flow situation
are tabulated in Table 3.1-2. The integration and appro-

ximation are given in Appendix A.6.

Variable ¢ S | S,?
: 4 u PV2
U | 0 O°5(ae+aw)(PW—PP)+(—§;)PVP
) 2
eff v, .V U
v f(éig—)?vp O.S(an+as)(ES~PP)+( rX)PvP
2
k -(EQEEE;E) v GV
HMegg PP PP
NI '
~x 2% A S
Hett
Table 3.1-2 Values of Spp and 8.9, al, a; , 2 and
ag are surface areas of the appropriate control

vélumes for U and V. Vp is the control volume

for the variable concerned. -

3e1e3 The Finite Difference Equation for Pressure Correc-
To solve the finite difference equations for U and V,
it is necessary to have the values of pressures. However,

these values are not known in advance. The normal practice
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is to initially guess the best estimated pressure (deno-
ted by P*) so that the velocity field U* and V¥* can be
obtained; The U* and V¥* velocity field will not in‘genen
ral satisfy the continuity‘equation. The pressure correc-
tions are made such that the veiocity field is brought
into conformity with the continuity equation. The true

pressure P is thus given by
P = P¥ 4 PV (3.1-12)

where P' is the pressure cdrrection. By applying.the

general finite difference equation for ¢ to U¥, V¥ and
U, V respectively and subtracting the guessed momentum
equafion from the corresponding momentum equation with

appropriate approximation, one gets

o '
U, = UP* + DW(PW' - PP’) (3.1-13)
. - v - 1 -
Vo = V5% + D (Pg' = Pp') (3.1-14)

u, u v, v
O.B(ae+a‘) 005(an+as)

u W v o o LV
where Dw." 3 and DS = - R AP and AP
A? A :

P .

are the coefficient AP'for U and V respectively.
The substitution of equations (3.1-13) and (3.1-14)
into the finite difference form of the continuity equation

gives
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P, p_ P
Ap PP‘ = zAj I’j + 8y (3.1-15)
j=N,S8, E, W
where
P P
AP = ZAJ
j = N, S, E, “VT
and. . s
P .
.Su = -mP
The coefficient are given by
AW = Dw (erSy)w
_ U
A.E = De‘(eréy)e
— v |
Ay = Dn(er 53{)n

v
Ag = D (er 8x)

The full derivation of equations (3,1-13), (3.1-14) and
" (3.1-15) are given in Appendix A.7.

By solving P' throughout the flow field,lawbetter
estimated pfessure field can be obtained byfadding P' to

the existing pressure field after each iteration; i.e.,

Pn+1 = P% 4+ P!
where P* is the pressure used for nth iteration, P' is
the solution obtained from the nth iteration and Pn+1 is
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the updated pressure to be used for n+1th iteration.

3.2 The Solution of the Tinite Difference Equations
The finite difference equation for ¢ at a point

P(I,J) can be written as

Apdi,y T ARPii, 5 t AP, t AP, ger T AsPi, -1 4 5%
! |

(302"1)

In such a typical equation , there are five variables in

existence.If, however, the values of ¢3 and ¢3

, =153
are taken from the previous iteration or in the case of

+1,]

the first iteration given by some initial wvalues, equation

(3.2-1) can then be redudéd to three unknown variables}i.e.,

R R R R (3°2*?>
where bj = Ag
dj‘ = Ap  ’
2, = Ay
and oy = Apfig,g t Myfiog,g * ST

Bquation (3.2-2) is an algebraic equation relating
the value of ¢ at P and its two neighbouring points N

and S. Tig. 3.2-1 illustrates a typical grid line arrange-
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ment where the axis of symme-

try is placed between Jj=1 and

. §=NT
j=2 and the wall boundary is S i R e e SN
’ ] P J=NT-{
placed midway of j=NJ-1 and 9 3 ot
j=NJ. In the case where the : p j
node is next to the axis of S i1
. -~ 2 b
symmetry, i.e., j=2, the ] 5 . =2
usual link between ¢, and o L =1
o ~ -4)1’2 : I A I
its southern neighbour ¢, ,no
_ i,1
longer in existence and AS
. Fig3.2~1 The ith grid line

is set to zero. Similarly,
when the node is next to a

solid wall, no linkage between ¢i NT =1 and ¢i NJ,and AN=O.
’ = 9

A set of such equations for all the nodes along the ith

grid line can then be assembled in a tri-diagonal matrix

forﬁ. | N
dy -3, $i,2 Co
by 4y -3y $i,3 | %3
b, d, - =
io% T 1,3 °;
“byro2 ng-2 “wg-2|| ¢ ,wi-g |°WI-2
Pzt Swa-t|| 95, wgeq] [CHI-1
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The above set of equations, with a maximum of 3
unknowns per equation, can be solved by Gaussian elimina-

tion using a recurrence formula

Pi,5 =% + By Pi,gen (3.2-4)
c. + b.o. 1
ol. = —J d j"d _ o
o o (3.2-6)
and . = . 3;2“
J -bjﬁj~1 + dj

,The solution is obtained by back substitution solving for

(Pi’N'J_1 ? ¢i,NJ—2 H 0.'00_) till ¢i,2 . -

The overall procedure is in such a manner that solu-
~ tion start from i=2, obtaining all the ¢'s valuesat i¥2
then prdceed to i=3%;4,.... etc., so that all the ¢'s of
the whole flow field are obtained. This is called the

mri-Diagonal Matrix Algorithm (TDMA) of the line by line

. procedure.
It has been found that some degree of under-relaxation
is necessary in order to achieve stability during the

iteration. By using an under-relaxation factor f, AP

and Sd?in_équation (3.2-1) will be modified to Ap' and Su?'
as follows:
A .
AP' = —f— (302“7)
) 5 41 - 5% 4 (1-r)=2¢, (3.2-8)
u . £f'P
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where ¢P is the existing ¢ value at P. TFrom experience
by trial and error, the values of f are set to 0.5 for

U and V, 0.7 for k and £ and 1 for P'.

3.3 [The Overall Procedure of Solution
Befofe proceeding to the solution of the finite differ-
'ence‘equation’(F.D.Ee) féf various Variables, initial wvalues
for all the variables throughout the flow field are speci-
fied. The solﬁtibn procedure is the cyclic repetition of
the following steps:
(i) The effective viscosity is calculated by equa-
tions (2.4-2) and (2.4-8) using the existing
stored values of k and £ .
(ii) The F.D.E. of U and V are solved by TDHA using
the existing pressure field P* to calculate the
source terms. The resulting values of U¥ and V¥
are usually not satisfied with the local continui-
ty equation and an 'error! mass souré; m for each

cell can be calculated.

(iii) The F.D.E. for pressure correction (3.1-15) is

N

P
. The new pressure field is obtained by

solved by‘TDMA using the ‘'error! source -m. as

g P
\ u
adding P' to P¥*, i.e., P =P¥ + P', The U

and V velocities are also corrected using equa-
tions (3.1-13) and (3.1-14).

(iv) The F.D.E. for k and € are solved by TDMA.

(v) The updated values of the variables are used to

compute the coeffiéients and source terms of the

59




F.D.E.'s for the next iteration. The above.procedure (i)
to (iv) are repeated until the pressure correction P! is
small enough throughout the flow field. This ensures
that both momentum and continuity equations are satisfied
simultaneously. |

To improve the rate of convergence of the procedure,
certéin variabie can be solved mére than once before pro-
ceeding to solve the next variable. This idea is called
the number of sweep in solving a specific variable. It
is found that in solving P', the increase of the number‘
of sweeﬁ to 2 in the case of jet mixing problem and to
5 in the case of diffuser problem will improve the rate
of convergence. -

The termination of the iteration procedure is‘based
on the ‘error' mass source term m. The procedure is
deemed to have converged when the sum of,the absolute
‘error' mass source throughout the flow field is small

compared with the inlet mass flow rate ﬁin’ iece.,

C -C_ +C_=-2¢ ' ,
ZV e .W n S, < s ' (3.3-1)
min -~ L b \

where & is a small positive value depénding on the require-
ment of accuracy. In most cases, 5 =10"% will give a
fairly good éccuracy for the solution. Bésideé depending
upon the S which determines the number of iteration, the
accuracy also depends on the number of gridlines specified

in the flow field. More grid lines will require more
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computer time. The choices of the number of grid lines
and the value of & apparently depend on the compromise

between the accuracy and economy.
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CHAPTER 4
THE COMPUTER MODEL

4,1 Introduction

' The set of partial differential equations discussed
in Chapter 2 and the numerical method described in Chapt~
er 3 were embodied into a basic computer program called
TEACH (teaching elliptic gxisymmetric characteristic
heuristically) by Gosman and Pun (1974). The original
program can.only‘handie cylindrical pipe flows. The
present computer models for predicting the flows in
various components of a typical jet pump are devised
based on the basic TEACH program. In order to predict
the upstream entrance régioﬁ and the downstream diffuser
region, thé models must be able to accommodate the general
two-dimensional orthogonal axisymmetric coordinates des-
cribed in Chapter 2. Thelpresent Chapter describes only
briefly the basié structure of the computer program és
_more details are available in the report written by Gosman
and Pun (1974). However, detailed description of modell-

ing the various flow components are included.

4,2 The Basic Structure of the Computer Pfogram

The computer program in the present work is written
in Fortran IV. It consists of a main program and ten sub-
routines. The flow chart of the program is shown in Fig.

4.2-1, The gebmetry_specifioation, grid calculation and
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SUBROUTINE

MAIN

SET COMMON BLOCK
AND FLOW DOMAIN

o e e —— et vt oot ot}

SPECIFY GEOMETRY
AND CALCULATE GRID

SET CONSTANTS AND
BOUNDARY CONDITIONS

e —— ——————— e — — ——]

' SUBROUTINE

CALCU

CALCV

g ]

«—] ' CAICP

CALCULATE CONTROL
INIT VOLUMES AND SET
INITIAL VARIABLES
— | PRINT GEOMETRY AND
N INITIAL VARIABLES
.
SOI!VE FODQE. FOR U,
V, P', ky €
PROPS | UPDATE },(_t

PRINT INTERMEDIATE
OUTPUT IF NECESSARY

CALCTE

TERMINATION TEST

——

PRINT FINAL, RESULTS

CALCED

N ]

PROMOD

LISOLV

Fig. 4.2-1 TFlow chart of the computer program
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simulation of boundary conditions are done at the beginn-
'ing of the main progfam. The duties of the subroutines
are briefly described in the main program block. The
" solviag of finite difference equation for each variable

is carried out in the individual subroutine, i.e., CALCU
for solving U, CALCP for solving P', etc. The 'near-wall'
modification for all thé variable is done in the subrou-
tine;?ROMOD and the line by line procedure of solving
simultaneous algebraic equations using the TDMA technique
is performed intthe subroutine LISOLV. The updating of
viscosity after each iteration is carried out in the
‘subroutine PROPS, The solving of finite difference equa-
tions is repeated until the termination test as described
in Chapter 3 is fﬁlfiled and final results are printed.
A.complete listing of the computer program for calculating
| typical jet pump mixing tube including secondary inlet
region is given in Appendix B.1.

It should bé noted that except for the subroutine
INIT, other subroutines are applicable to various flow
“coniigurations.subjecf t0 minor changes in evaluating
the source terms of the finite difference equations.
Programs for various flows differ in the main program and
the subroutine IKIT where the setting up of the geometry,
gfid,}boundary conditions and control voluﬁes must be

able to simulate a particular flow accurately.

4.3 The Simulation of Various Flow Components

4,%,1 Uniform lMixing Duct

A uniform mixing duct consists of a round nozzle
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“located at the centre of the iﬁlet section of a.uniform
diameter mixing duct is shown in Fig.4.3-1. A high velo-
city jet meets the secondary fluid at the inlet section.

" Both the primary and the secondary velocities caﬁ be
taken as uniform across the inlet sectiqn as indicated by
Uiand UO respectively. “The radius of the central jet is
T and‘thé‘inner radius of the mixing duct is Ty e

/

S~

.

Uo f

I

Rt
}—-—-——b—
ug

U

{
!
/

Fig., 4.3-1 Uniform mixing duct

The general 2-D orthogonal'axisymmetric coordinate
aeséribed in Chapfer 2 vhen épplied to such a uniform
mixing duct, is reduced to a cylindrical polar coordinates
with x and y as coordinates in the axial and radial direcé
tions reSpectively, i.eey X = g and y = r. The grid for
such a coordinate syStem‘ié shown in Fig.4.3-2. The grid
lines are specified throughout the flow domaiﬁ which is
bounded by fhe axis of symmetry and the duct wall from
the inlet to the exit. NI radial grid‘lines and NJ axial
grid lines are used. Uniform grid spacings are used in_
the radial direction whereas a geometricallexpansion of
. grid spacing is used in the axial direction so that thé
up-stream region where the mixing is more vigorous will

have a finer grid. The radial grid spacing in the central
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jet region is DY1 and that in the outer region is DY2

as shown in Fig.4.3-2.

. TY(r) .
Ni{ l[l‘lll’l[ll Pa Lol kk bk d LK. VNI NTWTAVE NN IR W] lllltlr’llliljlllléuc{ wall
NI-1 '
1
DYZ2
o , K
Nozzle JSTEPH 4
wall  ygrEp|— D‘
' 2 Ti
J=1 , xX(z
booI= NI-1 I=NI | 2)
I=1

Fig. 4.3-2 The grid and boundary for uniform mixing duct

The flow boundaries are specified according to Table

403-1-

| Flow Boundary

Grid Location

Axis of symmetry

Midway of J = 1 and J = 2

Duct wall

Midway of J

NJ~-1 and NJ

Initial jet boundary

Between J=JSTEP and J=JSTEP+1

| Inlet section

Midway of I=1 and I=2

/ Outlet section

Midway of I=NI-1 and NI’

Table 4.3-1 Flow boundary specification for uniform

mixing duct

Thus, the radial grid spacings are given by

(4.3-1)



and DY2 = g TarEr (43~2)

The listing of the main program and subroutine INIT is
given in Appendix B.Z2. |

" 4.3.,2 Typical Jet Pump Mixing Tube Including Secondary

Inlet Region

A typical jet pump mixing tube inciuding secondary
inlet region is shown ih Fig.4.3-3. The configuration of .
the }nlet region is governed by (1) the profile of the
secondary inlet duct leading to the constant diameter
mixing tube, (2) the profile of the external surface of
the nozzle, and (3) the distance between the nozzle exit

and the mixing tube inlet.

~

Fig. 4.3-3 Typical jet pump mixing tube including inlet
region
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The profiles of both the nozzle and the secondary
inlet duct are described by circular arcs with radii Ri
and Ro respectively. The annular passage formed by these
profiles will provide a continuous convergence of flow
area which ascertains flow with less loss. Although other
inlet profiles are possible, it is shown by Mueller (1964)
and Fasol et al (1958)_that circular arc profiles give
better performance, The disﬁance from the nozzle exit
té the mixing tubé inlet is s and the diameters of mixing
tube and nozzle exit are dt and dn respectively. By vary-
Ving these five geometrical variables, a wide range of entxry
configuration can be obtained and investigated using a com-
mon computer programn. -

A general 2-D orthogonal Curvillinear coordinate
system ié devised to specify grid positions in the flow
fieid. Coordinate x is in the streamwise direction where
the grid lines are drawn so as to lay between boundary
wall and the axis of symmetry. The grid lines for coor-
dinate y are orthogonal to the x grid lineé everywhere,
NThe compiete secondary inlet grid'together with part of
the mixing tube grid is shown in Fig.4.3-4. Tﬁé'positions
of the grid modes in the annular region are calculated in
terms of a Cartesian coordinates Xy and X, as shown in
Fig. 4.3-5. The inlet duct wall can be described by an
equation of circle in Xy = X, coordinates with céntre
at'(0,0).- Similarly, the nozzle wall can be represented
by another equation of circle with centre at (-s, b) where

s is the nozzle spacing, i.e.,
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X2

| 4}6J0

(7] X,v

duct wall

Intermediate 2 2 2
circle , 5¢ - A+ X2 = Ro
Or%ojénaf .
civcle /Y

nozsle wall

Cti+5) 4(20-b)*= RE | T f

Fig.4.3=5 Calculation of grid nodes

For duct wall,
For nozzle wall,

)2 2

(x1 + 3)2'+ (x, = b)° = R, - (4.3-4) .

where b = Ri + T ".Ro - T
From any point at the nozzle wall, it is possible to deter-
mine the centre and radius of a orthogonal circle which

forms a y grid line. A series of intermediate circles

which lie between nozzle and duct walls and cut orthogo-
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nally with the orthogoﬁal circle can be devised to form
the x grid 1iﬁes. The intersections of the orthogonal
and intermediate circles are thus the grid nodes in the
inlet region. The detailed calculation‘of the positions
of these grid nodes are given in. Appendix A.8.

The tieatmentsAof the duct Qall, the axis of symme-
try and the outlet section are similar to those used for
uniform diameter mixing tube described in section 4.3.1.
Other boundaries aé shoWn in Fig.4.3.4 aré specified

according to Table 4.3%-2.

Flow Boundary Grid Location

Primary Inlet

Between I=INOZ and I=INOZ+1
(Nozzle exit) ’

Secondary Inlet Midvway of I=1 and I=2
Mixing Tube Entrance Between I=IENT and I=IENT+1
"Nozzle Wall Between J=JNOZ and JNOZ+1

Table 4.3-2 Flow boundary specification for typical

jet pump mixing tube

The'selection of INOZ depends on the length of the
annular flow region., The value of IENT can be calcﬁla—

ted from

TENT = INOZ + NJ - (JNoz £ 1) (4.3-5)

The whole flow domain is thus completely specified
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by two inlet sections, the nozzle wall, thevduct wall,
the axis of symmetry and the outlet section. Uniform
primary jet velocity and secondary annular veloéity are
specified at the two inlet sections according to the
primary and secondary flow rétes of the jet pump under
inveétigation. In order to calculate the secondary inlet
velbéity, the annular flow area at the secondary inlet
section is calculated by a separate short program AREA
listed in Appendix B.4. Other boundary conditions are
specified according to section 2.6. The listing of the
”completé compufer program for calculating flow in jet

pump mixing duct is given in Appendix B.1.

4,3,% Conical Diffuser

Fig. 4.3-6 shows the geometry of a typical conical
diffuser with inlet diameter d1 y» included angle @ and

- axial length 1d .

o2

Fig. 4.3-6 Geometry of a typical conical diffuser
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. The geometry of a diffuser is completely described by
these three variables. If the diffuser wall is extrapo-
lated to meet the axis of symmetry at a point O as shown

~in Fig. 4.3-7.

mFig. 4.%-T Coordinate systém for conical diffuser
The position at any poin£>P in the flow field is detef—
mined by»distanée OP or R and the angle between OP and
the axis of symmetry 93 » The general 2-D orthogonal .
coordinates X and y as described in Chapter 2 can then
be expressed in terms of R and 9j, i.e.,

X =R " (4.3-6)

il

y = RO, - (4.3-7)

J

A completefgrid of the diffuser flow region using a 8 x 8

grid is.shown in Fig. 4.3-8.
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NI

NT-1

— 3

’-____’_______.————'_’_

- . T=4
=11 2 : NI-1 NI '

Inle{ ) ‘ ' N Outlet

" Fig. 4.3-8 The grid of a conical diffuser

th

The angle Gj at every node on the grid line can be

calculated from NJ, j, and O as follows:-

The value of x at the inlet section xin is obtained from

d, and @, i.e.,

Ay .
X, = 2 . (403“9)

in .
sn.n2

)

P

The specification of flow boundaries is similar to’
the mixing duct problem. However, it is necessary to
specify the U-velocity at outlet section from the overall
‘mass flow conservation considering the increase in flow
area. The procedures are as follows: |

(i) Evaluate the mass flow rate ét I=NI-1, mNI-1

(ii) Calculate the velocity correction U, .. frdm‘mNI_1
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and the inlet mass flow rate ﬁin'.

U - min T Twr-1

cor —  Ayr_q@

(4.3-10)
~ vhere ANI—1 is the flow area corresponding to
I=NI-1. |
(iii) Add Ucor'to every U-velocity at I = NI - 1 and
calculate U at I = NI using the continuity

relationship.
U(NI,J) = | U(NI-1, J) + U (fﬁl:l) (4.3=11)
’ - ! cor A ¢
: NI
Other boundary conditions are specified according to

section 2.6. A listing of the main program and subroutine

- INIT for solving the diffuser flow is given in'Appendix B. 3.
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CHAPTER 5
FLOW PREDICTION

It is now possible to apply the computer models
described in Chapter 4 for flow predictions. In order
to validate the theoretical approach described in this
thesis; the cémputer programs are first employed indi-
vidually to predict flows in (i) uniform mixing duct,
(ii) typical jet pump mixing tube with secondary inlet
region and (iii) conical diffuser. The predicted results
are compared with the published experimental data. The
computer models are then used subsequently to simulate
the flow in‘a typical jet pump system which consists of
a entrance region, a miiing tube and a conical diffuser.
Predictions of the pressure rise and the overall perfor-
mance parameters are then obtained and compared with the

available experimental data.

51 Flow in Uniform Diameter Mixing Tube

51«1 Introduction

A typical uniform mixing tube with a rgundAnozéle
loéated‘at the centre of the inlet section as shown in
Fig.4.3-1 is the simplest design of a jet pump. Experi-
menfal studies of jet mixing in suchfa uniform duct were
carried out by many workers. Among them, Helmbold et al
(1954) carried out the measurements of the axial static

pressure and the radial total pressure profiles at various
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stations downstream of the nozzle. Razinsky.and Brighton
(1971) measured the mean and fluctuating velocities, sta-
tic pressures as well as the turbulent shear stress
- throughout the whole flow field. Sanger (1968a, 1968b)
carried out comprehensive tests of several jet pumps,

all havingruniform mixing ducts followed by conical
diffusers.

| Theoretical analyses of confined jet flows were

carried out by Curtet (1958), Dealy(1964), Hill (1964), .
Exley and Brighton (1971) and Hill (1973). Baker, Hottel
and Williams (1962) derived a non-dimensional parameter'
called Craya-Curtet Number C, » based on the ratio of
kinematic-mean ahd dynamic-mean inlet velocities, to
determine the éharécter of the flow in the mixing duct.

In a mixing duct of constant diameter, as shown in Fig.
4.3;1, Ct can be expressed iﬁ terms of the radius ratio

and the initial velocity ratio.

. U
C, = — . g (5.1-1)
t T, .
2 2 iv2 2 25\ &
Evi - U, )(f;) * %(Uo - U ﬂ'
' ) T,
. _ - ~iy2
where , | U, = (Ui Uo)(ro) + Uy

Hill (1964)lproposed that the flow behaviour of confined
jet mixing was a function of a non-dimensional parameter

~—E;T which when applied to a constant diameter mixing

(me)=
tube gave the following value,
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n A + (Fifr,)?

s = (.501"2)
M) B2 2t amm )P/ )P B
. » k Uo ‘
where - }\O = -ﬁ-—-:——ﬁ—-
1 (o]

It is apparenf that both parameters are soleiy deter-
mined by fhe area ratio and the initial velocity ratio.
The character of jet mixing in a uniform duct is thus
determined by the radius ratio and the initial velocity>
ratio of the primafy Jet to the secondary flow.

5¢1.2 Results and Discussion

The compuﬁer model described in section 4.3;1 has
been used to predict the flows of the air jet mixing in
two uniform ducts measured by Razinsky and Brighton (1971)
as well as the water jet mixing tested by Sanger (1968a).
The geometries of the ducts and the inlet flow:conditions

’are 1isted in Table 5.1-1. All the results for comparison

| Author : ,-ri/rO Ui/U0 ro(m) Ufm/é) medium
Razinsky and Brighton | 1/3 3 » 0.15 45.0 | air
n o 15 | 10 10.15 | 45.0| air

" noooow /6 3 |0.15 45.0 | air |
n " o 1/6 10 0.15 | 45.0 | air

Sanger o 0.257 | 3.00 0.0171'-30.0 water

" 0.257 | 4.04 10.0171| 30.0 | water

n - | 0.257 | 5.66 |0.0171| 30.0 | water

n 0.444 | 2.91 [0.0171| 22.0 | water

T 0.444 | 5.44 |0.0171| 22.0 | water

- Table 5.1-1 The geometries and inlet conditions of ducts
for flow prediction
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were obtained from an IBM 370/158 computer using a 14 x 14
grid. However, the effect of the number of grid lines be-
ing employed on the predicted result was studied and dis-

cussed

The mean axial velocity prediction The axial velocity
‘profiles at various stations downstream of the nozzle
exit are 6f significant importance in the studies of
confined jet mixing. They indicate the degree of mixing
between the two streams as well as the degree of entrain-
ment. Fig. 5.j-1 presents the predicted velocity profiles,
non-dimensionalized by the area-mean velocity U  , as |
'Compared with the four combinations of inlet velocity
ratio. and radius.ratio reported by Razinsky and Brighton
(1971) [seé Table 5.1-1], Fig.5.1-2 shows the comparison
'Qf predicted'and measured centre-line velocity decays.
The agreement between the prediction and the measurement
is fairly good despite the fact that nb detailed infOrma—A
| tion regarding the inlet turbulent kinetic energy and |
energy dissipafion rate Was.reported. The inlet k-~profile
~was calculated from the r.m.s. velocity ;T? by assuming
“isotropic turbﬁlenée in both primary and secondéry floWs,
i.e.

]
k. = 5 ul

in (501"3)

The inlet £ profile was calculated via

£, = Jin O (5.1-4)
i 1. .
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where 1, ~is the length scale at the inlet section.
Without better information, lin may be taken as constant
across the inlet section. in the predictidn of Razinsky
and Brighton's work, the following assumption was made
in order to give a good agreemenﬁ between prediction and

- measurement.

1, = 0.005¢ % - (5.1-5)
The influence bf the inlet length scale on the axial -
mean velocity field has been investigated by running the
computer program with varying lin while keeping other
flow conditions unchanged. The results obtained from a.
radius ratio of 0.25 and inlet velocity ratio of 6.0 are
shown in Fig.5.1-3 which compares the centre-line velocity
decays. It is apparent that a larger inlet length scale
causes the velocity on the axis to decay at a‘faster rate,
i.e. larger eddy size can lead to better mixing. However,
the effect is relatively small over a largé range of 1,

Pressure prediction The static pressure rise in the mixing

tube 1s of vital important in jet pump performance. The
capability of the computer model to predlct accurately the
static pressure variation along a uniform mixing tube is
an essential indicator to determine the success of the
model for this particular application. The predicted
préssure variations along the duct wall of a uniform
mixing tube with various radius ratios are compared in
Fig. 5.1-4 with the experimental data from Razinsky and

% See AppenJix A.9
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Brighton (1971) for incompressible air flow. In the case
of water jet mixing, predicted pressures are compared with
the data from Sanger (1968a) as shoﬁn in Fig. 5.1-5. All
| the pressures were taken with reference to the inlet sec-
tion and non—dimensionalized using the area-mean or the
nozzle exit velocity. In general, the agreement between
the prédiéted and measured distributions are acceptable.
The influence of the inlet length scale on the static
‘pressure distribution was studied by the computer program.
The results are presented in Fig. 5.1-5. It appears that
a .larger inlet‘length scale will lead to an earlier recb-
-very of pressure which is resulted from a better miking
.due to larger eddy size at inlet. However, the effect on
pressure variation over a wide range of inlet length scale
is also relatively small. |

Turbulent energy and shear stress predictions One major

advantage of the computer model is its capability of pre-
dicting the turbulent behaviour throﬁghout the whole flow
field; Since fhe turbulent kinetic energy k and energy
dissipation £ are the two dependent variables used in the
transport equafioné, k and € are calculated diféctly via
the numerical procedure. ‘The predicted k—distribution

for the case of gi“= 3 and ;1 = % is presented in Fig.5.1-7.
The profiles of k?ﬁmz at vargous stations‘downstream reveal
that there is a very thinvbut high turbulent energy zone

between the primary and secbndary streams at the beginning

of the duct. This can be explained as the result of vigo-
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- rous mixing between the twoAstreams; The jet growth fur-
ther down-~-stream is made clear by the'spread of the high
turbulent eﬁergy zone. The peak of the k-profile is in-
creased at first and then decreases. This shows that the
degree of mixing is intensified at first and then dimini-
: shed graduélly. The profile at about 12 radius downstream
suggests that the mixing-is_almost completed there as no
obvious peak is observed.~ Since'there is no existing
experimental data of k for comparison, experimental studies
using a laser.Doppler anemometer to measure the mean and
~ the three orthogonal fluctuating velocities were carried
out iﬁ a uniform mixing duct. The results are reported
ih Chapter 6 and compared with the predicted values,.

The turbulent shear stresses.which arise from the
cross-correlation of fluctuating velocities as given by
equétion (2.4-1) can be re-written for cylindrical polar

coordinates as
T =y @+ 2D C G

In the mixing duct case,

U 2V
>t 7 2%
Thus -eu utv’ =,/Ltgg (5.1-6)
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From equafion (2.4-8),

2. :
/}Lt = 9u€>h /e
the Reynolds shear stress term can then be expressed as

- 2 k_ 20U -
u'vf- 9# e 5T (5.1=7)

As U, k and € are predicted throughout the whole flow
field, u'v' can be evaluated everywhere. Thevpredicted
utvy brofiles across various stations of a uniform mixing
duct are non-dimensionalized by Um2 and the results are

~ compared with Razinsky and Brighton's (1971) data as shown

in Fig. 5.1-8. The agreement appears to be satisfactofy.

The influence of grid spacing To investigate the influence

of the grid spacing on the predicted results, three diffe-
rent grids were used to predict the same flow situation
with radius ratio of % and vélocity ratio of 10. The
comparison of centre-line velécity decay aﬁd Static pre-
ssure rise are shown in Fig. 5.1—9. It can be observed
tha@ by inereasing‘the grid from 11 x 11 to 18_¥A18; the
reSults do not show drastic change, especiaiiy when the
flow is fai enough downstream. However, the computer
time required for 18 x 18 grid is almost three timeg
that of>11 x 11. It is thus necessary to choose an
apﬁropriate grid size based on the compromise of economy

and accuracy.
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Some comments on the accuracy ahd possible improvements

In general, the agreement between prediction and measure-
-ment is acceptable for axial velocity,vstatic_pressure and
-turbulent shear stress. The accuracy might be improved,

especially in the case of high velocity ratio and small
radius ratio, by specifying a finer radial grid spacing

in the mixing region where velocity gradient is high. To

some extent, the empirical constants listed in Table 2.4—1
. may have some effect on the accuracy of the prediction.

By improving these constants, a bétter result can be
expected. - However, it is anticipated that large amount.
of measurements aré necessary before a bettey set of
constants cen be established.

The results‘obtainéd so far reveal that the two-
equation turbulence model is capable of predicting, with
acceptable accuracy, the time;mean velocity and static
pressure as well as the turbulent behaviour of the flow
in an unifofm miking duct. The next task is to apply |
the model to'pfedict the flow-in a typical jet pump mixing
‘fube with a secondary‘inlet region where flow area is
reducing and the noézle is placed at some distance upstrean

of the inlet section of the mixing duct.

5.2 Flow'in Typical Mixing Tube Including Secondary Inlet
Region

5.2.1 Introduction

The geometrical configuration of a typical jet pump

mixing tube with nozzle exit placed in the varying-area
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inlet region is shown in Fig. 4,33, A'computer model
which simulates the mixing tube together with such a
secondary inlet region is developed‘and described in
section 4.%.2. The model was used to predict the flows
~in the domain and compared with the experimental data
from Sanger (1968a). ‘Flow conditions were varied So
that their effects on fhe,performance were discussed.
All fthe prédictions were obtained using a 26 x 12 grid.

5.2.2 Results and Discussion

The computer model was used to predict two mixing
tube tested by Sanger (1968a). The geometries of the

two mixing tube A and B are listed in Table 5.2-1.

Mixing Tube

a,(m) a /4,  s/a,  R(m) R, (n)

A 0.0342  0.257 1.05  0.127 0.165
B 0.0342  0.444  0.96 0.127 0.1903

 Table 5.2-1 Geometries of mixing tubes used for prediction

The predicted pressures along the duct wall were

" plotted and compéred with'the measured values‘obtained

by Sanger as shown in Fig. 5.2-1. Tt is clearly demor-
strated thét the correlation between the prédicted and

the measuréd values is fairly good. The predicted pressure
profiles fqr various flow ratios in mixing tubé A are also
presented in Fig.*5.2-2.v The results shoﬁs that}thé loca~
tions of minimum and maximum pressure points are closer

to the nozzle exit at lower flow ratio. As the flow ratio

increases, these locations move further downstream from
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the nozzle exit. This tendency is more obvious for the
maximumvpressure point. It is also observed that the
pressure in the mixing tube increases more abruptly in
the case of smaller flow ratio possibly due to larger
initial velocity ratio between the primary and the secon-
dary flows which leads to a more vigorous mixing.

It may be concluded that for the same nozzle to
mixing tube area ratio, a higher flow ratio will require
‘a longer mixing tube to achieve the maximum possible pre-
ssure r;se.' This discovery explains the inconsistency of
the optimum mixing tube lengths recommended by various
authors as the flow conditions under investigations differ
widely. B

To‘ensure that thejprediction is acceptable for a
wide range'of flow ratios, the pressure rise in the constant
diameter mixing tube is non-dimensionaligzed by %eth and
plotted against the flow ratio so as to compare with
- Sénger's data. PFig. 5.2-3 shows a satisfactory comparison

between the prediction and the measurement. |
) The predicted streamw1se velocity proflles across
various flow sectlons throughout the whole flow fleld
are shown in Fig. 5.2-4. Comparison for two different
flow ratios is also shown. The centre-~line veiocity
decays are shown in Fig. 5.2-5. The results show that
the centre-line velocity decays faster as flow ratio
reduces. If the centre-line velocity decay is taken as
a measure of the degree of m1x1ng, then it can be conclu-

ded that mixing is. completed earller in the case of a
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lower flow ratio. A longer miiing tube is thus required
for a higher flow ratio. This has coincided well with
 the conclusion drawn from the pressure prediction.
Although no detailed information is given fdr the
turbulent intensity or turbulent kinetic energy distri-~
bﬁfion at the inlet in Sanger's work, uniform k-profile
were aSsumed for nozzle exit and secondary inlet region

as follows.

~
]

o.oomn2 * (5.2-1)

k

]

o.ooBUS2 % (5.2-2)
where Un and Us are the mean velocities at hozzle exit and
secondary inlet respectively. The choice was based on an
- estimation that the local turbulent intensities at the
hozzle exit and the secondar& inlet were around 3% and
4.5% respectively, and the flow was assumed to be isotrbpic
turbulence. The inlet ¢ -profile was specified according
to equation (5.1-4) with 1, = O 0025d;

A typical k-dlstrlbutlon profile is presented in
Fig. 5.2-65 It is clear that the results reflect reasonably &
well the turbuient behaviour of the confined‘jet mixing
with the mixing zone having a higher turbulent kinetic

energy.

563 Flowvin A Conical Diffuser

50631 Intrdduotion

A conical diffuser is often used as the pressure head

% See Apéendix A.9
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recovery device in jet pump systems. McDonald et al (1966)
tested various conical diffusers of different inciuded
angles and'length to investigate theirvﬁerformances.
Muellér (1964) studied a series of diffusers in jet pumps
héving included angles ranging from 3.5% to 10.70. He
concluded that for optimum jet ﬁump performance with best
éfficiency, the diffuser with larger included angles must
be vsed in conjunction with a longer mixing tube in order
to prevent separation in the diffuser. The results of
Mueller also reveal that the best efficiency occurs at é
combination of 5° diffuser included anglé with a mixing
tﬁbe length of 6.5 diametérs.‘ By testing two sets of Jet
pumps , Sanger (1968a, 1968b) showed that a combination of
a 6O’diffuser included angle with a mixing tube length of
5.66 diameters gives a better performance than a 8.1°
diffuser combined with a mixing tube of 7.25 diameters
long; It is apparent that the diffuser performance depends
upon the inlet velocity profile which itself depends on a
number of factors in the jet pump system, i.e., mixing tube
- length, nozzle.spacing, areéﬁratio and flow ratio.

Besides being used in a jet pump device, the conical
diffuser is also widely used in many other fluid flow sys-
tems. A reliable prediction of diffuser flow behaviour
and performance is certainly required. |

The present study is to use the computer model des-
cribed in section 4.3.3 to predict the flows in conical
~ diffusers. The inlet vélqcity profile which is dictated
by the ﬁpstream geometries and flow}conditions is speci-

fied as the inlet boundary condition.
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5.3.2 Results and Discussion

The computer programme for calculating the flow in
conical diffuser has been run for two diffusers with in-
| cluded angles of 4° and 8° and inlet Reynolds Number of
1.25 x 10° so0 as to predict the experimental performance' 
obtained by McDonald et al (1966). The two included angles
are chbseh based on the fact that most diffusers used in
jet pumps are within the range of 3.5° to 8°. As no
information on turbulent intensity at the inlet was reported
by the authors, the following inlet k-values and length
scale were’used as they produced good predicted results-

compared with the experimental data.

2 *

= 0.001U1

-
|

where 1 denotes the diffuser iniet section.

The results are presented in Fig. 5.3-1 where the
hpredicted and the experimental pressures are gompared.

The prediction in the region up to 10 radius of the diffu-
ser inlet section are in excellent§agreemenfwwith the
measurement. Further downstream, the prediction is slightly
higher than the measurement in both cases.

To study the flow behaviour in the diffuser, mean
velocity profiles at various sections were aiso plotted.
Fig. 5.3-2 presents the mean velocity development of the
8° included angles diffuser with uniform inlet velocity.

* See Appendix A.9
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The results clearly demonstrate the development of the
bﬁurbulent boundary layer in diffuser flow. Fig. 5.3-3
presents the non-dimensional turbulent kinetic energy
profiies with an assumed uniform k-profile prescribed
at the inlet. Once again, the turbulent boundary layexr
development is clearly shown. At the initial region of
the diffﬁser,,there is a very thin but high turbulent
gnergszone close to the diffuser wall. TFurther down-
stream,‘owing to the growth of turbulent boundary layer,
the'high turbulent energy zone increases its thickness -
with a reduction in its magnitude. The peak of the k-
"pfofile also moves further away from the wall as the flow
developed downstream. |

Diffuser flow in coﬁﬁunétion with a mixing tube as
used in typical jet pumps were also studied. The jet
mixing computer prdgramme was run using various area
ratiés and flow ratios. Tﬁe predicted velocity profiles
at the end of the mixing tube were then used as inlet
velocity profiles for the diffuser programme, Predictions

were obtained for two Jet pﬁﬁp configurations tested by

Sanger (1968a). The detailed geometries are tabulated in

Table 503"‘1 .
- Area Ratio : dn/dt 1,6/<1Jc o s/dt
0.066 ‘ 0.257 7.25 8.1° 0
0.197 0.444 5.66 & 0

Table 5.3-1 Geometries of two jet pump diffusers
| used for prediction
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FPig.e 5.3-4 and 5.3-5 present the predicted static
pressure along the wall for various flow ratios. Both
‘cases show good correlation between'predicted and measured
values. All the diffusér predictions were obtained using
a 14 x 12 grid. .

The results so far reveal that the k- £ turbulence
model is capable of predicting satisfactory results in
conical diffusers not only by itself but also in conjunc-
tion with a mixing tube. They are expecially encouraging}
in view of the fact that both mean flow behaviour as well
as turbulent structure are obtainable at the same time.
Since the mean velocity and k-profiles at the inlet are
prescribed as inlet boundary conditions, the programme
can readily be used to investigate many other flow pro-

blems where the diffuser is one of the flow components.

5.4 The Prediction of Overall Performance of Typical Jet

Pump

5.4.1 Introduction —
N The successful predictions of the flows in jét pump
components using the conmputer models describedﬁin Chapter
4 have led to a conclusion that it is 'possigie to predict
the overall performance, i.e., pressure rise, efficiency,
etc., in a typical‘jet pump system, Once the flow ratio
of a jet pump is specified, the head ratio will be the
oniy parameter to determine the efficiency df the pump.
The prediction of the static pressure throughout the

whole flow field will enablé the head ratio and thus
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the efficiency of the pump to be evaluated. Although it
is theoretically possible to simulate the entire flow
domain of a jet pump using a single.computer program,
this will require excessive storage space unless the

job was run on a very large compﬁter; As an alternativé,
the mixing tube program and the diffuser program were Iun

successively to obtain a complete prediction.

5.4.2 The Procedure of Calculating the Overall Performance
The total head at any station x of a horizontal jet

pump is given by

He = Py + %eﬁxz (‘5.4-1)
where'PX and ﬁx are thejstatic pressure and the area-mean
velocity at station x. Since the area-mean velocity at
any station can readily be deduced from the continuity
equation, the total head will solely depend on the static
pressure at that station. The correct prediction of the
static pressure along a jet pump is thus of vital import~
'ance to its design énd performance analysis.

The present prediction procedure can be sﬁﬁmarised
as follows: | | :ﬁ
(i) Specify the geometry of a jet pump together with
the primary and secondary inlet flow rates for
the jet mixing program; run the program to
obtain pressure and velocity fieldé
(ii) The velocity profile at the end section of the

mixing tube is used as inlet velocity profile
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for the diffuser progfam; the}program is run to
obtain the static pressure rise in diffuser

(iii) The static pressure from the secondary inlet to
the exit of the diffuser is then plotted and the
overall static pressure rise evaluated

(iv) The total head gained by the entrained fluid is
dbtained from static pressure rise and the increase

/ in dynamic head, i.e.,
(504"‘2)

(v) The total head lost by primary fluid can be cal-
culated similarly

Hy - Hy = By -2y 43007 -T%) (5.4-3)
However, the position of station Jj which is up-
stream of the primary nozzle is fixed arbitrary.
From Station j to the nozzle exit plane n, only
>frictional losses occur. The loss from j ton
is relatively small compared with othéf losses
and can often be ignored if the distance between

- J.and n is small. The total head lost by the

primary fluid can then be written as

1}
av)
=
1
HJ
o
+
wj
0
i
]
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(vi) The head ratio N and-the efficienoyrl can be

calculated as folloWsi

. H — H .
: d s
N = - = (5-4"‘5)
Hy = Hy

Qp(Hy = 1)
= a0, T Ay (5.4-6)

5.4.% Results and Discussion

Fig. 5.4-1 presents the predicted static pressure

‘rise along the wall of a jet pump used by Sanger (1968a).
The agreement between prediction and measurement is faifly
'good. ‘The satisfactory prediction of the static pressure
along the entire‘jet pump wall enable the head ratio and

the efficiency to be céicﬁlated. Fig. 5.4-2 presents the
predicted performance curves, plotted with head ratio and
efficiency agéinst the flow ratio, for a specific geome-
trical combination used by Sanger (1968a). Quantitatively,
both the predicfed head ratio and efficiency are slightly
higher than thé measurements obtained by Sanger. However,
‘bearing in mind that minimum amount of empirical coefficients
are used to evéluafe these performances, the_aéiievémeﬁt is
considered satisfactory. The‘prediction clearly shows the
maximﬁm,efficiency point which agrees very closely with the
measured value. With these achievement, the model may safe-
ly be used to predicf thé'performance for any proposed geo-
metry. Studies of new design proposals no longer have to

rely on prototype testings or analyses based on empirical
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coefficients obtained from other pumps. The computer
model can, not only be used to investigate the influence
of individual geometrical parametervon.pefformance, but
also be used to optimize the design. The application of
the model for these purposes will be discussed in Chapter

7.
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CHAPTER 6
EXPERIMENTAL INVESTIGATION

6.1 Introduction

Although'jef pumps have been the subject bf extensive
experimental studieé, comparatively little work has been
devoted to detailed studies of the flow field behaviour
occuring in various flow regions., Many ekperimental in-
vestigations were.mainly concerned with performance test-
ing, pressure distribution along the,duct-walls, measure-—
ment of lossesvin individual components, cavitétibn studies
and operation of jet pumps under various conditions. As
a result, design of jet pumps in the past hasvlargely'
relied upon the empirical coefficients evaluated from
other tests rather than based on the flow structure of a
proposed pump. Although a typical jet pump consists of a
primary nozzle, a mixing tube and a diffuser, it is the
mixing. tube where mixing between the two Streams takes
placevand thus results in the#pumping effeét. A thorough
Lstudy of the flow behaviour in a mixing tube is essential
‘for the better understanding of the mixing prédéés.‘ The
detailed measurements of mean and fluctuatiﬁé velocity
components in ahmixing tube also provide a basis for
validating any £1ow prediction and theoretical analyses.

Helmbold et al (1954) conducted experimentallmeasure—
ments of mean velocity profiles in both constant and varia-
ble area mixing tubes using a Pitot static tube( Curtet

and Ricou (1964), in an attempt to study self-preservation
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tendency in an axisymmetrié ducted air jet,'carried out
measurements of mean velocity as well as axial and radial
components of fluctuating velocity in a constant mixing
duct using a hot wire anemometer. The most thorough
measurement of confined jet mixing was probably done by
Razihéky (1969). The measurements were conducted with
two differeﬁt fadius ratios and éach with two velocity
ratios. The mean velocity was obtained using a Pitot
static tube.- Longitﬁdinal velocity fluctuation and
Reynolds stress  were measured using a constant-temperature
hot'wiré anemometer. However, no measurements of fluctua-
fing ve1ocity in the radial and tangential directions were
reported. -

The lack of experimental data in confined jet mixing
is reflected in the incomﬁlete measurement of fluctuating
velbcity components. A severe.lack of information in the
;tangential fluctuvating velocity prevents the thorough
undersfanding of the turbulent structure in confined jet
mixing. Moreover, owing to the difficulty in obtaining
‘measurement in water Jet mixing, almost all the existing.
data on confined jet mixing were obtained from air jets.

The pfesgnt experimental inveStigation/is to use a
relatively new technique, laser Doppler anemometry (IDA),
to measure the mean and fluctuating velocities in a constant
diameter mixing tube with water as the;working fiuid. The
IDA technique allows the measurements of axial mean and

fluctuating velocities to be taken simultaneously. Through

various suitable arrangements of the optical system, all
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the three orthogonal fluétuatiﬁg velocities are obtained
using one laser Doppler anemometer system. The main

aim of the present experimental program is to calculate
 the turbulent kinetic energy k from the data of the three
fluctuating velocity components so as tp compare it with
thé predicted k obtained from the two-equation k-~ ¢ model.
Other impdrtant aspects include the studies of improving
laser Doppler signals, criteria for selecting optical
components, effects of frequency shifting and the limita-~

tion of IDA in this particular application.

6.2 The Jet Pump Test Rig

6.2.,1 The Flow Circuit -

A schematic diagram of the flow circuit is shown in
Fig. 6.2-1. Water from a 60 x 90 x 60 cm storing tank
ﬁas‘pumped by a 7.5 kW centrifugal pump to a 25mm primary
- pipe line. After passing through a control gauge valve
V1 and a 10—/Lm filter (ALBAWY series.770), the water
could be made fo flow solely through the primary pipe

T ine, and ejecting through the nozzle by closing the
valve V2 conneéting the primary and secondary pipe lines.
The high velocity jet from the primary nozzié wés ablé

to entrain a secondary flow through turbulent mixing in
the mixing tube with Valve V3 opened. When it reached

a steady state, the primary and secondary flows Q1 and

: Q2 remained unchangéd. This opération allowed the flow
circuit to run as an ordinary jet pump for pressurec testinge

However, the flow circuit was also operated in such a way
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that valve V2 was opened and valve V3 was'closed so that
the filtered water was diverted to both primary and secon-
dary pipe lines. The two fiows Q1 and Q2 after passing
through two flowmeters, were led to mix in the mixing tube.
On leaving'the‘mixing tube, the combined fluids then flbwed
- back to the storing tank Via a 38.1mm discharge pipe line.
Such operatioh ensured that both the primary and secondary
flows entering the‘jet pump were being filtered by the 1gpm
filter. The filtering is crucial for the measurements of
mean and fluctuating'velocitiesAusing a laser Doppler
anemometer as particles of diameter larger than 1me will -
seriously affect the performance of the signal processor.
By careful control of valves V1 and V2, an appropriate
velocity ratio at the iﬁlet of the mixing tube was achieved.
This was important in view of the fact that the laser Dopp-
ler anemometer was unable to cope with very high velocity
gradients. If the flow circuit is to be operated as a
normél jet pump, the inlet velocity ratio will be well
beyond 20 which is far too high for thevL.ﬁ.A,’
B - A thermometer was inserted into the water in the
storage tank to chéck the temperature df the wé%er.\ When
the temperature of the wéter was higher thaﬂlthe atmos-
pheric temperaturé by 500, the water was drained away by
opening valve V4 ahd refilled with fresh tap water. The
frequent change of water also ensured that the smaller
irén oxide particles generated from the cast‘iron pump
would not be accumulated to a high particle concentraﬁion

affecting the normal performance of the anemometer.
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A photograph of the basic-jet pump test rig is shown
in Plate 6.2-1.
6.2.2 The Components of the Test Pump

The test pump consists of the following comﬁonents:
(i) a primary nozzle, (ii) a suction chamber, (iii) a
mixing tube entrance disc, and (iv) a tést section. These
four compohents are easily changeable so that the effect
of dimensional alteration can be gquickly and cheaply
achieved. The complete jet pump is shown in Pig. 6.2-2,

Two nogzles of 6.5mm and 12.7mm exit diameter were
machined frbm éluminium. The dimensions of the two nozzles .
'ére given in Fig. 6.2-3. The nozzle to be used for the
jet pump experiment was screwed into the ené of a piston
tube which conﬁected with thé primary pipe; The piston
tube was locked into an adjusting screw tube with external
screw threads. The adjusting screw tube screwed into a
sleeve which was fastened to the cylinder of the piston
tube. A cylindrical suction chamber with an intermal diaf.
meter of 100mm and length 90mm was then joined to the
‘cylinder. A 25mm copper piﬁe was connected to the bottbm}
of the suction chamber. To reduce the weight 6f“the‘jét
pump, all the parts mentioned above were made from alumi-
nium. By turning the adjusting screw tﬁbe, it was possible
to move the.piston tube in or out of the Cylinder go that
the position of the nozzle in the suction chamber could be
varied. Two sets of mixing tube entrance discs and mixing
tube test sections were produced from clear perspex glass,
The mixing tube test section was screwed into the entrance
. disc which fastened %o the suction chamber. The dimensions
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of these two mixing tubes and entrance discé are shown in
Fig° 6.2~4 (a) and (b). The entrance disc provides a
bell-mouth secondary inlet contour to the mixing tube.
~The mixing tube with an internal diameter of 38mm
was used for mean and fluctuating #elocity measurements.
By using thg two nozzles described above, radius ratios
of 0.334 and 0.171 were achieved. On the top surface
along the length of‘this mixing tube, a pérspex block
for holding the probe was fixed., Threaded holes for the
probe holder were drilled on this probe holding block at
various stations with spacing indicated in Fig. 6.2-4 (a).
The details of the probe and its holder are also shown in
Fig. 6.2-4 (a). A photograph of the test section is shown
in Plate 6.2-2. The probe was mainly used for locating the
‘centre of the mixing tube crdss-section so that the two
laser beams wouid bé adjusted to cross at the centre. The
measuring position at any distance away from the centre
wés' calculated by the movemenfvof the optical unit which
is discussed in section 6;4—2, In order to measure the
~-axial velocity near to the nozzle exit two slots were
cut on the outer surface of the entrance dlSC to enable
the laser beams to pass through without any blockage (see
Plate 6.2-2).

The mixing tube with an internal diameter-of 25mm
was used for static pressure measurement. Static pressure
taps of Z;Omm diameter were installed along the test sec-
tibn with spacings shown in Fig. 6.2-4 (b). The end of

the mixing tubé was joined to a short diffuser of 7o inclu-
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Plate 6.2-2 The test section for velocity measurement
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ded angle and an exit diameter-of 38.71mm. A photograph
of the test section is shown in Plate 6.2-3.
Both test sections were joined to a %8.1mm diameter

 copper pipe leading to the storage tank.

6.3 The Laser Doppler Anemometry

6631 ‘The Measurement of Turbulent Flows

;Thé measurement of instantaneous veloéity provides
the necessary information for understanding the structure
of turbulent flows. Tor many years, hot wire or hot-film
anemometers have been used as the principal tools for
obtaining turbulent flow informations such as Tam.S.
velocity and veldcity correlations. Althouéh this
technique has provided ample quantitative informations,
it is limited to flows of low temperéture, low speed and
iow turbulent intensity wifhdut recirculation. The deve~
lopment of laser Doppler anemometry represents a signifi-
cant break-through in fluid flow measurement. The main |
advantage Of»sﬁch an optical measuring system is the non-.
‘contact probing which does not disturb the flow wder
investigation,'.Thus, laser Dopplerranemometeflié parficu—
larly favoufable for measuring recirculatingwflows, flows
in duc¢ts of small dimension, where the‘hot wire or hot
film is extremely difficult to set up and for hostile
enViropménts_such as flames. However, laser Doppler
anemometers require.the wall of the test section-to be
trénsparent so that light beams can pass through.

In the present work, the laser Doppler anemometer was
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chosen rather than the hot film anemometer for the measure-
ment of mean and fluctuating velocities because |
(1) laser beam passes through the flow without using
any probe which will disturb the flow,

(ii) the relatively small mixing tube creates great
difficulty in setting up a hot film probe in the
flow, ' | |

(iii) the use of water as wbrking fluid solves the
seeding pfoblem;

(iv) the Doppler frequency is directly proportional
to the velocity enabling greater accuracy of
measurement. |

6.%.2 The Basic Principles of Lasér Doppler Anemometry

The laser Doppler anemometry is based on the Doppler
shift of the light frequency scattered by particles sus-
pended in the fluid. The scattered light contains informa-
tionvabouf the velocity of the suspended particles»which
can be interpreted by photoelectronic means. The Doppler
effect, which is named afterwphristian Doppler who disco-
“vered the frequency change of a moving source towards a
stationary obéerver, forms the basic concept for the deﬁe—»

lopment of the laser Doppler anemometers.

°0
Fig. 6.3-1 Light scattered by a moving particle.
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'Fig. 6.3-1 shows light which is propagated from a
fixed source S in the direction Ei and scattered by a
particle at point P moving with velocity ¥ , the scattered
light is detected by an observer O where k, is the unit
vector from P to O. . The relative velocity of the light

with respect to the moving particle P, c¢', will Dbe
e' =c¢ - vk, (6.3-1)

where c¢ is the velocity of light to a stationary obsexrver.
Thus, the light will arrive to the moving particle'at a

frequency,

1 = =
c v'ki) (603"2)

f' = == A(c - Vek.)= £f(1 -

Now, the particle can be considered as a moving source
emitting a light of frequéncy f'., The stationary obser-
ver at O will observe the light from a moving source with

a wave length - e

: c - vk - S
N = —p7— _ (6.3-3)
£ = ""—"1—':—: ' (6.3-4)
Substituting equation (6.%-2) into equation (6.3-4) yields

138



the expression of the final frequency detected by the

stationary observer at O,

A :
v .

Af = f* - f
ve(k, - k.)
- 8 1'~l- (6.3"'6)
NG 5 V‘CS) : .

Since the velocity of the moving particle v is negligible
compared with c,

iceo )

thus,

af = 3 T (E,- ) - (6.3-T)

A
N
The frequency shift, af, which is also referred to
as ‘the Doppler freqﬁency, fD s 1s directly proporﬁional
to the particle velocity v . |
The laser, which emits highly coherent monochromatic
light waves is the most-suitable light source for the

measurement of particle velocity utilising the above
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'principle.

6.5.3 The Optical Systems

In practice, it is more convenient to employ two
.incident light beams which cross at the measuring point
in the flow. Appropriate optical components such as beam
splitters, lens and filter may be arranged in different
modes of operationf Thelmost commonly used optical
arrangements are "reference-beam" mode and "dual beam"
mode.

The "Reference-Beam" Mode In the reference-beam mode,

the laser beam is split into two beams and directed towards
the measuring point by an optical unit which consists of
a beam splitter and a convergent lens as shoﬁn in Fig.

6.3"2o

optical unit

. v
laser .;llterf photomultiplier
] /
S
v
£
LS
-8 7
: S

Fig. 6.3-2 Reference-beam ﬁdde
The intenSity of the reference beam is reduced by a filter
so as to optimize'the quality of the Doppler signal. A
photomultiplier is placed to face the referenoe beam so

that the frequency difference between the reference
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beam and the scattered beam can be detected. The

frequency difference, according to equation (6.3-7), is

The photomultiplier then emits modulated current with a
frequency eéuai to fD' The veloéity component measured
by the above arrangement is parallel to ES~ Ei’ or normal
to the bisector of the beam intersecting angle ¢. Its
value can be calculated in terms éf fD.’ A, and ? as
follow |

v ='~EPI:~— v (6.3-8)

P
2 §1n2

- The "Dual Beam" or Fringe Mode In this arrangement, the

laser beam is split up into tﬁo incident beams of equal
intensity and is brought to intersect at the pléce of
measurement so that a measuring volume is formed. The
scattered lighﬁ signals of ﬁhe incident beams are picked
“up from the same direction by a photomultiplier (see

Fig- 7603"‘3).

-
=

Fig,6.3—3 'Dual beam' or fringe mode.
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In this case, each scattered beam has a freqﬁency shift
relative to the incident beam that it originates from,

i.e.,

s1

1= =
foo = L35 + X Vg - Kyp)
The beat frequency detected by the photomultiplier

fo=1f

D s1 st can be deduced to

Tp = Tiq

1= ./ e : |
- fi2 + ;-v (ki2 - ki1) (6.3-9)
If the incident beams arrived at the measuring point
without any frequency pre-shift, fi1 é fiZ , and ﬁD‘

becomes

g = = -
fy = ;_v~(ki2 - ki1) (6.%-10) .

It is obvious that the beat frequency fD is indepen—
dent of the difection of detection and the‘veidéity‘cdm-
ponent meaéured is parallel to Ei1 - Eiz , i.e., normal to
the bisector of the beam intersecting;angle 97. The
velocity can be calculated in terms of fD" Nend (@
according to equation (6.3%-8). |

The Effect of Refractive Index When a beam of light

‘passes obliquely from one medium to another of different

refractive index, its direction is altered and its velocity
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and wavelength also changed. The various pfoperties in
air and in a fluid of refractive index q’is given in

Table 6.3-1.

Property Air In the Fluid
Intersecﬁing Angle ? | gr
Velocity of light | c 96(
Frequency of light . T f
Wavelength of light | a= % A= i—t

Table 6.3-1 Various properties in air and in a

fluid of refractive index N
\

Thus, if the beams are.iﬂtersecfed in a fluid of refrac-
tiveAindeX;q and the angle between the beams ?' is mea-
sured in the fluid, the velocity, according to equation
(6.3-8) will be | |

. fDAJ fD)\

- - (6.3-11)
2sinﬁg 2q§inﬂ%

v

The "Interference Fringe"'" Model of the Dual Beam lMode

The dual beam mode is also termed as "fringe" mode

because the interference of the two light beams forms

a fringe.pattern-at the intersection volume. This model
for analysing laser Doppler signals was first froposed by
Rudd (1969). Fig. 6.3-4 shows two coherent light beams
having plane wave fronts intersecting at an-angle ? . Where

the path lengths travelled by the two beams are equal, or
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~differ by a whole number'of’anGlengths, the intensities
of the beams will add constructively to give a bright

fringe. While a difference of path length by % of a

\/-\/ \/_\/ \/

NS

Fig. 6.354 Fringe pattern of beam intersection

wavelength will add destructively to give a dark fringe.
An interference fringe pattern which.consiSts of a series
of bright and dark fringes is formed in the intersection
region. Frcm‘the above diagram, it is oﬁ&ious that the
‘following relationship between fringe spacing Ax and
_wavelength of ‘the light A can be obtained.

~ sxsing = (6.3-12)

-

S Pt

A particie’which moves across the fringe pattern with a

velocity v will scatter light whose intensity will vary

at a frequency

' 2vsin§ c 1%)
h=ax = TR - (63
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The relationship between the signal'frequeﬂcy and the
particle velocity obtained is exactly identical to that
obtained by a Doppler consideration.

In this‘experimental work, the dual beam mode of
optical arrangement was chosen based on the following
reasons:- |

(1) Itlis relatively easier to set up the optical

system as the laser, the optical unit and the
photomultipiier are mounted on the same optical
axis; the changes required in measuring differ-

ent directions involves only minimal re-arrangement
of the components.

(2) Since the beat frequency is independénf of the

~ direction of detgction, the position of the
photomultiplier does not require to be precise;
good signals can be obtained over a relatively
wide angle of detection.

6.3.4 Methods for Frequency Signal Processing

A typical signal from the photomultiplier consists
“of a low frequency signal which corresponds to the passage
of particles across the beams (pedéstal), a hiéh frequency
signal related to the velocity of individuai‘particles
passing through the beam intersection region, and a wide
band of noise. A signal processing device is therefore
required to extract the velocity-related high frequency
signal, measure its mean value and obtain the informatioﬁ
about fluctuation, i.e., r.m.s. value,

There are three basic types of signal processing
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technique:- frequency Spéctrum;analysis, counting and
frequency tracking.

Frequency spectrum analysis is the simplest approach
| to Doppler signai processing. - It was used for most of the
early work on L.D.A. For most analysers, a spectrum of
probability density function of Doppler frequency can be‘
plotted against the frequency. In such a distribution,
vthe most p:obable frequency corresponds approximately to
the mean value of Doppler frequency and therefore, to the
mean velocity; the width of the spectrum is related to the
turbulent~inteﬁsity. The major shortcomings of frequenéy
‘analysis are (i),instantaneous velocity and energy spectrunm
cannot be obtained; (ii}.processing the sig£a1 is time
vconsuming and often lacking in ﬁrecision.

A counter measures the time taken for a particle to
éross a pre-determined numbeis of fringes. The velocity
can then be calculated from the nuﬁﬁers of fringes, fringe
spacing and the time taken. The counting technique cannof
méasure thefoséillations gndﬂenergy spectra readily. Hqge |
Méver, counting-procédures are not greatly‘influenéed by
changes in particle concentration and work well with high
dropout values caused by a highly diécontinﬁéus signél._

Frequency tracking devices '1ock'on' to the Doppler
signal from the photormltiplier and yield an analogue.
Qutput voltage proportional to the instanténeous.fluid
velocity.' The block diagram of a typical frequency
tracker is shown in#Fig.'6.3-5. The incoming Dopplef

signal, at a frequency which varies with time, is mixed
.
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with a output signal from a voitage confrolled oscillator
(V.C.0.). "The output signal at a difference frequency is
narrow-band filtered by an intermediate filter (I.F.) to
reﬁove as much noise as possible. The signal from the

I.F. filter is then passed through a limiter which converts
the signal to a square wave form and then fed into a fre-
quency"diécriminator. This provides a d.c. output propor-
tional to the I.F. frequency deviation from a fixéd centre
vaiue fo « After suitable smoothing, with a time constant
T, » and d.c. amplification, the resulting error voltage

v is fed back to the control input of the V.C.0. The

- result of the feedback is that, provided a suitable value

| of loop gain is chosen, the oscillator frequency tracks
that of the Doppler signal, maintaining a-nearly constant
difference equal to fo . Thus the #oltage v provides an
électrical analogue of 'insténtaneous' Doppler frequency

which is in fturn proportional to the flow velocity.

Input f I.F.

— Mixer —0 filter Limiter

Frequency

)

(T,))

discriminator

CR~-integrator

Output

Fig. 6.3-5 Block diagram of frequency tracker

147




The distinct advantage of frequency trackers over
other signal processing devices is that the mean and r.m.s.
quantities.can be read out directly on the appropriate
mefers. Frequency trackers are particularly suitable for
application with flows where high particle concentration
is presenf. In this experimental study of confined water
jet mixing, the high particle concentretion in unseeded tap
water enables the use of a frequency tracker which is cheap-
er than a counter;. R

6.3.5 Signal Quality

As the measurement of fluid velocity in a flow depends
’on the scattered light signal received by the photomulti-
plier, a good signal is thus essential for accurate velocity
measurement. Since the scattered light signal is produced
by‘the scattering particles suspended in the flow, the
qualities of scatteringﬁbarticles, such as particle sigze,
particle concentration will certainly influence the signal
quality and thus determine the accuracy of the velocity
being measured. . |

The Doppler signal will also contain a ceftain amount
of noise, parfly from the optical system and ?éftly-from
the electrenics. By careful design of the ‘electronics
and optical system, the noise level can be reduced but
canmot be eliminated totally. A quantity called signal-
to-noise ratio is used to define the relative strength of
the Doppler.signal to the noise signal. Three factors

which affect the signal quality are considered.

The Particle Size All measurements of fluid velocity by
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laser Doppler anemometry are attempted by measuring the
velocity of the particles suspended in the flow. Conse-
quently, the ability of the particles to follow the flow
is of great importance. Durst, Melling and Whitelaw (1976)
studied the criteria of particle size capable of following
turbulentAflows. They suggested that for water flows,
particles of diameter between gpm to 1§um will be able to
respond to a turbulent frequencies of 1 kHz to 10 kHz;
for air floWs, pafficles of diameter near yum are fequired
to give the same turbulent response. This variation is
~due to the difference in viscosities of air and water as
Qell as the particle to fiuid density ratio. |
Besides considering the ability to follow the flow,
to obtain an optimum signal, appropriate matching of par-
ticle size with fringe spacing is desirable. An ideal
Doppler signal (Fig. 6.3-6(a) ) produced by a particle
whose diameter is of the order of.half the fringe spacing
34x, contains a low frequency 'envelope' or 'pedestal'
related to the Gaussian distribution of the light beam,
"plus a high frequency frihge crossing signal which contains
information oh the particle velocity. The signél has a

depth of modulation equal to the amplitude of the pedestal.

(b) (o)

Fig. 6.3-6 Signals from various particle~sizes
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However, for a particle of diameter greater than 3ax, the
total light scattered will be greater but the depth of
modulation of the signal as it passes thfough the fringes
will be less as shown in Fig. 6.3-6(b). If the particle
diameter is less than $Ax, the total light scattered will
be reduced, causing a reduction in the total signal level
(Fig. 6.3~6(c) ). The result of variation in particle
size, which is bound to exist, will be a variation in the
amplitude of-the DopplerAsignal. It is obvious that if
the majority of the particles in the fluid have diameters
in fhe order of half fringe spacing; then better boppler
signal will be obtained. |

According to the interference fringe model, the fringe
spacing Ax given by equétion (6.3-12) can be re-written as

AN . .
AX = A in air,

g
2si >

N

ax = ZQSin%LW

in a liquid with refractive
index q and ?' measured in
the liquid. '

~Thus, the appropriate particle size for a specific fluid
should be matched with its refractive index N and the beam

intersection angle ?' in order to give an optimal signal.

Particle Concentration An ideal situation for laser Doppler

anemometry would be one in which there are sufficient par-
ticles in the flow so that at any time there is one particle

in the measuring volume. TFig. 6.3-7(a) shows such an ideal
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signal., If there are two partiéles in the control

volume, the two particles will interfere constructively

if thevparticles~are in phaée. The resulting signal will
havé a larger amplitude due to the extra light scatteréd

as shown in Fig. 6.3-7(b). If the particles are 180° out

- of phase, destructive interference will occur and there
will be no signal modulation since light will be continuous-
ly scattered (Fig.6.3-7(c) ). In the case of a natural
system, randbm particle separations will yield a signal

as shown in Fig.6.3-7(d). The modulétion depth is likely

to be reduced at large particle concentration.

(c)

Fig. 6.3-7 Signals from various particle concentration

Durst, Melling and Whitelaw (1976) pointed out that
smaller, Weék scatterers may be present at a rather high
concenﬁfation without causing serious defect, except that

an excessive concentration give a high d.c. signal compo-
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‘nent; but the concentration of larger particles should be
kept to a minimum even if they do not contribute strong
Doppler signals. Wang and Snyder (1974) also discovered
that the signal-to-noise ratio from the>anemometer will .
deteriorate at high particle concentration. When the
Doppler signal is processed_by a frequency tracker, the
lowest limit sf particle concentration will be the one
sufficient to maintain at least one particle in the
scattering volume for most of the time. According to
Durst, Méllingrand Whitelaw (1976), the maximum concen-
tration at which a frings,mode optical system would be
employed is about 100 particles simultaneously present
in the scattering region.- |

Light-collecting Systemv It has been shown by Durst,

Melling and Whitelaw (1976) that, for a dual beam anemome-
ter; the signal quality will improve if the light intensi-
ties of the two beams are matched. Durst (1972) showed
that if the photon shot noise is the predbminant noise

contribution, the signal-to-noise ratio decreases with

increasing angle betwsen the beams as well as with increas
ing angle of detection. A theoretical analysis sy Durst,
Melling and Whitelaw (1976) predicted that an increase in
detection aperture of the photomultiplier increases the
signal strength buf not necessary the signal-to-noise
ratio. All these results reveal that the light-collecting
system refresents an important‘ part of laser Doppler
anemometer and should be designed carefully in order to

achieve the optimal results of signal strength and signal-
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- to-noise ratio.

6.3.6 Freggency Shift

In the case of measuring highlyvturbulent flows or
the r.m.s. velocity with negligible mean velocity, a large
fluctuation of Doppler frequency prevents the use of the
frequency‘tracker as the piocessing technique. This is
becausé most frequency tracker can only follow frequency
fluctuation up to i70% of the mean frequency. However,
such difficulty canbbevovercome by using two beams of
different wavelength to intersect at the flow rather than
two beams of the same wavelength. The effect would be
to produce a fringe pattern moving across the measuring
volume instead of a stationary fringe pattern created by
two light beams.of same wavelength. Now, a particle with
zero mean velocity in the measuring volume with a moving
v fringe pattern would be equivalent fo a moving parficle
in the measuring volume with a stationary fringe patﬁerh.
The Dopplervfreqﬁency produced by a stationary particle
hand,a moving fringe will depend on the different frequency
5etween the two_beamé. If, however, a moving‘pgrticle is
present in a méving fringe pattern, the Doppler fredueﬁcy
will increase if the particle.and the fringe pattern are
moving in the opposite directions. Thus, it is obvious
that by créating a fringe pattern moving in the opposite
direction of the particle movement, the mean Doppler fre-
guency will increase and hence force thé fluc%uating

frequency to fall within the wdrking range of the frequency
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tracker.  The Doppler frequency with two incident beams
of unequal frequencies fi1 and fiZ is given by equation
(6.3-9) and reproduced as follow:

fa= 1.

T -
31~ Tio + jve (ki - Kiq) s

D

£i1.~ fi2 = fs is called the frequency shift.
To include a frequency shift in an optical systemn,
two Bragg cells are installed in the optical unit, so that
each beém passés through one cell. The Bragg cells are
driven by a driver which has several frequency settings.
At each of the shift setting, fs s thé frequency of one
“beam is increased by %fs and that of the other beam is
Teduced by'%fs . The frequenqy difference'of the beams
aftér passing through the Bragg cells is equal to the
frequency shift setting fs « The choice of fs is depend-
ent upon the turbulent intensity as well as the original

mean frequency. .

6.4 The Measurement of Mean and Fluctuating Velocities

Using L.D.A,

6.4.1 The Components of the Laser Dovnler Anemometer

The laser Doppler anemometer used in the present in-
vestigation consists of the following components:-
(i) A 10mW, He-Ne laser model Hughes 3225H-PCS with

power unit model 3599H-K;
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(ii) An integrated optical .unit, Type DISA 55L01;
(iii) A flow direction adapfer with dri&ér, Type DISA
551.02; | |
(iv) A photomultiplier Type DISA 55L10;
(v) Frequency tracking signal processing electronics
Type DISA55L. | -
The arrangement ofAthe optical components together
with, the mixing tube test section is shown diagrammatically

in Fig. 6.4-1,

flow direction
adapter -
l~ , : mixing tube

— /

——— .

——
- — P S

o ——

laser

= L‘——""‘Hw ‘

\\iragg photomultiplier
cells

f»integrated optical
uwnit
Fig.6.4-1 Opticalvarrangement of L.D.A.

The laser was diredtly mounted onto the optical unit sé
that any rotation of the optiéal unit for measuring differ-
ént véloéity components does not require re~alignment of
the laser. -The flow direction adapter which consists of
two Bragg celié and a frequency driver, was incorporated
into the optical unit so as to facilitate the measurement

of highly turbulent mixing region as well as the radial
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~and tangential r.m.s. velocitiés where the mean velocity
is negligible. The two laser beams were brought to cross
at the measuring point in fhe mixing tube by the convergent
" lens of the optical unit. The-photomultiplier waé placed
on the same optical bench ét the other side of the mixing
tube using the dual beam or 'fringe' mode of arrangement.
T6 ensure that the two laser beams can be brought to
cross at any point. in the mixing tube, appropriate adjust-
ing ﬁechanisms are required. The integrated optical unit
and the photomultiplier ﬁere mounted on an optical bench
via two adjuStable riders. The riders have fine adjusting
screws to move the optical unit and the photomultiplier in
the vertical and longitudinal directions of—the mixing tube.
‘The entire optiqal bench was supported by two supporting
mechanismsAfixed on the frame of the rig. EXach one of
theée mechanisms comprised aﬁ inverted 'V! base laid
parallel to the longitudinal axis of the mixing tube.
Along its apex a rack was cut so as to accommodate the
pinion of a crdss slide mounted on top of the base (see
hFig; 6.4-2). By turning the pinion head, the cross-
slide can be moved along the base in the 1ongitﬁdinal '
diréction of the mixing tube. TFixed on top'éf the cross-
slide'is.a thick plate with two 'V! grbove cut into it
running at right angles to the direction of travel of the
. cross-slide. A second slide (lateral slide) which held
the optical bench was mounted onto this groéved plate.

Fine adjustment of this lateral slide was made using

threaded link between the slide and a tapped block fixed

156
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Fig06¢4~2 The adjusting nechanism for dptiéal bench..

Il I Optical bench

S Il
-Optical {1 m ‘ adjusting mechanism

“bench \ ‘ | |
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~ Mixing tube | ' | : ///// Nozzle adjusting
. \\\\\\\;\ | ' /J//// mechanlsn

{fl Tl—.
I M

Fige 6.4-3 Plan,viéw of mikiﬁg tube and optical bench.
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to the 'V' grooved plate. The-mechanism thus provides
facilities .for the whole optical bench to be moved along
the mixing tube axis by rotéting the pinion head of the
' 1ongitudiﬁal cross-slide and across mixing tube Ey édjust—
ing the lateral slide. The overall.plan view of the adjust-
ment mechanism, optical bench and the mixing tube is shown
in Fig. 6.4-3. |

; The block diagram of the frequency tracking signal
| processing electronics used in this experiment is shown
in Fig. 6.4~4. The equipment is a standard package deve-
lqped by DISA ELEKTRONIK. The high voltage supply unit
provides a continuously adjustable D.C. voltage to the
‘photomultiplier."The phqfomultiplier received é Doppler
shifted light signal scattered by particlés from the
measuring volumé. The light signal has a sinusoidal
intensity variation with time. It has been shown by the
Winterference fringe" model proposed by Rudd (1969) that
the frequency of this intensity variation is equal to the
Doppler frequency of the scattered light (section 6.3-3).
" The duty of the photémultiplier is to transform the light
signal into an electrical signal without changing its -
frequency. The signal from the photomultiplier goes
first to a preamplifier where the signal level is raised
to a leveltwhich can be accepted by the tracker. The
preamplifiér also.contains the high pass and low pass
filters to remove the low fregquency pedestal and high
frequency noise from the Doppler signal. The signal is

then fed to the frequency tracker which produces an
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‘analogue voltage directly proportional to the instantaneous
Doppler frequency and hence of flow velocity, In order to
proVide statistical information on the mean and fluctua-
ting velocities thé output voltage from the tracker is fed
to a digital voltmeter for determining the mean velocity
| and to a fgm.s. voltmeter via a signal conditioner for
determining the r.m.s. vélocity. |

A photograph of the laser anemometer mounted on the
jet'pump test rig>is shown in Plate 6.4-1 and the signal
processing electronics is shown in Plate 6.4-2,

6.4.2 The Measurement of Three Orthogonal Velocity

Components in a Circular Mixing Tube

The three orthogonal components of velbcity in a
circular mixing tube to be measured are shown in Fig.
6e4-5.

: The following paragraphs are concerned with details
of thé geometrical set-up of the laser optics and the

necessary calculation procedures for evaluating the mean

and r.m.s. velocities in the three orthogohal directions,.

Pig. 6.4-5 The three orthogonal fluctuating wvelocities
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Plate 6.4-1 The laser Doppler anemometer mounted on the rig

Plate 6.4-2 The signal processing electronics
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The measurement of mean and fluctuating r.m.s. velocities

in the axial (longitudinal) direction  The flow in the

mixing,tubé is assumed to be axi ~symmetrical.The axial
cﬁmpoﬁent of velocity was measured in a horizontal plane
which cut through the axis of the mixing tube. Two hori-
zontal laser beams from the optical unit were brought to
meet'at any point on the plane so that the bisector of
the beam intersecting angle is perpendicular to the axis
of the mixing fube'(see Fig. 6.4~6). To ensure that the
measurement was taken at the correct plane, a probe was
inserted from the top of the mixing tube $o locate the
centre of the mixing tube., When the two laser beams
crossed exactly at the p;obe tip, the probe was removed
and the flow was left undisturbed when actual measurements
were taken. By moving the whole optical bench horizonta-

1ly at right angles to the mixihg tube axis, the measuring

‘poinﬁ was +then moved aWay from the centre such that measure-

ment at various locations of that particular measuring sec-

tion could thus be'achieved.;

: Incident
Measuring
plane

:Fig. 6.4-6 Measuring plane for U-velocity
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Owing to the refractive effect, the distancevtravell—
ed by the optical unit is not equal to the distance trave-
lled by thé measuring point. A relationship betwéen these
two movements is thus needed to be established. TFig. 6.4~7

illustrates the beam intersection for measuring the axial

velocity.

Lo,

" Pig. 6.4-7 Beam intersection for axial velocity
measurement

An incident beam, which hits the outer wall surface
at 01, if pasées through the wall into the water without
any refraction, will meet a symmetrical beam (not shown)
at A1 having a distanced1 from the outer wall surface.
However, due to the refractions in the perspéx wall and
wéter, the beams actually intersect at point A1', with a
distance d,' from the outer wall surface. If ia is the
incident anéle in air, fp is the refractive’angle in

perspex and T, is the refractive angle in water,_then
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BC1

d1tan i
a

it

. t
t tan Tyt (d1 - t)tan Ty ‘(6.4~1)

where B is a point on thé outer surface of the wall such
thath;A1B is a straight line perpendicular to the wall
surface, and t is the thickness of the wall.

(Similarly, if fhe optical unit is moved away from
the mixing tube by a distance a, the unrefracted beams
will meet at A, having a distance d, and the actual

refracted beams will meet Aé having a distance dé , then,
oo, ' ! )
d, tan i_ = t tan T + (a, - t)tan T, (6.4-2)
Subtracting equation (6.4-2) from equation (6.4-1),
t t
4 — - -
(d1 evdz)tan i, = (d1 d,)tan T, (6.4-3)

Since d, - d, is equal to the distance travelled by the
- | ’
optical unit, a, and d; - d2 is the distance travelled by

the intersecting point, a', equation (6.4-3) can be written

as

tan i

. _ .
al = a Tan rw | ) (6f4~4)

In most measurements, ia is relatively small and
depends on the focal length of the lens used in the opti-

cal unit. Tor a 300mm focal length and 50mm beam sepera-
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tion, .

.- 25
tan la = 350
icee, i = 4.,764°

Then i & a i = sin 1 : ~si
Whe i, nd‘rw re small, tan la, in 1a‘and tan r,=sin T .,

equation (6.4-4) can be approximated to

o sin ia
1,: ——e o bm
a'=a o34 T, afy (6.4-5)
- where. Nw is the refractive index of +he ‘water

Thié relafionship allows the relative position of the
measuring point to be calculated from the movement of the
optical unit and the refractive index ofvﬁater.

.The mean and r.m.s. velocities can then be calculated

by the following equations.

i o
U = 0 = 0} ) (6.4—"'6)
}qu sin rw 2 sin la

ﬁ,? - fr.m.s.A~
: T2 sin~ié~

(6.4-7)

e

Where fr n.s refers to the flqctuation about‘the mean

'frequency.

The measurement of r.m.s., fluctuating vélocity in the

tangential direction To measure the tangential r.m.s.

fluctuating velocity, the optical unit must rotate 90o
from the position used for axial velocity measurement.
The two laser beams which emerge from the optical unit

are now in a vertical plane at right angles to the axis
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of the mixing tube (Tig. 6.4-8). The optical unit is
adjusted vertically such that the beams intersect on the
horizontal diameter. By moving the optical bench along
its own axis, measurement can be made at any point on
the diameter. However, the distance travelled by the
optical unit is obviously different from that travelled
by the Measﬁrihg point due to thé refractions in perspex
and water, .

" TFig. 6.4-9 shows the beam intersection for such
measurement. The two laser beams, when brought to cross
at the éentre of the measuring section, pass straight
%hrough the perspex wall and into the water without any
change of direction as the beams are perpendioular to the
interface of the two media. However, when the optical
- unit is moved away from tﬂe mixing tube by a distance a,
the beams will not enter the pérspex wall at right angles.
Refractions then take places in the perspex wall as well
as in the water. The beams now intersect in the water atv
P! instead of P where the beams pass straight through
‘without any change of direction. OP represents the
distaﬁce travelled by the optical unit and OPi:fepresents
the distancé tra&elled by the measuring poihf. From
triangle APO, |

0P _ A0 A0

BN 1y sin(180° -ol) P
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measuring veloclty

measuring path -

‘Tig.6.4-8 Measuring path for tangential component.

R,

~ s
orr\\\w . N
P P o>

]

Pig.6.4-9 Beam intersection for tangential velocity
~ measurement,
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With AO=R_ and OP=a,

a _ Ro
sin ia T sinot

. . .. =1,a sind |
and | i, = sin (-ﬁ;-—~)» (6.4-8)

where of is the half angle of the beam intersection in air

which depends on the beam separation S, and focal length

b
f; of the lens used in the optical unit, i.e.,

0.558

Dy
1,

A = tan-1(

Considering the refraction at outer surface of the wall,

sin i
,_.___%;.:q
sin rp \p

From equation (6.4-8),

. Z1,a sindl - :
r. = sin” (&/———) (6.4-9)
p Mo %o . |

From triangle ABO,

R. R
sinr sin 1
oy p

: . i, - gine .
and p = sievlaaind) (6.4-10)
| o R
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Considering thevrefraction at the inner surface of the

wall,
s%n i nw
sin T qp
_ asn—=1,2a sind '
r, = sin (—;fﬁz—) : (6.4-11)

From triangles APO, ABO, and BP'O
/

£ AP = k- i
- ' ‘ z(AOB:lP-rp
and | d! ="z, + %BOP!, -
since | ‘%BOP' - XAOP - £A0B

&' =3+ (= 1) - (5, - 7) (6.4{12)

_Again, from friangle BP'0,.

- S R. R, -
v a' 4 - i
3 - - 3 1
Sin T, gin(180° - ) Sin AL
‘R. sin r .
ar - AT B (64m19)

sing'

The above equations (6.4-8) to (6.4~13) allow the distance
travelled by the measuring voint a' to be calculated from

the optical movement a, the outer and inner radii of the
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mixing tube R and R,, half angle of beam intersection
o and the refractive indices for perspex and water qp

and flw.
The r.m.s. fluctvating velocity ,lwfg can then be

calculated from

—
t I'.m.S.)\
,,W = qu TR - (6.4-14)

/
A short computer program has been written to calculate

the value of a'y, ' and K/(Zrlwsino('). The results of the
various quantities are tabulated in Table 6.4-1 and the’

listing of the program is given in Appendix B.S.

t d al ! _ A .
a (mn.) | a'(mm.)| o'(rad.) My Sin 2—————-—-—-—7\,185_1,10(,(111.)
1000 | 0.753 D. 092, T 0e 109 Qe 2392%-05
2. 000 14530 . 0. 032 . 0. 109 Ns 2925~ 05
3. 000" 2.316 0. 031 De 103 Ge 29 415-05
40 000 - 34116 0. 020 0. 107 0. 297=-03
5+ 000 3.930 0. 030 De 106 0. 2793-05
6. 000 - 4T 5T 0.079 |  0s105 0.3028=-0%
74000 5. 604 0. 073 D¢ 102 Qe 3054-05
3. 000 | 60464 0+ 077 D¢ 193 e 30%E- 90
9+ 000 " Te341- Qe 077 D102 Ne3118=05
“10. 000 34834 0076 0. 101 Qe 3145-05
11.000 S 9.144 0. 075 De 190 | 0e317E=05
12.000 10072 0. 07 4 Qe D7 Ne320E=05
13.000 11019 - 0.074 10e 097 0. 323E-05
14000 11234 0. 073 D¢ 097 | De32€L=05
15.000 12963 0. 072 Qe 096 | .0, 3299805
16+ 000 13973 0. 072 D« 075 Ce 3335=05
17000 14.993 0. 07 1 Qe 094 Ne3364-05
S18. 000 16 D44 | 0N.070 0. 093 | Q.340E-05
19000 17.112 06063 | 0.092 | 0e3438-05
20. 000 13.203 0. 069 0« 09 1 0. 347 5=05

Table 6.4-1 The various quah*bifies for calculating

the tangential velocity component.
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The measurement of r.m.s. fluctuating velocity in the

radial direction It is relatively difficult to make

: measurement in the radial direction of a circular pipe.
| Fig. 6.4-10 illustrates that in order to measure'the radial
velocity, the two beam must cross in such a way that the
bisector of the beam interSecting angle is perpendicular
to the'radial direction. To fulfill this requirement, the
optic¢al axis has to be inclined at an angle to the horizon-
tal axis. This poses an extremely difficult problem to
the alighment of the laser and optical unit. To overcome
such difficulty, two perspex blocks with cylindrical inner
surfaces identical to the mixing tube wall and flat square
outer surfaces were constructed and locked én top of the
mixing tube. A cross section with a circular inner surface
- but square external surfaces was thﬁs formed. The blocks
Qeré locked onto the mixing fube by two screws and a join~
ing plate tightened at the bottom surfaces as shwon in Fig.
6.4-11. |
To measuré the raidal r.m.s. velocity, the optical
vﬁnit is arranged in a similar way to that for measuring
the tangentialhvalﬁe. The two laser beams emié%eé from
the optical unit are in the vertical plane éérpendicular
to the akis of the mixing tube. The two beams are synme-
trically inclined to a horigzontal axis. When the two beams
are brought to cross at the centre of the measuring section,
refraction takes place at the outer surface of the perspex

cross‘section but not at the inner surface as they pass
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,;Figo 604""10

SeX
31.756

Fig.6.4-11 Cross-section for radial velocity

measurenent.
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perpendicular through it. (see Fig. 6.4-12(a)). The
incident angle from the air to the perspex ia is equal to
the half angle of the beam intersection in air, i.e.,

. . _.1 Oossb ’
J__a = o( = tan ( fL ) (6-4—-15)

The refractive angle in the perSpexfrp can be obtained by

' -1,8in i
r, = sin” ' (—=) (6.4-16)
v Np v
The distance from the incident point to the symmetrical
axis, s, can be calculated from a, the distance from the
incident face to the centre of the mixing tube, and Ty
the refractive angle in the perspex, -

s = a tan r, _ (6.4-17)

- If the centre of the cross-section is considered as the
origin of x - y coordinates, the inner surface of the

mixing tube can then be described by an egquation

x~ +y = R, T (6.4-18)

where Ri is the internal radius of the mixing tube.

By moving the optical unit vertically upwards a

distance h, the beams will meet the incident face of the
cross-section -at A (-a, h + s) and B (-a, h - s) (see Fig.

' 6.4-12(b)). After fravelling in the perspex along AC and
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Fige6.4-12(b) Beam intersection for radial
o velocity measurement.
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BD, the two beams cross in the water at P. Equations of

the straight lines AC and BD are given by:

AC: y -h -8 = -tan rp(x + a) (6.4-19)

"BD:_ y-h+s tan rp(x + a) (6.4-20)

To obtain the coordinates of C and D, equations
(6.4-19) and (6.4;20) are solved with equation (6.4-18)
respectively. Assuming that the coordinates of C and D
are‘(xc, yc) and (XD, yD), the inclined angles of .0C and
0D with the horizontal radius, d1 and o, can then be

obtained by

!

-1 Yc
oy = ten (=,

f

dé" tanf1(:§§

The incident angles at C and D are then given by ip1 and
hip2 as follows:- )

*p D

The refractive angles at C and D, i;e., iw1 and T, are

related to their resPéctive incident angles and the re-

fractive indices of perspex and water
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i‘w1 = sin 1(3-—\—333‘_11 lp1) = sin (%Sin(d1 - .rp))'
Tyo = sin"1(2?31n(d2 + T ))

The slopes of CP and DP, m, and m,, are then given as

follows

It

my -tan(d1 rw1)

i}

m, tan(:t'W2 - 0(2)

The equations of CP and DP can then be written as

It

CP:  y - yg = -tan(d, -'rw1)(x - Xg) (6.4221)

DP: Y = ¥p = 'tan(r'r2 - dz)(x - xp) (6.4-22)

The coordinates of P(XP, yP) can then be obtained by
“solving equations (6.4-21) and (6.4-22), i.e.,

Vo - ¥p + xptan(r,, -ol,) + xgtan(ly - r4)
XP:: - " N
tan(x, = olp) + tan(ely - )

(6.4-23A)

¥p = Vg - ban(y - xyy) (xp - Xg)

The distance OP can then be calculated from Xp and Ip by

2 2 o
0P = [xp + ¥p (6.4-23B)
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The angle of beams intersection qﬂ can be calculated from

LY

m1 and m, as follow

m, - m
2 1
T )

-1
¢' ;.40}@ = tan” (7= o (6.4-24)

A computer program was writfen to calculate the
disfance OP and the beaﬁ intersecting angle ¢' at various
~values of h. It has also been proved that OP and the |
biséctor of‘CP and DP are perpendiéular to each other as
the product of their slopes is equal to -1 ét various
values of h. Thus, by raising or'lowering the opfical
unit vertically from its central position, the effect of
measuring the radial component can be achieved. The
position of the measuring point can be calculated from
 equation (6.4~23). The r.m.s. fluctuating velocity ;TE

is given by

:v,"z — fI‘.m.S. )\
= - _ﬂ
Z?W“31n 5

(6.4-25)

The results of various quantities are tabulated in
Table 6.4~2 and the listing of the computer program is
given in Appendix B.6.

6.4.3 Experimental Procedure

The step by step procedure of setting up the DISA
55L laser Doppler anemometer is given in detail invfhe
_ DISA manual. The setting and tunning of the DISA 55530

signal processor should follow the manufacturer's operation
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‘manual. During the measurment, an oscilloscope was used
to monitor the Doppler signél so that the frequency could
be estimated. The frequency range on the tracker was then
set to include the Doppler frequency in the recommended
region of the frequeﬁcy meter. |

6.4.4 The Limitation of L.D.A., and Design Criteria of

the Optical Components

The inlet velocity ratios of the primary jet to the
secondary entraihed flow used for the present study are
3,72 and 4.67 (see Table 6.5-1). Higher inlet velocity
ratios were attempted but the tracker failed to lock o the
rsignal, presumably owing to the following reasons: (i)
high turbulent intensity, and (ii) high velocity gradient.
However, the use of frequency shift technique imprbved the
tracker's performance for high turbulent intensity but
failed to solve the problem of high velocity gradient. It
is thus believed that the high velocity gradient which
resulted from the high inlet velocity ratio, plays an
important part in preventing the tracker to function
"normally. The limitation of measuring high velocity
gradient flow is due to the finite size of thé”ﬂeasuring
volume., = A typical measuring volume formed 5y two inter-
secting beams is of ellipsoid shape as shown in Fig. 6.4-13.
The particles traversing across the measuring volume have
a range of mean velocities. This wili result in different
Doppler frequency shifts in the light emitted from different

ﬁarts of the measuring volume.
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Fig.6.4~13 Typical measuring volume.

' Such 1imitatibn can be improved, theoretically, by
(1) ar:énging the optical system withva shorter dimension
of the measuring volume along the direction of the velocity
gradient; or (ii) reducing the size of the measuring volume.
Method (i) cannot be achieved in a pipe flow owing to the
refracfibn at the pipe surface. Method (ii) can be accom-
‘plished by using lens of shorter focal length in the opti-
cal unit. However, a shorter focal length will produce a
»bigger beam intersecting angle, and subsequently reduce
the signal strength and the signal-to-noise ratio as
pointed out by Durst,'Melling“and Whitelaw (1976). The
“increase of beém intérsectiﬁg angle also limits the maxi-
mal velocity which can be measured by the tracker as most
trackers can work up to a specific maximum freguency. By
examining the equation relating the velocity and Doppler
frequency,

fD"

U =
.»2Qsin§

fD is limited to a maximum value which can be handled by
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the tracker. The bigger the angle ¢¢', the smaller will be
the U  which can be measured. Such'a situation is even
worse in the case of measuring high turbulent flow vhere
the frequency shift technique is necessary. In this case,

the maximum velocity can be measured is. given by

- LA

(£
i P
! | ZqSan
which is 1ess than the case without frequency shift fs.
The focal_length of the optical unit also determines
the fringe spacing. According to eguation (6.3-12), the

‘fringe spacing Ax is related to A, q and qﬂ as follow:

ax = —2

ZQSin%%

Since A and ﬂyare constants, Ax is inversely proportional
to the beam intersecting angle ?'. A shorter focél length
will produce albigger ?' and thus create a fringe pattern
of smaller fringe spacing. - It has been pointed out in
héection 6.3.5 that in order to give an optimum signal, the
majority of the particles should have dismeters in the
order of half fringe spacing.~ A reduction iﬁ focal length
will feQuire smaller suspended particles. It can thus be
concluded that the choice of the focal 1eﬁgth is determined
by the maximum velocity to be measured and the capability
to control the suspended particle sigze.

In the present measurement, a lens of BOOmm,fbcal

length was used in the optical unit. With a highest
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frequency limit of 15MHz provided by the DISA 55135 tracker,
the maximum velocity range without using frequency shift
was 57.15 m/s. This velocity range would be considerably
reduced by the use of frequency shift technique. Different
fringe patterns‘were produced for measuring different com-
ponents in the mixihg tube. The fringe spacing was B.Q/Lm
for the axiél velocity measuremeht; 4.27/Lm for the radial
direction measurement and was varied from 2.86/um.to 3.48pm
for the tangential direction measurement. To ensure that
the particles size matched with the fringe spacing, a 10/Lm
filter was installed to filter the larger particles and the
éignal was found to improve significantly. |
The criteria of selecting the light collecting optics,
i.e., the close-up lens in front of the photomultiplier
-objective, depends on the;pin—hole size and the focal
length of the optical unit's iens. When a laser beam}of
wavelength N is focused by a lens of focal length fL the
focused beam Dy is given by
4XF
D o=

1 WDO

Lo o (é.4~26)

where D, is the diameter of the unfocused beam which
contains 86.5% df the‘emitted light.

‘If is normally arranged ip such a way that the dia-
meter of the measuring control volume‘observed by the
photomultiplier is equal to D1. By using a fixed pinhole
of diameterpr, and a fixed distance from the collecting

lens to the pinhole dp. The following relationship can

182



- be obtained.

. |
1-79- = 2 C (6.4-27)
1

where fc is the focal length of the collecting lens.
Substituting equation (6.4-26) into equation (6.4-27)

DD

L

-

T, =1 +
‘ Thus; the‘focai length of the collecting lens fc
‘should be matched with the focal length of the lens used
in the optical unit fL accordingly in order_that an
appropriate measuring'volume is observed. Such matching
is essential for ensuring the outer»region of the fringe
?attern with poor signal quaiity does not contribute to

the measurements.

6.5 Results and Discussion

" 6.5.,1 IDA Txperimental Results

The measufements of mean and fluctuating.€élocities
were made in the uniform mixing tube described in section
6.2.2 'Thé geometries and flow conditions are given in
Table 6;5f1. A11 measurements were made using the DISA
551, signal processor described in section 6.4.1.v In fhe
case of measuring centre-line axial mean and fluctuating
velocities for radius ratio of 0.33%4, a TSI tracker model

1090 was also used to obtain results for comparison with
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those obtained from the DISA tracker. TFrequency shifting
was employed in most cases except for the potential core

region near to the jet exit where turbulent intensity was

low.
rn/rt vUn/UeA dt(mm) dn(mm) Un(m/s) Ue(m/s)
0.334 3,72 38 12,7 3.05  0.82

where e refers to the entrained value at inlet

Table 6.5-1 Geometrical and flow conditions of measurements

Fig. 6.5-1 and 6.5-2 show the mean and r.m.s velocities
along the axis of the mixing tube for radius ratio of 0.3%3%4 .
and velocity ratio of 3.72. The results have been non-
dimensionalized by nozzle exit velocity and are plotted
against the distance from the nozzle exit. The axial mean
and fluctuating velocities obtained from both trackers
agree closely with one another. |

Pig. 6.5-3 and 6.5-4 show the measured axial mean and
fluctuating velocities along the axis of mixing tube for
radius ratio 0.171 and inlet velocity ratio 4.67. The
above figures reveal that the centre-line velocity begins
to decay at a distance of around 4 nozzle diameters down-
stream of the nozzle'exit plane. Both the longitudinal
and lateral r.m.s. velocities along the centre-line
increaée rapidly to a maximum at around 10 nozzle diame-

ters and then aecreasé gradually. Although the values of
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aﬁialvand radial r.m.s. velocities are close to each other:
at the nozzle exit, the axial value increases faster'fhan
the radial value and shows the greatest difference ét
their peak locations. The difference is more acute in
the case of the mixing tube with a smaller radiuvs ratio.

Fig. 6.5-5 and;6.5~6 show the measured mean velocity
profiles at_various sections dowﬁstream of the nozzle
exit for the two cases investigated. The superimposed
curves give an exceilent qualitative description of the
confined jet mixing.

Fig. 6.5-7 and 6.5-8 show the measured T.m.s. veloci~
.ties profiles at the axial, tangential and radial direc-
tions. These curves reveal many important characteristics
of oonfined Jet mixing. In all cases, the peak values
can be observed at a radiél positionfcorre5ponding to the
nozzle wall position. The high peak at the beginning of
ofvthe‘mixing tube suggests that turbulent velocities are
high at a thin zone separating the primary and secondary
streams. As flow develops downstream, the high tﬁrbulent
“zone spreads and grows in width which reflects that the
mixing between primary and secondary étreams iS'spreading
towards thé wall and the axis., Purther downstrean,
turbulent velocity profiles become flat and their
levels reduce which suggest that the mixing process
is diminishing.

Comparing the profiles of the three r.m.s. velocities,
it can be observed that the absolute level of the three

compdnents are different especially in the strongly
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mixing regions. The confined jet mixing is thus not an
A isotropic turbulent flow. A .

The mean and r.m.s. velocities at nozzle exit and

- secondary inlet were also measured. Their values were
found to be closely uniform. The primary and secondaryb
~inlet k values were then calculated from the r.m.S.

velocities. The resulfs are tabulated in Table 6.5-2.

/Ty U, U, X, k,
0.334 3.05 . 0.82 0.00486  0.0223
0.171 5.72 1.22 0.00697  0.0670

Tablé-6.5-2 Inlet conditions of mixing tube

- 6.5.2 Comparison of IDA Measurement with Prediction

The computer program for uniform diameter mixing
tube was run for the geometrical and fiow conditions
used for the LDA measurement. The inlet values given in
-Table 6.5-2 were used as boﬁﬁéary conditions for the
computer prediétion.v Inlet length scales weré assumed.
to be 0.015%and 0.0085 of the mixing tube radius for the
12, fmm and 6.5mm nozzles respectively. The calculation
was perférméd up to 8 diameters of the mixing tube with a
18 x 14 grid. |

Fig. 6.5-9 and 6.5-10 show the comparison of the mean
| velocity and turbulent kihetic energy along the axisvbf
the mixing tube. The agreement between the measurement

See Appendv A.9
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and prediction is excellent in -the case of 0.334 radius
ratio except for the k valué at the'region beyond 3 mixing
tube diameters where a difference of 10 to 15% is observed.
- In the case of 0.171 radius ratio, the égreemént éan be
considered as satisfactory where measurement and prediction
confirm qualitatively with an average difference of 15%.‘
In Fig. 6.5-11 and 6.5-12, comparisons of measured and
predicted #elocity profiles at various sections in the
mixing tube are shown. Again, the agreement for the 0.334
radius ratio mixing tube is excellent, whereas for the case
of 0.171 radiué ratio, the predicted velocity profiles are
éomewhat 10% to 15% higher than the measured profiles.
However, the shapes of thg profiles agree ciosely with
each other, |

Fig. 6.5-15 and 6.5-14 show the comparisons of measured
and‘predicted k profiles. Thé results have beeh non-dimen-
sionalized by Un2?~ The agreement between the prediction
-and measurement is fairly good for 0.334 radius ratio.
For the 0.171 radius ratio mixing tube, the predicted
‘Yalues are slighﬁly higher»than the measured values but
it can still be considered as satisfactory especially -
when the éhgpes of the profiles are concerned.

6.5.3 Discussion

The measurements of mean and fluctuating velocities
in confined jet mixing have been successfully carried out
by a laser Doppler anemometer. The measurements of axial
aﬁd tangéntial components were obtained down fo.o4

radius from the-tube wall. However, measurement of the
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radial component could only be obtained up to 0.65
radius from the axis of the tube under the present geome-
trical arrangement. ‘Beyond that, it was extremely diffi- |
cult to align the photomultiplier so that the measuring
control volume could clearly be focused on the pinhole.
The possible error of measuring mean and flucfuating
velocities using IDA may be attributed to any of'the
following sources: (1) poor beam intersection, (2)
photomultiplier has not been correctly focused on the
measuring volume, (3) scattering particle Size has not
been maéched with the laser optics, (4) the density of
scaﬁtering particles is too low or too high, (5) mean
velocity gradient broadening, (6) transit-time broadening,
and (7) electronic noiSe, The first three types of error
can be eliminated by the proper set up of the optical sys-
temiand careful design of the components. Item (4) is
dependent on the water quality but‘fof ordinary tap water,
,performance has been found satisfactory. Errors due to
the gradient broadening andﬂfransit‘time broadening have
| “been discussed in detail by Melling and Whitelaw (1973).
According t§ the procedure outlined; these errd}s were
éstimated and found to be relatively small./‘Errors arising
from electronic noise are dependent upon the design of the
signa1~proéeSsing'electronics. By using fhe upper portion
of any frequency range of the tracker, such errors can be
reduced to}a minimum. For the DISA tracker, the eléctronic
noise level was at most-O.Z% of~£he mean output vpltage;

The accuracy of the measurement also depends on the
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elimination of noise and the dynamic response of the
tracker. To remove as much-noise as possible from the
input signal, a narrow bandwidth'setting of the I.F.

filtef in the tracker is necessary. However, such setting
will inevitably restrict the rate at which the tracker can -
follow a'changing input frequeﬁcy. Thus, an optimum
édjustment of the tracker is always a compromise between
dynamic response and satisfactory rejection of noise. In

a noisy turbulent'Signal, in order to eliminate noise
satisfactorily, a 16wer r.m.S. velocity measurement can

be expected due to the poor dynamic response of the tracker.
Thié explains logically that the measured k-profiles are
always lower than the predicted values at high turbulent
regioné. ' '

The agreeement between the prediction and measurement
is in general better in the case of 0.334 radivs ratio than
the‘case.of 0.171. This is expected because for the small-
er nozzle, it is necessary to have finer grids. However,
our predictions for both cases use the sameé 18 x 14 grid
“owing to the computer time ioad. By increasing 50% of
grid lines both radially and axially, the number of modes
will increaSe 125%. If the number of iteration remains
unchanged, the computer time has to be'increased by 125%.
The present jet mixing computer program with 18 x 14 grid
takes 15 minutes to run for 150 iterations on the IBM 370
computer. Any increase in the number of grids will be
uneconomical. A compromise between accuracy and economy

is always necessary. However, a study of the effect of

203



grid size are already given in section 5.1.2.

“

6.6 Measurement of Static Pressure in Mixing Tube and

Diffuser

Measurements of static pressure were carried out in
a test section consists of a mixing tube with internal
diameter 25mm and a‘short diffuser with 7b included
angles as described in section 6.2.2. The flow circuit
was operated as an ordinary jet pump described in section
6.2.1. Two nozzles of geometrical details given in section
6.2.2 were used in the test. The nozzle exit was position-
ed to coincide with the mixing tube inlet. Géometrical and
flow conditions for pressure measurement are tabulated in

Table 6.6-1. ,

a/a,  M(Q,/Q) ag(m)  dnlmm)  Q(n’/nr)
1 0.508 0.292 25 12.7 5.45
10.508 0,307 | 25 12,7  6.76
0.508 0.316 25 12,7 7.21
0.260 1.04 25 6.5  1.82
0.260 1.3 25 6.5 7 2.27
0.260  1.17 25 6.5 2,73

Table 6.6-1 Geometrical and flow conditions for'static

pressure testing

Static pressure tappings along the jet pump wall were
connected into a manifold. Two gauge pressure meters,one

for measuring positive gauge pressure of 0-1.6 bars and
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»the other for measuring negative gauge pressure of -1,0-0
bars were installed at the two ends of the manifoid. Such
arrangement provides facility for measuring static gauge
pressﬁre from -1.0 bér to 1.6 bars which\is well beyond
the pressure range of the testing jet pump.

| The results ofrﬁhe measurements are presented in Fig.
| 6.6-1 and 6.6-2. The static pressure along the jet pump
was plotted against the distance from the nozzle exit.
Both figures demonstrate that a higher flow ratio, which
‘was generated from -a higher primary flow rate, gives a
higher static pressure rise in the mixing tube. However,
_the static pressure rise in diffuser did not change much
with different flow-ratiQ§.

The computer progfams for mixing tube and diffuser
were run to predict two measurements, one for each diame-
- ter ratio. The predicted result are compared with the
measured values in Fig. 6.6-3 and 6.6-4. The static
pressures were non-dimensionalized by the dynamic head of
the nozzle exit velocity. The agreement between the
"measurement ana prediction ;ppears to be satiéfactory.

By now, the computer model has been tested and .
compared with the experimental data from Razinsky and
Brighton (197?), Sanger (1968a, 1968b) as well as the
present measurements. All these comparisons suggest
that the two equation k- € model is capable of predicting

pressure rise satisfactory in jet pump flows,.

205



sdung 3ep

9. a

oL =6 €804°0 = "p/°®

SuoTy UoT3eTIBA 2aINnssaxg 0T4e1S @vmﬁmmmz L=9°9 .Mﬁm

..rN. 0-

Y NGTG=VD ‘262:0= W v
44w 9E9='0'L0E0=IN A

M ITL=09lE0= o

(1nq) sunssaid 9bnpg

'y

206



‘oL =8 ‘9z°0 = *p/"p
¢dumg 9op SUOTY UOT4BRTIBA SInssald OT3BLS paIusesll g-9°9 _.m..n.m
: (

<J-1-0

>3

|
LIS
o

iy fWzg L=t ‘0L =W v
W fWLZT0 €L =W A

]
T
N
o

WY LWELTHO L= o

(ing)eunssaid sbnpo

207



Q.47
R-R
'iz'eunz ,
0-37
027
0 —Prediclion -
/ o Measurement
— : —— : —
0  2. 4 6 | 8 10 '_x/dt

Fig;‘6.6-3 Comparison of predicted and measured static

pressure along jet pump, dn/dt=0°508’ 6=7°.

P-PJZ“ o"oao
$pul
.08t
o o  ——Prediction
'10 Measurement
0 2% 4 ' :

| R—
6 8 10 x

| | > 4y
Comparison of predicted and measured static
pressure along jet pump, d /d =0.26, 6=7°,

- Tig. 6.6-4

208



CHAPTER 7

Al

APPLICATION OF THE COMPUTER MODEL FOR JET PUMP DESIGHN
The computer programs based on the two-equation k- g

turbulence model have successfully predicted the time-
mean variables as well as the turbulent kinetic energy
and turbulent shear stress throughout the flow field of
the typical jef pumps. The predicted values have been
compared with the a#ailable experimental data from various
sources, both for air jet mixing and water‘jet mixing.
The agreement in general is fairly good. The computer
model will accurately predict the performance of any
speéified Jjet pump and may be used to optimise the
geometry of a jet pump for a specific design fequirement.v
The following sections illusfrate the application of the
mixing tube and diffuser computer programs for such design

purposes.,

7.1 Performance Prediction of Any Prqposed Design

To predict the performance of any proposed jét pump
with the gepmetry completely specified, the miiing tube
program is run with a fixed primary flow rééé and a
variable secondary flow rate. The préssure and velocity
fields of the mixing tube are then obtained. The mean
velocity profile és well as the turbulent variables at
the exit plane of the mixing tube are then used as

the inlet boundary values for the diffuser program.
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The variation of static pressure along the entire‘jet pump
wall can thus be predicted for vari;us flow ratios. Tollow-
ing the prdcedure outlined in section 5.4.2, the total head
gained by the entrained fluid and the total head lost by
the primary fluid can be evaluated. The head ratio and
the efficiency can then be calcﬁlated and plotted against
flow ratio for the proposed jet pump.

To illustrate such application of the computer model,
a jet pump proﬁoséd by Sanger (1968a) was simulated by
the computer programs to predict its performance. The
predicted performance curves and the geometry of the pump
4are shown in Fig. 7.1-1. vThe result reveals that higher
flow ratio will give lower head ratio and vice versa.
This demonstrates that with a fixed primary flow rate,
higher secondary flow rate can only be achieved at the
expgnse of pressure head rise; on the other hand, it is
only.possible to pump less secéndary fluid to a higher
head. The optimum flow ratio corresponds to the maximum
efficiency point where the f}gw rate and head rise compro-
“mise to give the best performance; Such performance
predictions have two important applications ih‘design,

(i) they permit a study of the performance of any

new design; '
(ii) they allow assessment of the performance of any

existing pump when being used for off-design

conditions.
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Te2 Effect of Geometry on Jet Pump Performance

The optimization of jet pump design in the past has
largely depended on experimental testing and previous
empirical data. As a result, the optimum geometrical
configurations recommended by various workers differ
from one another presumably due to the large number of

geometrical variables involved and different flow condi-

- tions from which the results were derived. This can be

attributed to the iack of basic detailed study of fluid
flows in Jjet pumps. The present two equation k- £ model
fqr calculating turbulent flows in the mixing tube and
Idiffusér provides a powerful method for predicting the
Jet pump flows of various geometrical COnfigurafions.

In thié section, an attempt is made to demonstrate how’
the computer programs can be used to investigate‘the
inf}uence of various geometrical variables such as.
nozzie to mixing tube diameter ratio, mixing tube
length, nozzle position and diffuser included angles.
The primary flow rate is fixed at 1.77 x 10-3m3/s and-
“the flow ratio is assumed fo be 3.5. In most cases, the
primary flow rate is limited by the power source used to
‘generate the flow and the flow ratio is usually a design

requirement.

" 7.2.1 The Influence of Diameter Ratio

To study the effect of diameter ratio on jet pump

performance, the diameter of the mixing tube was kept
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~constant at 34.2mm and the nozéle d?ameter was varied to
give the diameter ratio changing from 0.2 to 0.4. With
a fixed primary flow rate Q1, a smaller diameter ratio
| produces a higher nozzle exit velocity. Other géometrical
dimensions were kept at constant.

| The predicted static pressure, expressed with reference
to the’sedondary inlet value together with the geometry
is shown in Fig. 7.2-1. The results reveal that for
diameter ratio lower than 0.35, adverse pressure gradienfs
are present in the mixing tube. The smaller the diameter
ratio, the higher the pressure rise in the mixing tube.
This may be seen as reflecting the degree of nmixing between
the primary and Secondary,flows since a smailer diameter
ratio produces a higher velocity ratio at the inlet of
the mixing tube for a fixed primary and secondary flow
fatés, and thus leads to moré vigorous mixing between the
two streams, For.a diameter ratio of 0.4 which corresponds
to a smaller velocity ratio at inlet, a favorable pressure
gradient in thé mixing tube is observed. This suggests
that the influénce of wali boundary layer due to friction
outweighs the influence of mixing between the streams in
determining the vpressure variation. The influence of
diameter ratio on pressure rise in the diffuser is insigni-
ficant compared with those in the mixing tube.

The results in Fig. 7.2-1 can be used to calculate

the head ratio and thus efficiency of the jet pumps using

the one-dimensional procedure outlined in section 5.4.2.
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The efficiency is plotted against the diameter ratio in
Fig. 7.2-2. A maximum effibiency 5& 27% is observed at

a diameter ratio of about 0.27. A smali increase or
decrease of diameter ratio will reduce the efficiency
considerably. To maintain an efficiency of beyond 20%
for this @articular geometry ané flow, +the nogzle diame-
ter should be selected so as to give a diameter ratio of
0.2 to 0.32. The diameter ratio is thus a very important
and a sensitive gebmetrical parameter for optimizing jet

pump performance.

7.2.2 The Influence of Mixing Tube Length

The study of the influence of mixing tube length on
Jjet pump performance was carried out by running the mixing
tube and diffuser programs with variable mixing tube length.
A nozzle of fixed diameter was used to give a diameter
ratio of 0.25 and a wvariable mixing tube length changing
from 3.08 to 7.69 diameters. The predicted static pressure
along the jet pump wall is p}ptted against the distance
“from the mixing tube inlet in Fig. 7.2-3. The results show
that with a shorter mixing tube, the static pféSsure rise
in the diffuser is smaller. This pressure Tise inéreases
with increase in mixing tube lengfh. »However, when the
mixing tube length reaches around 6.5 diameters, any fur-
| ther increase in length only improves the pressurelrise in
diffuser slightly and such rise may easily be offset by
the frictional loss in fhe mixing tube due to the extra

length. This effect is due to the féct that with a shorter
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Fig. T.2-2 The influence of diamelcej:-'r'atio on jet pump
 efficiency, 5/8,=1.05, 1,/d,=6449, 6=7,
| »:Ro=127mm,'Ri=165mm,.dt=34;2mm, 14=320mn.

216



*ol=6 ¢co°="p/s ¢Gze0="p/"p ‘usSueT aqnj SUTXTW. SNOTIEBA
ystma sdund gal Jo uwoTgeTIes axnegsaxd OT4e4s PO3OTPaXg mn.m..‘...m..n.m

7
Zl 0

1 1 3 i

9 7

L

-hw

T y - T P

g '

SE=W
s/ OixLr1=lo

]
v

-t
e
-t
-4
N
e 3

217



mixing tube, the mixing process is usually incomplete at
the diffuser inlet. The reiatively'steep velocity profile
at diffuser inlet gives less pressure rise due to more loss
in the diffuser. With a longer mixing tube, mixing will
~ almost be compléted at the diffuser inlet and consequently
the pressure rise iﬁ diffuser is expected to increase.
Fig. 7.2-4 shows the effiqiéncy as a function of
mixing tube length with flow conditions and other geome-
tric variables kept constant. The curve reveals that a
mixing tube length of about 5 to 7 diameters gives the
best pefformanbe with efficiency up to around 26%. Any
reductioh of mixing length will reduce the efficiency
considerably owing to the»inéomplete mixing. Mixing tube
length beyond 6 diameters is unnecessary as the efficiency
is diminishesr with the iﬁcrease in length due to fhe extra
frictional loss of the additional length.
Te2.3 Thé Influence of Diffuser Included Angles

The influence of diffuser included angles was examined
by varying the.included ang;é§ from 3° to 90 while keeping
“the area ratio of the diffuser and other pump geometries
and flow conditions unchanged. Tig. 7.2-5 shows the
variation in static pressure along the jet pump wall for
various diffuser inclﬁded angles., The‘7° diffﬁser seems
to'givé a maximum pressure rise. A decrease in included
7 angle to 50 causes the pressure at exit to drop considera-
bly owing to the frictiomal loss in the extra length
of the diffﬁser wall., On the other hand, an increase of

included angle to 9° reduces the diffuser exit pressure
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efficiency, d /8,=0.25, s/at=1.05; 8=7°,
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slightly; the increased pressure loss caused by the more
severe expansion outweighs the reduction in pressure loss
due to the shorter length of diffuser.

The influence of diffuser included angles on the over-
all jet pump performance is shown in Fig. 7.2-6. For this
particular geometry and flow condition, a 7° diffuser angle
gives an optimum efficiency of 26%. It is also observed
that the efficiency curve is rather flat which implies that
the influence of diffuser included angle on performance is
secondary. A shorter diffuser is always preferable as it
saves both material and space. However, 1if the included
angle is too large, there may be a danger of flow separa-
tion occurring in the diffuser- region which will cause
severe loss.

7*2.4 The Effect of Nozzle Exit to Mixing Throat Spacing

The effect of nozzle spacing on performance is related
to other geometries such as mixing tube length, diameter
ratio and secondary inlet contours of the jet pump. By
keeping all other geometrical variables as constants, and
varying the nozzle spacing over the range of 0.2 to 1.4
diameters of the mixing tube, the effect of nozzle posi-
tion on performance can be investigated. Fig. 7.2-7 shows
that the pressure in the mixing tube and diffuser is in
general lower for smaller nozzle spacing. This phenomenon
is expected because the decrease in annular area of the
secondary inlet (due to shorter nozzle spacing) will certain-
ly lower the static pressure in the region.

The overall performance cf jet pump with varying nozzle
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0-2¢
017 S ) )
CQ=177x1072 m¥/s
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0 R — : - e
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Fig. 7.2-6 The influence of diffuser included angle on jet
- pump efficiency, dn/dt=o"25’ S/dt=1‘05’ l_b/d,c=6.49.
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spacing is shown in Fig.<7.2~8; The efficiency of the jet.
pump increases from 1%% at a.posifion given by s/dt=o,3 to a
maximum of 26% at s/d% = 1,2. The efficiency then decays

- gradually witﬁ further increase of nozzle spaciné. The
result suggests that for this particular configuration

and flow condition, the mixing tube is hot long enough to
produce a'maximum pressure rise in the mixing tube and
‘therefore én increase in the spacing between nozzle outlet
and mixing tube inlet would improve the performance. Thisb
optimum position change when the jet pump configuration

and flow condiiions Vary.

7.3 An Optimizing Procedure for Jet Pump Désign

In the previous section, the individuel influence of
various geometricel variables was studied and discussed.
The present section attempts.to outline a procedure for
making use of the existing computer programs to generaté.
an optimum geometry of a jet pump to fulfill aFSpecified.
design requirement. In the usuval design practice, the
”primary flow rate Q1 is always 1imited by the independent
powver source‘which'generates the primary flow. ~ Another
design parameter usually given is the flow ratio M whiéh
together,wi_thQ1 determine the quantity of fluid can be
pumped per unit time. The following procedure is recommen-
ded to obtain the optimum geometry:

(i) Fix the mixing tube diameter and specify initial
values of mixing tube length, diffuser angle and

nozzle spacing; run the mixing tube and diffuser
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- Fige T.2-8 The;influence of nozzle spacing on jet pump
| efficiency, d /d,=0.3, 1,/d,=6.49, €=7°.
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programs with varying nozzles, diameters while keep-
ing other geometries constant to obtain the optimum
'4diaméter ratio corresponding to maximum head ratio.

(ii) Run the mixing tube and diffuser programs by using
the newly obtained optimum nozzle diameter for various
mixing tuEe lengths while kee?ing other geometfies
unchangéd, to obtain the optimum mixing tube length.

(iii) Run the programs with optimum diameter ratio and

| mixing tube length obtained in (i) and (ii) to

optimize the diffuser angle, keeping nozzle spacing

. unchanged. |

(iv) Optimize the nozzle spécing with other geometries
obtained in (i), (ii) and (ii). | |

(v) Using the optimum values of mixing tube length,
diffuser angle and nozzle spacing obtained in (ii)
(iii) and (iv), repeat step (i) to obtain a new
optimum diameter ratio which together with other
optimum geometrical variables suggest the best
geometry for the particular design fequirement.

An optimization example shows that for a primary flow |
rate of 1.77 x 10”3m3/s and a flow ratio of 3.5, thé follow-
ing optimum geometrical variables were obtaihed: dn/dﬁ =

0.27, 1./d, = 5.8, g= 7° and s/dy = 1.25.
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CHAPTER 8

-

CONCLUSIONS & SUGGESTIONS FOR FUTURE RESEARCH

8.1 Conclusions

The two-equation k- &€ model of turbulence together
with a finite diffefence procedure for solving pressure-
velocity difectly have béén succéssfully applied to
predict turbulent mixing in jet pumps. The predicted
time-mean velocity,SStatic Pressure, turbulent kinetic
energy and turbulent shear stresses in the mixing region
have been compared with the existing data from various
léources as well as the author's owﬁ measurements. The
‘comparisons in general show good agreements which suggest
that the two-equation k- ¢ model of turbulence is competent
enough to predict turbuleht flows in jet pumps.

 The superiority of the présent theoretical approach
"~ is its generality in célculating turbulent flows by
solving the elliptic partial differential equations which
describe the flow mathematigglly. This approachvéontrasts
“with the earlier ones which were based oﬁ empirical results
and treated the various regions separately. The present
method solves the same set 6f equations for various flow
regions with different boundary conditions without using
empirical coefficients derived from other jet.pump testing
. or free jet data. |

Measurements of time—meaﬁ velocity and r.m.s. fluctua-
ting velocities in three orthogonal directions in a mixing

tube with water as working fluid were carried out success-

227



fully using a laser Doppler anemometer. The data provides’
first hand information of r.m.S. velocities in confined

jet mixing which is lacking in the existing literature..
Difficulties in measuring radial and tangential fluctuating
velocities are discussed. Methods of calculating measuring
positions in pipe flow from laser beams configuration and
pipevgeometfy have been devised; The measured values
compare favourably with the computer predicted results.

The two‘computervprograms, one for jet mixing in typi-
cal uniform bore mixing tube with bellmouth secondary
inlet aﬁd the other for turbulent flow in conical diffuser,
»were used successively to predict the static pressure rise
in typical jet pumps. The head ratio and efficiency were
calculated from the predicted static pressure rise and
flow ratio via a one-dimeﬁsional method normally employed
;n*jet punip analysis. The prédicted performance curves
show an excellent agreement with test results although
the predicted efficiency is slightly higher than measured.

The prediction also confirms the pfevious experimental
" studies that the efficiency.of conventional jef pumps is
relatively low and hardly ever exceeds 40%. THis is due
to the fact that the pumping effect is achieved wholly
through turbulent mixing between the fluid streams.

Unlike other mechanical puaﬁing devices which suffer
mainly from hydraulic loss due to friction, the flow in
a jet pump encounters both frictional loss élong the
wall and a}mixing loss between the primafy and secondary

streams. The mixing loss, which can be identified with

228



the turbulent shear stress at the qixing region, is pro-
portional to the mean velocity gradient and the turbulent
kinetic energy, according to the present turbulence mocdel.
To achieve the pumping effect, the turbulent mixing should
be maintained at a certain level. This will result in
the relatively higﬁ level of turbulent kinetic energy in
the mixing_region. The amount df loss due to turbulent
mixing is always much more significant than the frictional
- loss in most jet'pﬁmp flows. As a result of this high
mixing loss, the efficiency of a jet pump is always rela-
tively low. It is possible to reduce the mixing loss by
Vreducing the mean velocity gradient or the turbulent
kinetic energy in the mixihg region. However, such a
situation can-only be created by increasing the flow

ratio and this will lead fo an increase in the ffictional
loss. An thimum design should achieve a minimum total
ehergy loss, i.e., the best compromise between mixing

loss and wall frictional loss.

It has been.demonstrate@_that the programs can be
“"used both to predict the performance of any pfoposed
design of = jet pump and to optimize any geoﬁetrical
variable uhder'SPecific flow conditions. Systematic
repetition of the procedure will lead to an optimum
overall geometry,~ Unlike the previous design procedures
which rély‘largely on empirical test results and are dways
limitedto a certain range of operation, the presént compu~
ter programs provide a powerful tool for designer to

obtain optimum geometry without going through actual
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pump manufacture and testing. .

8.2 Suggestions for Furthef'ReSearch

The present computer model, which successfully predicts
all the possible flow regions in conventional jet pumps
com?rising a bellmouth secondary inlet, a uniform bore
mixing tube aﬁd a conical diffuser, may also be used to
study flow separation and recirculation in the‘mixing tube
and diffuser so that an improved design can be proposed.
to avoid flow separation which normally causes large
_1osses.- Owing to their generality, there is a great
potential to extend the present computer programs to
predict and study many other flow problems associated
with turbulent mixing.

The mixing tube program-in its present structure can -
easily be modified to predict flow in a non-uniform bore,
for example, the convergent-divergent mixing duct reported
by Hélmbold'et al (1954) which is claimed to be more effi-
cient than the conventional design. It is also possible
%o use the jet mixing program to study the pumping of
one fluid by another of different density ané‘§isqosity,
Since the density is treated as a variable rather than
a constant, the program can be used<t6 predict the compre-
ssible jet mixing in an ejector. |

More systematic studies on the effects of vérying
the empirical constants used in the k- € turbulence
model may be carried out such that befter values can be

employed to improve'the flow prediction.
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A more comprehensive three-equation model which uses
the turbulent shear stress urve as another_dependent
variable, ﬁay also be usedbtd ﬁredict the jet mixing
and the diffuser flows so as to compare the accuracy and
economy with the existing two-eguation model, | |

On the experimental side, further research can be done
to measure the radial r;m.s. velocity in the outer region
of the mixing tube. A longer and adjustable photomulti-
ﬁlier holder is mnecessary so that the refracted laser
beams from the measuring section can be detected at the
’most appropriéte position.

Measurement of mean and r.m.s. fluctuatihg velocities
by L.D.A. can also be extended to the diffuse; regioh.
~ A calculation procedure must be devised to locate the
measuring point from the diffuser geometry and“laser
beams path. The success in measuring the mean and
fluctuating velocities in a conical diffuser not only
provides flow details for jet pump studies, but also
widens the L.D.A. application and enricheé the knowledge

h'of turbulent_flow in conical diffuser.
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A1

One-Dimensional. Theory of Jet Dumps, Gosline and

O'Brien (19%4)

The One-Dimensional Theory assumes that

_ PV : R NG o
H?— Y ’*"‘2—5""2; . Hd-7+.i.3.+z3
Zq At,V
| ‘ ‘ Z3
A"l{f RJ:Y[ l
[ V\\\\ A
| \7 -
J l ‘ '
_ /|
Z; R
o R
A
HZ" —'Y"‘*‘“z—g-*{- Z,
Fig. A.1-1

(i) the velocity at any cross-section is uniform,

(ii) the nozzle exit and the mixing tube inlet are in

the same plane,

(ii) the thickness of the nozzle wall are négligible.

Prom Fig. A.1-1, the flow equations for the three connect-

ing pipelines are:

P | v.2

Driving line: H, = <= + 0+ (1 + hj)§é~
: Pa Vsz
Suction: line: H, = 2 +0 + (1 + Ks)§E"
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v Pb
Discharge Line: 52
. where Y= and X.
W Y (Dg j?
cients.

The continuity

V,C2 | ©oy,?
+ 5 + 0 = Hd + Kd'z—é--' (A.1-3)
KS and K, are frictional loss coeffi-
relations can be written as :
+ Aj = At
9+ 9+ 0

Aj AS At
= A.V.

d J

= AVg
= M
= R
1 -R
- R

The loss of energy due to friction at mixing tube

wall is approximately given by

| t
Le = YK (Qq + Qz)-z—g—
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where Kt is a resistance factor to be determined from
"experiment.

By applying the momentum equation and energy equation
across the mixing tube and equating the two pressure rise
terms ﬁhe energy loss per unit time resulting from mixing

can be written as:

2 2
(Vj " VJG) + QZ{(VS B Vt) (A.1—6)

2g 2g

L = Q1Y

Equatiﬁg the power supplied to the sum of the work

done ver second and the energy losses gives

2 2
' V. v
Q1Y(H1 - Hd) = sz(Hd - Hz) + KjQ1Y~1—2g + KstY"'é‘g
o ' vtz (‘H _ Vt)z
+ (Kd + Kt)(Q1 + QZ)YEE— f Q1Y (Zg
2
(v, - TV) :
+ QY L o 8 (A.1-T)

By substituting equations (A.1-1) to (A.1-3) into
equation (A.1-7) and simplifing the resulting expressions
of H1 - Hd and Hd - H2 using equatidns(A,1~4),the following

head ratio can be obtained

_ _1 -1
Nv" T L+ M

where
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2
K+ (1K) (55) +(1+K K, )R (1+M)3-2R(11-Iv1) ol R R (1+11)

L =
1+K (11~K )M (1 )
 (A.1-8)
The efficiency can then be expressed as
Q, (Hy - Hy) |
‘ _ 23 d 27 _ -
)l = QL = Hy) T MY (A.1-9)
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‘A.2 Momentum Integral Method of P.G. Hill (1965) for

Axisymmétric Ducted Jefs

The momentum equation forenlaxié&mmetric free turbu-

lent shear flow at high Reynolds number can be written as

P =g

RSy XU 1| S R | R 1
be ‘xBy + 5 % + e

5

=0 (A.2-1)

Q

X

Thé symbols are defined as foliows:

x - direction: parallel to the jet axis

y - direction: normal to the jet axis

U,u' - time mean and fluctuating velocities in x-direction
V,v! - time mean and fluctuating velocities in y~direction
P -~ static pressure

€ - demnsity

The Reynolds shear stress is

‘t‘ = _eutvt

When the stream outside the jet may be considered as a

potential flow, the pressure gradient %g is given by

du ‘
1 4P _ 0 i
sax = U | (A.2-2)

¢

. T TS -
assuning u'e v'2<$Uo and U_ is the free-stream velocity

as illustrated in PFig. A.2-1.
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Fig. Ae2-1 Noménclature for velocity distribution.

If the jet flow is assumed to be self-preserving then

the velocity and shear stress distribution may be express-

ed as | |
(U - Uo)/Uj =lf(y/6) (4.2-3)

eus® = g(y/8) | (A.2-4)

where Uj is the difference Dbetween jet maximum
velocity and free-stream ve;qpity and 5'is the distance
" from the centre-line of the jet to its edge.
The continuity equation is

2uy) |, 2¥y) _
oxX QY

(A.2-5)

Defining A = UO/Uj and N = y/8 , and substitubing
these~similarity expfessions and the continuity relation
in/equation'(A.2-1) the result may be expressed in a general -

integral form
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1 2 £ 1 )\ffl
i "‘&%[Af I “yfjof’hdm ] t g dx[}\'f - “““2“"‘*]

+ -1- %—% ‘} S| J 7["11 ’11] = 3%%(@;?\),' (A.2-6)

The general integral equation may be treated for three
Separate regions

(i) ©Potential outer flow region:

Multiplying éQuation (A.2-6) by Q? to form a moment
of momentum equation and integrating across the entire jet,

it becomes

av | |
1 7 1 4% 1 dA|5
ﬁ“a—‘l[:’z"\‘f% vy ads] + 8[54 4 29] + 12020

J

,___lsk (A.2-7)

[fdn
[eren o
-f;’lf' fo ;'bdmdq i
AT

]

in which ¢1

b,

95

If the wall friction is negligible and the pressure
P is épproximately uniform across any transverse section

then the momentum equation can be written as

ZdP a *
0= WRgE *+ g% ZTI(DU ydy (A.2-8)

0
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where R is the radius of the duct.

The velocity within the Jet U is given by

U=10+ Ujf(q? (0<r(<1) (A.2-9)

Substituting equation (A.2-2) and equation (4.2-9) into

equation (4.2-8), it becomes

0=TR% [—-d(-?guoz)/dx+R"2d(U02R2)/dx+2R"2agX—{szjz(2k§b4+q>5 )}]

(A.2-10)

Mgfe . §4=l4fwylmm ¢5=‘L}%dq

.The integral form of the continuity equation may be expressed

by an a6+ .2

(A.2-11)

In order to calculate the development of jet flow, equa-
tions (A.2-T7), (A.2-10) and (A.2-11) are integrated using
the Runge-Kutta-Merson procedure with values of‘qb1 ’ 45

Ceveeees ¢5,'W directly evaluated from free-jet velocity

measurements.,

(ii) Recirculation Region :

In this region, the pressure gradient and free-

stream velocity no longer obey equation(A.2-2). However,

from experimental data, it is approximately true to assume
constant static pressure in this region. Furthermore, the
jet shape is approximately retained so that with appropri-

ate modification, the foregoing equations may also be used
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to predict the jet behaviour in the recirculation region.

(iii) Wall-jet Interaction Region:
| When the jet has spread to the wall, it begins ﬁo
| undergo considerable changes in its velocity and‘shear
distributions so that the preceeding self-preserving
equations are not valid. As the free-stream velocity
has diSappeared the static pressure in the duct can no
longer be given by equation (A.2-2). Instead it is assumed
that the effective eddy viscosity distribution ih'this |
region of developing flow ié given by

Vort = const.UjRg1(q) o (A.2-12)

in which the function of 84 is given by

g1 S 1 (OCYL<40.28)
"g.1 = 1.191 - 0.684n (0.28<Q< 1)
~.'where fL: y/R

The constant in equation (A.2-12) is evaluated from free-

jet data. The velocity in this zone is set to
U =0, U[f0) +get)] s = v/R (4.2-13)

in which Uo is the velocity near the wall (the wall

bdundary layer is ignored), Uj is the difference between
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A ]

-UO aﬁd the maximum velocity and f is a function of x only.
If f(q) is chosen as the one which was used for the preced-
ing zones, then § equals zero when the jet 'touches' the
wall and is a measure of the change in Shapé of velocity
profile thereafter. If the funciion‘g(q) is only required

to satisfy the boundary conditions,

1l
o0
—~

O
~
1
o

g (0)
g (1)

]
b1
—~

Y
~
1
o

then a simple function may be used, e.g.

g(n) = NZ(1-n)°

In the present case, four unknowns may be identified,
i.e;,.Uj,Ayiand P. To form the necessary four equations,
it is possible to take in addition to the continuity equa-
tion, three éuccessive iﬁtegrals of the momentum equation
-by nultiplying -equation (A.2-1) by yj where j = 1,2,3 and
integrating with respect to y. Using equations (A.2-12)
and (A.2-13), the fesults may be expressed in fﬂe fdllowing

form:

i : | 1T =
ﬁo p-[ ﬁ)z /35 , U/'jj r ﬁlé
Pe o Bs Po B | N B
B Ba e Bl 5|7 g, (A.2-14)

.;E’lz ﬁla fjqul @5- - -p_' | - ﬁ”J

I
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in which the prime signifies differentiation with respect

to x/D,

U, = ——~i—f;“
Io(w/p)?
Y 20,2 . 5,842
where M = 29Uj [%A~ + 2(g) (27\¢2 + ¢5)]
J

The matrix clement P have the form

-2 ’ 2 2
{3n=a1ﬂk +a2nk+a3nk“+a4nki+a5n§ +ag

in which the coefficients B4y ce+e+es 8 depend only on

’
various integrals across the shear layer of the velocity
and shear distribution functions (), g(q) and g1(1).

Bquations(A.2-14) can then be integrated using the Runge-

Kutta-Merson procedure.
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A}

A.3 Derivation of Momentum Equations for a Two-Dimensional

i

Axisymmetric Flow

Figo Ao 3"‘1

Consider the oontroiAvolume shown in Fig. A.3-1 where
x and y are the two orthogonal families of surfaces of
revolution. Ty, and ry are the radii of curvature for x
and y surfaces and r is the radius from the axis of symmetry.
U and V are the Veiocities élong x and y directions respec-

‘tively. The U-momentum flux across surface 1 is
’ eUrSy-U
U-momentum flux across Sﬁrféce 2 is -
eUr5y'U + %%( eUrSy'U)Sx
U-momentum flux across surface 3 is

QVr§X°U

assuming that the control volume is small enough such that
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the mean r's of surfaces 1 and 3 are approximately equal.

U-momentum'flux across surface 4 is
Sx- it S
pVréx-U + -a—ir-(eVrXx U)déy
The .net mofnentum flux flow out from the C.V., is then
(my) ) = —?—( Urs U)Sx + _’_B__( VrsxeU) S (Ae3-1)
x = xRy 2y C - y

There are several forces acting on the surfaces of the control
volume due to pressure, centrifugal force and shear stresses,
The force actingon the C.V. due to pressure is

W e 5
Fp = -5z &x I‘S)l (AeB-2)

The centrifugal force actingon the C.V. due to V-

velocity is

72 . ‘ |
F, = €r5x5y ':c";- . (A.3-3)‘

The shear stresses actingon the C.V. are ‘Shown in Fig.

Ao 3"'2

Fig . Ac 3""2
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Shear forcg due to T, = -5;;(’2‘ ‘r 8y)dx

- Shear force due to Tox (Ly‘{rd'x)Jy

Force component acting in x-direction due to ltzyy

:—-Zréx T..sin@ = ~208%+T %——5&1: = - Tﬂ'rzfxb’y
: o Ty Ty

JSV

since sing= @ =
> T .

Similarly, force acting in x-direction due to Z‘ZZ

]

- Z%?..I-ngy sinlﬁ |

For a 1aminér flow, the components of shear stresses
as derived by Goldstein (1957), are:

Tyx = /‘1(2%% ¥ ZL)

'bV
Tyx B /)‘( bx)

S i
o (22Y L, 2l
Cyy ,/“ oy - ry) |

T,

%7

- u 2(U81nB +Vcooﬁ>)] | -

The overall shear forces acting on the C.V. in the x-

~direction can be written as

[ b}.(r/LDU) + (l“/LbU) + y(rﬂ%_} - 2/%;(%’- + g;)

. Zﬂax 3 )Lz(Us;me;vcosﬁ)sm‘g}gxsy (A3-4)"
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It is possible to simplify the above expression for
a flow with T and rjﬁr. In this case, those terms con-
taining r/rX or r/ry will be small compared with other

terms and can be neglected. Thus

w2 T2l b 2l 2T
Ty = [25§(€p5§) * 55 (r by> + 3y(r DX)

/uZ(U81nB + VCOSB)SLnF]&&&y (A.3-5)

T
Applying the Newton's an Law, we have

(x‘nU)X =‘Fp + By o+ Ty | (A.3-6)

Substituting equetions(A.3-1), (A.3-2), (A.3-3) and

(A.3-5) into equation(A.3-6) and rearranging

112 D4 L1 ..U P

’f[’)??c(f’UrU) + 55(pvrU) - 2>" TSz by(r/uby),]=' %
2 1

+€ry ' mlfu(gﬂbj) * —3(3H§Z) w/Z(USl B 2 VCOSﬁLian

T (A3=T)

o

Similar method can be applied to derive the V-

momentum equation.
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~ A.4 Derivation of k~Production Terms

The exact equation of k for.a general 3-D orthogonal
coordinates can be derived from the Navia-Stokesvequations
by multiplying the momentum eduation for each coordinate
direction by its'corresponding fluctuating velocity; time
averaging and summing the'three equations (see for example,

Williams (1972)) . The final form can be written

!

2, 20, ;2
Dk L =
(’33‘13 = - -—-—(Qu‘k' +u 'p! )+/U~2"-'2' eu 33{; —/L(axj )
J

i,J = 1’293 . (A-4‘1)

Convection = Diffusion + Production - Dissipation

The various terms can be approximated to a simplified form

according to Prandtl and Kolmogorov

(eu ! 4+ u Tpt ) _l(cﬂekzl'ak )
. . J

2 (Lo (ns2)

gx 0% By

by using M = gﬁ‘ek%l. »

The dissipation term, following the local isotropy assump-

tion, is given to as

5 ')2 k3/2

M D% CDE’

(A4-3)
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‘For the production term G is given by

| —— 23 o3
G = -gu;'uy’ 537 = T a5

. (Ae4"4)
J J

The turbulent shear stress components for a general 2-D
orthogonal coordinates are obtained by substituting/ut
for/p.in the stress components expressions by Goldstein

(1957).

) ‘ )2
i.e., "/“t(z‘ay + 2-1-;;) (A.4-5)
= py (53 'aU + 20) (A.4-6)
o2V o U ' -
Tyy ﬂt( 37 2ry) (Ao4-17)

Substituting (A.4-5), (A.4-6), (A;4-7) into equation (A.4-4)

gives

2.
'BU AU . W
G = 2/1-1; ' P /""C(ﬁ + ﬁ)
+ %}%(QV + y
aU vV (U U 2V
—/*t{ [@* - & 2. L )

+ (%g + 20 } (A.4-8)
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A.5 Derivation of the General Pinite Difference Tauation
For

The géneral parfial differential equation for ¢ is

D D (s 3 PHerr o THhort 2 ~

~

N N
Convective terms(I ) Diffusive terms(I,..)
_ ‘ con’. } aif (A.5-1)

Integrating the convective terms over the contfol volume

(C.V.) around P with respect to x and y, we have
' _ ? 2. .
Toon = fy fx [-555(9111-@ + 5—;(9%95)] dxdy

:jn[pUrﬂ:ay +j [—(DVrcp]:dX

e
S w

= (eUrsy) b, - (eUray),$,

+(QVr6x)n¢n - (QVréx)s¢s

one gets ' . .

-

X

X X
. 0 c@. ° . 0@ oy
g Thert 247 © Herr 241™
A ¢ w n ¢ s

ox‘e o0X’'wW

THeff ¢ 2
- L eah,

_ Thorr , 2 THerr . 2 Mot 2
= (Jé%f‘5Y“f) - (l%?*'6y~$) -F(l%%fﬁxgg%l
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_ Now,

. (P( - d))

&, - “Esz;‘}‘

(bé) % B qs\'
AX‘wW 3xw

28y - $p
2y’n 5Yy

/ 2t s
oy’s Ys

.Substltutlng into I,,, we have

%
e B gy HEET (g )

o;,xe c-éx

(/l%,fo’v n %N - Pp) (ﬂeojifay )s(f5

réy
Assuming _}fgo%f?—x“ e = D¢ s

| MorsTY.
((Sﬁf,o”x)v Dw

Il

}Jeff:‘-"‘YX
o‘:Pcfy n n

!
w)

, S
and o (}Jef;.;"‘) = Dy e

1
)

we have

aif = ]_)e(‘PE = ¢p) + D(Py - Pp)
* Dn(q)'N - ?SP) * Ds(és - SbP)
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pe¢E *+ ?W¢W + Dn?N + PS¢S

]

=(Dg + D, + D + ps)ng

1f | (eUrdy), = C

It
Q

(eUrsy), = C,
(eréx)n = C
and ' (QVrSX)S = C

We have

Teon = CoPe - Cwq% + Cn¢h - Cs¢s

The values ¢e » by 1 Gnr $g must be calculated from the
values of ¢ » ¢y o+ ¢yr ¢ge There are two schemes avai--
lable for this calculation, i.e., (i) central difference
“séheme énd (ii) upwind difference scheme.
(i) The cénﬁrél difference scheme sugggsts;thaf tﬁe

: ?'s at e, w, n, s dan be calculated as the mean

“vyalue of ¢ at the nodes P, E, W, N and S, i.e.,

958 = 0.5(¢p + Pp)

P = 0.5y + ¢p)
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-
I

= O-S(‘PW + ¢P)

Ps

0.5(¢p + ¢bg)

Thus the convective term can be written as

/ Teon = O'5Ce4)E = 0.5, Py + 0,50, ¢y~ 0.50;¢ ¢
#(0.5C, = 0.5C + 0.5C, = 0.5C )Py

(ii) The upwind difference scheme suggests that since
C's are 'directional,vto accommodate the directional
ei‘fect,' the calculation of ¢e , qu s 95n and 75 s
depends on the sign of C. If C is positive, up-
stream value of ¢ is used, if C is negative then

downstream value should be used. Thus
?e A= qSP' if _A'C}e is positive

‘ib.e =¢E if C_ is negative

| + C_ c |- o
Thus - Coy = e_l ; e)sbP-(' elz 8) Py

and likewise for others. By substituting Cicﬁi into Ic on

and rearranging, we have
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Teon = O.S(ICe’~ Ce)(¢b - ¢E).+ 0.5§[CWI+ Cw)(¢? - ¢%)
C+ 0.5 oy | - e (P - gy) + 0.5(Jc [+ C ) (Py ~ )
+(C,+C -C, ~-C)P .

The total source in the control volume is linearized to

the following expression

fjf:S?dXdy = SP‘}" q5P + Sl»f

Assembling I,,n» Tqif and the linearized source term into

equation (A.5-1), we have
] o i ¢}
-[(AE + AW + AN * AS) + (Ce 0w *+ Cn 'Cs) SI’ ¢P
= Aty + Myby + Aty + Aty + SF -

where 'AE = De - O°SCe * -

AW =D + 0.5C
w F If central difference scheme

is used for I .
u for ICon

'AN n O‘Scn

n
.~
!
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or

]

i1

1

D, + on([cel
D, + 0.5(|cC

ol

D + 0.5(\cn|

D, + o.S(]oS‘
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¢ scheme is used for

I
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A.6 Tinearization of Source Terms

U-momentum sSource terms

The source term is given by

)

, |
Su= - Z [ 2D + 2Rl
o Zﬂ(Usin,g + Vcosp)

rz . sin[j

Integrating Su over the control volume w. r, t. x and y,

//rs dxdy = /[ "I"é';{ + -e———)d*{dy
Y
2 ... 0
| j [0S + 55epsp)
y/x

24(UsinfB + Vcoshd .
- T t uln/s

dxdy

The first integration represents the force acting on the
control volume by pressure and centrifugal éffeéts and the
second integration represents the shear stress contribution.

Thus

f f(- + rf———-)dxdy . f Ny
]

-(P_~-2) 2
psx ML . CyrSy + (%‘;)P'VP

3(a "

ety )(P ~P)+(f—-——)l, V5
y

vhere 'V’P is the control volume
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Here g%— is assumed to héve its value at P prevail over
the entire control volume.

As in the present study, the maximum possible wvalue
of angle F is relatively small, i.e., not more than 4°
in diffuser region with a similar magnitude in the secondary
flow region, the integration of the shear term can be appro-
ximated to a cylindriéal polar coordinates case which is |

/

zZero
u u gVZ
. ~ X ‘ - °
Thus f[ rS_dxdy = z(ae +oa, )(Pw PP) + ( ry)P Vi

V-momentum source terms -

X

2 )
) g 2U : 2V
Sv =T ay T [’ax(x)u? )+ y(x)‘*ay)}

R ?_’j,l(Us:‘Lnlﬁ2 + Vcos,B )cosp
. T

Using the similar integration procedure and approximation,

. 2
/-[;rs dxdy (anv + gsv)(Ié - EP) + (E%E)P,VP

9 2U D ¢ OV 2u{UsinB + Vcosg) J
+ {/,[X[.-ﬁ(rﬂé—i) +‘—_53-r(r/4-53;) - 0 o8 3 dxdy

The shear terms when approximated to a cylindrical polar

coordinates case is
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LL[ (1}@2) + (r/J 20 -/‘”]dxdr - //ﬂdxdr

=0 - (B pevp
r

since 2y(r/u ) + 9 (r/ugv) —ﬂ = 0 from the continuity
equation. |

. Thus

IH

' : 2
/Jxrsv@my' oy + 2N (7 - Bp) v (F)pemy + ()pvpt

. VvV, '
—up V+Su

" v o_
whexr SP‘ = (»;%)PVP
v _ i v v _ 512_
Sy = #(ag + ag")(Bg = Pp) + ( rX)PvP

k source terms

rS, dxdy =[[ r(G-CPEL)Axdy .
[y[x l_c _ ¥ )% D()

¢, 0°k°
[ (G - E}P—Ae——-——)dxdy
X

A Mt
k
_ gk, X
= SP X + Su
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~where S

W
1
hs
-~
)
Pdd

' k :
S°u PP

]
[ep]
o

£ source terms

[[rsedxdy =[/ r(C,‘EG/k - Czegz/k)dxdy
Iy X y/x ‘

C.,CuekG
=[[ r(-—ug—i—_- Czeez/k)dxdy
y°x /“

/"‘t

- €. g
= Sp e + Su

C,CuokG
= (L) s - (Cpee/K)prpr €

| £
where S = =~
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A.7 Derivation of the TFinite Difference Equation for P’

The finite'difference equation for U and U¥ can be written

as
2
A5 U =ZA, uU + 0. 5(a ra ) (By = Pp) + (& vp  (A.7-1)
J NlS:E, ’ y P '
'u Uor 3 | u u V2
#* = £ - P %) 4 (LL.).
Ap'Up* = ZATUSE + 0.5(a, ) (B = BoF) + (Sp)evp
J:N’SIE,W . y
Substract (4.7-2) from (A.7-1) and use:

P, = P.* 4 P! o (AT7-3)
One gets

Ap'(Up = Up*) =240, - Us%) + O, 5(a + 8 ) (B t-Pyt)

J =N, S E, w
By assuminng.ju(Uj - Uj*) = 0, equation (A.7-4) becomes
J=N'S,E,w
= T3% u - 1 ' .T-
Up = Up* + D (R, = ByY) I S a2
4 0.5(a * + a_") »
. u e W -
where Dw = 'Afu |
Similarly for V,
: 7% Ve -
Vo VP. + ps (Pg" - PPT) (A.T7=6)
0.5(a Vs a )
. v n S .
where - D~ =
S A v
P
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~ The continuity equation is given by

%(Qr‘ﬂ) + Z(exV) = 0

Yo e S

jJ[%(fI‘U) + %(Qr\f):\ dxdy : N
2 ,

. {“ikq}

= ’(eUrSy)e - (QUI?SY)W ww‘iﬁr Pe—/iEE -
| Lt
. S{vs
+ (QVrSX)n - (QVrSX)S 3
"=VUE(€I‘Sy)e - UP(QrSy)W

+ VN(Qer)n - VP(QrSX)S =0 : (AT7-T7)

Similarly to (A.7-5) and (A.7-6), one can obtian

' - u .
Up = Ug* + D" (Bp' - Pg') (A..7-8)
Vi = Vo + D_V(Pp' - ByY) | ~ (AT-9)

Substituting UP ’-UE ’ VP ’ VN into equatiop,(A.?—?), one
gets

U}ﬁﬂ@rgy)e - U @Ey),, + My(@msn)y, - VpHerin)s
+ {beu(€r5y>e * Dwu(erSY)w * Dn#(QrSX)n ¥ DSV(QrgX);]Pb'

u u v
= Dg (Qrsy)ePE' + D, (QrSy)wa' + Dy (Qrgx)nPNf

+ DSV(erSX)SPB' : ' -+ (A.7-10)
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Sinee the net mass flow out of the control volume

evaluated by U¥ and V* is ﬁP y de€ey
7 : # * - V. c
Bp = UEf(ergy)e - UP'(Qrgy)w + VN.(Qréx)n VPY(QI'S}‘)S

) u, ..
and..assuming D (QI'SY)Q = An

]

u
D, (prdy),

Ay

. A
Dn (QrSX)n AN
v, .
Dy (Qer)S = Aq
Equation (A.7-10) can be rewritten as
(Ag + Ay + Ay + AIPpT = ApPpt + APt + APyt + AgPg! - my

(Ao 7"'11 )

261



.

A.8 Calculation of Orthogonal Grid in the Secondary

Inlet Region of Jet Pump

The secondary inlet region can be subdivided into
two regions: (I) region between the duct wall and the
nozzle wall, and (II) region between duct wall and the

central jet. The two regions are considered separately

below.

1(-a,b) | X2

0(o0,0)

v Duct wall

: (7(;_“, N
Nozzle wall Yeu)

(xoc,. Yoc )

Fig. A.8-1 Geometry of secondary inlet

(I) The inner (nozzle) wall with centre at I(-a,b) can be

‘described by

Gy + )2 + (x, - b)° = B;° © (A.8-1)

The outer (duct) wall with centre at 0(0,0) can be
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described by

X" + %,° = R | }(A.8-2)

From any point (x. ) on the inmer wall, an orthogonal

1w’yiw_
" circle can be drawn to cut both inmer and outer wall at

right angles. Assuming that the centre of the orthogonal

circle is at (x ) and the intersection on the outer

oc?Yoc

wall is (Xow’yow)’ four equations can then be set up to
solve for the four unknowns Xoc’ Yoo!? Fow and Yows
For orthogonal condition,
Vi = ¥ © ¥Ysi.. =D i , '
X1w - xoc % Xlw — - -1 (A.8-3)
Tiw oc iw .
Youw = ¥ y o ,
Xow “ Xoc Xow - | (A.8-4)
ow ~ “oc ow .
Since (Xow’yow) lies on the outer wall,
2 .2 L2 T o |
Yow * Youw =Ry | (A'S"B)

)to>fxoc§y. )

Equidistance from (xiw,y. ) and (Xow,yOw _ oc

iw

gives -

N2, 2 e _ 2
(% - xop) * (Vi - yoc) = (Xgy - Xoc) : (yow_ yoc)
| (A.8-6)
Equations (A.8-3) to (A.8-6) are then solved for the

four unknowns x and y .. The solution procedure

ow? Yow? Foc
is as follows
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(i) From equations (A.8-3) and (A.8-4), X, and y .
| can be expressed in terms of.xow and Youw®

(ii) Substituting X, and y_, obtained in (i) into

) c
equation(A.8-6), the resulting'equation now contains only

x and y

ow ow*

(iii) Prom equation(A.8-5) and the resulting equation

obtained in (ii), solwve for X, end y oo, i.e.
/
_ f£%g - dete? - (624n®) (24 -n%R%)
Xow = 2 2 - (4.8-7)
g +h
where £ = xiw(xiW + a) + yiw(yiw - b) + RyRy
g = (1 + ﬁi)xiw + a
o
h = (1+ —R——)yiw - b
()
| 2 2 | '
and Youw = TJRO = Xow (A’S—S) .

ow and yowpare ¥nown, equations(A.8-3)

and (A.8-4) can be used to solve for X, and y .. After

- .Now, since x

appropriaté algebraic simplification, one gets

X =X

oc = Fow = F'Vou (A.8-9)

y,OW ' ow

4+ Fex ' (A08_10)

(Xiw+a)(xiw“xbw) + (yiw;b)(yiw'yow)

xow(yiw"b) - yow(xiw+a)

"where P =
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| 2 Y _
and Toc —J(liw - koc) + (yiw yoc) (4.8-11)

Thus, the grid line in the y-direction is defined by

2 2 2
(X1 b XOC) -+ (Xz bl yoc) = I‘oc (A08"12)

(II) This region is represented by ABCD in the diagram.
The grid in this region is determined by the number of
axial grid lines between C and D. The grid lines in ACD

are the extensions of grid lines from the uniform mixing

tube.

) )
1(-a,b)
Q
0 (0,0)
2
c _
D

Fig. A.8-2
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Ay axial grid line will cut AC at a point P (%ps¥p) e

,From P, an orthogonal circle with centre (Xoc ’ yoc)'can

.be drawn to cut the duct wall BC at (Xow y yow)’

four equations can be set up to solve for the four unknowns

~Again,

x x a ie€,
oc ? Yoc * Fow BB Yoy 1e8eo

Yoe = ¥p (4.8-13)
[
y -y Yo

ow oc ow

2 2 2 : '
Xow * You = R (A.8-15)
) 2 2

(Xow - Xoc) + (yow - yoc) = (Xoc - XP) (4.8-16)

Equations(A.8-14) and (A.8-15) can be used to eliminate

X, and y . in equation (A.8-16), thus giving

R ZL; XPZ -y 2 .
- _ o P _ ‘

The grid line in y-direction dravn from P(XP‘, YP) is
defined by . .o |

2 2 . 2
xy = x) o+ (X =y ,) = (xgy - xp) o (A.8-18)

The streamwise grid lines in the secondary inlet region
are the extensions of axial grid lines in the mixing duct.

From point P (Fig. A.8-2) a vertical line is drawn to cut
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line OI at Q. The distance PQ and the coordinates of Q
can be calculated. Using Q as the centre and PQ as the
'iadius, a circle can be drawn which will Jjoin the axial
'grid line at P smoothly and cut all the orthogonai circles
at right angleé. ‘A series of such circles can then be
devised to form the streamwise grid linés in the secondary
inlet regibn.

-
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Appendix A.9

e s . e S

Inlet conditions for Turbulent Kinetic Energy 'K'
and Length Scale '1'

O v Gy S T Gy P e T G G e T G = G S S gy S Gy S T . D N G S S - A — —— — aa Wt S tm_ S A S S S -

For the situations where measured and predicted
flow parameters are being compared it is sometimes
possible to use actual - turbulence levels as inlet
data for the computer model

When no empirical data is available, some estimation
of 'K' and '1' values at inlet must be made to
initiate computation. : :

' For the case of conical diffuser flows (McDonald
et al (1966)), the value of 'kK' at inlet (page 110)
was specified by assuming the turbulence-intensity
tc be 2.5%, based on the diffuser being fed from a
. large constant head chamber.

The value of inlet length scale chosen for the mixing
tube is dependant upon the upstream boundary layer
‘development and the thic kness of the nozzle wall.
For a smooth and thin-walled nozzle, the length scale’
will always be small. Fig. 5.1-3 shows that even if
the inlet length scale is altered by a factor of 1000
(i.e. from -0.0001r_to O.lro), then the centre-line
velocity in the stfongly mixing region is only
reduced by about 15%. The minimal effect of inlet
length scale on static pressure dlstrlbutlon is shown
in Fig. 5.1-6. :

In ths-the51s, owing to the lack of published information
on inlet lengths scales, the values for jet pump flows

are taken in the region of 0.001 r_ to 0.05 r .  The
exact choice is empirical. In the compariSog with the
experimental results of Razinsky and Brighton(iq7t )

'1l' was taken as 0.005 r_since it gave good correlation
for both time-mean variaBles and turbulent shear stress.

However, for the comparison of predicted values with the
authors own LDA measurements, inlet length scales of:
0.015 r, and 0.0085 r,_ for the 12.7 mm and 6.5 mm nozzles
respectively were c hdsen. The former value was .
determined from the comparison of measured and predicted
centre-line K-distributions shown in Fig. A.9.-1. A
correspondingly smalier value wzs chosen for the smaller
'(and thinner-sectioned)nozzle.

It is clear that nc specific values for inlet length
scale can be recommended at this time. The value

will perhaps be a function of the nozzle dimensions and
nozzle and duct wall surface conditions.
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o000 LDA measurement |

1

4 3 Xy -

Figyﬁ.Sk—l Comparison of the predicted centre~line k—distributions
using various inlet length scales with LDA measurement

By way of a concluding comment, it is relevant to say

that the inlet length .scale- has only a marginal effect

on the predicted mean flow behaviour. Thus for practlcal ,
application where the emphasis is not on the turbulent strucs
ture of the flow but on the mean velocity and pressure.
distributions, values in the range of 0.00l1 r_and 0.05 r

for the-mixing tube can be safely chosen. The canputer

model will itself predict values at the exit from the
mixing tube and therefore at the entry to the diffuser.
Only by future research, involving the measurement of o
average macroscopic length scale of eddies at the T
inlet, will the relationship between inlet length
scales and upstream conditions be established.
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2 - SEWV{Z2&412)+RCV(2E+12)

1/PCOR/RESCRMyNSWPPyURFP,DU(264512)+DVI{264512)yI1PREF;JPREF
1/TEN/RESCRKsNSWPK yURFK

1/TCIS/RESGRE«NSWPL sURFE

1/VAR/ Ul26412)4VI(206512)+P{26,12),PP{26,12),TEI26:12),ED(2€412)
1/GEQM/INDCOS s XIW{18)+YTW(18),X0K{18),YChk{26) +X0C(18),Y0C{18),

2 RCC(18),XIC{18)},YIC{18),RIC(18),X{26512)sY{26412)sXU(264+12)
3 YV{Z26412)+DXEP(2¢ 9127 yDXPW{264312) yCYNP{26,12},CYPS{26412),
4 SNS{26412)+SEW(26412),R{26412),RV(26,412)

l/FLUPR/URFVIS'VISCbeDEhSITyFRANCT,DFN(Z&ylZ),VIS(46 12)

1/KASE T5/UINsTEINYEDINSFLCWINJALAMOCASUENFLCWEN, A;RSMALL4RMIX,
2 - INCZyINF1,JUNCZyJINPL1yIENT,TEPL

1/1URB/GEN(26412) +CL4CMU+C1+C24CAPPAL,ELCC,PRECYPRTE
1/WALLF/YELUSNI{28) s TAUNIZ28),YPLUSS{18),TAUS({1E)
L/COEF/AP(264512)3AN{26412)4AS{26412)1+AE{264912):AUW{26412),5U(26412),
2 SP{26412)

LCGICAL INCALUSINCALV,INCALP; INPRCy INCALK,INCALDy INCALMy INCALA,
1 - INCALR

CREAT=1.E30

NITER=0

1T=26

JT1=12 B
T NSWPU=1 '

ANSwhPV=1

NSkPP=E

NSWPK=1

NEWFEC=1 :

REAC(9,010)HEDUHEDV yHEDP yHECT yEECKyHECDyHECVM s HECA,HECBELPP,
1HECUNWHECX s KECY

ClC FCEMAT(6R4)

Cmmm—-- CRIC
- M=ze

Nd=1z
NIM1=NI-1
Nd¥L=NJ-1
NJM2=NJ-2
INCZ=4
JNCZ=4
INP1=INOZ+1
JNF1=JNCZ41
JINP2=UNCZ+2

~ JVIX=NJM1-JNCZ
IENT=IRCZ+JNIX
RNCZ=5.C75E=3
CY=RNCZ/FLCAT(JNCZ- 1)
A=3.,5G6E-2
RLARGE=1€.5E-2
RSEMALL=12.7E-2
RMIX=1.71E-2
B=RLARCE+RNCZ-RSNMALL-RNIX -
XENT=T7.6E-2
ALTCT=0.26
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C DETERMINE THE INNER wALL GECMETRY
CXIW={XENT~-A)/FLCAT(INGZ-1)
XIH{1)==XENT=-C.5%CXIk ~ :
LC 100 I=2,INOZ ' :
160 XIW{I)=XIn{I-1)4DXIW
CO 1C1 I=14INCZ
101 YIW(I)=B=SCRT{RLARGE*RLARGE-(XIW(I}+A)=%2)
YIW{INFL)=={RSNMALL+RIMIX}4RNOZ
C CETERMINE THE CUTER wALL GECMETRY
RRAT=RLAKGE/RSMALL
CO 102 I=1,INCZ
CSC=XTW{ I {XIW(I)+A )Y IR (L I*{YIN(I)=-B)
FSC=DSQ+RRATHRSMALL*RSNMALL
G={1.0+RRAT)2X1IuW{1)+A
K={1l.0+RFAT)I*YIK{I)-E
XCWLI)={FSG*G-SQRT{FSQ#FSQ*G*G—(G¥G+H¥H) ¥ (FSQ*FSG—H*HXRSMALL%%2)))
1/ (G*G+H*H)
162 YOW(I)=—SGRTIRSNALL*¥RSMALL=-XCW{I}*XCW(I))
C DETERMINE THE CENTRE ANC RACIUS OF 0U.Ce
DC 103 I=141INC2
FUNCT=({XTW{TI4AYHIXTWCII=XCh{I ) I+ {YIW{I)-B)x{YIL(I)=YOK{I)))/{XCk
LUOIVR(YIW(I)=BY=YOWIII*(XIN(I)+A))
XCCLI)=XCWITI)-FUNCT*YOk{I)
YCC(I)=YCW{I)4FUNCT*XCRI(T) :
103 ROC{II=SCRT(IXIW{T)I=XOCCLIN) %2+ {YIN{I)-YOC{I)}3%%2)
C CETERMINE THE CENTRE AND RADIUS OF INT. C.
CXIC=A/FLCATIJNIX) _ ) -
CYIC=R/FLOAT(JIMIX) '
XIC{JUNF1)=-A40.5%CXIC
YIC{INP1)=B-C.E5%CYIC
CC 104 J=JNF2,NJNM1 -
XIC{J)=XIC{J-1)+DXIC
1C4 YIC(J)=YIC(J-1)-CYIC _
DRIC={RLARGE-RSNMALL=-B)/FLCAT(JINIX)

LEASE 2.0 COMAIN DATE = MON DEC 11, 1S78

CC 105 J=JNP1,NJM1
105 RIC{J)=YIC(J)+RSMALL+{FLCATINJIM1I=J)+0.5)*CRIC
C DETERNMINE THE GRILCS
CO 1066 I=1,INCZ
CC 106 J=JNP1l,NJM]
Q=0.5%(RIC{J)*%2-RCCITI*#2+XCC{TI)*%24YCC{ 1) %%2~ (XIC(J)**2+YIC{J)**
1211/ (YCCLTI)=YIC{J )
S=(XIC(J)=x0C{1))/ZIYIC{J)- YCC(I))
AT=S%S+1.0
BI=XCC{I)+S*xC-S*YCC(]I)
CI=XOC!lI)%#%2+(Q-YCCL 1)) %%2-RCC{T ) %%
T X{I4J)=(BI-SCRT(BI*BI-AI=CI))/AI
1C6 Y{I3J)=Q=S*X{]4J) ‘
CC 107 I=1,JNMIX
XUINCZ4I 3 JNCZ+I)=XIC(JINCZ])

107 YUINOZ+I,JNOZ+1)=YIC(JUNOZ+1)- ~RIC{JINOZ+TY
CC 108 I=1,JMIX .
YOC{INCZ4I)=Y{INCZ+1,JNCZ+1)"
XCCUINCZ+1)=0. “*(RSNALL*RSMALL+X(INOZ+I,JNUZ+I)*=2 Y(IhCZ+I JNOQZ+I

1)%%2) /X{INOZ+14JNCZ+1}
RCCOINGZ+1)=XOC{INCZ+I)=X(INCZ+I:INOZ+1)
AC=XCCUINCZ+1)%%24YCC(INCZ+I)*%2
BO=—RSMALL*RSMALL%XOC(INOZ+1)
CC=RSMALL**4-RSMALLARSNMALL*YCC(INGZ+I )52
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108

112
111

113

115
114

117
LEASE

116

1Cs

118

"XOW{INGZ+1)=—{BC+SQRT{BG*RC—-AQ*CC} )/ AC

YCHIINCZ+I)= (RSMALL*RSMALL XOC{INDZ+I)’XON(INOZ+I))/YUC(INUZ%I)
JVIXVMI=JdPIX-1 N

(0 111 I=1,JMIXM1 )

IP1=1+1

CO 112 J=IF1,JMIX

C=0.5%(RICIINCZ+J )44 2-ROCLINOZ+T)*%2+4XCOCUINOZ+1)*%2+YOC{INCZ+])3%2
I-{XICUJINCZ+J)**2+YIC(INOZ+J)=x*2 )}/ {YQCUINOZ+I)=YICIJINOZ+J )

S={XIC{INOZ+J)-XOCCINQZ+T}I/{YICL{INQZ+I)-YOC{INQZ+T)}
Al=S%S+1.0
BI=XOC({INQZ+I)+5*Q-S*YCC({INOZ+1) '
CI=XCCUINCZ+T1)%%2+4{CQ-YOC(INGZ+T))*%2-ROC{INDZ+1 )2
XUINOZ4I3INOZ+0)=(BI-SERTIBI*BI-AI*L1)}) /A1
Y{INGZ4T 2 JNOZ4J)=Q-S*X{INQZ+I;JINOZ+J)
CCNTINLUE ’

CCNTINUE

CC 113 J=24JNC2Z

CC 113 I=IANP1 NI
Y(IyJ}=-(RSNALL+RNIX}*(FLOAT(J)—I-S)*DY

DC 114 J=1,JNMIX

IFIRST=INP1+J

CC 115 I=IFIRST4NI
Y{I,JUNCZ+J)=Y{INGZ+J s INCZ+J)

CCATINUE

CCNTINUE

CC 116 I=1,JMIX

JLAST=JNCZ+41-1

CO 117 J=2+sJLAST
XUINCZ4+T4J)=X{INCZ+1,JdNOZ31)

CCNTINLUE

2.0 ’ MAIN . DATE = MON DEC 11, 1578

CCNTINUE
EFSX=1.15

SUMX=0 5+ EPSXEX(NI-TENT-4 )+ (EPSXA*{NI-TENT-2)-1.C)/{EPSX-1+C)+0.5

CX=ALTOT/SUMX

IEPL=1ENT+1

TEP2=TENT+2

CC 109 I=1EP14NI

YCW(I)=—-RSMALL : T
CO-118 J=24NJM1

X{IEF14+J)=0.5%CX

LG 121 I=TEPZ,NIM1

122
121

122

124

125

CC 122 J=24,NJV1

XIed)=X{1-14J)+DX ' .
CX=EPSX*DX '
DC 123 J=2,NJV1

XINIgJ)=XINIML 9d)=X{NI=24J)+XININ1,J}

CC 124 T=1,NI

IF(1.LE.INCZ) JFIR=JNP1

IF(I1.GT.INGZ) JFIR=2

DO 124 J=JFIR,NJM1

R{I4J)=RSMALL4RMIX+Y{1,4)

CC 125 J=2,JNC2Z

ROINOZyJ)=R{INP1,I)
~CEPENCENT VARIABLE SELECTIGN

INCALU=.TRUE.

INCALV=.TRUE

INCALF=oaTRUE..

INCALK=.TRUEO
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INCALC=cTRUE.
INPRC=.TRUE.
C-————- FLUIC PRCFPERTIES
CENSIT=1CGC. .
C-——-- TURRULENCE CONSTANTS
CNMU=0.06
CC=1.00 /
Cl=1.44 ’ ’
C2=1.62
CAPPA=.4187
ELCG=9.76G3
PRED=CAPPA*CAPPA/{C2-C1) /{CMU**,5)
FRTE=1.0
C————- BOUNCARY VALLFS
’ UIN=22.0
LEN=1.4435
TURBIN=0.001
TURBEN=0.003
TEIN=TURBINZHUIN®*®Z
TEEN=TURBENFUEN**2
ALANCA=0.CG05
ECIN=TEIN**1 S/ (ALAMCA%RMIX)
ECEN=TEEN*#*1,5/{ ALAMLCAXRMIX)
VISCCS=1.004E-2
C--=——- FRESSURE CALCULATICN
IPREF=2

LEASE 2.0 ‘ MAIN - DATE = MON DEC 111‘1978

JPREF=JUNF1
C--—- PROGRAM. CONTROL AND MONITCR
MAXIT=133 '
IMON=1C
JFMCA=10
LRFU=0.5
LRFV=0.5
LRFP=1.0
LRFE=C.7
URFK=0.7
LRFVIS=0.7
JINCPRI=1
SCRMAX=1.0E-4
C

C-----CALCULATE GECMETRICAL QUANTITIES AND SET VARIABLES 70 ZERC

. CALL INIT
C———--INITIALISE VARIABLE FIELDS
LC 202 J=2,JNC2Z
TE(INOZ,J)=TEIN
202 EC(INOZ,yJ)=ECIN
CC 211 J=JNFlyNJNM1
TE{Ll+J)=TEEN ‘
211 EC(l,J)=ECEN
CO 20C I=INP14NI
CC 200 J=24JNC2Z2
U(T,J3=UIN
S TELI J)=TEIN
20C EC{I,Ji=ECIN
- FLOWIN=0.0
ARLCEN=0.0
BC 2C5 J=2,4JNCZ
ARCEN=C.5*{CEN(INCZ, J)+EEN(INPI:J))*R(INPI J)*SNS(INPI:J)
205 FLCWIN=FLCWIN+ARCEN*U(INP1,J)
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DO 201 I=2,NI )
LC 201 J=JNP1l,ANJM1 .
TE(I,J)=TEEN :
EC{IsJ}=ECEN

2C1 L{I4J)=LEN
FLCWEN=0.0
CO 2C6& J=JNP1yNJNM]
ARCEN=0.5% {CEN(1,J J+CENT2,4))%0.25% (R{1yJI+R{24J)I%X{SNS{L,J)+
1SANS1244))

20€ FLCWEN= FLO%EK+ARCEN*U(2:J)
CC 203 1=2,4NIN1

203 YPLUSN(I)=11.0
CC 204 I=2,INCZ

2C4 YPLUSS(I)=11l.C
SCRMAX=SORMAX*{ FLCWIN+FLOWEN)
UFN={FLCWIMN+FLCWEN)/(CENSTTH#0S5%RMIX%%2)
FLCRAT=FLOGKEN/FLOWIN
CALL FRCPS

LEASE Z.0 MAIN CATE = MON DEC 114 1678

----- INITIAL CGUTPUT

WRITE(&4210) .
WRITE{E,22C) UIN

- WRITE(6,221) UEN
RE=UIN*RNOZ*2,C*DENSIT/VISCOS . -
WRITE(€,230) RE - :
RSDRL=RNCZ/RMIX
WRITE(64240) RSCRL
WRITE(64+250) VISCCS
WRITE(€4260) CENSIT

 WRITE(64270) FLCRAT , }
WRITE(€428C) (XCW{I)sI=14NI)
WRITE{65280) {YOW(I)yI=14NI)
WRITE(64+280) (XIK{I),I=1,IN0Z)
WRITE(64280) (YIWII) I=1,IN0OZ)

280 FCRMAT(1P10El1.3)

CALL PRINT{2424NT+NJ4IT4JT9XHELX)
CALL PRINT{2424N1sNJy1T,JT,R,HECY)
CALL PRINT(2,2,NIsNJ91T4JT4SEW 2FECX)
CALL PRINT{2:2yNIyNJ4IT»JT,SEWU,HECX)
CALL PRINT(2423NI4NJ9IT4JT4yCYNP,FECY)

CALL PRINT{2+2+NIsNJsIT9JT4CYPS,HELY)

IFCINCALU) CALL PRINT(242,NI NI, 1T,JT7, UsHEDU)
CIFCINCALV) CALL PRINT{Z2+24NIoNJ»IT,JT, VsHELCV)
IFUINCALP) CALL PRINT(2,24NI4NJ,IT4JT, P,yHEDP)
IFCINCALP) CALL PRINT{Z424NI4NJ9IT4JT, PP,HECPP)
IFCINCALK) CALL PRINT(292¢NTyNJI9IT4dT, TE+HEDK)

- IFUINCALD) CALL PRINT{(2924NIyNJyIT4JT, EDyHEDL)

- hRITE(64310) INMCN,JMCN
2C0 NITER=NITER+1
————— UPCATE MAIN CEPENCENT VARIABLES
IFUINCALU) CALL CALCU
IFCINCALV) CALL CALCV
IF{INCALP) CALL CALCP
IF{INCALK) CALL CALCTE
IF(INCALL) CALL CALCED
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L-=—=- UPCATE FLUIL PROPERITIES
' " IF(INPRC) CALL ERCPS
C———— INTERMEDIATE OUTPUT .
' CUrMY=0.0
WRITE(64311) NITER,RESCRUJRESCRV,RESCRNM¢RESORT,RESCRK,RESCRE
1 +ULIVONyJMONY s VITIMONS JMON) o PLIMON, JVONY 4 DUMNMY
1 TE(IMCNyNIM1)»EC({IMGN,NIML)
IF(NITER.GT .2) INCPRI=4C
IF(ABS(FLCATINITER/INCFRI)- FLCAT(AITFR)/INDPRI) CT.1l.E-4)GC 1O 301
WRITE(E64312)

CIF(INCALU) CALL PRINT(292¢NINJyITedTy UyHEDU)
IF{INCALV) CALL PRINT(Zs2sNI¢NJeITsdT, VyHECV)
IF{INCALF) CALL PRINT(Z,Z,NI,NJ,IT,JT, P+HEDP)

LEASE 2.C ' MAIN : . DATE = MON DEC 11, 1978
IFIINCALF) CALL PRINT(Z?Z’NI?NJ’IT!JT' PPyHEDPP}

'IF(INCALK) CALL PRINT{2:2+NIsNJyIT4JT, TEJHELK)
IFLINCALE) CALL PR!NT(Z,Z,NI,NJ,IT,JT, EL+HECD)
WRITE(64312)

WRITE(€4310) IMON,JMON
301 CONTINUE
C—————-TERMINATION TESTS
- SCRCE=RESCHK¥
IFINITER.EQ.MAXIT) GC 7O 202
IF(SCRCE.GT.SCRNMAX) GG TC 300
3C2 CONTINLE

C
IFCINCALU) CALL PRINT{2424NI4NJsIT,4Ty  U,HEDU) T
TF{INCALYV) CALL PRINTH{Z42sNIeNJIsIT4JT,y VyHEELV)
IF{INCALFP) CALL PRINT(242¢NIyNJ9IT4JTy PsHEDP)
IFCINCALP) CALL PRINT{Z2y2sNI¢NJoIToJTy PPyHEDPP)
IF{INCALK) CALL PRINT(242¢NIyNJyIT4JT+ TEHEDK)
IFCINCALL) CALL PRINTH{2423NI NIy IT9JT, ED,HECD)
IF{INPRO ) CALL PRINT{2+29yNT¢NJ+IT,JT, VISsHECM)
Crm—— CALCULATIGN CF NON CIMENSICNAL TURBULENCE ENERGY AND LENGTH SCALE

CO 400 I=24NINM1

CC 400 J=25NJ¥1

Gl1,Jd)=Ul1,J)/70IN

SULT+JI=TE(I,J)*CEN{TI,J)/ABSITAUNI(T]))
400 SP{I4J)=TE{1yJ)*x1.5/EC(I,J)/RNMIX

CALL PRINT(2,24NI NJ,1T,0T, UsHECUN)
_ CALL PRINT(242,NIsNJoIT¢JdTs SU,HECA}

CALL PRINT(Z,L,NI NIJsITedTy SFyHELCR)
401 CCNTINUE -

RINCZ=C.GCC44C5

FLCWIN=0. S#RINGZ*RINCZ*DENSIT

FLCWEN=0.0

ARCEN=0.0

EC 406 J=JNP1,y4NJM1

ARDEN=C. 5 (DEN(INDZ:J)+DEA(INP11J))*R(INPI,J)*JNS(IHPI J)
406 FLOWEN=FLOWEN+ARDEN*U{INP1yJ)

FLCRAT=FLCREN/FLCWIN

hRITE(byZ?O)FLCRAT

, STCP
C———- FCRMAT STATENENTS

210 FCRMAT{1H1+47X+33HKASE T5 - TURBULENT JETS MIXING ////)

220 FCRMAT(////15X+33HINLET FLUIC VELCCITY y LPEL11.3)
221 FCRMAT{ //15X,33HENTRAINED VELCCITY 2 1PE1L1.3)
"230 FORMAT{ //15X,33HREYNCLCS NUMBER y1PELL.3)
24C FORMAT{ //15X+33HDIANETER RATIC +1PELL.3)
250 FCRMATU //15X,33HLANINAR VISCOSITY y IPE11.3}
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LEASE 2.0 - MAIN ' CATE

26C -FCRMAT( //15X,33HFLUID ODENSITY - . y 1PEL11.3)

270 FCRMAT( //15X,33HFLCh RATIC " +1PELll.3)

310 FCRMAT(13HOITER I---y 9X+29HABSOLUTE.RESTDUAL SOURCE SUPMS,SX,
111H-==-1 [-—=y37H FIELD VALUES AT MONITCRING LOCATION(,12y1Hys12,
26H) —--1/14H NO UMOM s 5X 3 4HVMOM s 5X 3 4HMASS ¢ 5X 9y 4HENER s 5X 9 4HTKIN
335X 4HDISP S X 1HU s8X 9 1HV y8X 9 LHP 98X LHT 98X 1 HEK 48Xy 1KD/ )

MON DEC 11,4 1578

311 FCRMAT{1E +13+45X41P6ES2+3Xy1P6ES.2)
312 FCRMAT{1HQ,5G(2H- ))

ENC
LEASE 2.0 o INIT ' DATE = MON DEC 11, 1978
: SUBRCUTINE INIT
c V , _
CHAPTER € € € € C O O O PRELIMINARIES 0 0 0 0O O 0 0 O
C . B
CCNMMCA , o
" 1/UVEL/RESCRU,NSKPU,URFU,CXEPL(2€412),DXPWU{26+12),SERUL26412),
2 SNSU(2€412)
1/VVEL/RESORV ¢NSKPVURFVDYNPVI{26,12) JCYFSVI26412)4SNSVI26412),
2 . SEWV{26412) 4RCV(26,412) '
1/PCOR/RESORM s NSHPPy URFP 4 DU{26+12) 1DV(26412) 3 1PREF, JPREF’
1/VAR/ UL26912)4VI(264,12),P1264,12),PP(26412)yTE(26,12),ED{26412)
L/ALL/IToJToNIyNJoNIMLyNIFLGREAT
1/CGECM/ INCCOS XIW{18),YIH{18),XOKR(18),Y0K(26) ,X0C{18),Y0C(18),
2 ROC{18) 4XICI18) yYIC(LB)yRICILB) 4 X(26412),Y{26912)5XU126912),
03 YVI26412) +DXEP(126412)3DXPWI26512) sCYNP{26,12),DYPS(26412),
4 SNS(26412)4SEK(26412)3R{26412)4RV{26,12}
1/FLUPR/URFVIS,VISCOSsDENSITPRANDT yDEN{26,12)4VIS{26412)
1/KASE T5/UINyTEIN,ECIN, FLOWIN,ALAMDA,UENsFLOWEN, A+RSMALL,RMIX,
2 INOZ+INPL,yINGZ4INPL4IENT,IEPL '
1/TURR/GEN{2€6+12),CCyCMU+C1,C2,CAPPA,ELOGPRED,PRTE
L/CCEF/AP{26,12) ,AN(26,12), AS(ze,Lza,Aztzé 12) 1 AWI26512)9SU(26412),
2 SP{26,12)
C .

c

CHAPTER 1 1 1 1 1 CALCULATE GECMETRICAL CUANTITIES 1 1 1 1 1

CCO 1C1 J=JNP1,y,NJIMI
ILAST=INCZ+J-JNP1-1 S
0O 1C1 I=1,ILAST :
CPX={Y{I,J)=-YICLI))I/IX{I,J)=-XICLI)) .
CEX={Y(I+41,J)-YICLJI I/ IX(I+1,J)=-XIC(J))} "“
ANCEP=ATAN{{GEX~GPX) /{1.0+GEX*GPX})
CXEP{I4J)=ANGEP*RIC(J)

1C1 CXPwlI+14JI=CXEP{I4J)
CC 102 J=JNP1l,NJIM1
I=INCZ+J-JNF1
ANG=ATAN((XLI +J)=XICCIII/IY(TI4d)=YIC(J)))
CXEP(1,J)=ANG*RIC(J)

1C2 CXPwlI+414J)=CXEP{I4J)
CC 103 J=24JNCZ
DXEPLINGZ4d)=2.0%{X{INPLyJNPL)+A)

102 CXPWIINPL1sJ)=CXEPIINCZ+J)
TENMI=IENT-1
CGC 1C4 I=INFP1,4NINMI1
IF{ILTLIENT) JLAST=JNCZ+I-INOZ
IF(I.GELIENT) JLAST=NJM]
CC 104 J=2,4,JLAST
CXEF(I,J)=X{141,J)-X{1,4J)

104 CXPw{I+1sJ)=DXEP{I4J)
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CO 1C€ J=JNPL,NJV2

ILAST=J+INOZ-JNDOZ .

CC 1C6 I=1,ILAST )
CPY={Y(T4J)=YCCLI)I/Z{X{I+J)=XCC(I))
GAY={Y(14J+L)-YOC(I})/{X{I,J41})-XCC(I})
LEASE 2.0 INIT CATE = MON DEC 11, 1978

ANGNP=ATANL{CPY=GNY)}/(1.0+GPY*GNY))
DYNP(I,J)=ANGNP®RGC(T)
106 CYFS{I,J+1)=CYNP(I,J)
LC 109 I=1,1ENT -
CNWY=(YOW(I)=YOC(I)) /{XCu(T}=XGC{I))
GPNKY=(Y{IsNJML)=YGCIT) )/ (X{T,NIJM1)=XOCI{I))
ANGNW=ATAN{{GPFNWY=GNKY) /(1. C+GPNRY*GNWY) )
109 CYNP(I,NJVM1)=2.0%ANGNW*ROC(I)
CC 11C I=1,INOZ
CSWY=(YIW{I)=YCCL{I})/{XIh{TI)=XOC(I))
GESKY={Y(I,JNPLI=YCCLI))/{X{I,JNPL)=XOCLI))
: ANGSW=ATAN{ {GSKY=GPShY)/{1.04GPSKY*GSHY))
110 CYPS{I,JNPL)=2.0%ANGSWARCCII)
£0 111 J=2,JNCZ.
LC 111 I=INP1sNI
DYNPUI s ) =Y (I,J+1)=-Y(14J)
111 CYPS{I,J+1)=CYNP{I,J)
CC 112 J=JNPLyNJM2
IFIR=J-JNCZ+INF1
CC 112 I=IFIR,NI
CBYNPUId)=Y(I,d+1)-Y(1,J)
112 CYPS{I,J+1)=CYNP{1,J) -
CC 114 I1=1EPL,NI
114 CYNPUIJNJVM1)=CYNPLI,NJM2)
: CC 115 I=INP1,NI
115 CYPS(I,2)=CYFS{1+3)
LC 116 1=2,NIM1
S IF(I.LE.INGZ) JFIR=JAP1
IF{1.GT.INGZ) JFIR=2
LC 116 J=JFIR,NJN1
SEW(I15J)=0o5%(DXEF(I4J)+CXPWII4J))

~ CXEPU(I,J)=SEW(I,J)

116 DXFWU(I+1,J)=CXEPLII,J)
LC 117 I=1,NI
IF(I.LE.INCZ) JFIE=JNPI | .
IF(1.GTLINCZ) JFIR=Z LT
LC 117 J=JFIR,NJMI |
SNS(T14J)=0.5%{CYNP{I,J)4CYPS(I,J))
CYNPVITI,J)=SNS(I,J)

117 CYPSVII,J+1)=CYNPVII,J)

LC 113 J=2,JNOZ
113 SNS{INCZ,J)=SNS(INPL,J)
LO 118 J=2,KJV1 "~
118 SEWINI,J)=SEW(NIM1,J)
DC 11S 1=2,NI
IF{I.LE.INOZ) JFIR=JNP1
IF(1.GT.INCZ) JFIR=2
CO 116 J=JFIR,NJM]1
SEWU(T J)1=0.5%{SEWIT,J)+SER{I-1,J))

115 SNSU(T4J)=C.5%(SNSIT4J)4SNSCI=14d))
LC 120 I=1,NI
IF(1.LT.INCZ) JFIR=JNPL+1
IF{1.GE.INGZ} JFIR=2
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121
C
CHAPT
C

200
LEASE

c
CHAPT
¢

- C
CHAPT
c

101
1CC
C
CHAPT
c

LU 1y J=Jarinnsgihngiml

- 2.0 INIT - CATE = MON DEC 11, 1978

SEWVII J)=0.5%(SEW(T,J)+SERL{T,J-1))
SNSVII4J)=05%(SNS{T+JI+SNS{1,J-1))
£C 121 I=14NI

IF{TILT.INCZ) JFIR=JNP1
IF{I.GE.INCZ) JFIR=2

CC 121 J=JFIRyNJ
RVIIsJI=Co 5% (RIT4JI+RIT4J-1))
RCVI{I,J)=0.5%{RVII4J)+RV(I,J-1))

ER 2 2 2 2 2 2z SET VARIABLES TO ZERC 2 2 2 2 2 2

Ca 200 I=14NI

IFIT.LELINCZ) JFIR=JNOZ
IF(IGTLINCZ) JFIR=1

CC 200 J=JFIRyNJ

U(14J}=0.0

VIIeJI)=0.0

F({I,J)=0.C"

PP{I,J)=0.0

TE(1+J)=0.0

EC{I+Ji=C.0 .

CEN{I,J)=CERSIT

VIS(I,J)=VISCCS '
CU(T,J)=0.0 ' -
DviI.Ji=C.C - ‘
SU(I,Jdi)=0.0 '

SF(I,J)=C-O

CCNTINUE

FETURN

END

2.0 - PRGPS ' DATE = MON DEC 11, 1578
SUBRCUTINE PRGPS »
ER 0 6 © 6 0 0 0 O PRELIMINARIES 0 O G G O O O

CCMMON

1/FLUPR/URFVIS:VISCGS D&hSITyPkANDTyDEN(&é:lZ) VIS(26,12)
1/VAR/ U(26412)4VI(26412)4F(26412),4PP{26512]), TE(26 12),ED(26:14)
I/ALL/ITedTeNI sNJ4NIMI,NIVL14GREAT
1/TURB/GEN(26412),CCyCMU,C14C2,CAPPA, ELLG,PKED:PRTE

ER 1 1 1 . VISCGSITY 1 1 1

LC 100 I=Z,NIM]
LC 100 J=2,NJ¥1
VISOLD=VIS(I4J)
IF(EC(I,J).EC.C.) GC TG 102
VIS(I4J)=DEN(I,J)*TELI, J)HH2HCHU/ED (1541 +VISCOS
¢c TC 101
VIS{I,J)=VISCCS

~UNCER-RELAX VISCGSITY
VIS(IyJ)=URFVIS#VIS(I,d)4(1.=URFVIS)+VISCLD
CCATINLE

ER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2

CALL PROMOEL(1)
2176



RETURN
ENC

LEASE 2.0 CALCU DATE = MON DEC 11, 1578

SUBROUTINE CALCU
c ,
CHAPTER € C€C € C C C O C PRELIMNINARIES O 0 0 0O 0 0 0 O
c ' :
CENMMCN
1/UVEL/RESORU yNSKPU yURFUSDXEPU(26412) yDXPWUI26312) 3 SEWUL26412)
2 SNSU{(26,12)
1/PCOR/RESCRM yNSKPP yURFP,CU{264+12)+0V(26412) y IPREF,JPREF
1/VAR/ U(26412),V{264,12),P(26512)4PP126412)3TE(26412)5ED(26,12)
1/ALL/ITyJTsNIyNJSNIML,NIFL,GREAT o
1/GECM/INCCOS ¢ XIW{18) sYIW(18) 9 XCHI18) s YCW(26) 4XOC{18),YCC(18),

2 CROC{18)¢XIC(18):YIC{18),RIC{18),X(26412),Y{26+123,XU{26+12),
3 YV{26412),DXEP{26412) sDXPUHL26, 12)yCYNP(26’12)yDYPS{£6,12)7
4 SNS{26412)4SEWIZ26912)+R(26912)4RV(26,4,12]

L/FLUPR/URFVISyVISCOS+DENSIT,FRANDT 4CEN(26412),VIS{26412)
1/CCEF/AP (2643 12)1AN(26412)4AS{264121AE(26412) 3AW{264120,SU126412),

2 SP(26412)
1/KASE TS/UINyTEIN,ECINyFLCWINyALAMCAUENsFLOKENy AyRSMALL,RMIX,

2 INCZyINPLsUNOZyJINP1yTENT4TEP]
C , : .

CHAPTER 1 1 1 1 1 1 ASSEMBLY OF COEFFICIENTS 1 1 1 1 1 1 1
c | _
CC 1CC I1=3,NIVM1
IF{I.LEJINFL) JFIR=JNF1
IF{1.GT.INP1) JFIR=2Z
CC 101 J=JFIR,NJNM1
C————- CCMPUTE AREAS ANLD VCLUME.
AREAN=0.5%(RVIT4J+1)4RVII-1,J%1) )50 55 {SEKULT s J}+SERU{TJ+1))
AREAS=0.5%(RV{I4J)+RVII=14J))*0 5% (SEWULT J I+SEWUL{TJ~1))
AREAE=0.,125%(R{I-1,J)+2, O%R{I:J)+R(I+1yJ)J*{%NSU(IyJ)+SN§U(I+1,J))
AREAN=0,125%(R{1-2,J)42,0%R{I-15J)4+RIT,J) I={SNSULT,J)+SNSULI-1,d))
VOL=0.25%{R{T 4 J)+R{IT=143J)V4SEWUL{T3J)%{SNS{I-15J)4SNS{T+J))
 C===-——=CALCULATE CONVECTICN CCEFFICIENTS
CN=05%{CEN(I,J+1)+0EN{T4J) ) %V(T,J41)

GNW=0.5% (DEN{I=1,J)+0EN(TI=1,4J41) )%V {I-15J+1)
GS=0e5%(CEN{ Ty J=1)+DEN{T ) )%VII,J)
GSh=0o5%(CEN{T-14J)+CERN(I-1,J-1)33V{I=-1,J)
GE=0eS5*{DEN{I+15J)+DEN(IJ)I%U{1+14J) ,

- GP=0.5%{CEN{I4J)+0EN{I=1,J)¥3U{1,J} - . . \
Ch=0e5*(DEN{I=14J)+DEN{TI~2,J)3%0{1-1,4) : ‘
CN=0+5%{CN+GNh ) *AREAN
CS=0.5%(GS+GSH)*AREAS
CE=0.5%{CE+GP )% AREAE

N Ch=Ce 5% (GF+Gh) ¥ AREAW

C—--—-—CALCULATE CIFFUSION COEFFICTENTS
VISN=0e25%{VIS(IsJ)+VISII J41)4VISTI=1¢J)}4VIS{I=19J%1))
VISS=0e25%{VIS{I 4J}+VISIT4J=1)4VIS{I=-1,J)4VIS(I=-1,J-1))
VISE=0.25%{VIS{I=1,J)42.0%VIS{I,J)}+VIS{I+1,J))
VISW=0.25%(VIS{I=2+J)42.04VIS{I=-1,J)4VIS{I,J))
CN=VISN*AREAN/{OS¥{CYNP(I,J)+DYNP({I=1,J)))
DS=VISS*AREAS/(0.5%{(CYPS(1,J)4DYFS{I-1,J)))
CE=VISE*AREAE/CXEPUI(I,4)
Ch=VISWSAREAW/CXPWUL1,J)

C——-—- CALCULATE CCEFFICIENTS CF SGURCE TERMS

LEASE 2.0 CALCU DATE = MON DEC 11, 1G7E&
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SHF=UN—LOoOTLLETLW
CP=AMAX1{0+CySMP)
CFC=CP .
C-——- ASSEMBLE MAIN COEFFICIEMTS
AN(TI3J)=CA-0.5%CN
IF{ABS{C.5%CN)GToDN) AN{I,J)=AN{I,J)+ABS(0.5%CN)
AS({1,J)=CS+0.5%CS
IF(ABS(O.)*CS) GT.DS) AS(I,J)=AS(I+J)+ABS{0.5%CS)
RE{1,J)=CE-0.5%CE
TF{ABS{05%CE)eGTeCE)} AELI,J)=AE{I,J)+ABS{0.5%CE)
An{T,J)=Dh+0e5%CH
IF{ABS(0+5%CW) aGToCW) AW{I4J)=AW{I,J)+ABS{05%CK)
CULT+J)=Ce 5% (AREAE+AREAK)
SULT,J)=CPG*U(T,J)+DULT4d)%(P(I=14J)=- P(I,J))
SP{I,Jd)=-CP
101 ccmrznue
100 CCNTINUE
C : '
CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2
C . : . .
' CALL PROMOD{2)
C
CHAPTER 3 FINAL CCOEFF. ASSEMBLY AND RESTCUAL SOURCE CALCULATION 2 3
C - .
RESCRU=0.0
CC 200 I=2,NINM1
IF{I.LE.INPL) JFIR=JNP1
IF{I.GT-INPLl) JFIR=2
LC 301 J=JFIR,NJM1
AP{1,4J)= AN(I,J)+AS(IvJ)4AE(IqJ)+Ah(I:JJ SP(I:J)
CULT,J)=CULI4J)/AP(1,4)
RESCR=AN{T 3J)%ULT o J+L)4ASH{T ) XULT4J-1Y+AEL(T,J)%UL1I+1,J)
1 FAW{T 3 J)*ULTI-14d)=AP{T4J)*U{T, J)+SU(I,J)
VCOL=R(I 4 J)*SERK{I,J)%SNS(I,J) :
SORVCL=GREAT*VCL , ’
IF(-SP{I,4J).6T.0.5%SCRVOL) RESOR=RESOR/SORVOL
RESCRU=RESCRU+ABS(RESCR}
C——~-~UNCER-RELAXATICN
AP{I,J)=AF(I,J)/URFU ,
SLiI, J)“QL(I,J)+(1.—URFU)*AP(I,J)*U(I,J)
CU(I4J)=CU(1,J)%URFU s
301 CCNTINUE
300 CCNTINUE ,
C . _ C :
CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4
c -
CC 400 N=1,NKShPU ' ‘
400 CALL LISCLVI342,NI4NJ,IT,JdT4U)

RETURN
ENC
" LEASE 2.0 | CALCV DATE = MON DEC 11, 1978
 SUBRGUTINE CALCV |
C
CHAPTER G C C C C C O O PRELIMINARIES 0 0 O O 0O O O O
c : , )
CCMPCA
1/VVEL /RESCRV sNSHPV s UREV s DYNPV(26412) s DYPSVI 265123 sSNSV(26+12)
2 SERV(26,12)4RCVI26412)

1/FCOR/RESCRMyNSWPP s URFP,DU(26+12),0VI(2€412) yIPREF,JPREF
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L/ALL/IT o JToNT s NIyRIF T4 NIVYISGREAT
1/GEQNM/INCCCSy XIW(18),YIW(18),XOW{18),YCK(26) L,X0C(18),YCC{1E),

2 ROC(18) o XICCL18) 4YIC{18) RICILB) X (26412):Y(26+12)sXU(264512),
3 YV{26412),DXEP(26412):DXPW(264+12) sDYNP(26,12),4DYPS{264512)
4 SNS{26412) ySEW{Z6412)+R{26412)4RV{26412) .

1/FLUPR/URFVISyVISCOS,DENSIT,PRANDTCEN{26412)4VIS(26412)
1/CCEF/AP{26, 12),Ah(26y12) AS{26+412) 3 AE{26412): AN 26412),SU{26,12) 4!

2 SP12€412)

1/KASE T5/UINGTEINJECINs FLOWINALAMDA,UEN,FLOWEN,y A,RSMALL4RMIX,

2 - INGZ+INPLyJINCZ+JNPLLIENT,IEPL '
C
CHAPTER 1 1 1 1 1 1 ASSEVFBLY CF CCEFFICIENTS 1 1 1 1 1 1 1
CHAPTER 1 1 1 1 1 1 ASSEMBLY OF CREFFICIENTS 1 1 1 1 1 1 1.

~DC 1CC I=Z4NINM1
IF{I.LEL.INOZ) JFIR=JNP1+1
IF(IGT.INCZ) JFIR=3
CO 1C1 J=JFIR,NJM1
C—=——- CCMPUTE/AREAS ANLC VGLUME
' AREAN=RCVIT4J+1)%Co5%{SEWVIT J)+SEWVII,J+1))
 AREAS=RCVIIJ)%0.5%( SEWVITeJ)+SEWVIIJ-1))
AREAE=0625%(RVIT yJ)+RV{I+LyJ) )% {SNSV{I4J)+SNSV{I+1,J))
AREAN=0.,25%{RVITIyJ)+RVII=14J) 1% (SNSVIT+J)4+SNSVII=-1,J})
: VOL=RV {1 4J)I%SEWVIT od )ASNSVIIJ)

C————- CALCULATE CONVECTION CCEFFICIENTS
GN=0e5%(CEN{IJ+1)40EN(IJ))%VII,J41)
GP=045%{DEN{TJ)+DEN(T3J=13)1%V{I4J)
CS=0o5%{DEN(T,J-1)14CEN{TI,J-23)VI{I4Jd-1) -
CE=0.5%{CEN{I+1,J)4DEN{IJ)IFULI+1,4) :
GSE=0eS%{DEN{I3J=-1)4CEN{I+1yJ-1))3U{I+1,J-1)
CW=CeS5*(DEN{I ¢ J)+BEN{I=15J)3%U(1,J)
GSK=05%(CEN(1,J-1)+CENII=15J=1))%U(T,J-1)
CN=0.5%{CGN+GP ) *AREAN
CS=0.5%{CP+CS)*AREAS
CE=0.5%{GE+GSE)*AREAE
CW=0.5%{GW+GSh) *AREAK

C--——- CALCULATE CIFFUSICN CCEFFICIENTS
VISE=0625%{VIS{I J}+VIS{I+1,4J)4+VIS{I,J=-1)+VIS{I+1,J-1))
VISW=0.25%{VIS{I4J)+VIS{T-14J)4VIS(I,J-1)4VIS{I-1,J-1})
VISN=0.25% (VIS{I,J+1)42.0%VIS{I,J)4VIS(I,J-1))
VISS=0.25%(VISII,J)42. 0*VIS{I,J- 1)+VIS{I,J=-2))
CA=VISNH*AREAN/CYNPV(I,4J)

CS=VISS*AREAS/DYPSV{I4J) .
CE=VISEXAREAE/ (O 5% {CXEP{I,J}+DXEP{I,J-1))) T o '
DW=VISW*AREAW/(0.5%{DXPK{I,4J)4DXPK{(I4J-1))) '

ILEASE 2.0 | CALCV " DATE = MON DEC 11, 1578

- CALCULATE CCEFFICIENTS GF SGURCE TERMS
‘ SMP=CN-CS+CE-CW

CP=AMAX1(0.0,5VP)
CpPO=CP

C-—==-—-ASSEMBLE MAIN COEFFICIENTS

' AN{IsJ)=CN=-0e5*CN
TF(ABS{O05%CN) «GTLDN) AN(I,J)=AN(I4J)+ABS{045%CN)
AS(I4J)=CS+0.5%*CS
IF{ABS(0.5%CS)«GToDS) AS{T,J)=AS{I4J)+ABS{0.5%CS)
PE(LT+J)=CE-0.5%CE
IF{ABS(0.5%CE)+.GT.CE) AE{I,J)=AE(I,J)+ABS{0.5%*CE)
Aa{TyJ)i=Ch+0.5%CH
IF{ABS{0+5%CW) «GToCH) AWI{1+4J)=AWTI,J)+ABS(0.5%CW)
OVII4J)=0.5%{ AREAN+AREAS)
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IF{I.LE.INCZ) JED=JNP1+1
IF(1.GT.INOZ) JEC=JNP1+I-INOZ
IF{I.LToIENToANCoJoCELJED) SUTd)=SU(TJ)=(BENIT,JI+DEN{I-1,J))
1#(0425% (UL, J)+UCT+1J34UCT pd=1)+U{ T+ 1y J=1) ) J#%E2%VCL/ (RIC{J)
14RIC(J-1))
SP(1,J)==CP
TF(INCCOS.EQ.2) SPUI4y)=SPLI;J)=VIS{I,J)#VOL/RV(T,J)4%2
101 CONTINUE
100 CCNT INUE
c ' . ‘ |
CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2
c '
CALL PROMOC(3) S ,
CHAPTER 3 FINAL CCEFF. ASSENBLY AND RESIDUAL SOURCE CALCULATION 3 3
c - |
RESORV=0.C
CC 300 1=2,NIML
IF{1.LE.INOZ) JFIR=JNP1+1
CTF{I.GT.INCZ) JFIR=3
LC 301 J=JFIR,NJMI }
AP(T v J)=AN(T g J 4RSI, d)+AEL T4 4AN(T,J)-SP(T,4d)
DV(I5J)=DV(T4J)/AP(TJ)
RESOR=AN (T4 }¥VIT J+1)4ASTT )%V (1,3d=1)+AE{T,J)%V(I+1,J)
1 AT 31 4VII-1,J)- AP(I,J)*V(I,J)+SU(1,J)
VOL=RITI,J)*SEW(T4J)%¥SNS(1,J)
SCRVCL=GREAT*VCL ]
IF{-SP{I+J).GT.0.5SCRVOL) RESGR=RESCR/SCRVOL
| RESORV=RESCRV+ABS (RESOR)
c————- UNCER-RELAXATICN
| AP(TI4J)=AF(1,J)1/URFV
SULI 3 d)=SULT 4J)+ {1 .=URFVI*APIT,J)%V(14J)
CVII3J)=CV(I,J)*URFV
301 CCNTINUE |
3CC CONTINLE
CHAPTER 4 4 4 SOLUTICN OF DIFFERENCE EQUATION 4 &4 4 4 4 4 4
| CC 400 h=1;NShPV

LEASE 2. 0 - CALCV : -~ CATE = MON DEC 11, 1978

4CC CALL LISCLV(273’“I9“J917,J71V) . \
RETURN : , -
ENC »

TSUBRCUTINE CALCP
C . ;
CHAPTER 0 ©C -0 6 O O 0 O PRELIMINARIES 0 0 6 0 0O G C O
c B

CCMNMCA

1/ FCCR/RESCRM ¢NSWPP yURFP s CU(264912) 4DV(26412) 4 IPREF, JPREF

1/VAR/Z U(26412)9V(26412)4P126412)4PP(264,12)3TE(26412),ED{26,12)

1/ALL/ITyJToNLsNJoNIFMLoNJV1, GREAT

1/CEQM/INDCOS  XIW{18) yYIW{18) yXOW{18) yYCh{26) +XOC(18)+YGC(18),

2 ROC{18),XICU18),YIC(18)4yRIC(18)4X(26912)4Y(26,12)+XUl26412),
3 YV{26412)+DXEP(26512) +DXPU{26412)40YNP{26,12),DYPS{26412)»
4 SKS(26412)4SEW{26412)3R{26412)4RV(26412)

1/FLUPR/URFVIS,VISCOS,DENSTITyPRANCTyDEN(26+12),VIS{26+12) : i
1/COEF/AP(26412)+AN{26+12)+A5(26412)+4AE(26412) 4AH{26412),4SU(26,412),

2 SP{26412)
1/KASE T5/UINSTEINJEDIN,FLCWINsALAMCAZUEN,FLOWEN, A4sRSMALL,RMIX,
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¢

CHAPTER 1 1 1 1 1 1

C

C

CHAPTER 2z 2 2 2 2 2 2

C
C

CHAPTER 2 3 3 3 3

c

C

CHAPTER 4 4 4 4 4

C

C

CHAPTER S 5 5 5

c

RESCRM=0.0
ASSENMBLY CF CCEFFICIENTS 1

CC 100 I=2,NIV1
IF{I.LE.INCZ) JFIR=JNPL
IF{T1.GT.INOZ) JFIR=2Z

CC 101 J=JFIR,NJNM1
PP{1I4J)=C.0

----- CCMPUTE AREAS ANC VOLUME

AREAN=RV (T ¢ J+1)%Co5% (SEW(I9J)4SER{T1J+1))
AREAS=RV(I4J)%Ca54(SEWIIsJ)+SEW(TsJ=1)])
AREAE=C.25% [R{T,JI+R(I+1 91 )5 (SNS{1oJ)+SNS(I+1yJ]))
AREAW=0.25%(R (1,1 +R(1=1,d) )% [SNS{T,J}+SNS(I=1,J))
VCL=R{I;J)%#SERLT,J)#SNS(14d)

CALCLLA]L COEFFICIENTS

CENN=0 5% {CEN (T, J )40EN(T,J+1))
DENS=0.5*(DEN(1,J3+DEN(I,J-l))

CENE=0.5% [CEN{I,J)+DEN{I+144))

- CENW=0.5%{CEN{I,J)+CEN(I-1,J)])

——

ANCT o J)=DENN*AREANKOV{T,J+1)
AS(T4J)=CENSKAREASHCV(I4d)
AE(T,J)=DENE*AREAEXCU(T+1,J)
PRUT,J)=CENWH*AREAWKDUL 154 ])
CALCULATE SCURCE TERNMS
CN=CENN#V{I,J41)*AREAN
CS=CENS*V{I,J)¥AREAS
CE=DENE*U(I1+1,J)*AREAE

. CW=DEANWXU(I,J)*AREAW -

101
106

LEASE 2.¢C

301

SVE=CN-CS+CE-CW

SF{I,J1)=0.0

SU{I+J)==-SkKP

COMPUTE SUM CF ABSCLUTE #ASS SCURCES
RESCRM=RESCRVM+ABS(SMF)

CCNTINUE

CCNTINUE

CALCE EATE = MON CEC 1

PROBLEM. POEIFICATIONS 2
CALL PRCMGL{4)

FINAL CCEFFICIENT ASSENMBLY 3 3
DC 300 1=24NIV1

IF{1.LECINGZ) JFIR=JNP1

IF(1.GT.INCZ} JFIR=2

CO 2C1 J=JFIR4AJM1

AP(I s J)}=ANTT 90 2ASTT I )+AELT I3 ¥AWLTJ)-SP(1,J)

300 CCNTINUE

SCLUTICN CF DIFFERENCE EQUATIONS

LG 400 N=14NSkFPP

400 CALL LISCLVIZ2,2,NI NJ;1T4JT4PP)

—— o —

CCRRECT VELGCITIES AND PRESSURE 5
VELGCITIES _
281
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DC 500 I=Z,NINM1
CC 501 J=2z,NJdM1
IFITNEC2) ULTd)=ULlTJ)40ULTd)%{PP{I-1,4)=-PP(I,J))
TF(JNEL2) VIIod)=VITsd)+DVII )% (PP{1,J=-1)~PP(I,J))
501 CCNTINUE -
5CC CCATINUE
Cmmm——- FRESSURES {WITk PROVISICN FOR UNDER-RELAXATION)
PPREF=PPIIPREF.JPREF)
CO 502 I=2,NINM1
CC 503 J=24NJVM1
P{IyJ)=P{I+J)I+URFP*(PP{14J)-PPREF)
503 CCNTINUE
£02 CCNTINLE
CC 5C4 J=24MNJNM1L ¢
504 FINI+J)=PININ1,J)
RETURN
END

LEASE 2.0 CALCTE ‘ DATE = MON DEC 11, 1978

SUBRCUTINE CALCTE
c : : ,
CHAPTER 0 0 O O O O O PRELIMINARIES ¢ O O €C ©0 0 O
C : :

CCMMON

1/TEN/RESORK ¢ NSWPK o URFK
L/VARZ U(26412)4,VI{26412),P126,12)sPP{26412)}»TE(26912)4ED[26412)
1/ALL/TT+JTeNToNJ«NIMLIyNIV1,GREAT
1/GECM/INCCCSXIW(18),YI¥(18),X0W(18),YOWI(26) ,X0OC(18),YDC(18),

2 ROC(18)4XIC118),YIC(18) RIC(18)+X{264+12)Y(26412)+1XU{26412},
3 YVI26412)4DXEPI126412)4DXPH{26412)DYNP(26,12),DYPS{26412),
4 SNS(26412) +SEW(264912)yR(26412)sRVI26,12)

1/FLUPR/URFVIS, VISCOS,DENSIT,PRANDT+DEN{(264+12),4VIS{26,412)
1/CCEF/AP(26412) 1AN(264312)+AS(264912)4 AEL2064,12),AW(26,12)+SU{2E412),
2 SP({2€412)
1/TURB/GEN{26412)4CC, CMU, ClyCZyCAPPAyELCG PRED+PRTE
llhALLF/YPLLSh(ZB)gTAUk(ZB) s YPLUSS(18),TAUS(18]}
1/KASE TS/UIN,TEIN,ECIN, FLOWINJALAMOALUEN,FLOWEN, AsRSMALL,RMIX,
2 INGZyINP1,JINCZyJNPLs IENT,IEPL
1/S5USP/SUKLC{26, 12)15PKD(¢£:12)
C .
CHAPTER 1 1 11 1 1 AQSEWBLY CF COEFFICIENTS 1 1 1 1 1 1
C —

v

FRTE=1.0

NJIM2=NJ~-2 -

CO 100 I=2,NINM1 :

IF{I.LE.INCZ) JFIR=JNF1

IF{I.GT.INCZ) JFIR=2

CBC 101 J=JFIR,NJML

C—----CCMPUTE AREAS AND VOLUME ,
AREAN=RV(I+J+1)%0.5% (SEWIT,J)+SEW{T,J+1))
AREAS=RVIT,J) %0, 5% (SEW{I J)+SEW(T,J=1))
AREAE=0.25%(R(1,J)+RIT+1,J) ) (SNS{T,J)+SNS{ I41,J))
AREAW=0,25% (R{T4J)+R(I=1,J))*{SNS(T4J)+SNS(I=1,J))
VCL=R(T,J)*SEW{I,J)%SNS{T,J) |

C———mm- CALCULATE CCAVECTICN CCEFFICIENTS

GN=0.,5%(DEN{ 1, J)+DENII,J+1))*VI{I,J41)

GS=0.5%(CEN(T,J)+CEN(T,J=1) )%V (1,d)

CE=05%(CEN(I,J)+DEN(I+1,J))%U(I+1,J)

GH=045%{CEN( 14 J)+DENCI=15J) 1 %U(T,J)

Ch=GN*AREAN
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Laoa=Lo“AREAS
CE=GExAREAE :
Ch=GW*xAREAW N
C—=m— CALCULATE CIFFUSION COEFFICIENTS
GAMN=C-5*(VIS{I,J)+VIS(I,J31))/FRTE
GAMS=O.5*(VIS(I,J)+VIS(IvJ~l))/PRTE
GANE=Q.5%(VIS(T,J¥+VIS(I+14J))/PRTE
CAMW=0.5%(VIS{IJ)+VISI(I- l,J))/FRT[
CN=GANMNHAREAN/CYNP{I+J)
CS=GAMS*AREAS/LCYPS(I,J)
CE=CAMEXAREAE/LXEP{I,4J)
Ch= GANh*AREAh/DXFh(IyJ)
C————-SCLRCE TERMS

LEASE 2.0 ‘ - CALCTE CATE = MON DEC 11, 1578

SMP=CN-CS+CE-C¥
CF=AMAX1{0.03SMP)
CFC=CP ‘
CDUCX={U(I+14J)-UlI,J))/SEW{T,J)
CVEY={V(I,J41)-V{I,J))/SNS{1,J)
DUDY=({U(T,Jd)+U{I+1,J)+U(], J+1)+U(1+1,J+1})/4.—(utI,J)+U(1+1,J)+
LULT 4 J-1)4U{1+1,0-1))/4.)/SNS{I,d)
DVDOX=({VIT yd)+VIT3J+ 11 4VII+1 g0 +VII+1,J413)/4.—(VII9J)4VII,J+1)+VS
11—1:J)+V(I-1,J+1))/4.)/SEW(IyJ)
GEN(I+J)=(2.%(CUDX*%2+DVDY*%2)+(DURY+DVDX)%%2)%VIS(1,J)
c—————asstBLc MAIN CCEFFICIENTS
AN{1,J)=DN=-045%CN
TFIABS(0o5%CN) «GToON) AN{IyJI=AN{I4J)+ABS{0.5%CN)
- AS{15J)=DS+0.5%CS
TFIABS{0«5%CS)aGToDS) AS{I4J)=AS{I,J)+ABS(045%CS)
AE(14J)=CE-C.5%CE S
TFIABS{0e5%CE)GT«DE) AE{I,J)=AE{1,J)+ABS{0.5%CE)
AW{I+J)=CW+0.5%CH ~ ,
IF{ABS{045%Cl)«GToDW) AW(T9J)=AW{T+J)+ABS{05%CH)
SULTJ)=CPCETE(T,J)
CSUKDA{I,J)=SU(T4J)
SULT,J)=SULT JI+GEN(I,J)#VCL
SP{I,J)=-CP
SPKD(14J)=SP{I,J)
SP{I,d)= SP(I,JJ CC*CNU*CEN(IyJ)**c*TE(IyJ)*VGL/VIS(I,J)
101 CONTINUE
100 CCANTINUE - . A
C ' . . .
CHAPTER 2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 22 2
C .
CALL PRONMCCI(E)
C o ,
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESICUAL SOURCE CALCULATICN 3
C
FESCRK=0.0
LC 300 I=2,NIMI1
IF(I.LELINCZ) JFIR=JNP1
IF{1.GT.INCZ) JFIR=2
CC 301 J=JFIR,NJM1
APy JY=AN{I I 4ASTT JY+AE(T 4 J) 4T, d)=-SPLI,J)
R&SOR ANCI 2y ) *TEL I J+1)4AS(T g J)XTE(T 4 d- 1}<AE(I,J)*TE!I+1yJ)
1 +AU LTy JI*TE(I=1,d)- AP(I,J)*wc(I.J)+SU(1,J)
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C—=—

3C1
LEASE

30¢
C

CHAPT
C

400
401

402

LEASE

C
CHAPT
c

VUL=K UL gJd)I¥5EWLL g JIXENS{Lsd)

SCRVCL=GREAT*VCL

IF{-SP{I4J)«GT.C.5%SCRVCL) RESCR=RESCR/SORVOL

RESCRK=RESCRK+ABS(RESOR) '
~UNCER=RELAXATICN

AP({14J)=AP(I,J)/URFK

SULTsJ1=SULTyJ1+{1~URFKIFAP(I,J)IXTE(I,J)

CCNTINUE

2.0 . CALCTE CATE = MON DEC 11, 1578
CONTINUE
ER 4 4 4 4 4 SCLUTICN CF DIFFERENCE EQUATIONS 4 4 4 4 4

CC 400 N=1,.NSKPK

CALL LISCLVI2+s29NIgNJsITJT,TE)
CO 4C1 J=24+NJM1
TEINIsJ)=TE(NINL,J)

DC 4CZz2 J=JNPLlyNJNM]
TE(LlsJI=TE(24J)

RETURN

END

2.0 | CALCED - DATE = MON DEC 11, 1678
SUBROUTINE CALCED -
ER 6 ¢ € 0 G ¢ O PRELINIAARIES 0 0 0 ¢ C e '0
CCNMNMCN

1/1DIS/RCSCREWNSWPE yURFE

1/ALL/ITsJdTeNIyNJWyNIMI NIV, GREAT
1/CECM/ INCCCS o XIW(1E) s YIW(18) o XCW{1E);YCKh{26) 4X0C(18),Y0C(18),

2 RCC{L18) +XIC{L8),yYIC{L18)+RIC(L18) +X(26412)+sY(26412)9XU(264121)+
3 YV{26412) +DXEP{ 2¢+12)4DXPW{26412) yCYNP{264,12),DYPS(26412),
4 SNS(26412)4SEW(26412)4R{26412)4RV(26,12)

1/FLUPR/URFVIS,VISCOS0ENSIT,PRANDT sDEN{26,12)4VIS(264+12) .
L/CCEF/AP(26412)9AN(2€412)9AST126412),AE(26412)+AW(26,12)4SU(2649121),

2 SP{26412)

c
CHAPT

1/TURB/GEN{2€6412),CCyCNU CvaZ'CAPPAaELGGyPRED PRTE
1/WALLF/YPLUSN{28), TAUN(ZG) sYFLUSS(181),TAUS(18)
1/SUSP/SUKDI(Z€4+12) ySPKD{26,12)

L/VAR/ U(26412)4V(26412),P{26,12)4PP(26,12), TE(Z&,IZ);ED(ZéyIZ)
1/KASE T5/UINyTEINJEDINFLCWINJALAMCA,UEN,FLOWKENy AsRSMALL,RNMIX,
2 INCZyINPLyJUNOZyJINPL, TENT,1EP]

ER 1 1 1.1 1 1 ASSEMBLY CF CCEFFICIENTS 1 1 1 1 1 1

CC 1CC I=24NINM1
IF{I.LE.INOZ) JFIR=JNP1
IF{1.CT.INCZ) JFIR=2
CO 101 J=JFIRyNJINM1
-CCMPUTE AREAS ANLC VCGLUME
AREAN=RVI(I9J+1)%CaS% (SEW(I,J)+SER(I,J+1))
AREAS=RVIT4J)*CeS*{SEW(TsJ)+SEW(TJ=-1))
AREAE=0.25%(RITyJI+R{T+14yJ)I*ISNS{I4J)4SNS{I+1,4))
AREAW=0425%(R{TyJI+R{I=1+J) )% (SNS{I4J)+SNS(I-1+J))
VCL=R{1,JI%SEW{TyJI%SNS{I,d)

-CALCULLATE CONVECTICN CCEFFICIENTS

CN=0 5% ICEN{T4JYH+CEN(TIsJd+1))*V(Id+1)
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GS=05%{DEN{IyJI+CEN(14d-1))%VI1sd)
CE=0.5%{CEN(T4J)+CEN{.I41,J))%U{I+1,J)
SGR=0.5%(CEN(I,JI+DEN{I=14J))3ULT,J) .
CN=GN*AREAN
CS=GS*AREAS
CE=GEX*AREAE
Ch=Ch*AREAN

C-=—==CALCULATE CIFFUSICN CCEFFICIENTS
GAMN=0.5%{VIS{I,J)+VIS{I,J-1))/PREC
CANS=0.5%{VIS(1,J)+VIS{I,J-1))/PREL
GAME=0.5%(VIS{I;J)+VIS{I+1,J))/FRED
GAMW=0.5%(VIS{I,J)4VIS{I-1,4))/PRED
CN=GAMN*AREAN/OYNF{I4d)
CS=GAMS*AREAS/CYPS({I,J)
CE=GANMEXAKEAE/CXEP(TI )

- Cl=CAMWEAREAW/CXPR{ T,J)

C————- SCURCE TERVMS
SMP=CN-CS+CE-Ch
CP=ANAX1(0.0,SMP)

LEASE 2.0 - CALCED CATE = MON DEC 11, 1678
i CPC=CP
C—m———- ASSEVBLE MAIN CCEFFICIENTS

AN{IsJ)=LCN-0.5%CN
TF{ABS{05%CN}eGTCN) AN{IoyJ)=AN{I,J)+ABS{05%CN)
AS{I4J)=DS+C.E%CS
IFIABS{(0.5%CS)GT.DS) AS(I,J) AS{TI4J)+ABS{05%(S)
AE{14J)=CE-C.5%CE
IF{ABS{05%CE)GTWDE) AE(I,J)=AE{14J)+2BS{0.5%CE)
Mwl] ¢ J)=Ch30.5%CW
IFIABS(0.5%CH) -GT+DW) AWl{I.J)}= Ah(I,Jl+ABSiO S*Cw)
SU(T+J)=CPCHEL{I, Jd)
SUKC{I,Jd)=SU(14+J)
SULT,Jd)=suUlI, J)+C1*CVU«C£h(IvJ)%VOL*DEN(I:J)*TE(IvJJ/VIS(IyJ)
SP{1,J)=-CF
SPKD{I44)=SP{1,Jd)
SFEF(I4J)=SP{T4J)-C2ACEN{IJ)FEC(T4J)*VOL/TE(14J)
101 CONTINUE
- 100 CCKNTINUE
C B i ) ‘ i :
CHAPTER -2 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2
C ' : .
CCALL PRCMGCLT) . . ' . R
C - . -
CHAPTER 3 FINAL CCEFFICIENT ASSEMBLY ANC RESICUAL SOURCE CALCULATICN 3
C . :
fESCRE=0.C
CC 300 I=2,NIN1
IF(T.LEL.INDOZ) JFIR=JNP1
TF{I1.GT.INCZ) JFIR=2
CO 301 J=JFIRNJNM1
APLT ¢ J)=ANTT JY4ASITIZIIHAECTy IV 4AHIT 4 J)-SP(T,J)
RESCR=AN(TI 4 JY4*ED(IsJ4+1)4AS(]14J)%ED(T4J-1)+AE(TI4J)I*EQ(I+1,J)
1 +Aw{IvJ}$ED(I-l,J)-AP(lyJ)*ED(I,J)+SU(I,J)
VCL=RI{I 4 J)*SEW{TIyJ)I%SNS(T,4J)
SORVOL=GREAT®VGL ,
IF{=SPl{lsJ)GTe0a S*SCRVCL) RESOR=RESCR/SORVOL
RESCRE=RESCRE+ABS{RESCR)
C———— UNCER-RELAXATICN
. AP‘I:J)-’-&F(I,J),/UPFE
SU{T4J)=SULT,J)+(1~URFE)HAP(I JI*ED(I,4J)
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301 CUNIPANUE
3CC CONTINLE
c ' N
CHAPTER 4 4 4 4 4 SCLUTICN OF DIFFERENCE EQUATIONS 4 4 4 4. 4
C .
CC 400 A= lyhﬂhFD
4C0 CALL LISOLV(Z424NI, thITqJTaED)
CC 401 J=2.NJV1
401 EC{NT4J)=EC{NIN1,J)
L0 402 J=JNP1,NIM]
402 EC{l4Jd)=EC(2,0)
FETURN
ENC

-LEASE 2.0 - LISCLV _ DATE = MON DEC 114 1578

SUBROUTINE LISOLV{ISTARTJSTART,NI+NJ,»ITyJTPHI)
CIMENSICN PHI(ITJT),E(321,B(32)5C(32),01{32)

CCMMON

1/CCEF/AP(26,12),Ah(26112)yAS(26 12)4bE(26412), AV(:&,IZ)qSU(46712)v
2 SP{26,12)
1/KASE TS/UINSTEINL,ECIN,FLCWIN, ALANEA UEMs FLOWEN, A RSMALLRMIX,
2 INCZ?INPleRCZ JNP1,IENT,IEPL

Mbl=NI-1

NJIM1=NJ-1

- CCMMENCE wW—E SWEEP

CC 100 I=ISTART,NINM] :
IF{1.LE.(INCZ-2+ISTART)) JSTAR =JSTART+JNQZ~-1
IF{IoCT{INGZ-2+ISTART)) JSTAR =JSTART

. JSTM1=JSTAR -1
E(JSTM1}=0.0

CC{JSTML)=FRI(IJSTN1)

C———= COMMENCE S-N TRAVERSE
"7 CC 101 J=JSTAR ,NJNMI B
C--——-ASSEFBLE TCVA CCEFFICIENTS | , i

E(JI=AN{144)
TE(J)=AS(I44)
CUUN=AEC Ty J)¥PHI LT+ 19 d )4 AR(T 4 J)4PHI(I=14J)14SU{ 1)
C{J)=AF(T14d) ' b
C———— CALCULATE COEFFICIENTS GF RECURRENCE FCRMULA
TERM=14/{C{JI-BLJ)I*ELJ-1)) .
E{J)=E(J)*TERV
101 C(J¥={C{JI+B(J)*CIJI-1) ) *TERM ,
L CBTAIN NEW PHI+S - , L '
CO 102 JJ=JSTAR ,NJM1 .
J=NJ+JSTHLI=-JJ -
102 PHILIsJ)=ELJ)*PHI(I,J+1)+C(J) '
100 CCNTINUE
RETURN
END

LEASE 2.0 PRINT DATE = MON DEC 11, 1678

SUBROUTINE PRINT{ISTARTsJSTART NI NJsITyJTy PHILHEAD)
CIVMENSION PHI{IT+JdT) HEAD(6),STORE(50)
1SKIP=1
JSKIP=1
WRITE(6411C)KHEAD
ISTA=ISTART-13
100 CCNTINUE
ISTA=ISTA+13
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4LV A VS Y E R AL

IF{NI.LT.IENCIIEND=NI
WRITE{€y1110{1,1=LSTA,IERD4ISKIP)
WRITE(G4112) . - |
BC 101 JJ=JSTART¢NJ,JSKIP . .
J=JSTART+NJ-JJ
LC. 120 I=ISTA,IENC
A=PHI(1,J)
IF{ABS(A)LT.1.E-2C) A=C.0

126 STCRE{(I)=A

101 WRITE{6,112)Js{STORELT)sI=ISTA,IEND,ISKIP)

C ————————————————————————————————————————————————
IF{IEND.LT.NI}GG TO 100
RETURN
110 FERNAT(]."‘O, 17(£Hx‘-)97X16A4'7X9 17(4}‘!‘“‘))
111 FCRVMAT{1KO,13H I = 2 1241219)
112 FCRMATI{2FEC J)
113 FCRMAT(I3:8X41F13E9.2)
ENC /
LEASE 2.0 ‘ PRCMGD DATE = MON DEC 11, 1578
-SUBRGUTINE PROMOD {NCHAP)
C

CHAPTER € € € € € € C PRELIMINARIES €6 O0 O € G O C€C G O
C
CCMMEN -
1/UVEL/RESCRUNSWPU +URFU, DXEPU(26y12)fDXPhU(26112)ySEHU(26712)s
2 SNSU{26412)

: l/VVEL/PESCPVyAShPV1UFFV1CYNPV(LGy12)yDYPSV(46:12) SNSVI{Zé€s12)
2 SEWVIZ2€4+412)4,RCVIZ2€412)
l/FCGR/RESGRMyNSWPP,URFP,DU(Zés12) DVI26412) 4 IPREF,JPREF
1/VAR/ UL2€412)4V126+12),P(26,12),PP126412),TE(26412),EC{26,13]
1/7ALL/ 1T T o NTyNJyNIML,NIM1,GREAT
1/GEOM/INCCOSyXIW(18) s YIK{18) yXCh{18),YCK(26) ,XDC{18),Y0C(18),

2 ROC{18),XIC(18),YIC(18),RIC(L1E)4X{26412),Y{26412):XU{264+12),
3 YV(26412) yOXEP{26,12)0XPR(26412) sCYNP{26,12),0YPS{26512),
4 SNS{2¢412),SEn{2€6+412),R{26,12)4+RV(26,12)}

1/FLUPR/URFVISsVISCCS yCENS 1Ty PRANDT yCEN{26412),VIS{26412)
1/KASE TS5/UINyTEINJEDIN FLOHINyALAMCA,UENs FLOWENs AgRSMALL yRMIX,
2 INGZ, INP1,JNOZ,JNPLs TENT,IEP1 A
1/SUSP/SUKD(26412) 4SPKD(26412)
1/COEF/ AP {26, 12),AN(26,12),A3126,12),AF{26,12),Aw(26,12),50(26,12),
2 SP(26,12)
1/TURB/GENI(Z26412) 4CCoCHU+C1,C24CAPPA,ELCG,PRED,PRTE
1/wALLF/YPLUSN(28) +TAUN(28),YPLUSS(18),TAUS(18)
c .
C
GC TC {172+334¢55657) yNCEAP
c ' |
CHAPTER 1 1 1 1 1 1 1 1 PROPERTIES 1 1 1 1 1 1 1 1 1
c . |
.1 CCNTINUE
C————- NC_MODIFICATICNS FCR THIS PRCBLEN ) A
RETURN '

CHAPTER 2 2 2 2 2 2 2 2 UUNMCMERTUM 2 2 2 2 2 2 2 2 2
¢ :
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O TCP WALL
CETERNM=CFU**0.25
J=hdM1
[C 210 I=3,NIM1
YP=Ce25% (CYNP{IJ)+CYNP (I~ 1 Ji)
SQRTK=SQRT{C. 8*(TE(T yJI+TE(I=1,4)))
CENU=0.5*%{DEN(I,J)+CEN(I-145d))

S YPLUSA=C.54{YPLUSNIT)+YPLUSN(I-1))
IF{YPLUSALE.11463) GO T0 211
TNULT=DENUXCLCTERM*SGRTK*CAPPA/ALCC{ELOCG*YPLUSA)

CC 10 212
211 TMULT=VISCCS/YP
212 TAUN(I)=-TMULTHULI,J) :
SP{I+4)=SP(I,J)~ TPLLT*SCWU(I,J)%O 5% iYCh([)*YOW(I 1)+2. 0*(RNIX+
1RSMALLY))
210 AN(I5J)=0.0
TAUN{2)=TAUN(3)

LEASE 2.0 ! PROMOD DATE = MON DEC 11, 1978
TAUNINIDI=TAUNININML)

C INNER WALL
J=JNP1

CC 220 I=3,INF1
YP=0o25%(LYPS{I4J)40YPS{I-14J})
JIF(lEGeINPL) YF=0,5%{0YPS{I~-1,J))
SQRTK=SQRT(0.S*{TEL{I s JI+TE(I-14J11))
CENU=0.5%{CENTTIyJI+CEN{I-1,4))
YPLUSA=0.5%{YPLUSS{T+YPLUSS(I-1))
IF{IEQ.INPL) YPLUSA=YPLUSS(I-1)

IF(YPLUSALLE.11.63) ¢cC T7C 221
TMULT=DENU*CDTERM*SQRTK*CAPPA/ALCG{ELOG*YPLUSA)
GC TC 222

221 TMULT=VISCCS/YP
222 TAUSLI=—TPULTHU(I4+4d)

SPIIsJd)=SP1sd)- TWULT*SEMU(I J1%0. 5*(YIN(I)+YIH(I 1)+42.0%(RMI X+

1RSMALL))
220 AS{1+J)=0.0

TALS(2)=TAULSI(2)}:

C-———-SYVMNETRY AXIS

DC 203 I=INPLyNI . o -

203 AS{I1:21)1=0.0 - '
C————-0ULTLET

ARCENT=0.C . : S

FLCW=0.C ' -

CO 204 J=2,NJM1

ARCEN=0S*{BEN{NINM1,J)+CEN{NIMI- 1 J))*0. 25*(R(NIN1,J)+ RINIM1I-1.0)

1) {SNSINIML,JI4+SNSINIMI-1,d))

ARCENT=ARCENT+ARDEN
2C4 FLOW=FLOW+ARDEN*U(NINMI,J)

~ UINC=(FLCWIN+FLOWEN-FLCW)/ARDENT

BC 2C5 J=2,NJVN1

205 UINI J)=UINIM14J)+UINC

RETURN
. C .
CHAPTER . 3 3 3 3 3 3 3 3 V MOMENTUM 2 3 3 2 3 3 3 3 3
C
3 CONTINLE
C———— TGP WALL

[C 313 I=2,4NIN]
313 AN{I,NJM1)=C.C
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v INNEY WPRLL
CC 312 I=2:1IKCZ
" 312 AS{T1,JNCZ+2)=C.0 : N
C————- SYMMETRY AXIS
- CC 302 I=INP1,NIM1
302 AS{1:+31=0.0C
RETURN '

CHAPTER 4 4 4 4 4 4 PRESSURE CCFéECTIGN 4 4 4 4 4 4 4 4
C :
4 CCNTINUE

C
RETURN
- LEASE Z.C l FRCNMCE CATE = MON DEC 11, 1GTE
C

CHAPTER S5 5 5 5 5 &5 5 THERMAL ENERCY 5 5 5 § 5 5 5 5 5
c :
5 CCNTINUE . '
C--——-NC MCOIFICATICAS FCR ThIS FRCBLEM
RETURN

CEAPTER € €& 6 -6 & TURBULENT KINETIC ENERGY 6 6 &6 6 6 6 6
b . _
6 CCNTINUE
C-—-—- TCP WALL
CETERM=CMU**0 425
J=NJML -
CC 610 I=2,NIM]
YF=0.5%CYNF(1,J)
CENU=CEN{I4J)
SCRTK=SERT{TE(I4J))
VOL=R{T,J)%SER(I 1 J) %SNS 4J) :
GENCCU=0.5% {ABSITAUN(I+1)#U{I+1,3))+ABS{TAUNIT}*ULTJ)))/VP
YPLUSN{T)=DENU*SQRTK*CDTERM*YP/VISCOS
CUBY= ((ULT 5 d 1 ULTHL JIHULTy J#104ULT# 134100 /4= (ULT1d ) 4ULT+15 004
TUEL,J-1)14UCT41,051) 1 /42 )/SRS (T, d)
GENRES=GEN(I,J)=VIS{1,J)*DUDY*%2
GEN(TsJ)=GENRES+GENCCU
TF(YPLUSN{T).LE.11.63) GC 7O €11
| CITERM=CEN(I,J)#[CMU*#.75)%SQRTK*ALOG( ELOG? YPLUSNUT) 1/ (CAPPASYP)
GC TC €12 |
611 CCNTINUE e :
EITERF=CEN(1,J1%(CHU#%.75)2SQRTK#YPLUSN (1)/YP o
612 CONTINLE
 SU(13J)=CGEN(I4J)*VCL+SUKEIT4J)
SP(LyJ)==CITERMXVCL+SPKE(1yJ)
610 AN(I,J)=0.0
c INNER WALL
©J=JINPL
LC 620 1=2,INCZ
YP=C.E#DYPS(I4J)
CENU=CEN(1,J)
SCRTK=SCRTITE(I,J))
VEL=R (1, J)4SEWLI d)#SNSTT,J)
GENCCU=0. 5*(AﬂS(TAUS(I+1)*U(I+1,J))+ABS(TAUS{I)”U(T,J))IIYP
YPLUSS(1)=DENU*SGRTK*COTERM*YP/VISCOS
CUCY=({ULL, ) 4UCI+Ly 14001, S+ 104UCTH 104100 /40— (ULT gD +UCT+ 1000
LUCTJ=1)#U(T+1,0-1)) /4.1 /SNS(I4J)
GENRES=GEN(1,J)=VIS{IsJ)%DUDY*%2
GEN(I,J)=GENRES+GENCCU
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621

C

c

622

63C

1

ITLYPLUDOL L el LedileC 2 LU 1u €Ll

CITERM= DFR(I:J)*(CVUFr-?S)*SCRTK*ALOC(PLDG*YPLUSS(I))/(CAPPA%YP}

CC TO €22 .
CCNTINUE :
CITERM=DEN(L2J)*{CPUX*eTE}*SCRTK*YPLUSS(I)/YP
CCNTINUE

SULT +J)=GEN{T,J)*VCL+SUKL{I+4)
SF{I+J)=—CITERMAVCL+SPKE{I,+J)

2.0 PRCMCD DATE = MON DEC 11, 1978

AS{I,J)=0C.0

-SYNVETRY AXIS

J=2 :

CC 630 I=INP1,NIM1

DUDY={{U(I,J)4U(T1+1,J)+U{T,d+1)+U(I+1, J+l))/4.—(U(IrJ)+U(I+1,J)+'
UL Ty J=1)4U{T+15J=-1)3/4.)/SNS(I,J)

VOL=R({I,J)*SEW{TJ)%SNS(1,J)

GEN(I9J)=CEN{T4J)=-VIS{I+J}*DUDY**2Z

SU{T+J)=SUKC(T4J)+GEN{T,J)*VOL

AS(I42)=C.0

RETURN

CHAPTER 7 7 7.1 7 .7 17 1 DISSIFATICN 7 7 7 7 7 7 17 1

CCNTINUE

————— TOP hALL

710

J=NJM1

CC 710 1I=2,ANIM1
YP=Ca5*DYNP{I,J)
TERM=(CMUX*.T5)/{CAPPAXYP)

SULT s J)=GREAT*TERNMFTE(T yJ)%x%1.5
SP{I+J)=-GREAT

INKER WALL

J=JNP1

CC 72C I=2,INCZ
YP=0.5%DYPS{I4J}
TERM={CMU*%,75)/(CAPPA®YP})

SULT s J)=CGREAT*TERNM*TE{T4J)}%%*1.5
SP{1,J)=~-CREAT

-SYVMETRY AXIS

CC 72C I=IKP1,NIM1

£S{1,2)=0.0 . ' :

RETURN , o S
ENC ‘
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LIMOINSIONW TMULUNVG T 91iL UV EW 7 30 w0 Vs T8 10 ey gty v~ oy
1 1Hle(6),PrDt(n),HLDPP(’),HFFU”(éi
COMMON
1/UVEL/R2ESGRUGNSWPLZURFULDXEPUL32), Y”WU(%()yngU(“2)
L/VVEL/RESUORVZNSWOPVLURFV DYNPYV(22),0YPSV(32)SHSV32),FCVI32)
1/PCOR/RESORMINSHPPLURFP,DUL1IB,18),0VI18,13),1PREF,JPR FF
1/TEN/RESCRKyNSKPKURPFK
1/T0IS/PESOREGNSWPLESURFE
1/VAR/ U(18,18)yY(18,18)+P(18418),PP(18,18),TE(18 4,18),CD(12,11)
L/ALL/ZITydTeNT e NIy NIMLyNIML, GREAT
L/GEOM/INDENS ¢ X(32),Y(32),DXEP(32),0XPW(32),0YNP{32),0YPS(32),
1 SNSH{2 Z)y)tH(ié)sYU(J’)yYV(BZ)a (3¢)¢JV(¢?)
T 1/FLUPR/URFVIS,VISCOS,DENSTT, PRARKDT,, DEM(18, 18),#1%(15,19)
C1/KASE T2/UIM,TRFINGEDINGFLCWIN ALAMEAy UEN,FLOWEN,
2 RSMALL yRLARGE AL L AL2 ¢ JSTEP, ISTEP, JSTPL4JSTML,,ISTP1,1STHL
C1/TURB/GERNTLI8318)sCLeCMUSCL,C2,CAPPALELCG,PRED,PRTE
T/WALLF/ZYPLUSH{Z2) o XPLUSHWIZ22) 2 TAUN(22),TAUW(22)
1/COCF/AP(18418) s AN(L1E,18)9AS(18,18),AF(18,18),AW{18,13),50(12,18),
1 SP{18,18) ’
- LOGYICAL INCALUZINCALV,INCALP,INPRC, INCALK,INCALD,INCA L“,IN(ALI,
1 JNCALS ’
GREAT=1.£E30
NITER=Q
1T=18
J1=18
NSuPU=1
NSwPv=1
NSwPP=2
NSwPK=1
" NSwPD=1 -
READ(94010)HEDUHFDV yHFDOP yHEDT yHFEDKyHEDE yHEDM yHEDAZHELCRB FEDP D,
1THEDUN
010 FCRMAT{GAA)
C
CHAPTER 1 1 1.1 1 PARAMETERS AND CONTRCL IWDICES 1 1 1 1 1 1
C C
Cm=m—- GRID
Ni=14
Nd=14
NiMl=NT-1
NaM1=KJ-1 ' .
NIM2=NJ=-2 - ' o=
INDCGS=2 o
JSTEP=!
JSTPL=JSTEP+] -
JS1P2=JSTEP+2 . , '
JSTM1=JSTEP-1 : , -
RLARGE=0.15 '
" RSCRL=0.2233
RSMALL=RLARGE=®RSCRL
- ALTOT=3.0
EPSX=1.0% ' T
SUMX=Coe SXEPSX*= (NI=4 )+ {EPSXHx{NI=-3)=1.)/(5PSX~-1.)1C.5
CX=ALTNT/SUMX
X{1)=-0.5%0CX
X{2)==-x{1)
DC 190 TI=3,NIM1
X{I)=X(I-1)+4DX
100 DX=EPSX*CX
XINT)=X(NIML)=-X(NT=2)+X(NIM]1)
CY1=RSMALL/FLCAT(JSTMY)
- DY2=(RLARGE=-RSMALL)/FLOAT (NJ-JSTEP-1)
Y{1)=-0.5*DY1
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Ly 4N L VT Y0

101 Y{J)Y=Y{J-1)+DVY1
Y(JSTPL)Y=Y{JSTEP)+0.5%{DY1+DY2)
BC 102 J=JSTP24NJ

162 Y(J)=Y(J=-1)+DY?

Crmm=—— CEPENDENT VARIABLE SELECTION

INCALL=.TRUE. '
INCALV=.TRULE.
INCALP=.TRUE,
INCALK=.TRUE,
INCALD=.TFUE,
INPRO=.TRUEF,.

C————- FLUTLE PRCPERTIES
DENSIT=1.225

C————- TURBULENCE CONSTANTS
CMU=02.09 . . <
C=1.00 ,
Cl=1.44
C2=1.62
CAPPA=.418T7
ELCG=6,.7G2
PREN=CA PPA*CAPPQ/(CZ Cl}Y/7{CMU%%,5)
PRTE=1.0

C-*—--%ﬂUNpA”Y VALUFS
UIN=45.

CEN=4;5

UM= (UINWRSMAL L% 24 UEN#(RLARGE®%2-RSNALL%%2) )/ {RL ARGE =%
S ULARGE=UEN4+(UIN=-UEN) 2 (RSMALL/LLARCGE ) %2

TURBIN=0.00D3

TEIN=TURBIN®UINRX

TURREN=0.003

TEEN=TUR BEN®UEN®%2

3
N

LEASE 2.0 MATN CATE = SAT MAR 21, 1S7¢€
ALAMDA=0,005
EDINSTELN®%1.5/ {ALAMCA®RLARGE )
FOEN=TEEN"*1.5/{ ALAMCA=RLARGE)
VISCNS=1.88-5
C-——==PRESSURE CALCULATICN
T IPREF=1
JPREF=NJM1 : o
C-—mmm PROGRAM CONTROL AND MONITCR
MAXIT=180 -
IMON=6 : ' -
JVON=6 '
URFU=0.5
URFV=0.5
URFP=1.0
URFE=0.7
URFK=0.7
URFVIS=C.7
INOPRI=1
SCRMAX=1.0E-4
o
CHAPTFR 2 2 2 2 2 2 INITIAL MPERATIONS 2 2 2 2 2 2

C—mmv CALCULATE GEOMETRICAL QUANTITIES AND SET VARIARLES TO ZERC
CALL INIT o
C—mmmm INITIALISE VARTABLE FIFLDS

CC 208 J=24JSTEP
TE(L,J)=TEIN ‘
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209

2090

205

L) LYJ T T L LN

BC 209 J=JSTPL,hJM1

TE(1,J)=TEEN

EN(1,J)=ECEN

FLOWIN=0.0

ARGEN=0.0

DC 200 1=2,N1

LC 200 J=2,JSTEP

U(I,J)=UIN

TECI,J)=TEIN

EC(T,J)=ELIN

Cf 205 J=2,JSTFP

ARDEN=0 5% (DEN(L, JI+DEN{2, JI ) HR LI IESNS (J)
FLCWIN=FLCKRIN+ARDENRU(2,J)
SNRMAX=SORMAX*FLOWIN

FLCWFAN=0.0 : o
ARDEN=0,0 -

LC 201 1=2,NI

- CC 201 J=JSTPL4AJVML

201
20¢

203

C
CHAPTE

C—m——

TE{T4J)=TEEN

EC(I,J)=EREN

L(TsJ)=LEN

CC 206 J=JSTPLl,NJM]
ARCEN=0.5%(DEN{LyJ)+CENT23J I IER{IJIHSNS(J)
FLOWENSFLOWENFARCENSUL24J) '
DC 203 TI=2,KIM]

YPLUSN{I)=11.0

2.0 MATN ‘ DATE = SAT MAR 21, 197S

CALL PROPS

INITIAL CUTPUT

WRITE(6,210C)

WRITE(64220) UIN

WRITF(6,4,221) UEN

UK=UEN+{ UIN-UEN) ®* {RSMALL /RLARGFE ) =%
USTASQ=(UTN=%2=UEN® %2} {RSMALL/RLARGE )% k240 o SE{ UEN k2= UK %52 )
CT=UK/SGRTIUSTASY)

WRITE(6,222) CT ,
RE=UIN"RLARGE*2,0%BENSIT/VISCOCS

WRITE{6,230) RE -

WRITE(A,240) RSDRL o

WRITE(6,250) vIscos
WRITE{(G,260) NENSIT ' ,
IFCINCALU) CALL PRINT(Z 2 NT NIy IT,JT,XU,YyU,HEDU) — .
TF{INCALV) CALL PRINT(2,2,8T 4N I1TyJTeXsYVyVyHEDV)
TF{INCALP) CALL PRINT(24,24yMNIsNIyTITyJT X, Y4P ,HEDP)
TF(INCALK) CALL PRINT(242yNTyMNJyIT4JTs XY yTEZHEDK)
IF(INCALC) CALL PRINT(24y2yNT NIy 1T4sJT3X9Y,ED,HEDD)

w
s
w

R 3 3 3 3 3 3 3 1TERATICN LNAP 3 3 3 3

WRITE(6,210) IMON,JMON

NITER=NITER+]

UPDATE MAIN DEPENDENT VARIARLES
TFUINCALU) CALL CALCU
IF{INCALV) CALL CALCYVY
TF{INCALP) CALL CALCP
IF(INCALK) CALL CALCTE
TF(INCALD) CALL CALCED

UPCATE FLUID PROPERITIES
IF(INPRC) CALL PRCPS
INTERMEDIATE OUTPUT
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UUVMY=UeU
hPITL(byﬂll) NITER,RESDRU,RESBRV,RESOQM,RESGPT,RESCFK,RESGRF
1 yUCTMON S IMONY 3 VITVYONy JMON) 3 PLIMON, JMON) , DUMMY,
1 1F(I~WR,NJ\1),”“(I‘OW,NJﬂl)
IFINTITER.GT2)VINDPRI=40
IF{ABS(FLCATINITER/INDPRI)=FLOAT(NITER)/ZINNPRT ) &GT1E=4)CO TO 301
WRITE(64312) ,
TFCINCALU) CALL PRINT(2y2sNT yNJs1T4JT4XU,YsU,HEDU)
TFOTNCALY) CALL PRINT(242yNToNJsIT3IT Xy YVyV,HELV)
TFOINCALP)Y CALL PRINT(242 NIy NIy IT3JdT o XeYP,HEDP)
TF(TNCALK)Y CALL PRINT(2y2«NTyNJsITsJT 4 XyY,TELHEDK)
IF(INCALD) CALL PRINT{Zs2¢NI NIy ITsIT XY ED,HEND)
WRITE(G6,312) :
WRITE(6,210) TMON,JMCN
2301 CONTIRUE
L————- TERMINATICN TESTS
SCRCE=RESCRY
IFINITEREQ 20 ANLJSORCE WGTL1.0E4%SORMAX) GO TO 302
TRF{NITERLEQ.MAXIT)Y GC TO 302
TE{SORCELGT.SCRMAX)Y GO TO0 300
, Q02 CONTINUE

LEASE 2.0 MATN DATE = SAT MAR 21, 1$7S

C . .
CHAPTER 4 4 4 4 4 4 FINAL QOPERATIONS ARND OUTPUT &4 4 4 4 4 4
C .
IFCINCALU) CALL PRINT{242,NT NJyIT,JT,XUsYsUsHECU) -
TFCINCALY) CALL PRINT(2,2sNI NIy IToJTeXsYVy VsHEDV)
IF(INCALP) CALL PRINT(2s2 NI yNMJsIT4JTyXsY,P,HEDP) "
IT(INCALP) CALL PRINT{Z923NI NI yTIT 4T, XyY,P D yHEDPD)
IF{INCALK) CALL PRINT(Zy2yNTyNJsTT4JT4X,Y, Tc,HCDh)
TFCINCALD)Y CALL PRINT(292y NI yMJyTTydT X3 Y,EDHEND).
IF(INPRO ) CALL PRINTI(Z2323NTyNJ3IT4JT, X Y VIS HEDRM)
C—~—— CALCULATION OF NON DleVbIOMAt TUKBULENCE ENFRGY AND LENGTH SCALE
DO 4900 I=2,NIV1
0O 480 J=2yNJV1
ULT+J)=U(T4+J) /UM
SULT )Y =TELT,J)=DEN(T1,J)/ABS(TAUN(TY))
400 SPU{I+J)=TE(LJ)*x15/FC{1,4J)/RLARGE
C CALL PRINTI(2,2,MIyNJsITJTyXU,Y, UyHEDUN)
CALL PRINTI{Z2y24yNIsNJsIT9JTsXsY,SUHENA)
 CALL PRINT(232yNTyNJ»IT9JdTyX,Y4SP,HEOR)
C—=—=- ~CALCULATION OF SHEAR-STRESS COSFEICTENT ALONG LARGE LUCT WALL \
WRITE(6,402) o .
DN 401 I1=JSTEP,NIM] :
CSSC=TAUN(1)/{1.0%CENSTT*ULARGE=*ULARGE)
XUD=XU(I)/RLARGE/2.
C WRITE(6,402) 1,XUD,SSC
401 CCNTINUE
©STOP
C—~———FCRNMAT STATEMENTS : :
210 FCRMATILIH1 47X 4THKASE T2 — TURBULENT JETS MIXINGC IN UNIFORM CTUCT/

1/77)
220 FCRMAT( //715X433HINLET JET VELCCITY y1PELL1.3)
221 FORMAT( /715X, 33HANNULAR FLUIN VELOCITY y1PE11.3)
222 FORMAT( /715X, 33HCRAYA-CURTET NUMRER y1PET1.3)
230 FORMAT( //15X,33HREYNILOS NUMBER y1PEL11.2
240 FORMAT(  //15X,33HDIAMETER RATID y1PE11.73)
- 250 FORMAT(  //15X,33HLAMINAR VISCOSITY y1PELLLZ)
260 FCRMAT( //15X%,33HFLUID DENSITY s 1IPEL1.3)
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QLU FLURAL L LDONTU LT TN 1 === VA ATTTAQOUILIN T KD O UUAL SUIUXL L 2UN o JA Yy
111H-—-1 1===337H FIELD VALUES AT MOMITORING LOCATION{ T2 1H., T2,
26H) --~-1/14H NO : UMOMy 5Xy 4HVMOM 65X 4HMASS s SX ¢ AHENER y SXy 4HTK I N

3+45K44HD1ISP, QX,lHUy?X,lHVyRXql.HP,hX'lHTy),(,lHK,d\(ylH')/)

T 311 FORMATULH +I13,5X41P6LEF.2+3X41P6ES.2)

312 FOPMAT(lFU,59(2H— ))
402 FORMAT(///75Xy ILHIZ7Xy8HXU(1) 46Xy, 1CHS.S.COEFF L)
403 FOPMAT(/SX4I1542(1PE11.32))

END

LEASE 2.0 - INIT o  DATE = SAT MAR 31, 167¢

c

C

C

c

SUBRQUTINE INIT

CHAPTER Q0 ¢ © O 0 C O O PRELIMINARIES O € ¢ 0 0O 0 ST

CCHMON _ ’ ¢

1/UVEL /RESORU NSﬁPbyL FUsDXEPU(32),DXPWL(32),SEWUL32)
1/VVEL/RESCRVGNSWPV,URFV,,OYNPV(32),0YPSV(32) 4SNSV(32),KCVI32)
1/PCOR/FEFSORMyNSAPPyURFP,DU(18,18),0V(18418),IPREF, JPREF
1/VAR/Z U(124,18),V(18,18),P{1E&,18),PP{18,18),TE(L8 ,18),ED(18,13)
I/ALL/ZT Ty dT o NT NIy NIMLyNIVML,GREAT
1/7GE0M/ZINDBCNS s X{32)sY{32)yDXEP(32) 4 BXPHWL32), CYNP(32),0 YDS(32)y
1 SNS(BZ)1SEH(32),XU(32),YV(BZ),R(JZ) Rv{32)
1/FLUPR/URFVIS,VISCOASsDENSTIT,PRANDTOEN(18,+18)4VIS(18,13)

1/KASE T2/UINGTEINsEDIH, FLOWIN, ALAMDA, UEN,FLOWEN,

2 RSMALLRPLARGE yALLyAL2sJSTEP, TSTrP,JgTol,JST’l,ISTDl,151“1
1/TURB/GEN(18,18),C0,CMUsC1,C2,CAPPA,ELDG, PRED,PRTE
1/CCEF/AP(18,18) yAN{18,18),A5(18, 1“),AY(lR,lQ)yA“(1PyIQ) SU{18,18),
1 SP{16,18)

CHAPTER 1 1 1 1 1 CALCULATE GECMETRICAL GQUANTITIES 1 1 1 1 1

LC 100 J=1,NJ
S ROJ)I=YLI) |
100 TF{INDCCS.EG.1)R(J)=1.0
BXPW(1)=0.0
CXEP(RI)=0.0
'CO 101 1=1,KINL
CXEP(I)=X(1+1)=-X{1)

101 DXPW(I+1)=CXEP(I)

“DYPS({1)=0.0
CYNP{NJ)=0.0
CO 102 J=1,NJM1
CYNP{J)=Y(J+1)-Y{J) =
102-DYPS(J+1)=CYNP{J) - .
SEW(1)=9.0 ' -
SEW(NI}=0.0 ‘ ‘ '
0O 103 1=2,NIM1 ,
103 SFW{I)=0.5%{DXEP{T)+CXPH(T))
SNS(11=0.0
SNS{NJI=0.0.
CC 104 J=2,ANJV¥1
104 SNS({J)=C.5%(DYNP(J)+DYPS(J))
xU(1)=0.0
DO 105 1=2,N1
105 XU(T)=0.5%(X(T1)+X(I-1))
DXPWU(1)=0.0
CXPwl(2)=0.0
CXEPU(1)=0.0
DXEPU(NII=0.0
CC 106 1=2,NIN1
DXEPULI)=XU(T+1)=XU(I)
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106 CXPWU(I+1)=DXEPU(T)
SEwWU(1)=0.0
SEWU(2)=0.0 .

LEASE 2.0 INIT DATE = SAT MAR 31, 1276

DO 107 I=3,NIM1
107 SEWULI)=0.5%(DXEPU(IN+DXPHU(T))
YV(I)-O 0
RV(1)=0.0
CC 108 J 2NJ
RV(J)=0.5%(R{JI+R(J=-1))
RCVIJ)=05*%(RV(J)I+RVI(J-1))
108 YV{J)=0.5%(Y(J)+Y(J- 1))
. - CYPSVI(1)=0.0
DYPSV{(2)=C.0
CYNPVI(NJ)=0.0
NG 109 J=2,NJ¥1
DYNPV{J)=YV(J+1)=-YV(J)
109 CYPSVIJ+1)=CYNPVY)
SNSV{1)=C.C
SNSV(2)=0.0
SKNSVINJ)=0.0
0O 110 J=3,NJM41
110 SNSV(JI=0.5%{0YNPV(J)I+DYPSV(J))
C’ ’ '
CHAPTER 2 2 2 2 2 2 SET VARIABLES TO ZERG 2 2 2 2 2°
¢ .
DG 200 I=1,N} -
CC 200 J=1,NJ
L(Y,J)=0.C
VIiIyJ)=0.0
P(I,J)=0.0
PE(1,J)=0.0
TE(I4J)=0.0
ED(1,J)=0.0
CEN{1,4J)=CENSIT
VIS(I,J)=VISCCS
CU(T,J)=0.0
Cv{1,J)=0.0
SU(T4J)=0.0
SP(14J)=0.0
G ENT T R UE
RETURN
END
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CIMENSTON HEQUUG) yHECV(B)sBEDP(6)4HELT(E) HEDK{6) yEEDCD(6) sHEFD¥{6)
1 +HEDA(SH) s HEDB(G6 )y HEDPP {6 )y HEDUNI{6) sHEDGL6)
COMMON
1/UVEL/RESORU, NSWPU,URFU,DXEPU(BZ)1DXPHU(32)ySEhU(BZ) .
1/VVEL/RESCRV yNSWPV,ZURFV,,DYNPV{28,14)sDYPSVI28,14)4SNSVI28,14),
2 RCVI(28, 11)
1/PCOR/RESURM,NSNPPyURFP,DU(28,14),DV(ZS,14),IPREF,JPREF
L/TEN/RESCRKyNSWPKyURFK
1/TDIS/RESORE NSWPDyURFE
1/VAR/ U(28414)sVI28414),P(28,14),PP{28,14),TE(28,14)}4EL{2€,14)
I/ALL/I Ty T oNI ¢ NJyNIML,NJML s GREAT
1/GECM/ZINLCCOSsX(32)4CY(32)4DXEP(32)sDXPW{32) 4DYNP{28,514),
2 DYPS{28+14),SNS(28, 14),8Lh(32)vXU(3?J1Y(?8114) YV{(28+14),
3 R{28414)sRV{28+14)
1/FLUPR/URFVIS,VISCOS,DENSTTyPRARNDT 4CEN{28+14),VIS(28,14)
1/KASE T3/UIN, TEIN,EDIN,FLOWIN,ALAMDA,RIN,DAN
1/TURB/GEN(28414)4CNDyCMU4C1sC24,CAPPALELCG,PRED,PRTE
1/WALLF/YPLUSNA(32) ¢ XPLUSWI{32) s TAUN{ 32}, TAUW( 32)
1/COEF/AP(28514) sAN(28414)3AS(28:14)4ACE(28, 14),Aw128,14).sutzq,14),
1 SP{28,y14)
LOGICAL INCALU,INCALV,INCALPsINPRO, INCALK,INCALD, INCALM, INCALA,
1 INCALB '
GREAT=1.E3C
NITER=C
1T=28
JT1=14
NSwPU=1
NSkPV=1
"NSwPP=5
NSWPK=1
NSWPC=1
READ[9,010)HEDU,HEDV  HEDP 4HEDT 4 HrﬂkaFDD,hEDNyHEDAyPELBqFPPPPy
1HEDUNyHELG
010 FCRMAT(G6A4)
C : : '
CHAPTER 1 1 1 1 1 PARAMETERS ANC CONTRCL INLICES 1 1 1 1 1 1
C
tC—-———- CRIC
NI=14
NJd=12
NIM1=NT-1

LEASE 2.0 o - MAIN . .DATE = WED DEC 13, 1978
NIM1=NJ-1 ‘ : ' :
NIM2=NJ~-2
INDCCS=2
ANGLE=4.05
ANGLE=3.1416%ANGLE/180.0
RIN=0.0171

ALTOT=0.43
EFSX=1.15

SUMX=0.5%EPSX*k(NI- 4)+(EPSX’“(NI-7)~1 )/{FPSX=1.)4C.5
DX=ALTCT/SUMX
XIN=RIN/SIN{ANGLE)
X{1)=XTIN-0.5%CX
CX(2)=XIN+0.5%DX
£C 100 I=3,NIM1
X{IV=X(1-1)+CX

100 CX=EPSX%CX

XINT)=XANIML)=X(NT=2)+X{N1IM1)
DAN=ANGLE/FLOAT{NJ=2)
GO 101 I=1,NI
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Uill17l=—=A\1 i uap
101 Y(I41)==C.5%0Y(1])
CC 102 1=1,4NI . .
CC 102 J=2, NJ ’
102 Y{I,J3)=Y({l,40-1)+DY(1)

Cr—=m— DEPENDENT VARIABLE SELECTIC
INCALU=L.TRUE.
.INCALV=L.TRUE,
INCALP=.TRUE.
INCALK=.TRUE,
INCALD=.TRUE.

~ INPRC=.TRUE.

C—m——- FLUID PRGPERTIES
DENSIT=1000.

C=————TUKBULENCE CONSTANTS
CMU=0.0¢%
CC=1.00
Cl=1.44
C2=1.92 /
CAPPA=.4187
ELOG=G.T763
PREC=CAPPAXCAPPA/{C2-CL)/{CMUX%,5)
PRTE=1.0

C————-BCUNCARY VALUES
UIN=2.47
TURBIN=0.001
TEIN=TURBINHUINZ**2
ALAMDA=0.05 -
ECIN= TEIhf*l.,/(ALAMCA*RIN)

. VISCCS=1.004E-3

C——— PRESSURE CALCULATIGN
IPREF=2
JPREF=2

Cv——- PROGRAM CDNTPUL AND MONITOR
MAXIT=190

LEASE 2.0 : MAIN DATE = wED DEC 13, 1978

IVCN=6

JMON=6

URFU=0.5

URF_V'_'OO S

URFP=1.0

LRFE=0.7 : L
URFK=0,7 o B B 4 ' o '
CURFVIS=0.7 L e e
INCPRI=1 -

SCRMAX=1,CE-5

C : » .
CHAPTER 2 2 2 2 2 2 INITIAL OPERATIONS 2 2. 2 2 2 2 2

C—=—— CALCULATE GEGMETRICAL OUANTI1IES AND S“T VARIABLFS T0 ZFRF
CALL INIT

C—————INITIALISE VARIABLE FIELDS
FLCWIN=0.0
-ARDEN=0.0

REAC(G,11) (U(24J)49d=2,NJML)
11 FORMAT{F10.3)
CC 200 J=2,NJV1
ARDEN=0.5%(DEN{TIJ)+CEN{2,J) ) %0,25%[R{1, J)+R(27J))*(SNS(1 J)+
1SNS(2yd)) Y
200 FLCWIN=FLOWIN+ARGEN*U(2,J)
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TEtlIyNJ ) =0
EC{TI,NJ)=0
201 U(TyNJ)=0.
i DT 203 1
203 YPLUSNII)=
CALL PRCPS
C————- INITIAL OQUTPUT
WRITE(6,210)
WRITE(A220) UIN
RE=UIN¥RIN*2 0%*DENSIT/VISCOS
WRITE(64230) RE
WRITE(€,250) VISCCS
CKWRITE(6,260) DENSIT _
ANGLE=2. 0% ANGLE*180./3.1416
WRITE{6:270}) ANGLE
CALL PRINT{2,23NIyNJ+IT3JT+X+YHEDG)
IFTINCALU) CALL PRINTI242yNIyNJ9IT9JTo4XUy U,yHEDU)
TFCINCALYV) CALL PRINT{292yNTsNJ,IT,JdTyXy VyHEDV)
IFCINCALPY CALL PRINT{2,2yNIyNJ+ITyJT4Xy P,HEDP)
IFUINCALP) CALL PRINT{242yNIyNJ+IT,JTyXy PP,HEDPP)
IFIINCALK) CALL PRINT(2+2¢NTeNJ+IT4JT9Xy TELZHEDK)
TF{INCALC) CALL PRINT{242+NI+NJ4IT,JTyXy ED,HEDD)

O . ’ -
=2,NIM1
11.0

C
CHAPTER 3 3 3 3 3 3 3 ITERATICNIGCP 3 3 3 3 3 3 3 3 3
(o . :
WRITE(6,310) TNMON,JMCN
300 NITER=NITER+1
C————- UPDATE MAIN CEPERDENT VARIABLES
IF(INCALU) CALL CALCU -

LEASE 2.0 ' MATN ' DATE = WED DEC 13, 1978

IF{INCALV} CALL CALCV
IF{INCALP) CALL CALCP
IF{INCALK) CALL CALCTE
IFTINCALL) CALL CALCED

C——---UPDATE FLUID PROPCRITIES
IF{INPRO) CALL PRCPS
== INTERMERTATE QUTPUT

DUMFY=0.0

WRITE(69311) NITER,RESCRU,RESORV,RESCRM,RESORT,RESCRK 4 RESCRE

1 _ sUL ITMON ¢ JMON) VL TMON, JMON),, PCIMON, JMON) , DUMMY,

1 TE{IMOGNsNJM1),ED(IMON,NIML)

TF(NITER.GT.2) INDPRI=40 ' '
TFUABS(FLOAT(NITER/INDPRI)~FLOAT(NITER]/INDPRI}.GT.1.E-41G0 TO 301
WRITE{(6,212)

- IFUINCALU) CALL PRINTL2524NIyNJyIT4JT4XUs Uy HEDU)
TF{INCALY) CALL PRINT{2,24NIsNJyIT,JTyXs  V,HEDV)

IECINCALP) CALL PRINT{242,NI1,NJyIT4JT4X, P,HEDP)

TFUINCALPY CALL PRINTI2,24NIyNJ3IT,JTyX, PP,HEDPP)

TFLINCALK) CALL PRINT(2,24NIsNJ3IT4JT9X, TE,HEDK)

TFUINCALD) CALL PRINT{2424NIsNJ,IT4JT,X, ED,HEDD)

WRITE(&,312) ’

WRITE(E,310) INMON, JMCN

301 CONTINUE
Cmm— TERMINATICN TESTS
SCRCE=RESORM
TFINITER.EQ.MAXIT) GO TO 302
IF(SORCE.GT.SORMAX) GO TO 300
302 CCATINUE '
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C

CHAPTER &4 4 4 4 &4 4 FINAL OPERATICNS AND QUTPUT 4 4 4 4 4 4

- _ .

: TF{INCALU) CALL PRINT{242sNIsNJyTT4JTyXUy UyHEDU)
IF(INCALVY CALL PRINTU2,2,NI¢yNJyIT,JTyX, VeHEDV)
IF{INCALP) CALL PRINT{2,2,NTIsNJyIT4JTsXy, P,HEDP)
IF{INCALP) CALL PRINTI2:;2,NINJ4yIT4JTeX, PP,HEDPP)
IF(INCALK) CALL PRINTI{242yNIsNJ3IT4JTsXy TE,HEDK)
IF{INCALD) CALL PRINT(2,2,N14NJ,IT,JTyXy ED,HEDD)
TFCINPRD ) CALL PRINT(2,2 3N NJ+IT+JT4Xy VIS,HEDM)

C-———- CALCULATION OF NON DIMENSIOMAL TURBULENCE ENERGY AND LENGTH SCALE
DO 400 1=2,NIM1
DO 400 J=2,NJNM1
ULT,J)=UlT,J)/UIN
SULT s ) =TE{IyJI*DEN{I,J3)/ABS{TAUNLI))

400 SP{I,Jd)=TE(I,J)%%1,5/ED{I,J)/RIN ‘

CALL PRINT(2+2sNIsNJgIT,JT4XUy UyHEDUN)
CALL PRINT{2+2yNI¢NIsITyJTyXy SUyHEDA)
CALL PRINT{2:24NIyNJsITsJdTyXs SP,HEDR)

C-—--—=CALCULATICN OF SHEAR-STRESS COEFFICIENT ALONG LARGE DUCT WALL
WRITE{6,402)
DC 401 I=2,NIM]
SSC=TAUN{T)/{1.0%CENSIT*UIN*UIN)
XUD=XU(T)/RIN/2.0
WRITE{6,4G03) [4XUCySSC

401 CONTINUE

LEASE 2.0 MAIN | DATE = WED DEC 13, 1578
STOP |
C———- FCRMAT STATEMEKTS ‘
210 FORMAT(IHL,47X,36HKASE T3 - TURBULENT FLOW IN DIFFUSER////)
220 FCRMAT{ //15X,33HINLET VELOCITY y1PE11.3)
230 FORMATL //15X,33HREYNOLDS NUMBER +1PE11.3)
250 FORMAT{ //15Xs;33HLAMINAR VISCOSITY +1PE11.3)
260 FORMAT( //15X,33HFLUID DENSITY . y1PE11.3)
270 FORMAT( //15X,323HINCLUDED ANGLE y1PE11.3)
310 FCRMAT(13HOITER I-——4 9X,29HABSOLUTE RESIDUAL SOURCE SUMS,9X,"
111H-—-1  I-——,37H FIELD VALUES AT MONITORING LOCATION(,I241Hss12,
26H) —==1/14H NO UMOM, 5X 5 4HVMOM 35Xy 4HMASS 3 5X 4 4HENER 35X 9 4HTKIN

395X 4HDISP3O9Xs 1HU s 68X L1HV,, 8Xy IHP 48Xy 1HT 4 8X41HK, 8Xy1HD/)
311 FORMAT{IH 413,5Xs1P6E9.243Xs1P6E9.2)
312 FCRMATI(1KC,5G(2H- ))
402 FCRMAT(///5Xs1EI7TXy5HXU(T)946X+10kS.S.COEFF,)
403 FORMAT(/5X41552(01PEL1.3))
END » .-

SUBRCUTIKE INIT
c | , . .
CHAPTER O O € O 0 O O O PRELIMINARIES O O €. 0 © ¢ O O
C ' ‘
CCMMON
1/UVEL/RESGRUWNSHWPUsURFUOXEPUL32) DXPHU(32) s SERKUL32)
1/VVEL/RESCRV ¢NSWPVsURFV,,DYNPV{(28,14),0YPSV(28414),SNSV(28,14),
2 RCY(28414)
1/BCOR/RESORM;NSWPPsURFP,DU(28414),DV(28,414) yIPREF4JPREF.
1/VAR/ Ul28:14),v{28,14),P{28, 14),PP(28914),TF(28714)1FD(28,14)
1/ALL /1T JTy NI NJyNIMI4NIJM1yGREAT
1/GECYM/IRDCOS 1 X(32)sD0Y{(32),DXEP(32),DXPW(32) DYNP{28,14),
2 DYPS(28514)SNS{28¢14) ¢4SEW{32)+XU(32)4Y128,14),YV(28,s14),
3 R{284y14) +EV{28:14) _
1/FLUPR/URFVIS, VISCOS,NENSIT,PRANDTCEN(28414),4VIS{284514)
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1/TURB/GEN(28414)4CD4CMU4CL+C2+CAPPA,ELCG,PRED,PRTE
1/COEF/APL28414) s AN(28,14),AS5(28,14),AE(28, 14) AW (28y14) ,SUL28,14),
1 SP{28414)
C .
CHAPTER 1 1 1 l 1 CALCULATE CECMETRICAL QUANTITIES 1 1, 1 1 1
C
CC 100 I=1,NI
£O 100 J=14NJ
RII,J)=X(1)*SIN{{0.5+FLOAT(J-2))%DAN)
100 IF(INDCCSc¢EC.1IR{I+J)=1.0
CXPW{1)=0.0
DXEPINI}=0.0
CO 101 I=1,NIM1
CXEP(I)=X{I+1)=-X(I)
101 CXPW(I+1)=DXEP(T)
LG 99 I=1yNIM]
DYPS(I,1)=C.0
CYNP{I,NJ)=0.0
SNS(I,1)=0.0
€9 SNS(I4NJI=0.0
BC 102 T=1,NI
CC 102 J=14NJdM1
CYNP(TI,J)=Y{T,J+41)-Y(1,J)
102 DYPSI{I,J+1)=CYNP(I,J)
SEW({1)=0.0
SEWINI)=0.0
DO 103 1=2,NIM1
103 SEW(I)=0.5*(DXEP{T)+CXPW(I)})
CC 104 I=1,NI -
CC 104 J=2,NJIM1
104 SKS(I4J)=0.5% (DYNP(I,J)+DYPS(I J))
XU(1)=0.0
DC 105 I=2,NI
1C5 XU(I)=0e5%(X{I)+X{1I-1))
CXPrU(1)=0.0
DXPWU({2)=0.0
DXEPU(1)=0.0
CXEPU(NI}=0.0

LEASE 2.C INIT DATE = WED DEG 13, 1978
£C 106 I=2,NIM1
DXEPU(1)=XULI+1)-XU(1)

106 CXPWU(I+1)=CXEPULT)
SEWUL1)=C.0 : |
SEWU{2)=0.0 ‘ ‘ -
DC 107 1=3,NIM1

107 SEWU(I)=C. S#IEXFPU(I)+DXPhU(I))

OC 98 I=1,NIM1
YV{1,1)=0.0
RV(1,11=0.0
DYPSV(1,1)=0.0
DYPSVI(T1,2)=0.0
DYNPV(I,4NJ}=0.0
SNSV(1451)=0.0
SASVI(I2)=0.0
S8 SNSV(IsNJI=0.0
CC 108 1=1,NI
CO 108 J=2,NJ
RV{1,J)=0.5%{R{T,JI+R(I,J~1))
C RCVIT,J1=0.5%(RV(I,J)+RV{I,J-1))
108 YV(I,J1=0e5%(Y(I,J)+Y{TI,J-1))
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109
110
c

C

200 .

~ - PRRV s - @ yorra

DO 109 J=2,NJM]
CYNPV(I,J)=YVII,d41)=YVII,d) .
CYPSVII,Jd+1)=DYNPV(I 4J)

CO 110 I=14NI

0C 110 J=3,hJ¥1
SNSVI(I+J)=0.5%(DYNPV(I,J)+DYPSVII,J))

CHAPTER 2 2 2 2 2 2 SET VARIABLES TC ZERC

DC 200 I=1,AI
LC 200 J=1,NJ
ULI,J)=UIN -
VII4J)=0.0
P(1,41=0.0
PP(I1,J)=0.0
TELI,J)=TEIN
EC(I,J}=EDIN
DEN(I,J)=DENSIT
VIS(I,J)=VISCCS
DULT,J)=0.0
DV(I,J)=0.0
SU(T,J)=0.0
SP(14J)=0.0
CONTINUE

RETURN

END
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B.4 Listing of Program ARBA for Calculating Seccondary Inlet
Flow Area

BEMALIL=0. 127
RLAEI m=0. 165
HHAT=HLANG K /ZHSHALL
,. 1. ) ?""'p

1'\’l‘/ De ﬂlb‘— 3

I I=1.7 1= .
nnpuqﬁ T+ENO7 = HSMALL =417
ld==0.07 06 )

w’T J=RB=-C00T(LARGERRLARGE~- (T {IH+AY D)

DRHERS A XA RENDE S & R ESGE EUERED)

'r'S".-"=DSi.'?+.--.!l.'i“"-R"S:.‘EQLL:’:E'-?.S.‘\'EQLL

G =( O!-Z‘\'}";/ﬁ‘x")"'?-fl"‘*JJ-A

fEs (1-04-:’“\1)} Y Tv- ‘

LCi=Cr80wg - >~u‘sl(1“) BEFOESE 16 P“-(L“\m‘n" Y CPSORRSO-TTr e S MALL e 2)))
1/7¢3 %3 +4%)

YOJ==500T RS ALL 23S AT, - K06 = 04W)
CSINGCT=CCTT I+ 2T J=0 )-3-(‘!'1 =3 (Y T - ’U ) )/(‘(O H( Y’I ’4-77)-1’0 DES
1T AI+A)) '
KOC=XQd = R0 O

YOU=YOJd+10 JNCT¢0d
ROC=SAHT(C T =-<00) Qe (YTW =700 ) %: )
ARARG 23325000 CT0T=-7TW) ‘

DELTAI=ATAY({ Y TW-700)Y /(00 -214))

DELTA=ATAJCLYRI-Y0C)Y /(X008 =-104))
TAREA=AREA+G. 23308 ( YO0+ HEMALLI®ROCH (DALTA2=-DILTAL)
ARTTEC6 1YY T ds 71010 Y06 700 YOC,, 0Ty AN

e

J

11 FORATC/ /251 De 2ty A5 211 Ge 25 555 35100 45570, K106 5)
caLl, EYIT : ' '
D

303




o

o

B.5 Listing of Program for Calculating the Measuring Position
and Geometry of Tangential Velocity Component

FL=300.0
ALFA=ATANC25. 0/1¥L)
ROJI=25.4
RIN=19.05
RIP=1.49
RATd=1.33
JT=06 63 2%5-6
A=140
DA=1e0
AIo“AT“Q(Q”SIV(ALbL)/Sﬂul(“UJix )11—A<a«§zuccrr ) ESINCALFAYY)
AP=ATANCSINCATAY ASOUTCAT S I P=STNC 2T AYXSINCAT A)))
ATL=ATANCH0ITESINCARY /ST (RIN €T - (EOUTHSINCEPY Y% 22))
RIPI=01P/RT S
{ = a.na<er~f~ TJICAIEY/50ETC L. 0—(#[«»~s{q<ﬁTW))r\9)>
WErRB-ATA-AT R . .
AT n..TV(QFP“)/(”IYP;IG(@LrG“))
CSINAY=RIIRSINCALNAR) |
PSE0e S EIL /ST AY
JRITECOs 10) 0, A2, ALF AR, 51347, 1S
VMATCAR 100355126 3) i
IFCAITRIN) GO 10 2 Lo .

[=AL]DA
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B.6 Listing of Program for Calculating the Measuring Position‘

and Geometry of Radial Velocity Component

=19, 05 '
A=31e75
F,=300: 0
A3=254 0
PIE=1.49
HT1Ji=1.33

IL=Ne G3231-6
ATA=ATHNCIS/IL)
STAEP=5INCAlA) /T ®
SIVUE/SORTCL D=5 INAPESINER)
QP=ATANCTANRE)
SEAXTAVIP

H=0en
D=0 5

1~170*1001HFTNQ°W

AR=A4l
Rl==Re DETANP PR (H+5=-ATANER)
C1=C+3-A%TAY Y ke T=11%13
Cl==(RI+S0ETOR% 3= 4. D% leﬂ1>>/c0 0+A1)Y
1=+ 5=TaNEPE(C1+A)
72=e.o«rsn“,f<1—u+ = TAYRE)
CR2=(H=S+ARTAVAP )Y fk 2=k 3
NO=-(MBR+SAET(RR2EA2=4. 02A2RE2) ) /(D 0(A2)
Y2=-S+TAVAPR(L2+A)
ALFALI=ATANC=-?1/41) _
ATPI=ALKAL - =

CSINRII=GI PRSTINCATBLY /R

TANEY 1=5IN 1 /50837 C1e O=-STNRIIHSINRI L)
I 1=ATANCTANRT LY '
IFCALFAL«GT«e R0 1) SLOBI==-TAN(ALFA1=-RU1)
IFCALFAL LG, 1) SLOPI=TAV(RG1-ALKFAL)

TALFAS=ATAN(-?32/52)

HIPR=0 a8+ 0P

SINII2=8T B«3TNCAIPR) /214 ~
IANKI2=51I8302/501 1’1‘( 1o N=SINIHIRRSINRI2)
I8 ‘l P=ATANCTANITY )

CBEL0E2=TANC G 2= ALFA2)

Ke=(r2=-Y 1+5LOPIH{1=5L0P2xY2) / (SLOP1=-SLIF2)
TE=YI+5L0PIR (L= 1) '

‘AV1L,«3;3v<<s'u~¢~show1)/(1.~+>ru~9kC1o D))

ADIJS=50UT ({PL{PLY el P)
bINANzuleDIg(O‘J§AJ3Lu
F5=De 5%.0L /518N
T=(1e0=-5L0P1%5LOP ﬁ)/(b‘OLIquUPQ)
SLOP=(=2¢ DETHSORT(A O T%T+4. 031 /26 0)
SRAD=YR/YP
PROD=5L0Px3 34D

ARTTECE, 10) d, BADIIS, ANGLE, STNAN , SLOY, GEAD, PR, ¥5

FOIMATIOFRe 35,106 35,73:e35112. 33
Tl‘(n-a..-(O 7{2.)) (‘l) T 2
H=4+DH

G0 TO1

CALL BXIT
LND
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