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Resumen 

Introducción: Comparar la importancia de la antropometría superficial compleja (áreas y volúmenes) y simple 

(largos y perímetros) en la valoración antropométrica descriptiva del tren inferior de ciclistas masculinos de 

diferentes disciplinas. Método: utilizando un sistema de imágenes de superficie 3D 3dMDBody5 y un software 

personalizado (KinAnthroScan), antropometría de la parte inferior del cuerpo de 23 no ciclistas masculinos y 57 

ciclistas masculinos de élite de diferentes disciplinas ciclistas: sprint (pista y ruta (colina)), resistencia (carretera, > 

50 millas), contrarreloj (carretera, < 50 millas) y bicicleta de montaña (cross-country y enduro). Resultados: Varias 

medidas antropométricas difirieron entre los grupos de ciclistas y cuando se compararon con el grupo de no 

ciclistas; el grupo de velocidad demostró la mayor magnitud de diferencia con otras disciplinas ciclistas y el grupo 

de no ciclistas, mientras que los grupos de contrarreloj y bicicleta de montaña demostraron la menor. La 

antropometría compleja fue capaz de distinguir entre grupos con tanta eficacia como la antropometría simple y, en 

algunos casos, pudo distinguir diferencias que no eran identificables solo con antropometría simple. 

Conclusiones: Los investigadores, antropometristas y profesionales deben considerar la recopilación y el uso de 

antropometría compleja para mejorar la comprensión de las diferencias antropométricas dentro de la 

antropometría descriptiva, además de tener cuidado al investigar grupos de ciclistas de diferentes disciplinas 

debido a sus diferentes perfiles antropométricos, clasificándolos por disciplina cuando posible. 

Palabras Clave: Imágenes de superficie 3D, Antropometría, Escaneo Corporal, Ciclismo, Medida Corporal. 

Abstract 

Introduction: Compare the importance of complex (areas and volumes) and simple (lengths and girths) surface 

anthropometrics in the descriptive anthropometric assessment of the lower body of male cyclists from different 

disciplines. Method: Using a 3dMDBody5 3D surface imaging system and bespoke software (KinAnthroScan), 

anthropometrics of the lower body of 23 male non-cyclists and 57 elite male cyclists from different cycling 

disciplines: sprint (track and road (hill)), endurance (road, > 50 miles), time trial (road, < 50 miles) and mountain 

bike (cross-country and enduro) were collected. Results: Several anthropometrics differed between cycling groups 

and when compared to the non-cyclists group; the sprint group demonstrated the largest magnitude of difference 

with other cycling disciplines and the non-cyclists group, whereas the time trial and mountain bike groups 

demonstrated the least. Complex anthropometrics were able to distinguish between groups as effectively as simple 

anthropometrics, and in some cases, were able to distinguish differences that were unidentifiable through simple 

anthropometrics alone. Conclusions: Researchers, anthropometrists and practitioners should consider the 

collection and use of complex anthropometrics to improve the understanding of anthropometric differences within 

descriptive anthropometry, alongside adopting caution when researching groups of cyclists from different 

disciplines due to their differing anthropometric profiles - categorising them by discipline when possible. 

Keywords: 3D Surface Imaging, Anthropometry, Body Scanning, Cycling, Body Measurement. 
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Introducción 

Anthropometrics - anatomical dimensional measurements - are fundamental in sport and exercise science 

and medicine. They are used to optimise the fit between humans and environments or equipment, evaluate the 

impact of exercise, nutrition, human growth, ageing and the processes of illness and disease, and explore how size 

and shape can affect the demands of a sporting performance, and how athletes meet those demands (Olds, 2009). 

Furthermore, knowledge of anthropometrics is used to optimise training, assist in the monitoring and prevention of 

injury, examine the impact of training on growth and maturation, and in the early identification of athletic potential 

(Borms, 2008; Olds, 2009). Norton & Olds (2001) suggest that the collection, analysis and understanding of 

anthropometrics is vital in understanding the evolution of sport, as athletes' morphology adapts in response to 

modifications of the rules, technologies and structure of a sport. Within each of these contexts, whilst 

anthropometrics are not the only concept worthy of attention, many believe they are fundamentally important (Koley 

& Jain, 2013; Wolstencroft, 2002). 

Traditionally, research and practice has focused on simple anthropometrics of lengths, breadths, girths, 

mass and compound measurements; e.g. BMI and somatotype. The popularity of simple anthropometrics can be 

attributed to requiring only low cost, accessible and portable equipment such as tape measures and callipers, and 

the availability of standardised training and measurement protocols from several international scientific 

associations including the International Society for the Advancement of Kinanthropometry (ISAK), the American 

College of Sports Medicine (ACSM) and the World Health Organisation (WHO). However, it has been suggested 

that complex anthropometrics - such as areas and volumes, also referred to as '3D' or 'new' anthropometrics, 

provide a more comprehensive representation of the size and shape of the body (Rønnestad et al., 2010; Schranz 

et al., 2012), by identifying changes in body size and shape that might otherwise go unnoticed by simple 

anthropometrics (Daniell et al., 2013). Previously the scarcity of research in this field has been attributed to 

measurement difficulties (Olds, 2004; Olds & Honey, 2006; Sicotte et al., 2010), the high cost and inaccessibility of 

3D surface imaging systems, and the inaccuracies of predictive equations using manual measurements. However, 

the increasing usefulness of 3D surface imaging in entertainment, fashion, ergonomics, and health has bolstered 

the market (Allied Market Research, 2022), driving down prices and increasing accessibility. However, few studies 

have explored complex anthropometrics, with the majority of studies focusing on the accuracy and repeatability of 

3D surface imaging systems and the measurements (simple and complex) they extract (Ballester et al., 2018; 

Bullas, et al., 2016; Clarkson et al., 2014, 2015; Kordi et al., 2019; Kordi et al., 2018) ,as opposed to the usefulness 

of such measures in anthropometric assessments.  

Cycling performance is influenced by the morphology of the cyclist (Dellanini et al., 2004; Haakonssen et 

al., 2015). In general, smaller bodies produce a smaller frontal area, thereby a reduction in aerodynamic drag, in 

addition mean external power output during cycling is related to muscle force which, in turn, is related to muscle 

size and thereby body size (Dellanini et al., 2004). Typically, cyclists from disciplines in which high power 

production is a major determinant of performance are associated with mesomorphic somatotypes and shorter limbs 

(Astrand & Rodahl, 1977; Hopker et al., 2012), due to the increased muscle volume required to generate large 

external power outputs (Tanner, 1964). However, as the importance of high peak power reduces, alongside an 

increase in performance distance and a reduction in the gradient of the cycling terrain, the somatotypes of cyclists 

typically lean towards an ectomorphic profile and longer limbs (Foley et al., 1989; Rauter et al., 2017; Tanner, 

1964). However, there are exceptions. For example, it is advantageous for time trial and mountain bike cyclists to 

be ectomorphic for climbing and endurance features of a course, and mesomorphic for flat sprint features 

(Passfield et al., 2012). Thus, it is possible that time trial and mountain bike cyclists demonstrate both sprint and 

endurance anthropometric characteristics. In addition, it was previously assumed cyclists would present 

symmetrical anthropometry due to the symmetrical nature of cycling (Wozniak Timmer, 1991). However, literature 

has demonstrated asymmetries in cycling performance are prevalent (Carpes et al., 2010) and that such 

asymmetries are reflected within cyclists’ anthropometry (Rauter et al., 2017). 

Whilst previous studies have incorporated the use of complex anthropometrics into their assessment of 

cyclist (Daanen et al., 2016; Kordi et al., 2018; Rønnestad et al., 2010), very little is known about their usefulness in 

in comparison to simple anthropometrics. The aim of this study was to compare the ability of complex and simple 

anthropometrics to distinguish between cyclists from different disciplines, and in doing so expanding the 

understand of the anthropometric profiles of cyclists.  

 

Material and Methods 

Study design 
This was a cross sectional observational study in which the anthropometrics of cyclists from different 

disciplines and non-cyclists were collected, collated and compared.  
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Participants  
Participants were required to be aged 18 to 45 years, free from injury, able to stand unaided and to have 

never experienced major lower limb trauma, disease or illness that may have influenced physical development. All 

cyclists were required to have been competing at regional cycling events for a minimum of 2 years and score 1+ on 

the Swann et al., categorization model (Swann et al., 2014); as anthropometric profiles for a sporting population are 

most easily identified by assessing elite athletes from developed sports (Norton et al., 1996). All non-cyclists were 

required to be recreational active; scoring 'moderate' to 'high' on the international physical activity questionnaire 

(IPAQ) (IPAQ, 2002) to prevent anomalies due to physical inactivity. As the degree to which ex-athletes retain elite 

traits following the cessation of elite performance remains unclear (Smith & McManus, 2009), non-cyclists were 

excluded if they competed or trained in any sport at an elite level in the last ten years.  

Through convenience sampling 80 male volunteers we recruited: 23 non-cyclists and 57 cyclists. All 

participants provided informed consent, and completed a screening, cycling and physical activity questionnaire. All 

procedures were approved by Sheffield Hallam University Research Ethics Committee. 

 

Protocol 

All participants attended one 20-minute anthropometric data collection session. Although the upper and 

lower body contribute to cycling performance, it is predominantly the lower body that is responsible for force 

production and thus likely to hold the strongest relationship with anthropometrics (Knapp, 1963). Therefore, only 

anthropometrics of the lower body was explored. Data were collected from both the dominant and non-dominant 

sides, as to allow for exploration of symmetry. Data collection for each cycling discipline group occurred during 

peak season for the discipline to minimise variability due to seasonal variations. For non-cyclists, data collection 

occurred throughout the study. During each data collection session, participants were required to wear non-

compressive form fitting shorts (that extended no further than the mid-thigh) and no socks. Each data collection 

session consisted of manual measurement of standing stature and body mass by a level one ISAK anthropometrist 

- using a stadiometer (Leicester, Seca Vogel, Germany) and digital scales (Weight Watchers Limited, UK) 

respectively - in adherence to ISAK guidelines (Stewart et al., 2011)). 

 

Landmarking 

The lower legs were defined as the region bounded by the epicondyles of the knee and malleoli, for the 

proximal and distal borders respectively. The upper leg was defined as the region between the middle of the gluteal 

fold and epicondyles of the knee, for the proximal and distal borders respectively.  

To ensure anthropometrics were extracted from the correct locations, ten anatomical landmarks, five per 

leg, were manually palpated by a level one ISAK anthropometrist and marked using self-adhesive circular markers 

(0.8 cm x 0.8 cm): 

• The inferior aspect of the distal tip of the lateral malleolus.  

• The inferior aspect of the distal tip of the medial malleolus (Stewart et al., 2011, p. 49) 

• The most superior point on the medial border of the head of the tibia (Stewart et al., 2011, p. 48) 

• The most superior point on the lateral border of the head of the tibia (Stewart et al., 2011, p. 43) 

• The middle of the gluteal fold; the horizontal crease formed by the inferior aspect of the buttocks and the 

posterior aspect of the thigh. 

 

Measurement systems  

A 3dMDbody5 (3dMD Limited, USA) stereo photogrammetry surface imaging system was used to capture 

3D images of the participants' lower body. This system was selected due to its small magnitude of variability when 

anthropometrics were extracted through bespoke software (KinAnthroScan); 0.67 cm for girths, 0.48 cm2 for cross 

sectional areas, 67.85 ml in volumes and 0.99 cm2 in surface areas of typical leg segments (Bullas et al., 2022).  

The configuration and calibration procedure of the 3dMDbody5 system followed the manufacturer’s 

guidelines. However, the exact methods of alignment, filtering and refinement used in the proprietary software are 

unknown. To avoid occlusion by the contralateral limb and ensure placement of the participants’ body segments 

within the centre of the calibrated volume, participants were asked to adopt three positions on a raised platform; 

participants stood on their right leg with the left leg raised on a higher platform to scan their right upper leg, on their 
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left leg with the right leg raised on a higher platform to scan their left upper leg and stood on both legs shoulder 

distance apart to capture both lower legs. Participants were requested to remain relaxed in accordance with ISAK 

guidelines (Stewart et al., 2011) and visually focus on a single wall mounted circular markers (1.6 cm x 1.6 cm) at 

eye level, to minimise postural sway. Due to the high repeatability of the 3dMDbody5 system (Bullas et al., 2022), 

only one 3D image of each position was collected, resulting in three 3D images per participant.  

 

Post processing of 3D images 

KinAnthroScan software (Centre for Sports Engineering Research, Sheffield Hallam University, UK) was 

used to process all 3D images, in a manner identical to that described in Bullas et al., (2016). Briefly, the markers 

within each 3D image were manually digitised by one researcher (Total TEM of 0.044% (0.09 mm) when digitising 

the lower leg in KinAnthroScan). Once completed, KinAnthroScan returned a set of 3D coordinates for the marked 

anatomical landmarks. These digitised points identified the boundaries of the body segments. Following this, 32 

size anthropometrics (Table 1) - 16 per side (7 simple, 9 complex), were extracted as outlined in previous studies 

(Bullas et al., 2016; Clarkson et al., 2015). Although the majority of size anthropometrics adhered to ISAK 

guidelines (Stewart et al., 2011), as the greater trochanter of many participants fell outside of the capture volume, 

measurement of the mid-thigh girth based upon ISAK guidelines was not suitable. Instead, the mid-thigh girth (the 

midpoint of the epicondyles of the knee and gluteal fold) was taken as the middle of the upper leg.  

Sixteen symmetry anthropometrics (Table 1) were subsequently calculated using a normalised measure of 

absolute (ABS) symmetry (Equation 1) (Zifchock et al., 2008), using measurements of both the dominant (mD) and 

non-dominant sides (mND), to allow comparison between groups and eliminate the effect of body size. 

Equation 1 

𝑆 =
(𝐴𝐵𝑆(𝑚𝐷 −𝑚𝑁𝐷))

(
𝑚𝐷

100
)

 

Similar to previous studies (Schranz et al., 2010), anthropometrics that fell ± 2 standard deviations away 

from the mean were re-measured. A full list of the anthropometrics and their definitions is presented within Table 1. 

 

Table 1. Definitions of each anthropometric 

 Site Measure Type (unit) Definition 

S
im

p
le

 

Ankle Girth 

Size (cm) 
The smallest girth of the lower leg (Stewart et al., 2011, p. 88), 

perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

ankle girth. 

Calf Girth 

Size (cm) 
The maximal girth of the lower leg (Stewart et al., 2011, p. 87), 

perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

calf girth. 

Knee Girth 

Size (cm) 

Girth about the most superior point on the medial border of the head of 

the tibia (Stewart et al., 2011, p. 48) and of the most superior point on 

the lateral border of the head of the tibia (Stewart et al., 2011, p. 43), 

perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

knee girth. 

Mid 

thigh 
Girth 

Size (cm) 
Girth at the midpoint of the upper leg length, perpendicular to the long 

axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

mid-thigh girth. 

Thigh Girth 

Size (cm) 
Girth of the thigh 1cm distal to the gluteal fold, perpendicular to the long 

axis (Stewart et al., 2011, p. 85). 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

thigh girth. 



DOI: 10.34256/ijk2222 

Int. J. Kinanthrop. 2022, 2(2):13-27 | 17 

Lower 

leg 
Length  

Size (cm) 

The vertical distance between the centre point between the most 

superior point on the medial border of the head of the tibia (Stewart et 

al., 2011, p. 48) and of the most superior point on the lateral border of 

the head of the tibia (Stewart et al., 2011, p. 43), and the centre point of 

the inferior aspect of the distal tip of the lateral malleolus and the 

inferior aspect of the distal tip of the medial malleolus (Stewart et al., 

2011, p. 49). 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

lower leg length. 

Upper 

leg 
Length  

Size (cm) 

The vertical distance between the centre point between the most 

superior point on the medial border of the head of the tibia (Stewart et 

al., 2011, p.48) and of the most superior point on the lateral border of 

the head of the tibia (Stewart et al., 2011, p.43) and the gluteal fold. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

upper leg length. 

C
o
m

p
le

x
 

Ankle  CSA 

Size (cm2) 
CSA at the smallest girth of the lower leg (Stewart et al., 2011, p. 88), 

perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

ankle CSA. 

Calf  CSA 

Size (cm2) 
The CSA at the maximal girth of the lower leg (Stewart et al., 2011, p. 

87), perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

calf CSA. 

Knee  CSA 

Size (cm2) 

CSA encompassed by the most superior point on the medial border of 

the head of the tibia (Stewart et al., 2011, p. 48) and of the most 

superior point on the lateral border of the head of the tibia (Stewart et 

al., 2011, p. 43) , perpendicular to the long axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

knee CSA. 

Mid-

thigh  
CSA 

Size (cm2) 
CSA at the midpoint of the upper leg length, perpendicular to the long 

axis. 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

mid-thigh CSA. 

Thigh  CSA 

Size (cm2) 
CSA of the thigh 1cm distal to the gluteal fold, perpendicular to the long 

axis (Stewart et al., 2011, p. 85). 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

thigh CSA. 

Lower 

leg  
SA 

Size (cm2) 

SA enclosed by the most superior point on the medial border of the 

head of the tibia (Stewart et al., 2011, p.48) and of the most superior 

point on the lateral border of the head of the tibia (Stewart et al., 2011, 

p.43), and the inferior aspect of the distal tip of the lateral malleolus and 

the inferior aspect of the distal tip of the medial malleolus (Stewart et 

al., 2011, p.49). 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

lower leg SA. 

Lower 

leg  
Volume ml 

Volume of the area enclosed by the most superior point on the medial 

border of the head of the tibia (Stewart et al., 2011, p.48) and of the 

most superior point on the lateral border of the head of the tibia 

(Stewart et al. 2011, p.43), and the inferior aspect of the distal tip of the 

lateral malleolus and the inferior aspect of the distal tip of the medial 
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malleolus (Stewart et al., 2011, p.49). 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

lower leg volume. 

Upper 

leg  
SA 

Size (cm2) 

The SA enclosed by the most superior point on the medial border of the 

head of the tibia (Stewart et al., 2011:p.48), the most superior point on 

the lateral border of the head of the tibia (Stewart et al., 2011, p.43) and 

the gluteal fold . 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

upper leg SA. 

Upper 

leg  
Volume 

ml 

The volume enclosed by the most superior point on the medial border 

of the head of the tibia (Stewart et al., 2011:p.48), the most superior 

point on the lateral border of the head of the tibia (Stewart et al., 2011, 

p.43) and the gluteal fold . 

Symmetry (%) 
The percentage difference between the dominant and non-dominant 

upper leg volume. 

 

Data Analysis  

To ensure the selection of suitable analysis procedures, the parametric nature of all variables 

(anthropometrics, age, stature, body mass and, physical activity and cycling experience) was explored using their 

skewness, kurtosis and Kolmogorov-Smirnov values within SPSS (IBM SPSS Statistics 24.0). A one-way ANOVA 

with Games-Howell post hoc correction was then executed within SPSS, due to its suitability for use within unequal 

and small sample sizes (Field, 2009), to explore the differences in group descriptives (age, stature, body mass and, 

physical activity and cycling experience). Due to the high degree of multicollinearity between anthropometrics and 

the small differences between groups, statistical analysis of the anthropometrics such as multinomial logistic 

regression and statistical parametric mapping were deemed unsuitable. 

To determine the magnitude of difference between each group, effect sizes for each anthropometric were 

calculated using the Hedges’s g procedure (Hedges & Olkin, 2014) due to its correction for unequal and small 

sample sizes (Lakens, 2013). Effect sizes ≥ 0.8 and ≤ -0.8 are reported as meaningful differences ensure any 

differences detected were attributable to true change - not attributable to the measurement system’s variability. For 

size anthropometrics, positive effect sizes ≥ 0.8 indicated that the cyclists group were meaningfully larger than the 

non-cyclists group, and negative effect sizes indicated the cyclists group were meaningfully smaller than the non-

cyclists group. For symmetry anthropometrics, positive effect sizes ≥ 0.8 indicated that the cyclists group were 

meaningfully more asymmetrical than the non-cyclists group, and negative effect sizes ≤ 0.8 indicated that the 

cyclists group were meaningfully more symmetrical than the non-cyclists group.  

To determine the degree of variability for each anthropometric between groups the coefficient of variation 

ratio was calculated. Following Drinkwater et al., (2007) ratios ≥ 1.1 indicated that the anthropometric of the cyclists 

group were substantially more variable than the non-cyclists group, whereas ratios ≤ 0.9 indicated that the 

anthropometric of the cyclists group were substantially less variable than the non-cyclists group.  

  

Results 

Stratification of all participants created five groups: non-cyclists, sprint (track and road), endurance (road, > 

50 miles), time trial (road, < 50 miles) and mountain bike (cross-country and enduro) as listed in Table 2. There 

were no significant differences between groups in age and stature (p = 0.20, ηp
2 = 0.08 and p = 0.78, ηp

2 = 0.02 

respectivly). Statistically significant differences (p = 0.03, ηp
2 = 0.13) were demonstrated in body mass; between 

endurance cyclists and the sprint cycling group (p = 0.93, 95% CI = -25.72, 1.52), the mountain bike group (p = 

0.02, 95% CI = -20.47, -1.45) and non-cyclist group (p = 0.38, 95% CI = -0.89, -0.48).  
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Table 2. Group descriptive 

Group descriptives  Non-cyclists’ group 
Cyclists groups 

Sprint Endurance Time Trial Mountain 

n 23 8 9 15 25 

Age (years) 29 ± 6 32 ± 10 28 ± 11 28 ± 9 33 ± 7 

Stature (cm) 179.5 ± 5.9 182.5 ± 6.0 180.4 ± 7.2 178.8 ± 8.4 181.1 ± 9.3 

Body mass (kg) 77.8 ± 10.6*E 79.2 ± 10.7 67.1 ± 7.2*N*M 74.3 ± 8.7*M 78.1 ± 8.1*E*T 

Swann Classification 
- 4.1 ± 1.0 5.0 ± 1.3 3.9 ± 1.9 2.0 ± 1.1 

- Semi / competitive elite *M Semi / competitive elite *M Semi / competitive elite *M Semi elite *S*E*M 

Hours per week 
Training - 11.0 ± 5.4 12.8 ± 3.8 9.7 ± 4.5 8.7 ±4.5 

Competing - 2.8 ± 1.8 3.0 ± 1.7 1.7 ± 0.8 1.9 ± 2.1 

IPAQ Moderate / high High High High Moderate / high 

*N= significantly different (p ≤ 0.05) to the non-cyclists group.  

*S= significantly different (p ≤ 0.05) to the sprint group.  

*E= significantly different (p ≤ 0.05) to the endurance group.  

*T= significantly different (p ≤ 0.05) to the time trial group. 

*M= significantly different (p ≤ 0.05) to the mountain bike group.  

IPAQ score categorisation: low =~ < 600 MET-min/week, moderate = ~601 - 2999 MET-min/week, high = ~ > 3000 MET-min/week.  

 

Comparisons to the non-cycling group 

Sprint group 

When compared to the non-cyclist group, the sprint group were predominantly larger in size and demonstrated an increased degree of asymmetry, mostly a bias 

towards the dominant leg. Approximately 25% (12/48; 19% of simple anthropometrics, 30% of complex anthropometrics) of anthropometrics demonstrated a 

meaningful effect size (Figure 1a) and 79% (38/48; 67% of simple anthropometrics, 89% of complex anthropometrics) demonstrated a meaningful coefficient of 

variation ratio (Figure 1b). Approximately 21% (10/48; 14% of simple anthropometrics and 26% of complex anthropometrics) exhibited a meaningful effect size and 

coefficient of variation ratio were: non-dominant ankle girth, dominant ankle girth, dominant ankle CSA, lower leg surface, area symmetry, lower leg, volume symmetry, 

upper leg length symmetry, dominant upper leg volume, dominant and non-dominant upper leg surface area and knee CSA symmetry. Overall, when comparing to the 

non-cyclist and sprint cycling groups, complex anthropometrics identified differences to a greater extent than simple anthropometrics. 
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Figure 1: a) Effect sizes of the anthropometrics and b) coefficient of variation of the anthropometrics of the sprint 

group in comparison to the non-cyclists group. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: a) Effect sizes of the anthropometrics and b) coefficient of variation of the anthropometrics of the 

endurance group in comparison to the non-cyclists group. 
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Time Trial Group 

The time trial group demonstrated little difference in size and symmetry to the non-cyclist group. 

Approximately 35% (17/48; 33% of simple anthropometrics, 37% of complex anthropometrics) of anthropometrics 

demonstrated a meaningful effect size (Figure 3a), and 46% (22/48, 43 % of simple anthropometrics, 48% of 

complex anthropometrics) exhibited a meaningful coefficient of variation ratio, compared to the non-cyclists group 

(Figure 3b). The only anthropometrics to exhibit a meaningful effect size and coefficient of variation ratio were 

dominant and non-dominant thigh CSA. When comparing the non-cyclist and time trial cycling groups, although 

simple and complex anthropometrics predominantly identified differences to a comparable degree, complex 

anthropometrics were able to identify differences unidentifiable by simple anthropometrics alone. 

 

Mountain bike group 

The mountain bike group demonstrated little difference in size or symmetry to non-cyclists. No 

anthropometric demonstrated a meaningful effect size (Figure 4a) and 56% (27/48, 15% of simple anthropometrics, 

22% of complex anthropometrics) exhibited meaningful coefficient of variation ratio in comparison to the non-

cyclists group (Figure 4b). No anthropometric demonstrated both a meaningful effect size and coefficient of 

variation ratio. Overall, when comparing the non-cyclist and mountain bike cycling groups, although simple and 

complex anthropometrics predominantly identified differences to a comparable degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: a) Effect sizes of the anthropometrics and b) coefficient of variation of the anthropometrics of the time 

trail group in comparison to the non-cyclists group. 

Comparison between Cycling Disciplines 

Several anthropometrics differed between cycling disciplines, listed within Table 3. Overall, complex 

anthropometrics distinguished between groups as effectively as simple anthropometrics, and in some cases 

highlighted differences that are unidentifiable through simple anthropometrics alone. 
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Figure 4: a) Effect sizes of the anthropometrics and b) coefficient of variation of the anthropometrics of 

the mountain bike group in comparison to the non-cyclists group. 

 
 

Discussion  

Size anthropometrics 

Typically, cyclists in power based disciplines present mesomorphic somatotypes (Hopker et al., 2012), and those 

within endurance based disciplines present ectomorphic profiles (Tanner, 1964). In line with this, the results of this 

study demonstrated the sprint group to be the largest, followed by mountain bike, then time trial and then 

endurance groups. The time trial and mountain bike groups were most similar to the non-cyclists and each other. 

Previous investigations suggest that it is advantageous for time trial and mountain bike cyclists to be ectomorphic 

for climbing and endurance features of a course, and mesomorphic for flat sprint features (Passfield et al., 2012). 

Thus, it is possible that time trial and mountain bike cyclists demonstrate both sprint and endurance 

anthropometric characteristics which present an amorphous anthropometric profile similar to non-cyclists. However, 

further research is necessary to confirm this. 

Previous literature suggested that time trial cyclists have longer, and sprint cyclists shorter, legs (Foley et 

al., 1989) - due to the relationship between limb length and cadence (Astrand & Rodahl, 1977), however little 

difference was demonstrated between cycling disciplines in the present study. It is possible the differences 

between this and previous studies, are attributable to slight differences in cyclists’ expertise; as expertise and 

asymmetry are believed to be linked, although the direction of this relationship in cycling remains unclear (Rauter et 

al., 2017). In addition, the differences could be the result of disparities in the landmarking of the upper leg; with the 

gluteal fold used to mark the proximal end of the thigh, as opposed to the greater trochanter in previous 

investigations and ISAK standards (Stewart et al., 2011). 

The results of this study suggest that complex size anthropometrics distinguish between groups as 

effectively as simple size anthropometrics, and in some cases, can distinguish differences that are unidentifiable 

through simple anthropometrics alone.  
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Table 3. Simple and complex anthropometrics that demonstrated large effect sizes (≤ -0.8 and ≥ 0.8) and meaningful coefficient of variations ratios (≤ 0.9 and 

≥ 1.1) when comparing between cycling disciplines. 

(D=dominant, ND=non-dominant, SYM=symmetry, CSA=cross sectional area, SA=surface area). 

 Measurement 
Non-cyclists 

& sprint 

Non-cyclists 

& endurance 

Non-cyclists 

& time trial 

Non-cyclists 

& mountain 

bike 

Sprint & 

Endurance 

Sprint & 

Time trial 

Sprint & 

Mountain 

bike 

Endurance & 

Time trial 

Endurance & 

Mountain 

bike 

Time trial & 

mountain 

bike 

S
im

p
le

 

Ankle girth *D *ND    *D *ND *D     

Calf girth  *D *ND   *D *ND *D   *D *ND  

Knee girth  *SYM         

Mid-thigh girth     *D *ND *D *ND     

Thigh girth  *D   *D      

Lower leg length           

Upper leg length *SYM    *SYM      

C
o
m

p
le

x
 

Ankle CSA *    *D *ND *D *SYM     

Calf CSA *SYM    *D *ND *D   *D *ND  

Knee CSA *SYM *SYM   *D      

Mid-thigh CSA     *D *ND *D *ND     

Thigh CSA  *ND *D *ND   *D *ND     

Lower leg SA *SYM    *D *ND *D *SYM *SYM  *D *ND  

Lower leg volume *SYM    *D *ND *SYM *SYM  *D *ND  

Upper leg SA *ND    *D *ND      

Upper leg volume *D    *D *ND *D     

 

 

It is possible this is because complex anthropometrics consider the whole segment, presenting a better representation of difference, as opposed to a single 

point. These findings are similar to those outlined by Schranz et al., (2010), in which the greatest differences between elite rowers and the general population were 

seen in complex anthropometrics, such as segmental volumes and cross-sectional areas, as opposed to simple anthropometrics. However, this is not to suggest that 

complex size anthropometrics should replace simple size anthropometrics as there is value in single point anthropometrics – instead, collection of both would be 

preferable. 

 

Symmetry Anthropometrics  

Several previous investigations have suggested bilateral differences are prevalent within cycling (Rauter et al., 2017), and vary depending on pedalling 

cadence, exercise intensity and exercise duration (Carpes et al., 2010) - despite its perception as a symmetrical sport. Anthropometrics consider 
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the whole segment, presenting a better representation of difference, as opposed to a single point. These findings 

are similar to those outlined by Schranz et al., (2010), in which the greatest differences between elite rowers and 

the general population were seen in complex anthropometrics, such as segmental volumes and cross-sectional 

areas, as opposed to simple anthropometrics. However, this is not to suggest that complex size anthropometrics 

should replace simple size anthropometrics as there is value in single point anthropometrics – instead, collection of 

both would be preferable. 

 

Symmetry Anthropometrics  

Several previous investigations have suggested bilateral differences are prevalent within cycling (Rauter et 

al., 2017), and vary depending on pedalling cadence, exercise intensity and exercise duration (Carpes et al., 2010) 

- despite its perception as a symmetrical sport. Within this study, all cyclist groups demonstrated little difference or 

a small meaningful increase in asymmetry when compared to the non-cyclists group. However, symmetry 

anthropometrics did identify differences between the sprint group and the other cycling groups; the sprint group 

predominantly demonstrated more asymmetry - specifically a bias towards the dominant leg. This is possibly 

attributable to the higher mean external power outputs generated in sprint cycling, as it is proposed pedalling 

asymmetries are exacerbated at higher mean external power outputs (≥ 200 watts) (Bini, 2011). Bini et al., (Bini, 

2011) suggested that the increased degree of asymmetry causes the dominant leg to receive greater neural drive 

and provide a greater contribution to power output - reinforcing the asymmetry in anthropometry. However, more 

evidence is required to confirm this. 

Typically, it is accepted that differences in symmetry anthropometrics will be small (Moller, 1993). The 

symmetry anthropometrics that demonstrated a meaningful difference between groups demonstrated differences 

greater than the 3dMDbody5 system variability. However, the absolute differences do appear to be particularly 

small, thus the importance of the differences in asymmetry demonstrated within this investigation should not be 

overstated. For example, although the reduced asymmetry highlighted at the upper leg length of the sprint group in 

comparison to the non-cyclists group was associated with a large effect size, the mean absolute difference was a 

~2 mm (0.6%) for the sprint group and ~5 mm (1.6%) the non-cyclists group.  

Overall, complex symmetry anthropometrics were able to distinguish between groups as effectively as 

simple symmetry anthropometrics, and in some cases, were able to distinguish differences that were unidentifiable 

through simple symmetry anthropometrics alone. For example, when comparing the sprint and mountain bike 

cycling groups, calf volume and SA symmetry highlighted differences between the groups that were not 

demonstrated by any simple symmetry anthropometric. 

 

Limitations 

This study has limitations that require consideration. First, because of the small and unequal sample sizes, 

substantial statistical difference testing was unsuitable, thus the degree to which these results are representative of 

wider populations is unclear. Second, the absence of body composition measurements means we cannot detect if 

differences in size are attributable to differences in muscle or fat mass. Third, the importance and role of each 

anthropometric during performance and how they change over time remains unknown, thus future research on 

complex anthropometrics in applied and longitudinal contexts, with larger sample sizes and accompanying body 

composition measurement is recommended 

 

Conclusion  

Complex anthropometrics distinguish between groups as effectively as simple anthropometrics, and in 

some cases, can distinguish differences that are unidentifiable through simple anthropometrics alone. In addition, 

this study expanded upon previous research examining the anthropometry of cyclists by demonstrating the lower 

body anthropometric profiles cyclists from different cycling disciplines and none cyclists differ. Therefore, 

researchers, anthropometrists and practitioners should consider the inclusion of complex anthropometrics in future 

anthropometric assessment to improve understanding of anthropometric changes and differences, such as 

monitoring and prevention of injury, examine the impact of training on growth and maturation, and in the early 

identification of athletic potential, and separate cyclists from different disciplines in future research.  
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