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A B S T R A C T
Nowadays, the power grid has become an active colossal resource generation and management system
due to the wide use of renewable energy and dynamic workloads processed through intelligent infor-
mation and communication technologies. Several new operations exist, such as power electrification,
intelligent information integration on the physical layer, and complex interconnections in the smart
grid. These procedures use data-driven deep learning, big data, and machine learning paradigms to
efficiently analyze and control electric power system transient problems and resolve technical issues
with robust accuracy and timeliness. Thus, artificial intelligence (AI) has become vital to address
and resolving issues related to transient stability assessment (TSA) and control generation. In this
paper, we provide a comprehensive review on the role of AI and its sub-procedures in addressing
problems in TSA. The workflow of the article includes an AI-based intelligent power system structure
along with power system TSA and AI-application rationality to transient situations. Outperforms other
reviews, this paper discusses the AI-based TSA framework and design process along with intelligent
applications and their analytics in power system transient problems. Moreover, we are not limited to
AI, but we also combine the direction of big data that is highly compatible with AI, discusses future
trends, opportunities, challenges, and open issues of AI-Big data based transient stability assessment
in the smart power grid.

1. Introduction
With the progress of power system construction, super

long distance, cross-regional, large capacity transmission,
and the high proportion of electronic power have ushered in
new risks. At the same time, high-power scarcity accidents
and intricate chain faults improve the power system transient
stability challenges further system analysis and control (1).
There are theoretical constraints and technical bottlenecks
to accurately grasp the transient status of a vast power grid
to realize online security and stability analysis and manage-
ment. As Figure 1 shows, with the booming development
of electric power measurement and communication technol-
ogy, and access to a large number of data such as external
information (environment, meteorology, society, etc.), the
power system has developed into a high-dimensional time-
varying non-linear cyber power physical system (CPPS)
with multi-source information interaction (2) (3). The com-
plexity of the physical system and information system with
multiple sources have raised stricter requirements for the
accuracy and timeliness of transient stability analysis (4)(5).

The electric power system is a time-varying nonlinear
system. A transient stability analysis is a transient stability
analysis of a specific non-autonomous nonlinear system.
Because the multi-time scale control interaction causes high
state variable order and strong nonlinearity of the system,
the scholars should model the system and simplify the model
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according to these characteristics, and then establish the the-
ories and methods corresponding to the model analysis work
continue. Different modeling methods will be integrated into
a model based on extra power electronic characteristics in
the whole power system. Individual subsystems interact,
resulting in a very strong nonlinearization. In addition, the
significant investment in new energy will also bring volatil-
ity and instability to the system. The work angle stability
of global power systems, including wind and flexible DC
transmission lines, are studied in (6)(8). Understanding the
system’s characteristics through the system trajectory for
complex nonlinear systems is most intuitive. But the system
trajectory often cannot provide quantitative information on
the system mechanism; on the other hand, the accurate
model of the power electronic converter in the global system
is impractical, so modeling is a crucial step in transient
stability analysis. (7) states that voltage instability does not
always occur alone. In the power electronic power system,
the interaction between the power electronic converter and
the power grid will be more complex, and the instability
phenomenon is often intertwined. Therefore, it is necessary
to study the mechanism of the transient instability of the
electronic power system. Only by fully understanding the
nature of the instability phenomenon can the system stability
margin be calculated quantitatively, and then the system can
be planned and controlled. The transient stability mentioned
in this paper refers to the ability of the power electronic
power system to achieve a new stable operation state or
return to the original operation state after a large disturbed
transient process.
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Abbreviation Description

AI Artificial Intelligence

TSA Transient Stability Assessment

CPPS Cyber Power Physical System

AC Alternating Current

ML Machine Learning

GPU Graphics Processing Unit

WAMS Wide Area Measurement System

UEP Unstable Equilibrium Point

ANN Artificial Neural Network

SVM Support Vector Machine

CVM Core Vector Machine

EL Ensemble Learning

ELM Extreme Learning Machine

DL Deep Learning

RL Reinforcement Learning

TL Transfer Learning

VC Vapnik-Chervonenkis

RF Random Forest

NN Neural Network

CNNs Convolutional Neural Networks

DBN Deep Belief Network

UHV Ultra High Voltage

DC Data Center

RUEP Relevant Unstable Equilibrium Point

PEBS Potential Energy Boundary Surface

EEAC Extended Equal Area Criterion

CCT Critical Clearing Time

PMU Phasor Measurement Unit

EETC Extended Equal Area Criterion

Based on the above description, it is easy to find the
traditional method’s difficulty in solving the transient prob-
lem. Therefore, the introduction of AI to meet the current
transient stability research requirements has become a hot
research direction in this digital era.

Artificial intelligence system has a significant use ef-
fect on the transient problem of the smart power system,
combined with the information, digital, intelligent operation
mechanism, and operation mode, to realize the practical

Figure 1: 3D-3M Power System Developing Diagram

analysis. Considering various transient problems also en-
sures the safe and stable operation of the whole power system
(9) (82)(13).

The application of AI to the power system transient prob-
lem began in the late 1980s (54). During this time, the
researchers have made valuable explorations in the research
framework, data processing, and algorithm design. How-
ever, due to hardware performance constraints and algorithm
efficiency limitations, AI still needs a large-scale practical
application in this field. But, with the progress of science
and technology, in recent years, AI has opened a new round
of rapid development characterized by deep learning, high-
performance computing, and big data (12). Like things, the
application of AI to the power system transient stability
analysis and control has once again become a research hot
spot in this big context. Figure 2 shows the relationship
between the electric power system, the big data, and the
artificial intelligence and the system application (14) (15)
(16)(19).

In the past, dispatchers with long-term experience often
judge the safety level and stable weak links of the power
grid according to the operation mode and power current
level. It is the starting point of power grid security and sta-
bility evaluation based on artificial intelligence technology.
Its basic idea is to rely on the analogy and learning of a
large number of training samples to form the knowledge
of power grid stability evaluation and conduct the online
discrimination of power grid security level (17). It generally
does not need to establish a detailed mathematical model
of the power system, the heavy training sample acquisition,
and the learning process is completed offline. The online
stability evaluation speed is extremely fast (18). As long as
the sample is rich and accurate, and the evaluation system is
appropriately designed to obtain good evaluation accuracy,
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Figure 2: Smart Power System Structure

it also has advantages in the efficiency and interpretability
of the evaluation.

The characteristics of the new generation of AI and the
power system transient problem are closely fit, mainly re-
flected in the following:

1. The power system transient process mechanism is com-
plex, involving the electromagnetic and electromechan-
ical transient processes (20)(25). The number of influ-
encing factors is enormous, reaching hundreds in the
test system of the IEEE39 node alone. Deep learning
has superior advantages in solving complex problems
with multiple factors and unknown mechanisms than
traditional machine learning.

2. The transient problem time scale is from milliseconds
to seconds, which requires completing the transient
response characteristic data processing and calculating
many components in a short time (21). In recent years,
high-performance computing has developed rapidly,
taking the peak performance of Graphics Processing
Unit (GPU) floating-point computing as an example,
which has grown from 10 billion times per second to
trillions per second. A well-trained AI model for the
transient stability prediction of a power system is usu-
ally able to achieve the forecast within 10ms, creating
the conditions for the rapid analysis of the transient
stability (22)(26).

3. The successful development of simulation technolo-
gies, software, and platforms for transient processes in
power systems can provide samples of large data mag-
nitude (23). Traditional machine learning studies the
algorithm to improve performance, and it is challenging
to continue to break through. AI algorithms based on
big data can use massive data to improve the algorithm
performance (24)(33).

This paper analyzes the changes in various research fields
and the necessity of AI applications. Authors are reviewed
from data acquisition, sample generation, and algorithm
application, and the current deficiencies are analyzed. Based
on the above inductive analysis, this paper puts forward the
research idea of AI application to transient stability prob-
lems. Meanwhile, the authors also give the corresponding
solutions to the current hot issues. Ultimately, the future
development trends, opportunities, and challenges of TSA
based on AI and big data are given. This paper not only
introduces all the aspects of AI-TSA comprehensively but
also analyzes the specific problems and provides possible
solutions. In line with the trend of technology development,
because of the inseparable relationship between big data and
AI, the authors have further integrated the two technical
parties, hoping to give scholars a reference. To show our con-
tributions, we summarize the differences between our work
and the existing reviews in Table 1, where the concerned
topic stands for research points contained in the papers.
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Table 1
The Comparisons of The Related Reviews In Power System

Papers Year Power System Type The concerned topics

(27) 2012 AC power system Provided a review of works related to application of ANN to TSA

(28) 2015 AC power system
Stability theories (Only transient analysis)

Transient Power system modeling

(29) 2017 Power-electronized power system Give out the comprehensive intelligent-based optimization techniques

(30) 2019 AC/DC power system Optimization and control techniques that can be used to provide TSA

(31) 2019 Power-electronized power system

Power system evaluation method

Probabilistic assessment method

Key challenges(the stability evaluation AI methods in TSA)

(32) 2021 Power-electronized power system
From the aspects of data-driven power system, feature extraction and selection,

model construction, Online learning and rule extraction are used for TSA

(34) 2021
AC and power-electronized

power system

Summarize TSA prediction methods

Response time evaluation

(35) 2022 Power-electronized power system Provide a review of works related to application of ANN to TSA

(36)(56) 2022 Power-electronized power system
The state-of-the-art regarding the application of AI to TSA

Focus on different machine, deep, and reinforcement learning techniques.

This paper 2022 Power-electronized power system

AI-based intelligent power system structure along with TSA

The AI-based TSA framework and design process along with intelligent applications

At application level, combine AI and big data to give the most potential future

2. Artificial Intelligence Technology
Since the first century BC, humans have been inquisitive

about the feasibility of making some machine to simulate
the human brain (37). In 1955, Dr. McCarthy proposed the
new concept of "artificial intelligence" (38). And in 1956,
McCarthy et al. organized a cross-generational conference
named the "Dartmouth College Summer AI Research Pro-
gram" (39)(57). Since then, machine learning, deep learning,
and predictive analysis have entered a new era and have
developed into the current standardized study.

Artificial intelligence makes the computer simulate hu-
man thinking logically. We divided advanced intelligence
into three levels computational intelligence, perceptual in-
telligence, and cognitive intelligence, as Figure 3 shows :

• Computational intelligence aims to make the machine
or computer have high-performance computing ability,
to some extent even exceeding human computing abil-
ity to manipulate massive data; (40);

• Perceptual intelligence is mapping signals from the
physical to the digital world through hardware devices.
Then this digital information is further promoted to a

cognitive level. In this process, human-computer inter-
face interaction is crucial (41);

• Cognitive intelligence aims at making the machine own
human rational mind power, make suitable decisions,
and correct judgments (42)(97).

Computational intelligence is a relatively basic level of
artificial intelligence. It refers to the fact that computers
or machines rely on their own fast and massive comput-
ing power and massive storage capacity to complete some
tasks that humans cannot. For example, Google’s Alphago
belongs to this type of intelligence. Above computational
intelligence is perceptual intelligence, which refers to the
intelligence that can find important information in a wide
range of unstructured information centers. Such as finding
essential elements. Above perceptual intelligence is cogni-
tive intelligence. After perceptual intelligence finds critical
data, it tries to find the connection between this information.
It then does some corresponding important reasoning work,
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Figure 3: Advanced Intelligence Diagram

such as finding the occurrence, development, climax, pro-
cess, the end. The integration of the three capabilities even-
tually allows machines to realize human-like wisdom to all-
out to assist humans in working. To actualize hereinbefore
requirements, the new breed of AI focuses on developing
fuzzy logic, expert systems, machine learning, and other
technologies (43).

1. Fuzzy logic: Regular logic blocks that computers can
precise input, producing the output as true (True) or
false (False) (50). Fuzzy logic mimics the indistinct
concept of judgment, reasoning, and the thinking mode
of the human brain. It should use a fuzzy set with
fuzzy rules to reason, express transitional boundaries or
qualitative knowledge and experience, implement the
fuzzy comprehensive judgment, and cause to solve the
rule-based fuzzy information problem that is hard to
solve by usual methods. Therefore, fuzzy logic is closer
to people’s thinking logic (44).
Fuzzy logic contains core elements such as fuzzy lan-
guage variables, rules, reasoning, and control. Figure
3(a) gives a typical fuzzy logic structure diagram.

2. Expert system: The expert system is an essential com-
ponent of early artificial intelligence (45)(98). It is a
computer-intelligent program system that stores spe-
cialized knowledge and experience. It contains massive
expert-level knowledge and experience in a specific
field and effectively uses human expert knowledge to
solve complex problems in this field. The expert system
is a combination of early expert experience and com-
puter technology. Figure 3(b) shows that the expression
can be 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒− 𝑏𝑎𝑠𝑒+ 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒− 𝑒𝑛𝑔𝑖𝑛𝑒 (51).

Expert systems have a very high interactive reliability.
It is considered the highest level of human intelligence
and expertise. The following are the essential features
of the expert system: 1) The highest professional level:
The expert system provides the highest professional
knowledge. It provides efficiency, accuracy, and imagi-
native problem solutions. 2) Correct time response: the
expert system interacts with users in a very reasonable
period. The total time must be less than the time experts
take to obtain the most accurate solution to the same
problem. 3) Good reliability: the expert system must be
reliable and can not make any mistakes. 4) Flexible: It
must remain flexible because the expert system owns it.
5) Effective mechanism: The expert system must have
an effective mechanism to manage the compilation of
existing knowledge. 6) Ability to handle challenging
decisions and problems: expert systems can handle
challenging decision problems and provide solutions.

3. Machine learning: Machine learning is representative
of modern artificial intelligence, using experience to
improve the system’s performance (46)(115). Here,
"experience" usually exists in data, so machine learning
is the technological path from data to intelligence.
Machine learning is mainly divided into traditional,
deep, reinforcement, and transfer learning.

• Based on whether the data used is labeled, tra-
ditional machine learning (ML) is categorized
as supervised learning, semi-supervised learning,
and unsupervised learning (47);

• Deep learning (DL) stems from the expansion
of artificial neural networks. The multi-layer per-
ceptron with multiple hidden layers is a typical
deep learning structure (52). The previous several
hidden layers can construct new features from the
data in an unsupervised way automatically, and
then extract the more abstract high-level category
attributes layer by layer and find the deep feature
representation of the data (47);

• The main point of reinforcement learning (RL)
is the repeated interaction between the learning
system and the environment. If a particular behav-
ior of the agent leads the environment to reward,
the trend of the agent to produce this behavioral
strategy will be strengthened (48);

• Using the learned knowledge to solve problems in
another new environment is one of the essential
manifestations of advanced human intelligence.
This is also the ability to transfer learning into
artificial intelligence. It is, transfer learning can
transfer the knowledge learned in one scene to
another so that models and learning methods have
more vital generalization ability (49)(119).

3. Power System Transient Stability Analysis
The transient stability mentioned in this paper means the

ability of the electronic power system to achieve a new stable
Wanying Guo et al: Preprint submitted to Elsevier Page 5 of 22
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operation state or return to the original operation state after
an extensive disturbed transient process.

After decades of development, the transient stability anal-
ysis theory and methods of the traditional alternating cur-
rent (AC) power system has matured. Although there are
significant differences between the power electronic power
system and the conventional AC power system, these meth-
ods still have essential reference significance for the tran-
sient stability analysis of the electronic power system. Stan-
dard transient stability analysis methods include the time-
domain simulation method, direct method, artificial intelli-
gence method (58), and other methods, such as the inverse
trajectory method and semi-tensor product method.
3.1. Time-domain simulation method

As one of the most critical approaches, the time-domain
simulation method solves the system of differential-algebraic
equations of the system to get the number of system states
and generations to change the trajectory over time (59)(126).
In the traditional AC power system, the time-domain sim-
ulation method determines the transient stability by the
maximum work angle difference between the generators.
As the most reliable evaluation method, the time-domain
simulation can realize an arbitrarily complex system model
and control strategy, often used as the standard for other
transient stability analysis methods.

In addition, the above time-domain analysis method also
has some disadvantages: first, the dynamic equation numer-
ical integral is slow, and with the growth of the system state
variable order, the time-domain simulation will significantly
increase, and calculation speed cannot meet the needs of
online monitoring and control (60); secondly, it does not
provide the system stability information, unable to explore
the mechanism of stability (61). Therefore, it is also essential
to find the criterion of the transient instability of the power
electronic power system to reduce the integration time of the
time-domain simulation method.
3.2. Direct method

Besides the time-domain method, the direct method is
also a typical transient energy function method. This method
judges the power system’s transient stability by comparing it
with the maximum transient energy absorbed by the system
(called the binding energy) (62). The transient energy func-
tion method can qualitatively determine the system stability,
obtain the system stability margin, and analyze the sys-
tem transient stability quantitatively. Calculating the binding
energy in the traditional AC power system, the boundary
calculation of the attractive domain, is the most challenging
step of the direct method (63).

The traditional AC power system transient stability anal-
ysis has used the direct method. The applied direct approach
to the electronic power system needs to solve two problems:
constructing the appropriate energy function and how to
estimate the attraction domain (64)(127). Compared with the
traditional AC power system, the smart power system has
the characteristics of topological time-change, fast transient
process, strong non-linearity and high order of system state

variables, which brings many challenges to TSA (65). Even
without considering the fluctuation characteristics of new
energy and various power electronic converters combined
operation, the system model will become very complex.

At present, the more effective Lyapunov function is con-
structed with the concept of system energy. The main meth-
ods of solving unstable equilibrium points are the relevant
unstable equilibrium point (RUEP) method, potential energy
boundary surface (PEBS) method, extended equal area cri-
terion (EEAC), etc.

The relevant Unstable Equilibrium Point (RUEP) method
was introduced in 1978. This approach employs an approxi-
mate fault trajectory, accounting for fault location and trans-
fer conductance effects for the first time. But the technique
takes a long time and is difficult to calculate accurately.

The potential Energy Boundary Surface (PEBS) method
initially emerged from an improvement of the enormous
computational shortcomings of the RUEP method. Later,
scholars perfected the theoretical basis and regarded PEBS
as the stable boundary of the related gradient system. The
technique is easier to compute and faster but has some errors
in multiple oscillatory instability modes.

The boundary of the Stability Region-based Controlling
Unstable Equilibrium Point (BCU) method was presented in
1994. This method finds the dominant unstable equilibrium
point of the initial system by using the dimension reduction
system. But this method still requires solving a nonlinear
system of equations, so the computation is very slow.

Extended Equal-Area Criterion (EEAC) was proposed
by scholars based on the equal-area criteria. The analysis
premise of this method is that the system instability is the
two-machine mode. The troubled system is then divided into
critical, residual machine groups.

Later, a comprehensive method was proposed based on
the RUEP, PEBS, and EEAC. Various ways are used to judge
stability to improve the fault tolerance and reliability of the
direct method.
3.3. AI method

Traditional TSA methods based on mathematical models
are based on specific physical systems, with the help of solu-
tions to mathematical equations. The advantages of artificial
intelligence in solving TSA problems are (175; 54):

• Ensuring certain accuracy and efficiency;
• Not limited by complex mechanisms between many

fields;
• Avoiding difficult problems through accurate models in

practical engineering.
In the late 1980s, we began applying AI to TSA (55)(131).

It is mainly traditional machine learning algorithms, such
as NN and SVM, and then ELM to improve its perfor-
mance. However, due to the algorithm’s shortcomings and
the hardware, it can be challenging to use it effectively. In
recent years, the new generation of artificial intelligence
represented by deep learning has been developed rapidly
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in electric power, which has become the focus of scholars’
research. In the transient stability analysis of the power sys-
tem, they mainly assume the functions of data pretreatment
and post-processing (82). The power system is complex and
large, and its operational data has infinite possibilities in
time and space. Still, many data belong to similar samples,
so the data needs to be pre-processed. When applying the
AI algorithm for transient stability analysis, the mapping
relationship between state parameters and stability indica-
tors (such as critical resection time) is sought directly from
the processed samples (67). The classifier model is trained
offline through the data of the time-field simulation method.
Then the new state parameters are obtained through Wide
Area Measurement System (WAMS) to conduct the transient
stability analysis of the system in the current state (68). This
method is intuitive and fast.

Because the power electronic power system has the char-
acteristics of a topological time-variable, a high order of
state variables, and strong non-linearity (69), which causes
difficulties in theoretical analysis, the artificial intelligence
method will have unique advantages in the online transient
stability analysis of the power electronic system. Of course,
there are also shortcomings. We will analyze it specifically
in the following sections.

3.4. Other methods
In addition to the above three methods, some other meth-

ods usually are applied in the transient stability analysis of
the system, such as the inverse trajectory method and semi-
tensor product method.

The inverse trajectory method thinks of an asymptotically
stable region and the points set on the region boundary
(70)(159), obtaining the inverse trajectories by inversely
integrating these points to estimate the stable boundary with
the set of the inverse trajectories. It is only possible to in-
versely integrate some points on the boundary. Moreover, to
get high accuracy, the number of point sets on the boundary
will grow exponentially with the order of the state variables.
So this method is always used in low-order systems and
needs to be more general.

The semi-tensor product method directly judges the sta-
bility of nonlinear systems through the semi-tensor prod-
uct of multivariate polynomials (71). The most significant
excellence of this method is that it does not construct the
transient energy function of the system, basically realizes the
automatic generation of the system stability judgment, and
gives a suitable solution for the boundary of the attraction
domain. But, the stable domain boundary approximation
based on the semi-tensor product method is restricted by the
system dimension, which is challenging to apply in large-
scale power systems (72).

As Table 2 shows, We summarized all the above five
methods in detail.

4. The Rationality of the Application of AI to
Transient Problems

The traditional study of TSA problems begins from the
physical mechanism, which mainly includes the numerical
integration methods based on mathematical modeling and
a direct analysis method of the energy transformation of
the system (99). Using AI to study transient problems, data
models are used to replace the complex power system model
or energy function. As the following discussion, the current
development state, the application of AI to the power system
is mainly driven by three aspects.

1. Security Drive: Human security or power system op-
erations and maintenance risks need to rely on AI
technology to replace personnel or workflow.

2. Efficiency Drive: Traditional working methods and
modes have low efficiency. So it isn’t easy to adapt to
the development needs, and they need to rely on AI
technology to improve business efficiency.

3. Data Drive: A large amount of data has been generated
and accumulated but is not effectively used. So we need
to rely on AI technology to explore the value of data.

The theoretical basis of AI applied to the study of transient
problems is that the causal data containing the physical
mechanism usually also shows the external characteristics
of the data correlation (100). To mine the data correlation
in transient problems using AI is to reveal the physical
properties of power system transient issues from the data per-
spective. New changes appear in information, mechanism,
simulation, analysis, and control (101; 102; 125), as shown
in Figure 4.

1. Depth Information. Under today’s smart grid construc-
tion concept, electric power enterprises need to diver-
sify power grid system transformation, combined with
automation technology, artificial intelligence technol-
ogy, big data technology, IoT technology, and sensor
technology to external power physical information ef-
fective collection (104), analysis, fusion, use, then by
the central processor issued directional control instruc-
tions, to complete the whole power system control. In
this process, to realize the function module efficient
cooperation, effective integration, and analysis of all
kinds of data information, to advance the quality and
efficiency of power system operation (105). At the same
time, the whole power grid system to use the function
should be compatible with each other to improve the
integrity and comprehensiveness of the power grid
system operation, realize the equipment coordination,
cooperation, and mutual control form of work (106).
In the existing power system information management
mode, information technology, information generation,
time, category, and structure size tends to diversify
development trend (107). The related work needs to
use vast amounts of data information as the primary
support, realize the effective research on the transient
problem of the power system, and give relevant research
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Table 2
Comparison of transient stability analysis methods

Methods Information provided Application Challenges

Time-domain simulation System response time
Main methods in the industry;

Standards for other methods.

Model-solution methods require

both simulation accuracy,speed

and transient instability criterion

to shorten calculation time

(73; 74; 75; 76; 77)

Direct method
Estimates of the

domain of attraction

Reinforcement time domain;

Online transient stability analysis

Suitable Lyapunov functions and

make the estimation of the

domain of attraction

(75; 78; 79; 80; 81; 82)

AI

ANN-based(83; 86) Huge samples

For the pre-processing and

post-processing of the data

Reduce the deviation of the analysis

results from the actual stability

index when the actual data is

inconsistent with the preset data

SVM-based(85; 86) Muti-scenes multi-parameters

EL-based (87; 88; 175) Multi-learners

DL-based(90; 91; 92) Mass data

Inverse trajectory and

Semi-tensor product

Estimates of

domain of attraction
Low-order systems

Large-scale system extending

(93; 94; 95; 96)

work sufficient data support (108). Meanwhile, with
the increasing amount of data , people for the tran-
sient research and thinking methods have correspond-
ing change and optimization, the causal logic to analyze
and process data, but the related analysis work is chal-
lenging to adapt to today’s high dimensional heteroge-
neous diversified information processing requirements,
combined with the effective use of AI technology can
also maximize the efficiency of data processing, fully
realize the potential data mining and use, to maximize
the value of multiple information.

2. Complicate Transient Stability Mechanism. In the cur-
rent power system research, for example, in the existing
power system that introduces new energy, UHV DC,
and inverter loads, the transient problems we face often
have very complex characteristics (109). Based on the
sampled electronic components, if combined with the
corresponding AI algorithm, the complete fitting anal-
ysis of the input and output information of the power
electronic components can be realized. And on this ba-
sis, the long-term simulation processing can be realized
by establishing the analysis model of the interweaving
influence mechanism of the electronic system transient
problem so that the related work can be stable and
efficient. In recent years, the electricity market has fur-
ther focused on the economic level. Therefore, power
companies must comprehensively study the behavior

of the current power market to determine the factors
that affect the transient stability of the power system. In
addition, researchers need to understand the complexity
of the transient stability mechanism from sociology,
physics, economics, and other perspectives to carry out
relevant research work to establish a transparent arti-
ficial intelligence transient information system. Since
the transient stability of the power system needs to
combine a variety of mathematical analysis models and
digital structure models, we not only need to carry out
fragmented information analysis and control but also
consider the actual operation of various equipment. In
this way, the docking in the process of running data
is completed, effective integration is carried out, the
application quality is improved, and the efficiency of
related stability analysis work is.

3. Refinement Power Grid Simulation. Due to the limited
practical cases of the transient stability problems in the
actual power grid, the need for more data highlights
the importance of studying the transient problems in
the power system through simulation. Two problems
exist in the simulation (136). One is the complex links,
and the other is that the existing hardware comput-
ing power and data throughput speed are difficult to
process the huge simulation data volume of the large-
scale power system. Because of the difficult problem of
modeling the complex links of the actual power grid,
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Figure 4: The Transient Problem Matches the Process of AI

we can explore the characteristics of AI separated from
the physical mechanism and simplify the modeling
problem by fitting the response characteristics of each
link of the power system. For simulation computing
problems caused by large scale, we can try to establish
a simulation platform with self-learning ability through
the introduction of AI algorithm to make the simulation
program follow the rules, to improve the generalization
of the overall fault set (112; 113; 114).

4. Limitations of the analytical methods. Generally speak-
ing, electric power enterprises often combine the direct
or the corresponding numerical integration method to
analyze and discuss the current internal power system
transient problems (116). The discrete characteristics of
the power system have also been further improved with
the support of diversified technologies. Therefore, com-
bined with the traditional numerical integration method
or the establishment of differential equations is often
challenging to complete the practical analysis of the rel-
evant transient stability. The direct method can usually
only be applied to the transient first pendulum period

and the whole transient interwoven environment. Only
after fully guaranteeing the feasibility of analyzing the
entire transient process can we fully use AI technology
to diagnose and mine the existing power transient prob-
lems. Explore the mechanism of the analysis method
effectively, with the help of extensive data knowledge
and the related big data technology to conduct the deep
mining of data information (117).

5. Diversification of Transient Control Problems. At the
present stage, the transient problem control technology
of the power system is faced with the expansion of the
scope of the control object, the increase of the control
target dimension, and the rise in the control challenges
due to the unclear mechanism. The research on intel-
ligent control in the power system is from the brilliant
controlling perspective. We hope to give "knowledge"
and "judgment" to the computer to realize the whole-
process intelligence of prevention, emergency disposal,
and recovery of transient problem control (118). There-
fore, introducing AI into the control field of transient
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problems, and taking advantage of AI in group in-
telligence, processing complex data relationships, and
learning ability, can help to relieve the pressure of
traditional control modes to cope with uncertain scene
control.

Overall, the study of transient problems faces many tech-
nical difficulties, while AI can be separated from the con-
straints of physical causality through the complex. It is
fitting for miscellaneous data relationships to implement
data-driven problem analysis. Therefore, the application of
data-driven AI technology to the transient stability problem
of the power system has become a development trend of the
combination of inside-out demand and inward-out drive.

5. The TSA Framework and Design Process
Based on AI

In general, based on the sample non-mathematical model
of the power system, TSA design includes the following
steps: training sample generation, data pre-processing, can-
didate input characteristics and determining the results of
the evaluation, key feature selection/extraction, intelligent
stability evaluation technology selection, learning and as-
sessment model establishment, result test, etc. (120), the
feature selection has attracted wide attention in recent years,
the specific role and requirements of each link are as follows:

1. Generation of the training samples. Theoretically, these
samples are required to cover the entire sample space
and obtain a reliable stability assessment through learn-
ing knowledge (121). Training samples can generally
be generated from the history of the power grid or by
numerical simulation.

2. Data pre-processing. The training samples were pre-
processed to improve the efficiency of the subsequent
evaluation process (122), such as excluding the unqual-
ified samples and normalizing the characteristics of the
different scales.

3. Selection of the candidate input and the evaluation
output. Candidate input features must have a relatively
complete representation of the system state, with suffi-
cient information needed for stability assessment. The
output of the stability evaluation results can generally
choose the binary judgment of stability/instability or a
continuous index that can reflect the stability level of
the system (123).

4. Key feature selection/extraction. Most intelligent meth-
ods require reducing the input space dimension, elim-
inating redundant features, and improving prediction
efficiency. Before, the process was almost completed
by the subjective experience of experts, but now it
tends to be realized through objective feature selection
algorithms.

5. Establishment and learning of the stable evaluation
model. Establishing the mapping relationship between
input features and output through learning-functional

intelligent technologies (124), including artificial neu-
ral networks, decision trees, knowledge mining, and
reasoning, namely modeling and knowledge acquisi-
tion, is the core of intelligent stability evaluation de-
sign. Choosing a suitable algorithm model directly
determines the reliability, interpretability, and general-
izability of the stable evaluation results.

6. Results test. The intelligent stability assessment model
must verify its effectiveness and adaptability through
many test samples, widely distributed and independent
of the training sample (125).

In practice, steps 1,2, and 6 are handled in the same way,
and the differences are mainly concentrated in the three steps
3,4, and 5. A general TSA framework based on AI is shown
in Figure 5.

Figure 5: An Example of TSA Framework based AI

The authors think that "feature reduction" is significant
to study here. Two important aspects must be considered:
the evaluation criterion and the designed feature selection
strategy. Now, much valuable research on TSA feature reduc-
tion has been done. We briefly review it as follows. In (128),
sensitivity index and analysis were used to build an original
feature set without redundant features. Then, the principal
component analysis was used o reduce the dimensions of the
input feature. In (129), correlation and principal component
analysis were used for feature selection. Still, this method
can only judge correlations between features and cannot
reflect the interdependency between features and classes.
The feature space obtained by principal component analysis
cannot be as complete as the original one. In (130), a bread-
first searching technique based on the separability index was
proposed to find an optimal feature set that considers the
correlation between features and classes. But the redundancy
still exists. According to the above, an optimal feature set
must have no redundancy and be closely related to the
classification.

6. Application of AI in Power System
Transient Problem

The application of AI in the transient stability problem of
power systems includes determining the transient stability
after failure, predicting the situation of critical parameters
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such as system frequency, power angle, and voltage after fail-
ure, and including the quantification of emergency control
measures after transient failure (132). The research objec-
tives of the above three transient problems are different, but
the research conducted using AI technology includes data
acquisition, sample generation, and algorithm application.

6.1. Data acquisition
Obtaining the state variable data related to the transient

stability analysis of the power system is the primary problem
of AI applications (133). The data’s size, type, and quality
greatly influence the research results. The data source of the
existing research is mainly the simulation software simula-
tion data, whose advantage is that it can customize various
fault scenarios and data volume according to the study needs
to provide a suitable training and test data set for the AI
algorithm (134). The existing research simulation parameter
setting methods can be divided into artificial determination
and probabilistic model generation.

The first approach relies on researchers to set up typical
power and load parameters, fault types, and network topol-
ogy (135). The second type of method sets the simulation pa-
rameters based on the probabilistic model, which is usually
generated based on the partial actual data of the component
or the system to simulate the real power grid situation as
much as possible (136).

Mass fault data can be generated through simulation cal-
culation, but ensuring the consistency of simulation and
accurate data can be challenging. The simulation results
often need to be more consistent with the precise fault results
for the actual power grid accident analysis. The research on
the simulation platform and software can improve the perfor-
mance and reliability of the simulation and provide technical
support for the refinement of the temporary stability analysis
model of the power system (137).

Currently, simulations obtain stability analysis data rather
than actual failure data for stability analysis (138). This is
due to the real failure of the power system, especially the
very low probability of transient instability failure. Due to
changes in the power system, the applicability of historical
data reduces, and it is not easy to offer high-quality training
data for AI algorithms (139). From this perspective, en-
hancing the similarity between simulation and actual fault
data becomes a problem. It is feasible to solve the problem
of establishing the mapping relationship between simulated
and actual data, then correct the deviation of simulated data.

6.2. Sample generation
The original data of the power system includes each

time data of each sampling point through the whole test
system. So the spatial and temporal dimension of the data is
relatively high. If all the data are included in the AI algorithm
training, the training time, accuracy, and convergence are
tough to control (140). The existing studies mainly process
the original data from the aspects of data pre-processing,
feature attribute selection, and dimension (141) to obtain the
transient stable samples that can be used for the AI algorithm

and improve the training efficiency of the algorithm and
ensure the test accuracy.

Data pre-processing is to make the processing of raw
data into standardized data to meet the research needs.
Its processing methods vary according to the problem. In
addition, the pre-processing data methods commonly used
in AI applications include data cleaning, integration, and
transformation (142). Data cleaning is to correct the error or
missing data in the transient problem. The data integration
will integrate the multi-source data related to the transient
problem (143). The data transformation is to transform the
transient simulation data or the actual data format into the
form that the algorithm can use (144).

In essence, the feature attribute selection is mainly based
on the known mechanism of the transient problem, which
retains the factors closely related to the research problem
while ignoring the factors with less influence. The feature se-
lection of the existing studies is based on physical relevance.
At the same time, the filtering, packaging, and embedding
methods based on data analysis rules have yet to be widely
used (145). Most existing studies focus on standard test
systems, and the sample generation method can better adapt
to them. However, the scale of the actual power grid is
much larger than the test system, and the applicability of
the existing methods remains to be verified. In addition, the
feature attribute selection methods based on the physical
mechanism are somewhat subjective and incomplete, which
may affect the research results.

6.3. Algorithm application
Algorithm selection is the core content of the research. An

appropriate algorithm and reasonable parameter configura-
tion determine the speed and accuracy of the transient prob-
lem research. According to the type classification of AI algo-
rithms, the existing research on transient problems is mainly
the traditional machine learning classification, regression
algorithms, and the newly developed deep learning-related
algorithms (146). The following introduces the application
of AI algorithms such as artificial neural networks (ANN),
support vector machine (SVM), ensemble learning (EL), and
deep learning (DL) in transient problems. It analyzes the
prospect of frontier deep learning technology for transient
stability.
6.3.1. ANN-based TSA method

The artificial neural network has strong plasticity, which
can transform the network structure and activation function
according to the research needs. Therefore, it is widely
used in the strong non-linearity condition of the power
system to establish the accurate mapping relationship of
many influencing factors and the system state in the transient
stability problem (147). Studies have shown that ANN has
advantages in data fitting ability, but there are also the
following problems: first, ANN needs a large number of
samples for training; second, the computing scale of ANN
training increases exponentially with the number of network
nodes
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6.3.2. SVM-based TSA method
Based on the Vapnik-Chervonenkis (VC) Dimension and

the minimum structural risk principle in the statistical the-
ory, the SVM enables an accurate classification in a small
sample space (149). The study shows that the SVM can judge
the transient stability after the system suffers symmetry
and MIS failure. When the system’s stability is affected by
improper parameter selection, SVM can reduce the prob-
ability of misjudgment or omission. Even if the transient
samples in the power system are updated in real-time, the
incremental sample training can be stably improved with
SVM, thus improving the training efficiency and timeliness
of the prediction model.

6.3.3. EL-based TSA method
Ensemble learning combines multiple learners into more

robust generalization algorithm models by combining strate-
gies, sacrificing computational complexity for algorithm
performance (150). The weighted ensemble algorithm based
on cross-entropy achieves accurate prediction in a small
sample space; the ensemble learning model is constructed to
adapt to the system operating conditions and line topology
and realize the online dynamic security evaluation. The
integrated learning algorithm solves the accuracy fluctuation
problem of a single algorithm prediction model and dramat-
ically improves the reliability of transient problems (151).

6.3.4. DL-based TSA method
With the rapid development of AI technology in recent

years, deep learning has shown strong data mining capa-
bilities, and its application to transient problems has also
been practical. Compared with traditional machine learning
methods, deep learning can use massive samples to improve
the accuracy of the algorithm and mine deep complex associ-
ations in data (152). Advanced technologies such as the two-
stage deep learning training framework of "pre-training and
fine-tuning parameters" and the quantification technology of
system emergency control strategies after large disturbance
failure not only improve the accuracy of transient stability
assessment problems under a small number of samples and
irrelevant features but also provide more intelligent regula-
tion strategies.

In addition to the above algorithms, other AI algorithms
used for transient stability include expert systems, limit
learning machines, Bayesian models and decision trees,
etc,(153). In addition, many new technologies in deep learn-
ing, such as generative adversarial networks, reinforcement
learning, and tensor computing units, are emerging and
have the potential for application in transient problems in
power systems. The network can realize a zero-sum game
between generating and discriminant models and realize iter-
ative training between the simulation data generation model
and stability evaluation model; reinforcement learning is
based on the existing environment to minimize the loss by
emergency control. The tensor computing unit is a special
chip designed by Google for the deep learning framework
TensorFlow, which significantly improves the computing

speed of the deep learning model rate (154). The huge scale
of tens of thousands of nodes and lines in the power system
puts forward strict requirements on the training and predic-
tion time of the transient stability evaluation model. The
tensor computing unit can provide floating-point computing
millions of times per second and accelerate the training of
the deep learning model.

Currently, the limitations of applying AI algorithms to
transient problems are as follows:

1. The high dimensional characteristics of the power sys-
tem lead to the long time-consuming algorithm training
(155);

2. The generalization performance of a single prediction
model is challenging to cope with the complex and
changeable power system operation scenarios (156);

3. The AI algorithm, divorced from the power system
physics, is a "black-box" model for researchers. It is
weakly interpretable, and it is difficult to analyze the
physical nature of transient problems (157).

For a more precise understanding, as shown in Table 3, we
present the standard algorithms under different AI models
and the application scenarios.

7. Specific Application Analysis of AI in
Transient Problems

The above analyzes the application status of AI in the
transient stability of the power system and summarizes the
three problems existing in data acquisition, sample genera-
tion, and algorithm application. Given some issues living in
the existing research, this paper puts forward the following
research ideas to discuss the application of AI in the transient
problem of electric power systems.
7.1. AI-based data scarcity time-changing

problem
Influenced by the network topology, component state,

and fault type, the transient process scenes of the power
system are diverse, and the data is scarce in a single scene.
The stable condition and small disturbance scenes are pri-
marily present, while the large disturbance scenes are few.
Therefore, it is urgent to fully excavate the correlation of
data sets under different scenarios, realize the mining and
migration of common knowledge, and achieve the breadth
of knowledge inheritance.

Data accumulation during the power system operation can
provide data supplement for the original law mining. Due
to the time limit of the online application, the knowledge
update should be realized without resuming the large-scale
calculation to realize the online depth growth of the knowl-
edge model.

Breadth-inheritance: The initial state of a power system
forms many new scenarios in the grid topology, generator
configuration, and external power grid (158). When the tar-
get domain appears, the transient stability prediction model
of the power system may fail due to the lack of data. There-
fore, the breadth inheritance of the model can be sought

Wanying Guo et al: Preprint submitted to Elsevier Page 12 of 22



Artificial Intelligence in Power System Transient Stability

Figure 6: AI algorithms-based TSA Model

from the perspectives of the feature set and sample set. As
shown in Figure 7(a), considering the transfer of knowledge
based on standard features before and after the mining scene
changes, that is, using the standard feature set in the source
field and target field to improve the applicability of the
source field prediction model in the target field; considering
the operation scene of the power system, there are still some
samples in the source field and target field that follow the
same data rules.

The generic sample set is trained as the predictive model
to expand the sample set in the target domain and improve
the prediction accuracy.

Deep-inheritance: To effectively manage the new sample
data continuously generated in the power system’s operation
and strengthen the power system’s transient stability analysis
based on AI, the latest data needs to be classified and learned
in time (178). If the way of relearning all the data is adopted,
it will take a lot of time and may even cause the learning
speed to lag behind the data update speed. That is, the
transient stability prediction model of the power system
urgently needs the ability to update, correct, and strengthen
knowledge quickly. As shown in Figure 7(b), improving
the knowledge-learning efficiency of the transient stability
prediction model of the power system mainly includes two
aspects: on the one hand, analyzing the inclusion relation-
ship between the new sample and the initial sample set,
the samples containing the latest information are retained,
and the redundant new samples are eliminated to form the
boundary sample set; on the other hand, the parameters or
structure of the original algorithm model are modified by
using the boundary sample set.

7.2. AI-based features extraction subjectivity and
incomplete problem

Feature extraction based on physical causality can only
be conducted for features with a precise mechanism while

Figure 7: Thinking of Breadth-inheritance and
Deep-inheritance

ignoring some factors that have an unknown agent or indi-
rectly affect the transient problem (179). This paper proposes
a solution based on deep learning for this problem.

Compared with general machine learning algorithms,
which require the artificial design of efficient feature sets,
deep learning can automatically handle all features (180).
Therefore, more complex combined features eliminate the
possible omission of feature extraction algorithms and sub-
jective factors. Figure 8 shows the process of deep learning
for feature extraction and modeling the power system’s
transient stability problem. The framework consists of two
layers of deep learning models, one for feature extraction
and the other for advanced modeling of critical regions.

Existing modeling methods are usually based on the uni-
fied simplified modeling standards of the whole network.
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Table 3
Comparison of AI-based TSA methods

Method Algorithm Usage

ANN

Long short-term memory (160)
To equilibrate the trade-off between the response time and accuracy,

a temporal self-adaptive method is raised.

Convolutional neural network (161)
It could analyze whether the power system is stable or not

and predict the unstable pattern in the unstable state.

Spatial-temporal graph

convolutional network (162)

It integrates the information from network topology and

evaluates the temporal information using 1-D convolution.

Recurrent graph convolution

network (163)
It forms the RGCN by aggregating the GCN and the LSTM units.

SVM

SVM (164; 165)
It can make early predictions based on post-failure measurements of

the generator voltage, speed, or rotor angle.

Aggressive SVM and

conservation SVM (166; 167)

A strategy combining two SVMs and a grey region is proposed to address

the problems of false dismissals and alarms.

Core vector machine(168) A TSA model which is based on a core vector machine is developed.

Multi-layer SVM (169)
It uses a genetic algorithm based on the TSA model of the MLSVM to identify

a subset of valued features with a different number of features.

EL

Stacked autoencoder and

a voting ensemble (175)

The ross-entropy is used to evaluate the underlying learner fit performance and sets

the weight coefficients in the integrator.

Bayesian multiple kernel

learning (171)

Using post-disturbance PMU data to predict stability

margins and given emergency.

Mahalanobis kernel(172)
Utilizing the data under different network topologies effectively improves

the estimation accuracy and reduces the need for training samples.

Adaptive ensemble decision tree(173)
A transient stable method based on DT learning is proposed, considering changes

in operating conditions and topology.

DL

Deep belief network (174)
Unsupervised learning with unlabeled samples was used to initialize the data,

and then fine-tuned using supervised learning with labeled samples.

Stacked autoencoder(175) A stacked autoencoder-based method for TSA feature reduction is proposed.

CNN-LSTM (176; 177) For small signal and transient stability, a unified DL prediction model is raised.

They need to distinguish modeling according to the impor-
tance of each region and equipment, resulting in reduced
accuracy and even errors in model results. Therefore, it is
necessary to fine-model the relevant parts of key features
extracted by deep learning (181). Characteristic extraction
and dimension reduction are realized through the convo-
lutional neural network in the deep learning framework.

In the convolutional neural network algorithm, the weight-
sharing technology can recognize the aggregation of input
parameters, combined with the construction of different
convolution kernels with other parameters, to realize the
extraction and abstraction of critical features (182). Based on
the correlation between the input features, the compression
and dimension reduction of the feature parameters of the
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Figure 8: Deep Learning Modeling Process of Transient Stability Power System

refined model can be further realized by designing proper
pooling functions.
7.3. AI-based transient prediction models

interpretability problems
To make full use of the known physical causal knowledge

of the power system, improve the model interpretability and
reduce the over-fitting of AI to the data, the research team
at home and abroad put forward the method of the physical
model and data-driven fusion and carried out preliminary
exploration and research.

On the one hand, the physical analysis method can provide
high entropy information for data analysis methods and im-
prove the efficiency of data model analysis. The search space
can reduce the calculation complexity when solving the data
model parameters. The high entropy input feature makes the
goal of building the data model and improving the rationality
of data model. Data-driven methods can compensate for
the loss of laws caused by model simplification in physical
analysis methods (183).

The core of physical data fusion modeling lies in the
fusion mode of the two. According to the difference between
target and data sets predicted by transient problems, different
physics, and data-driven method fusion modes should be
studied:
1) Embedding physical knowledge into the data model to

improve the computing efficiency of the data model;
2) The low accuracy problem is caused by the excessive

simplification of the physical model, and the data-driven

method with a rich sample basis can be used to fit the
error rule and correct it; The physical model is challeng-
ing to model because the mechanism is unknown, and
the physical mechanism is mined through the data-driven
method to assist in the establishment of the physical
model or the correction of the model parameters;

3) Weighting the prediction results of the physical model
and the data model is used to improve the stability of the
prediction results.

8. Future Challenges and Trends
The power system has remarkable characteristics, includ-

ing many nodes, complex electrical connections, and AC and
DC interconnection across different regions. It puts higher
requirements for prevention and control before failure. As
Table 4 shows, artificial intelligence has different degrees
of requirements for designing, controlling, and maintaining
power systems. The existing technology can no longer well
meet the future development trend. In this section, we will
discuss the future trends and challenges in 2 directions: AI
orientation and AI-Big data orientation.

8.1. AI-orientation challenges and trends
Artificial intelligence plays a vital application role in

the power system. Here are some of the following tricky
challenges to address.
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Table 4
The requirements of AI for Power System

Requirements Design Control Maintenance

Computation High Medium Medium

Algorithm Speed Low High Medium

Accuracy Medium High High

Dataset Low Low High

Interpretability Low High High

Challenge 1: The classification model applying the ma-
chine learning algorithm has weak adaptability to the sys-
tem network frame structure. The retraining caused by the
network frame change leads to a long time cost, a long
rapidity, and a weak generalization ability. The NN (Neural
Network)-based TSA method causes misclassification due
to the limitations of the algorithm itself or the insufficient
boundary sample density; the accuracy of a single SVM
classification is not high, and there are often "overlapping
regions" between different types of sample data, resulting
in the misjudgment. Missing results are treated as the same
situation.

Challenge 2: Deep learning has been applied in tran-
sient stability evaluation in recent years. Compared with
traditional machine learning algorithms, its advantages are
also relatively obvious. However, some difficulties, such as
DBN’s structure and parameter optimization problems, and
noise’s anti-interference ability and misjudgment problems
should be studied more. At the same time, there is also weak
adaptability to the system network structure.

Challenge 3: The WAMS measurement data has spatial
and temporal characteristics, which can provide a large
amount of state information about the system, which plays
a crucial role in realizing the quantitative assessment of
transient stability. However, the construction of transient
stability could be better and sometimes cannot meet the strict
concept of margin.

Challenge 4: Using big data technology from the perspec-
tive of data mining, judging the transient stability is rela-
tively poor, and the evaluation index system is not perfect.

The continuous improvement of traditional algorithms,
the application of new algorithms, and the rapid develop-
ment of artificial intelligence and big data technology will
bring new research ideas to the transient stability assessment
of power systems. Possible future research includes the
following points.

Trend 1: Improve the real-time performance of the clas-
sification models. Existing machine learning-based TSA
methods all train the data samples offline and then classify or
predict the steady state. Although some literature gives the

online evaluation method of transient stability by combining
WAMS response, the real-time performance could be higher
due to its offline training. Future studies should focus on
implementing online training to meet real-time requirements
better. (The meaning of online training is that at the end of
each data entry, the model will enter the renewal stage, using
the model of the previous time node and the real-time data
of the current time node for evaluation.)

Trend 2: To improve the comprehensive application
research of deep learning in transient stability evaluation.
Compared with traditional machine learning algorithms,
deep learning has certain advantages in key feature quan-
tity extraction and model adaptability, but there are still
some problems to be studied urgently. It is suggested to
quantitatively analyze the influence of the system network
structure change on the model and the interference degree
of the noise on the training process and the results in the
future, strengthen the study of the miscalculation problem,
and finally analyze and verify its practicability in the existing
system.

Trend 3: Enhanced model robustness to insufficient data.
Some bad data will still exist in the sample obtained by
the dimension reduction of the original data set, and some
key data may be lost in the process. On the one hand, the
model can analyze the existing system’s possible missing
data and insufficient data. On the other hand, the training
model should be used to test the quality of the data.

Trend 4: According to the research, most existing TSA
methods are not applied to practical operation. To analyze
and verify its practicability and reliability, it is necessary
to establish the identification model of the power grid fault
form and construct the intelligent power grid fault identifica-
tion and stability evaluation framework. The characteristics
of different TSA methods should be accurate simulation
analysis of other TSA methods based on multi-source real-
time measurement data, offline simulation data, and dynamic
simulation experimental data further to promote the TSA
method’s application in practical systems.

8.2. AI & Big data-orientation opportunities and
challenges

As the importance of data gradually gets attention, big
data technology to solve problems related to the power
field is also gradually increasing. In big data technology,
to a certain extent, the operation can be separated from the
actual physical model and mine the internal correlation. The
operation characteristics of the power grid from the massive
PMU data so that the operators can correct the dire state
of the power grid in time to reduce the probability of the
power grid failure. In the future, TSA will mainly focus on
the following directions using big data technology.

Challenge 1: Massive data integration and storage. Tra-
ditional data assessment always deals with data from a single
domain. Therefore, finding a suitable fusion method for
multi-source datasets with different patterns, formats, and
representations is necessary. Although some systems seem
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feasible in terms of big data storage, they still need to be
adjusted and modified to accommodate big data.

Challenge 2: Real-time data processing technology. The
reaction time must be in milliseconds for some emergency
applications. However, the proposed system can offer high-
speed computing, network congestion, and flexible algo-
rithms. Combining massive data still needs to be completed
on time. A database in memory may be a feasible measure.

Challenge 3: Compression of data. This technique is
essential in wide-area surveillance systems. It can meet high-
fidelity requirements through its characteristics. Moreover,
unique compression methods are needed to detect transient
interference (184).

Challenge 4: Big data visualization technology. Visual-
ized figures can show apparent differences in granularity and
frequency and voltage. However, effectively discovering and
representing correlations in multi-source data is a consid-
erable challenge. Other challenges include visualization al-
gorithms, information extraction, representation, and image
synthesis techniques.

Challenge 5: Data security and privacy. Because of the
increase in the number of smart meters for home energy
consumption, more personal information has emerged. Since
data is shared between different entities, private data leakage
can be a disaster and cause cascading problems.

Trend 1: Deep generation learning based on data en-
hancement is a promising technique that can be used to
solve complex data analysis problems. But machine learning
algorithms have high learning efficiency but are restricted
by computational complexity, so they cannot effectively
analyze large-scale data sets. The following study is recom-
mended for this problem: (1) Use parallelized and improved
machine learning algorithms. That is, through the big data
distributed platform, the parallel machine learning algorithm
is rewritten to realize parallel computing. (2) Compared with
SVM, the running time and space of a core vector machine
(CVM) are less affected by the data scale and are more
effective than big data technology. However, there are very
few studies on the application of CVM in stability evalua-
tion. Therefore, it is suggested that the future combines big
data technology to study further the adaptability of CVM
to solve the TSA problem and to quantitatively analyze its
computational efficiency in the context of big data.

Trend 2: To deal with mas data, a standardized informa-
tion model should be proposed to describe interoperability
among various big data analytic platforms, architecture, and
operational integration. Besides, cloud computing service
vendors are necessary.

Trend 3: Existing big data applications are all based
on a single data type. However, future applications should
leverage multiple big data sources, which can help to assess
critical infrastructure dependencies. Therefore, data centers
should be created and easily accessible to improve the re-
silience of critical infrastructure. Future grid applications
will leverage these heterogeneous large data sets, which can
reveal vital hidden information.

9. Conclusions
Power electronization, physical information integration,

and complex interconnection of large power grids have
become the development trend of the new generation of
power systems. The characteristics of transient problems
also change regarding information, mechanism, simulation,
analysis, and control. AI can be used to break away from
physical mechanisms and fit complex data relations to realize
data-driven problem analysis. Therefore, the application of
data-driven AI technology to the transient stability problem
of the power system has become a development trend of
combining inside-out demand and inside-out drive.

This paper proposes the following research ideas for the
application of AI in the transient stability problem of electric
power systems:
1) Deal with the problem of small data quantity and sub-

stantial time variation of the actual system through data
inheritance thought;

2) Use deep learning algorithms to mine potential relevant
feature values to solve the possible subjective and incom-
plete problems in feature engineering based on physical
mechanisms;

3) Integrate a physical data model to analyze transient prob-
lems, which helps to improve the interpretability of re-
search results.

The application of AI technology in the transient stabil-
ity problem of power systems is expected to make break-
throughs in the following two levels: in the application
algorithm level, advanced algorithms represented by deep
learning have the potential for broader application; in the
research direction, it can expand to the level of online predic-
tion of stable situation and proper stability control strategy
of a stable situation. And if artificial intelligence and big
data are effectively combined, it will bring more significant
performance improvement to the transient stability of the
power system.
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