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Sur. TIAAY 

As an, aid to jet pump design and performance analysis, 

a theoretical investigation on turbulent confined jet mix- 

ing in a non-uniform axisymmetric duct typically used in 

jet pumps and ejectors has been undertaken. A so-called 

Prandtl-Kolmogorov two-equation turbulence model, with 

turbulent kinetic energy k and turbulent energy dissipation 

rate E as the two parameters, is incorporated into the 

time-mean Navier-Stokes equations to form a complete set 

of partial differential equations which describes the 

turbulent flow mathematically. The equations are solved 

numerically via a primitive pressure-velocity finite- 

difference procedure using a digital computer. The time- 

mean static pressure, velocities, turbulent kinetic energy 

and dissipation rate are predicted directly throughout the 

whole flow field. 

To validate the computer model, predicted time-mean 

static pressure and velocity as well as turbulent shear 

stress for flow in a uniform bore mixing tube are compared 

with the published results. The method is then extended 

to predict flows in conical diffusers and typical jet 

pumps. The predictions are also compared with the availa- 

ble experimental data. 

A laser Doppler anemometer is used to measure the 

mean and fluctuating velocities of water jet mixing in a 

uniform perspex mixing tube with a centrally located 

vii 



nozzle. The measured data which enable turbulent kinetic 

energy to be evaluated, are compared with the computer 

predictions to further consolidate the theoretical model. 

Finally, the computer model is used to predict the 

performance of a proposed jet pump and to investigate the 

influence of various geometrical parameters on jet pump 

performance. The capability of the computer model as 

a useful design tool is also demonstrated via an optimi- 

zation procedure to give the optimum geometry for a given 

design specification. 
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NOMENCLATURE 

The symbols are explained as they are introduced 

throughout the thesis. Inevitably, some of the symbols 

are used to represent more than one quantity. Unless 

otherwise stated, the symbols will have the following 

meanings. 

Symbol Meaning 

ApvAj,;, A pAN, AS Coefficients in the general difference 
equation 

au, av Surface areas of control volumes for 
U and V 

aj, bj, cj, d Coefficients of the general algebraic 
equation for 4 in tri-diagonal matrix 
form 

C19C2 Constants in the source terms for 
turbulent energy dissipation E 

CD Constant in the source term for turbulent 
kinetic energy 

Ce9CW, Cn, Cs Coefficients in the convective terms of 
the difference equation 

Ct Craya-Curtet Number for confined jet flow 

A constant in the equation for turbulent 
viscosity 

Velocity of light 
DelDW, Dn, Ds Coefficients in the diffusive terms of 

the difference equation 

d Diameter 

EA function of wall roughness in the 
logarithmic velocity distribution near 
the wall 

F Force 

f Frequency of light 
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fD Doppler frequency 

G Turbulent energy production term 

11 Total head 

i Incident angle of a light beam 

k Turbulent kinetic energy 

Unit vector 

kf Roughness parameter of a wall 

1 Length in general or length scale in 
the turbulence models 

1m Mixing length in Prandtl's model 

M Flow ratio of a jet pump 
m Mass flow rate 

N Head ratio of a jet pump 

P Time-mean static pressure 

P. - P' Instantaneous and fluctuating static 
pressures 

QVQ2 Primary and secondary flow rates of a 
jet pump 

Ri, Ro Radii of curvature of the nozzle wall 
and inlet duct wall respectively; also 
refer to inner and outer pipe radii in 
Chapter 6 

Re Reynolds number 

r Distance of a point from the axis of 
symmetry; also represents refractive 
angle in Chapter 6 

ri9ro Radii of the central jet and mixing duct 
for an uniform mixing duct 

rxtry Radii of curvature for x and y surfaces 
respectively 

S# Source term in the differental equation 
for 4 

Sü , Sp Source terms in the difference equation 
for 0 
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8 Spacing between nozzle exit and mixing 
tube inlet 

t Time in general; also thickness of a 
perspex wall in Chapter 6 

U"V Time-mean velocities in the x and y 
directions 

Um, 'T Area-mean velocity of a duct 

u, V Instantaneous velocities in x and y 
directions 

11 Fluctuating velocity components in three 
orthogonal directions 

Ut Turbulent velocity 
V Velocity vector 

Xly Streamwise and cross-stream coordinates 
for a general 2-D orthogonal axisymmetric 
coordinate system 

_ 
x1 , x2 2-D Cartesian coordinates 

ZA turbulent quantity, kmin where m, n are 
constants; also represents the axial 
direction of cylindrical polar coordinates 

Angle between the axis of symmetry and 
direction x 

Yl Efficiency; also represents refractive 
index in Chapter 6 

8 Diffuser included angle 

X Wave length of light 

1Uý }'1 t'J ff Laminar, turbulent and effective viscosi- 
ties of the fluid 

Density 

(Si., 4 Turbulent Prandtl/Schmidt numbers for 
kandE 

Turbulent energy dissipation rate 

Shear stress 
V Kinematic viscosity 

A variable represents U, V, k or 
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von Karman constant in the logarithmic 
velocity distribution 

CQ Beam intersecting angle 

Subscripts 

0 Mixing tube inlet section 

1 Diffuser inlet section 

a Quantity measured in air 

c Centre-line value 

d Diffuser 

e Entrained quantity 

i Refers to inner in general; also refers 
to incident beam in Chapter 6 

in Inlet condition 

j Primary jet 

N, S, D, W Pertaining to neighbouring nodes which 
lie respectively north, south, east and 
west of node P 

n Nozzle exit 

n, s, e, w Pertaining to the four sides of the 
control volume surrounding node P 

o Outer 

P Pertaining to node P 

p Quantity measured in perspex wall 

s Secondary inlet section; also refers to 
scattered beam in Chapter 6 

t Mixing tube 

w Quantity measured in water 

x Refers to section at a distance x down- 
stream of mixing tube inlet 
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INTRODUCTION 

Confined jet mixing is a fundamental fluid flow 

phenomenon of practical engineering importance. It is 

concerned with the mixing of a high velocity jet with a 

slow-moving fluid stream in a duct. The design of many 

devices such as jet pumps and ejectors, gas turbine 

combustors, gas burners, etc., are all benefited from 

the understanding of the mechanism of such flow. Despite 

the wide application of confined jet mixing, the subject 

received relatively little attention in the past as com- 

pared with free jet flow or other boundary layer flows. 

The present study is mainly aimed at confined jet mixing 

related to jet pump design and performance analysis. 

Jet pumps and ejectors are simple pumping devices 

directly derived from the principle of confined jet 

mixing. When a high velocity jet ejects into a mixing 

chamber, the slow-moving adjacent fluid is dragged along. 

in the jet direction. The mixing between the driving and 

entrained fluid results in momentum transfer from the 

high velocity driving jet to the low speed entrained 

fluid. It is obvious that the increase in velocity in 

the entrained fluid is achieved at the expense of the 

energy of the driving jet. 

Unlike other pumping devices such as positive dis- 

placement, centrifugal or rotary pumps, a jet pump does 

not require any moving part. Its working principle is 

based on a purely fluid dynamic phenomenon. No mechanical 
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energy is being used to increase the energy of the entrained 

fluid. The advantages of such a primitive device are its 

simplicity, reliability, absence of moving parts, and 

cheapness. 

Jet pumps are being used in many areas, such as 

process industries; STOL aircraft augmentation and space- 

oriented systems; recirculation devices in nuclear reactors; 

and more common, in deep-well pumping, booster pumping as 

well as dredging and priming devices. Because of their low 

cost and easily replaceable nature, jet pumps are especially 

suitable for pumping hostile fluids such as slurry which 

might be harmful to other expensive pumps. 

A typical jet pump consists essentially of a primary 

nozzle, a suction chamber, a mixing tube and a diffuser 

as shown in Fig-0-1. The nozzle and the suction chamber 

are connected to the driving line and suction line respec- 

tively. The two fluids undergo turbulent mixing in a 

mixing tube and the combined fluids then pass through a 

diffuser which serves as a pressure head recovery device. 

The relevant geometries and flow conditions are also 

indicated in the diagram. 

The four fundamental parameters used for jet pump 

design and performance analysis are usually presented in 

non-dimensional forms. These are: 
(i) the ratio of the entrained flow rate to the 

primary flow rate, known as the flow ratio M; 

M 
Q2 

Q 1 
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(ii) the ratio of total head gained by the entrained 

fluid to total head lost by the primary fluid, 

known as the head ratio N; 

Hd - Hs 

(iii) the area ratio of nozzle to mixing tube, R; 

()2 3t 

and (iv) the efficiency q, which is equivalent to the 

output power divided by the net input power 

Q2(Hd - H5) 
DIN 

driving 
line yý 

S 1ý 

HJ -T ' IH 
i, d 

suction /nozzle 
chamber 

entrance I mixing tube diffuser, 
region 

suction 
line 

Fig. O-1 Typical Jet Pump Configuration 

Other geometrical variables of significant importance 

on performance and design are mixing tube length lt, 

nozzle to mixing tube spacing s and diffuser included 
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angle e. Wall profiles of the secondary entrance region 

may also have some influence over the performance. 

Although jet pumps have been the subject of extensive 

experimental studies, very few investigations have dealt 

with the basic flow behaviour. The inadequacy of theore- 

tical and experimental studies on confined jet mixing has 

led to a situation whereby the designs of jet pumps and 

ejectors in the past have largely relied on empirical 

data obtained from model pump testing. Performance 

prediction is unreliable as it varies for each individual 

design. Owing to the large number of geometrical parame- 

ters involved, the previous research has not been able to 

provide consistent design recommendations. There is also 

a lack of a satisfactory explaination on the limitation of 
jet pump performance such as low head rise, low entrain- 

ment ratio or low efficiency. 

This thesis reports the research work carried out 
by the author. The thesis can be divided into three 

parts: 

(i) The development of a set of computer models 

which predict flows in (a) the mixing-tube, 

region; (b) the entrance region; and (c) the 

diffuser region of a typical jet pump device. 

(ii) Experimental studies of turbulent confined jet 

mixing using a laser Doppler anemometer for the 

measurements of mean and fluctuating velocities. 
(iii) The application of the computer prediction tec! - 

nique to the design and performance prediction 
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of jet pumps. 

The present theoretical approach, unlike the previous 

analytical methods which relied on large amount of empiri- 

cal input data, is to incorporate the Prandtl-IColmogorov 

two equation k- E turbulence model into the time-mean 

Navier Stokes equations to form a set of partial differ- 

ential equations. The equations, which are elliptic in 

character, are solved numerically by a finite difference 

procedure using a semi-implicit line by line method to- 

gether with a tri-diagonal matrix algorithm. The primitive 

variables, pressure and velocity are solved directly rather 

than using the vorticity-stream function approach. 

The flows in the entrance region, mixing tube and 

diffuser are solved through using similar but separate 

computer programs. This enables the use of the most 

appropriate co-ordinates system for each flow configura- 

tion as well as avoids the excessive storage requirement 

on the computer. The computed time-mean velocity, turbu- 

lent shear stress and static pressure distributions in 

these flow regions are compared with the existing experi- 

mental results from various sources. 

The laser Doppler anemometry (L. D. A. ) technique is 

employed to measure the time-mean and fluctuating r. m. s. 

velocities in the mixing tube where turbulent mixing of 

two co-axial jet streams takes place. The turbulent 

kinetic energy in the mixing tube is calculated from 

the three orthogonal r. m. s. velocities. The measured 
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time-mean velocity and turbulent kinetic energy are then 

compared with the computer prediction. The accuracy and 

limitation of using the L. D. A. for the measurement of turbu- 

lent water jet mixing are also discussed. 

Finally, the computer programs are used to predict 

pressure and velocity fields for various geometrical 

combinations, i. e. area ratio, nozzle spacing, mixing 

tube length and diffuser included angle. The effect of 

varying any geometrical parameter on jet pump performance 

is also studied. The final development computer model 

provides a useful tool for jet pump and ejector design. 

The designer needs only to specify geometry and required 

flow ratio in order to obtain information such as pressure 

rise, thrust augmentation, and efficiency. An optimiza- 

tion procedure is also developed to enable the designer 

to obtain optimum geometrical combination with best- 

efficiency for a given design requirement. 

I 
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CHAPTER 1 

PREVIOUS RELATED STUDIES 

1.1 Historical Development of the Theory of Jet Pumps 

The use of water jet pumps has existed for more than 

a hundred years. The first known application of a water 
jet pump was made by James Thomson in 1852. Since then, 

numerous theoretical and experimental studies on jet pump 

design and performance have been carried out. The theory 

of pumping through the mixing of two jet streams was first 

developed by J. M. Rankine (1870) based on the one- 

dimensional continuity and momentum equations. This 

concept of analysis is still widely used at the present 

time, with little or no addition to improve the prediction. 

Gosline et al (1934) applied the one-dimensional 

concept to derive the head ratio and efficiency for water 
jet pumps with cylindrical mixing chambers. The details 

of the derivation are described in Appendix A. 1. Reasonable 

prediction of performance was obtained by the authors 

using the analysis but only by assuming empirical loss 

coefficients for the driving line, suction line, mixing 

tube and diffuser. The treatment is a simple method used 

in general fluid flow analysis which ignores the details 

of the mechanism by which the two streams mix with one 

another. No generality can be claimed by such an analysis 

as its prediction is based on the experimental-determined 
loss-coefficients on specific jet pumps. However, owing 
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to its simplicity, the method was employed by many other 

workers, including Cunningham et al (1954), Mueller (1964), 

Reddy et al (1968), and Sanger (1968a, 1971) etc. An 

attempt was made by Mueller to improve the prediction 

using two frictional loss-coefficients to account for 

the developing and developed flows in the mixing tube, 

but the modified version did not improve the prediction 

(Sanger, 1968a). A method of designing liquid-to-liquid 

jet pumps using a simple computer program based on the 

one-dimensional analysis was developed by Sanger (1971). 

Cunningham (1975) also derived a modified head ratio 

expression which took into account the 'jet loss' due to 

the space between the nozzle and the mixing tube. It was 

found that the improvement in prediction was only marginal 

and not applicable to all cases. 

Two-dimensional analysis of axisymmetric confined 

jet mixing using momentum integral methods has been carried 

out by several researchers. The earlier works of this 

kind can be found in Curtet (1958), and Dealy (1964). 

More comprehensive theoretical analysis was done by 

P. G. Hill (1965,1967). After assuming a virtual source 

located at nozzle exit plane, Hill divided the downstream 

into three distinct flow regions, namely, potential outer 

flow region, recirculation region and wall-jet interaction 

region as shown in Fig. 1.1-1. He was able to predict the 

mean velocity and pressure distributions using empirical 

data of velocity and turbulent shear stress distribution 

from a round free jet. However, Hill's method was limited 
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to confined jet flow with relatively small nozzle diameter 

as compared with that of mixing tube. The main deficiency 

was thus its inability to predict the flow behaviour in 

the potential core region for high nozzle to mixing tube 

diameter ratios frequently used in jet pumps and ejectors. 

The analysis is fully described in Appendix A. 2. 

Fig-1-1-1 Flow Regimes of Hill's (1965) Analysis 

The development of momentum integral method was 

carried a step forward by B. J. Hill (1971,1973). He 

extended the analysis to include the potential core region 

and used empirical data directly derived from jet pump 

measurement. The major shortcoming of the integral method 

is the necessity to use a large amount of empirical input 

data. The accuracy of analysis thus depends on the range 

of geometrical and . 
flow conditions under which the empiri-' 

cal data was evaluated. 

More recent theoretical development of jet pump and 

confined jet mixing is focused on solving turbulent trans- 
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port equations using finite difference procedures. 

Hedges et al ('1972,1974) devised a finite difference 

model based on the conservation equations and Prandtl's 

mixing length hypothesis to predict the mean velocity 

and pressure distributions. Pope (1972) also used the 

Patankar-Spalding finite difference procedure (1967) 

incorporating a mixing-length hypothesis to solve for 

the mean flow behaviour. However, no prediction of 

turbulent shear stress or other turbulent quantity is 

reported. It is clear that in order to study the 

turbulent nature of confined jet mixing and to predict 

jet pump flow more reliably, a more advanced turbulence 

model must be employed. 

1.2 Numerical Methods for PredictinE Turbulent Flows 

In the past twenty years, following the development 

and application of high speed digital computers, tremen- 

dous amount of research works have been devoted to the 

field of numerical methods for predicting turbulent 

flows. To summarized the various methods being used 

and published, it would require a relatively long 

chapter. However, despite the great variety of methods, 

it is possible to divide them, according to the computa- 

tional procedures involved, into two main categories, 

i. e., (i)integral methods, and (ii) finite-difference 

methods. 

1.2.1 The Integral Methods 

The integral methods require empirical data obtained 
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from experimental measurements, such as the shape of the 

velocity profile, the shear stress distribution and skin 

friction coefficient for the solid wall, to incorporate 

into the integral equations of conservation. The result- 

ing set of ordinary differential equations are then solved 

by some appropriate numerical integration procedures such 

as Runge-Kutta method. The applications of these methods 

to predict turbulent boundary layer flows were reported 

by Truckenbrodt (1952), Head (1960), Escudier and Spalding 

(1965) and Escudier and Nicoll (1966). Curtet (1958), 

Mikhail (1960), Dealy (1964), Hill (1965), Exley and 

Brighton (1971) and Hill (1973) have applied the integral 

methods to predict confined jet flows. The detail des- 

cription of Hill's (1965) approach which is a typical 

integral method is included in Appendix A. 2. 

The widespread use of integral methods lies on the 

fact that much less computer time is required as compared 

with the finite difference methods. However, the inte- 

gral methods are lacking in generality and large amount 

of empirical information is required. In order to 

predict different flow regions, various empirical forms 

for velocity profile and shear stress distribution to 

suit various flow components are therefore needed as, 

input data to obtain reasonable result. In view of 

these deficiencies, the search for more general methods 

to predict turbulent flows through solving the governing 

partial differential equations numerically was the main 

concern in this field for the past two decades. 
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1.2.2 The Finite Difference Methods 

The solving of partial differential equations of 

mass, momentums and other variables for turbulent flows 

could only be achieved if the flow could be treated as 

obeying the Newton's viscosity law with an appropriate 

effective viscosity. Such concept of "turbulent" or 

"eddy" viscosity was first introduced by Boussinesq in 

1877. He proposed that the effective turbulent shear 

stress Zt could be replaced by the product of the time- 

mean velocity gradient and the turbulent viscosity ltt 

"fit =., cct ay (1.2-1 ) 

where U is the time-mean velocity and y is the cross- 

stream distance. 

The introduction of the turbulent viscosity concept 

does not solve the problem completely but at least 

provides a basis for turbulence modelling. The main 

task left behind is to express the turbulent viscosity 

in terms of quantities which can be determined, either 

by solving some algebraic equations or partial differen- 

tial equations. 

Prandtl's mixing length hypothesis Based on the analogy 

to the kinetic theory of gases, i. e., the viscosity is 

proportional to the product of the density, the r. m. s. 

velocity of the molecules and the mean free path, 

Prandtl (1925) proposed that the turbulent viscosity 

might be determined by the local product of the density 
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the turbulent velocity ut and a length lm called mixing 

length, 

/üt = PlmUtt (1.2-2) 

He then further proposed that the turbulent velocity was 

equal to the mixing length 1m times the longitudinal time- 

mean velocity gradient, 

Utl 
122 (1.2-3) 

tm by 

Thus, the complete mixing-length hypothesis will 

have the following mathematical relationship 

Pt P lm2 
1a (1.2-4 ) 

Prandtl went on to suggest that lm was proportional to 

the distance from the nearest wall. In the case of 

free turbulent flows, Prandtl made an assumption that 

1m was proportional to the width of the turbulent 

mixing zone and thus only dependent upon the distance 

along the main flow direction but not the lateral 

direction. 

Prandtl's mixing'length hypothesis was incorporated 

into the partial differential equations of conservation 

for boundary layer flows and solved numerically by 

Patankar and Spalding (1967). The predictions of 

time-mean velocity distribution in free jets and in 
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turbulent flow on flat-plate were found to agree reasona- 

bly well with measurements. The method was also extended 

to predict the temperature, mass concentration in boundary 

layer flows by the same authors. Application of the method 

to predict mean flow behaviour of jet pump was reported 

by Pope (1972). 

The main shortcomings of the mixing length hypothesis 

are (1) turbulent viscosity is zero at those location 

where 
ýy 

=0 whereas experiments have shown otherwise; 

(2) no account is taken of the processes of convection 

and diffusion of turbulence in which the local turbulent 

velocity is affected by the neighbouring fluids. 

One-equation models of turbulence The shortcomings of 

the mixing length hypothesis was overcome by the proposals 

of Prandtl (1945) and Kolmogorov (1942) who independently 

suggested that the turbulent viscosity was proportional 

to the square root of the turbulent kinetic energy k as 

, at =e kkl (1.2 -5) 

where k=J (u' 2+ 
V12 + W12) 

u' , v' and w' are the three orthogonal r. m. s. velocities, 

1 is -a length scale and k is to be determined from a 

transport equation. Prandtl and Kolmogorov derived the 

k-transport equation separately from the Navier-Stokes 

equations. The final approximated form of the k-equation 

can then be solved simultaneously with the momentum and 

continuity equations. The model was used by Runchal(1969) 
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to predict the turbulent flow in a sudden enlarged pipe 

and by Wolfshtein (1968) in predicting the impinge jet 

flow. Pun and Spalding (1967) also succeeded in apply- 

ing the similar model to predict turbulent confined jet 

mixing in cylindrical combustion chamber. 

Instead of using the concept of turbulent viscosity, 

Bradshaw et al (1967) assumed that the turbulent shear 

stress is proportional to a variable called turbulent 

energy k', 

Zt = C? k' 
where C is a constant. They derived a transport equation 

for k' which was then solved together with other conser- 

vation equations. Satisfactory predictions were obtained 

for a number of external wall boundary layer flows. Nee 

and Kovasznay (1969) also proposed that the kinematic 

turbulent viscosity should be determined directly by a 

transport equation. All the above methods are always 

referred to as. one-equation models of turbulence. The 

major shortcoming of these models is that the length 

scale 1 which always appeared in the transport equation is 

needed to be prescribed algebraically. A precise pres- 

cription of 1 is, however, rarely possible except for 

boundary-layer flows. 

Two-equation models of turbulence The deficiency of the 

one-equation models has led to the search for more compe- 

tent models to be able to predict turbulent flows with- 

out prescribing the length scale algebraically. Such 
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models require that another variable related to the 

length scale should be determined by an additional 

transport equation and can thus be referred to as two- 

equation models. Perhaps Komogorov (1942) was the first 

person to propose the idea of two-equation model. In 

1942, he suggested that the turbulent viscosity could 

be determined by the turbulent kinetic energy k and the 

characteristic frequency of energy-containing motions f 

so that 

'Al .P (1.2-6) 

Both k and f should be determined from separate differen- 

tial transport equations. Comparing equation (1.2-6) 

with equation (1.2-5), it can easily be seen that Komo- 

gorov actually chose ký/l as his second dependent variable. 

From then onwards, many authors have proposed various 

two-equation models using different dependent variables; 

among them are Rotta(1951) and Spalding (1967) who used 

k and 1; Harlow and Nakayama (1968) who used k and 
3/2 

k /1 

Rotta (1971), Ng and Spalding'(1972) who used k and kl 

and Spalding (1969) who used k and k/1. It is apparent 
2 

that the difference among various two-equation models is 

the choice of the second dependent variable to'determine 

the length scale. If the second variable is designated by 

z= kmln with m and n being constants, a summary of various 

two-equation model can be listed in Table 1.2-1. 
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All the two-equation models provide facility for 

both variables k and 1 to appear in the Prandtl-Kolmogorov 

formula for 
, #t and they are both determined by solving 

the appropriate transport equations. 

The successful applications of two-equation models, 

especially the k- F, model, for predicting turbulent flows, 

both boundary layer type and recirculating type, were 

reported by many authors. The decay of a plane jet in a 

moving stream was predicted by Launder et al (1972) and 

the agreement with experimental data was found to be 

much better as compared with predictions using mixing- 

length and one-equation models. Other boundary layer 

flows predictions include the turbulent pipe flows 

obtained by Jones and Launder (1973) and wall-jet flow 
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predicted by Sharma (1972). In recirculating flows, 

prediction of film cooling was obtained by Matthews and 

Whitelaw (1971), cylindrical furnace flow was predicted 

by Elghobashi and Pun (1974) and forced cavity flow was 

reported by Nielson (1973). 

Pulti-equation models of turbulence Other turbulence 

models being proposed include the three-equation model of 

Hanjalic (1970) who used k, E. and u'7 as dependent 

variables and the five-equation model of Daly and Harlow 

(1970) in which the normal turbulent stressesu , 
v'7 

and wt 
2 together with u'vT and F, are determined by five 

differential transport equations. However, few successful 

prediction based on the multi-equation models has been 

reported. This. suggests that a model of such complexity 

is not yet well established for general application. 

The solution procedures employed Almost all the early 

solution procedures for calculating turbulent flows 

using finite-difference method were based on the computer 

code developed by Patankar and Spalding (1967) and 

Gosman et al (1969). The former solved parabolic equations 

in boundary layer flows and the later solved elliptic 

equations in recirculating flows. Both procedures employ- 

ed the stream function-vorticity approach which solved the 

stream-function and vorticity together with the turbulent 

parameters and then transformed back to time-mean velocities 

and pressure. New solution procedures which solved the 

primitive variables, velocities and pressure, were develop- 

ed by Patankar and Spalding (1972) and Caretto et al (1972). 

18 



They were widely tested in many flow predictions as 

reported by Gosman and Pun (1974) and Pun and Spalding 

(1976). 

1.3 Previous Experimental Studies 

1.3.1 Experimental Studies on Confined Jet Mixing 

The early experimental studies of confined jet 

mixing were mainly concerned with mean flow behaviour. 

The centre-line velocity, the static pressure and the 

velocity profiles were the main interests to many 

researchers. Measurements of centre-line velocity 

decay and velocity profiles across various sections in 

uniform duct were first obtained by Forstall and Shapiro 

(1950). Static pressure along the duct wall and velocity 

profiles were measured by Heimbold et al (1954) who used 

both uniform and non-uniform mixing ducts. Other similar 

measurements, of mean flow behaviour include those made by 

Mikhail (1960), Becker, Hottel and Williams (1962), Dealy 

(1964), etc., all using Pitot static tube for their velo- 

city measurements. 

Turbulent fluctuating velocities in both longitudinal 

and radial direction of a confined jet flow were first 

measured by Curtet and Ricou (1964) using a constant- 

temperature hot-wire anemometer. The most complete 

measurement of confined jet mixing to date was probably 

done by Razinsky and Brighton (1971) who measured the 

centre-line velocity, the wall static pressure, the 

velocity profiles, the longitudinal r. m. s. velocity as 
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well as the Reynolds stress. The mean velocity was 

measured by a Pitot static tube and the turbulent quanti- 

ties were measured by a constant-temperature hot-wire 

anemometer. All these works have contributed a great 

deal to the understanding of the mixing behaviour in 

ducts. 

1.3.2 , xperiraenta7. Studies on Jet Pumps and Ejectors 

large amounts of literature on experimental studies 

of jet pumps-and ejectors have been accumulated in the 

past fifty years. Most of the literature is summarised 

in a BHRA Review compiled by Bonnington and King (1972). 

The earlier works on jet pumps are mainly concerned with 

performance tests and pressure rise measurement along 

the duct wall. Typical works of such are those of Gosline 

et al (1934), Keenan et al (1942), Folsom (1948) and 

Kastner et al (1950). 

Many experimental investigations have also been 

devoted to various geometrical effects on jet pump 

performance. Gosline et al (1934), Vogel (1956), 

Mueller (1964) and Hansen et al (1965) carried out 

experimental tests and recommended 'a mixing tube 

length ranging from 3.5 to 8.0 diameters for optimum 

performance. As for the effect of nozzle to mixing 

tube spacing, Schulz (1952) established that the 

optimum spacing lie between 1 and 2 nozzle diameters 

whereas Hansen et al (1965) recommended a value between 

0.8 and 1.4. -Schulz (1958) and Mueller (1964) also 

discovered that a better performance was obtained by 
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having the secondary flow inlet in the shape of a round- 

ed bell mouth. The diffuser angle is another geometrical 

variable which many workers have made considerable experi- 

mental studies in order to give a recommendation to achieve 

a good performance. Mueller (1964) recommended a 50 

diffuser included angle for best efficiency whereas an 

8° included angle was proposed by Vogel (1956). It is 

clear that although many efforts have been devoted to the 

investigation of geometrical effects on jet pump perform- 

ance, no consistent recommendation of optimum geometrical 

configuration has been made. The facts that a large number 

of geometrical variables are involved and their interre- 

lated effects on the flow behaviour in mixing tube and 

diffuser make it extremely difficult to generalize the 

problem. 

Experimental studies of several low-area-ratio water 

jet pumps were carried out by Sanger (1968a, 1968b, 1970). 

Static pressure and efficiency were obtained for two area 

ratios of 0.066 and 0.197.. The mixing tube lengths used 

were 7.25 and 5.66 diameters whereas nozzle spacing rang- 

ing from 0 to 2.9 tube diameters. It was observed that 

the efficiency for the shorter mixing tube pump was about 

2% higher for both area ratios which suggested that 

for these area ratios, mixing tube length-between 5 and 

6 diameters was sufficient for optimum mixing. However, 

it was concluded by the author that because of the inter- 

dependence among, the various geometrical parameters, no 

optimum geometries can be established for all jet pumps. 

I 
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Other experimental studies on jet pumps are concerned 

with applications of jet pump devices under various operat- 

ing conditions, cavitation studies and using jet pumps to 

pump a dissimilar fluid. 

1.4 Previous Applications of Laser Doppler. Anemometry_on 

Related Flow Measurements 

The first successful application of laser Doppler 

anemometry to the measurement of fluid velocity can be 

attributed to Yeh and Cummins (1964). In their pioneering 

work, they measured the velocity in a fully developed 

laminar pipe flow of water. The technique was later 

applied to turbulent water flows by others including 

Goldstein and Hagen (1967), Welch and Tomme (1967), etc. 

The measurement of turbulent air flow was carried out by.. 

Lewis, Foreman, Watson and Thornton (1968) and Haffaker, 

Fuller and Lawrence (1969). The technique has been used, 

for example, by Durst and Whitelaw (1971) to measure the. 

mean and fluctuating velocities of an axisymmetric air 

jet; by Melling and Whitelaw (1973) to measure the three 

orthogonal components of mean and r. m. s. fluctuating 

velocities of a rectangular water channel flow. Measure- 

ments of turbulent shear stresses in pipe flow using two 

trackers and a correlator were obtained by Bourke et al 

(1971) and Morton and Clark (1971). 

More recently, laser Doppler anemometry has been 

applied to measure some highly turbulent flows using 

frequency shifting techniques. Durst, Wigley and Zaire 
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(1974) carried out measurement of mean and fluctuating 

velocities downstream of a square flow obstacle with 

turbulent intensity up to 50%. Baker (1974) reported the 

measurement of three orthogonal r. m. s. velocities in the 

fully developed region of a turbulent jet. The mean and 

fluctuating velocities downstream of an annular jet with 

substantial recirculation were measured by Durao and 

Whitelaw (1974). It is obvious that the laser Doppler 

anemometry, although a rather new technique, ' will emerge 

as a very powerful tool in the future fluid flow measure- 

ments. 
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CHAPTER 2 

THE MATHEMATICAL MODEL 

In this chapter, the partial differential equations 

governing the basic laws of conservation of mass and 

momentum for a incompressible viscous fluid are first 

described. The equations, when apply to a turbulent 

flow, require the additional terms to account for the 

fluctuating components of the variables. A two-equation 

k- F turbulence model which provides informations for the 

extra terms is incorporated into the time-mean differen- 

tial equations to form a complete mathematical model for 

the two-dimensional axisymmetric turbulent flows. Appro- 

priate boundary, conditions which simulate the practical 

jet pump situation in order to obtain realistic prediction 

are discussed. 

2.1 The Equations of Notion for an Incompressible Viscous 

Fluid 

The derivation of the equations of motion based on 

the basic laws of conservation are readily available in 

many standard text books on fluid mechanics such as 

Schlichting (1960) and Hinze (1975). The equations, 

according to Hinze (1975), whon expressed in a tensor 

notation using Cartesian coordinates takes the following 

forms : 

Continuity: 
-6 e 
$9 + öxj 

J 

=o 
1, c., 

(2.1-1) 
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Momentum equation in xi-direction: 

Q 
Du i= ax ji + Fi 

j=1r2., 3 

where a, is the stress in the xi-direction operates in a 

plane which is perpendicular to the direction xj. Fi is 

an external force per unit volume acting on the fluid 

in xi-direction. 

For an incompressible fluid, 

ax3ý3i = aX + aX 
11(a? Ui 

X+ -axi) 
ijj 

equation (2.1-2) can be written as 

PDT 
i+äý, 

(aX + 
äi) 

+ Fi (2.1-3) 
j 
j=1,2.3 

where p is the static pressure and y is the dynamic 

viscosity of the fluid. Equations (2.1-1) and (2.1-3) are 

usually referred to as the Navier-Stokes equations which 

form the basis of the whole theory of viscous fluid mecha- 

Y1ios " 

2.2 The Need for Turbulence Modelling 

The equations of motion described in section 2.1 

are generally applicable to laminar flows but not turbu- 

lent flows. In brief, a turbulent flow is defined as an 

irregular fluid motion in which the various quantities 

show a random variation with time and space coordinates. 

Turbulent flows can occur when fluids flow through 
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conduits (turbulent pipe flow), pass over solid bodies 

(wake), or when neighbouring stream of the fluids with 

different velocities pass over one another (jet mixing). 

At present, one is unable to obtain solution for the time- 

dependent turbulent flow field using existing computers. 

Fortunately, it is possible to describe turbulent flow 

with distinct average values of various quantities such 

as velocity, pressure and temperature, etc. If a turbu- 

lent flow field is quasi-steady, averaging with respect to 

time can be used. But for a homogeneous turbulent flow 

field, averaging with respect to space is preferred. In 

most of the engineering Problems, time-averaged values 

are more useful for engineers and designers. 

The instantaneous values of velocity and pressure can 

be written as 

ui = Ui +u (2.2-1) 

and pP+ p' (2.2-2) 

where Ui and P are the time-mean values and ui', p' are 

the fluctuating values. 

The equations of motion for the average values in 

turbulent flow were first derived by Osborne Reynolds. 

He substituted the instantaneous values of ui and p into 

the equation (2.1-3) to give the following form. 

DUi 
- 

aP a Ui 

if 
.t Dt =3+ä [p( . 

ax + bxi) -P uiu j) + Fi (2.2-3) 
3ý 

j=1,2,3 
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Compare this equation with the original momentum equation 

(2.1-3), it can be seen that the extra-terms -e ui'u 

are required to add to the viscous stresses in order 

that the instantaneous variables can be substituted by 

their time-mean values. Because Reynolds was the first 

person to derive the equation for turbulent flow in this 

form, the turbulent terms-pui'uj' are often called Rey- 

nolds stresses. 

To solve equation (2.2-3), the terms -e ui lv must 

be known. Since there is no direct way of knowing the 

magnitude of these terms, a mathematical model to relate 

effect with known quantities is therefore required. Thus, 

a model of turbulence, in the words of Launder and Spalding 

(1972) will 'propose a set of equations which, when solved 

with the mean-flow equations, allows calculation of the 

relevant correlations and so simulates the behaviour of 

real fluid in important respects'. 

2.3 The Differential Eauations of Conservation Applied 

to Two-Dimensional Axisymmetrical Flows 

2.3.1 The Coordinate System 

Before making any attempt to express any equation for 

a particular flow configuration, an appropriate coordinates 

system must be chosen. In this thesis, owing to the fact 

that fluid flows take place at various flow components, 

the most general two-dimensional orthogonal axisymmetrical 
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coordinate system is used. Fig. 2.3-1 illustrates such 

a coordinate system in which the coordinates x and y 

characterise the members of two orthogonal families of 

surfaces of revolution. rX and ry are the radii of cur- 

vature for x and y surfaces intercepting at point P and 

r is the distance from P to the axis of symmetry. 

L 

ry 

P 

r 

ß Axis of symmetry 

Fig. 2.3-1 The Orthogonal Axisymmetric Coordinate 
System. 

The merit of using such a general arbitrary ortho- 

gonal coordinate system is that the coordinates can be 

so chosen that all the flow boundaries are parallel to 

the grid surfaces. In the present investigation, a 

typical jet pump flow field consists of (i) an annular 

entrance region, (ii) a cylindrical mixing tube and (iii) 

a diffuser. By using the coordinate system outlined above, 

a grid pattern can be devised to accommodate all the three 
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flow regions as shown in Fig. 2.3-2. 

Axis of symmetry 

diffuser 

Fig. 2.3-2 The coordinate system applied to jet pump 

configuration 

In general, rX, ry and r are function of x and y. 

In the uniform mixing tube region, 
rx a 00 

00 

v 

In the diffuser region, 

rx = oo 

ry=x+ xo (2.3-2) 

r (x + xo)sin1 

where x0 and ß are given in Figure 2.3-3 and their values 

depend on the diffuser included angle and the inlet diame- 

ter. 
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Axis of symmetry 
diffuser 

inlet 

Fig. 2.3-3 Diffuser geometry 

In the annular entrance region, explicit expressions for 

r, ry and r are much more cumbersome. However, all the 

variables x, y, rX, ry and r can conveniently be calcula- 

ted in terms of Cartesian coordinates. Details of the 

calculation will be illustrated in section 4.3.2. 

2.3.2 The Differential Equations of Conservation 

The equations for conservation of mass and momentum, 

when expressed in the general orthogonal x, y coordinate 

system described above for a steady flow, will take the 

following forms. 

The continuity equation, 

C pru) +ä (prV) a0 (2.3-3) 21 
Tx- 

The momentum equation in x-direction, 

r f(eUru) 
+ ay( pvru) ; 

A(r/u'e 

ffö) a(r/ueffay) 

ý_aX+I) 
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where 

Su _1ö (r/ U+öö+ 
r öx efflax ýyý /ý'`eff öx ry 

2,, +e f f(Usin13 + Vcosp 
- sing (2.3-4) 

r 

The momentum equation in y-direction, 

r äX(PUrv) 
+ y(fvrv) - lax (rPeff y(rJ4effäy) 

bp sv FY 

?U+ .ý $r ax(r juefföy) + ay(r, t'teff ivay 
rx 

2/peff (Using + Vcosß 
-) cosf3 (2.3-5) 

where U, V, P are time-mean velocities and static pressure. 

The full derivation of the momentum equations is given in 

Appendix A. 3. 

The momentum equations are obtained by assuming that 

the fluid is treated as obeying Newton's viscosity law. 

For a turbulent flow, Aff accounts for both viscous 

stress and Reynolds stress. By comparing equation (2.3-4) 

with equation (2.2-3), one can write 

aUi 
+ (a= + 

a--ý) 
-ü (2.3-6) 

JUeff 
(axi 

'axi }'ý 
i axi eij 

An appropriate model of turbulence is thus required to 

relate the turbulent stresses :- pu ij to some 

known quantities throughout the flow field. 
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2.4 The Choice and Applicatiofn of Two-equation k- £ Model 

It was first proposed by Boussinesq in 1877 that the 

turbulent shear stress could be replaced by the product 

of the time-mean velocity gradient and the turbulent vis- 

cosity,, ct, i. e., 

U. -aU 
_ eju -'L (. + -6xi 

Substituting Equation (2.4-1) into (2.3-6), one gets 

/u of ff+ /u-ý 
(2.4-2) 

Thus, the effective viscosity in a turbulent flow is 

equal to the sum of the molecular viscosity-and the 

turbulent viscosity. Unlike the molecular viscosity 

which is the real property of the fluid, the turbulent 

viscosity can become effective only when there is flow 

and its value varies from point to point in the flow 

depending upon the I turbulent structure at that particular. 

location. 

Many turbulence models have been proposed to relate 

µt to some quantities which can be determined. The out- 

line of various models and their merits and shortcomings 

have been described in section 1.2.2. In the present 

studies of confined jet mixing and jet pump flows, owing 

to the interaction between the mixing shear region and the 

wall shear region, the length scale profile is unable to bQ 

prescribe4throughout the flow field. The mixing length 

and one-equation models will not be able to predict these 
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flows satisfactorily. However, in view of the fact that 

the multi-equation models are far less established and 

more computing time is required, the choice of a two- 

equation model is a compromise of accuracy and economics 

unless a more complicated multi-equations model is proved 

to be necessary. 

The Prandtl-Komogorov two-equation model states that 

the turbulent viscosity pct can be written as 

, 
/, At = C; ý4 ek l (2.4-3) 

where k= j(u12 + V'2 + w'2), 1 is the length scale and 

Ct is a constant. k and. i are to be determined by their 

transport equations. However, it turns out that the 

length scale itself is not the most appropriate dependent 

variable. Various workers have selected different com- 

binations of m and n of a quantity kmin as their second 

dependent variable instead of using 1 itself. (See 

Table 1.2-1). A quantity, called turbulence energy 

dissipation rate first proposed by Harlow and 

Nakayama (1968) and subsequently favoured by many other 

workers is chosen as the second dependent variables in 

the present work where 

E= k3/2 (2.4-4) 
1 

The reasons for this choice are : (i) it is relative- 

ly easy to derive the exact equation for E; (ii) E appears 
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directly as an unknown in the transport equation for k; 

(iii) the effective turbulent Prandtl Number 6' appeared 

in the 8-equation as a constant irrespective of the 

distance from the wall whereas for other combinations, 

such as k1 and k/1? dis is not so, as proved by Launder 

and Spalding (1973). 

Furthermore, the k- E model are well established and 

has been incorporated into standard computer code by 

Gosman and Pun (1974) for solving turbulent recirculating 

flows. The model was widely tested and enjoyed satisfac- 

tory predictions for a wide range of flows. Examples 

of such applications of k- E model can be found in the 

works of Hanjalic (1970), Elghoboshi and Pun (1974). 

Matthews and Whitelaw (1971) and Nielson (1973). 

The k- and 6- equations, when using a general. 

orthogonal axisymmetric coordinate system described in 

section 2.3.1P may be expressed in the following form at 

high Reynolds numbers. 

k-equation: 

+ y( e Vrk) _ä 6k 
efýe ak) _ -ýZ)y . (r 

k 
ay ) /Ueff 

[T-b(PUrk) 

= CDeýE (2.4-5) 

C-equation: 

T 
[, 

a( 
Xpure + 4eVre) ä (lPeff ö£) 

de aX -a( ay 
reff 

drf 
aE 
ay 

= C, F- G/k -02 (> E2/k (2.4-6) 
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where a1J 2 aV 2V aU U V_ 
G= ý`t{2 (axý + ýäy> + rx"x +ry y) 

+ (ay + 
2LV)2 (2.4-7) 

These equations are modified from the cylindrical polar 

forms used by Gosman and Pun (1974). They differ in the 

expression of the turbulent energy production term G. 

The derivation of G, equation (2.4-7) is given in Appendix 

A. 4. 

By combining equations (2.4-3) and (2.4-4), is 

related to k and £ as 

11t =Me k2/e (2.4-8) 

It is now possible to obtain the five unknown varia- 

bles, namely, U, V, P, k, E by solving five simultaneous 

equations (2.3-3), (2,3-4), (2.3-5), (2.4-5) and (2.4-6) 

with the help of the auxilliary equations (2.4-2) and 

(2.4-8). 

The values of the constants Op , CD, C1 , C21 (Sk and 

6e must be prescribed to complete the specification of 

the model. At high Reynolds, these constants are given 

the values listed in Table 2.4-1 as recommended by 

Launder and Spalding (1973) and Gosman and Pinn (1974). 

This set of values has been widely used in various 

flow problems and is generally accepted for flows of. 

plane jets, mixing layers and the plane and axisymmetric 

wall flows. 
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Cu CD C1 C2 6k d6 

0.09 1.00 1.44 1.92 1.00 1.21 

Table 2.4-1 The values of the constants used in the 

k- 9 model 

In the present study of jet pump flows, these values 

are chosen for the whole flow field without any modifica- 

tion. 

2.5 Modification of the Model for 'Near Wall' Flow 

The model described in section 2.3 and 2.4 is only 

valid for fully turbulent flow. When close to a solid 

wall, there are regions where viscous effect are signi- 

ficant compared with turbulent effect. In these regions, 

some modifications on the transport equations are there- 

fore necessary. 

2.5.1 The 'Law of the Wall' 

In the vicinity of a solid wall, the flow is deter- 

mined by (i) wall shear stress, and (ii) roughness. The. 

mean velocity component U in this region, according to 

the classical theory of turbulent boundary layer along 

a flat plate (Hinze, 1975), is a function of (i) wall 

shear stress t; (ii) roughness parameter kf; (iii) 

normal distance from the wall y and (iv) kinematic vis- 

cosity V. 

i. e. 
U= 'ý ( o, kfs 1) s Y) X2.5'1) 
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P 
where has the dimension of velocity and is usually 

referred to as wall-friction velocity or wall shear stress 

velocity U*, i. e., 

U' (2.5-2) 
fLý 

From the dimensional analysis, 

Ü# 
= f(t 

U*k 
v 

f) (2.5-3) 

For a smooth wall where kf =0 

U*Y) (2-5-4) 

In the viscous sublayer, 

Iäy = 'rw 

Irw and U T-Y 

From equation (2.5-2), it follows that 

U *Y (2.5-5) ý- v 
If it is assumed that, for the wall region, the 

shear stress remain constant and equal to the wall shear 

stress, the following relationship can be written for the 

turbulent part of the wall region, 

)- ^"w (2.5-6) 
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In the neighbourhood of the wall, it may be assumed that 

turbulent viscosity is proportional to the distance from 

the wall. From dimensional analysis, 

/u't 1e U*Y (2.5-7) 

where j. is a dimensionless constant called von Kärmän 

constant and having a numerical value of 0.4187. Subs- 

tituting equation (2.5-7) to equation (2.5-6) gives 

U* 2 IG Uy 23 

U*v Using the dimensionless expression U+ =Ü and y+ 

one gets 

14y 
a6y+ 

(2.5-8) 

y 
The solution obtained by integration is 

U+ = 
41ny+ 

+ const. (2.5-9) 

For a rough wall with roughness parameter kf, a similar 

solution can be obtained 

U+ lnL, + const. (2.5-10) 
f 

Equation (2.5-9) and (2.5-10) can be combined into a 

general form 

U+ _ 
ýInEy+ (2.5-11) 
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where E is a function of the wall roughness. According 

to Launder and Spalding (1973), E approximately equal to 

9.0 for a smooth wall. 

Equation (2.5-11) is the well-known expression of the 

logarithmic 'law of the wall' applied to the turbulent 

part of the wall region and only determined by the wall 

roughness and the distance from the wall. Even in the 

outer region of the boundary layer, the logarithmic ve- 

locity distribution only deviates slightly from the actual 

experimental results. Thus, from a practical engineering 

viewpoint, the logarithmic velocity distribution can pro- 

vide acceptable mean-velocity profile for turbulent flows 

in a pipe or boundary layer. 

In the near-wall region where generation and dissi- 

pation of energy are in balance, it can be shown that 

=w 
= (C, PD) k (2.5-12) 

f 

Combining equations (2.5-12) and(2.5-11) gives 

U 
.. 

CcJu. CD) ki _ 1n By+ (2.5-13) 
W Y. 

(P ) 
where 

+ e(CCD) k 
YýY 

This is the final expression where the turbulent wall 

shear stress can be evaluated from the values of k, y and 

U adjacent to the wall, If the value of y+ is less than 
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11.63, the laminar shear stress expression is used 

rw 
"YY 

(2.5-14) 

The wall shear stress is then incorporated into the 

source term Su of the U-momentum equation (2.3-4) for flow 

next to the duct wall. 

2.5.2 Modification of k and E in the 'Near Wall' Region 

In the near wall region the shear stress components 

can no longer be calculated from the fully developed 

turbulent flow. Thus the turbulent energy production 

term G appeared in k- and £- equations has to be modified. 

Using the original G term from Appendix A. 4, 

G= '-ri (2.5-15) 

The normal stress components t, and te remain 

unchanged, 

T'xx = 2, it, +- (2.5-16) 
x 

't-yy 2/it( +y (2.5-17) 

The shear stress components 'rte and 7iy should be cal- 

culated from equation (2.5-13) or (2.5-14). The modified 

G near the wall then takes the following form: 
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dU 2 aV 2V aU U (IV 

+ TW(öy + äx) (2.5-18) 

To determine the near wall value of e, equation 

(2.5-7) is substituted into equation (2.4-8), 

Cýk2 

KU *y 

From equation (2.5-12) 

U 
riew- 

= (c, cD)* k9 

the near-wall value can now be expressed as follows: 

(CýcD)I k 
3/2 

K, y 
(2.5-19) 

It should be noted that equation (2.5-19) does not give 

the value of E at the wall but the value of 6 at the 

point P next to the wall as shown in Fig. 2.5-1. 

Fig. 2.5-1 The 'near wallt node 
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2.6 The Boundary Conditions 

-There are basically four different types of boundary 

conditions needed to be specified so as to complete the 

flow description. They are: (1) the wall boundary, (2) 

the axis of symmetry, (3) the inlet flow condition, and 

(4) the outlet flow condition. 

At a solid wall, both velocities along the wall U 

and normal to the wall V are set to zero for no-slip 

and non-permeable conditions. The shear stress at the 

wall is calculated from equation (2.5-13) or (2.5-14) 

so that it can be included in the source term Su for 

those grid nodes adjacent to the wall. 

For k and e, the near-wall values are calculated 

with a modifiedG-terms and the modified E values, i. e., 

equations (2.5-18) and (2.5-19) respectively. 

On the axis of symmetry, radial velocity V is zero 

and the gradients aU 
,M and 

a 
are all zero too. by by ay 

Appropriate profiles for U, V, k and £ are necessary 

to specify in the inlet section. The outlet U-velocity 

is specified by considering the overall mass conservation, 

V can be set to zero and k and E are assumed to be fully 

developed. The assumption for outlet flow specification 

is acceptable when the outlet section is fixed beyond the 

region of interest, 
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CHAPTER 3 

THE NtThtERICAL METHODS 

3.1 The Finite Difference Equations 

The steady two-dimensional axisymmetrical turbulent 

flow without swirl which occurs in jet pumps can be des- 

cribed by the five partial differential equations given 

in Chapter 2. It is possible to solve these equations 

by some appropriate finite-difference techniques. There 

are basically two distinct methods of solution. In the 

first method, the continuity and the momentum equations 

are transformed into two partial differential, equations 

of stream function and vorticity w to eliminate the 

pressure. Together with k and E. , the four partial diff- 

erential equations are solved numerically throughout the 

flow field first and the pressure field is then deduced 

separately. The second method is based on a novel proce- 

dure known as SIMPLE (Semi-Implicit Method for Pressure 

Linked Equations) developed by patankar and Spalding 

(1972), Caretto et al (1972), etc., which solve for the 

primitive variables U, V and P together with k and E 

The advantage of the velocity-pressure approach over 

the stream function-vorticity approach is that flows with 

pressure-dependent density can be handled which provides 

wider scope of applications to compressible flows. In 

an attempt to compare the two procedures, Ha Minh et al 

(1978) applied both methods to predict flow in a sudden 
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enlarged pipe and observed that the velocity-pressure 

approach gave better predictions of pressure and turbu- 

lent properties (k and u'v') as compared with measuring 

data. It is the velocity-pressure approach which is 

being employed in the present work and is to be discuss- 

ed in the following sections. 

3.1.1 The Staggered Grid and Control Volume 

Before deriving the finite difference equations 

from the governing partial differential equations ,a 

gird arrangement and the control volumes for the varia- 

bles have to be specified. Fig-3-1-1 illustrates part 

of the grid arrangement for a general 2-D orthogonal 

coordinate system. The intersections of the solid lines 

" P, k, e 
v 

tv 

Fig. 3.1-1 A typical grid arrangement 

mark the grid'nodes where all the scalar variables (i. e., 

p, k, F- ) are calculated and stored. The U and V velocity 
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components are computed and stored at the midway between 

a node and, its upstream neighbour as shown by the arrows 

-- and t respectively. The control volume boundaries 

are placed midway between the locations where the values 

of the variable are stored. Thus, for any point P, there 

are three different control volumes as shown in Fig. 3.1-2. 

Such a grid arrangement is often referred to as staggered 

grid. 

N 

(a) 

N 

W 
4 

E 

I' 

_L 
SS 

J 
t 

- __. __ _ -. 

(0) 

(b) 

Fig. 3.1-2 Control volume 
for (a)P, k, E (b) U and 
(c) V. 

The advantages of the staggered grid are: (i) From 

a computational viewpoint, since the U and V velocities 

are placed between the pressures which featured in the 

momentum balance, the pressure gradients can be evaluated 
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directly without interpolation; (ii) based on the same 

argument, these velocities lie on the boundaries of the 

control volumes of P, 6 and k and can therefore be used 

directly for the calculation of convective fluxes across 

these boundaries; (iii) the flow boundaries which are 

located midway between the grid lines can easily be 

simulated by specifying the U and V values. 

3.1.2 The General Expression of the Finite Difference 

Equation 

The partial differential equations for U, V, k and 

E are in fact similar and can be expressed in a general 

form for a 2-D orthogonal axisymmetrical coordinates des- 

cribed in Chapter 2, i. e., 

r ä ((ýUrý) + 
y(eVrt) 

-ä (r ff ä) ff 
-ä (r ä 

X o 

=Sc (3.1-1) 

where 4 is a dependent variable stands for U, V, k or C. 

4 and St have the values given in Table 3.1-1. 

ý-ý So 
U _; -Ip 1 aX+Su 

Y1_? y 
.. S9 

kCkG- COPE 

6 CýE (C1SG - Cleo)/k 

Table 3.1-1 Values of 6a and S# for U. V. k and S 
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A finite difference equation for 4 can then be deriv- 

ed by integrating equation (3.1-1) over a control volume 

enclosing a point P in the flow field. Fig. 3.1-3 shows 

a curvilinear orthogonal grid around P of which the double 

r 

Axis of symmetry 

Pig. 3.1-3 Control volume around point P. 

integration will take place. N, S, E, W represent the 

four neighbouring points around P. The control volume 

boundaries in x and y directions are placed at midway 
01 

of the main grid lines. Integrating equation (3.1-1) 

with respect to x and y over the control volume bounda- 

ries surrounding P and rearranging gives (detailed 

integrations are given in Appendix A. 5), 

r(h 
q+AN+AS) + (Ce-CW+Cn-C8) -Sp OP 

L 

=AE4E+A +AN +AS0S+Sü 
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where the A's are the coefficients expressing the comb- 

ined effects of convection and diffusion and the C's 

are the convective coefficients account for the mass 

flow rate across the surfaces of the control volume 

surrounding P, i. e., 

ae _ (eUrby)e 

ow = (fur 6y) 
W 

(3.1-3) 
On = (eVrbx)n 

Cs = (QVrbx)8 

The subscripts e, w, n, s denote the four surfaces of 

the control volume as shown in Fig-3.1-3. The values 

of A's depend on the difference scheme. If the central 

difference scheme is employed to evaluate -the convective 
terms, 

AE =DQ-0.5Ce 

I 

Aw = DW + 0.5 CW (3.1-4) 

AN=Dn-0.5 Cn 

AS = D$ + 0.5 C3 

where the D's, are the diffusive coefficients given as 

follows 
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D ý3ý4eff 
Sy) 

e 6f, 6x e 

D_ ýr eff bye 

w 6#sx w (3.1-5) 

Dw ýrre) 
n 6oby n 

D=( 
riý'ýffýXý 

Ds 
eta yS 

If, instead, a upwind difference scheme is used to 

evaluate the convective terms, the A's will take the 

following values: 

AB ! De + 0.5(ICe) - Ce) 

A, W - DW + 0.5(ICWI +c w) 

AN = Dn + 0.5(IC J- Cn) 

AS = Ds + 0.5(`CSI + C$) 

Sp# and Su# are obtained from linearizing the source 

term Sp listed in Table 3.1-1 such that 

Yn xe 

rS 0 dxdy = Sp 4+ Su (3.1-7 ) 
J 

Ya XW 

The complete derivation of equation (3.1-2) as well 

as all the coefficients above are given in detail in 
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Appendix A. 5. 

The choice of central or upwind difference scheme 
depends on the contribution from the convective term. 

If the contribution, from the convective term is greater 

than that of the diffusive term, upwind difference is 

used. Otherwise, central difference should be employed. 

Such choice is based on the fact that as the convective 

contribution is greater than the diffusive contribution, 

the directional effect is important. The upwind differ- 

ence scheme which stresses more on the influence of the 

upstream conditions is thus preferred. The combined 

effect can be expressed in the following mathematical 

relationships 

(De - 0.50e if k)50e1 < De 

De - 0.5Ce + 0.510e) if IO"50e1 
>D e 

AW 
Dw + 0.50w if I O" 50W1 < De 

= 
Dw + 0.5Cw + 0.5I Owl if I0.5CwI > De (3.1-8) 

AN 
Dn - 0.5Cn if I0f Dn { 

Dn -- 0.5Cn + 0.51 Cnl if 1O. 
5CJ < Dn 

Ds + 0.5Cs 
a 

DS + 0.5Cs + 0.51c8J 

if I0.5CsI < D$ 

if 1> D$ 
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The term Ce - Cw + On - C. appearing in the left- 

hand-side of equation (3.1-2) is the net mass flow rate 

out from the control volume. If the continuity equation 
is satisfied, i. e., when the final solution is reached, 

this should be zero. But in the intermediate iteration, 

the net mass flow rate may not be zero and a false source 

can be calculated from the previous value of 0P0 if 

(3.1-9) mP = Ce - CW + On - as 

0 

then the false source = mP#P ld 
, where 0. P ý'd' is the 

value of 0 at P evaluated from the last iteration. The 

finite difference equation (3.1-2) becomes 

(, 
-A + ii - SP) cp = Aýoj + mP0old + S, ü 

j=E, W, N, S j=E, W, N, S (3.1-10) 

The inclusion of mPOP and i g4old into the finite 

difference equation will not affect the final solution as 

when the solution is approached, both lip and (OP 4old 

are small. It will only be necessary to include these 

terms if they can help to stabilize the iteration process. 
Since the convergence criteria for the above equation is 

(XAj +mp - Sg#) )TAj 

j=E, W, N, S j=E, W, N, S 

51 



it is clear that only when mP is positive will the terms 

mPoP and mP p 
ld be included in the equation. Thus, the 

complete finite difference equation for can be written 

as 

Apop = 7_A j4 j+ Su 

j=N, S, E, W 

where (3.1-11A) 

Ap = !Aý- SPl' 

j=N, S, E, W 

for mP <0 

and 

APOP = EAi of +* Pop 
ld 

+ Sü 

j= N, W, E, W 

where (3.1-11B) 

Ap= ZAG +i - SP# 

j=N, S, E, W 

for ; 
P>0 

Equations (3.1-11) are the general forms of all the 

finite difference equations for U, V, k and E. The 

equations differ in the source tern expressions Sp4 and 

Su0 which can be obtained by integrating So listed in 

Table 3.1-1 via equation (3.1-7). If 0 is a velocity 

component, Sü has two distinct parts, a pressure-gradient 

term and an additional term due to radius of curvature. 
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The pressure is a unique variable in this solution proce- 

dure as it is not governed by a transport equation but 

enters through the momentum source term. The values of 

Su10 and S/ appropriate for the present flow situation 

are tabulated in Table 3.1-2. The integration and appro- 

ximation are given in Appendix A. 6. 

Variable SP4 Sui 

U 0 0.5(ae+AU (P -Pp)+(-)pVp 
Y 

V ( ýff)pVp 
2 

0.5(an+as)(P8-Pp)+(ý-)PvP 

k 
CDC elk 

-(') pvp Gpyp 

E 
Ca206 

(C, 
Cý, Pka) 

V PP /Leff 

Table 3.1-2 Values of SPA and Su au , as , an and 

as are surface areas of the appropriate control 

volumes for U and V. vP is the control volume 

for the variable concerned. 

3.1.3 The Finite Difference Equation for Pressure Correc- 

tion 

To solve the finite difference equations for U and V, 

it is necessary to have the values of pressures. However, 

these values are not known in advance. The normal practice 
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is to initially guess the best estimated pressure (deno- 

ted by P*) so that the velocity field U* and V* can be 

obtained. The U* and V* velocity field will not in gene- 

ral satisfy the continuity equation. The pressure correc- 

tions are made such that the velocity field is brought 

into conformity with the continuity equation. The true 

pressure P is thus given by 

P= P* + P' (3.1-12) 

where P' is the pressure correction. By applying the 

general finite difference equation for 0 to Ux, V* and 

U, V respectively and subtracting the guessed momentum 

equation from the corresponding momentum equation with 

appropriate approximation, one gets 

UP Up* + DD(Pw' PP') 

VP = VP* + D8 (PS' - PP') 

u 0.5(ae+a )v0.5(an+as) 
u where Dw = and De =P. AP and AP 

A 

are the coefficient AP for U and V respectively. 

The substitution of equations (3.1-13) and (3.1-14) 

into the finite difference form of the continuity equation 

gives 
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APP PP' =7 A3P P11 + Sup (3.1-15) 

j N, S, E, W 

where 
ApP=2AP 

j=N, S, E, W 

and 

Sup = -mp 

The coefficient are given by 

AW = Dw (ersy)w 

AE = D' ((>r6y)e 

(3.1-16) 

AN = Dn(er 4ý x)n 

AS = D8(er Sx)$ 

The full derivation of equations (3.1-13), (3.1-14) and 

(3.1-15) are given in Appendix A.?. 

By solving P' throughout the flow field, a better 

estimated pressure field can be obtained by adding P' to 

the existing pressure field after each iteration; i. e., 

: P4+1 = Pu+pt 

where Pn is the pressure used for nth iteration, P' is 

the solution obtained from the nth iteration and Pn+1 is 
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the updated pressure to be used for n+1th iteration. 

3.2 The Solution of the Finite Difference Equations 

The finite difference equation for 0 at a point 

P(I, J) can be written as 

AP Oi, j A'E'i+1 
,j+ 

AWoi-1, j+ A95i. j+1 + As4i, j-1 + Su 

(3.2-1) 

In such a typical equation , there are five variables in 

existence. If, however, the values of 4'. 
+1 ,j 

and Oi-1 
j 

are taken from the previous iteration or in the case of 

the first iteration given by some initial values, equation 
(3.2-1) can then be reduced to three unknown variables, i. e., 

-b joitj-, + djoi"3 ajoi, j+1 -cj (3.2-2) 

where bý = As 

dj AP 

aý AN 

and jn AA+19j + AWOi-1, j+ Su 

Equation (3.2-2) is an algebraic equation relating 
the value of 4' at P and its two neighbouring points N 

and S. Fig. 3.2-1 illustrates a typical grid line arrange- 
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went where the axis of symme- 

try is placed between j=1 and 
ý 

J=2 and the wall boundary is '"" " 
as-1 

R 

placed midway of j=NJ-1 and ; ts 
j=NJ. In the case where the 

node is next to the axis of 

symmetry, i. e., j=2, the jv2 

usual link between O and j=i 
i2 

1no its southern neighbour #i 
' 

longer in existence and A S 

is set to zero. Similarly, Fig3.2-1 The ith grid line 

when the node is next to a 

solid wall, no linkage between NJ-1 and i, NJ 'and AN=O. 0i 

A set of such equations for all 
, 

the nodes along the ith 

grid line can then be assembled in a tri-diagonal matrix 

form. 

d2 -a2 

-b3 d3 -a3 

-b3 dý -a3 

-b NJ-2 dNJ-2 -a'NJ-2 

-bNJ-1 dNJ-1 

2 02 

3 c3 

ei, i ='ci 
4i, NJ-2 CNJ-2 

'ri, NJ-1 
CNJ-1 

(3.2-3) 
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The above set of equations, with a maximum of 3 

unknowns per equation, can be solved by Gaussian elimina- 

tion using a recurrence formula 

01, = "i + ßj 01, j+1 (3.2-4) 

c+b 0(. -i qj 
- -b A-1 + (3.2-5) 

and . ý3 =ý (3,2-6) 

The solution is obtained by back substitution solving for 

Oi, 
NJ-1 ' 4ßi, NJ-2 9""""" till 4i, 

2 . 

The overall procedure is in such a manner that solu- 

tion start from i=2, obtaining all the ý's values at i=2 

then proceed to i=3,4,... @ etc., so that all the 4's of 

the whole flow field are obtained. This is called the 

Tri-Diagonal Matrix Algorithm (TDMA) of the line by line 

procedure. -- 

It has been found that some degree of under-relaxation 

is necessary in order to achieve stability during the 

iteration. By using an under-relaxation factor f, Ap 

and Sü in equation (3.2-1) will be modified to AP' and S41 

as follows: 

Sui Sü + (1-f) fp 

(3.2-7) 

(3.2-8) 
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where 02 is the existing 0 value at P. From experience 

by trial and error, the values of f are set to 0.5 for 

U and V, 0.7 for k and £ and 1 for P'. 

3.3 The Overall Procedure of. Solution 

Before proceeding to the solution of the finite differ- 

ence equation (F. D. E. ) for various variables, initial values 

for all the variables throughout the flow field are speci- 

fied. The solution procedure is the cyclic repetition of 

the following steps: 

(i) The effective viscosity is calculated by equa- 

tions (2.4-2) and (2.4-8) using the existing 

stored values of k and £. 

(ii) The F. D. E. of U and V are solved by TD14A using 

the existing pressure field P* to calculate the 

source terms. The resulting values of U* and V* 

are usually not satisfied with the local continui- 

ty equation and an 'error' mass source m for each 

cell can be calculated. 

(iii) The F. D. E. for pressure correction (3.1-15) is 

solved by TDMA using the 'error' source -mP as 
P The new pressure field is obtained by Y 

adding P' to P*, i. e., Pa P* + P'. The U 

and V velocities are also corrected using equa- 

tions (3.1-13) and (3.1-14). 

(iv) The F. D. E. for k and E are solved by TDMA. 

(v) The updated values of the variables are used to 

compute the coefficients and source terms of the 
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F. D. E. 's for the next iteration. The above procedure (i) 

to (iv) are repeated until the pressure correction P' is 

small enough throughout the flow field. This ensures 

that both momentum and continuity equations are satisfied 

simultaneously. 

To improve the rate of convergence of the procedure, 

certain variable 

ceeding to solve 

the number of swi 

is found that in 

of sweep to 2 in 

5 in the case of 

of convergence. 

can be solved more than once before pro- 

the next variable. This idea is called 

sep in solving a specific variable. It 

solving P', the increase of the number 

the case of jet mixing problem and to 

diffuser problem will improve the rate 

The termination of the iteration procedure is based 

on the 'error' mass source term in. The procedure is 

deemed to have converged when the sum of the absolute 

'error' mass source throughout the flow field is small 

compared with the inlet mass flow rate min' i. e., 

I0e -Cw+Cn-Cs 6 (3.3-1) inin 

where b is a small positive value depending on the require- 

ment of accuracy. In most cases, 6 -1b-4 will give a 

fairly good accuracy for the solution. Besides depending 

upon the S which determines the number of iteration, the 

accuracy also depends on the number of gridlines specified 

in the flow field. More grid lines will require more 
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computer time. The choices of the number of grid lines 

and the value of 6 apparently depend on the compromise 

between the accuracy and economy. 
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CHAPTER 4 

THE COMPUTER MODEL 

4.1 Introduction 

The set of partial differential equations discussed 

in Chapter 2 and the numerical method described in Chapt- 

er 3 were embodied into a basic computer program called 

TEACH (teaching elliptic axisymmetric characteristic 

heuristically) by Gosman and Pun (1974). The original 

program can only handle cylindrical pipe flows. The 

present computer models for predicting the flows in 

various components of a typical jet pump are devised 

based on the basic TEACH program. In order to predict 

the upstream entrance region and the downstream diffuser 

region, the models must be able to accommodate the general 

two-dimensional orthogonal axisymmetric coordinates des- 

cribed in Chapter 2. The present Chapter describes only 

briefly the basic structure of the computer program as 

more details are available in the report written by Gosman 

and Pun (1974). However, detailed description of modell- 

ing the various flow components are included. 

4.2 The Basic Structure of the Computer Program 

The computer program in the present Work is written 

in Fortran IV. It consists of a main program and ten sub- 

routines. The flow chart of the program is shown in Fig. 

4.2-1. The geometry specification, grid calculation and 
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START 

MAIN 

SET COMMON BLOCK 
AND FLOW DOMAIN 

SPECIFY GEOMETRY 

AND CALCULATE GRID 

SET CONSTANTS AND 
BOUNDARY CONDITIONS 

SUBROUTINE CALCULATE CONTROL 
INIT VOLUMES AND SET 

INITIAL VARIABLES 

PRINT GEOMETRY AND 
PRINT INITIAL VARIABLES 

SOLVE F. D. E. FOR U, 
V, P', k. 6 

PROPS UPDATE »t 

PRINT INTERMEDIATE 
OUTPUT IF NECESSARY 

TERMINATION TEST 

PRINT FINAL RESULTS 

STOP 

SUBROUTINE 

CALM 

cALCV 

CALC P 

CALCTE 

CALCED 

PROMOD 

LISOLV 

Fig. 4.2-1 Flow chart of the computer program 
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simulation of boundary conditions are done at the beginn- 

ing of the. main program. The duties of the subroutines 

are briefly described in the main program block. The 

solving of finite difference equation for each variable 

is carried out in the individual subroutine, i. e., CALCU 

for solving U, CALCP for solving P', etc. The 'near-wall' 

modification for all the variable is done in the subrou- 

tine, PROMOD and the line by line procedure of solving 

simultaneous algebraic equations using the TDMA technique 

is performed in the subroutine LISOLV. The updating of 

viscosity after each iteration is carried out in the 

subroutine PROPS. The solving of finite difference equa- 

tions is repeated until the termination test as described 

in Chapter 3 is fulfiled and final results are printed. 

A complete listing of the computer program for calculating 

typical jet pump mixing tube"including secondary inlet 

region is given in Appendix B. 1. 

It should be noted that except for the subroutine 

INIT, other subroutines are applicable to various flow 

-configurations subject to minor changes in evaluating 

the source terms of the finite difference equations. 
Programs for various flows differ in the main program and 

the subroutine INIT where the setting up of the geometry, 

grid, boundary conditions and control volumes must be 

able to simulate a particular flow accurately. 

4.3 The Simulation of Various Flow Components 

4.3.1 Uniform Mixing Duct 

A uniform mixing duct consists of a round nozzle 
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located at the centre of the inlet section of a uniform 

diameter mixing duct is shown in Fig-4.3-1. A high velo- 

city jet meets the secondary fluid at the inlet section. 

Both the primary and the secondary velocities can be 

taken as uniform across the inlet section as indicated by 

Uiand U0 respectively. The radius of the central jet is 

ri and the inner radius of the mixing duct is ro 

Fig. 4.3-1 Uniform mixing duct 

The general 2-D orthogonal axisymmetric coordinate 

described in Chapter 2 when applied to such a uniform 

mixing duct, is reduced to a cylindrical polar coordinates 

with x and y as coordinates in the axial and radial direc- 

tions respectively, i. e., x- z'and y=r. The grid for 

such a coordinate system is shown in Pig-4.3-2. The grid 

lines are specified throughout the flow domain which is 

bounded by the axis of symmetry and the duct wall from 

the inlet to the exit. NI radial grid lines and NJ axial 

grid lines are used. Uniform grid spacings are used in 

the radial direction whereas a geometrical expansion of 

grid spacing is used in the axial direction so that the 

up-stream region where the mixing is more vigorous will 

have a finer grid. The radial grid spacing in the central 

65 



jet region is DY1 and that in the outer region is DY2 

as shown inFig. 4.3-2. 

ý7 i_.. 

4: w0al 

No33Je 
Wall 

(z) 

Fig. 4.3-2 The grid and boundary for uniform mixing duct 

The flow boundaries are specified according to Table 

4.3-1. 

Flow Boundary Grid Location 

Axis of symmetry Midway of J=1 and J=2 

Duct wall Midway of J= NJ-1 and NJ 

Initial jet boundary Between J=JSTEP and J=JSTEP+1 

Inlet section Midway of I=1 and I=2 

Outlet section Midway of I=NI-1 and NI 

Table 4.3-1 Flow boundary specification for uniform 

mixing duct 

Thus, the radial grid spacings are given by 

ri 
DYI J STEP 
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and . DY2 J-J TEP - 
(4.3-2) 

The listing of the main program and subroutine INIT is 

given in Appendix B. 2. 

4.3.2 Typical Jet Pump Mixinn Tube Including Secondar 

Inlet Region 

A typical jet pump mixing tube including secondary 

inlet region is shown in Fig-4.3-3. The configuration of 

the inlet region is governed by (1) the profile of the 

secondary inlet duct leading to the constant diameter 

mixing tube, (2) the profile of the external surface of 

the nozzle, and (3) the distance between the nozzle exit 

and the mixing tube inlet. 

R, 
Rc 

a 

Fig. 4.3-3 Typical jet pump mixing tube including inlet 
region 
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The profiles of both the nozzle and the secondary 

inlet duct are described by circular arcs with radii Ri 

and R0 respectively. The annular passage formed by these 

profiles will provide a continuous convergence of flow 

area which ascertains flow with less loss. Although other 

inlet profiles are possible, it is shown by Mueller (1964) 

and Pasol et al (1958) that circular arc profiles give 

better performance. The distance from the nozzle exit 

to the mixing tube inlet is s and the diameters of mixing 

tube and nozzle exit are dt and do respectively. By vary- 

ing these five geometrical variables, a wide range of entry 

configuration can be obtained and investigated using a com- 

mon computer program. 

A general 2-D orthogonal curvillinear coordinate 

system is devised to specify grid positions in the flow 

field. Coordinate x is in the streamwise direction where 

the grid lines are drawn so as to lay between boundary 

wall and the axis of symmetry. The grid lines for coor- 

dinate y are orthogonal to the x grid lines everywhere. 

The complete secondary inlet grid together with part of 

the mixing tube grid is shown in Fig. 4.3-4. The positions 

of the grid nodes in the annular region are calculated in 

terms of a Cartesian coordinates x1 and x2 as shown in 

Fig. 4.3-5. The inlet duct wall can be described by an 

equation of circle in x1 - x2 coordinates with centre 

at (0,0). Similarly, the nozzle wall can be represented 

by another equation of circle with centre at (-s, b) where 

s is the nozzle spacing, i. e., 
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Fig. 4.3-5 Calculation of grid nodes 

For duct wall, 

X12 * X22 = Ro2 

For nozzle wall, 

bý2 _ R12 ßx1 + $ý2 (X2 - 

where b=Ri+rn_Ro _rt 

(4.3-3) 

(4.3-4) 

From any point at the nozzle wall, it is possible to deter- 

mine the centre and radius of a orthogonal circle which 
forms ay grid line. A series of intermediate circles 

which lie between nozzle and duct walls and cut orthogo- 
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nally with the orthogonal circle can be devised to form 

the x grid lines. The intersections of the orthogonal 

and intermediate circles are thus the grid nodes in the 

inlet region. The detailed calculation of the positions 

of these grid nodes are given in Appendix A. 8. 

The treatments of the duct wall, the axis of symme- 

try and the outlet section are similar to those used for 

uniform diameter mixing tube described in section 4.3.1. 

Other boundaries as shown in Fig. 4.3.4 are specified 

according to Table 4.3-2. 

Flow Boundary Grid Location 

Primary Inlet 
(Nozzle exit) 

Between I=INOZ and I=INOZ+1 

Secondary Inlet Midway of I=1 and I=2 

Mixing Tube Entrance Between I=IENT and I=IENT+1 

Nozzle Wall Between J=JNOZ and JNOZ+1 

Table 4.3-2 Flow boundary specification for typical 

let pump mixing tube 

The selection of INOZ depends on the length of the 

annular flow region. The value of DENT can be calcula- 

ted from 

IENT = INOZ + NJ - (JNOZ + 1) (4.3-5) 

The whole flow domain is thus completely specified 
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by two inlet sections, the nozzle wall, the duct wall, 

the axis of symmetry and the outlet section. Uniform 

primary jet velocity and secondary annular velocity are 

specified at the two inlet sections according to the 

primary and secondary flow rates of the jet pump under 

investigation. In order to calculate the secondary inlet 

velocity, the annular flow area at the secondary inlet 

section is calculated by a separate short program AREA 

listed in Appendix B. 4. Other boundary conditions are 

specified according to section 2.6. The listing of the 

complete computer program for calculating flow in jet 

pump mixing duct is given in Appendix B. 1. 

4.3.3 Conical Diffuser 

Fig. 4.3-6 shows the geometry of a typical conical 

diffuser with inlet diameter d., , included angle 0 and 

axial length ld . 

di 
-.. i 

'td 

Fig. 4.3-6 Geometry of a typical conical diffuser 
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The geometry of a diffuser is completely described by 

these three variables. If the diffuser wall is extrapo- 

lated to meet the axis of symmetry at a point 0 as shown 

in Fig. 4.3-7. 

-AR y-"R8j 
8r 

0 
Fig. 4.3-7 Coordinate system for conical diffuser 

The position at any point P in the flow field is deter- 

mined by distance OP or R and the angle between OP and 

the axis of symmetry ej . The general 2-D orthogonal. 

coordinates x and y as described in Chapter 2 can then 

be expressed in terms of R and 9j, i. e., 

xR (4.3-6) 

y= Re (4.3-7) 

A complete grid of the diffuser flow region using a8x8 

grid is shown in Fig. 4.3-8. 
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x 

Fig. 4.3-8 The grid of a conical diffuser 

The angle 6i at every node on the jth grid line can be 

calculated from NJ, j, and 0 as follows: - 

5() 8i =N -1. 
(4.3-8) T If 

The value of x at the inlet section xin is obtained from 

dI and 199 i. e., 

d 

(4.3-9) 

The specification of flow boundaries is similar to 

the mixing duct problem. However, it is necessary to 

specify the U-velocity at outlet section from the overall 

mass flow conservation considering the increase in flow 

area. The procedures are as follows: 

(i) Evaluate the mass flow rate at I=NI-1 , 
inNI 

1 
(ii) Calculate the velocity correction Ucor from m*NI-1 
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and the inlet mass flow rate tin' 

min-mNNI-1 
cor -ÄNI 

1(' 
(4.3-10) 

where ANI-1 is the flow area corresponding to 

I= NI - 1. 

(iii) Add Ucor to every U-velocity at I= NI -I and 

calculate U at I= NI using the continuity 

relationship. 

U(NI, J) = U(NI-11 J) + Ucor ÄI-1) (4.3-11) 
NI 

Other boundary conditions are specified according to 

section 2.6. A listing of the main program and subroutine 
INIT for solving the diffuser flow is given in Appendix B. 3. 

I 
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CHAPTER 5 

FLOW PREDICTION 

It is now possible to apply the computer models 

described in Chapter 4 for flow. predictions. In order 

to validate the theoretical approach described in this 

thesis, the computer programs are first employed indi- 

vidually to predict flows in (i) uniform mixing duct, 

(ii) typical jet pump mixing tube with secondary inlet 

region and (iii) conical diffuser. The predicted results 

are compared with the published experimental data. The 

computer models are then used subsequently to simulate 

the flow in a typical jet pump system which consists of 

a entrance region, a mixing tube and a conical diffuser. 

Predictions of the pressure rise and the overall perfor- 

mance parameters are then obtained and compared with the 

available experimental data. 

5.1 Flow in Uniform Diameter Mixing Tube 

5.1.1 Introduction 

A typical uniform mixing tube with a round nozzle 
located at the centre of the inlet section as shown in 

Fig. 4.3-1 is the simplest design of a jet pump. Experi- 

mental studies of jet mixing in such a uniform duct were 

carried out by many workers. Among them, Heimbold et al 
(1954) carried out the measurements of the axial static 

pressure and the radial total pressure profiles at various 
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stations downstream of the nozzle. Razinsky and Brighton 

(1971) measured the mean and fluctuating velocities, sta- 

tic pressures as well as the turbulent shear stress 
throughout the whole flow field. Sanger (1968a, 1968b) 

carried out comprehensive tests of several jet pumps, 

all having uniform mixing ducts followed by conical 

diffusers. 

'Theoretical analyses of confined jet flows were 

carried out by Curtet (1958), Dealy(1964), Hill (1964), 

Exley and Brighton (1971) and Hill (1973). Baker, Hottel 

and Williams (1962) derived a non-dimensional parameter 

called Craya-Curtet Number Ct , based on the ratio of 

kinematic-mean and dynamic-mean inlet velocities, to 

determine the character of the flow in the mixing duct. 

In a mixing duct of constant diameter, as shown in Fig. 

4.3-1, Ct can be expressed in terms of the radius ratio 

and the initial velocity ratio. 

U 
ctc (5-1-1) t- 

Uo2)( i)2 
+ (U 2-U2J)Coc 

o 

where Ue = (Uý - Uo)(ri)2 + Ui 
0 

Hill (1964) proposed that the flow behaviour of confined 
jet mixing was a function of a non-dimensional parameter 

m which when applied to a constant diameter mixing 

tube gave the following value, 
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m Äo + (ri/r0)2 

(MP ) 
x0 + 2(1 +2, x, 0)(ri/ro}2] 

U 
where U0 

It is apparent that both parameters are solely deter- 

mined by the area ratio and the initial velocity ratio. 

The character of jet mixing in a uniform duct is thus 

determined by the radius ratio and the initial velocity 

ratio of the primary jet to the secondary flow. 

5.1.2 Results and Discussion 

The computer model described in section 4.3.1 has 

been used to predict the flows of the air jet mixing in 

two uniform ducts measured by Razinsky and Brighton (1971) 

as well as the water jet mixing tested by Sanger (1968a). 

The geometries of the ducts and the inlet flow conditions 

are listed in Table 5.1-1. All the results for comparison 
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were obtained from an IBM 370/158 computer using a 14 x 14 

grid. However, the effect of the number of grid lines be- 

ing employed on the predicted result was studied and dis- 

cussed 

The mean axial velocity prediction The axial velocity 

profiles at various stations downstream of the nozzle 

exit are of significant importance in the studies of 

confined jet mixing. They indicate the degree of mixing 

between the two streams as well as the degree of entrain- 

ment. Fig. 5.1-1 presents the predicted velocity profiles, 

non-dimensionalized by the area-mean velocity Um , as 

compared with the four combinations of inlet velocity 

ratio and radius ratio reported by Razinsky and Brighton 

(1971) [see Table 5.1-1. Fig-5-1-2 shows the comparison 

of predicted and measured centre-line velocity decays. 

The agreement between the prediction and the measurement 

is fairly good despite the fact that no detailed informa- 

tion regarding the inlet turbulent kinetic energy and 

energy dissipation rate was reported. The inlet k-profile 

was calculated from the r. m. s. velocity 
Ju'u 

by assuming 

isotropic turbulence in both primary and secondary flows, 

i. e. 

(5.1-3) in a2 uin 

The inlet g profile was calculated via 

3/2 
(5.1-4) Ein - 

kin 

1 in 
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Fig. 5.1-1(a) 
Comparison of predicted velocity variation 
in mixing duct with experimental data from 
Razinsky and Brighton, Ui ri I 

.- =3, FO- 3. 
0 
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Fig. 5.1-1(b) 

Comparison of predicted velocity variation 
in mixing duct with experimental data from 
Razinsky and Brighton, Ui ri 1 

-- =10 ,r-3. 
00 

81 



Fig. 5.1-1(c) 

Comparison of predicted velocity variation 
in mixing duct with experimental data from 
Razinsky and Brignton, Ui 

a3, 
ri 

aI 
00 

82 



Fig. 5.1-1(d) 

Comparison of predicted velocity variation 
in mixing duct with experimental data from 

Razinsky and Brighton, Ui 
, 0, 

ri 
a. 

ý 
. 

00 
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Fig. 5.1-2(a) 

Comparison of predicted centre-line velocity 
decay in mixing duct with experimental data 
from Razinsky and Brighton, ri 1 

ro a" 
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Fig. 5.1-2(b) 

Comparison of predicted centre-line 
velocity decay in mixing duct with 
experimental data from Razinsky and 
Brighton, 

a1 r. 0 
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where tin is the length scale at the inlet section. 

Without better information, lin may be taken as constant 

across the inlet section. In the prediction of Razinsky 

and Brighton's work, the following assumption was made 

in order to give a good agreement between prediction and 

measurement. 

1 
in 0.005ro 

The influence of the inlet length scale on the axial 

mean velocity field has been investigated by running the 

computer program with varying lin while keeping other 

flow conditions unchanged. The results obtained from a 

radius ratio of 0.25 and inlet velocity ratio of 6.0 are 

shown in Fig-5-1-3 which compares the centre-line velocity 

decays. It is apparent that a larger inlet length scale 

causes the velocity on the axis to decay at a faster rate, 

i. e. larger eddy size can lead to better mixing. However, 

the effect is relatively small over a large range of 1in* 

Pressure prediction The static pressure rise in the mixing 

tube is of vital important in jet pump performance. The 

capability of the computer model to predict accurately the 

static pressure variation along a uniform mixing tube is 

an essential indicator to determine the success of the 

model for this particular application. The predicted 

pressure variations along the duct wall of a uniform 

mixing tube with various radius ratios are compared in 

Fig. 5.1-4 with the experimental data from Razinsky and 

* See Appendix A. 9 
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Fig. 5.1-4 Comparison of predicted pressure 
rise with data from Razinsky and 
Brighton, Ui/Uo 

_10. 
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Brighton (1971) for incompressible air flow. In the case 

of water jet mixing, predicted pressures are compared with 

the data from Sanger (1968a) as shown in Fig. 5.1-5. All 

the pressures were taken with reference to the inlet sec- 

tion and non-dimensionalized using the area-mean or the 

nozzle exit velocity. In general, the agreement between 

the predicted and measured distributions are acceptable. 

The influence of the inlet length scale on the static 

pressure distribution was studied by the computer program. 

The results are presented in Fig. 5.1-6. It appears that 

a larger inlet length scale will lead to an earlier reco- 

very of pressure which is resulted from a better mixing 

due to larger eddy size at inlet. However, the effect on 

pressure variation over a wide range of inlet length scale 

is also relatively small. 

Turbulent energy and shear stress predictions One major 

advantage of the computer model is its capability of pre- 

dicting the turbulent behaviour throughout the whole flow 

field. Since the turbulent kinetic energy k and energy 

dissipation E are the two dependent variables used in the 

transport equations, k and e are calculated directly via 

the numerical procedure. The predicted k-distribution 

for the case of UU3 
and rl =1 is presented in Fig-5-1-7- 

020 
The profiles of k/Um at various stations downstream reveal 

that there is a very thin but high turbulent energy zone 

between the primary and secondary streams at the beginning 

of the duct. This can be explained as the result of vigo- 
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rous mixing between the two streams. The jet growth fur- 

ther down-stream is made clear by the spread of the high 

turbulent energy zone. The peak of the k-profile is in- 

creased at first and then decreases. This shows that the 

degree of mixing is intensified at first and then dimini- 

shed gradually. The profile at about 12 radius downstream 

suggests that the mixing is almost completed there as no 

obvious peak is observed. Since there is no existing 

experimental data of k for comparison, experimental studies 

using a laser Doppler anemometer to measure the mean and 

the three orthogonal fluctuating velocities were carried 

out in a uniform mixing duct. The results are reported 

in Chapter 6 and compared with the predicted values. 

The turbulent shear stresses. which arise from the 

cross-correlation of fluctuating velocities as given by 

equation (2.4-1) can be re-written for cylindrical polar 

coordinates as 

- ý, Tr 
Igt 

(a +ý) 

k 

In the mixing duct case, 

-pu , av 
Dr az 

Thus - e1lvo" _ tDU 
(5.1-6) 

/L4 21 r 
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From equation (2.4-8), 

Zat = 0ßt2/ý 

the Reynolds shear stress term can then be expressed as 

k2 'DU u-, V; _- 3A 7) (5.1-7) 

As U, k and 9 are predicted throughout the whole flow 

field, u'v' can be evaluated everywhere. The predicted 
u'v= profiles across various stations of a uniform mixing 

duct are non-dimensionalized by Um2 and the results are 

compared with Razinsky and Brighton's (1971) data as shown 

in Fig. 5.1-8. The agreement appears to be satisfactory. 

The influence of grid spacing To investigate the influence 

of the grid spacing on the predicted results, three diffe- 

rent grids were used to predict the same flow situation 

with radius ratio of * and velocity ratio of 10. The 

comparison of centre-line velocity decay and static pre- 

ssure rise are shown in Fig. 5.1-9. It can be observed 

that by increasing the grid from 11 x 11 to 18 x 18, ` the 

results do not show drastic change, especially when the 

flow is far enough downstream. However, the computer 

time required for 18 x 18 grid is almost three times 

that of 11 x 11. It is thus necessary to choose an 

appropriate grid size based on the compromise of economy 

and accuracy. 
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Fig. 5.1-8(a) Compari3on of Predicted Shear Stress with 
data from Razinsky and Brighton, Lo 

--- 3, u0 
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Some comments on the accuracy and possible improvements 

In general, the agreement between prediction and measure- 

rnent is acceptable for axial velocity, static pressure and 

turbulent shear stress. The accuracy might be improved, 

especially in the case of high velocity ratio and small 

radius ratio, by specifying a finer radial grid spacing 

in the mixing region where velocity gradient is high. To 

some extent, the empirical constants listed in Table 2.4-1 

may have some effect on the accuracy of the prediction. 

By improving these constants, a better result can be 

expected. However, it is anticipated that large amount 

of measurements are necessary before a better set of 

constants can be established. 

The results obtained so far reveal that the two- 

equation turbulence model is capable of predicting, with 

acceptable accuracy, the time-mean velocity and static 

pressure as well as the turbulent behaviour of the flow 

in an uniform mixing duct. The next task is to apply 

the model to predict the flow in a typical jet pump mixing 

tube with a secondary inlet region where flow area is 

reducing and the nozzle is placed at some distance upstream 

of the inlet section of the mixing duct. 

5.2 Flow in Typical Mixing Tube Including SecondaryInlet 

Reran 

5.2.1 Introduction 

The geometrical configuration of a typical jet pump 

mixing tube with nozzle exit placed in the varying-area 
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inlet region is shown in Fig. 4.3-3. A computer model 

which simulates the mixing tube together with such a 

secondary inlet region is developed and described in 

section 4.3.2. The model was-used to predict the flows 

in the domain and compared with the experimental data 

from Sanger (1968a). Flow conditions were varied so 

that their effects on the performance were discussed. 

All the predictions were obtained using a 26 x 12 grid. 

5.2.2 Results and Discussion 

The computer model was used to predict two mixing 

tube tested by Sanger (1968a). The geometries of the 

two mixing tube A and B are listed in Table 5.2-1. 

Mixing Tube dtý dn/dt $/dt R0(m) Bi(m) 

A 0.0342 0.257 1.05 0.127 0.165 

B 0.0342 0.444 0.96 0.127 0.1903 

Table 5.2-1 Geometries of mixing tubes used for prediction 

The predicted pressures along the duct wall were 

plotted and compared with the measured values obtained 

by Sanger as shown in Fig. 5.2-1. It is clearly demon- 

strated that the correlation between the predicted and 

the measured values is fairly good. The predicted pressure 

profiles for various flow ratios in mixing tube A are also 

presented in Fig. 5.2-2. The results shows that the loca- 

tions of minimum and maximum pressure points are closer 

to the nozzle exit at lower flow ratio. As the flow ratio 

increases, these locations move further downstream from 
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Fig. 5.2-1(a) Comparison-of predicted static pressure rise 
with data I from Sanger, do 

0-257v a 1.05, dt dt 
M=3,5. 
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Fig. 5.2-1(b) Comparison of predicted static pressure rise 

with data from Sanger, do 
a o. 444,0.96, 

M=1.4. dt t 
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the nozzle exit. This tendency is more obvious for the 

maximum pressure point. It is also observed that the 

pressure in the mixing tube increases more abruptly in 

the case of smaller flow ratio possibly due to larger 

initial velocity ratio between the primary and the secon- 

dary flows which leads to a more vigorous mixing. 

It may be concluded that for the same nozzle to 

mixing tube area ratio, a higher flow ratio will require 

a longer mixing tube to achieve the maximum possible pre- 

ssure rise. This discovery explains the inconsistency of 

the optimum mixing tube lengths recommended by various 

authors as the flow conditions under investigations differ 

widely. 

To ensure that the prediction is acceptable for a 

wide range of flow ratios, the pressure rise in the constant 
diameter mixing tube is non-dimensionalized by JeUn2 and 

plotted against the flow ratio so as to compare with 

Sanger's data. Fig. 5.2-3 shows a satisfactory comparison 
between the prediction and the measurement. 

The predicted streamwise velocity profiles across 

various flow sections throughout the whole flow field 

are shown in Fig. 5.2-4. Comparison for two different 

flow ratios is also shown. The centre-line velocity 
decays are shown in Fig. 5.2-5. The results show that 

the centre-line velocity decays faster as flow ratio 

reduces. If the centre-line velocity decay is taken as 

a measure of the degree of mixing, then it can be conclu- 

ded that mixing is completed earlier in the case of a 
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Fig. 5.2-3 Comparison of predicted and measured pressure 

rise in mixing tube, Q, 257,. 
dt=1'05. 
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lower flow ratio. A longer mixing tube is thus required 

for a higher flow ratio. This has coincided well with 

the conclusion drawn from the pressure prediction. 

Although no detailed information is given for the 

turbulent intensity or turbulent kinetic energy distri- 

bution at the inlet in Sanger's work, uniform k-profile 

were assumed for nozzle exit and secondary inlet region 

as follows. 

kn = 0.001Un2 * (5.2-1) 

ks = 0.003US2 * (5.2-2) 

where Un and Us are the mean velocities at nozzle exit and 

secondary inlet respectively. The choice was based on an 

estimation that the local turbulent intensities at the 

nozzle exit and the secondary inlet were around 3% and 

4.5% respectively, and the flow was assumed to be isotropic 

turbulence. The inlet P_-profile was specified according, 

to equation (5.1-4) with lin = 0.0025 dt 

A typical k-distribution profile is presented in 

Fig. 5.2-6. It is clear that the results reflect reasonably 

well the turbulent behaviour of the confined jet mixing 

with the mixing zone having a higher turbulent kinetic 

energy. 

5.3 Flow in A Conical Diffuser 

5.3.1 Introduction 

A conical diffuser is often used as the pressure head 

4 See Appendix A .9 
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recovery device in jet pump systems. McDonald et al (1966) 

tested various conical diffusers of different included 

angles and length to investigate their performances. 

Mueller (1964) studied a series of diffusers in jet pumps 

having included angles ranging from 3.50 to 10.70. Ile 

concluded that for optimum jet pump performance with best 

efficiency, the diffuser with larger included angles must 

be used in conjunction with a longer mixing tube in order 

to prevent separation in the diffuser. The results of 

Mueller also reveal that the best efficiency occurs at a 

combination of 50 diffuser included angle with a mixing 

tube length of 6.5 diameters. By testing two sets of jet 

pumps, Sanger (1968a, 1968b) showed that a combination of 

a 6° diffuser included angle with a mixing tube length of 

5.66 diameters gives a better performance than a 8.10 

diffuser combined with a mixing tube of 7.25 diameters 

long. It is apparent that the diffuser performance depends 

upon the inlet velocity profile which itself depends on a 

number of factors in the jet pump system, i. e., mixing tube 

length, nozzle spacing, area ratio and flow ratio. 

Besides being used in a jet pump device, the conical 

diffuser is also widely used in many other fluid flow sys- 

tems. A reliable prediction of diffuser flow behaviour 

and performance is certainly required. 

The present study is to use the computer model des- 

Bribed in section 4.3.3 to predict the flows in conical 

diffusers. The inlet velocity profile which is dictated 

by the upstream geometries and flow conditions is speci- 

fied as the inlet boundary condition. 
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5.3.2 Results and Discussion 

The computer programme for calculating the flow in 

conical diffuser has been run for two diffusers with in- 

cluded angles of 40 and 8° and inlet Reynolds Number of 

1.25 x 105 so as to predict the experimental performance 

obtained by McDonald et al (1966). The two included angles 

are chosen based on the fact that most diffusers used in 

jet pumps are within the range of 3.50 to 80 . As no 

information on turbulent intensity at the inlet was reported 

by the authors, the following inlet k-values and length 

scale were used as they produced good predicted results 

compared with the experimental data. 

k1 = 0.001U12 

11 = 0.05r1 A 

where 1 denotes the diffuser inlet section. 

The results are presented in Fig. 5.3-1 where the 

predicted and the experimental pressures are compared. 

The prediction in the region up to 10 radius of the'diffu- 

ser inlet section are in excellent agreement with the 

measurement. Further downstream, the prediction is slightly 

higher than the measurement in both cases. 

To study the flow behaviour in the diffuser, mean 

velocity profiles at various sections were also plotted. 

Fig. 5.3-2 presents the mean velocity development of the 

8° included angles diffuser with uniform inlet velocity. 

* See Appendix A .9 
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The results clearly demonstrate the development of the 

turbulent boundary layer in diffuser flow. Fig. 5.3-3 

presents the non-dimensional turbulent kinetic energy 

profiles with an assumed uniform k-profile prescribed 

at the inlet. Once again, the turbulent boundary layer 

development is clearly shown. At the initial region of 

the diffuser, there is a very thin but high turbulent 

energy zone close to the diffuser wall. Further down- 

stream, owing to the growth of turbulent boundary layer, 

the high turbulent energy zone increases its thickness 

with a reduction in its magnitude. The peak of the k- 

profile also moves further away from the wall as the flow 

developed downstream. 

Diffuser flow in conjunction with a mixing tube as 

used in typical jet pumps were also studied. The jet 

mixing computer programme was run using various area 

ratios and flow ratios. The predicted velocity profiles 

at the end of the mixing tube were then used as inlet 

velocity profiles for the diffuser programme. Predictions 

were obtained for two jet pump configurations tested by 

Sanger (1968a). The detailed geometries are tabulated in 

Table 5.3-1. 

Area Ratio do/dt 1t/dt 0 s/dt 

0.066 

0.197 

0.257 

0.444 

7.25 

5.66 

8.1° 

6° 

0 

0 

Table 5.3-1 Geometries of two jet pump diffusers 

used for prediction 
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Fig. 5.3-4 and 5.3-5 present the predicted static 

pressure along the wall for various flow ratios. Both 

cases show good correlation between predicted and measured 

values. All the diffuser predictions were obtained using 

a 14 x 12 grid. 

The results so far reveal that the k- G turbulence 

model is capable of predicting satisfactory results in 

conical diffusers not only by itself but also in conjunc- 

tion with a mixing tube. They are expecially encouraging 

in view of the fact that both mean flow behaviour as well 

as turbulent structure are obtainable at the same time. 

Since the mean velocity and k-profiles at the inlet are 

prescribed as inlet boundary conditions, the programme 

can readily be used to investigate many other flow pro- 

blems where the diffuser is one of the flow components. 

5.4 The Prediction of Overall Performance of Typical Jet 

pwnl: ) 

5.4.1 Introduction 

The successful predictions of the flows in jet pump 

components using the computer models described in Chapter 

4 have led to a conclusion that it is possible to predict 

the overall performance, i. e., pressure rise, efficiency, 

etc., in a typical jet pump system. Once the flow ratio 

of a jet pump is specified, the head ratio will be the 

only parameter to determine the efficiency of the pump. 

The prediction of the static pressure throughout the 

whole flow field will enable the head ratio and thus 
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the efficiency of the pump to be evaluated. Although it 

is theoretically possible to simulate the entire flow 

domain of a jet pump using a single computer program, 

this will require excessive storage space unless the 

job was run on a very large computer. As an alternative, 

the mixing tube program and the diffuser program were run 

successively to obtain a complete prediction. 

5.4.2 The Procedure of Calculating the Overall Performance 

The total head at any station x of a horizontal jet 

pump is given by 

HX PX +e ÜX2 ý54_ýý 

where Px and Üx are the static pressure and the area-mean 

velocity at station x. Since the area-mean velocity at 

any station can readily be deduced from the continuity 

equation, the total head will solely depend on the static 

pressure at that station. The correct prediction of the 

static pressure along a jet pump is thus of vital import- 

ance to its design and performance analysis. 

The present prediction procedure can be summarised 

as follows: 

(i) Specify the geometry of a jet pump together with 

the primary and secondary inlet flow rates for 

the jet mixing program; run the program to 

obtain pressure and velocity fields 

(ii) The velocity profile at the end section of the 

mixing tube is used as inlet velocity profile 
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for the diffuser progtam; the program is run to 

obtain the static pressure rise in diffuser 

(iii) The static pressure from the secondary inlet to 

the exit of the diffuber is then plotted and the 

overall static pressure rise evaluated 

(iv) The total head gained by the entrained fluid is 

obtained from static pressure rise and the increase 

in dynamic head, i. e., 

Hd - HS = Pd - Ps +ýe Üd2 -j 'U8 2 (5-4-2) 

(v) The total head lost by primary fluid can be cal- 

culated similarly 

Hi - Hd = Pi - Pd +i e(Üj2 - Üd2) (5.4-3) 

However, the position of station j which is up- 

stream of the primary nozzle is fixed arbitrary.. 

From station j to the nozzle exit plane n, only 

frictional losses occur. The loss from j to n 

is relatively small compared with other losses 

and can often be ignored if the distance between 

j, and n is small. The total head lost by the 

primary fluid can then be written as 

Hj - Hd=Hn - Hd 

= Pn - Pd +P ßn2 - P'ad2 (5.4-4) 
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(vi) The head ratio N and- the efficiency f can be 

calculated as follows: 

N-Hds (5.4-5) 
Hj- Hd 

Q2(Hd - Hs) 

Q, ij- Hd'S (5.4-6) 

5.4.3 Results and Discussion 

Fig. 5.4-1 presents the predicted static pressure 

rise along the wall of a jet pump used by Sanger (1968a). 

The agreement between prediction and measurement is fairly 

good. The satisfactory prediction of the static pressure 

along the entire Jet pump wall enable the head ratio and 

the efficiency to be calculated. Fig. 5.4-2 presents the 

predicted performance curves, plotted with head ratio and 

efficiency against the flow ratio, for a specific geome- 

trical combination used by Sanger (1968a). Quantitatively, 

both the predicted head ratio and efficiency are slightly 

higher than the measurements obtained by Sanger. However, 

bearing in mind that minimum amount of empirical coefficients 

are used to evaluate these performances, the achievement is 

considered satisfactory. The prediction clearly shows the 

maximum efficiency point which agrees very closely with the 

measured value. With these achievement, the model may safe- 

ly be used to predict the performance for any proposed geo- 

metry. Studies of new design proposals no longer have to 

rely on prototype testings or analyses based on empirical 
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coefficients obtained from other pumps. The computer 

model can, not only be used to investigate the influence 

of individual geometrical parameter on performance, but 

also be used to optimize the design. The application of 

the model for these purposes will be discussed in Chapter 

7. 
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CHAPTER 6 

EXPERIMENTAL INSTIGATION 

6.1 Introduction 

Although jet pumps have been the subject of extensive 

experimental studies, comparatively little work has been 

devoted to detailed studies of the flow field behaviour 

occuring in various flow regions. Many experimental in- 

vestigations were mainly concerned with performance test - 

ing, pressure distribution along the duct walls, measure- 

ment of losses in individual components, cavitation studies 

and operation of jet pumps under various conditions. As 

a result, design of jet pumps in the past has largely 

relied upon the empirical coefficients evaluated from 

other tests rather than based on the flow structure of a 

proposed pump. Although a typical jet pump consists of a 

primary nozzle, a mixing tube and a diffuser, it is the 

mixing tube where mixing between the two streams takes 

place and thus results in the pumping effect. A thorough 

study of the flow behaviour in a mixing tube is essential 

for the better understanding of the mixing process. The 

detailed measurements of mean and fluctuating velocity 

components in a mixing tube also provide a basis for 

validating any flow prediction and theoretical analyses. 

Heimbold et al (1954) conducted experimental measure- 

ments of mean velocity profiles in both constant and varia- 

ble area mixing tubes using a Pitot static tube. Curtet 

and Ricou (1964), in an attempt to study self-preservation 
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tendency in an axisymmetric ducted air jet, carried out 

measurements of mean velocity as well as axial and radial 

components of fluctuating velocity in a constant mixing 

duct using a hot wire anemometer. The most thorough 

measurement of confined jet mixing was probably done by 

Razinsky (1969). The measurements were conducted with 

two different radius ratios and each with two velocity 

ratios. The mean velocity was obtained using a Pitot 

static tube.. Longitudinal velocity fluctuation and 

Reynolds stress were measured using a constant-temperature 

hot wire anemometer. However, no measurements of fluctua- 

ting velocity in the radial and tangential directions were 

reported. 

The lack of experimental data in confined jet mixing 

is reflected in the incomplete measurement of fluctuating 

velocity components. A severe lack of information in the 

tangential fluctuating velocity prevents the thorough 

understanding of the turbulent structure in confined jet 

mixing. Moreover, owing to the difficulty in obtaining 

measurement in water jet mixing, almost all the existing 

data on confined jet mixing were obtained from air jets. 

The present experimental investigation is to use a 

relatively new technique, laser Doppler anemometry (LDA), 

to measure the mean and fluctuating velocities. in a constant 

diameter mixing tube with water as the working fluid. The 

LDA technique allows the measurements of axial mean and 

fluctuating velocities to be taken simultaneously. Through 

various suitable arrangements of the optical system, all 
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the three orthogonal fluctuating velocities are obtained 

using one laser Doppler anemometer system. The main 

aim of the present experimental program is to calculate 

the turbulent kinetic energy k-from the data of the three 

fluctuating velocity components so as to compare it with 

the predicted k obtained from the two-equation k- 6 model. 

Other important aspects include the studies of improving 

laser Doppler signals, criteria for selecting optical 

components, effects of frequency shifting and the limita- 

tion of LDA in this particular application. 

6.2 The Jet Pump Test Rig 

6.2.1 The Flow Circuit 

A schematic diagram of the flow circuit is shown in 

Fig. 6.2-1. Water from a 60 x 90 x 60 cm storing tank 

was pumped by a 7.5 kW centrifugal pump to a 25mm primary 

pipe line. After passing through a control gauge valve 

vi and a 10 Jhm filter (ALBANY series 770), the water 

could be made to flow solely through the primary pipe 

line, and ejecting through the nozzle by closing the 

valve V2 connecting the primary and secondary pipe lines. 

The high velocity jet from the primary nozzle was able 

to entrain 
,a 

secondary flow through turbulent mixing in 

the mixing tube with valve V3 opened. When it reached 

a steady state, the primary and secondary flows Q1 and 

Q2 remained unchanged. This operation allowed the flow 

circuit to run as an ordinary jet pump for pressure tc::: ting. 

However, the flow circuit was also operated in such a 
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that valve V2 was opened and valve V3 was closed so that 

the filtered water was diverted to both primary and secon- 

dary pipe lines. The two flows Q1 and Q2 after passing 

through two flowmeters, were led to mix in the mixing tube. 

On leaving the mixing tube, the combined fluids then flowed 

back to the storing tank via a 38.1mm discharge pipe line. 

Such operation ensured that both the primary and secondary 

flows entering the jet pump were being filtered by the 10pm 

filter. The filtering is crucial for the measurements of 

mean and fluctuating velocities using a laser Doppler 

anemometer as particles of diameter larger than 10pin will 

seriously affect the performance of the signal processor. 

By careful control of valves V1 and V2, an appropriate 

velocity ratio at the inlet of the mixing tube was achieved. 

This was important in view of the fact that the laser Dopp- 

ler anemometer was unable to cope with very high velocity 

gradients. If the flow circuit is to be operated as a 

normal jet pump, the inlet velocity ratio will be well 

beyond 20 which is far too high for the L. D. A. 

A thermometer was inserted into the water in the 

storage tank to check the temperature of the water. When 

the temperature of the water was higher than the atmos- 

pheric temperature by 50C, the water was drained away by 

opening valve V4 and refilled with fresh tap water. The 

frequent change of water also ensured that the smaller 

iron oxide particles generated from the cast iron pump 

would not be accumulated to a high particle concentration 

affecting the normal performance of the anemometer. 
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A photograph of the-basic-jet pump test rig is shown 

in Plate 6.2-1. 

6.2.2 The Components of the Test Pump 

The test pump consists of-the following components: 

(i) a primary nozzle, (ii) a auction chamber, (iii) a 

mixing tube entrance disc, and (iv) a test section. These 

four components are easily changeable so that the effect 

of dimensional alteration can be quickly and cheaply 

achieved. The complete jet pump is shown in Fig. 6.2-2. 

Two nozzles of 6.5mm and 12.7mm exit diameter were 

machined from aluminium. The dimensions of the two nozzles 

are given in Fig. 6.2-3. The nozzle to be used for the 

jet pump experiment was screwed into the end of a piston 

tube which connected with the primary pipe. The piston 

tube was locked into an adjusting screw tube with external 

screw threads. The adjusting screw tube screwed into a 

sleeve which was fastened to the cylinder of the piston 

tube. A cylindrical suction chamber with an internal dia-. 

meter of 100mm and length 90mm was then joined to the 

cylinder. A 25mm copper pipe was connected to the bottom 

of the suction chamber. To reduce the weight of the'jet 

pump, all the parts mentioned above were made from alumi- 

nium. -By. turning the adjusting screw tube, it was possible 

to move the piston tube in or out of the cylinder so that 

the position of the nozzle in the suction chamber could be 

varied. Two sets of mixing tube entrance discs and mixing 

tube test sections were produced from clear perspex glass. 

The mixing tube test section was screwed into the entrance 

disc which fastened to the suction chamber. The dimensions 
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of these two mixing tubes and entrance discs are shown in 

Fig. 6.2-4. (a) and (b). The entrance disc provides a 

bell-mouth secondary inlet contour to the mixing tube. 

The mixing tube with an internal diameter of 38mm 

was used for mean and fluctuating velocity measurements. 

By using the two nozzles described above, radius ratios 

of 0.334 and 0.171 were achieved. On the top surface 

along the length of this mixing tube, a perspex block 

for holding the probe was fixed. Threaded holes for the 

probe holder were drilled on this probe holding block at 

various stations with spacing indicated in Fig. 6.2-4 (a). 

The details of the probe and its holder are also shown in 

Fig. 6.2-4 (a). A photograph of the test section is shown 

in Plate 6.2-2. The probe was mainly used for locating the 

centre of the mixing tube cross-section so that the two 

laser beams would be adjusted to cross at the centre. The 

measuring position at any distance away from the centre 

was calculated by the movement of the optical unit which 

is discussed in section 6.4-2. In order to measure the 

axial velocity near to the nozzle exit, two slots were 

cut on the outer surface of the entrance disc to enable 

the laser beams to pass through without any blockage (see 

Plate 6.2-2). 

The mixing tube with an internal diameter-of 25mm 

was used for static pressure measurement. Static pressure 

taps of 2.0mm diameter were installed along the test sec- 

tion with spacings shown in Fig. 6.2-4 (b). The end of 

the mixing tube was joined to a short diffuser of 7o inclu- 
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Plate 6.2-2 The test section for velocity measurement 

plate 6.2-3 The test eeotion for pressure measurement 
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ded angle and an exit diameter-of 38.1mm. A photograph 

of the test section is shown in Plate 6.2-3. 

Both test sections were joined to a 38.1mm diameter 

copper pipe leading to the storage tank. 

6.3 The Laser Doppler An. emometrv 

6.3.1 The Measurement of Turbulent Flows 

The measurement of instantaneous velocity provides 

the necessary information for understanding the structure 

of turbulent flows. For many years, hot wire or hot-film 

anemometers have been used as the principal tools for 

obtaining turbulent flow informations such as r. m. s. 

velocity and velocity correlations. Although this 

technique has provided ample quantitative informations, 

it is limited to flows of low temperature, low speed and 

low turbulent intensity without recirculation. The deve- 

lopment of laser Doppler anemometry represents a signifi- 

cant break-through in fluid flow measurement. The main 

advantage of such an optical measuring system is the non- 

contact probing which does not disturb the flow under 

investigation. Thus, laser Doppler anemometer is particu- 

larly favourable for measuring recirculating flows, flows 

in ducts of small dimension, where the hot wire or hot 

film is extremely difficult to set up and for hostile 

environments such as flames. However, laser Doppler 

anemometers require the wall of the test section to be 

transparent so that light beams can pass through. 

In the present work, the laser Doppler anemometer was 
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chosen rather than the hot film anemometer for the measure- 

ment of mean and fluctuating velocities because 

(i) laser beam passes through the flow without using 

any probe which will disturb the flow, 

(ii) the relatively small mixing tube creates great 

difficulty in setting up a hot film probe in the 

flow, 

(iii) the use of water as working fluid solves the 

seeding problem, 

(iv) the Doppler frequency is directly proportional 

to the velocity enabling greater accuracy of 

measurement. 

6.3.2 The Basic Principles of Laser Doppler Anemometrv 

The laser Doppler anemometry is based on the Doppler 

shift of the light frequency scattered by particles sus- 

pended in the fluid. The scattered light contains informa- 

tion about the velocity of the suspended particles which 

can be interpreted by photoelectronic means. The Doppler 

effect, which is named after Christian Doppler who disco- 

vered the frequency change of a moving source towards a 

stationary observer, forms the basic concept for the deve- 

lopment of the laser Doppler anemometers. 

0 S 

Fig. 6.3-1 Light scattered by a moving particle. 
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Fig. 6.3-1 shows light which is propagated from a 

fixed source S in the direction ki and scattered by a 

particle at point P moving with velocity v, the scattered 

light is detected by an observer 0 where ks is the unit 

vector from P to 0. The relative velocity of the light 

with respect to the moving particle P, c', will be 

=C' v-k (6.3-1) 

where c is the velocity of light to a stationary observer. 

Thus, the light will arrive to the moving particle at a 

frequency, 

f' _ 2.1 
= 

l(c 
- : 7"ki)- f(1 - v"ki) (6.3-2) 

Now, the particle can be considered as a moving source 

emitting a light of frequency f'. The stationary obser- 

ver at 0 will observe the light from a moving source with 

a wave length 

C- v"k 
I, ''ý - -i---' 

The corresponding frequency is then 

f fl ff 

(6.3-3) 

(6.3-4) 

Substituting equation (6.3-2) into equation (6.3-4) yields 
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the expression of the final frequency detected by the 

stationary observer at 0, 

f(1-1 v"rc. ) 
f� _c1 (6.3-5) 

1-. v"C8 

The overall frequency shift is then given by 

ef==f" -f 

ý(1 -. v"i ) 

Since the velocity of the moving particle v is negligible 

compared with c, 

i. e., 

iJL o 
thus, 

of v" (k$- kj) (6.3-7) 

The frequency shift, of, which is also referred to 

as the Doppler frequency, fD , is directly proportional 

to the particle velocity 7. 

The laser, which emits highly coherent monochromatic 

light waves is the most suitable light source for the 

measurement of particle velocity utilising the above 
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principle. 

6.3.3 The Optical Systems 

In practice, it is more convenient to employ two 

incident light beams which cross at the measuring point 

in the flow. Appropriate optical components such as beam 

splitters, lens and filter may be arranged in different 

modes of operation. The most commonly used optical 

arrangements are "reference-beam" mode and "dual beam" 

mode. 

The "Reference -Beam" Mode In the reference-beam mode, 

the laser beam is split into two beams and directed towards 

the measuring point by an optical unit which consists of 

a beam splitter and a convergent lens as shown in Fig. 

6.3-2. 

optical unit 

laser ýýý ilter + 
photoýnultiplier 

Fig. 6.3-2 Reference-beam mode 

The intensity of the reference beam is reduced by a filter 

so as to optimize the quality of the Doppler signal. A 

photomultiplier is placed to face the reference beam so 

that the frequency difference between the reference 
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beam and the scattered beam can be detected. The 

frequency difference, according -to equation (6.3-7), is 

fD = fs - fi =v" (ks - ki ) 

The photomultiplier then emits modulated current with a 

frequency equal to fD. The velocity component measured 

by the above arrangement is parallel to ks- kit or normal 

to the bisector of the beam intersecting angle T. Its 

value can be calculated in terms of fD , I,, and T as 

follow 

(6.3-8) 
2 sing 

The "Dual Beam" or Fringe Mode In this arrangement, the 

laser beam is split up into two incident beams of equal 

intensity and is brought to intersect at the place of 

measurement so that a measuring volume is formed. The 

scattered light signals of the incident beams are picked 

up from the same direction by a photomultiplier (see 

Fig. 6.3-3). 

81 
, 

s2 
j2 

Fig. 6.3-3 'Dual beam' or fringe mode. 
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In this case, each scattered beam has a frequency shift 

relative to the incident beam that it originates from, 

i. e., 

v" (k$ -kiff ) fsý fly + 
IX. 

fg2 f12 + v"(ks - ýci2) 

The beat frequency detected by the photomultiplier 

fD = fsl - fs2 can be deduced to 

fDf i1 f i2 +v "(ki2 -k (6.3-9) - ý. i1 
_ 

If the incident beams arrived at the measuring point 

without any frequency pre-shift, fit = f12 ' and fD 

becomes 

fD V*(712 - F11) (6.3-10) 

It is obvious that the beat frequency fl) is indepen- 

dent of the direction of detection and the velocity, com- 

ponent measured is parallel to IFij - FCi2 
, i. e., normal to 

the bisector of the beam intersecting angle cP . The 

velocity can be calculated in terms of fD and Cf 

according to equation (6.3-8). 

The Effect of Refractive Index When a beam of light 

passes obliquely from one medium to another of different 

refractive index, its direction is altered and its velocity 
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and wavelength also changed. The various properties in 

air and in a fluid of refractive index n is given in 

Table 6.3-1. 
l 

Property Air In the Fluid 

Intersecting Angle T 

Velocity of light c % 

Frequency of light f f 

Wavelength of light X= c 
f 

A. 
rl 

Table 6.3-1 Various properties in air and in a 

fluid of refractive index 

Thus, if the beams are intersected in a fluid of refrac- 

tive index f and the angle between the beams V is mea- 

sured in the fluid, the velocity, according to equation 
(6.3-8) will be 

fK' fDý 
v-- 

2si ~ 2t1sin 
(6.3-11) 

The "Interference Fringe" Model of the Dual Beam Mode 

The dual beam mode is also termed as "fringe" mode 

because the interference of the two light beams forms 

a fringe pattern at the intersection volume. This model 

for analysing laser Doppler signals was first proposed by 

Rudd (1969). Fig. 6.3-4 shows two coherent light beams 

having plane wave fronts intersecting at an angle ¶. Where 

the path lengths travelled by the two beams are equal, or 
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differ by a whole number of wavelengths, the intensities 

of the beams will add constructively to give a bright 

fringe. While a difference of path length by J of a 

Fig. 6.3-4 Fringe pattern of beam intersection 

wavelength will'add destructively to give a dark fringe. 

An interference fringe pattern which consists of a series 

of bright and dark fringes is formed in the intersection 

region. From the above diagram, it is obvious that the 

following relationship between fringe spacing 4x and 

wavelength of the light \ can be obtained. 

(6.3-12) ýXsin- -2 

A particle which moves across the fringe pattern with a 

velocity v will scatter light whose intensity will vary 

at a frequency 

V 
2vsin 

fD=' =-- -- (6.3-13) 
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The relationship between the signal frequency and the 

particle velocity obtained is exactly identical to that 

obtained by a Doppler consideration. 

In this experimental work, the dual beam mode of 

optical arrangement was chosen based on the following 

reasons: - 
(1) It is relatively easier to set up the optical 

system as the laser, the optical unit and the 

photomultiplier are mounted on the same optical 

axis; the changes required in measuring differ- 

ent directions involves only minimal re-arrangement 

of the components. 

(2) Since the beat frequency is independent of the 

direction of detection, the position of the 

photomultiplier does not require to be precise; 

good signals can be obtained over a relatively 

wide angle of detection. 

6.3.4 Methods for Frequency Signal Processing 

A. typical. signal from the photomultiplier consists 

of a low frequency signal which corresponds to the passage 

of particles across the beams (pedestal), a high frequency 

signal related to the velocity of individual particles 

passing through the beam intersection region, and a wide 

band of noise. A signal processing device is therefore 

required to extract the velocity-related high frequency 

signal, measure its mean value and obtain the information 

about fluctuation, i. e., r. m. s. value. 

There are three basic types of signal processing 

I 
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technique: - frequency spectrum'analysis, counting and 

frequency tracking. 

Frequency spectrum analysis is the simplest approach 

to Doppler signal processing. It was used for most of the 

early work on L. D. A. For most analysers, a spectrum of 

probability density function of Doppler frequency can be 

plotted against the frequency. In such a distribution, 

the most probable frequency corresponds approximately to 

the mean value of Doppler frequency and therefore, to the 

mean velocity; the width of the spectrum is related to the 

turbulent intensity. The major shortcomings of frequency 

analysis are (i) instantaneous velocity and energy spectrum 

cannot be obtained; (ii). processing the signal is time 

consuming and often lacking in precision. 

A counter measures the time taken for a particle to 

cross a pre-determined numbers of fringes. The velocity 

can then be calculated from the numbers of fringes, fringe 

spacing and the time taken. The counting technique cannot 

measure the oscillations and energy spectra readily. How- 

ever, counting procedures are not greatly influenced by 

changes in particle concentration and work well with high 

dropout values caused by a highly discontinuous signal. 
Prequency tracking devices 'lock on' to the Doppler 

signal from the photomultiplier and yield an analogue 

output voltage proportional to the instantaneous fluid 

velocity. The block diagram of a typical frequency 

tracker is shown in Fig. 6.3-5. The incoming Doppler 

signal, at a frequency which varies with time, is mixed 
0 
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with a output signal from a voltage controlled oscillator 

(V. C. O. ). The output signal at a difference frequency is 

narrow-band filtered by an intermediate filter (I. F. ) to 

remove as much noise as possible. The signal from the 

I. F. filter is then passed through a limiter which converts 

the signal to a square wave form and then fed into a fre- 

quency discriminator. This provides a d. c. output propor- 

tional to the I. F. frequency deviation from a fixed centre 

value fo . After suitable snmoothing, with a time constant 

To , and d. c. amplification, the resulting error voltage 

v is fed back to the control input of the V. C. O. The 

result of the feedback is that, provided a suitable value 

of loop gain is chosen, the oscillator frequency tracks 

that of the Doppler signal, maintaining a nearly constant 

difference equal to fo . Thus the voltage v provides an 

electrical analogue of 'instantaneous' Doppler frequency 

which is in turn proportional to the flow velocity. 

Input f 
Mixer fD 

tv. c. o. 

I V. C. 00 v 

Output 

. I. P. 
filter Limiter 

Amp. (-+--i (T 
o> 

CR-integrator 

Frequency 

discriminator 

Fig. 6.3-5 Block diagram of frequency tracker 
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The distinct advantage of frequency trackers over 

other signal processing devices is that the mean and r. m. s. 

quantities can be read out directly on the appropriate 

meters. Frequency trackers are particularly suitable for 

application with flows where high particle concentration 

is present. In this experimental study of confined water 

jet mixing, the high particle concentration in unseeded tap 

water enables the use of a'frequency tracker which is cheap- 

er than a counter. 

6.3.5 Signal Quality 

As the measurement of fluid velocity in a flow depends 

on the scattered light signal received by the photomulti- 

plier, a good signal is thus essential for accurate velocity 

measurement. Since the scattered light signal is produced 

by the scattering particles suspended in the flow, the 

qualities of scattering particles, such as particle size, 

particle concentration will certainly influence the signal 

quality and thus determine the accuracy of the velocity 

being measured. 

The Doppler signal will also contain a certain amount 

of noise, partly from the optical system and partly from 

the electronics. By careful design of the electronics 

and optical system, the noise level can be reduced but 

cannot be eliminated totally. A quantity called signal- 

to-noise ratio is used to define the relative strength of 

the Doppler. signal to the noise signal. Three factors 

which affect the signal quality are considered. 

The Particle Size All measurements of fluid velocity by 
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laser Doppler anemometry are attempted by measuring the 

velocity of the particles suspended in the flow. Conse- 

quently, the ability of the particles to follow the flow 

is of great importance. Durst, Melling and Whitelaw (1976) 

studied the criteria of particle size capable of following 

turbulent flows. They suggested that for water flows, 

particles of diameter between 5pm to 16Jum will be able to 

respond to a turbulent frequencies of 1 kHz to 10 kHz; 

for air flows, particles of diameter near 1pm are required 

to give the same turbulent response. This variation is 

due to the difference in viscosities of air and water as 

well as the particle to fluid density ratio. 

Besides considering the ability to follow the flow, 

to obtain an optimum signal, appropriate matching of par- 

ticle size with fringe spacing is desirable. An ideal 

Doppler signal (Fig. 6.3-6(a) ) produced by a particle 

whose diameter is of the order of half the fringe spacing 

jex, contains a low frequency 'envelope' or 'pedestal' 

related to the Gaussian distribution of the light beam, 

plus a high frequency fringe crossing signal which contains 

information on the particle velocity. The signal has a 

depth of modulation equal to the amplitude of the pedestal. 

i 

(a) (b) (e) 

Fig. 6.3-6 Signals from various particle-sizes 
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However, for a particle of diameter greater than Jax, the 

total light scattered will be greater but the depth of 

modulation of the signal as it passes through the fringes 

will be less as shown in Fig. 6.3-6(b). If the particle 

diameter is less than JAx, the total light scattered will 

be reduced, causing a reduction in the total signal level 

(Fig. 6.3-6(c) ). The result of variation in particle 

size, which is bound to exist, will be a variation in the 

amplitude of-the Doppler signal. It is obvious that if 

the majority of the particles in the fluid have diameters 

in the order of half fringe spacing, then better Doppler 

signal will be obtained. 

According to the interference fringe model, the fringe 

spacing Ax given by equation (6.3-12) can be re-written as 

AX a -A--- in air, 
2sin; 

AX == in a liquid with refractive 
2Wn4- index and measured in 

the liquid. 

Thus, the appropriate particle size for a specific fluid 

should be matched with its refractive index I and the beam 

intersection angle (l in order to give an optimal signal. 

Particle Concentration An ideal situation for laser Doppler 

anemometry would be one in which there are sufficient par- 

ticles in the flow so that at any time there is one particle 

in the measuring volume. Fig. 6.3-7(a) shows such an ideal 
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signal. If there are two particles in the control 

volume, the two particles will interfere constructively 

if the particles are in phase. The resulting signal will 

have a larger amplitude due to the extra light scattered 

as shown in Fig. 6.3-7(b). If the particles are 1800 out 

of phase, destructive interference will occur and there 

will be no signal modulation since light will be continuous- 

ly scattered (Fig. 6.3-7(c) ). In the case of a natural 

system, random particle separations will yield a signal 

as shown in Fig. 6.3-7(d). The modulation depth is likely 

to be reduced at large particle concentration. 

(a) 

(c) 

(b) 

(d) 

Fig. 6.3-7 Signals from various particle concentration 
. 

Durst, Melling and Whitelaw (1976) pointed out that 

smaller, weak scatterers may be present at a rather high 

concentration without causing serious defect, except that 

an excessive concentration give a high d. c. signal compo- 
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nent; but the concentration of larger particles should be 

kept to a minimum even if they do not contribute strong 

Doppler signals. Wang and Snyder (1974) also discovered 

that the signal-to-noise ratio from the anemometer will 

deteriorate at high particle concentration. When the 

Doppler signal is processed by a frequency tracker, the 

lowest limit of particle concentration will be the one 

sufficient to maintain at least one particle in the 

scattering volume for most of the time. According to 

Durst, Melling and Whitelaw (1976), the maximum concen- 

tration at which a fringe mode optical system would be 

employed is about 100 particles simultaneously present 

in the scattering region. 

Light-collecting 3 stem It has been shown by Durst, 

Melling and Whitelaw (1976) that, for a dual beam anemome- 

ter, the signal quality will improve if the light intensi- 

ties of the two beams are matched. Durst (1972) showed 

that if the photon shot noise is the predominant noise 

contribution, the signal-to-noise ratio decreases with 

increasing angle between the beams as well as with increas- 

ing angle of detection. A theoretical analysis by Durst, 

Melling and Whitelaw (1976) predicted that an increase in 

detection aperture of the photomultiplier increases the 

signal strength but not necessary the signal-to-noise 

ratio. All these results reveal that the light-collecting 

system represents an important part of laser Doppler 

anemometer and should be designed carefully in order to 

achieve the optimal results of signal strength and signal- 
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to-noise ratio. 

6.3.6 Frequency Shift 

In the case of measuring highly turbulent flows or 

the r. m. s. velocity with negligible mean velocity, a large 

fluctuation of Doppler frequency prevents the use of the 

frequency tracker as the processing technique. This is 

because most frequency tracker can only follow frequency 

fluctuation up to ±70% of the mean frequency. However, 

such difficulty can be overcome by using two beams of 

different wavelength to intersect at the flow rather than 

two beams'of the same wavelength. The effect would be 

to produce a fringe pattern moving across the measuring 

volume instead of a stationary fringe pattern created by 

two light beams-of same wavelength. Now, a particle with 

zero mean velocity in the measuring volume with a moving 

fringe pattern would be equivalent to a moving particle 

in the measuring volume with a stationary fringe pattern. 

The Doppler frequency produced by a stationary particle 

and a moving fringe will depend on the different frequency 

between the two beams. If, however, a moving particle is 

present in a moving fringe pattern, the Doppler frequency 

will increase if the particle and the fringe pattern are 

moving in the opposite directions. Thus, it is obvious 

that by creating a fringe pattern moving in the opposite 

direction of the particle movement, the mean Doppler fre- 

quency will increase and hence force the fluctuating 

frequency to fall within the working range of the frequency 
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tracker. The Doppler frequency with two incident beams 

of unequal frequencies fib and fit is given by equation 

(6.3-9) and reproduced as follow: 

fD =fib - fi2 + 
3v" (R12 - kil ) 

fit -f 12 = fs is called the frequency shift. 

To include a frequency shift in an optical system, 

two Bragg cells are installed in the optical unit, so that 

each beam passes through one cell. The Bragg cells are 

driven by a driver which has several frequency settings. 

At each of the shift setting, fs , the frequency of one 

beam is increased by ifs and that of the other beam is 

reduced by *f5 . The frequency difference of the beams 

after passing through the Bragg cells is equal to the 

frequency shift setting f$ . The choice of fs is depend- 

ent upon the turbulent intensity as well as the original 

mean frequency. 

6.4 The Measurement of Mean and Fluctuating Velocities 

Using; L. D. A. 

6.4.1 The Components of the Laser Donnler Anemometer 

The laser Doppler anemometer used in. the present in- 

vestigation consists of the following components: - 
(i) A 10mW, He-Ne laser model Hughes 3225H-PCS with 

power. unit model 3599H-K; 
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(ii) An integrated optical unit, Type DISA 55L01; 

(iii) A flow direction adapter with driver, Type DISA 

55L02; 

(iv) A photomultiplier Type DISA 55L10; 

(v) Frequency tracking signal processing electronics 

Type DISA55L. 

The arrangement of the optical components together 

with; the mixing tube test section is shown diagrammatically 

in Fig. 6.4-1. 

flow direction 
adapter 

Bragg 
cells 

integrated optical 
unit 

mixing tube 

Fig. 6.4-1 Optical arrangement of L. D. A. 

photomultipiier 

The laser was directly mounted onto the optical unit so 

that any rotation of the optical unit for measuring differ- 

ent velocity components does not require re-alignment of 

the laser. The flow direction adapter which consists of 

two Bragg cells and a frequency driver, was incorporated 

into the optical unit so as to facilitate the measurement 

of highly turbulent mixing region as well as the radial 
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and tangential r. m. s. velocities where the mean velocity 

is negligible. The two laser beams were brought to cross 

at the measuring point in the mixing tube by the convergent 

lens of the optical unit. The"photomultiplier was placed 

on the same optical bench at the other side of the mixing 

tube using the dual beam or 'fringe' mode of arrangement. 

To ensure that the two laser beams can be brought to 

cross at any point in the mixing tube, appropriate adjust- 

ing mechanisms are required. The integrated optical unit 

and the photomultiplier were mounted on an optical bench 

via two adjustable riders. The riders have fine adjusting 

screws to move the optical unit and the photomultiplier in 

the vertical and longitudinal directions of the mixing tube. 

The entire optical bench was supported by two supporting 

mechanisms fixed on the frame of the rig. Each one of 

these mechanisms comprised an inverted 'V' base laid 

parallel to the longitudinal axis of the mixing tube. 

Along its apex a rack was cut so as to accommodate the 

pinion of a cross slide mounted on top of the base (see 

Fig. 6.4-2). By turning the pinion head, the cross- 

slide can be moved along the base in the longitudinal 

direction of the mixing tube. Fixed on top of the cross- 

slide'is a thick plate with two 'V' groove cut into it 

running at right angles to the direction of travel of the 

cross-slide. A second slide (lateral slide) which held 

the optical bench was mounted onto this grooved plate. 

Fine adjustment of this lateral slide was made using 

threaded link between the slide and a tapped block fixed 
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c 

Fig. 6.4-2 The adjusting mechanism for optical bench. 

Optical 
bench 

Mixing tube 

01 

0 0 

Optical bench 

adjusting mechanism 

Suction chamber 

Nozzle adjusting 
mechanism 

Fig. 6.4-3 Plan view of mixing tube and optical bench. 
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to the 'V' grooved plate. The-mechanism thus provides 

facilities for the whole optical bench to be moved along 

the mixing tube axis by rotating the pinion head of the 

longitudinal cross-slide and across mixing tube by adjust- 

ing the lateral slide. The overall plan view of the adjust- 

ment mechanism, optical bench and the mixing tube is shown 

in Fig. 6.4-3. 

, The block diagram of the frequency tracking signal 

processing electronics used in this experiment is shown 

in Fig. 6.4-4. The equipment is a standard package deve- 

loped by DISA ELE. KTRO NIK. The high voltage supply unit 

provides a continuously adjustable D. C. voltage to the 

photomultiplier. The photomultiplier received a Doppler 

shifted light signal scattered by particles from the 

measuring volume. The light signal has a sinusoidal 

intensity variation with time. It has been shown by the 

"interference fringe" model proposed by Rudd (1969) that 

the frequency of this intensity variation is equal to the 

Doppler frequency of the scattered light (section 6.3-3). 

The duty of the photomultiplier is to transform the light 

signal into an electrical signal without changing its 

frequency. The signal from the photomultiplier goes 

first, to a preamplifier where the signal level is raised 

to a level which can be accepted by the tracker. The 

preamplifier also contains the high pass and low pass 

filters to remove the low frequency pedestal and high 

frequency noise from the Doppler signal. The signal is 

then fed to the frequency tracker which produces an 
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analogue voltage directly proportional to the instantaneous 

Doppler frequency and hence of flow velocity. In order to 

provide statistical information on the mean and fluctua- 

ting velocities the output voltage from the tracker is fed 

to a digital voltmeter for determining the mean velocity 

and to a r. m. s. voltmeter via a signal conditioner for 

determining the r. m. s. velocity. 

A photograph of the laser anemometer mounted on the 

jet pump test rig is shown in Plate 6.4-1 and the signal 

processing electronics is shown in Plate 6.4-2. 

6.4.2 The Measurement of Three Orthogonal Velocity 

Components in a Circular Mixing Tube 

The three orthogonal components of velocity in a 

circular mixing tube to be measured are shown in Fig. 

6.4-5. 

The following paragraphs are concerned with details 

of the geometrical set-up of the laser optics and the 

necessary calculation procedures for evaluating the mean 

and r. m. s. velocities in the three orthogonal directions. 

t 

S 

Fig. 6.4-5 The three orthogonal fluctuating velocities 
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plate 6.4-1 The laser Doppler anemometer mounted on the rig 

Plate 6.4-2 The signal processing electronics 
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The measurement of mean and fluctuating r. m. s. velocities 

in the axial (longitudinal) direction The flow in the 

mixing tube is assumed to be axi -symmetrical. The axial 

component of velocity was measured in a horizontal plane 

which cut through the axis of the mixing tube. Two hori- 

zontal laser beams from the optical unit were brought to 

meet at any point on the plane so that the bisector of 

the beam intersecting angle is perpendicular to the axis 

of the mixing tube (see Fig. 6.4-6). To ensure that the 

measurement was taken at the correct plane, a probe was 

inserted from the top of the mixing tube to locate the 

centre of the mixing tube. , -Then the two laser beams 

crossed exactly at the probe tip, the probe was removed 

and the flow was left undisturbed when actual measurements 

were taken. By moving the whole optical bench horizonta- 

lly at right angles to the mixing tube axis, the measuring 

point was then moved away from the centre such that measure- 

ment at various locations of that particular measuring sec- 

tion could thus be achieved. 

Measu 
p1 

Fig. 6.4-6 Measuring plane for U-velocity 
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Owing to the refractive effect, the distance travell- 

ed by the optical unit is not equal to the distance trave- 

lled by the measuring point. A relationship between these 

two movements is thus needed to be established. Fig. 6.4-7 

illustrates the beam intersection for measuring the axial 

velocity. 

Fig. 6.4-7 Beam intersection for axial velocity 
measurement 

An incident beam, which hits the outer wall surface 

at C19 if passes through the wall into the water without 

any refraction, will meet a symmetrical beam (not shown) 

at A, ) having a distance d1 from the outer wall surface. 

However, due to the refractions in the Perspex wall and 

water, the beams actually intersect at point A1', with a 

distance d1' from the outer wall surface. If is is the 

incident angle in air, rp is the refractive angle in 

Perspex and rw is the refractive angle in water, then 
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BC1 = d1 tan i 
a 

=t tan rp + (dl' - t)tan rw (6.4-1) 

where B is a point on the outer surface of the wall such 

that A1A1B is a straight line perpendicular to the wall 

surface, and t is the thickness of the wall. 

, Similarly, if the optical unit is moved away from 

the mixing tube by a distance a, the unrefracted beams 

will meet at A2 having a distance d2 and the actual 

refracted beams will meet A2 having a distance d2 , then, 

d2 tan is =t tan rp + (d2 - t)tan r (6.4-2) 

Subtracting equation (6.4-2) from equation (6.4-1), 

(d, - d2)tan is = (d1 - d2)tan rW (6.4-3) 

Since dI - d2 is equal to the distance travelled by the 

optical unit, at and dý - d2 is the distance travelled by 

the intersecting point, a', equation (6.4-3) can be written 

as 

tan i 
at a tan ra 

(6.4-4) 
w 

In most measurements, ia is relatively small and 

depends on the focal length of the lens used in the opti- 

cal unit. For a 300mm focal length and 50mm beam sepera- 
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tion, 

5 ti2 
s= 300 

i. e., is = 4.7640 

When is and rW are small, tan ia= sin ia'and tan rW=sin rW, 

equation (6.4-4) can be approximated to 

a 
sin i 

'a. a (6.4-5) ýasinrw ýw 

wke e- fl 's *e refro4ive ;n J" of Ae wafer 
This relationship allows the relative position of the 

measuring point to be calculated from the movement of the 

optical unit and the refractive index of water. 

The mean and r. m. s. velocities can then be calculated 

by the following equations. 

U fA f>1 (6.4-6) 
. 1W sinrW sßä 

j; '72- fr. m. s. A. (6.4-7) 2 snia 
0 

Where frem9$e refers to the fluctuation about the mean 

frequency. 

The measurement of r. m. s. fluctuating velocity in the 

tangential direction To measure the tangential r. m. s. 

fluctuating velocity, the optical unit must rotate 900 

from the position used for axial velocity measurement. 

The two laser, beams which emerge from the optical unit 

are now in a vertical plane at right angles to the axis 
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of the mixing tube (Fig. 6.4-8). The optical unit is 

adjusted vertically such that the beams intersect on the 

horizontal diameter. By moving the optical bench along 

its own axis, measurement can be made at any point on 

the diameter. However, the distance travelled by the 

optical unit is obviously different from that travelled 

by the measuring point due to the refractions in perspex 

and water. 

Fig. 6.4-9 shows the beam intersection for such 

measurement. The two laser beams, when brought to cross 

at the centre of the measuring section, pass straight 

through the perspex wall and into the water without any 

change of direction as the beams are perpendicular to the 

interface of the two media. However, when the optical 

unit is moved away from the mixing tube by a distance a, 

the beams will not enter the perspex wall at right angles. 

Refractions then take places in the perspex wall as well 

as in the water. The beams now intersect in the water at 

p' instead of P where the beams pass straight through 

without any change of direction. OP represents the 

distance travelled by the optical unit and OP' represents 

the distance travelled by the measuring point. From 

triangle APO, 

OP A0 AO 
sin a= sin(1800 - o() 

a s~ 
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measuring 

Fig. 6.4-8 Measuring path for tangential component. 

Fig. 6.4-9 Beam intersection for tangential velocity 
measurement, 
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With AO=Ro and OP=a, 

and 

a Ro 

sin is sinn( 

1a sino( is = ain- (R --) 0 
(6.4-8) 

where d is the half angle of the beam intersection in air 

which depends on the beam separation Sb and focal length 

fZ of the lens used in the optical unit, i. e., 

.ý0.5ýb 
oý= tan (f) 

L 

Considering the refraction at outer surface of the wall, 

sin is 
-qP sin 

From equation (6.4-8), 

From triangle ABO, 

and 

rp = sin-1(a s-- 
rt po 

(6.4-9) 

Ri R0 

sin rP sin p 

ip sin-1(a sino( (6.4-10) 
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Considering the refraction at the inner surface of the 

wall, 

sin ip_1w 

sinrw- 

1a sinol w= sin (R) (6.4-11) 
ýw i 

From triangles APO, ABO, and ßP'0 

Z. AOP = o(- is 

4AOB = iP - rp 

and c'= rw +4 BO P' , 

since 4 BOP' 4AOP - 4AOB 

o, ' w+ (ot- ia) - (ip -rp) (6.4-12) 

Again, from triangle BP'O, 

a' 
_ 

Ri Ri 

sin rW 8in(1800 ^ o("ß ^ sin obi 

R sin r 
aý isin 

aW 
(6.4-13) 

The above equations (6.4-8) to (6.4-13) allow the distance 

travelled by the measuring point a' to be calculated from 

the optical movement a, the outer and inner radii of the 
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mixing tube R0 and Ri, half angle of beam intersection 

e(and the refractive indices for perspex and water Ip 

and qw. 

The r. m. s. fluctuating velocity 
Fivt 

can then be 

calculated from 

(6.4-14) w= 2gwýsin oi, ' 

I 
A short computer program has been written to calculate 

the value of at, c&' and X/(21 
w sino('). The results of the 

various quantities are tabulated in Table 6.4-1 and the 

listing of the program is given in Appendix B. 5. 

a (mm. ) a' (mm. ) o('(rad. ) sino(' ýw , 
(m. ) 

rýwýs in o( 
1.000 0.713.3 0.03 2 0.109 0. ? 37'. x'. -'l5 2.000 1.5: 30 0.012 0.1n) 0.2. )2: -05 3-000, 2.3 16 0.01 1 0.1013 0.20'2- f5 
'4.000 3.116 0.0 0 0.107 0.2')7 ü- 05 
5.000 3. -930 0.050 0.1O 0.299 . -05 
6.000 4.7 5) 0.07) 0.1 05 0.3 (`ß' 
7.000 3.6 04 0.07 i 0.1 0iß 0.: 3 n5. i- O5 
3.000 6.464 0.077 0.103 '1. "30 4- 73 
9.000 7.341 -0.077 0.1 o2 0" '3 1 1': - o5 

10.000 3.234» 0.0 76 0.1 01 0.31 /- 03 
11-000 9.14,4 0.075 0.1 00" 0.317', -(b 
12. Ono 100 01 2 0.074 0.09, ) 0.320:. - 0 
13.000 11.01") 0.074 0.09'; 0.: 3^31. -, I5 
14.000 11. )3a 0.07'3 0.0)7 0.3? - -0s 
13.000 12. ')61 0.072 0.0)6 . 00 z -05 
1.6.000 13 0 *)7 '3 0.07P 000)5 0.13 3'. - 05 
17.. 000 14. r)ß)'3 0.071 0-0111 0.36 - 05 
13.000 16.0/411 0.070 0.013 0.3i! C1'-05 
19.000 17.1 12 0.06) 0.092 0.3113f. - 03 
20o000 13.203 0.06') 0.091 0.347 1-05 

Table. 6.4-1 The various quantities for calculating 
the tangential velocity component. 
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The measurement of r. m. s. fluctuating 
. 
velocity in the 

radial direction It is relatively difficult to make 

measurement in the radial direction of a circular pipe. 

Fig. 6.4-10 illustrates that in order to measure the radial 

velocity, the two beam must cross in such a way that the 

bisector of the beam intersecting angle is perpendicular 

to the radial direction. To fulfill this requirement, the 

optical axis has to be inclined at an angle to the horizon- 

tal axis. This poses an extremely difficult problem to 

the alignment of the laser and optical unit. To overcome 

such difficulty, two perspex blocks with cylindrical inner 

surfaces identical to the mixing tube wall and flat square 

outer surfaces were constructed and locked on top of the 

mixing tube. A cross section with a circular inner surface 

but square external surfaces was thus formed. The blocks 

were locked onto the mixing tube by two screws and a join- 

ing plate tightened at the bottom surfaces as shwon in Fig. 

6.4-11. 

To measure the raidal r. m. s. velocity, the optical 

unit is arranged in a similar way to that for measuring 

the tangential value. The two laser beams emitted from 

the optical unit are in the vertical plane perpendicular 

to the axis of the mixing tube. The two beams are symme- 

trically inclined to a horizontal axis. When the two beams 

are brought to cross at the centre of the measuring section, 

refraction takes place at the outer surface of the perspex 

cross section but not at the inner surface as they pass 
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Optic 

Fig. 6.4-10 

Fig. 6.4-11 Cross-section for radial velocity 

measurement. 
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perpendicular through it. (see Fig. 6.4-12(a)). The 

incident angle from the air to the perspex is is equal to 

the half angle of the beam intersection in air, i. e., 

is = o( = tan-l( 
O 

an-1 (O b 
.)(6.4-15 

) 
L 

The refractive angle in the peropex, rp can be obtained by 

sin i 
rp = sin-1( a) (6.4-16) 

P 

The distance from the incident point to the symmetrical 

axis, s, can be calculated from a, the distance from the 

incident face to the centre of the mixing tube, and rP, 

the refractive angle in the perspex, 

s=a tan rp (6.4-17) 

If the centre of the cross-section is considered as the 

origin of x-y coordinates, the inner surface of the 

mixing tube can then be described by an equation 

x2 + y2 = Rig (6.4-18) 

where Ri is the internal radius of the mixing tube. 

By moving the optical unit vertically upwards a 

distance h, the beams will meet the incident face of the 

cross-section-at A (-a, h+ s) and B (-a, h- s) (see Fig. 

6.4-12(b)). After travelling in the perspex along AC and 
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Fig. 6.4-12(a) 

f8 

x 

Fig. 6.4-12(b) Beam intersection for radial 
velocity measurement. 
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BP, the two beams cross in the water at P. Equations of 

the straight lines AC and BD are given by: 

AC: y-h-s- -tan rp(x + a) (6.4-19) 

BD: y-h+s= tan rp(x + a) (6.4-20) 

To obtain the coordinates of C and D. equations 

(6.4-19) and (6.4-20) are solved with equation (6.4-18) 

respectively. Assuming that the coordinates of C and D 

are (xC, yC) and (xD, yD), the inclined angles of. OC and 

OD with the horizontal radius, 0(1 and 0(2 can then be 

obtained by 

°(1 tan- 1 (I 
C 

O(2 = tan' 1 (_yD) 
xD 

The incident angles at C and D are then given by ip, and 

ip2 as follows: - 

ipi = o&1 - rP 

ip2 a o(2 + rp 

The refractive angles at C and D, i. e., rr1 and rw2 are 

related to their respective incident angles and the re- 

fractive indices of perspex and water 
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rwl = sin-1 (n sin j)= sin- 
1(2sin(c 

1- rp) ) 

w% iw 

rW2 = sin- (1-2s in (C(2 + rp) ) 
iw 

The slopes of CP and DP, m1 and m2, are then given as 

f oll ows 

m, = -tan(oll - rr i) 

m2 = tan(rw2 - 0(2) 

The equations of CP and DP can then be written as 

CP: y- yC - -tan(o1 - rw1)(x - XC) (6.4-21) 

DP: y- YD 22 tan(rw2 - 0"2)(X - xD) (6.4-22) 

The coordinates of P(xP, yp) can then be obtained by 

solving equations (6.4-21) and (6.4-22), i. e., 

yC - YD + xDtan(rw2 - 0(2) + xCtan (o(1 - ri1) 
- tan (rw2 - oC2) + tan (0(1 - rw2 ) 

(6.4-23A) 
yP a y0 - tan(o1 - rri)(xp - xC) 

The distance OP can then be calculated from xP and yp by 

OP a 
ix 

p2+yp2 
(6.4-233B) 
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The angle of beams intersection F' can be calculated from 

m1 and m2 as follow 

m-m 
= CPD = tan-1(12+ 

m1) 
(6.4-24) 

12 

A computer program was written to calculate the 

distance OP and the beam intersecting angle (' at various 

values of h. It has also been proved that OP and the 

bisector of CP and DP are perpendicular to each other as 

the product of their slopes is equal to -1 at various 

values of h. Thus, by raising or lowering the optical. 

unit vertically from its central position, the effect of 

measuring the radial component can be achieved. The 

position of the measuring point can be calculated from 

equation (6.4-23). The r. m. s. fluctuating velocity vt 

is given by 

y. 
fr. 

m. s. A 
(6.4-25) 

2%, sin -% 

The results of various quantities are tabulated in 

Table 6.4-2 and the listing of the computer program is 

given in Appendix B. 6. 

6.4.3 Experimental Procedure 

The step by step procedure of setting up the DI SA 

551 laser Doppler anemometer is given in detail in the 

DISA manual. The setting and tunning of the DISA 55L30 

signal processor should follow the manufacturer's operation 
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manual. During the measurment, an oscilloscope was used 

to monitor the Doppler signal so that the frequency could 

be estimated. The frequency range on the tracker was then 

set to include the Doppler frequency in the recommended 

region of the frequency meter. 

6.4.4 The Limitation of L. D. A. and Design Criteria of 

the Optical Components 

The inlet velocity ratios of the primary jet to the 

secondary entrained flow used for the present study are 

3.72 and 4.67 (see Table 6.5-1). Higher inlet velocity 

ratios were attempted but the tracker failed to lock -to the 

signal, presumably owing to the following reasons: (i) 

high turbulent intensity, and (ii) high velocity gradient. 

However, the use of frequency shift technique improved the 

tracker's performance for high turbulent intensity but 

failed to solve the problem of high velocity gradient. It 

is thus believed that the high velocity gradient which 

resulted from the high inlet velocity ratio, plays an 

important part in preventing the tracker to function 

normally. The limitation of measuring high velocity 

gradient flow is due to the finite size of the measuring 

volume. A typical measuring volume formed by two inter- 

secting beams is of ellipsoid shape as shown in Fig. 6.4-13. 

The particles traversing across the measuring volume have 

a range of mean velocities. This will result in different 

Doppler frequency shifts in the light emitted from different 

parts of the measuring volume. 
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Fig. 6.4-13 Typical measuring volume. 

Such limitation can be improved, theoretically, by 

(i) arranging the optical system with a shorter dimension 

of the measuring volume along the direction of the velocity 

gradient; or (ii) reducing the size of the measuring volume. 

Method (i) cannot be achieved in a pipe flow owing to the 

refraction at the pipe surface. Method (ii) can be accom- 

plished by using lens of shorter focal length in the opti- 

cal unit. However, a shorter focal length will produce a 

bigger beam intersecting angle, and subsequently reduce 

the signal strength and the signal-to-noise ratio as 

pointed out by Durst, Melling and Whitelaw (1976). The 

-increase of beam intersecting angle also limits the maxi- 

mal velocity which can be measured by the tracker as most 

trackers can work up to a specific maximum frequency. By 

examining the equation relating the velocity and Doppler 

frequency, 

fDX 

2qsin* 

fD is limited to a maximum value which can be handled by 
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the tracker. The bigger the angle If', the smaller will be 

the U which can be measured. Such'a situation is even 

worse in the case of measuring high turbulent flow where 

the frequency shift technique is necessary. In this case, 

the maximum velocity can be measured is given by 

(fn - f8 ), >% 

, 2 1sinq 

which is less than the case without frequency shift fs. 

The focal length of the optical unit also determines 

the fringe spacing. According to equation (6.3-12), the 

fringe spacing ox is related to A., I and TI as follow: 

AX =A 
2gsin- . 

Since and are constants, Ax is inversely proportional 

to the beam intersecting angle p'. A shorter focal length 

will produce a bigger e' and thus create a fringe pattern 

of smaller fringe spacing. It has been pointed out in 

section 6.3.5 that in order to give an optimum signal, the 

majority of the particles should have diameters in the 

order of half fringe spacing. A reduction in focal length 

will require smaller suspended particles. It can thus be 

concluded that the choice of the focal length is determined 

by the maximum velocity to be measured and the capability 

to control the suspended particle size. 

In the present measurement, a lens of 300mm focal 

length was used in the optical unit. With a highest 
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frequency limit of 15MHz provided by the : RISA 55L35 tracker, 

the maximum velocity range without using frequency shift 

was 57.15 m/s. This velocity range would be considerably 

reduced by the use of frequency shift technique. Different 

fringe patterns were produced for measuring different com- 

ponents in the mixing tube. The fringe spacing was 3.8m 

for the axial velocity measurement; 4.27JLm for the radial 

direction measurement and was varied from 2.86) Am to 3.48gm 

for the tangential direction measurement. To ensure that 

the particles size matched with the fringe spacing, a 10tm 

filter was installed to filter the larger particles and the 

signal was found to improve significantly. 

The criteria of selecting the light collecting optics, 

i. e., the close-up lens in front of the photomultiplier 

objective, depends on the pin-hole size and the focal 

length of the optical unit's lens. When a laser beam of 

wavelength ) is focused by a lens of focal length fL the 

focused beam D, is given by 

4ý. f 
Dý ý= 

(6.4-26) 
0 

where Do is the diameter of the unfocused beam which 

contains 86.5% of the emitted light. 

It is normally arranged in such a way that the dia- 

meter of the measuring control volume observed by the 

photomultiplier is equal to D,. By using a fixed pinhole 

of diameter Dp, and a fixed distance from the collecting 

lens to the pinhole dp. The following relationship can 
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be obtained. 

Dd-f 
Pc (6.4-27) 

D fc 

where fc is the focal length of the collecting lens. 

Substituting equation (6.4-26) into equation (6.4-27) 

=1+ 
n4xf (6.4-28) 

L 

Thus, the focal length of the collecting lens fc 

should be matched with the focal length of the lens used 

in the optical unit fL accordingly in order that an 

appropriate measuring volume is observed. Such matching 

is essential for ensuring the outer region of the fringe 

pattern with poor signal quality does not contribute to 

the measurements. 

6.5 Results and Discussion 

6.5.1 LDA er imental Results 

The measurements of mean and fluctuating velocities 

I 

were made in the uniform mixing tube described in section 
6.2.2-. The geometries and flow conditions are given in 

Table 6.5-1. All measurements were made using the DISA 

551., signal processor described in section 6.4.1. In the 

case of measuring centre-line axial mean and fluctuating 

velocities for radius ratio of 0.334, a TSI tracker model 

1090 was also used to obtain results for comparison with 
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those obtained from the DISA tracker. Frequency shifting 

was employed in most cases except for the potential core 

region near to the jet exit where turbulent intensity was 

low. 

n/rt Un/Ue dt(mm) dn(mm) Un(m/s) Ue(m/s) 

0.334 3.72 38 12.7 3.05 0.82 

0.171 4.67 38 6.5 5.72 1.22 

where e refers to the entrained value at inlet 

Table 6-. 5-1 Geometrical and flow conditions of measurements 

Fig. 6.5-1 and 6.5-2 show the mean and r. m. s velocities 

along the axis of the mixing tube for radius ratio of 0.334, 

and velocity ratio of 3.72. The results have been non- 

dimensionalized by nozzle exit velocity and are plotted 

against the distance from the nozzle exit. The axial mean 

and fluctuating velocities obtained from both trackers 

agree closely with one another. 

Fig. 6.5-3 and 6.5-4 show the measured axial mean and 

fluctuating velocities along the axis of mixing tube for 

radius ratio 0.171 and inlet velocity ratio 4.67. The 

above figures reveal that the centre-line velocity begins 

to decay at a distance of around 4 nozzle diameters down- 

stream of the nozzle'exit plane. Both the longitudinal 

and lateral r. m. s. velocities along the centre-line 

increase rapidly to a maximum at around 10 nozzle diame- 

ters and then decrease gradually. Although the values of 

184 



1.0 
uc 
Un 

0.8 

0.6 

0.4 

0.2 

"15 JU'2 Xx 
x00 

x 
0d) 66 

Un Un xO 
0 

"10 xO 

xOe 

*05-- x xO° 0 DISA TRACKER 
x x TSI 

0 123 4 5 X/dt 
Fig"6"5-2 LDA measurement of centre line r. m. s. 

velocity, rn/'rt=0. 334, Un/Ue-3.72. 

185 

012345 /t 
Fig. 6.5-1 ILDA measurement of centre line mean 

velocity, rn/rt=0.; 34, Un/Uea3.72 



1.0 
uc 
Un 

0.8 

0.6 

o. 4 

0.2 

01234 Ydt 5 

Fig. 6.5-3 Measured centre line mean velocity, 

rn/rt=0.171, Un/Ue=4.67. 
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Fig. 6.5-4 Measured centre line r. m. s. velocity, 

rnjrt=0.171, Un/Ue =4.67. 
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axial and radial r. m. s. velocities are close to each other 

at the nozzle exit, the axial value-increases faster than 

the radial value and shows the greatest difference at 

their peak locations. The difference is more acute in 

the case of the mixing tube with a smaller radius ratio. 

Fig. 6.5-5 and 6.5-6 show the measured mean velocity 

profiles at various sections downstream of the nozzle 

exit for the two cases investigated. The superimposed 

curves give an excellent qualitative description of the 

confined jet mixing. 

Fig. 6.5-7 and 6.5-8 show the measured r. m. s. veloci- 

ties profiles at the axial, tangential and radial direc- 

tions. These curves reveal many important characteristics 

of confined jet mixing. In all cases, the peak values 

can be observed at a radial position corresponding to the 

nozzle wall position. The high peak at the beginning of 

of the mixing tube suggests that turbulent velocities are 

high at a thin zone separating the primary and secondary 

streams. As flow develops downstream, the high turbulent 

zone spreads and grows in width which reflects that the 

mixing between primary and secondary streams is spreading 

towards the wall and the axis. Further downstream, 

turbulent velocity profiles become flat and their 

levels reduce which suggest that the mixing process 
is diminishing. 

Comparing the profiles of the three r. m. s. velocities, 

it can be observed that the absolute level of the three 

components are different especially in the strongly 

187 



.. 

u 

1.0 

.8 

.6 

.4 

.2 

.o x/dt= 1 

A x/dt=2 
a x/dt =3 
v x/dt =4 

0 .2 .4 .6 .81.0 
rt 

Fig-6-5-5 Measured mean velocity distribution 
across mixing tube, rn4t=0.334, 
Un/Uet3.72. 

188 



u 
Un 

1.0 

.8 

.6 

.4 

.2 

ox /di= 0.5 

a x/dt=1.5 

o x/dt =2.5 

V x/dt =3.5 

U "2 -. 4 .6r "8 1.0 

Fig. 6.5-6. Measured mean velocity distribution 

across 'nixing tube, r/rt=0.171, 
Un/Ue7-4.67. 

189 



t 

JI. 
n 

.1 

. 

0 "2 "4 "6 .81.0 r 

Fig. 6.5-7(a) Measured axial r. m. s, velocity 

profiles, rn/rt=0.334, Un/Ue=3.72. 

190 



. 15 

Un 

"10 

o x/df=1 
a, x/dt=2 
a x/dt =3 
vx /dt =4 

ri 
' Fig. 6.5-7(b) Meäsured tangential r. m. s. velocity 

profiles, rrjrt=0.334, n/Ue=3.72. 

. 15 
Jý7 

Un. 

. 10 

. 05 

. 05 

rt 
Fig. 6.5-7(c) Measured radial r. m. se velocity 

profiles, rn/rt=0.334, Un/Ue=3.72. 

191 



J7U 
Un 

. 15 

. 10 

.05 

o x/dt=0.5 

x/dt=2.5 

v x/dt=4.5 

0 .2 .4 .6 .81.0 r 
rt 

Fig. 6.5-8(a) Measured axial r. m. s. velocity 
profiles, rr/rt=0.171 , Un/Ue a4.6?. , 

192 



J 

i 

ox/dt=0.5 

Q x/dt = 2.5 

v x/dt= 4.5 

0 .2 .4 "6 r"81.0 
rt 

Fig. 6.5-8(b) Measured tangential r. m. s. velocity 
profiles, r -/r, =0.1719 U,. /II_ =4.67. 

o x/dt=o. 5 

A x/dt= 2.5 

vx/dt=4.5 

"1o 

Un 

. 05 

" rt 
Fig. 6.5-8(c) Measured radial r. m. s, velocity 

profiles, rn/rt=0.171, Un/Ue=4.67. 

193 

"1ý 
W. 2 

un 



mixing regions. The confined jet mixing is thus not an 

isotropic turbulent flow. % 

The mean and r. m. s. velocities at nozzle exit and 

secondary inlet were also measured. Their values were 

found to be closely uniform. The primary and secondary 

inlet k values were then calculated from the r. m. s. 

velocities. The results are tabulated in Table 6.5-2. 

rn/rt Un Ue kn ke 

0.334 3.05 0.82 0.00486 0.0223 

0.171 5.72 1.22 0.00697 0.0670 

Table 6.5-2 Inlet conditions of mixing tube 

6.5.2 Comparison of. LDA Measurement with Prediction 

The computer program for uniform diameter mixing 

tube was run for the geometrical and flow conditions 

used for the LDA measurement. The inlet values given in 

Table 6.5-2 were used as boundary conditions for the 

computer prediction. Inlet length scales were assumed. 

to be 0.015*and 0.00857* of the mixing tube radius for the 

12.7mm and 6.5mm nozzles respectively. The calculation 

was performed up to 8 diameters of the mixing tube with a 

18 x 14 grid. 

Fig. 6.5-9 and 6.5-10 show the comparison of the mean 

velocity and turbulent kinetic energy along the axis of 

the mixing tube. The agreement between the measurement 

See Appendix A. 9 
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and prediction is excellent in -the case of 0.334 radius 

ratio except for the k value at the'region beyond 3 mixing 

tube diameters where a difference of 10 to 15% is observed. 

In the case of 0.171 radius ratio, the agreement can be 

considered as satisfactory where measurement and prediction 

confirm qualitatively with an average difference of 15%. 

In Fig. 6.5-11 and 6.5-12, comparisons of measured and 

predicted velocity profiles at various sections in the 

mixing tube are shown. Again, the agreement for the 0.334 

radius ratio mixing tube is excellent, whereas for the case 

of 0.171 radius ratio, the predicted velocity profiles are 

somewhat 10% to 15% higher than the measured profiles. 

However, the shapes of the profiles agree closely with 

each other. 

Fig. 6.5-13 and 6.5-14 show the comparisons of measured 

and predicted k profiles. The results have been non-dimen- 

sionalized by Ung. The agreement between the prediction 

and measurement is fairly good for 0.334 radius ratio. 

For the 0.171 radius ratio mixing tube, the predicted 

values are slightly higher than the measured values but 

it can still be considered as satisfactory especially 

when the sh. pes of the profiles are concerned. 

6.5.3- Discussion 

The measurements of mean and fluctuating velocities 

in confined Jet mixing have been successfully carried out 

by a laser Doppler anemometer. The measurements of axial 

and tangential components were obtained down to 0.1 

radius from the tube wall. However, measurement of the 
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radial component could only be obtained up to 0.65 

radius from the axis of the tube under the present geome- 

trical arrangement. Beyond that, it was extremely diffi- 

cult to align the photomultiplier so that the measuring 

control volume could clearly be focused on the pinhole. 

The possible error of measuring mean and fluctuating 

velocities using IDA may be attributed to any of the 

following sources: (1) poor beam intersection, (2) 

photomultiplier has not been correctly focused on the 

measuring volume, (3) scattering particle size has not 

been matched with the laser optics, (4) the density of 

scattering particles is too low or too high, (5) mean 

velocity gradient broadening, (6) transit-time broadening, 

and (7) electronic noise. The first three types of error 

can be eliminated by the proper set up of the optical sys- 

tem and careful design of the components. Item (4) is 

dependent on the water quality but for ordinary tap water, 

performance has been found satisfactory. Errors due to 

the gradient broadening and transit time broadening have 

been discussed in detail by Melling and Wnitelaw (1973). 

According to the procedure outlined, these errors were 

estimated and found to be relatively small. Errors arising 

from electronic noise are dependent upon the design of the 

signal processing electronics. By using the upper portion 

of any frequency range of the tracker, such errors can be 

reduced to a minimum. For the DISA tracker, the electronic 

noise level was at most 0.2% of the mean output voltage. 

The accuracy of the measurement also depends on the 
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elimination of noise and the dynamic response of the 

tracker. To remove as much noise as possible from the 

input signal, a narrow bandwidth setting of the I. F. 

filter in the tracker is necessary. However, such setting 

will inevitably restrict the rate at which the tracker can 

follow a changing input frequency. Thus, an optimum 

adjustment of the tracker is always a compromise between 

dynamic response and satisfactory rejection of noise. In 

a noisy turbulent signal, in order to eliminate noise 

satisfactorily, a lower r. m. s. velocity measurement can 

be expected due to the poor dynamic response of the tracker. 

This explains logically that the measured k-profiles are 

always lower than the predicted values at high turbulent 

regions. 

The agreeement between the prediction and measurement 

is in general better in the case of 0.334 radius ratio than 

the case. of 0.171. This is expected because for the small- 

er nozzle, it is necessary to have finer grids. However, 

our predictions for both cases use the same 18 x 14 grid 

owing to the computer time load. By increasing 50°0 of 

grid lines both radially and axially, the number of. nodes 

will increase 125%. If the number of iteration remains 

unchanged, the computer time has to be increased by 125%. 

The present jet mixing computer program with 18 X 14 grid 

takes 15 minutes to run for 150 iterations on the IBM 370 

computer. Any increase in the number of grids will be 

uneconomical. A compromise between accuracy and economy 

is always necessary. However, a study of the effect of 
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grid size are already given in section 5.1.2. 

I 

6.6 Measurement of Static Pressure in Mixing Tube and 

Diffuser 

Measurements of static pressure were carried out in 

a test section consists of a mixing tube with internal 

diameter 25mm and a short diffuser with 70 included 

angles as described in section 6.2.2. The flow circuit 

was operated as an ordinary jet pump described in section 

6.2.1. Two nozzles of geometrical details given in section 

6.2.2 were used in the test. The nozzle exit was position- 

ed to coincide with the mixing tube inlet. Geometrical and 

flow conditions for pressure measurement are tabulated in 

Table 6.6-1. 

do/dt M(Q2/Q1) dt(mm) dn(mm) Q1 (m3/hr) 

0.508 0.292 25 12.7 5.45 

0.508 0.307 25 12.7 6.36 

0.508 0.316 25 12.7 7.21 

0.260 1.04 25 6.5 1.82 

0.260 1.13 25 6.5 2.27 

0.260 1.17 25 6.5 2.73 

Table 6.6-1 Geometrical and flow conditions for static 

pressure testing 

Static pressure tappings along the jet pump wall were 

connected into a manifold. Two gauge pressure meter5, one 

for measuring positive gauge pressure of 0-1.6 bars and 
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the other for measuring negative gauge pressure of -1.0-0 

bars were installed at the two ends of the manifold. Such 

arrangement provides facility for measuring static gauge 

pressure from -1.0 bar to 1.6 bars which is well beyond 

the pressure range of the testing jet pump. 

The results of the measurements are presented in Fig. 

6.6-1 and 6.6-2. The static pressure along the jet pump 

was plotted against the distance from the nozzle exit. 

Both figures demonstrate that a higher flow ratio, which 

was generated from-a higher primary flow rate, gives a 

higher static pressure rise in the mixing tube. However, 

the static pressure rise in diffuser did not change much 

with different flow ratios. 

The computer programs for mixing tube and diffuser 

were run to predict two measurements, one for each diame- 

ter ratio. The predicted result are compared with the 

measured values in Fig. 6.6-5 and 6.6-4. The static 

pressures were non-dimensionalized by the dynamic head of 

the nozzle exit velocity. The agreement between the 

measurement and prediction appears to be satisfactory. 

By now, the computer model has been tested and. 

compared with the experimental data from Razinsky and 

Brighton (1971), Sanger (1968a, 1968b) as well as the 

present measurements. All these comparisons suggest 

that the two equation k- E model is capable of predicting 

pressure rise satisfactory in jet pump flows. 
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Fig. 6.6-3 Comparison of predicted and measured static 
pressure along jet pump, do/dt=0.508,0=7°. 

P-P, 
Pý 

.ý 

v4680 x/dt 
Fig. 6.6-4 Comparison of predicted and measured static 

pressure along jet pump, do/dt-0.26,8=7°. 
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CHAPTER 7 

APPLICATION OF THE COMPUTER MODEL FOR JET PUMP DESIGN 

The computer programs based on the two-equation k- E 

turbulence model have successfully predicted the time- 

mean variables as well as the turbulent kinetic energy 

and turbulent shear stress throughout the flow field of 

the typical jet pumps. The predicted values have been 

compared with the available experimental data from various 

sources, both for air jet mixing and water jet mixing. 

The agreement in general is fairly good. The computer 

model will accurately predict the performance of any 

specified jet pump and may be used to optimise the 

geometry of a jet pump for a specific design requirement. 

The following sections illustrate the application of the 

mixing tube and diffuser computer programs for such design 

purposes. 

7.1 Performance Prediction of Any Proposed Design 

To predict the performance of any proposed jet pump 

with the geometry completely specified, the mixing tube 

program is run with a fixed primary flow rate and a 

variable secondary flow rate. The pressure and velocity 
fields of the mixing tube are then obtained. The mean 

velocity profile as well as the turbulent variables at 

the exit plane of the mixing tube are then used as 
the inlet boundary values for the diffuser program. 
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The variation of static pressure along the entire jet pump 

wall can thus be predicted for various flow ratios. Follow- 

ing the procedure outlined in section 5.4.2, the total head 

gained by the entrained fluid and the total head lost by 

the primary fluid can be evaluated. The head ratio and 

the efficiency can then be calculated and plotted against 

flow ratio for the proposed jet pump. 

To illustrate such application of the computer model, 

a jet pump proposed by Sanger (1968a) was simulated by 

the computer programs to predict its performance. The 

predicted performance curves and the geometry of the pump 

are shown in Fig. 7.1-1. The result reveals that higher 

flow ratio will give lower head ratio and vice versa. 

This demonstrates that with a fixed primary flow rate, 

higher secondary flow rate can only be achieved at the 

expense of pressure head rise; on the other hand, it is 

only possible to pump less secondary fluid to a higher 

head. The optimum flow ratio corresponds to the maximum 

efficiency point where the flow rate and head rise compro- 

mise to give the best performance. Such performance 

predictions have two important applications in design, 

(i) they permit a study of the performance of any 

new design; 

(ii) they allow assessment of the performance of any 

existing pump when being used for off-design 

conditions. 
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7.2 Effect of Geometry on Jet Pump Performance 

The optimization of jet pump design in the past has 

largely depended on experimental testing and previous 

empirical data. As a result, the optimum geometrical 

configurations recommended by various workers differ 

from one another presumably due to the large number of 

geometrical variables involved and different flow condi- 

tions from which the results were derived. This can be 

attributed to the lack of basic detailed study of fluid 

flows in jet pumps. The present two equation k- 6 model 

for calculating turbulent flows in the mixing tube and 

diffuser provides a powerful method for predicting the 

jet pump flows of various geometrical configurations. 

In this section, an attempt is made to demonstrate how 

the computer programs can be used to investigate the 

influence of various geometrical variables such as 

nozzle to mixing tube diameter ratio, mixing tube 

length, nozzle position and diffuser included angles. 

The primary flow rate is fixed at 1.77 x 10-3m3/s and 

the flow ratio is assumed to be 3.5. In most cases, the 

primary flow rate is limited by the power source used to 

generate the flow and the flow ratio is usually a design 

requirement. 

7.2.1 The Influence of Diameter Ratio 

To study the effect of diameter ratio on jet pump 

performance, the diameter of the mixing tube was kept 
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constant at 34.2mm and the nozzle diameter was varied to 

give the diameter ratio changing from 0.2 to 0.4. With 

a fixed primary flow rate Q1, a smaller diameter ratio 

produces a higher nozzle exit velocity. Other geometrical 

dimensions were kept at constant. 

The predicted static pressure, expressed with reference 

to the secondary inlet value together with the geometry 

is shown in Fig. 7.2-1. The results reveal that for 

diameter ratio lower than 0.35, adverse pressure gradients 

are present in the mixing tube. The smaller the diameter 

ratio, the higher the pressure rise in the mixing tube. 

This may be seen as reflecting the degree of mixing between 

the primary and secondary flows since a smaller diameter 

ratio produces a higher velocity ratio at the inlet of 

the mixing tube for a fixed primary and secondary flow 

rates, and thus leads to more vigorous mixing between the 

two streams. For a diameter ratio of 0.4 which corresponds 

to a smaller velocity ratio at inlet, a favorable pressure 

gradient in the mixing tube is observed.. This suggests 

that the influence of wall boundary layer due to friction 

outweighs the influence of mixing between the streams in 

determining the pressure variation. The influence of 

diameter ratio on pressure rise in the diffuser is insigni- 

ficant compared with those in the mixing tube. 

The results in Fig. 7.2-1 can be used to calculate 

the head ratio and thus efficiency of the jet pumps using 

the one-dimensional procedure outlined in section 5.4.2. 
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Pig. 7.2-1 Predicted static pressure variation of jet pumps 

with various diameter ratio, s/dtm1.05, lt/dt=6.49, 
6a? o. 

214 



The efficiency is plotted against the diameter ratio in 

Fig. 7.2-2. A maximum efficiency of 27% is observed at 

a diameter ratio of about 0.27. A small increase or 

decrease of diameter ratio will reduce the efficiency 

considerably. To maintain an efficiency of beyond 20% 

for this particular geometry and flow, the nozzle diame- 

ter should be selected so as to give a diameter ratio of 

0.2 to 0.32. The diameter ratio is thus a very important 

and a sensitive geometrical parameter for optimizing jet 

pump performance. 

7.2.2 The Influence of Mixing Tube Length 

The study of the influence of mixing tube length on 

jet pump performance was carried out by running the mixing 

tube and diffuser programs with variable mixing tube length. 

A nozzle of fixed diameter was used to give a diameter 

ratio of 0.25 and a variable mixing tube length changing 

from 3.08 to 7.69 diameters. The predicted static pressure 

along the jet pump wall is plotted against the distance 

from the mixing tube inlet in Fig. 7.2-3. The results show 

that with a shorter mixing tube, the static pressure rise 

in the diffuser is smaller. This pressure rise increases 

with increase in mixing tube length. However, when the 

mixing tube length reaches around 6.5 diameters, any fur- 

ther increase in length only improves the pressure rise in 

diffuser slightly and such rise may easily be offset by 

the frictional loss in the mixing tube due to the extra 

length. This effect is due to the fact that with a shorter 

215 



1ý 
0.3 

0.2 

0.1 

Fig. 7.2-2 The influence of diameter ratio on jet pump 

efficiency, s/dt=1.05, lt/dt-6.49, e=7o, 
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mixing tube, the mixing process is usually incomplete at 

the diffuser inlet. The relatively steep velocity profile 

at diffuser inlet gives less pressure rise due to more loss 

in the diffuser. With a longer mixing tube, mixing will 

almost be completed at the diffuser inlet and consequently 

the pressure rise in diffuser is expected to increase. 

Fig. 7.2-4 shows the efficiency as a function of 

mixing tube length with flow conditions and other geome- 
tric variables kept constant. The curve reveals that a 

mixing tube length of about 5 to 7 diameters gives the 

best performance with efficiency up to around 26%. Any 

reduction of mixing length will reduce the efficiency 

considerably owing to the incomplete mixing. Mixing tube 

length beyond 6 diameters is unnecessary as the efficiency 

is diminishes with the increase in length due to the extra 
frictional loss of the additional length. 

7.2.3 The Influence of Diffuser Included Angles 

The influence of diffuser included angles was examined 
by varying the included angles from 30 to 90 while keeping 

the area ratio of the diffuser and other pump geometries 

and flow conditions unchanged. Fig. 7.2-5 shows the 

variation in static pressure along the jet pump wall for 

various diffuser included angles. The 70 diffuser seems 
to give a maximum pressure rise. A decrease in included 

angle to 50 causes the pressure at exit to drop considera- 

bly owing to the frictional loss in the extra length 

of the diffuser wall. On the other hand, an increase of 

included angle to 9o reduces the diffuser exit pressure 
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Fig. 7.2-4 The influence of mixing tube length on jet pump 
efficiency, do/dt=0.25, s/dt=1.05,6=7d. 
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slightly; the increased pressure loss caused by the more 

severe expansion outweighs the reduction in pressure loss 

due to the shorter length of diffuser. 

The influence of diffuser included angles on the over- 

all jet pump performance is shown in Fig. 7.2-6. For this 

particular geometry and flow condition, a7o diffuser angle 

gives an optimum efficiency of 26%. It is also observed 

that the efficiency curve is rather flat which implies that 

the influence of diffuser included angle on performance is 

secondary. A shorter diffuser is always preferable as it 

saves both material and space. However, if the included 

angle is too large, there may be a danger of flow separa- 

tion occurring in the diffuser region which will cause 

severe loss. 

7.2.4 The Effect of Nozzle Exit to Mixing; Throat Spacing: 

The effect of nozzle spacing on performance is related 

to other geometries such as mixing tube length, diameter 

ratio and secondary inlet contours of the jet pump. By 

keeping all other geometrical variables as constants, and 

varying the nozzle spacing over the range of 0.2 to 1.4 

diameters of the mixing tube, the effect of nozzle posi- 

tion on performance can be investigated. Fig. 7.2-7 shows 

that the pressure in the mixing tube and diffuser is in 

general lower for smaller nozzle spacing. This phenomenon 

is expected because the decrease in annular area of the 

secondary inlet (due to shorter nozzle spacing) will certain- 

ly lower the static pressure in the region. 

The overall performance of jet pump with varying nozzle 
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Fig. 7.2-6 The influence of diffuser included angle on jet 
pump efficiency, do/dt. 0.25, s/dt=1.05, lt/dt-6.49. 

222 

Z° ý° 6° 8e 100 



+i O 
3p 

r 

4- "D 
n{ 

b 
Ö 

x q 
" 

t 
C; 

-P 

co 
O 

to 

H 
A 
O in 

1 
00 N 

ý 

O 

" 

Py 

223 

(zw/N tiOIX) 'd-d 



spacing is shown in Fig. 7.2-8" The efficiency of the jet 

pump increases from 13% at a position given by s/dt=o, 3 to a 

maximum of 26% at s/d, t = 1.2. The efficiency then decays 

gradually with further inereac. e of nozzle spacing. The 

result suggests that for this particular configuration 

and flow condition, the mixing tube is not long enough to 

produce a maximum pressure rise in the mixing tube and 

therefore an increase in the spacing between nozzle outlet 

and mixing tube inlet would improve the performance. This 

optimum position change when the jet pump configuration 

and flow conditions vary. 

7.3 An Optimizing Procedure for Jet Pump Design 

In the previous section, the individual influence of 

various geometrical variables was studied and discussed. 

The present section attempts to outline a procedure for 

making use of the existing computer programs to generate 

an optimum geometry of a jet pump to fulfill a specified 

design requirement. In the usual design practice, the 

primary flow rate Q1 is always limited by the independent 

power source which generates the primary flow. Another 

design parameter usually given is the flow ratio M which 

together with Q, determine the quantity of fluid can be 

pumped per unit time. The following procedure is recommen- 

ded to obtain the optimum geometry: 

(i) Fix the mixing tube diameter and specify initial 

values of mixing tube 1! xýý; th, diffuser angle and 

nozzle spacing; run the Mixing tube and diffuser 

224 



0.3 

n 
0.2 

0.1 i 

a2 0.6 1.0 s 1.4 
dt 

Fig. 7.2-8 The influence of nozzle spacing on jet pump 
efficiency, do/dta0.3, lt/dt16.49,8a=70. 
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programs with varying nozzles, diameters while keep- 

ing other geometries constant to obtain the optimum 

diameter ratio corresponding to maximum head ratio. 

(ii) Run the mixing tube and diffuser programs by using 

the newly obtained optimum nozzle diameter for various 

mixing tube lengths while keeping other geometries 

unchanged, to obtain the optimum mixing tube length. 

(iii) Run the programs with optimum diameter ratio and 

mixing tube length obtained in (i) and (ii) to 

optimize the diffuser angle, keeping nozzle spacing 

unchanged. 

(iv) Optimize the nozzle spacing with other geometries 

obtained in (i), (ii) and (ii). 

(v) Using the optimum values of mixing tube length, 

diffuser angle and nozzle spacing obtained in (ii) 

(iii) and (iv), repeat step (i) to obtain a new 

optimum diameter ratio which together with other 

optimum geometrical variables suggest the best 

geometry for the particular design requirement. 

An optimization example shows that for a primary flow 

rate of 1.77 x 10-3m3/s and a flow ratio of 3.5, the follow- 

ing optimum geometrical variables were obtained: do/dt = 

0.27, lt/dt = 5.8, O= 70 and s/dt = 1.25. 
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CHAPTER 8 

CONCLUSIONS & SUGGESTIONS FOR FUTURE RESEARCH 

8.1 Conclusions 

The two-equation k- E model of turbulence together 

with a finite difference procedure for solving pressure- 

velocity directly have been successfully applied to 

predict turbulent mixing in jet pumps. The predicted 

time-mean velocity, static pressure, turbulent kinetic 

energy and turbulent shear stresses in the mixing region 

have been compared with the existing data from various 

sources as well as the author's own measurements. The 

comparisons in general show good agreements which suggest 

that the two-equation k-6 model of turbulence is competent 

enough to predict turbulent flows in jet pumps. 

The superiority of the present theoretical approach 

is its generality in calculating turbulent flows by 

solving the elliptic partial differential equations which 

describe the flow mathematically. This approach contrasts 

with the earlier ones which were based on empirical results 

and treated the various regions separately. The present 

method solves the same set of equations for various flow 

regions with different boundary conditions without using 

empirical coefficients derived from other jet pump testing 

or free jet data. 

Measurements of time-mean velocity and r. m. s. fluctua- 

ting velocities in three orthogonal directions in a mixing 

tube with water as working fluid were carried out success- 
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fully using a laser Doppler anemometer. The data provides 

first hand information of r. m. s. velocities in confined 

jet mixing which is lacking in the existing literature.. 

Difficulties in measuring radial and tangential fluctuating 

velocities are discussed. Methods of calculating measuring 

positions in pipe flow from laser beams configuration and 

pipe geometry have been devised. The measured values 

compare favourably with the computer predicted results. 

The two computer programs, one for jet mixing in typi- 

cal uniform bore mixing tube with belimouth secondary 

inlet and the other for turbulent flow in conical diffuser, 

were used successively to predict the static pressure rise 

in typical jet pumps. The head ratio and efficiency wore 

calculated from the predicted static pressure rise and 

flow ratio via a one-dimensional method normally employed 

in jet pump analysis. The predicted performance curves 

show an excellent agreement with test results although 

the predicted efficiency is slightly higher than measured. 

The prediction also confirms the previous experimental 

studies that the efficiency of conventional jet pumps is 

relatively low and hardly ever exceeds 40%. This is due 

to the fact that the pumping effect is achieved wholly 

through turbulent mixing between the fluid streams. 

Unlike other mechanical pumping devices which. suffer 

mainly from hydraulic loss due to friction, the flow in 

a jet pump encounters both frictional loss along the 

wall and a mixing loss between the primary and secondary 

streams. The mixing loss, which can be identified with 
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the turbulent shear stress at the mixing region, is pro- 

portional to the mean velocity gradient and the turbulent 

kinetic energy, according to the present turbulence model. 

To achieve the pumping effect, the turbulent mixing should 

be maintained at a certain level. This will result in 

the relatively high level of turbulent kinetic energy in 

the mixing region. The amount of loss due to turbulent 

mixing is always much more significant than the frictional 

loss in most jet pump flows. As a result of this high 

mixing loss, the efficiency of a jet pump is always rela- 

tively low. It is possible to reduce the mixing loss by 

reducing the mean velocity gradient or the turbulent 

kinetic energy in the mixing region. However, such a 

situation can only be created by increasing the flow 

ratio and this will lead to an increase in the frictional 

loss. An optimum design should achieve a minimum total 

energy loss, i. e., the best compromise between mixing 

loss and wall frictional loss. 

It has been demonstrated that the programs can be 

used both to predict the performance of any proposed 

design of jet pump and to optimize any geometrical 

variable under specific flow conditions. Systematic 

repetition of the procedure will lead to an optimum 

overall geometry. Unlike the previous design procedures 

which rely largely on empirical test results and are always 

limitWto a certain range of operation, the present compu- 

ter programs provide a powerful tool for designer to 

obtain optimum geometry without going through actual 
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pump manufacture and testing. 

8.2 Suggestions for Further Research 

The present computer model, which successfully predicts 

all the possible flow regions in conventional jet pumps 

comprising a bellmouth secondary inlet, a uniform bore 

mixing tube and a conical diffuser, may also be used to 

study flow separation and recirculation in the mixing tube 

and diffuser so that an improved design can be proposed 

to avoid flow separation which normally causes large 

losses. Owing to their generality, there is a great 

potential to extend the present computer programs to 

predict and study many other flow problems associated 

with turbulent mixing. 

The mixing tube program in its present structure can 

easily be modified to predict flow in a non-uniform bore, 

for example, the convergent-divergent mixing duct reported 

by Heimbold et al (1954) which is claimed to be more effi- 

cient than the conventional design. It is also possible 

to use the jet mixing program to study the pumping of 

one fluid by another of different density and viscosity. 

Since the density is treated as a variable rather than 

a constant, the program can be used to predict the compre- 

ssible jet mixing in an ejector. 

More systematic studies on the effects of varying 

the empirical constants used in the k- £ turbulence 

model may be carried out such that better values can be 

employed to improve the flow prediction. 
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A more comprehensive three-equation mode]. which uses 

the turbulent shear stress u'v' as another dependent 

variable, may also be used to predict the jet mixing 

and the diffuser flows so as to compare the accuracy and 

economy with the existing two-equation model. 

On the experimental side, further research can be done 

to measure the radial r. m. s. velocity in the outer region 

of the mixing tube. A longer and adjustable photomulti- 

plier holder is necessary so that the refracted laser 

beams from the measuring section can be detected at the 

most appropriate position. 

Measurement of mean and r. m. s. fluctuating velocities 

by L. D. A. can also be extended to the diffuser region. 

A calculation procedure must be devised to locate the 

measuring point from the diffuser geometry and laser 

beams path. The success in measuring the mean and 

fluctuating velocities in a conical diffuser not only 

provides flow details for jet pump studies, but also 

widens the L. D. A. application and enriches the knowledge 

of turbulent flow in conical diffuser. 
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Fig. A. 1-1 

The One-Dimensional Theory assumes that 

(i) the velocity at any cross-section is uniform, 

(ii) the nozzle exit and the mixing tube inlet are in 

the same plane, 

(ii) the thickness of the nozzle wall are negligible. 

From Fig. A. 1-1, the flow equations for the three connect- 

ing pipelines are: 

PV2 
Driving line: H1 = Yý +0+ (1 + Kj) (A. 1-1) 

2 
Suction line: H2 =Y+0+ (1 + Kg) (A"1-2) 
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22t 

Diacharge Line: 
Y+v rg- +0= 11d + Kdg (A. 1-3) 

where Y- pg and K j, K. and Kd are frictional loss coeffi- 

cients. 

The continuity relations can be written as : 

AS + Aj = At 
r 

Ql + Q2 Q1 + Q2 

Ql =Aivi 

Q2 = A5V$ 

QI + Q2 a AtVt 

Q2 
I-M 

1 

4=R 
t 

As 1-R 
IR 

(A. 1-4) 

The loss of energy due to friction at mixing tube 

wall is approximately given by 

2 V 
Lf a YKt(Q1 + QZ)79-- (A. 1-5) 

8 
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where Kt is a resistance factor to be determined from 

experiment. 

By applying the momentum equation and energy equation 

across the mixing tube and equating the two pressure rise 

terms the energy lose per unit time resulting from mixing 

can be written as: 

22 
Lm = Q1 Y 

(Vi 

2g 
+ Q2 s- 

2g 
Vt) 

Equating the power supplied to the sum of the work 

done per second and the energy losses gives 

v2 v2 
RýY(Hl - Hd) R2Y(Hd - H2) + Kj Q 1Y 

2g + K8R2Y 2g 

V2 (V -v )2 
+ (Kd + Kt)(Qi + Q2)Y2g + Qi'-7 g 

+ Q2 "(vt 
v8) 2 

(A. 1-? ) 

By substituting equations (A. 1-1) to (A. 1-3) into 

equation (A. 1-7) and simplifi ng the resulting expressions 

of H1 - Hd and Hd - H2 using equations(A. 1-4), tho following 

head ratio can be obtained 

N 
Hd - H2 1-L 

+ I3 

where 
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M_K (1+M) 1+K3+(1+K8)M3RR)2+(1+Kd+Kt)R2(1+M)3-2R(1+M)-2 
22 

L= 
1+KJ-(1+K5)M (40 

(A. 1-8) 

The efficiency can then be expressed as 

Q2(Hd - H2) 
` MN (A. 1-9) Q1 

1H d) 
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A. 2 Momentwn Integral Method of P. G. Hill (196 for 

Axisymmetric Ducted Jets 

The momentum equation for an axioymmetric free turbu- 

lent shear flow at high Reynolds; number can be written as 

uä + vay +1 ýä -r) +P Tx- =o (A. 2-1) 

The symbols are defined as follows: 

x- direction: parallel to the jet axis 

y- direction: normal to the jet axis 

U, u' - time mean and fluctuating velocities in x-direction 

V, v' - time mean and fluctuating velocities in y-direction 

P- static pressure 

e- density 

The Reynolds shear stress is 

-Cc _eürvr 

When the stream outside the jet may be considered as a 

potential flow, the pressure gradient Tx- is given by 

P Tx 
-U 

dU 

oc x0 (A. 2-2 

assuming u-y, 2 4(U0 and Uo is the free-stream velocity 

as illustrated in Fig. A. 2-1. 
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lk 

if I'm 

y 

z 

Fig. A. 2-1 Nomenclature for velocity distribution. 

If the jet flow is assumed to be self-preserving then 

the velocity and shear stress distribution may be express- 

ed as 

(U - UOVtr3 = f(Y/S) (A. 2-3) 

T/eui = g(y/s) (A. 2-4) 

where Ui is the difference between jet maximum 

velocity and free-stream velocity and 
6 is the distance 

from the centre-line of the jet to its edge. 

The continuity equation is 

LX- 
+ý =0 (A. 2-5) -a y 

Defining A= Uo/Ui and Ylt y/S , and substituting 

these similarity expressions and the continuity relation 

in equation (A. 2-1) the result may be expressed in a general 

integral form 
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dU 
8 

IL 
, 'dU Ü" )'. f +f2-ff rt1 d Y1 +Ü dx ýf - 

o0 

I- ¶J}91dr] 
=(A. 2-6) + äx 

- xf '1 J 
The general integral equation may be treated for three 

separate regions 
(i) Potential witer flow region: 

Multiplying equation (A. 2-6) by 1ý2 to form a moment 

of momentum equation and integrating across the entire jet, 

it becomes 

dU 

U.. ++2443 J 
a 4 

[3, k2 3] 
C"k 

ANI; - 

i 
in which (ý lm 

(D 
idq 

02 j'r2n2cin 

.plt 

ý3 °_ f' f q, dl, dl 
0 

and tj ýrIý. ý d 

(A. 2-7) 

If the wall friction is negligible and the pressure 
P is approximately uniform across any transverse section 

then the momentum equation can be written as 

0a Tc R2 Tx- +f 
fo R f21ceu2ydy 

(A, 2. -8) 
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where R is the radius of the duct. 

The velocity within the jet U is given by 

U= U0 + Uif(n) (0<1<1) (A. 2-9) 

Substituting equation (A. 2-2) and equation (A. 2-9) into 

equation (A. 2-8), it becomes 

O=7(R2 [_du02, 
dx+R_2du02R2, ax+2R_2{2uj22N. #4+5}J 

1t (A"2-1o) 
where ý4 f1d q and 4 

5- 
Jfdr 

0 

The integral form of the continuity equation may be expressed 

by 
aU a-x + 404ß(äX)R2 

-73 
1x (A. 2-11) 

A+ 2( 6/R) ý4 

In order to calculate the development of jet flow, equa- 

tions (A. 2-7), (A. 2-10) and (A. 2-11) are integrated using 

the Runge-Kutta-Merson procedure with values of #1 , 02 

"""""", 05' directly evaluated from free-jet velocity 

measurements. 

(ii) Recirculation Region f 

In this region, the pressure gradient and free- 

stream velocity no longer obey equation(A. 2-2).. However, 

from experimental data, it is approximately true to assume 

constant static pressure in this region. Furthermore, the 

jet shape is, approximately retained so that with appropri- 

ate modification, the foregoing equations may also be used 
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to predict the jet behaviour in the recirculation region. 

(iii) Wall-jet Interaction Region: 

When the jet has spread to the wall, it begins to 

undergo considerable changes in its velocity and shear 

distributions so that the preceeding self-preserving 

equations are not valid. As the free-stream velocity 

has disappeared the static pressure in the duct can no 

longer be given by equation (A. 2-2). Instead it is assumed 

that the effective eddy viscosity distribution in this 

region of developing flow is given by 

veff = const. UiRg1(/I) 

in which the function of g, is given by 

gl =1 (o < ý< 0.28) 

g1 = 1.191 - 0.6841 (0.28<v< 1) 

where n- y/R 

(A. 2-12) 

The constant in equation (A. 2-12) is evaluated from free- 

jet data. The velocity in this zone is set to 

U Uo + Uo [f (q) + ýg(j), 01= y/R (A. 2-13) 

in which U0 is the velocity near the wall (the wall 

boundary layer is ignored), Ui is the difference between 
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Uo and the maximum velocity and f isa function of x only. 

If f(j) is chosen as the one which was used for the preced- 

ing zones, then I equals zero when the jet 'touches' the 

wall and is a measure of the change in shape of velocity 

profile thereafter. If the function g(j) is only required 

to satisfy the boundary conditions, 

g (0) = g'(0) =o 

g (1) = g'(1) =0 

then a simple function may be used, e. g. 

6(j) 

In the present case, four unknowns may be identified, 

i. e., UJX4Tand P. To form -ne necessary four equations, 

it is possible to take in addition to the continuity equa- 

tion, three successive integrals of the momentum equation 

by multiplying equation (A. 2-1) by yJ where j=1,2,3 and 

integrating with respect to y. Using equations (A. 2-12) 

and (A. 2-13), the results may be expressed in the following 

form: 

P.. P, P. P3 ß'6J ß, 6 
P4 Or 

)86 P7 A' j3a 

13, [39 81o ß� ' r 
jets 

(A. 2-14) 

p 
i% 

013 pl+ PIS 
ß� 
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in which the prime signifies diff. erehtiation with respect 

to x/D. 
21 

o P 

Ü3 
= ---j+--rte 

(N/e ), 

whore M= 2PUý2 r' ý2 + 2(1)2(21 4 "ý ý5)J 

The matrix element (3 have the form 

3 -2 2 2_ 
n`alnk +a2nX+a3n\ +a4n, \t+a5ns +a6n 

in which the coefficients a1nr" .... , a6n depend only on 

various integrals across the shear layer of the velocity 

and shear distribution functions f(r), g(r) and g1(1). 

E uations(A. 2-14) can then be integrated using the Runge- 

Kutta-Merson procedure. 
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A. 3 Derivation of Momentum Fauntions for a Two-Dimensional 

Axi_ svmmetr. is Flow 

ýAce2 

-ýLt 
4- 

", Xý 
/ 

. 
ý, u 

ry rr 

Fig. A. 3-1 

Consider. the control volume shown in Fig. A. 3-1 where 

x and y are the two orthogonal families of surfaces of 

revolution. rx and ry are the radii of curvature for x 

and y surfaces and r is the radius from the axis of symmetry. 

U and V are the velocities along x and y directions respec- 

tively. The U-momentum flux across surface 1 is 

eUrSy"U 

U-momentum flux across surface 2 is 

eUrsy "U+ 
j( 

eUrby " U)Sx 

U-momentum flux across surface 3 is 

e Vrsx"U 

assuming that the control volume is small enough such that 
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the mean r 's of surfaces 1 and 3 are'approximately equal. 

U-momentum flux across surface 4 is 

eVrgx"U + ay(eVrsx"U)Sy 

The net momentum flux flow out from the C. V. is then 

(mU)X 
aX(eUrby"U)Sx + 

y(eVrgx"U) 
, 
gy (A. 3-1) 

There are several forces acting on the surfaces of the control 

volume due to pressure, centrifugal force and shear stresses, 

The force acting on the C. V. due to pressure is 

Fp sx"rsy (A. 3-2 ) 
The centrifugal force acting on the C. V. due to V- 

velocity is 

Fý ersxby v 
ry 

(A. 3-3) 

The shear stresses acting on the C. V. are shown in Pig. 

A. 3-2 

Yr 

,l 

-. ý. 

Fig. A. 3-2 
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Shear force due to 't`om x(rxx. r Sy) S'x 

Shear force due to 
yXý 

y(lyrdx)ö'y 

Force component acting in x-direction due to T. 

-2r&x 'fyysin B -2rSx"Týy"L 
L_- a-, sxSy 
ry ry 

since sine 6a- 
ry 

Similarly, force acting in x-direction due to Zizz 

- 
Tzz"rsxSy 

sine r 

For a laminar flow, the components of shear stresses 

as derived by Goldstein (1957), are: 

rxx = ý'+ (2ýX + 2r ) 

x 

V) 

Z'yy - (2 y+ 2U 
Y 

. Z� 
r2(using +Vco W, 

zz /t'ý 1r 

The overall shear forces acting on the C. V. in the x- 

direction can be written as 

Fs a 
{23(r)L-bx 

+ y(riýy) + Y(rJurx) 
2ýLr 

Y 
ßäy +y 

+2 
äX(; V) -2 

(UsingcosR)sin FYXSy (A. 3-4) . 

x 
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It is possible to simplify the above expression for 

a flow with r. 2>r and r>r. In this case, those terms con- 

taining r/rx or r/ry will be small compared with other 

terms and can be neglected. Thus 

FB2 (r aü) 
+ 

"ý (r 'U) 
+ (r ýV) 

8 6x %üäx 'öy % ry äY öx 

2(Usinß + Vcosi3)sinß1gx6y (A. 3-5) r 
pl 

Applying the Newton's 2nd Law, we have 

(; Uli) = FP + Fc + Fa (A. 3-6) 

Substituting equations(A. 3-1), (A. 3-2), (A. 3-3) and 
(A. 3-5) into equation(A. 3-6) and rearranging 

[7x(euru) 
+'by(eVrU) - . 

X(r/ýýä ) (rýö'y), - 
ä 

v2 1Uö 2V 2(Usin(3 + Vcos +f ) 1- ---- 9r ----r in(3 ry +rý aX) + 77- (rýtax 

(A: 3-7) 

Similar method can be applied to derive the V- 

momentum equation. 
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A. 4 Derivation of k-Production Terms 

The exact equation of k for a general 3-D orthogonal 

coordinates can be derived from the Navia-Stokes equations 

by multiplying the momentum equation for each coordinate 
direction by its corresponding fluctuating velocity; time 

averaging and summing the three equations (see for example, 
Williams (1972)) 

. The final form can be written 

2U üT 
en =- 

äX (e k' +u Pt)+J, ta -Pul-'iuj aXi 1(a 3 äß j xj 
i, j a 1,2,3 (A. 4-1) 

Convection = Diffusion + Production - Dissipation 

The various terms can be approximated to a simplified form 

according to Prandtl and Kolmogorov 

kýCk , bx i ix i ax i 

äjk 
J) 

(A. 4-2) 

by using ;A C' ekll. 

The dissipation term, following the local isotropy assump- 
tion, is given to as 

öu 2 k3/2 

. /L4' 
(5x-Zj, 

-) CD 
1 

(A-4-3) 

247 



For the production term G is given by 

. f1 
ýu e -aul eui uj ax-3iýaX 

(A. 4-4) 
i 

The turbulent shear stress components for a general 2-D 

orthogonal coordinates are obtained by substituting 'L& 
for JA in the stress components expressions by Goldstein 

(1957). 

i. e., fit, 
(2a + 2r ) (A. 4-5) 

x 

2'yx =ýut(ay + 
2Y) (A. 4-6) 

Tyy = but (2 + 2r) (A. 4-7) 
y 

Substituting (A. 4-5), (A. 4-6), (A. 4-7) into equation (A. 4-4) 

gives 

Gý2L, týau+ 
vaIIý ýaU+D DX rX aX /Ut äy aX 

(ay +r )ay 
y 

2++v () +t 
{(u)2 

äx ay rX 'äx ry ay 
, 

+ (ay +)2 (A. 4-8) 
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A. 5 Derivation of the General Finite Difference Equation 

For 

The general partial differential equation for P is 

ä( eUrO) + y(evrr) -ä (r (ff ä) 
-ä (r q0 py 

f )-rso Ti. 

Convective terms(Icon) Diffusive terms(Idif) 
(A. 5-1) 

Integrating the convective terms over the control volume 
(C. V. ) around P with respect to x and y, we have 

con 
fc f 

XC 
(Pj1rý) + 

-y(evro dxdy 

n 

= 
{eur]edy ý8 

w 

js feVr4, ]T1dx 

s 

(eUräy)eOe (eUr5y)w#w 

+(evräx)n4n - (rVrbx)s#s 

1ý 

Similarly, integrating the diffusive terms over the C. V., 

one gets 

idif ä ýr eff 2ýý 
+ä ýr effýl dxdy jL äx Q- Zx ay 2y 

5T1{rPeft e ed 

Jndx C- ax y +cJ" öy Jw 

s Bý 
in' 

o 

a ýr ýff 6yä ýe bye 
W+ 

effbx )n 

_ ýr sff S ys 
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Now, 

ax ea 

(24) 
ep - env 

ax 11" bXW 

4N `ýP (äy) 
n byn 

(ß)3 = 
ep 

--Os Y8 

Substituting into Idif we have 

Ia effr6Y ýý, -)+ ýJue- Vi-) (o ) dif ax 
)e 0P 

66xw lýf - 
ýP 

+(Le 
6= )n(0N - op) + (, Peý äaX)$ 

(ps _ op) 
crp Y, Y 

Assuming (, ßeffrby 
)D äiße es 

Peffrby 

Jueffrsx )n Dn r 

and 
Peffr8x% 

Výf Ty--7 s=8 ' 

we have 

Idif a De(OE - ýp) + Dw%l - ýp) 

+ Dn(4i1 ýP) + Ds(ýe - op) 
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DeýE + DWOW + DnON + DsýS 

-(De + Dw + Dn + DB)OP 

if (eUrSy)e = Ce 

(eUrby)w = Cw 

(eVrbx)n ' Cn 

and (eVr6x)a = CS 

we have 

Icon °"CA - CA + Cn4 - CsOs 

The values ýw On, ýs must be calculated from the 

values of JW , ON, OS. There are two schemes avai- 
lable for this calculation, i. e., (i) central difference 

scheme and (ii) upwind difference scheme. 

(i) The central difference scheme suggests that the 

f's at e, w, n, s can be calculated as the mean 

value of ý at the nodes P, E, W, N and S, i. e., 

Oe 
= 0.5(Op + ýE) 

en m 0.5(4N + ep) 
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ý'wa0.5(tV, +ýp) 

ýs = 0.5(ýp + OS) 

I 

Thus the convective term can be written as 

Icon = 0.5C 
e4 L- 0.5Cwý W+ 0.5Cn 4 N- 0.50s iS 

+(0.5Ce - O'50w + 0.5Cn - 0.5%)ýp 

(ii) The upwind difference scheme suggests that since 

C's are directional, to accommodate the directional 

effect, the calculation of 4e , ýw , 1n and ýs 

depends on the sign of C. If C is positive, up- 

stream value of # is used, if C is negative then 

downstream value should be used. Thus 

ee a eP if CQ is positive 
i 

e° 
OF if Ce is negative 

ýp -e 
e) OE Thus Ce1e =( 

ICeI + Ce) C 

2 

and likewise for others. By substituting Ci0i into loon 

and rearranging, we have 
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Icon - 0.5(1Cel - Ce) SOP - OB) + 0.5(lCwI + CVO) (OP - ý1) 

+ 0.5( 10n1 - Cn)(gyp - 4N) + 0.5(ICBI+ (012 - Os) 

+ (Ce+Cn-Cw-Cs% 

The total source in the control volume is linearized to 

the following expression 

jfrSdxd 
sPýýP +s 

Assembling Icon' Idif 
and the linearized source term into 

equation (A. 5-1), we have 

[(AF 
+ AW + AN + AS) + (C 

e- 
Ow + Cn - C8) - 

41 e, 

A. E fE +- ýjýW + ANON + AS OS + Sü 

where AE = De - 0.5Ce 

Aw Dw + 0.5Cw 
If central difference scheme 
is used for Icon " 

AN Dn - 0.5Cn 

AS D8 + 0.5Ce 
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or AE = De + 0.5(ICef 

Atf =Dw+0.5(IC I 

AN Q Dn + 0.5(ICn 

AS = De + 0.5(1081 
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+ CW) 
If upwind difference 

scheme is used for 
Cn) Icon 
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A. 6 Linearization of Source Terms 

U-momentum source terms 

The source term is given by 

Su _P t1ä ýr 2U) 
+ 

I( 
r 

'av 
öx ry +r 2x iöx 'äy 

A! 
x 

2/4(Usin + Voos ) 
- -- s inp 

r 

0 

Integrating S. over the control volume w. r. t. x and y, 

rSudxdy . 
Yx f7L 

2 
(-r + r---) dxdy 

y 

+ 
[? i(rtjux-) + y(rpax) 

y 

mir U si^ 
r 
ýB + Ycos. 

sinp J dxdy 

The first integration represents the force acting on the 

control volume by pressure and centrifugal effects and the 

second integration represents the shear stress contribution. 

Thus 

f fx(-rte 
+r )dxdy 

yy 

"-(PPXPW, "crsy+ (ý) `T P ry pP 

(aeu + a,, ) (p - Pp) +() p'vp 
Y 

where vp is the control volume 
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2 
Here- is assumed to have its value at P prevail over 

y 
the entire control volume. 

As in the present study, the maximum possible value 

of angle p is relatively small, i. e., not more than 40 

in diffuser region with a similar magnitude in the secondary 

flow region, the integration of the shear term can be appro- 

ximated to a cylindrical polar coordinates case which is 

zero 

2 
Thus 

rX 
rSudxdy = J(ae + u)(Pw 

- Pp) +ý) ry 

V-momentum source terms 

Yx aY aY vy-)l 
_ 2U(Uein + Vcosß )cosy 

r 

Using the similar integration procedure and approximation, 

2 

Y 

[[rSdxdY 

a (anP + 88v) (P$ 'ý ppa + (u) 
P' PP 

. 
aU ä ýV 2L (Using + VcosB) +y ax 

i rte) + ay 
(rp 

Z) 
)- 

,- "----r r ---, o oe 
j 

dxdy 
Y 

The shear terms when approximated to a cylindrical polar 

coordinates case is 
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rx 

f(ry) 
"'ýrv dxdr - 

frA! 
dxdr 

, =0-(/)v 
r 

since, 
I(r 

)+ 
, 
2r(rra) 

-' =0 from the continuity 

equation. 

Thus 

- ý(an + av)(pS - PP) +( )p-v. + (4)rYpV 
fjrSvdxdY 

xxr 

ffi Sp. v"V + Suv 

where spv- (1r) 
pVp 

Sü a . 4(an4+ a8v)(ps - pp) + (e) 
1; 7p 

x 

k source terms 

(G-CDc2)dxdy 
xrykdxdy 

ii: 
r 

Y 

CDC e? k2 
r (G - --ý---- ) dxdy 

yx 
22 

(G - 
CD eg 

, 
AA 

)pvp 

a pk"k + Suk 
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k cDA ek 
where sp = -(L)P°P 

Suk = G2vP 

P- source terms 

giLrSdxdy 
fy 

x 

lb 

r(C1EG/k - C2e? /k)dxdy 

r(C - CZe E2/k)dxdy 
yx 

CSC ekG 
`( )pvp - (C2eE-/k)pvp' E 

SpE .e+ SE 

£ 
where Sp -(ck )Pvp 

CSC ekG 
Su .I( _) PPP 
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A. 7 Derivation of the Finite Difference Dquation for P' 

The finite difference equation for U and U# can be written 

as 
2 

ApuUp R EAj"Uj + 0.5(aeu + pp) +( )P"vp (A. 7-1) 
j"-N, s, e, w y 

2 
AP UU Y. AýuUý* + 0.5(aeu +a ýu) 

(pW - PP*) + (-)'vp 

+, N. s. E, w y 
(A. 7-2) 

Substract (A. 7-2) from (A. 7-1) and use 

Pý a Pý + Pi 

One gets 

(A. 7-3) 

Apu(Up - Up*) =7, A i 
u(U 

ý- Uý*) + 0.5(aeu + awu)(PWI-Pp1) 
j= S, E, w 

(A-7-4) 

By assuming y-Asu(U1 - Uý*) m 0, equation (A. 7-4) becomes 
J: P" , ETW 

Up a UP# + Pw (Pw' - Pp') (A. 7-5) 

where Dwu 
0.5(aeu 

u+a 

u) 

Ap 

Similarly for V. 

VP Q VP* + D5T(PS' -P P') 
(A. 7-6) 

where De m 
0.5(an + as ) 

Ap 
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The continuity equation is given by 

. 
(eru) +. (Prv) o 

If(u) + . ýy(erVdxdy 
xw 

a (ýUrby)e - (eUr6y)w 

+ (QVr6x)n 
- (¬Vrsx)8 

UB(erdy)e - UP(erSy)W 

+ VN(erSx)n - VP(erSx)S =0 (A. 7-7) 

Similarly to (A. 7-5) and (A. 7-6), one can obtian 

UE - UE* + Deu(PP' - PE1) (A. 7-8) 

VN a VN* + Dri (PP' - Pi') (A. 7-9) 

Substituting Up , UE ' VP , VN into equation (A. 7-7), one 

gets 

UE*(ersy)e - UP*(erSy)W + VN*(er'6x)n - Vp*(erSx)s 

+ 
[DeUy)e 

+ DWU(er$y)w + Dn (erbx)n + D84(erSx)a p 
P 

a Deu(erg'y)ePE' + DW (er$y)WPlil + Dri (erdx)APNI 

+ , V(erSx), 
3P$t (A. 7-1o) 
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Since the net mass flow out of the control volume 

evaluated by U* and V* is ii 
, i. e., 

mp = UE*(er6Y)e - Up*(ersy)w + VN*(e rax)n - Vp; E(ersx)s 

and-assuming Deu(erSy)e e AE 

Dwu(ersy)w = AW 

Dn (erbx)n = AN 

Ds°(ergx)$ = AS 

Equation (A. 7-10) can be rewritten as 

(AE + AW + AN + AS)PP' AEPE' + AWPW' + ANPN + ASPS' _ mP 

(A. 7-11) 
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A. 8 Calculation of-orthogonal Grid in the Secondary 

Inlet Reg 
- 

ion of Jet Pump 

The secondary inlet region can be subdivided into 

two regions: (I) region between the duct wall and the 

nozzle wall, and (II) region between duct wall and the 

central jet. The two regions are considered separately 

below. 

-. -I% 
V- 

Xi 

Z 

(I) The inner (nozzle) wall with centre at I(-a, b) can be 

described by 

(x1 + a)2 + (x2 - b)2 e Rig (A. 8-1) 

The outer (duct) wall with centre at 0(0,0) can be 

262 

Fig. A. 8-1 Geometry of secondary inlet 



described by 

x12 + X22 = Ro2 (A. 8-2) 

From any point (xiw, yiw) on the inner wall, an orthogonal 

circle can be drawn to out both inner and outer wall at 

right angles. Assuming that the centre of the orthogonal 

circle is at (xoc'yoc) and the intersection on the outer 

wall is (x0W, Yow), four equations can then be set up to 

solve for the four unknowns xoc' yoc' xow and yow' 

For orthogonal condition, 

yiw yoc yiw b 
_x 

-ý.... ý a (A. 8-3) 
xiw Xoc xiw +a 

xow - Xoo X Xý (A. 8-4) 
ow oc ow 

Since (xow, yow) lies on the outer wall, 

xow + yoW 2aR02 
(A. 8-5) 

Equidistance from (xiw'yiw) and (xow'yow) to (xoo'yoc) 

gives 

(Xiw - x00)2 + (yiw - Yoo)2 . (Xow - Aoc)2 + (yow - yo, 2 
)2 

(A. 8-6 ) 

Equations (A. 8-3) to (A. 8-6) are then solved for the 

four unknowns xowF Yow' xoc and yoo. The solution procedure 

is as follows 

263 



(i) From equations (A. 8-3r and (A"8-4), Xoc and yoc 

can be expressed in terms of xow and yow" 

(ii) Substituting x0 and yoc obtained in (i) into 

equation(A. 8-6), the resulting equation now contains only 

xow and yow. 

(iii) From equation(A. 8-5) and the resulting equation 

obtained in (ii), solve for xow and yow, i. e. 
i 

ow 
ff f 92 

h 
82+h2) (f4-h2R2) (A. 8-7) 

g+ 

where f2 = xj (xjw + a) + Yiw(yiw - b) + RiRo 

R 
(1 i 6+ R)Xjw +a 

0 

h=am (1+ 
RR-)yiW 

b 
0 

22 (A. 8-8) and yow a- .0- xow 

Now, since xow and yow are known, equations(A. 8-3) 

and (A. 8-4) can be used to solve for xoc and yoc. After 

appropriate algebraic simplification, one gets 

x00 - Xow FO' 
ow 

Yoe = how + F-xow 

xiw+a) (x 
w XQw yiYýt`ýb ) Yiw mew ) 

'where Fa -- 
xow(Yiwb) - Yow(xiw+a) 

(A. 8-9) 

(A. 8-1o) 
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and roc (xiw - xoc)2 + (Yiw - Yoe) 
2 (A. £3-11) 

Thus, the grid line in the y-direction is defined by 

(x1 - X00)2 + (X2 - Yod 
2° 

r002 (A. 8-12) 

(II) This region is represented by ABCD in the diagram. 

The grid in this region is determined by the number of 

axial grid lines between C and D. The grid lines in ACD 

are the extensions of grid lines from the uniform, mixing 

tube. 

r 

Fig. A. 8-2 
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Any axial grid line will cut AC at a point P (xP, yP), 

From P, an orthogonal circle with centre (x00 ' yoc) can 

be drawn to out the duct wall BC at (xow 
, yow)" Again, 

four equations can be set up to solve for the four unknowns 

xoc ' yoc ' xow and yow' i. e., 

YOC a YP 

ow Yoe 
'Y- X= OW X oc 

x 

ow 

x2'22 ow + yow R0 

(xow - Xoc)2 + (Yow - YOO) 
2° (X00 - XPý2 

(A. 8-13) 

(A. 8-14) 

(A. 8-15) 

(A. 8-16) 

Equations(A. 8-14) and (A. 8-15) can be used to eliminate 

xow and yow in equation (A. 8-16), thus giving 

2 2+ 
xP 

2 
pP Ro 

x00 xp 
(A* 8-17) 

The grid line in y-direction drawn from P(xp p yp) is 

defined by 

22 
(x1 x00) + (X2 - yoe) 

2 
(xoc - xP) (A. 8-18) 

The streamwise grid lines in the secondary inlet region 

are the extensions of axial grid lines in the mixing duct. 

From point P (Pig. A. 8-2) a vertical line is drawn to out 
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line 01 at Q. The distance PQ and the coordinates of Q 

can be calculated. Using Q as the centre and PQ as the 

radius, a circle can be drawn which will join the axial 

grid line at P smoothly and out all the orthogonal circles 

at right angles. A series of such circles can then be 

devised to form the streamwise grid lines in the secondary, 

inlet region. 
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Appendix A. 9 
------------ 

Inlet conditions for Turbulent Kinetic Energy 'k' 
and Length Scale '1' 
-------------------------------------------------- 

For the situations where measured and predicted 
flow parameters are being compared it is sometimes 
possible to use actual turbulence levels as inlet 
data for the computer model 

When no empirical data is available, some estimation 
of 'k' and '1' values at inlet must be made to 
initiate computation. 

For the case of conical diffuser flows (McDonald 
et al (1966)), the value of 'k' at inlet (page 110) 
was specified by assuming the turbulence-intensity 
to be 2.5%, based on the diffuser being fed from a 
large constant head chamber. 

The value of inlet length scale chosen for the mixing 
tube is dependant upon the upstream boundary layer 
development and the thic kness of the nozzle wall. 
For a smooth and thin-walled nozzle, the length scale 
will always be small. Fig. 5.1-3 shows that even if 
the inlet length scale is altered by a factor of 1000 
(i. e. from 4.0001roto O. lr ), then the centre-line 
velocity in the strongly mixing region is only 
reduced by about 15%. The minimal effect of inlet 
length scale on static pressure distribution is shown 
in Fig. 5.1-6. 

In this thesis, owing to the lack of published information 
on inlet lengths scales, the values for jet pump flows 
are taken in the region of 0.001 r to 0.05 r. The 
exact choice is empirical. In thg comparison with the 
experimental results of Razinsky and Brighton(1q-7t ) 
'1' was taken as 0.005 r since it gave good correlation 
for both time-mean variagles and turbulent shear stress. 

However, for the comparison of predicted values with the 
authors own LDA measurements, inlet length scales of- 
0.015 r and 0.0085 r for the 12.7 mm and 6.5 no nozzles 
respectively were c hýsen. The former value was 
determined from the comparison of measured and predicted 
centre-line K-distributions shown in Fig. A. 9. -l. A 
correspondingly smaller value was chosen for the smaller 
(and thinner-sectioned) nozzle. 

It is clear that nc specific values for inlet length 
scale can be reco: *mended at this time. The value 
will perhaps be a function of the, nozzle dimensions and 
nozzle and duct wall surface conditions. 

Et7A, 
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Fig. a"9 -1 Comparison of the predicted centre-line k-distributions 
using various inlet length scales with LDA measurement 

By way of a concluding comment, it is relevant to say 
that the inlet length scale has only a marginal effect 
on the predicted mean flow behaviour. Thus for practical 
application where the emphasis is not on the turbulent struc. 
ture of the flow but on the mean velocity and pressure 
distributions, values in the range of 0.001 r and 0.05 ro 
for the-mixing tube can be safely chosen. THe c aaputer 
model will itself predict values at the exit from the 
mixing tube and therefore at the entry to the diffuser. 
Only by future research, involving the measurement of 
average macroscopic length scale of eddies at the 
inlet, will the relationship between inlet length 
scales and upstream conditions be established 
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B. 1 Listing of the Mixing; Tube Program 

CIMENSICK I ECU(6), F-EEV(6), hECP(6), HECT(6), HECK(6), HECC(E), HFON(6) 
1 , HEDA(6), HEOB(6), HEOPP(6), HFCUN(6),,. EDX(6), HECY(61 

CCNMON/ALL/ IT, JT, NI, NJ, NIMI, NJMI, GREAT 
1/LVEL/FESCRU, SShFU, URFU, 0XEPL(26,12), CXPWU(26,12), SEWU(2E, 12), 
2 SNSU(26,12) 
1/V VEL/RESCPV, bSWFV, UFFV"CYNPV(26,12), CYPSV( 26,12), SNSV(26,12), 
2 SEhV(26,12), RCV(2b, 12) 
1/PCOR/RESCRM, NSWPP, URFP, DU(26912)"DV(26,12), IPREF, JPREF 
1/1EN/8ESCRK, NShPK, URFK 
i/TCIS/RES0RE, NShPC, URFE 
1/VAR/ U(26,12), V(26,12)ºP(26912), P{'(26,12), TE(26,12), ED(2E, 12) 
1/GEOM/INCCUS, XI6(18), YIW(18), XQW(1Fi), YCh(26) , XOC(18)9Y0C(18), 
2 kCC(18)ºX(C(18), YIC(1ý9)rRIC(1B), X(26,12), Y(26,12. ), XU(26,12)" 
3 YV(26tl2)tDXLP(26.12), DXPw(26.12), CYNP(26,12), CYPS(26,12), 
4 SNS(26,12), SFW(26º12)ºR(26,12), RV(26tl2) 
1/FLUPR/LRFVIS, VISCCS, CEKSIT, FRANCT, CFN(26,12), VIS(26,12) 
1/KASE T5/UIN, TLIN, ECIN, FLCWIN, ALAMCA, UEN, FLCWEN, A, RSMALL, RMIX, 
2 IACZ, IMF1, JI\CZºJKPI, IENT, IEP1 
1/ILRR/GEN(26,12), CC, CNU, C1, C2, CAPPA, ELCG, PREC, PRTE 
1/hALLF/YPI. USN(28), TAUN(28)'YPLUSS(18), TAUS(16) 
11COEF/AP(26,12)'AN(26,12), AS(26,12'), AE(26,12), AW(26,12), SU(26,12), 
2 SP(26,12) 

LCGICAL IACALU, INCALV, INCALP, IKPRC. INCALK, INCALC, INCALM"INCALAr 
1I NCAL E 
GREAT=1. E30 
NITER=O 
IT=26 
J1=12 
NshPU=1 
1hShPV=1 
Nsbp P=5 
KShPK=1 
NSIFC=1 
REAC(9,010)HEnL, HEDV, HEDP, HECTfhECK, HECCtHECN, HECA, HECB, FECPP, 

1HECUN, HECX, hECY 
C10 FCFMAT(6A4) 

C-----GRIC 
II=26 

is 12 
t IM1=N1-1 
NJMi=NJ-1 
NJM2=NJ-2 
I, CZ=4 
JbCZ=4 
INP1=INOZ+1 
JPF1=JFC1+1 
JtP2=JMGZt2 
JNIX=rJM1-JNCZ 
IElT=I? C2+JPIX 
RACZ=5. C75E-2 
CY=RtCZ/FLCAT(JNCZ-1) 
A=3.5SE-2 
RLARGE=1E. 5E-2 
RSPALL=12.7E-2 
RMIX=1.7IE-2 
BzRLARCE+RNCZ-RSNRLL-RNIX 
XENT=7. EE-2 
ALTCT=0.26 
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C DETERMINE THE INNER MALL GECNETRY 
CXI I XLNT-A)/FLCAT(INGZ-1) 
XIh(1)=-XEFT-C. 5*CXIh ' 
CC 100 1=2, INfZ 

ico XI4+(I)=X1h(I-1)+OXIW 
CO 1C1 I=1, I\CZ 

101 YIh(I)=8-SCRT(RLARGE*RLARGE-(XI6(1)+"A)'º*2) 
YI6(INP1)=-(RSPALL+RMIX)+RNOZ 

C CETERMINE ThE CLTER hALL GECNETRY 
PPAT=FLAFGE/RSPALL 
CO 102 1= 1, I NCZ 
CSC=XIii(I)*(XIh(I)+A)+Y 1( I)*(YIW(1)-B) 
F S(; =DSC+RRAT*FkSNALL*RSNALL 
G=(1.0+RRAT)*XIW(I)+A 
H=(i. O+RFAT)'ýYIWt I1-E 
XCW(I)=IFSC*G-SQRTtFSQ*FSC*G*G-(G*G+H*H)*(FSC*FSC-H*H*RSMALL**2))) 

1/ (G*G+H*N ) 
1C2 YCh(I)=-SCRTIRSMALL*FSPALL-XCh(1)*XC6(l)) 

C CETERNINE THE CENTRE ANC RACIUS OF U. C. 
DC 103 I=1, ItCZ 
FUACT=I(X1I(1)+A)*(XIhIII-XChl1))+(YIh(I1-B)'ýIYIh(I)-YOh(I)))/(XG 

1(I)*(YII(1)-B)-YGW(I)*(XIW(I)+A)) 
XCC(I)=XCW(I)-FUNCT*Y0h(I) 
YCC(1)=YCW(I)4FUNCT*XCW(I) 

103 ROC(I)=SCRT((XIW(I)-XGC(I))**2+(YIW(I)-YOC(I))**2) 
C CETERNINE THE CENTRE AND RADIUS OF INT. C. 

CXIC=A/FLCAT(JPIX) 
CYIC=B/FLOAT(JMIX) 
XIC(JNF1)=-A+0.5*CXIC 
VIC(JNP1)=8-C. E*CYIC 
CC 1C4 J=JIF2,6JN1 
XIC(J)=XIC(J-1)+DXIC 

1C4 YIC(J)=YIC(J-1)-CYIC 
CRIC=(RLARGE-RSNALL-B)/FLCAT(JNIX) 

LEASE 2.0 MAIN DATE = M, ON DEC 11,1978 

CC 105 J=J1P1, FJM1 
105 RIC(J)=YIC(J)+RSMALL+(FLCAT(NJN1-J)+0.5I*CRIC 

C DETERMINE THE GRICS 
CC 106 I=1, IPCZ 
CC 106 J=JAPI, rJM1 
0=005*(RIC(J)**2-RCC(I)**2+XCC(I)**2+YCC( 

12) 
')**2-(XIC(J)**2+YIC(J)** 

)(YCC(I)-YIC(J)) 
S=(XIC(J)-XOC(I))/(YIC(J)-YGC(I)) 
AI=S*5+1.0 
8I=XCC(I)+S*C-S*YCC(I) 
CI=XCC(1)**2+(Q-YCC(I))**2-RCC(1)**2 
X(I, J)=(BI-SCRT(BI*81-AI*CI))/AI 

1C6 Y(I, J)=Q-S*X(I, J) 
CC 107 I=1, JNIX 
X(INCZ+I, JFCZ+I)=XIC(JKCZ; II 

107 Y(INOZ+I, JNOZ+I)=YIC(JI\(3Z+I)-RIC(JFOZ+I) 
CC 108 I=1, JNIX 
Y0C(IhCZ+I)=Y(TNGZ+I, JrCZ+I) 
XCC(INCZ+I)-0.5*(RSM, ALL+RSMALL+X(INOZ+I, JNOZ+I)**2-Y(INCZ+I, JNOZ+I 

1)**2)/X(IPOZ+I, JNCZ+I) 
RCC(INCZ+I)=XOC(IFCZ+I)-X(INCZ+I, J, OZ+I) 
AC=XCC(INCZ+I)**2+YLC(1NCZ+I)+02 
B0=-RSMALL*RSMALL*XOC(INOZ+I) 
CC=RSPALL**4-RSNALL*RSPALL*YCC(INUZ+I)4*2 
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"X0W(INGZ+I)_-(BC+SQRT(CC*PC-AO*CC))/AO 
108 YCW(INGZ+I)=(RSMALL*RSMALL-XOC(INOZ+I)*XUW(INOZ+I))/YOC(INUZ+I) 

JP1XNI=JNIX-1 % 
CC 111 I=1, JNIXMI 
IPI=I+1 
CO 112 J=IP1, JNIX 
C=0.5*(RIC(JNC1+J)*#2-ROC(INOZ+I)**2+XCC(INOZ+1)**2+YOC(INCZ+I)**2 

1-(XIC(JNCZ+J)**2+Y1C(JNUZ+J)+*2)I/(YOC(INOZ+iI-YIC(JNUZ+J)) 
S=(XIC(JNOZ+J)-XOC(INOZ+1))/(YIC(JNOZ+J)-YUC(INOZ+I)1 
AI=S*S+1.0 
BI=XOC(INOZ+I)+S*Q-S*YCC(INOZ+I) 
CI=XCC(INCZ41)**2+(C-YCC(INOZ41))**2_ROC(INOZ+1)**2 
X(INOZ+I, JNJZ+J)=(t3I-SCRT(8I*81-AI#C1))/AI 
Y(INOZ+I, JNUZ4J)=Q-S»X(IN(1Z+I, JNOZ+J) 

112 CCNTINLE 
111 CC1TINUE 

CC 113 J=2, JNCZ 
CC 113 1=INP1, tI 

113 Y(I, J)=-(RSPALL+RNIX)4(FLOAT(J)-1.5)*OV 
DC 114 J=1, JPIX 
IFIRST=INP1+J 
CC 115 I=IFIRST, NI 
Y(I, JNCZ+J)=Y(INCZ+J, JNCZ+J) 

115 CCITINUE 
114 CCNTIN1; E 

CC 116 I=1, JNIX 
JLAST=JICZ+1-1 
CO 117 J=2, JLAST 
X(INCZ+I, J)=X(IKCZ+I, JNOZ+I) 

117 CCNTINLE 

LEASE 2.0 MAIN DATE = MON DEC 119 1578 

116 CCNTINUE 
EPSX=1.15 
SUNX=0.5*EPSX*$(NI-IENT-4)+(EPSX**(NI-IENT-3)-1. C)/(EPSX-1. C)+0.5 
CX=ALTOT/SUMX 
IEP1=1ENT4l 
IEF2=IENT+2 
CC 109 I-IEP19NI 

1C9 YCM(I)=-RSMAIL 
CO 118 J=2, NJM1 

118 X(IEPI, J)=0.5*CX 
CC 121 1=IEP2, PIM1 
CC 122 J=2, NJN1 

122 X(IhJ)=X(I-1, J)+OX 
121 CX=EPSX*CX 

OC 123 J=2, FJN1 
123 X(NI, J)=X(UIM1'J)-X(NI-2, J)+X(FIN1, J) 

CC 124 I=1, AI 
IF(I. LE. INCZ) JFIR=JNP1 
IF(I. GT. IAGf) JFIR=2 
00 124 J=JFIR, IJM1 

124 R(I, J)=RSNALL+RMIX+Y(I, J) 
CC 125 J=2, JNC2 

125 R(INtZ"J)=R(INP1, J) 
C-----CEPESCENT VARIABLE SELECTION 

INCALU=. TRLjE. 
INCALV=. TRUE. 
INCALF=. TFLE. 
INCALK=. TRUE. 
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INCALC-. TRI, E. 
1NPRC=. TRLE. 

C----- FLUIC PRCPERTIES 
CEKSIT=ICCC. 

C-----TURP, ULENCE CONSTANTS 
CW1=0.09 
CC=1.00 
C1=1.44 
C2=1. S2 
CAPPA=. 4187 
ELCG=9.793 
PRED=CAPPA*CAPPA/(C2-C1)/(CMU**. 5) 
PRTE=1.0 

C-----BOLNCARY VALUES 
UIf=22.0 
LEN=1.4435 
TUREIN=0.001 
TURCEN=0.003 
TEIN=TLRBIN*LIK**2 
TEEN=IUReEN*UEN**2 
ALANCA=0. CC5 
ECIN=TFlN** 1. °/(ALANCA*RMIX) 

" ECEN=TEEN**1.5/(ALANCA*RNIX) 
VISCCS=1.004E-3 

C-----PRESSURE CALCULATICN 
IPREF=2 

LEASE 2.0 MAIN DATE = MON DEC 11,157E 

JPREF=JNP1 
C-----PROGRAM CONTROL AND NONITCR 

PAXIT=133 
IMON=IC 
JNCN=10 
LRFU=0.5 
URFV=0.5 
LRFP=1.0 
LRFE=0.7 
LRFK=0.7 
LRFVIS=0.7 
IFCPR1=1 
SCRPAX=1.0E-4 

C 
C-----CALCULATE GECMETRICAL QUAKTITIES AKD SET VARIABLES T0 ZERC 

CALL IrIT 
C-----INITIALISE VARIABLE FIELDS 

CC 202 J=2, JNCZ 
TE(INOZ, J)=TEIN 

202 EC(INOZ, J)=ECIN 
CC 211 J=JtFI, 'JN1 
TE(19J)=TEEN 

211 EC(1, J)=ECEN 
CO 200 I=UUPi, rI 
CC 200 J=2, JR01 
U(I, J)=LIN 
TE(i, J)=TEIN 

20C EC(I, J)=ECIN 
FLOhIN=0.0 
ARCEI=0.0 
DC 2C5 J=2, JNCZ 
ARCEN=C. 5*(CEN(INCZ, J)+CEN(INP1, J))*R(INP1, J)*SNS(INP1, J) 

205 FLChIN=FLC%IN+PRGEN*U(INP1, J) 
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00 201 I=2, NI 
CC 201 J=JtPI, AJN"1 
TE(I, J)=TEEI 
EC(ItJ)=ECEK 

2C1 L(I, J) =LEi 
FLCWEN=0.0 
ARCEN=0.0 
CO 2C6 J=JNPI, tJP1 
ARCEN=0.5* (CEN (1, J)+CEN(2, J))*0.25*(R(1, J)+R(2, J))*(SNS(1, J )+ 

1SNSC2, J! ) 
206 FLCMEN=FLUI%EN+ARCEA*U(2, J) 

CC 203 I=2, iIN1 
203 YPLUSN(I)=11.0 

CC 204 1=2, ItC1 
2C4 YPLLSS(I)=11. C 

SCRMAX=SORNAX*(FLCNIN+FLOWEN) 
LN=(FLCWIN+FL[hEh)/(GENBI7*0.5*RPIXO*2) 
FLGRAT=FLGWEN/FLOWIN 
CALL FRCFS 

LEASE 2.0 NAIV CATE = NON DEC 11.1978 

C-----INITIAL CUTPUT 
hRITE(6,210) " 
WFITE(6,22C) UIN 
MRITE(6,221) UEN 
RE=UIN*RNOZ*2. C*CENSIT/VISCOS 
WRITE16,230) RE 
RSCRL=RNOZ/RM1)c 
bRITE(6,240) RSCRL 
bRITE(6,250) VISCCS' 
kRITE(E, 260) CENSIT 
IRITE(6,270) FLCRAT 
MRITE(6,28C) (XC%(I), I=1, AI) 
hRITE(6,280) IYOW(I1, I=1, ý1) 
hRITE(6,280) (XIb(I), I=1,1 01) 
(RITE(6,260) (YIW(I), I=1, IN011 

280 FCRNAT(1PICE11.3) 
CALL PRINT(2,2, NI, NJ, IT, JT, X, hECX) 
CALL PRII\T(2,2, NIrIJ, IT, JT, R, HLCYI 
CALL PRINTt2,2, tI'NJ, IT, JT, SEM , I-FCX) 
CALL PRINT12,2, NI, PJ, IT, JT, SE(U, HECX) 
CALL FRIAT (2,2, NI, NJ, IT, JT, CYf`P, i-ECY ) 
CALL PRINT(2,2, N1, hJ, IT, JT, CYPS, hECY) 
IF(INCALU) CALL FPIPT(2,2, NI, IJ, IT, JT, 
IF(INCALV) CALL PRINT(2,2, NI9fJ, IT, JT, 
IF(INCALP) CALL PRINT12,2, NI, NJ, IT, JT, 
IF(INCALP') CALL PRI? 7(2,2, NI, NJ, IT, JT, 
IF(INCALK) CALL PRINT(2,2, NI, NJ, IT, JT, 
IF(INCALD) CALL PR1NT(2,2, NI, NJ, IT, JT, 

C 
hRITE(6,310) IMCN, JMCN 

3C0 NITER=NI7ER4I 
C-----LPCATE MAIN CEPENCENT VARIABLES 

IF(INCALU) CALL CALCU 
IF(IACALVI CALL CALCV 
IF(INCALP) CALL CALCP 
IF(INCALK) CALL CALCTE 
IF(INCALC) CALL CALCEC 

Uel'EDU ) 
V, HECV) 

P, HEDP) 
PP, HECPP) 
TE, HEDK ) 
ED, HEDC) 
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C-----UPDATE FLUIC PROPERITIES 
IF(INPRC) CALL FRCPS 

C-----INTERMEDIATE O1TPUT 
CUNMY=0.0 
hRITE(6,311) FITER, RESCRU, RESCRV, RESCPM, PESORT, PESCRK, RESORF 

, U(IPCN, JMON), V(IMON, JMGN), P(IMUN, JMON)"NUMPY, 
TE(IMCN, rJN1), EC(IMUN, NJM1) 

IF(NITER. GT. 2)INCPRI=4C 
IF(AOS(FLCAT(NITEN/INCPRI)-FLCAT(FITER)/INDPRI). CT. 1. E-4)GG TO 301 
WRITE16,312) 
IF(INCALU) CALL PRIFT(2,2, NI"NJ, IT, JT, U"HEQU) 
IF(INCALV) CALL PRI1 1(2,2, NI"NJ, IT, JT, V, HECV) 
IF(INCALP) CALL PRINT(2,2, NI, NJ, IT, JT, P, HEDP) 

LEASE 2. C 

IF(INCALF) CALL 
1F(IUCALK) CALL 
IF(INCALC) CALL 
hRITE(6,312) 
hRITE(6,310) IM 

MAIN DATE = MON DEC 11,1978 

PRINT(2,2ºNI9NJ, IT, JT" PP, HCDPP) 
PPINT(2,2, NI, NJ, IT"JT, TE, HECK) 
PRINT(2,2, NI, NJ, IT, JT, EC, HECC) 

UN, JMON 
301 CCITIIUE 

C-----TERMINATION TESTS 
SCRCE=RESCFN 
IF(NITER. EQ. MAXIT) GC TO 302 
IF(SORCE. GT. SCRNAX) GO TO 300 

3C2 CCNTINLE 
C 

IF(IKCALU) CALL PR1NT(292, NI, NJ, IT, JT, U, HECU) 
IF(INCALV) CALL PRINT(2929NI, NJ, IT, JT, V, FECV) 
IF(INCALP) CALL PRINT(2.2ºNI, NJºIT, JT, P, HEDP) 
IF(INCALP) CALL PRINT(2,2ºNI, NJ, IT, JT, PP, HEDPP) 
IF(INCALK) CALL PRINT(2,2, NI, NJ, IT, JT, TE, HEDK) 
IF(INCALC) CALL PRINT(2,2, NI, NJ, IT, JT, ED, IECO) 
IF(INPRO ) CALL PR1NT(2,2, NT, NJ, IT"JT, VIS, HECM) 

C-----CALCULATION CF NON CIMENSICNAL TURBULENCE ENERGY AND LENGTH SCALE 
CO 400 I=2, NIM1 
CC 400 J=2, NJN1 
L(I, J)=U(I, J)/L 1N 
SU(1, J)=TE(I, J)*OEN(I, J)/ABS(TALN(I)) 

400 SP(I, J)=TE(I, J)**I. 5/EC(I, J)/RNIX 

. 
CALL PRINT(2,2, NI, NJ, IT, JT, U, HECUN) 
CALL PRINT(2,2, Ni, NJ, I7, JT, SU, HECA) 
CALL PRINTl2,2, NI, 'IJ, IT, JTº St+, HECB) 

401 CCNTINUE 
RIICZ=C. CC44C5 
FLCWIN=O. 5*RINOZ*RINOZ*DENSIT 
FLCWEN=J. O 
ARCEN=0.0 
CC 406 J=JIP19NJP1 
AROEN=C. 5*(DEN(INCZ, J)+CEN(INP1, J))*R(INP1 , J)*SNS(INP19J) 

406 FLOWEN=FLUWEN+ARUEN*U(INP1, J) 
FLCRAT=FLChEN/FLCMIN 
WRITE(6,270)FLCRAT 
STCP 

C-----FORMAT STATEMENTS 
210 FCRMATl1H1947Xº33HKASE T5 - TURBULENT JETS MIXING 
220 FCRMAT(////15X, 33HINLET FLUIC VELCCITY , lPEI1.3) 
221 FCRMAT( //15X, 33HCNTRAINED VELCCITY 91PE11.3) 
230 FORMAT( //15X, 33HREYNCLCS NUMBER 91PE11.3) 
240 FORMAT( //15X, 33H01ANETER PATIC , 1PE11.3) 
250 FCRNAT( //15X, 33HLANINAR VISCOSITY 91PE11.3) 
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26C"FCRMAT( //15X, 33hFLUIO DENSITY 91PE11.3) 
270 FCRMAT( //15X, 33HFLCh RATIO 91PE11.3) 
31C FCRNAT(13HOITER I---, 9X, 291-ABS1)LUTE. RESIDUAL SOURCE SUNS, SX, 

111H---I I---#37H FIELD VALUES AT MnNITCRING LCCATION(, I2,1h� I2, 
26H) ---1/14H NO UMOM95Xt4HVMOM95X94HMASSt5Xt4HENERt5X94HTKIN 
3,5X, 4HOISP, 9X, 1HU, 8X, 1HV, 8X, 1HP, 8X, 1HT, 8X, 1F'K, 8X, 1FC/) 

LEASE 2.0 PAIN CATE = M0r DEC 11, iS7E 

311 FCPPAT (1h , I3,5X, lP6E9.2,3X, 1P6E9.2 ) 
312 FCRMAT(1H0,59(2H- )) 

ENC 
LEASE 2. C 1NIT DATE = MON DEC 11,1978 

SUBRCUTINE INhT 
C 
CHAPTER CCCC0000 PRELIPIFAFIES 00000000 
C 

CCPFCN 
1/UVEL/REBGNU, NSWPUrURFU, CXEPL(2E, 121, DXPhL( 2E, 12), SEhU(26,12), 
2 SNSL (26,12) 
1/VVEL/RESORV, NSwPV, t. RFV, DYNPV(26,121 , CYFSV( 26,12) r SNSV(26,12 ), 
2 SEkV(26,12), RCV(26,12) 
1/PCOR/RESORM, NSWPP, L, RFP, DU(26,12), OV(26,12) "IPREF, JPREF' 
1/VAR/ U(26,12), V(26,12), P(26,12), PP(26,12)"TE(26,12), EC(26,12) 
1/ALL/IT, JT, NI, NJ, NlPL, NJh1, GREAT 
1/CECM/INCCOS, XIW(18), YIW(18), XOW(18), YOM(261 , XOC(18), YOC(181, 
2 ROC(18), XIC(18), YIC(18), RIB(18), X(26,12), Y(26,12), XU(26,12), 
3 YV126,121. OXEP(26,12), DXPW(26912), CYNP(26,12), OYPS(26,12), 
4 SNS(26,12)"SE6(26,12), R(26.12), V(26,12) 
1/FLUPR/URFVIS, VISCUSroENSIT, PRAMOT, CEN(26912), VIS(26,12) 
1/KASE T5/UIN, TEIN, ECIN, FLOWIN, ALAMGA, UEN"FLOWEN, A, RSMALL, RMIX, 
2 INOZ, INPL'JNCZ, JNP1, IENT, IEP1 
1/TURK/GEN(26,12), CC, CMU, CI, C2, CAPPA, ELGG, PREO, PRTE 
1/CCEF/AP(26.12), AN(26,12), AS(26,12), AE(26,12), AW(26,12), SU(26,12), 
2 SP(26,12) 

C 
CHAPTER 11111 CALCLLATE GECPETRICAI CUANTITIES 
C 

CC 1CI J=JNPI, NJM1 
ILAST=INLZ+J-JtP1-1 
DO ICI I=1, ILAST 
CPX=(Y(I"J)-YIC(J))/(X(I, J)-XIC(J)) 
CEX2(Y(I+1, J)-YIC(Jil/(X(I+1, J)-XIC(J)1 
ANGEP=ATAN((GEX-GPX)/(1.0+GEX*GPX)) 
CXEP(I, J)=ANGEP*RIC(J) 

1C1 CXP1+(I+1, J)=CXEP(I, J) 
CC 102 J=JNPI, NJM1 
I=INCI+J-JNF1 
ANG=ATAN((X(I, J)-XIC(J))/(Y(I, J)-YIC(J)f) 
OXEP(I, J)=ANG*RIC(J) 

1C2 C)Ph(I+1rJ)=C)CEP(I, J) 
CC 103 J=2, JNCZ 
OXEP(IlCZfJ)z2.0*(X(INP1, JrP1)+A) 

103 CXFM(INP1, J)=CXEP(INCZ, J) 
IEN1=LEBT-1 
CC 1C4 I=INPI, NIN1 
IF(I. LT. IENT) JLAST=JNCZ+I-IhOZ 
IF(I. GE. IENT) JLAST=rJM1 
CC 104 J=2, JLAST 
CXEP(I, J)=X(I41, J)-X(I, J) 

104 CXPW(I+1, J)=DXEP(I, J) 
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6JN2=nJ-2 
CO IC( J=JlP1, tJN2 
ILAST=J+IN01-JNOL 
CC icb I=1, iLAsT 
CFY=(Y(I, J)-YCC(I))/(X(I, J)-XCC(I)) 
GfY=(Y(I, J+I)-YOC(I)l/(X(I, J+1)-XCC(I) 

LEASE 2.0 ItIT LATE = PON DEC 11,1978 

ANGNP=ATAN((CPY-GNY)/(1.0+GPY*GNY)) 
CYNP(I"J)=ANGNP*kCC(I) 

106 EYFS(I, J+1)=CYNP(I, J) 
CC 1C9 I=1, IElT 
GNWY=(Y0ii(I)-YOG(I))/(XGW(I1-XCC(T)) 
GPNWY=(Y(I, KJN1)-YCC(I))/(X(I, NJM1)-XOC(I)) 
ANGNW=ATAN((GFNMY-GNNY)/(1.0+GPNWV*GNWY)1 

109 CYNP(I, NJPl)=2.0*ANGNW*ROC(1) 
CC 11C I=1, INOZ 
GShY=(YIM(I)-YCC(I))/(XI6(I1-XOC(I)) 
GFSNY=(Y(I, JNP11-YCC(1))/(X(I, Jtp1)-XOC(I)) 
ANGSW=ATAN((GSWY-GPSIY)/(1.0+GPStiY*GSWY)) 

110 CYPS(I, JNP1)=2.0*ANGSW4RCC(I) 
CO 111 J=2, JNCZ 
CC 111 1=INP1, NI 
CYNP(1, J)=Y(I, J+1)-Y(I, J) 

111 CYPS(I"J+1)=CYNP(I, JI 
CC 112 J=JNP1, KJM2 
IFIR=J-JNCZ+INF1 
CC 112 i=IFIR, lI 
C1tP(I, J)=Y(I, J+1)-Y(1, J) 

112 CYPS(I, J+1)=CYNP(I, J) 
CC 114 I=IEP1, I 

114 C1NP(I, NJNI)=0NP(I, NJN2) 
CC 115 I=IfP1,? I 

115 CYPS(1,2)=CYFS(I, 3) 
CC 116 I=2, bIM1 
IF(I. LE. IbCZ) JFIR=JAP1 
IF(I. GT. INOZ) JFIR=2 
CC 116 J=JFIR, PJN1 
SEh(I, J)=0.5*(CXEF(I"J)+CXPN(I, J)) 
CXEPU(I, J)=SEW(I, J) 

116 DXFWU(I+1, J)=CXEPU(IYJ) 
CC 117 I=1, NI 
IF(I. LE. IlCZ) JFIF=JIP1 
If(1. GT. INCZ) JFIR=2 
CC 117 J=JFIR, FJV. 1 
SNS(I, J)=0.5*(CYNP(I, J)+CYPS(I, J)) 
CYNPV(I, J)=SNS(I, J) 

117 CYPSV(I, J+1)=CYNPV(I, J) 
CC 113 J=2, JNOZ 

113 StS(INCZ, J)=SKS(IPP1rJ) 
CO 118 J=2, NJP1 

118 SEh(KltJ)=SEk(KIM1, J) 
DC 119 I=2, NI 
IF(I. LE. INOZ) JFIR=JrP1 
IF(I. GT. ItC2) JFIR=2 
CC 119 J=JFIR, 1JM1 
SEriU(I, J)=0.5*(SEw(I, J)+SEk(I-1, J)) 

119 SNSU(I9J)=C. 5*(SNS(I'J)+SNS(I-1, J)) 
CC 120 I=1, NI 
IF(I. LT. IlCZ) JFIR=JAP1+1 
IF(I. GE. INGZ) JFIR-3 
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CC 120 J=JFIR, rJk1 

LEASE 2. C "INIT CATE NON GEC 11,1978 

SE6V(I, J)=0.5*(SEW(I, J)+SCW(I, J-1)) 
120 SISV(I"J)=0.5*(SlS(I, JI+SNS(1, J-1)) 

CC 121 1=1, NI 
IF(I. LT. IrCZ) JFIR=JNP1 
IF(I. GE. INCZ) JFIR=2 
CC 121 J=JFIR, tJ 
RV(I, J)=C. 5*(R(I, J)+R(I, J-1)) 

121 RCV(I, J1=0.5*(RV(I, J)+RV(I, J-1)) 
C 
CIAFTER 222222 SET VARIABLES TO ZERC 222222 
C 

CC 2C0 I=1, NI 
IF(I. LE. INCZ) JFIR=JNCZ 
IF(I. GT. INCZ) JFIR=1 
CC 200 J=JFIR, NJ 
L(I, J)=0.0 
V(I, Ji=0.0 
F(I, J)=0.0 
PP(I, J)=0.0 
TE (1, J)=G. 0 
EC(I, J)=C. O 
CEN(I, J)=CEtSIT 
VIS(I, J)=ViSCCS 
CU(I, J)=0.0 
DV(I, J)=C. C 
SU(I, J1=0.0 
SF(I, J)-C. C 

200 CChTIMUE 
FETURN 
EIC 

LEASE 2.0 PROPS DATE = MON DEC 11,1978 

SLBRCLTINE PROPS 
C 
CHAPTER 00000000 PRELIMINARIES 00CC0000 
C 

CCMMCN 
1/FLUPR/URFVIS, VISCOS, DENSIT, PRANCT, CEN(26,12), VI S(26,12) 
1/VAR/ L(26,12), V(26,12), P(26912), PP(26912), TE(26912), EO(26912) 
1/ALL/IT, JT, NI, NJ, NIMI, NJMI9GREAT 
1/TURB/GEI(26,12), CC, CMU, C1, C2, CAPPA, ELCG, PREO, PRTE 

C 
CHAPTER 111 VISCOSITY 111 
C 

CC 100 I=2, AIN1 
CC 100 J=2, NJ01 
VISOLD=VIS(I, J) 
IF(EC(I, J). EC. C. ) GC TO 102 
VIS(1, J)=0EN(I, J)*TE(I, J)**2*CMU/EC(I, J)+VISCOS 
CC TC 101 

102 VIS(I, J)=VISCCS 
C-----LACER-RELAX VISCCSI7Y 
101 VIS(I, J)=LRFVIS*VIS(I, J)+(1. -URFVIS)$VISCLO 

1CC CC'T I ALE 
C 
CHAPTER 2222222 PROBLEM MODIFICATIONS 222222 
C 

CALL PROMOC(1) 
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C 
RETURN 
ENC 

LEASE 2.0 CALCU DATE = MON DEC 119 1978 

SUBROUTINE CALCU 
C 
CHAPTER CCCC0C00 PRELININAPIES 00000000 
C 

CCOVCP 
1/UVE: L/RFSORU"NSWPL, URFU, CXEPU(26912) ºCXPWU(26º12), SEWU(26,12 ), 
2 SNSU(26,12) 
1/PCOR/RESCRM, NS44PPrLRFP, CL(26,12), CV(26 r12) " IPREF, JFREF 
1/VAR/ U126,12), V(26,12), P(26,12), PP(26,12), TE(26,12), ED(26,12) 
1/ALL/I79JT, KIºNJiNIF19NJV19GREAT 
1/GEGM/INCC. OS, XIW( 19)�vi h( 1819XCi(16) 9YCh(26) ºXCC118), YGC(18), 
2 ROC(18), XIC(18), YIC(18), RIC(18), X(26912), Y(26,12), XU(2', 12), 
3 YV(26,12), DXEP(26,12), DXPW(26,12), CYNP(26,12), CYPS(26,12)9 
4 SNS(26º12), SEW(26,12)"R(26,12), RV(26,12) 
1/FLUPR/URFVIS, ISCOS, DENSIT, PRAF\CT"CEN(26º12), VIS(26,12) 
1/CCEF/AP(26,12), AN(26,12), AS(26,12), AE(26,12), AW(26,12), SU(26,12), 
2 SP(26,12) 
1/KASE T5/UIN, TEIN, ECIN, FLCWIN"ALAMCA"UEK, FLCWEN, A, KSMALL, RMIX, 
2 1NCZ, INP1, JNUZ, JNP1, TENT, IEPI 

C 
CHAPTER 
C 

ASSENELY OF COEFFICIENTS 1 

CC 1CC 1=3, NIN1 
IF(I. LE. IPF1) JFIF=JNF1 
IF(I. GT. INP1) JFIR=2 
CC 101 J=JFIR, PJN1 

C-----CCMPLTE AFEAS ANC VCLUNE 
AREAN=0.5*(RV(I, J+1)4RV(I-1, J+1))*0.5*(SEIU(I, J)+SEWU(I, J+1)) 
AREAS=0.5*(RV(I, J)+RV(1-1, J))*0.5*(SEWU(I, J)+SEWU(I9J-1)) 
AREAE=0.125*(R(I-1, J)+2.0*R(I, J)+R(I+1, J))*(SNSU(I, J)+SNSU(I+1, J)) 
AREAW=0.125*(R(I-2, J)+2. O*R(I-1, J)+R(I, J))*(SNSU(I, J)+SNS1(I-1, J)) 
VOL=0.25*(R(I, J)+R(I-1, J))*SE6U(I, J)*(SNS(I-1, J)+SNS(f, J)) 

C-----CALCULATE CONVECTICN COEFFICIENTS 
GN-0.5*(CEN(I, J+1)+CEN(1, J))*V(I, J+1) 
GNh=0.5*(DEN(I-1, J)+CEN(1-1, J+1))*V(I-1, J+1) 
GS=0.5*(CEN(1, J-1)+DEN(I9J))*V(I9J) 
GSh=0.5*(CEN(I-1, J)+CEN(1-1, J-1) *V(I-1, J) 
GE=0.5*(DEN(I+1, J)+DEN(I, J))*U(I+1, J) 

"GP=0.5*(CEN(I, J)+CEN(I-1, J))*U(1, J) 
Gb=0.5*(DFN(I-1, J)+DEN(I-2, J))*L(I-1"J) 
CN=0.5*(GN+GNh )*AREAt 
CS=0.5*(GS+GSWI*AREAS 
CE=0.5*(GE+GP)*AREAE 
C%=C. S*(GF+Gh)*AREAh 

C-----CALCULATE CIFFUSION COEFFICIENTS 
V1SN=0.25*(VIS(I, J)+VIS(I, J+1)+VIS(I-1, J)fV. IS(Is 1, J+1)) 
VISSaO. '25*(VIS(I, J)+VIS(I, J-1)+VIS(I-1, J)+VIS(I-1, J-11) 
VISE=0.25*(VIS(I-1, J)+2.0*VIS(I, J)+VIS(I+1, J)) 
VISW=0.25*(VIS(I-2, J)+2.0+VIS(I-1, J)+VIS(I, J)) 
CN-VISN*AREAN/(0.5*(CYNP(I, J)+OYNP(I-1ºJl)) 
DS=VISS*AREAS/(0.5*tCYPS(I, J)+DYFS(I-1, J))) 
CE=VISE*AREAE/CXEPU(I, J) 
Ch=VISk*AREAN/CXPhU(I, J) 

C-----CALCULATE COEFFICIENTS CF SOURCE TERNS 

LEASE 2.0 CALCU DATE - MON DEC . 119 119i8 
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SMP=CN-CS+CE-CVO 
CP=AMAX1(0.0, SMP) 
CFC=CF 

C-----ASSEMBLE PAIN COEFFICIENTS 
AF(I, J)=CN-0.5*CN 
IF(ABS(0. '5*CN). GT. DN) AN(I, J)=AN(I, J)+AES(0.5*CN) 
AS(I, J)=CS+0.5*CS 
IF(AUS(0.5*CS). GT. CS) IS(I, J)=AS(I, J)+ABS(0.5*CS) 
AE(I, J)=CC-0.5*CE 
IF(A8S(0.5*CE). GT. CE) AE(I, J)=AE(I, J)+ABS(0.5*CE) 
AP, (IV J)=Ch+0.: *CW 
IF(ABS(0.5*CW). GT. Cw) AW(I, J)=AW(I, J)+ABS(O. 5*Cw) 
CU(I, J)=C. 5*(AREAE+AREAW) 
SL(I, J)=CPG*U(I, J)+DU(I, J)*(P(I-1, J)-P(I, J1) 
SP(I, J)=-CP 

101 CCNTINUE 
100 CCITII'UE 

C 
CHAPTER 2222222 PROBLEM MODIFICATIONS 2 
C 

CALL PROM0012) 

222222 

C 
CHAPTER 3 FINAL CCEFF. ASSENILY AND RESIDUAL SOURCE CALCULATION 33 
C 

RESCRL=0.0 
CC 300 I=39FIK1 

" IF(I. LE. IAP1) JFIR=JIP1 
IF(I. GT. INP1) JFIR=2 
CC 301 J=JFIR, NJM1 
AP(I, J)=AN(I, J)+AS(I, J)+AE(I, J)+AM(I, J)-SP(I, J) 
CU(I, J) CU(I, J)/AP(I, J) 
RESCR=AN(I, J)*U(I, J+1)+AS(I, J)*U(I, J-1)+AEtI, J1*U(I+1, J) 

+AW(I, J)*U(I-1, J)-AP(I, J)*U(I, J)+SU(I, J) 
VCL=R(I9J)*SEh(1, J)*SNS(I9J) 
SORtiCL=GREAT*4CL 
IF(-SP(I, J). GT. 0.5*SCRVOL) RESOR=RESOR/SORVOL 
RESCRU=RESCRU+AES(RESCR) 

C-----UNCER-RELAXATION 
AP(I, J)=AF(I, J)/URFU 
SL(I, J)=SL(I9JI+l1. -URFU)*AP(I, J)*U(I, J) 
CU(I, J)=CU(I, J)*URFU 

301 CCrTIKUE 
300 CCITINUE 

C 
CHAPTER 444 SOLUTION OF DIFFERENCE ECLATICN` 4444444 
C 

CC 400 N=1, IShPU 
400 CALL LISCLV(3,2, NI, tJ, IT, JT, U) 

RETURN 
EPC 

LEASE 2.0 CALCV DATE = MON DEC 119 1978 

SLBROUTINE CALCV 
C 
CHAPTER CCCCCC00 PRELIMINARIES 00000000 
C 

CCMNCN 
1/VVEL/RESCRV"NS6PV, URFV, DYNPV(26,121, CYPSV(26,12)*SNSV(26,12)0 
2 SEWV(26,12), RCV(26,12) 
1/FCOR/RESCRM, NSWPP'URFP'DU(26,12)"CV(26,12)tIPREF, JPREF 
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1/VAR/ U(26.12), V(26,12)rP(26,12)rPP(26,121, TE(26,12), EL'(26,12) 
1/ALL/IT, JT, NI, NJ, NIMI, NJNI, GREAT 
1/GEON/INCCCS, XIW(18), YIW(18), XOh(18), YCh(26J 9XOC(18), YCC(1F), 
2 ROC(18), XICf18), YIC(1A), RIC(1H), X(26,12), Y(26,12)"XU(26,12), 
3 YV(26r12), DXEP(26912), DXPW(2(#12), CYNP(26r12), DYPS(26,12)9 
4 SNS(26,12), SEw(26,12), f. (26,12), RV(2G, 12) . 1/FLUPR/URFVIS9VISCCIS, DENSIT, PRANDT, CENl269121, VIS(26,12) 
1/CCEF/AP(26,12), AN(26,12), AS(26,12), AE(26,12), AW(26,12), SU(?. 6,12), 1 
2 SP(26,12) 
1/KASE T5/UIN, TFIN, ECIN, FLOwIN, ALAMDA, UEN, FL06EN, A, RSPALL, RMIX, 
2 INCZ, INPL, JNOZ, JNPI, IENT, IEP1 

C 
CHAPTER 111111 ASSEN1? LY CF CCEFFICIENTS 
CHAPTER 111111 ASSENBLY CF COEFFICIENTS 
C 

1111 
1111 

CC 1CC I=2, NIM1 
LF(I. LE. INOZ) JFIR=JNP1+1 
IF(I. GT. INCZ) JFIR=3 
CO 1C1 J=JFIR, IJM1 

C-----CCPPUTE'tREAS ANC VOLUME 
AkEAK=kCV(I, J+1)*C. 5*(SEhV(I9J)+SEWV(19J+I)) 
AREAS=RCV(I, J)*0.5*(SEWV(I, J)+SEIV(I, J-1)) 
AREAE=0.25*(RV(I, J)+RV(I+1, J))*(SNSV(1, J)+SNSV(I+I, J)) 
AREAW=0.25*(RV(I, J)+RV(I-1, J))*(SNSV(I, J)+SNSV(I-1, J)) 
VOL=RV(I, J)*SEhV(I, J)*SNSV(I, J) 

C-----CALCULATE CONVECTION CCEFFICIENTS 
Gt=0.5*(CEN(I, J+1)+CEN(I, J))*V(I, J+1) 
GP=0.5*(CEN(I, J)+CEN(I, J-1))*V(I, J) 
GS=0.5*(CEN(1, J-1)+CEN(I, J-2))*V(I, J-1) 
CE=0.5*(CEN(I+1, J)+OEN(I, J))*U(1+1, J) 
GSE-0.5*(CEN(I, J-1)+CEN(I+1, J-1))*U(I+1, J-1) 
GM=C. 5*(DEN(I, J)+OEN(I-1, J))*U(I, J) 
GSW=0.5*(CEN(I, J-1)+CEN(I-1, J-11)*U(I, J-1) 
CN=0.5*(GN+GP)*AREAN 
CS=0.5*(CP+GS)*AREAS 
CE=0.5*(GE+GSE)*APEAE 
CW=0.5*(GW+GSh)*AREAW 

C-----CCLCULATE CIFFUSICN CCEFFICIENTS 
VISE=0.25*(VIS(I, J)+VIS(I+1, J)+VIS(I, J-1)+VIS(I+1, J-1)) 
VISW=O. 25*(VIS(I, J)+VIS(I-1, J)+VIS(I, J-1)+VIS(I-1, J-1)) 
VISN=0.25*(VIS(I, J+1)+2.0*VIS(I, J)+VIS(I, J-1)) 
VISS=O. 25*(VIS(I, J)+2.0*VIS(I, J-1)+VIS(I, J-2)) 
Cn=VISN*AREAN/CYNPV(I, J) 
CS=VISS*AREAS/DYPSV(I, J) 
CE=VISE*AREAE/(0.5*(CXEP(I, J)+DXEP(I, J-1))) 
Oh=VISW*AREAW/10.5*(DXPW(1, J)+DXPW(I, J-1))) 

: LEASE 2.0 CALCV DATE - MON DEC 119 1978 

C-----CALCULATE CCEFFICIEKTS CF SOURCE TERMS 
SMF=CN-CS+CE-CW 
CP=AMAX1(0. O, SNP) 
CPO=CP 

C-----ASSEMBLE MAIN COEFFICIENTS 
ßl(I, J)=C(-0.5*Cr 
IF(ABS(0.5*CN). GT. UN) AN(I, J)=AN(I, J)+ABS(O. 5*CN) 
AS(I, J)=CS+0.5*CS 
IF(ABS(O. 5*CS). GT. DS) AS(I, J)=AS(I, J), AES(0.5*CS) 
AE(I, J)=CE-0.5*CE 
IF(ABS(0.5*CE). GT. CE) AE( I, J)=AE(I, J)+A8S(0.5*CE) 
Ak(I, J)=CW+0.5*CW 
IF(ABS(0.5*CWI. GT. CW) AW(1, J)=AW(I, J)+ABS(0.5*CW) 
OV(I, J)=0.5*(AREAN+AREAS) 
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SU(I, J)=CPC*V(I, J)+CV(I, J)*(P(I, J-1)-P(I, J)) 
IF(I. LE. IDCZ) JED=JNP1+1 
IF(I. GT. It\UZ) JEC=JNPI+I-INUZ 
IF(I. LT. IENT. ANC. J. GF. JED) SL(I, J)=SU(I, J')-(REN(I, J)+OEN(I-1, J)) 

1*(0.25*(U(I, J)+U(I+1, J)+U(I, J-1)+U. (I+1. J-1)))**2*VCL/(RIC(J) 
1+RIC(J-1)) 

SP(I, J)=-CP 
IF(INCCCS. EC. 2) SP(I, J)=SP(I, J)-VIS(I, J)*VOL/RV(I, J)**2 

101 CONTINUE 
100 CCNTINUE 

C 
CHAPTER 2222222 PROBLEM MOCIFICATIONS 2222222 
C 

CALL PROMOC(3) 
C 
CHAPTER 3 FINAL CCEFF. ASSEMBLY AND RESICUAL SOURCE CALCULATION 33 
C 

IESORV=O. C 
CC 3C0 1=2, t IN1 
IF(I. LE. INOZ) JFIR=JNPI+1 
IF(I. GT. It\CZ) JFIP=3 
CC 3C1 J=JFIR, NJM1 
AF(I, J)=A1(I, J)+AS(I, J)+AE(I, J)+AW(I, J)-SP(I, J) 
DV(I, J)=DV(I, J)/AP(I, J) 
RESOR=AN(I, J)*V(I, J+1)+AS(I, J)*V(I, J-1)+AE(1, J)*Vtl+1, J) 

1 +AW(Ir'J)*V(I-IvJ)-AP(19J)*V(1"J)+SU(I"J) 
VCL=R(I, J)*SEW(I, J)*SNS(I, J) 
SCRVCL=GREAT*VCL 
IF(-SP(I, J). GT. 0.5*SCRVOL) RESCR=RESCR/SCRVOL 
RESORV=RESCRV+ABS(RESCR) 

C-----LNCER-RELAXATICP 
AP(I, J)=AP(I, J)/URFV 
SL(1, J)=SU(I, J)+(1. -URFV)*AP(I, J)*V(I, J) 
CV(I, J)=CV(I, J)*URFV 

301 CCNTINUE 
3CC CGNTINLE 

C 
CHAPTER 444 SOLUTICN OF DIFFERENCE ECUATION 4444444 
C 

CC 400 t=1, ASkPV 

LEASE 2.0 CALCV CATE - MON DEC 11,1978 

4CC CALL LISCLV(2,3, lI, PoJ, IT, JT, V) 
RETURN 
Et'C 
SUBRCUTINE CALCP 

Co 
CHAPTER 00 "0 00000 PRELIMINARIES 00000000 
C 

CCPtCA 
1/FCCR/FESCRM, NSWPP, URFP, CU(26,12), CV(26,12), IPREF, JPREF 
1/VAR/ U(26,12), V(26,12), P(26,12), PP(26,12), TE(26,12), ED(26,12) 
1/ALL/IT, JT, N[, %J, 'IP1, AJN1, GREAT 
1/GEOM/INCCOS, XIW(18), YIW(18), XCW(18), YCM(26) 9XOC(18), YCC(I8), 
2 ROC(18), XIC(18), YIC(18), RIC(18), X(26,12), Y(26,12), XU(26,12)" 
3 YV(26,12), 0XCP(26,12), OXPW(26,12), OYNP(26,12), OYPS(26,12), 
4 SNS(26112), SEW(26912), R(26,1219RV(26912) 
I/FLUPR/URFVIS, VISCOS, DENSIT, PRANCT, DEN(26,12), VIS(26.12) 
1/CCEF/AP(26,12), AN(26r12)IAS(26,12), AE(26,12), AW(26,12), SU(26,12), 
2 SP(26v12) 
1/KASE T5/I, IN, TEIN, ECIN, FLCWIt, ALAMCA, UEN, FLOIEN, A, 'RSMALL, RMIX, 
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21 II\CZ, IKP1, JN0Z, JNNI, IENT, jEP1 
RESCRM=0.0 

C 
CHAPTER 111111 ASSEMBLY CF CCEFFICI'ENTS 1111111 
C 

CC 100 I=2, nIN1 
IF(I. LE. lKCZ) JFIP=JrPL 
IF(I. GT. INOL) JF1R=2 
CC 101 J=JFIR, tJN1 
PP(I, J)=C. C 

C-----CCMFUTE AREAS ANC VOLUME 
AREAN=RV(I, J+I)*C. S#(SL%i(I, J)+SEI (I9J+1)) 
AREAS=kV(I, J)*C. 5*(SEW(I, J)+SEW(I, J-1)) 
AREAE=C. 25*(R(I, J)+R(I+1, J))*(SNS(I,. J)+SNS(I+1, J)) 
AREAW=0.25*(k(I, J)+R(I-1, J))*(SNS(I, J)+S, S(I-1, J)) 
VCL=R(I, J)*SFW(I, J)1SNS(I, J) 

C-----CALCLLATE COEFFICIENTS 
CENN=0.5*(CEN(I, J)+CEN(I, J+1)) 
DENS=0.5*(CEN(I, J)+DEN(I, J-L)) 
CENE=0.5*(CEN(I, J)+0EN(I+1, J)) 
CENW=0.5'(CE1\(I, J)+CEN(I-1, J)) 
AN(I, J)=CENN*ARI=A *DV(I"J+1) 
AS(I, J)=CEtS*AREAS*CV(I, J) 
AE(I, J)=GENE*AH[; AE*CU(I+I, JI 
AW(I, J)=CEKW*AREAW*DU(IrJ) 

C-----CALCLLAIE SCURCE TERNS 
CI =CENN*V (I, J+1) *AREAN 
CS=CEtNS* v (I, J)*AREAS 
CE=DENE*L(I+1, J)*AREAE 
Cw=DEhW*U(I, J)*AREAW 
SPF=Ch-CS+CE-Ck 
SF(I, J)=0.0 
SU(I, J)=-SNP 

C-----CGMPLTE SLM CF ABSOLUTE NASS SOURCES 
RESCRM=RESCRN4A8S(SNP) 

101 CCNTINUE 
JOG CCNTINUE 

C 

LEASE 2. C CALCP CATE = MON CEC llt 1978 

CHAPTER 2222222 PROBLEM MOCIFICATIUNS 2222222 
C 

CALL PRCMOC(4) 
C 
CHAPTER 33333 FiFA1 CCEFFICIENT ASSEPELY 333.3 333 
C 

DC 300 1=2, AIN1 
IF(I. LE. INGZI JFIR-JNP1 
IF(I. GT. INCZ) JFIR=2 
Co 3C1 J=JFIR, 1JN1 

301 AP(I, J)=AN(I, J)+AS(I, J)+AE(I, J)+AW(I, J)-SP(I, J) 
300 CCNTINUE: 

C 
CHAPTER 44444 SCLUTIC, CF DIFFERENCE EQUATIONS 44444 
C 

CC 400 n=1, \S PP 
400 CALL LISCLV(2,2, NI, NJ, IT, JT, PP) 

C 
CHAPTER 5555 CCRRECT VELGCITIES AND PRESSURE 555555 
C 
C-----VELCCITIES 
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DC 500 I=2, MIN1 
CO 501 J=2, NJM 1 
IF(I. NE. 2) U(I, J)=U(I', J)+CU(I, J)*(PP(I-1, 'J)-PP(I, J)) 
IF(J. NE. 2) VII, J)=V( I, J)+0V(I, J)*(PP(I, J-1)-PP(I, J)) 

501 CONTINUE 
5CC CCNTIILE 

C-----PRESSURES (wITI PR0VISICN FOR UNDER-RELAXATION) 
PPREF=PP(IPREF, JPNEF) 
CO 502 I=2, NIN1 
CC 503 J=2, fJ01 
P(I, J)=P(I, J)+UkFP*(PP(I, J)-PPREF) 

5C3 CCNTINLE 
5C2 CCNTINLE 

CC 5C4 J=2, fJN1 
504 F(KI, J)=P(FIN1, J) 

RETURN 
END 

LEASE 2.0 CALCTE 

SLORCUTIHE CALCTE 

DATE = MON DEC 11,1978 

C 
CHAPTER 0000000 PRELIMIIAPIPS 000C000 
C 

CCMMON 
1/TEN/RESCRK, NSWPK, URFK 
1/VAR/ U(26,12), V(26,12), P(26,12), PP(26,12), TE(26.12), ED(26,12) 
1/ALL/IT, JT, NI, NJ"NIN1,1JN1, GREAT 
1/GECK/INCCCS, XIW(18), YIw1181, XOw(18)"YOw(26) , XOC(18), YOC(18), 
2 ROC(18), XIC(18)oYIC(18)rRIC(IA), X(26,12), Y(26,12)"XU(26,12), 
3 YV(26,12), DXFP(26,12), DXPW(26912)90YNP(26,12), DYPS(26912)9 
4 SNS(26912)tSEN(2(; 912), R(26,12), RV(26,12) 
1/FLUPR/URFVIS, VISCQS, DENSIT, PPArcT9CEN(26,12), VIS(26,12) 
1/CCEF/AP(26,12), AN(26,12), AS(26,12), AE(26,12), AW(26,12), SU(26,12), 
2 SP(26,12) 
1/TLKE/GEK(26,12), CC, CNU, CI, C2, CAPPA, ELCG, PREO, PRTE 
1/hALLF/YPLISN(28), TAUN(28)"YPLUSS(18), TAUS(18) 
1/KASE T5/UIN, TEIN, EDIN, FLDWIN, ALAMDA, UEN, FLOhEN, A, RSMALL, RMIX, 
2 IICZ, II\PI, JNCZ, JKP1, IENT, IEP1 
1/SUSP/SUKCI26,12), SPKO(26,12) 

C 
CHAPTER 
C 

ASSEMBLY CF COEFFICIENTS 

FRTE=1.0 
NJM2=NJ-2 
CC 100 1=2, FIN1 
IF(I. LE. INCZ) JFIR=JAPL 
IF(I. GT. IPCZ) JFIR=2 
CC 101 J=JFIR, tJN1 

C-----CCMPUTE AREAS ANC VOLUME 
AREAN=RV(I, J+1)*U. 5*(SEW(1, J)+SEW(I, J+1)) 
AREAS=RV(I, J)*0.5*(SEh(I9J)+SEh(I, J-1)) 
AREAS=0.25*(R(I, J)+R(I+1, J))*(SNS(I, J)+SNS(I+1, J)1 
AREAW=0.25*(R(I, J)+R(I-1, J))*(SNS(I, J)+SNS(I-1, J)) 
VCL=R(1, J)*SEh(I, J)*SNS(I, J) 

C----- CALCLLATE: CCMVECTICN CCEFFICIENTS 
GN=0.5*(DEN(I, J)+OEN(I, J+I))*V(I, J+1) 
GS=0.5*(CEN (I, J)+CEN (I, J-1)) *V (I, J ) 
GE=0.5*(CEN(I, J)+CEN(I+1, J)1#U(I+1, J) 
GW=0.5*ICEN(I, J)+CEN(I-1, J))*U(I, J) 
CN*GN*AREAN 

1 
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CS=GS*ARFAS 
CE=GEIAREAE 
CM=GN*AREAN 

C-----CALCULATE CIFFUSIGN COEFFICIENTS 
GAPN=0.5*(VIS(I, J)+VIS(I, J+I))/FPIL 
GAMS=0.5*(VIS(I, J)+VIS(I. J-1))/PRTE 
GAME=0.5*(VIS(I, J)+VIS(I+1, J))/PRTE 
GAMw=C. 5*(VIS(I, J)+VIS(I-1, J))/FPTF 
CN=GAPN*APEAN/CYNP(I, J) 
CS=GANS*AFEAS/CYPS(IfJ) 
CE=CAME4AREAE/CXEP(I, J) 

C6=GAP6*AREA6/DXPW(I, J) 
C----- SCLRCE TERMS 

LEASE 2.0 CALCTE CATE = Nun DEC 11, isle 
SMP=CN-CS+CE-CW 
CF=AMAXI(0.0, SNPI 
CFC=CP 
DUCX=(U(I+1, J)-U(I, J))/SEh(I, J) 
CVCY=(V(I, J+1)-V(I, J))/SNS(I, J) 
DUOY=((U(I, J)+U(I+1, J)+U(I, J+1)+U(I+1, J+1))/4. -(U(I, J)+U(I+1, J)+ 

1U(I, J-1)+U(I+1,. )-1))/4. )/SNS(I, J) 
DVDX=((V(I, J)+V(I, J+1)+V(I+1, J)+V(I+1, J+1))/4. -(V(I, J)+V(I, J+I)+V( 

1I-19J)+V(I-19J+1))/4. )/SEW(I, J) 
GFN(I, J)=(2. *(CUCX**2+CVCY**2)+(DUCY+OVOX)**2)*VIS(I, J) 

C-----ASSEPBLE MAIN COEFFICIENTS 
AN(I, J)=DN-0.5*CN 
IF(AES(0.5*CN). GT. CIA) AN(I, J)=AN(I, J)+ABS(0.5*CN) 
AS(I, J)=DS+0.5*CS 
IF(ABS(0.5*CS). GT. DS) AS(I, J)=AS(! 9J)+ABS(0.5*CS) 
AE(I, J)=CE-C. 5*CE 
IF(ABS(0.5*CE). GT. DE) AE(I, J)=AE(I, J)+ABS(0.5*CE) 
Ah (I , J)=Ctn+0.54CW 
IF(ABS(0.5*C4r). GT. OW) AW(I, J)=AW(I, J)+Ae5(0.5*CW) 
SU(I, J)=CPC*TE(I, J) 
SUKUII, J)=SU(I, J) 
SL(I, J)-SU1I, JI+GEN(I, J)*VCL 
SP(I, J)=-CP 
SPKD(I, J)=SP(I, J) 
SP(I, J)=SP(I, J)-CC*CNU*CEN(I, J)**2*TE(I, J)*VCL/VIS(I, J) 

101 CONTINUE 
100 CCMTINUE 

C 
CHAPTER 222222 PROBLEM MODIFICATIONS 2222 '2 2 
C 

CALL PROMCCIEI 
C 
CHAPTER 3 FINAL COEFFICIENT ASSEMBLY AND RESICUAL SOURCE CALCULATION 3 
C 

FESCRK=0.0 
CC 3C0 I=2, NIM1 
IF(I. LE. IKCZ) JFIR=JNP1 
IF(I. GT. INCZ) JFIR=2 
CC 301 J=JFIR, NJM1 
AP(I, J)=AN(I, J)+AS(I, J)+AE(I, J)4PW(I, J)-SP(I, J) 
RESOR=AN(I, J)*TE(. 1 J+1)+AS(I#J)*TEII, J-i)+AEII, JI*TE(I+1, J1 

1 +AW(I, J)*TE(I-19J)-AP(I, J)*TE(I, J)+SU(I9J) 
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VOL=R(I, J)*SEH(I, J)*SNS(I, J) 
SCRVCL=GREAT*VCL 
IF(-SP(I, J). GT. 0.5*SCRVCL) RFSCR=PESCR/SURVCI. 
RESGRK=RESCRK+Af3S(RESOR) 

C----- UNCER-REL. AXATICt 
AP(I9J)=AP(I, J)/UPFK 
SU(I, J)=SU(I, J)+(I. -URFK)OAP(I, J)*TC(I, J) 

3C1 CCKTINUE 

LEASE 2.0 

30C CC1TIAUE 
C 
CHAPTER 4 4i 
C 

CALCTE CATE = MOt DEC 119 1S78 

444 SCLUTICN CF DIFFERENCE EQUATIONS 44444 

CC 4OU t=1, IS6PK 
4CC CALL L1SCLV(2,2, tI9IJ, IT, JT, TE) 

CO 4C1 J=2, NJN1 
401 TE(sI, J)=TE(UIN1, J) 

DC 4C2 J=Jtp1, rJN1 
402 TE(1, J)=TE(2, J) 

NETURf 
END 

LEASE 2.0 CALCE0 DATE = MUN DEC 11,1978 

SIBRCLTINE CALCED - 
C 
CHAPTER 0C00000 PRELIMINARIES 0000C00 
C 

CCMNCt 
1/TDIS/RESCPE, NSMPC, URFE 
1/ALL/1T, JT, NI, NJ, NINI,, JNI, GREAT 
1/GECK/II\CCCS, XIw(1E), YIW(18), XGM(1E), YCh(26) , XQC(181, YCC(18)9 
2 RUC(1819XIC(18), YIC(18), RIC(18), X(26912), Y126,121, XU(26,12), 
3 YV(26912), DXEP(26,12), OXPW(26,12), CYNP(26,12)"DYPS(26r121" 
4 SNS(26112), SEW(26,12), R(26tl2), kV(26912) 
1/FLUPR/URFVIS, VISCOS, OENSIT, PRANDT, CEN(26,12), VIS(26,12) 
1/CCEF/AP(26,12), ANl2E, 121, AS(26,12), AE(26,12), AW(26t12), SU(26,12), 
2 SP(26,12) 
1/TLRB/GEN 126,12) , CC, CPU, C 1, C2, CAPPA, ELCG, PR EC, PRTE 
1/hALLF/YPLLSN (28) , TAUN(28 ), YFLUSS (18 ), TAUS( 18) 
1/SUSP/SUKD(26,12), SPKD(26,12) 
1/VAR/ U(26,12), V(26,12)rP(26,12), PP(26,12), TE(26,12), ED(26,12) 
1/KASE T5/UIN, TEIN, EOIN, FLCWIN, ALANCA, UEN, fLOfEN, A, RSMALL, RNIX, 
2 IKCZ, INPI, JNOZ, JNPI, IENTtlEP1 

C 
CHAPTER 1 1' 1111 ASSEMBLY CF CCEFFICIENTS 111111 
C 

CC 1CC I=2, FIN1 
IF(I. LE. INOZ) JFIR=JNP1 
IF(I. GT. INCZ) JFIR=2 
CO 101 J=JFIR, 1JM1 

C-----CCMPUUE AREAS ANC VCLUME 
AREAN=RV(I, J+1)*C. 5*(SEw(I, J)+SEk(I9J+1)) 
AREAS=RV(I, J)*C. 5*(SEW(I, J)+SEh(I, J-1)) 
AREAS=0.25*(R(I, J)+R(I+1, J))*(SNS(I, J)+SNS(I+1, J)1 
AREAW=0.25*(R(I, J)+R(1-I, J))*(SNS(I, J)tSNS(I-19J)1 
VCL=R(1, J)*SEW(I, J)*SNS(I, J) 

C-----CALCLLATE CONVECTIG CCEFFICIENTS 
GN=0.5*(CENII, J)+CEN(I1J+1))*V(I, J+1) 
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GS=0.5c(CEN(I, J)+CEN(I, J-1))*V(1ºJ) 
CE=0.5*(CEN(I9J)+CEN(I+1. J)l*U(I+L, J) 
Gh=0.5*(CEN(I, J) CEN(I-1, J))*U(I, J) 
CN =GN*AREAN 
CS=CS*ARLAS 
CF=GE*ARLAE 
Ch=Ci*AREAh 

C----- CULCLLATE CIFFUSICN CCEFFICIFNTS 
GAMN=0.5*IVIS(I, J)+VIS(I, J-1))/PREC 
GANS=0.5*(VIS(1, J)+VIS(I, J-1))/PRFC 
GAr'E=0.5*(VI S(I, J)+VIS(I+1, J) I /FRED 
GAMW=0.5x*(VIS (I, J). NIS(I-1, J))/FRED 
CN=GAMN*AREAN/OYNP(I, J) 
CS=GAMS*AREAS/CYPS(I, J) 
CE=GAPE*M EAE/CXEP(I, J) 

C1N=GAMW*AkEAh/CXPh(I, J) 
C-----SCLRCE TEkfS 

SMP=CiN-CS+CE-Ch 
CF=ANAX1(0.0, SNP) 

LEASE 2.0 CALCED CATE = MON DEC 119 1S78 

CPC=CP 
C--__ASSEPOLE NAIV CCEFFICIENTS 

AN(I"J)=CN-0.5*CN 
IF(A8S(0.5*CK). GT. CN) ANtI, J1=AN(I, J)+A6S(0.5*CN) 
AS(I, J)=DS+C. 5+CS 
IF(ARS(0.5*CS). GT. CS) AS(I, J)=AS(I, J)+A85(0.5*CS) 
AE(I, J) CE-0.5*CE 
IF(ABS(0.5*CE). GT. DE) AE(I, J)=AE(I, J)+A@S(0.5*CE) 
A1+(IIJ)=CH+0.5*Cw 
IF(ABS(0.5*CW). GT. Dh) Ah(I, J)=AW(I, J)+A8S(0.5*CW) 
SU(I, J)=CPC*EC(I, J) 
SL C(I, J)=SU(I, J) 
SUII"J)=SU(I, J)+C1*CNU*GEN(I, J)*VOL*CEN(I, J)*TE(I, J)/VIS(I, J) 
SP(I, J)=-CF 
SPKDtI, J)=SP(I, J) 
SF (I, J)=SP(I, J)-C2*CEtv(I, J)*EC(I, J)*VOL/TE(I, J) 

101 CCNTINUE 
100 CCITT INUE 

C 
CHAPTER 222222 PROBLEM MODIFICATIONS 222222 
C 

CALL PRCMCC(7) 
C 
CHAPTER 3 FIt L CCEFFICIEFT ASSEMBLY ANC RESICUAL SOURCE CALCULATION 3 
C 

FESCRE=0.0 
CC 300 I=2, M? dl 
IF(I. LE. IN(3Z) JFIR=JNP1 
IF(I. GT. INCZ) JFIR=2 
CO 301 J=Jt IR, NJM 1 
AP(IrJ)=AN(I, J)+AS(I, J)+AE(I9J)+AW(IiJ)-SP(I, J) 
RESCR=AN(I, J)*EU(I, J41)+AS(I, J)*ED(I"J-1)+AE(I, J)*ED(I+1, J) 

1 +Aw(I9J)*ED(1-1, J)-AP(I9J)*ED(I, J)+SU(19J) 
VCL=R(I, J)*SC (I, J)*SrS(1, J) 
SORVOL=GPFAT*VCL 
IF(-SF(I, J). GT. 0.5*SCRVCL) RESOR=RESQR/SORVOL 
RELCRE=RESCRE+ALS(RESCR) 

C-----LF\CER-RELAXATICN 
AF(I, J)=AF(I"J)/UFFE 
SU(I, J)=SU(I, J)+ti. -URFE)*AP(I, J)*ED(I, J) 
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301 CONTINUE 
3CC CChTINI, E 

C 
CHAPTER 44444 SGLUTICt CF DIFFERENCE EQUATIONS 44444 
C 

CC 400 t=1, FS6FD 
4C0 CALL LISGLV(2,2, NI, NJ, IT, JT, EC) 

CC 401 J=2, NJN1 
401 EC(MI, J)=EC(rIN1, J) 

CO 4C2 J=JAP1, NJN1 
402 EC(1"J)=EC(2, J) 

FETURN 
ENC 

LEASE 2.0 LISCLV DATE = MUN DEC 11,1578 

SUBROUTINE LISOLV1ISTART, JSTART, NI, NJ, IT, JT, PHI) 
CIVEASICI PHICIT, JT), F(32), B(32), C(32), p(32) 
CCMMON 

1/CCCF/AP(26,12), Ar(2b, 12), A5(26,12), AE(26,12), AW(26,12), SU(2( 12), 2 SP(26,12) 
1/KASE T5/UTA, TEI,, ECIN, FLCWIK, ALANCA, UEN, FLUWEN, A, RSMALL, RMIX, 
2 INCL, INPI, JNCZ, JNPI, IENT, IEP1 

NIN1=NI-1 
NJMI=NJ-1 

C----- CCPPEICE w-E SWEEP 
CC 100 I=ISTART, AIM1 
IF(I. LE. (IlC2-2+ISTART)) JSTAR =JSTART+JNOZ-1 
IF(I. CT. (INOZ-2+ISTART)) JSTAR =JSTART 

. JSTNI=JSTAR -1 
E(JSTM1I=0. C 
C (JSTN1)=FI-1 (I, JSTPl ) 

C-----CCMMENCE S-N TRAVERSE 
CC 101 J=JSTAR 9NJM1 

C-----ASSEMBLE TCPA CCEFFICIENTS 
E(J)=AN(19J) 
e(J)=AS(I, J) 
C(J)=AE(I9J)*PHI1I+19J)+A1, (I9J)*FHI(I-19J)+SU(I, J) C(J)=AF(I, J) 

C-----CALCULATE COEFFICIENTS CF RECUkREICE FCRNULA 
TERM=1. /(C(J)-E(J)*E(J-1)) 
E(J)=E(J)*TERM 

101 C(J)=(C(J)+6(J)*C(J-1))*TERM 
C-----CBTAIN NEh PHI+S 

C0 102 JJ=JSTAR 'NJM1 
J=rJ+JSTN1-JJ 

1C2 PHI(I, J)=E(J)*PHI(I, J+1)+C(J) 
100 CCNTINUE 

RETLRN 
ENC 

LEASE 2.0 PRINT DATE - MON DEC 11,1978 

SUBROUTINE PRINT(ISTART, JSTART, NI, NJ, IT, JT, PHI, HEAD) 
CINENSION PHI(IT, JT), HEAD(6), STORE(50) 
ISKIP=1 
JSKIP=1 
hRITE(6,11C)hEAO 
ISIA=1START-13 

100 CCPTINUE 
ISTA=ISTAf13 
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IENC=ISTA+12 
IF(NI. LT. IENC)IEUC=NI 
MRITE(C, 111) (I, I=LSTA, IENO, I5KIP) 
1RITE(U, 112) 
CC 101 JJ=JSTART, NJ, JSKIP " 
J=JSTART+NJ-JJ 
CC 120 I=ISTA, IENC 
A=PF-I(I, J) 
If(AeS(A). l. T. 1. E-2C) A=C. 0 

12C STCRE(I)=A 
101 tRITE(6,11? )J, (STORE(I), I=ISTA, IEND, ISKIP) 

C------------------------------------------------ 
IF(IEND. LT. NI)GG TO 100 
PETLRN 

110 FCPMAT(IF0,17(2H*-), 7X, 6A4, lx, l7(2H-*)) 
111 FCFPAT(1M0,13H 1= , 1291219) 
112 FCPMAT(3FC J) 
113 FCRNAT(I3,8X, 1F13E9.2) 

ENC 

LEASE 2.0 PROMCD DATE = MON DEC 11,1978 

SUBROUTINE PRONOD (NCHAP) 

C 
CHAPTER CCCCCC0 PRELININAPIES 000CC0CCC 
C 

CC hIV CN 
1/LVEL /RESGRU, NSWPU, LRFU, CXEPU(26,12) , CXPWU(26,12) ºSEWU(26,12) , 
2 SNSU(26,12) 
1/VVEL/RESCPV, NSWPV, URFV, CYNPV(26,12), DYPSV(26º12), SNSV(2E, 12), 
2 SEkV(2Eº12), RCV(2E, 12) 
1/PCOR/RESCRM, NSWPP, UKFP, CU(26,12), DV(26,12), IPREF, JPREF 
1/VAR/ U(2E, 12)ºV126,12), P(26,12)ºPP(26º12), TE(26º12)ºEC(26º1? 1 
1/ALL/IT, JT, NI, NJ, NiM1, NJMI9GREAT 
1/GEOM/INCCOS, XIW(18), YIW(l8)1ºXCh(18), YCt (2G) , XOC(18)ºY0C(18), 
2 ROC(18), XIC(18)ºYIC(18)ºRIC(IE), X(26,12), Y(26,12)"XU(26,12), 
3 YV(26,12), DXEP(26,12), DXPN(26,12), CY-NP126, l2), CYPS(26,12), 
4 SNS(26.12), SEi%(2E, 12), R(26,12), RV(26,12) 
1/FLUPR/LRFVIS, VISCCS, CENSIT, PRAFCT9CEN(26,12)ºVIS(26,12) 
1/KASE T5/UINºTEIN, EDIN, FLCWIN, ALAMCA, UEN, FLCWEN, A, RSMALL, RMIX, 
2 INGZ, INP1ºJNUZ, JNPL, IENT, IEP1 
1/SUSP/SLKC(26,12)"SPKC(26,12) 
1/COEF/AP(26,12), AN(26,12)rAS(26,12)rAF(26,12), AW(26,12), SU(26º12), 
2 SP(26,12) 
1/TUR6/GEN126,12), CC, CNL, CI, C2, CAPPA, ELCG, PREC, PRTE 
1/MALLF/YPLLSN(28)ºTAUN(2e), YPLUSS(lti), TAUS(18) 

C 
C 

GC TC (1,2,3,4,5,6,7), NCi-AP 
C 
CHAPTER 11111111 PROPERTIES 111111111 
C 

I CCNTINLE 
C-----NC NCDIFICATICrS FCR THIS PRCI3LEM 

RETURN 
C 
CHAPTER 22222222U NCNEFTUM 222222222 
C 
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2 CCITINLE 
C-----TCP WALL 

CCTERN=CPU**0.25 
J=ttJM 1 
CC 210 I=3, IIMI 
YP=C. 25*(CYNP(IrJ)+CYKP(I-1, J)1 
SQRTK=SQRT(O. 5*(TE(IPJ)+TF(I-1, J))) 
CENU=0.5*(OEN(I, J)+CEN(I-1, J)) 
VPLLSA=C. 5*(YFLUSt(I)+YPLLSN(I-1)) 
1P(YPLUSI. LE. 11.63) GO TO 211 
TNLLT=DENN*CL'TERN*SCRTK*CAPPA/ALC. G(ELOG*YPLUSA) 
CC TO 212 

211 TNULT=VISCCS/YP 
212 TALN(I)=-TNULT*U(I, J) 

SP(I, J)=SP(I, J)-TNULT*SEWU(I, J)*0.5*(YOW(I)+YOW( 
1RSMALL)) 

210 A\(I, J)=U. 0 
TALI`(2)=TAUA(3) 

I-1I+2. C*(RVIX+ 

LEASE 2.0 PROMOD DATE = NON DEC 11,1976 

TAUN(KI)=TAUh(KIN1) 
C INNER ALL 

J=Jf\P1 
CC 22C I=39IFF1 
YP=0.25*(CYPS(I, J)+CYPS(I-1, J)) 
IF(I. EC. IKP1) YP=0.5*(CYPS(I-1, J)) 
SQRTK=SQRT(0.5*(TE(I, J)+TE(I-1, J))) 
CENU=0.5*(CEN(I, J)+CEN(I-1, J)) 
YPLUSA=0.5*(YPLUSS(I)+YPLUSS(I-1)) 
IF(I. EQ. INP1) YPLUSA=YPLLSS(I-1) 
IF(YPLUSA. LE. 11.63) CC TC 221 
TMULT=DENU*CUTERM*SQRTK*CAPPA/ALCG(ELQG*YPLUSA) 
GC TC 222 

221 TNI, LT=VISCCS/YP 
222 TAUS(I)=-TNULT*U(I, J) 

SP(I9J)=SP(1, J)-TNULT*SEhU(I, J)*0.5*(YIW(I)+YIW(I-1)+2.0*(RMIX+ 
1RSMALL)) 

220 AS(I, J)=0.0 
7ALS(2)=TALS(3) 

C-----SYNNETRY AXIS 
DC 203 I=IKP1, NI 

203 1'S(I, 2)=0.0 
C------0L1LET 

OPCENT=O. C 
FLCh=O. C 
CO 204 J=2, PJM1 
ARCEK=0.5*(GEN(NINi, J)+DEN(NIM1-1, J))*0.25*(R(NIMI, J)+ R(NIMi-i, J) 

1)*(SNS(NIM1, J)+SNS(NIN1-1, Jl) 
ARCEKT=ARCENT+ARUEN 

2C4 FLOW=FLOh+ARDEN*U(NIM1, J) 
UINC=(FLCWIt+FLOWEN-FLCW)/ARGENT 
CC 2C5 J=2, tJV1 

205 U(NI, J)=L(NIM1, J)+UINC 
PETLRN 

C 
CHAPTER 33333333V MGNEbTUM 333333333 
C 

3 CCtTIMI, E 
C-----TCP WALL 

CC 313 I=2, PIN1 
313 AI(I, FJM1)=C. C 
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C IMMER WALL 
CC 312 I=2, INCZ 

312 AS(I, JNCZ+2)=C. O 
C-----SYMMETRY AXIS 

CC 302 I=I1PI, NIM1 
302 tS(I, 3)=C. 0 

RETURN 
C 
CHAPTER 444444 PRESSLRE CCFRECTICN 44444444 
C 

4 CCITIILE 
C 

RETURN 

LEASE 2. G FRCMCC CATE = MON DEC 11,1S7E 

C 
CHAPTER 5555555 THERMAL ENERGY 555555555 
C 

5 CCNTINUE 
C-----NC MCUIFICATIC1S FCR ThIS PRCBLEM 

RETURN 
C 
CFAPTER 666 "6 6 TURBULENT KINETIC ENERGY 66666666 
C 

6 CCNTINLE 
C-----TCP WALL 

CCTERP=CNU**0.25 
J=NJM1 
CC 610 I=2, NIM1 
tiP=0.5*CYNP(I, JI 
CENU=CEN(I, J) 
SCRTK=SCRT(TE(I, j)) 
VOL=R(I, J)'SEh(I, J)*SNS(I"J) 
GENCCU=0.5*(AEStTAUN(I+1)*U(I+1, J))+AßS(TAUN(I)*U(I, J)))/YP 
YPLUSN(I)=DENU*SQRTK*CCTERM*YP/VISCCIS 
CUDY=I(U(I, Jº+U(I+1, J)+U(IrJ+11+UtI+1, J+1))/4. -(U(I, J)+U(I+1, J)+ 

1L(I, J-1)+U(I+1, J-1) )/4. )/SKS (I, J ) 
GENRES=GEN(I, J)-VIS(I, J)*OUDY**2 
GEN(I, J)=GENRES+GENCCU 
IF(YPLLSN(I). LE. 11.63) CC TO 611 
CITERM=CEN(I, J)*(CMU**. 75)*SQRTK*ALOG(ELOG*YPLUSN(I))/(CAPPA*YP) 
GC TC 612 

611 CCNTINUE 
CITERM=CEN(I, J)*(CIU**. 75)*SQRTK*YPLUSN(I)/YP 

612 CCNTINLF. 
SU(I, J)=GEN(I, J)*VCL+SUKC(I, J) 
SP(I, J)=-CITERM*VCL+SPKC(I, J) 

610 AN(I, J)=0.0 
C INNER BALL 

J=JNP 1 
CC 620 1=2, INCZ 
YP=C. S*DYPS(I, J) 
CENU=CEN(I, J) 
SCRTK=SCFT(TE(I, J)) 
VCL=R(I, J)*SE%(I, J)*SNS(I, J) 
GEKCCU=0.5*(APS(TAUS(1+1)*U(I+19J)I+ABSITAUS(I)*U(19J)))/YP 
YPLUSS(I)=DENU*SQRTK*CUTERM*YP/VISCOS 
CUCY=((UlI, J)+U(I+1, J)+((I, J+1)+U(I+1, J+1))/ll. -(UII, J)+U(I+1, J)+ 

IU(ltJ-1)+U(I+1rJ-1))/4. )/SNS(I, J) 
GENRES=GEN(I, J)-VIS(I, J)*DUDY**2 
GEN(I, J)=GEI\RES+GENCCU 
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IF(YPLUSS(I). LE. 11.63) GO TO E21 
CITERM=DEK, (I, J1*(CNU**. 75)*S(RTK*AL. OG( FLOG*YPLUSS(I))/(CAPPA*YP ) 
CC TO 622 

621 CCNTINUE 
CITERM=DEN(I, J)*(CNU**. 75)*SGRTK*YPl. USS(I)/YP 

622 CCNTINUE 
SL(I. J)=GEK(I, J)*VCL+SUKC(I, J) 
SP(I, J)=-CITERV*VCL+SPKC(I, J) 

LEASE 2.0 PRCMCD DATE = MO N DEC 11t 1978 

620 AS(I, J)=0.0 
C-----SVNNETRY AXIS 

J=2 
CC 630 I= INP I, t IM 1 
DUDV=((U(IPJ)+U(I+1, J)+U(IrJ+1)+U(I+1*J+1)1/4. -(UtI, J)+U(I+1rJ)+ 

1U(I"J-1)+U(1+19J-1)1/4. )/SNS(I, J) 
VCL=R(I, J)*SEM(I"J)*SNS(1, J) 
GEN(I, J)=GEN(I, J1-VIS(I, J)*CUCY##2 
SU(I, J)=SUKC(I, J)+GEN(I, J)*VOL 

63C AS(192)=C. 0 
RETURN 

C 
CHAPTER 777.7 7777 DISSIFATICN 777777777 
C 

7 CCNTINI, E 
C-----TOP GALL 

J=NJM1 
CC 710 1=2, F'IM1 
YP=C. 5*DYNP(I, J) 
TERN=(CMU**. 75)/(CAPPA*YP) 
SU(I, J)=GREA7*TERP*TE(I, J)**1.5 

710 SP(I, J)=-GREAT 
C INNER WALL 

J=JNP 1 
CC 72C I=2, IKCZ 
VP=C. 5*DYPS(I, J) 
TERN=(CNU**. 75)/(CAPPA*YP) 
SU(I, J)=GREAT*TERP*TE(I, J)**1.5 

720 SP(I, J)=-GREAT 
C----- SYNMETRY AXIS 

CC 73C I=INP1, NIM1 
730 AS(I, 2)=0.0 

RETURN 
ENC 
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B. 2 Listing of PLAIN amd Subroutine INIT for Uniform Mixing Tube 

C11[NSI17N HLCU (1, lif'I"; V((: ), II'=U{'(r; ), II; -P1(ý. ), 11. -rN(C l, l"i,; r ('. IýI, rr. (., ) 
1, H((IChj, NEt)t'. Ci1, HL 1) P((, ), HITI1' 16 

Cfl"'N 
ý. tl( >>) 1/UVF_L/'. fS(? RU, NSWQI;, U1'FU, f)XFI'lI(i2XW ? ), SL 

1/VVº: l /I rr1FfV, liY; ýt'V(: 31), ("'V(3") r. ý ! RV( ? )+r "V( i? I 

1/Prr1R/hr. S(, k' , ý. ýSWPP, rIRFf', I)II( 1ºi, 1'SI, Iºvl I}t, 1'') I Nc F, JP: f f 

1/TEN/wFSI RK, Nc K, 11"FK 
1/T1"I S/º'k r'N'f , NShPI;, UkEf 
I/V11u/ IIl1. '"/(1L}, 113), r'(IE, tlýil, fir) (1'j, It; )r 1 (]" rlt')+ )(li rl '1 
1/QI l /ITfT, IN I, NJ ,r IMI, f. J Gt, 1 AT 

( 3? )r Yý {'l?? I"ý"1º' ;(i? 1, I/ i[".: 1"^/1 ºf; ('I0SºX( L? Y(; 2)rX 11 ("? ) 9 ß'. X^. 4 
1 SrýS(. 32) rSXII(. 3'YV(: 3. '1"ý(_ii. ) r., V( i) 
1/FLUPc/UI'FVIS+VISCr)S, U(: NSTT, Pk! 1fýlT, i1! '1(1ti, 1C, )"viS(lbý I°I 

1/KAS! -- TL/UIPJ, IrIN, r DIN, ý: L''d IN, ALt"r'I; ý", I1º. I'-LitEM, 

.2F 
MAl. l., t; l A, I: r, f:, Al I, At, 2 JSTf', Iý, Tº: P, I"NT'1., JýT'a1.1S1r'I T 

I /Ttl'. P/r; rn: (1.1 NCl (MU, c C?, CAPP! '., rl_Ci; ' P14, r 
1/' ALI. F /YPLUSM(22), XPl. t. SW(2 ') TAUt: (? %), Ti(JýI( 1.? 
1. /Cfltf/4l) Ii, lt? 1rAN'(IEl , 1E31r. ýS(1. 'i, lt. '1rný: (1º3,1:; )rAw(I 1.31, sU11'rl'l, 
1 SI`(1Ei, l'11 

LrGICAL TNCP, Ll1 I NCA( V INC AL t' 1NVPI'\)C. ALKI Nr. "tLn, TN' CAI "", IN( of I, 
1 11\CAL' 

GRAT1. F30 
K1TU 0 
1T1R 
JT1; 
KSL, PtJ1 
NSI^PV=1 
NSwPP=2 
NSAPK=1 
NSwPf)=1 
9FAU(9 ,. 110)HFO(J, M OV1 Hf FPH[ OT, hr'(.; K, H'Dr-, H'Ct', HFGA, Hr t 1. "('l)P, 

1HFfUN 
010 FCPMoT(jA'i) 

C CHArTFR 11111 PARAYETrKS ANP crNTr: CL t ýr; ICý S111tt1 

c 
c----- GuIC 

NI=14 
kJ=14 
n1µ1=NI-1 
NJNI=NJ-1 
NJ M2=N. 1-2 
INDCCS=2 
JSTFP=5 
JSTP1=JSTEP+1 
JS1P2=JSTE_P+? 
JSTM1=JS1EP-1 
RLARGE=0.15 
RSCRL=J. 3 33 
PS"AI. L=RLARGC''kSCRL 
Al. TOT=' .0 
EPSX=l . 05 
SIPX=C. Si=fPSX*1 {III-4+( t r, SV, *N1-3)-1.1/l<P'; X-1+C. > 
CX=AI. T")T/SUMX 
X(1 )=-O. 5r'CX 
X(2)'-X(1) 
DC 11)1 1=3, NIM1 
x(I)=X(1-1)+Dx 

1o CX=E l3sxACX 
X(NI)=X(N1'L)-X(NI-2)+X(NIM1) 
CY 1=KS"IALL/FLrAT (JSTM1 ) 
f)Y2=(h1ARr, E-RS"ALL )/f LUAT (NJ-JSTt P-1 ) 
Y(1)=-J. 5*OYI 
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CC' 101 J=?, JSTH' 
101 Y(, 1)=Y(J-1)+f)Y1 

Y(JSTP1)-Y(JSTFP)+), ri (0Y1+f`Y2) 
Cr 102 J=JSTP2, NJ 

1C2 Y(. 1)=Y( J-1)+ý1Y2 
C-----CF PFN[; r? JT Vt: k IA LF SF1. FCT Itl'ý 

It CAI, U=. T1 U' . 

INCALP=. TfU, -. 
INCALK=, TkUE, 
INC ALU=. TVO 
INP-\0=. TkW- 

C-----Ft. UI U PRCDI:: '4T IFS 
fif: NS IT=1.22 i 

C-----1 UPtt11(ENCL CON STAl. 1S 

CU=1. J0 
C1=1.44 
C2=1. (, 2_ 
C PPA 1t 7 
FLrr, =ý. 75ý 
Pf? F : 1=C ; PP'A"ICAPP. 1/ (C 2-C 1) / (1; MUY". 5) 
ORTE'=1.0 

C__---y! 1UN 1'. AýY Vn( UFS 
UTNl=45.3 
1FN=4.5 
U""=(UI V°ýkSMAI L ? 

_+UE. n'*( p. ný; c, i ýý? - 5ýý, I. L°: 21)/tº'I n? c r -l) 
ULAR, F=tJFFl. +(UIN-UFN)'( SMALL/ý LA'l( :) 
1U P. IN=C. OJJ3 
TFIN=TU: U IN". UIN**2 
TU't4EN=l1,003 
TFEN=TUPHCN; UEN* 2 

LEAS, 2"0 MAIN CATF = SAT MAP? N, 157 ' 

'L''. l A=0.305 
FCIN=TE 1N'"t. 5/(ALAMCA*PLAr\C, F) 
': ý; Eýa=7Cf=MX1.5/( ti AYI'AePLý2r, ý ) 
VISCfS=1. FF-5 

C-----uRcSSI. F'E CALCULATICN 
IPRFF=1 
JPrFF=I`JN 1 

C___--Pk; )GRAM CONTRnL ANO MONITCk 
waxIT=180 
I'MrN=6 
JNCN=6 
UrFU=0.5 
UPFV=O. 5 
LRFP=1 .0 
LPFC-=0.7 
URFK=0.7 
URFVIS=C. 7 
INDPRI=1 
SCPM4X=1. CE-4 

C 
CHAPTFR 222222 INITIAL W RATIONS 22222222; 
C 
C-----CALCULATE GF. 0'IETRICAI QUANTITIES AND SET VARIAPI [S TO ZFRC 

CALL IPIT 
C-----INITIALISE VARIABLE FIFLPS 

CC 238 J=2, JSTEP 
1E(1, J)=1FIN 
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201' FC(1, J)-ECIN 
CC "09 J=JSTP1ºNJN1 
TE: 1JTIFN 

% ? 0`'r1ºJ)-trtº, 
FLC. IN=0.0 
A' : LN=1a. 1) 

LAC 200 1=2, N1 
CC 230 J=?, JSTFF, 
L(I, J)=01 N 
TF(I, J) =T! '1N 

200 Fr(1, J)=LCI 
C- 2nß J=2, JS1FP 
V! f'FN=tß. 5'" (i; EN(1, J)+CFN(2_, J) ): s IJ)*5^ý? (J) 

? 05 F1. CWIP. -F1. C: ºtil11t1, J 
S RMAX SiIf, 'PAXIt FL'. ) wr. N 
FLC'wr^J. 0 
ARf '-N=O. 0 
rr 201 I=?, NI 
Cr 201 J= JSTF1, t\JN1 
TF(I,, ))=TI F 

2C1 L(T, J)=l. FI, 
CC 236 J=JSTP1, nIJ"I 
t "c N=0. S=A(R`N(1, J)+Cf_P, (2, J))' kCJ, J) 

20(; F! _'JWFN=Flfiý% 
NIAI; fftr'J U12, J) 

nu 203 I=?, t. I^11 
203 YPLUSN(I)=11.0 

LE-ASE 2.0 MAIN ('"ATr = SAT MAY ? 1r 197; 

CALL PROPS 
C----- I `I TI /AL f, UT PlJT 

HPITE(6,21C) 
%RITC((, 220) UIN 
IRITF(6,221) UEN 
UK=tJzN+(UI'q-UFN)'ý(1"SNA, (. I /PLARC=)'? 
USTAS(; =(UI \ ý*2-UEN* 21*(c<S1 ALL/14 LA''}; )* 2+J. ýx. ll. ºFti2-UK ?) 
r. T=UK/S( TIUSTASO) 
wFITE(5,222) CT 

=UI NIr; LrR0E: 1,2.0 GENS ITVISCr. 'S 
RITE(5,23JI RE 

H'I TE(',,? 4O) RSORL 
6RlTE(6,250) VISCnS 
6RITF(6,260) ^FNSIT 
Ir'( INCALU) CALL P11NT(2,2,141, NJ, TT, JT, XU, Y, '1, Hr(`(1) 
IF(INC\LV) CALL PRINT (2,2, ''J1, NJ, IT, IT, X, YV, V, Hic V) 
IF(TNLALP') CALL PR! NT(2,2, NNIr NJ, TT, JT, XY, P, HFfP) 
TF(INCALK) CALL PPINT(2,2, NlO'J, ITo IT , X, Y, TF.., IF()KI 
IF(INCALE) CALL PRINT(2,2, NI, ^'J, I1, JT, X, Y, E(), HHE)J) 

G 
CHAPTER 3333333 ITERATION 10,, -IP 3333 
C 

wRITC(6,31J) INfN, JMrN 
3C0 NITER=NITEG'+1 

c-----UPDATE MAIN DEPENCFNT VARIA' LE. S 
IF(INCALU) CALL CALCU 
IF(INCALV) CALL CALCV 
IN INCALP) CALL cnt: CP 
Ir(INCALK) CALL CALGTE 
IF(INCALfl) CALL CALCE: r; 

C-----Uº'CATE FLUID PkOPCRITIES 
IF(INPRi') rALL Pr('PS 

C-----INTERMEI)IATr- OUTPUT 
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DUMMY =0 0 
wRITE(6,311) NITFFý, RE SC. '1ýII, N, 1 SC'f? V, P(S, RISýý'Tyt. h Cr 

, lt(I^"ON, JM(*ri), V(11111, . IM ')"P(I""(IFýr, ) ' . )r1'UavY, 

ITI(IMflN, NJY1r-n(I `4P"1, NJ"t l. ) 

IF (NIT ER. GT. 2) I'mpr2I =40 
IF(AIDS(F=1. CAT( NIFER/IN1`P I)-FLCA1(r: IT iRZ)/I'J1j° 1). T. 1. ECI` 1ý ? ý1 
WRTTE(6,312) 
IR(IXCAL11) CAL[. PR INT(2., 2, NI, \J, I1, JT, XU, Y, U, Nc: l)li) 
IF(11,1CALV) CAI I. PRINT(?.,?, N1 �NJ, IT, IT, X, Yv, Vrt-ýt=1V) 

) I1(TNCAI_P) (7AI. I. PRINT (2,2, NI, NJ , IT, JT, X, Y"Pno 
JI ( INC^. LK) CA, l. t PFINTNT, N. 1, IT, JT, X, Y"TIF! 'K) 
I F- (1 NC. AL C) CALL f)R! Nl'( 2, 
wu1 ITF(c,, 512) 
),, RITE: ((j, 311J) 1'10N, JMCN 

301 C(7, TIt, (2, F 
C-----TL 1NATICN 1r"STS 

SCRCF-PESCI'N 
IF(NITFR . E0.20. AN(:. SýW'. CF. GT. 1.0L'+""S1)PI: AX) )'U TO 3C2 
IF(r. IIT --:. FQ. MAXIT) GC Ti 

. 
3')?. 

TF (S()FCL. GT. Stý1, VAX) C-U TC '300 
302 CnNT I NUE 

LFASE 2. MAIN 1)ATF = SAT MA r, ' "1º1'; 7 

C 
CHAPTFR 444 
C 

IF(1NCAL. U) 
IF(INCALV) 
IF(INCaLP) 
I`IINNCAt. P) 
IF(INCALK) 
IF( INCi t. C) 
IF(1N1'i, U ) 

('-----CALCi1LAT I t: ) 

444 FINAL (7PERATT('NS ANN OUTPUT 4 

CAL. L P 1NT(2,2_, NT 9NJ, 1T, JT, XLi , V, U, IIi¬rU) 
CALL PPINT (2r2, IN I, f'J, IT, "JT, x, YV, V, HF! )V) 
CALL UPI1NT(2tP, NI, N'J, 1T, JT, X, YºF', HcfP) 
CALL P INT (2,2, fJI9t': J, TT,. 1T, X, Y, Pr, HLp 
CALL PRIN T(2,2, NI, NJ, TT, JT, X, Y, TF, HFr V) 
CALL PRINT (2,2, '41, º': J, 1T, iF, X, Y, r! ), litnn 
CALL PPINT(2,2, NI, NJ, IT, JT, X, Y, VIS, HFri) 

14 OF NON D1MEN! SIgNAI, 1 'J-, F JLF. NCL LýýF=hC, Y ANE 
DO '. 00 I=29NIN1 
C! 7 400 J=2, NJr'1 
U(I, J)=U(l, J)/U'' 
SUJ(I, J)=T[. (1, J) DEN( I, J)/A3S(TAI, JN(I)) 

'O0 SP(1, J)=Tt(I, J1"l41.5/f-L: (I, 1)/1L. AF r 
CALL P-It'TO 2, PNI9NJ, IT , JT, X(. 1, Y91.1, sirr), iw 
CALL PRINT(2,2, NI, 'J, 1 T,. 1T, X, Y, Sl1, HE 1 4) 
CALL PPINTr?., NI It J, I T, JT, X, Y, cD, f. f ) 

C-----ULCLILATION CIF SHEAR-STRFSS Cnrf rICTFNT 
w ITE(6,402) 
00 401 I=1STrp, NIM1 
SSC=TAUN(I)/(1.1*CENSITM4ULARGF; ULARrF) 
XUO=XU(I)/I\LARGE/2. 
wPITE(6,403) I, XUD, SSC 

401 CCNT INIJF 
STOP 

C_----FCRMAT ST'ATU: MF-N'TS 

414 If 

LEN G71-1 SCALE 

ALONG LAP(E CUCT hA( 1 

210 FCRMAT(1H1, ' 7X, 47HKASF T2 - TUPFULFNT , IL-TS FIXING I'J UNI Fr v rUCT/ 

1///) 
220 FCR" AT( //15X, 3'3NINl_FT JET VELr(TTY , 1NF11.3) 
2? 1 FIIRMAT ( //15x, 33HANNui l. i FLUID VEI. (ICITY . 1FF11.? ) 
222 FflRMAT( //15X, 33HCRAY^-CURTF-T NWARrp , )PEI 1.31 
230 FnRIAT( //l5X, 331JRCYN'11_^S NOMW: 'R , 1PF11.? ) 
240 Fllr<'"1AT( //15X, 33H9IAM1: TUR RATIO lipril., A) 
250 r-WOAT( //1FX, 33HLAM1n, AR VISCOSITY , 113E11. ) 
260 FCRMAT( //15X, 33HFL(jIU OL14SITY VIPF11.3) 
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310 FORMAT(1: 3HOITER I---, 9X, 29HAt3Sr1L'JTt= RESIDUAL SnU; ZC! SUB'S, )x, 
111H---I 1---, 37H FIEL') VALUES AT M( ITOR I'dG 11CAT IfIN(, T?, 1H� 1?, 
26H) ---I/14H NO UMOM, 5X94HVF'(M95X, 4i1'4ASS95X94HENFR0X94; 4TKi'v 

' 3,5X, 411UISP, 9Xr1HU, ßX, 1HV, F3X"LHP, 8X"1HT, 'iX, 1HK, 3X, 1H n/) 
311 FORMATl1H , I3,5X, 1P6E9.2.3X, 1P6F9.2)* 
312 FCPMAT(1F-0,59(2H- )) 
402 FORMAT(///5X, 1H1, '7X95HXU(I)96X, 1CHS. S. CfEFF. ) 
403 F(IPMATI/5X, 15,2(1PE11.3)) 

ENO 
LEASE 2.0 INIT fATF = SAT MAP 31,1.75 

SUBROUTINE INIT 
C 
CHAPTER 00000C00 PRELIMINARIES 00C000J0 
C 

1/UVEL/RESORUrNSWPU#LRFUrDXEPUl321"CXPWL(32)"SEWU(32) 
I/VVEL/RFSCIRV, NSWPV, uRFV. 0YNPV(32)"1'YPSV( 32), SNSV(32), kCV( 32) 
1/POOR/FFSOkMrNSWPP, URFP, DU(18,18) , 1'. V(1R" 18) d dPRFF, , PREF 
1/VAR/ t! (18,1ýi1"V(1811 1rP(1Pr1RI"Pý'118,1ý31"TFl1E3 "1Fi), Efl(1R"1ýi1 
1/ALL/I T, JT, NI rNJ, NJIM1"NJP1"GREAT 
1/GEOM/INUCCIS, X(32), Y(32), CxrP(32), rXPw(32), CYNP(32. ), CYPS(, 42 ), 
I SNS(32), SEW(32), XU(32), YV(32)"R(32), itv(32) 
1/FLUPR/Ut, FVIS, VISC')S, DENSIT, PR4NDT, OE: t4(18,18), VIS(18r13) 
1/KASE T2/UIN, TE"IN"EUIn19FLOWIN, ALAPDA, UE. N"FLOWFM" 
2 RSKALL, PLAPGý, AL1, AL29JSTFP, ISTFP, JSTD1, JSTM1, ISTOI, ISTMI 
'1/TURB/GEN(18,18)"CU, CMU, C1"C2, CAPPA, ELOG, PRCn, PRTF 
I/CCEF/AP(18,1A) AN(IS r, 18)rAS(1491R), AH 18#1a1"AW(-1P, 1g)rSli(18r18)f 
1 SP(18,18) _ 

C 
CHAPTER 11111 CALCULATE GECMFTRICAL CUANTITIFS 11111 
C 

CC 100 J=1"NJ 
R(J)=Y(J) 

loo IF( INDCCS. EC. 1)P(J)=I. o 
CXPW(1)=o. 0 
CXEP(tI)20.0 
CO 101 I=1, NIM1 
CXEP(I)RX(I+1)-X(I) 

101 CXPW(I+1)=CXEP(I) 
OYPS111s0.0 
CYNP (. NJ 1 *0.0 
CC) 102 J=1, NJP1 
CYNP(J)=Y(J+1)-Y(J) 

102. OYPS(J+1)=CYNP(J) 
SEW(l)=0.0 
SEW(hd1=0.0 
on 103 I=2, tIM1 

103 SFW(I)=0.5*(CXFP(1)+CXPW(I)) 
SNS(1)=0.0 
SRS(NJ)=0.0. 
CC 104 J=2, KJN1 

104 SNS(J)=C. 5*(UYNP(J)+DYPS(J)1 
XU(1)=0.0 
CO 105 I=29NI 

105 XU(I)=0.5*(X(I)+X(I-1)1 
DXPWU(1)=0.0 
CXPWU(2)=0.0 
CXEPU(1)'0.0 
CXEPU(NI1=0.0 
CC 106 1z2, NIN1 
CXEPU(I)=XU(I+11-XU(I) 
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106 C-XPWU(I-+1)=DXEPU(I ) 
SEwU(1) 0.0 
SEwU(2)=0.0 

LEASE 2.0 INiT DATE = SAT MAR 31,1975 

CO 107 I=3, NIM1 
107 SEWU(I)=0.5*(OXEPU(I)+fXPWU(I)) 

YV(1)=0.0 
RV(1)=0.0 
CC 108 J=2, NJ 
RV(J)=0.5#! R(J)+R(J-1)l 
RCV(J)=0.5*(RV(J)+RV(J-1)) 

108 YV(J)=0.5*(Y(. 1')+Y(J-1)) 
CYPSV(1)=0.0 
DYPSV(2)=C. 0 
CYNPV(NJ)=0.0 
CO 109 J=2, KJN1 
DYNPV(J)=YV(J+1)-YV(J) 

109 CYPSV(J+1)=CYNPV(J) 
SNSV(1)=0.0 
SNNSV(2)=0.0 
SFSV(NJ)=0.0 
CC 110 J=3, NJM1 

110 SPSV(J)=0.5*((YNPV(J)+DYPSV(J)) 
C 
CHAPTER 222222 SET VARIABLES TO ZERRC 2222 2" 2 
C 

00 200 I=19NI 
CC 200 J=1, NJ 
C(1: J)=0.0 
V(I, J)=0.0 
P(I, J) 0.0 
PP(I, J)=9.0 
Tc(I J)=0.0 
ECZ(I, J)=0.0 
CEN(I, J)=CENSIT 

&: VIS(I, J)=VISCCS 
;.. CU(I, J)=0.0 

CV(Ili)=0.0 
SUU., J)=J. 0 
SP(. I, J)=0.0 

200 _. CCtTIAUC 
RETURN 
END 
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B. 3 Listing of MAIN and Subroutine INIT for Diffuser 

CIMENSION HEOU(6), HECV(6), HEDP(6), HEGT(6), HEDK(6)9'FECD(6), HFD0(6) 
1 , HEDA(6), HEOß(6), HF. DPP(6), HE! )UP)(6) : HEDG(6) 

COMMON 
1/UVEL/RESfRU, NSWPU, URFU, DXEPU(32), CXPWU(32), SEHU(32) 
1/VVEL/RESCRV, NSWPV, URFV, DYNPV(28', 14), DYPSV(28,14), SNSV(28,14), 
2 RCV(28,14) 
1/PCOR/RESURM, NSWPP, URFP, DU(28,14), CV(28,14), IPREF, JPREF 
1/TEN/kfSCRK, NSWPK, URFK 
1/TDIS/RESOREtNSWPD, URFF 
1/VAR/ U(28.14), V(28,14)tP(28,14), PP(28,14), TE(28f14), EC(28,14) 
1/ALL/I T, JT, NI, NJ, NIMI, NJMLtGREAT 
1/GECM/INCCOS, X(32), CY(32), DXEP(32), DXPW(32), f: YNP(28,14)9 
2 DYPS(28,14), SNS(28t14) tSEh(32)', XU(32) , Y(28r14), YV(28,14)t 
3 R(28,14), RV(28,14) 
1/FLUPR/URFVIS, VI SCOS, DENSIT, PRANDT, CEN(28,14), VIS(2R, 14) 
1/KASE T3/UIN, TEIN, EDIN, FLOWIN, ALAMDA, RIN, DAN 
1/TURB/GEN(28,14) tCO, CMU, CI, C2, CAPPA, ELCG, PRED, PRTE 
1/WALLF/YPLUSN(32), XPLUSW(32), TAUN(32)"TAUW(32) 
1/COEF/AP(28,14), AN(28,14), AS(28, i4), AE(28,14), AW(28,14), SU(2R, 14)t 

SP(28,14) 
LOGICAL iNCALU, I-NCALV, I1CALP, INPRO, INCALK, INCALO, INCALMtINCALA. 

INCALB 
GREAT=1. E30 
NITER=O 
IT=28 
JT=14 
NSWPU'. 1 
r SWPV=1. 
NS%PP=5 
NSWPK=1 
£SWPC=1 
READ(99010)HEDU, HEDV, HEDP, HEGT, HEDK, HEDD, HEDM, HEOA, HEUBsFECPP* 

1HEDUN, HEDG 
010 FCRMAT(6A4) 

CHAPTER 11111 PARAMETERS ANC CONTROL INDICES 111111 

C_. ý_--GRID ' 
NI=14 
NJ=12 
NIM1=N1-1 

LEASE 2.0 MAIN DATE WED DEC 13t_1978 NJM 1=NJ-1 
NJM2=NJ-2 
IlDCCS=2 
ANGLE=4.05 
ANGLE=3.1416*ANGLE/180.0 
RIN=0.0171 
ALTCT=0.43 
EPSX=1. L5 
SUMX=0.5*EPSX**(NI-4)+(EPSX*#(NI-3)-1. )/(EPSX-1. )+0.5 
0X=ALTCT/SUMX 
XIN=RIN/SIN(ANGLE) 
X(1)*XDN-0.5*CX 

' X(2)=XIN+0.5*DX 
CO 100 I-3, VIM1 
X(I)=X(I-1)+CX 

100 CX=EPSX*, CX 
X(NI)=X(NIM1)-X(NI-2)+X(NIM1) 
DAN*ANGLF/FLOAT(NJ-2) 
Co 101 I=1, N1 

297 



DY(I)=X(I)*OAA 
101 Y(I, 1)=-0.5*CY(I) 

CC 102 1=1, NI 
" CO 102 J=2, NJ 

102 Y(I, J)=Y(I, J-1)fDY(I) 
C-----DEPENDENT VARIABLE SELECTION 

INCALU=. TRUE. 

. INCALV=. TRUE. 
INCALP=. TRUE. 
INCALK=. T RUE. 
INCALD=. TRUE. 
INPRC=. TRUE. 

C-----FLUID PROPERTIES 
DENSIT=1000. 

C-----TURBULENCE CONSTANTS 
CMU=0.09 
CC=1.00 
Cl=1.44 
C2=1.92 ý 
CAPPA*. 4187 
ELQG=5.753 
PREC=CAPPA*CAPPA/(C2-C1)/(CMU**. 5) 
PRTE=1.0 

C, ";.. ---BCUNCARY VALUES 
UI N=2.47 
TURBIN=0«001 
TEIN=TUR8IN#UIN**2 
ALAMDA=0.05 
ECIN=TEIN**1.51(ALAM'CA*RIN) 
VISCCS=1.004E-3 

Nye---PRESSURE CALCULATION 
IPREF=2 
JPREF=2 

C: ----PROGRAM CONTROL AND MONITOR 
"PAXIT=190 

&, EASE 2.0 MAIN DATE = WED DEC 139 1978 

IMCN=6 
JMON=6 
URFUE0.5 
URFV=0.5 
URFP=i. 0 
tRFE=0.7 
URFK=0.7 ... 
URFVISa0,7 

SCRMA. X=1. OE-5 
C 
CHAPTER; 2 -2 2222 INITIAL OPERATIONS 2 2.2 222222 
C 
G-----CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERC CALL I-NI T 
C"--=---INITIALISE VARIABLE FIELDS* 

. 
FLQWIN=0.0 
AR(N=0.0, 
REAO(9,11) (U(2, J), J=2, NJML) 11 FQRMATl. F10,3) 

, CC 200, JaZtN; 1M1 
AR: QEI=0.5*(OENtI, J)+"CEN(2rJl )*0.25*(R(1, J)+RI2, J))*(SNS(IrJtf 1SNS(2, J)) 

200 FLCWIN=FLOWIN$ARDEN*U(2, J) 
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DO 201 I=19NI 
TE(I, NJ)=0.0 
EC(I"NJ)=0.0 

201 U(i, NJ)=0.0 " 
DC 203 I=2*NIM1 

203 YPLUSN(I)=11.0 
CALL PROPS 

C-----INITIAL OUTPUT 
6RITE16,210) 
hRITE(6,220) UIN 
RE=UIN*RIN*2.0*DENSIT/VISCOS 
WRITE(6,230) RE 
WRITE(6t250) VISCOS 
WRITE(6t260) DENSIT 
ANGLE=2.0*ANGLE*180. /3.1416 
WRITE(69270) ANGLE 
CALL PRIAT(2,2, NI, NJ, IT, JT, X, Y, HEDG) 
IF(INCALU), CALL PRINT(2,2, NI, NJ9IT, JT, XU, U, HEDU) 
IF(INCALV). "CAiL PRINT(2,2, NI, NJ, IT, JT, X, V, HEDV) 
IF(INCAIP)CALL PRINT(2,2, NI, NJ"IT, JT, X, P, HEOP) 
IF(INCALP) CALL PRINT(2,2, NI, NJ, IT, JT, X, PP, HEDPP) 
IF(IICALK) CALL PRINT(2.2, NI, NJ, IT, JT, X, TE, HEDK) 
IF(INCALC) CALL PRINT(2,2, NI, NJ, IT, JT, X, ED, HEDO) 

C 
CHAPTER 3333.3.3 3I TERAT I CN LOOP 333333333 
C 

WRITE. (6,310) IMQN, JNCN 
300 BITER=NITER+1 

C. +. ---UPDATE MAIN DEPENDENT VARIABLES 
IF(INCALU) CALL CALCU 

LEASE 2.0 MAIN DATE = WED DEC 13,1978 

IF(INCALVI CALL CALCV 
IFIINCALP) CALL CALCP 
JFtINCALK) CALL CALCTE 
IF (INCAL-B) CALL CALCED 

C-----UPDATE FLUID PROPERITIES 
IF(INPRO) CALL PROPS 

C_.. _---INTERMEDIATE OUTPUT 
DUMMY=0.0 
WRITE(6931 ) NI. TERrRESCRUiRESARV, RESCRM, RESORT RESCRK pESORE 

1 tU(IMONtJMON)rV[lMON#JMON)tP(IMONtJMONI#DUMMY9 
1. TE(IMON, NJM1! "ED(IMON, NJMl) 

IF (NIT EP . GT. 2) INDPRIu40 
IF(ABS(FLUAT(NITER/INDPRI)-FLOAT(NITER)/INDPRI ). GT. 1. E-41GO To 301 
WRTTE(6,312) 
IF(INCALU) CALL PRINT(2e2, NI rNJ, IT, JT, XU, UvHEDU) 
IF(INCALV) CALL PRINT(2,2, NI, NJ, IT, JT, X, V, HEDV) 
IFUNCALP) CALL PRINT(2,2, NI, NJ, TT, JT, X" PtHEOP) 
IF, (INCALP) CALL PRINT(2r2, NIrNJsJT, JT, X, PP, HEDPP) 
-IF(INCALK) CALL PRINT(2,2, NI, NJ, IT*JT, X, TEtHEDK) 
IF(INCALD) CALL PRINT(2,2, NI, NJ, IT, JT, X, ED, HEDO) 

. %RITE(69312) 
WRITE(69310) IMONtJMCN 

301 C(INT1NUE 
C_----TERMINATICN TESTS 

SORCE=RES'ORM 
IF(NfTER. EQ. MAXIT) GO TO X02 
IF(SORCE. GT'. SORMAX) GO T0 300 

302 CChTINUE 
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C 
CHAPTER 444444 FINAL OPERATIONS AND OUTPUT 444444 
c 

IF(INCALU) CALL PRINT(2,2, NI, NJ, IT, JT, XU9 
IF(INCALV) CALL PRINT(2,2, NI. NJ, IT, JT, X, 
IF(INCALP) CALL PRINT(2,2, NI, NJ, IT, JT, X, 
IF(INCALP) CALL PRINT(2,2, NI, NJ, IT, JT, X, 
IF(INCALK) CALL PRINT(2,29NI, NJ, IT, JT, X, 
IF(INCALD)CALL PRINT(2,2, N!, NJ, IT"JT, X" 
IF(INPRO ) CALL PRINT(. 2,2, NI, NJ"IT, JT, X, 

C-----CALCULATION OF NON DIMENSIONAL TURBULENCE 
00 400 1-2, NIM1 
DO 400 J=2, NJM1 
U(I, J)=U(I, J)/UIN 
SU(I, J)=TE(I', J)*DEN(I, J)/AEIS(T. AUN(I) ) 

400 SP(1, ))=TE(I, J)**1.5/ED(I9J) /RIN 
CALL PRINT(2,2"NI, NJ, IT, JT, XU, U, HFDUN) 
CALL PRINT(Z, 2, NI "NJ, IT, JT, X, SU, HEDA) 
CALL PRINT12,2, NI, NJ, IT, JT, X, SP, HEDB) 

U, HEDU) 
V, HEDV) 

P, HEDP) 
PP, HEDPP) 
TE, HEOK) 
ED, HEDD) 
VIS, HFDM) 
ENERGY AND LENGTH SCALE 

C. "-- --CALCULA: TIGN OF SHEAR-STRESS COEFFICIENT ALONG LARGE DUCT WALL 
WRITE(6t402) 
00,401 I=29NIM1 
SSC=TAUNII)/t1.0#OENSIT*UIN*UIN) 
XUD=XU(I )IRIN/2.: 0, 
WRITE(6v403) I, XUC, SSC 

401 CONTINUE. 

LEASE 2. O MAIN DATE = WED DEC 13,1978 

STOP 
c. -... ---FORM-AT STATEMENTS 

210 FORMAT(LH1,47X, 36HKASE T3 - TURBULENT FLOW IN DIFFUSER////) 
220 FORMAT( //15X, 331HINLET VELOCITY , 1PE11.3) 
230 FORMAT., ( //15-X,: 33HREYNOL0S NUMBER' 9LPE11.3) 
250 FORMAT( //15X, 33HLAMINAR VISCOSITY , 1PEI1.3) 
260 FORMAT( //15X, 33HFLUID DENSITY 91PE11.3) 
270 FORMAT( . //15X, 33HINCLUDED ANGLE 91PE11.31 
310 FCRMAT_(13: HOITER I---, 9X929HABSOLUTE RESIDUAL SOURCE SUMS-99X, - 

111H---I I---07H FIELD VALUES AT MONITORING LOCATION(,! 2.1H", 12, 
26H) ---I/14H NO UMOM, 5Xt4HVMOM, 5X, 4HMASS, 5X, 4HEN R, 5X, 4HTKIN 
3,5X, 4HDISP, 9X, 1HU, 8X, IHV, 8X, IHP, 8X, 1HT, 8X, 1HK, 8X, 1HD/) 

311 FORMAI(1H : I3,5X, 1P6E9.2,3X, 1P6E9.2) 
312 FCRMAT tiH0.,. 59t, 2H- 11 
402 ZORNATt/. // Xý1HI`, 7X, 5HXU(I), 6X, IOhS. S. COEFF. ) 
403 FORMATt/5; X. 15,2(1PE1193) ) 

END, 

SUBRCUTINE INIT 
C 
CHAPTER 0 0.. 0 0 0,0 00 PRELIMINARIES 0 

.00.0 
0000 

C 
GCMMON. 

1/UVEL/RE., SORU, NSWPU, URFU., DXEPUL 32) , DXPWU(32) , SEWU t 32) 
L/VV-EL/1 E-5ORV, NSWPV, URFV, DYNPV(28,14 ), DYPSV( 28,14), SNSV( 28.14), 
2: RCV(28,14 ) 
1/POOR/RESORM NSWPP, URFP, DUt 2'8, lti) "t V(28,14) #I PREFr3PREF 
1/VAR/ Ut28° 14. ), V(28,14)RPt28,14), PPt28r14), TE(28,14), EDt28,14) 
1/ A1-L/ I T, J T, N I' NJ, NIMI, NJM1, GRE AT 
i/GECYN/I DCOS., X(32)r0Y{; 32), GXEP{32), DXPWt321, DY1NP(28i14)" 
2 , ýf. WBPS-t, 28,14), SNS(28,14), SEW(32), XUt32), Y(28,14), YV(28º14), 
3. R. l28 24) °, RVt28 v14 ) 
1/FLUPR/URFVIS, VISCOS, DENSIT, PRANDT, CEN(28,14), VIS(28,141 
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1/KASE T3/UIN, TEIN, EDIN, FLOWIN, ALAMCA, RIN, CAN 
1/T1JRB/GEN(28914)"CDvCMU, C1, C2, CAPPA, EICG, PRED, PRTE 
1/COEF/AP(28914), AN(28t14)#AS(28914)tAE(28t14), AW(28i14), SU(28,14)v 
1 SP(28: 14) " 

C 
CHAPTER 11111 CALCULATE GEOMETRICAL QUANTITIES 1 . 1.1 11 
C 

GC LUU 1=1fNI 
CD 100 J=1, NJ 
R(I9J)=X(I)#SIN((0.5+FLO AT(J-2))*DAN) 

100 IF(INDCCS. EC. 1)R(I, J)=1.0 
CXPWtl)=0.0 
OXEP(MI)=0.0 
CC 101 1 1, NIM1 
CXEP(I)=X(I+1)-X(I) 

101 CXPW(I+1)=DXEP(I) 
CC 99 1=1, NIM1 
DYPS(I, 1)=0,0 
CYNP(I;, NJ)=0.0 
SrS(I, 1)=0.0 

99 SNS(I, NJ)=0.0 
Do 

1102, 
IP19NI 

CC 102 J=1, t JM1 
CYNP(I, J)=Y(I, J+1)-Y(I, J) 
DYPS(I, J+1)=CYNP(I, J) 
SEW(11=0.0 
SEW(hi)=0.0 
DO 103 I=2, IM1 

103 SEW(I)=0.5*(DXEP(I)+CXPW(I)) 
CC 104 I=19PI 
CC 104 J=2, NJM1 

104 SNS(I, J)=0.5*(CYNP(I, J)+DYPS(I, J)) 
)CU(l)=0.0 
00 105 I-29NI 

1.05 )CU(I)=0.5*(X(I)+X(I-1)) 
CXPWU(l)=0.0 
DXPWU(2)=0.0 
OXEPU(1)=0.0 
CXEPU(NI)=0.0 

LEASE 2.0 INIT 

CC 106 I=2, NIM1 
OXEPU(I)=XU(I+1)-XU(I) 

-, 1j06 CXPW'U(I+1)=DXEPU(hj 
SEWU(1)=C. 0 
SEWU(2)=0.0 
DC 107 I=39NIN1 

107 SEWU(I)=0.5*(CXFPU(I)+DXPWU(I)) 
CC 96 I=l, N1M1 
YV(I, l)=0.0 
RV(I, 11=0.0 
DYPSV(1,1) 0.0 
CYPSV(I92)=0.0 
OYNPV(19. kJ)=0.0 
SNSV(I, I)=0.0 
SfSVt I . 2)=0.0 

98 SNSV(1, NJ) 0.0 
CC 108 1219NI 
CO 108 J=2, NJ 
RV(I, J)$0.5*(RtI, J)+p(I, J-1)) 
RCV(I"J)=0_5*(_RV(1, J)+RV(I, J-1)! 

DATE = WED DEC 13,1978 

108 YVI1, JI-U.. D*tYfiºJ)+Y)I, J-1)). 
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CC 109 I=10II 
DO 109 J=2, NJM1 
CYNPV(I, J)=YV(I, J+1)-YV(I, J) 

109 CYPSV(I, J+1)=[IYNPV(I, J) 
CO 110 I=19NI 
CO 110 J=3, AJk1 

110 SNSV(I9J)=0.5*(DYNPV(I, J)+DYPSVII, J)) 
C 
CHAPTER 222222 SET VARIABLES TC ZERC 222222 C 

DC 200 I=l, kI: 
CC 200 J-1, NJ 
UUI, J)=UIN 

P(I, J)=0.0 
PP(I, J)=0.0 
TE(I, J)=TEIN 
ED(IºJ)=EDIN 
DEN(I, J)=DENSIT 
V"IS(I, J)=VISCos 
DU(I, J)=0.0 
CV(I, J)=0.0 
SU(I, J)=0.0 
SP(I, J)*0.0 

200 CONTINUE 
RETURN 
END 



0 

B. 4, Listing of Program AREA for Calculating Sec;. ndar r Inlet 
Plow ea 

riS 441, L=0 1 P7 
RLAC03 &= C), 165 
IS 13 AT = ILA G&/: S 4AtýL 

1340. ~5.07 -3 
Iiti1I 3º'ý=1.7 1. ý- 2 
13=11LA113 . +FV07-1iSMALL-: 3: 1I 
){14=-0*M6 
YI = 3-Lit?: iTC't3Lt iG : ale L4P(i"ri-C Uw+A) k P) 
USG-{Ii XIW+A)+. YI 11 iC Y1 . 'j-11) 
r SIýAllSt1+t? rtA'T_ýRSýýP. LL*: iS: ýIAt. L 
G st 1.0+ TRAT )l*YIW+A 
HC1.0+BRAT) *YIJ -3 
ECG, 4=(FS()*Gj-iOx TCFSU*ý'SO-1432*3-CG*(3+ i* "1) CFSr.? *FS0-1it-i+tý61 AU. ?. )) 

1+4*4) 
yOi -"s0t31Ci3S"ý L1.. *x; SýIAI. L-`{()ül*`CtJW) 
FJ'VCT: m lid 1- 3)*CYIW-YC 10tJCYIW -D)-(0: 1* 
(f1.4+A)) 
YOC= c0'r1-FDJ JC'I'*Y01 
Y O(: =Y O4 + r'" IV (l T *'S Oid 
RUC-S0HTC CI v1- {0C)**P+({IW-YOC) 2) 
iA6. x: ' 32*i; QCkt'it): f-'', Itid) 
D}: L`l'41aATANJCCYI`d-'(0(; )/('{O; -`! Id 
DtsL-fA2=ATA: VC ( YQd-YOC) /C''. U(; -`SOJ) 
A: 3 4=AHFA+6.2332*C'(O +FNI: "C+RSi9ALL)*, 40C, '*CD&O. TA2-D. A1) 
dint TZ( 6,1 1) {I , v, YI t1, ow, YU; J %, 0C*YQC, 110C, AAA 

11 FOi: 4A'1'C //`2F' 10. /4, /4' 2k'' 1 O. 4, '{, 3'1O. t1,5'{, H' 10J. 5 ) 
CALL zCIT 
r: V D 
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B. 5 Lis ling of Pr� ogram for Calculating the Ming Position 
and, Geometry of Tangential Velocity Component 

Fl, =300.. 0 
ALFA fAV(P-SsO/FL) 
1'i C"J'i`= ß: i .4 
RIV=19. Ob 
!? I Pl . 119) 
RTI=1.33 
AIL. =0.63? 9E-6 
A=1*0 
DA= I* 

1 AIA=ATANCA*SIy(ALrA)/S;? ý: i(k? QUT*i; Cl1T-4 A SIVtAt. iý'A)*5IV(4!. a ))) 
RP=ý`1'AVt'SI: V"(AI ß. ) /ý;;: LI3'C(zI : Nit P-SIýi(QI A)*ýIVC QI A)) ) 
AIP=Ai`A '( LOUT! ý5I'JC: ýt')/S')fi'P(RIV fiI: %I CiOUF*ý, IVtrtp))kk2)) 

pi -. 11 P/. N1 I'd 
w=A'TA RT", P419 I4(AIP) /; uni? I'C1.0-CRT¬W*5IVCl3IP)**2) 
g1, F4d=4tF'A+"rid+RP-AIA-4I P 
AP=A ; 1V, (Ä, 'lß)IC.. IU*StVCALrAP) 
SI'IM =:? I. 1*SI'J(AT. F'4p) . 

Jai'LC(6,10) 'A, AR, Ar. FAP, SLl 4Ja 'S 
1Q Fo', j.! ýSAf`(4F 10.3, x. 12.3) 

IF'C "äT" 11; 00 TO 
.2 A=A+DA 

3D , 'T O1 
2 CALL 

wVll 
. 
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B. 6 List ing of Pr og ram for Calculating the Measuring Position 

and Geometry of Radial Velocity Component 

l)005 
A-3 1 . 75 
1ý1ý=3qß. tý 
? 35=25 0 

IP-1ý49 
PI, =1.33 

. 4L= 0.6: 3 3x'-0 
AI`A=AT Al f"3: /kL) 
5I'JdP=3IVC Al A) /1? I P 
TAU; P--sIVii? /SC! RTC 10 0-SIvhP*5IV1tp) 

Aizal . 
0+TA42P*TAV P 

A2 A 
1 11 - h4cT! 4V17P*CEI+S-A*T, 4VRP) 

CI q+S- A* 1'Al it P) 43<2-: 3 kR 
{f -Chi+'5 iTt91 ? x'31-il. C±*AI C1))/C?. Ai) 
Y1= i+S-'1'ý? v. "2Pv*C'tl+A) 

C 3a(F1-5+, 4kTA'TdP) + *2-; 3 t3 
)t2t9-tR8+S0! iT( 92*132-4.0*A2*C? ) /t O*AP. ) 
Y2a i-S+'! 't3Vr? cam` f't2+'A) 
ALIýAI*ýATA: Vi-Y1/'ti) 
AIP1 ALI''A1-131 

I. U I tlP*SIV{AID1)/ 'Ii+1 
T`4ýýlhýl I: ýýI V4? ýi i /SýiýTC 1.0-5IýiRýf 1 ýS IvRýrl i) " 
1141-ATA4CTAVt? t11) 
IFC AU-Al . GT. Rd 1) SLOPIu-TAV( A141 A1-13. J1) 
I; 1"'tALI'la1. L1 . iltll) ST. 0P1'TA+tt3J"1-ALF41) 
AU'42ýATAVC-Y2/K2) 
Al iß. 2-ALFA2+dP 
SI U: tJ2aFI P*S! NC AI P2) /:? I+1 
TA11 t. ý12ýSI; si ia1`uý/`it ZTC iSIVI? 12*SIyRd P) 
f J2m4TAdtTA 1R' 2) 
51, Q? 2ATAVt rig-. 4U' A9) 
't P'=CY'O'-- Y1, +51., OP I, *`C1-SLOP?, ( 2)/CSLOP1-5LC)P2) 
YP*Y1+SLOP1 e( CP-'C1 ) 
4,43L =ATA4( C''1 OP -SLOP1 )/f 1" ýJ+5LOPP$SI. OPI ?) 
F; ADzus2a"E? 3'r(cl '(P+YP*YP) .. '. ,. 
ýIVAVýMI. J ýi, y(+ý"5- A'13L .) 

T=C 1.0-SLO? 1-*SI,. OP2) /C SLOP1+SLOF2) 
5 VP=Co-l?. O*T+SQFt (, 4.0*'T T+G. 0))/2.0 

i3AU=YP/'f F 
P13OD=SLOP' ; BAD 

Ht TI (6, r 10) 3,11AD rJ , A\1GL£! SI 4AV , SLOP* 6 i? ADs PA U& "e'S 
10 r'titt'4A'e5ißI 3,, I'1O. S, 'b3, E12 3) 

GO TO I 
P. CALL lax It 

F. D 
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An an aid to jet pump design'and performance analysis, 

a theoretical investigation on tuiftlent oontined jet mix- 

ng in a non-uniform axisymmetric duct typically used in 

jet jumpe and 'ejectors has been undertaken. .A so-called 

Pr iidtl-Kolmogorov two-equation turbulence model with 
turbulent kinetic energy k and tu ulent eis r 'dissipation 

rite as the two parameters, is illeorporated Into the 

time-mean Navie Stokes equations to form a complete set 

of partial differential equations which describes the 

turbulent flow mathematically. The equations are solved 

numerically via a primitive pressure-velocity finite- 
difference procedure using a digital computer. The time- 

mean static pressure, velocities, turbulent kinetic energy 
and dissipation rate are predicted directly throughout the 

whole flow field. 

To validate the computer model, predicted time-mean 

static pressure and velocity as well as turbulent shear 

stress for flow in a uniform bore mixing tube are compared 

with the published results. The method is then extended 

. to predict flows in conical diffusers and typical jet 

pumps. The predictions are also compared with the availa- 

ble experimental data. 

A laser Doppler anemometer is used to measure the 

mean and fluctuating velocities of water jet mixing in a 

uniform perspex mixing tube with a centrally located 

vii 



nozzle. The measured data which enable turbulent kinetic 

energy to be evaluated, are compared with the computer 

predictions to further consolidate the theoretical model. 

Finally, the computer model is used to predict the 

performance of a proposed jet pump and to investigate the 

influence of various geometrical parameters on jet pump 

performance. The capability of the computer model as . 
a useful design tool is also demonstrated via an optimi- 

nation procedure to give the optimum geometry for a given 

design specification. 
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