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Abstract: With increasing demand for the intensive use of images, especially linked to online 

applications as well as the massive, continuous revolution of mobile phone technology, the need has 

emerged for efficient, standard image compression techniques that ensure simplicity and speed. These 

must be compatible with user needs, but also meet the challenges of improving compression techniques. 

Polynomial coding is one such techniques still under development, based on a modelling concept of 

deterministic and probabilistic coding bases. This paper introduces a new mathematical iterative 

polynomial model to represent both coding bases. The model proposes an efficient hybrid way where 

coefficients are represented as lossless while residuals are presented as a lossy but with minimum loss, 

which ensures effective performance in terms of compression ratios and quality. Results show that 

while the technique has some limitations, the proposed system achieves equivalent compression ratios 

as the standard JPEG technique, but with superior quality for the same compression ratio.  

 

Keywords: image compression, polynomial coding, iterative based techniques. 

1. Introduction 

Today the number of people that are active online exceeds 2.5 billion. The vast 
majority use instant messaging (e.g., Viber, WhatsApp) and social media (e.g., Facebook, 

Twitter, Instagram), which can change our lives, relations, and even political views. Since 

we digitally communicate through data streams, conveying events (news), broadcasting 
TV, cinema and other media in cheap and effortless ways has become a must. The basic 

elements of these electronic communications are text messages, audio, video and images, 
and these need to be compressed to save excessive byte consumption (storage) and 

overcome limited bandwidths. 

Generally, image compression reduces the required bits to represent an image 
through efficient exploitation of redundancy in the image itself. Redundancy utilization can 

be purely statistical or combined with psycho-visual effects [1] implying lossy and lossless 
techniques. To remove redundancy from the data implies transform coding (TC) and spatial 

coding (SC) along with mixtures of both called hybrid coding (HC). The background 

information related to compression basics can be found in [2—5], also reviews of various 
image compression techniques are described in [6—10]. Each technique has its own 

characteristics in terms of performance which is normally optimized for compression ratios 
and/or preserving image quality.  

Today, due to their high performance, the dominant standard image compression 

techniques are the joint photographic expert group (JPEG) and JPEG2000 (JP2). Both 
employ lossy approaches that effectively utilize the TC of discrete cosine transform (DCT) 

and discrete wavelet transform (DWT) respectively [11,12]. However, the need for efficient 
compression techniques means that this field is not yet mature and still represents an 

attractive research area. Techniques that use SC may compete with these standards. 
Predictive coding (PC), also referred to as auto-regression (AR), or differential pulse code 
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modulation (DPCM) are used by a large number of research projects characterized by their 

simplicity, but still faces a number of inherent problems that can be summarized as: the 
difficulty of choosing an appropriate model, where the model is composed of three 

elements termed by order (number of neighbours), structure (1D/2D), causality 
(causal/acausal), the way of estimating the coefficients (linear/nonlinear) and the seed 

values (initial condition). 

Polynomial coding solves the above-mentioned problems related to predictive 
coding techniques using Taylor series, where the model and the estimation coefficients 

methods are determined either by linear or non-linear models. It solves the approximation 
base with no use of seed values which can be considered the most pressing problem. 

Currently, polynomial coding is utilized to compress both lossy or lossless images [13—

18], but still suffers from large residuals (prediction errors) and large number of 
coefficients. 

This paper introduces a novel adaptive technique for lossy polynomial base to 
efficiently represent the coefficients and residuals applied independently to each image 

plane demonstrated as grey images. In other words, the work implies investigation into an 

innovative approach to model the deterministic and stochastic polynomial parts effectively 
using fewer required number of bytes using an iteration base scheme of high precision 

techniques, where a mathematical model is generated based on subtraction and division for 
coefficients (a0,a1,a2) and residual, respectively ensures the effectiveness in compression 

ratios and quality. The rest of the paper is organized as follows: Section 2 reviews related 

work, Section 3 describes the proposed technique, Section 4 delivers experimental results 
with discussion, while conclusions are presented in Section 5. 

 

2. Related Work 

Polynomial coding is one of the modern techniques that overcome the inherited 

problems of predictive coding which is characterized by simplicity and symmetry, but still 

suffering from large byte consumption. Here we concentrate on a linear lossy polynomial 
approach used to compress greyscale images efficiently. The works surveyed here can be 

classified into two major classes: the enhancement-based polynomial which aims to 
improve the standard techniques with an adaptation process, and a residual-based technique 

which is concentrated on utilizing various residual quantization methods, where the residual 

can be considered the largest and main problem related to polynomial coding. 
The first type of enhancement-based polynomial approach includes Ghadah (2013) 

[19], utilizing variable block sizes (n×m) using the quadtree scheme instead of a fixed 
partitioning process of (n×n). Variable square block sizes are adopted after determining the 

minimum and maximum block sizes, with a homogeneity measure and quantization step of 

coefficients. Concerning residuals, results are promising for standard natural images 
compared to traditional polynomial coding of fixed block size (4×4). Using smaller blocks 

of variable sizes (Min=2 and Max=16) the same performance is obtained in terms of 
quality and compression ratios. Athraa (2015) [20], exploited the hierarchical scheme of 

interpolation base, where the multi-resolution principle was adopted for three layers. 

Through enlarging or shrinking of nearest neighbour interpolation technique, a quarter of 
the image is compressed instead of the full image (i.e., quarter size of coefficients and 

residuals). Results were shown to be adequate and improved almost four times on the 
traditional model. Rasha (2015) [15], adopted three improvement techniques to enhance the 

polynomial coding. First, a hierarchal scheme was used in which the polynomial 
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coefficients of the first layer were utilized efficiently to construct the second layer 

polynomial coding. Second, a fixed predictor was used to remove the spatial redundancy 
before utilizing the polynomial coding, and lastly the residual reduction was achieved using 

the discrete wavelet transform (DWT). All these adaptations aimed to overcoming the 
polynomial problems of redundancy embedded within the image itself, the coefficients, and 

residuals. The results show high performance compared to traditional polynomial based 

techniques with at least two times improvement in compression ratios on average while 
preserving high image quality. Murooj (2018) [21], used various fixed predictor models of 

certain order with different structures (1D/2D) on a causality basis to remove the inherited 
spatial redundancy embedded within the image, before using the polynomial coding to 

lossy compress a natural standard image. The approach also exploited the selective 

predictor model where each block utilized different predictors according to residuals. The 
results indicated improvements of four-fold increase in compression ratios while preserving 

image quality. 
The second type of enhancement-based polynomial approach relates to the 

quantization process of the residual image, where block size is of 4×4 and the quantization 

coefficients is of scalar uniform base. These include: Ghadah (2013) [22], which quantized 
the residual image using block truncation coding (BTC) of binary representation, namely 

two levels of a quantization scheme technique. The results for four standard square images 
exceeded eight times compression ratios compared to the original image with a good image 

quality. Ghadah et al. (2015) [23], adopted multi-resolution representation of two-level 

DWT, with all the details sub bands of the two layers quantized using the absolute block 
truncation coding (ABTC). The polynomial coding was applied to the second level 

approximation sub band, while the residual was first mapped to positive then sliced into its 
layers by applying bit plane slicing techniques (BPS). The least significant layers from 

layer1 to layer4 were ignored, while the most significant layers from layer5 to layer8 were 

quantized uniformly differently (each layer quantized with a scalar quantization step) and 
coded. The results were of high compression ratio with acceptable quality. Ghadah & Noor 

(2016) [24], utilized the one level decomposition residual based on DWT, with the hard or 
soft quantization process adopted for details sub bands, while the approximation sub band 

was quantized uniformly. The results showed the superiority of soft techniques for higher 

image quality compared to hard techniques for high compression ratios and lower quality. 
Ghadah and Sara (2017) [25], utilized the two-stage multiple description scalar quantizer 

(TSMDSQ) principle to efficiently quantize the residual image. The results are effective in 
terms of quality and compression performance. Ghadah (2018) [26], adopted the midtread 

adaptive quantizer to quantize the approximation sub band, along with soft quantization for 

the details sub bands, where the one level decomposition of DWT was used. Results were 
efficient and indicated high performance. Hawraa (2019) [27], utilized selected hard 

thresholding techniques of single or multiple base(s) to quantize the details sub-bands, 
while the approximation sub-band of one-layer DWT hierarchal scheme coded with the 

traditional linear polynomial coding. The results are of better performance compared to the 

traditional linear model where a higher compression ratio is achieved while preserving high 
image quality. Ola (2020) [28], adopted a new scheme that attempts to exploit the 

modelling techniques of joint and separate bases along with traditional polynomial coding. 
The results show high performance in terms of compression ratios and image quality. 

Ghadah & Loay (2021)[29], introduced 1-D linear polynomial coding techniques that 
utilized two coefficients (a0,a1) for the deterministic part instead of the traditional model 

that used three coefficients (a0,a1,a2) for each segmented block, along incorporating a non-

uniform quantization method for the probabilistic part (residual). Experimental results were 
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promising in terms of performance (compression ratio, PSNR quality) for natural and 

medical grayscale images. Samara et al. (2021) [30] exploited the introduced 1-D 
polynomial coding techniques with matrix minimization algorithm of six values to 

efficiently compress residuals. The system achieved superior results than that adopted by 
[29] using the same test images. The compression ratio was increased threefold compared 

to the first introduced 1-D scheme, with PSNR values converging to the compared 

mentioned work.          
 

3. Adaptive Polynomial Coding of Iterative Based Techniques 

As mentioned above, polynomial coding has been adopted by previous researches 
and can be considered as an extended revised version of predictive coding. This technique 

still suffers from residual and coefficients consumption, where actually the residual can be 

considered the main obstacle or difficulty compared to coefficients. In this paper we 
introduce a new method to efficiently represent polynomial coding of coefficients and 

residuals using an iterative based scheme. Figure (1) depicts the adaptive model, where the 
main contributions of the proposed system are:   

1- This paper develops models for deterministic (coefficients) and probabilistic 

parts (residual).   
2- It shows the effectiveness in terms of quality and compression ratios for spatial 

modelling techniques compared to the well-known standards techniques of JPEG 
and JPEG-2000.    
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Figure 1: The proposed compression and decompression method. 

 

The main steps of the algorithm are described as follows: 

 

3.1 Load the original uncompressed image plane I of size N×N, where I corresponds to an input 

image of N=256. 

 
3.2 Partition I into non-overlapping fixed sized blocks of size n×n. The partition exploits the 

local dependency (correlation) embedded within image neighbourhoods, where no global 
correlation can be captured as a whole. In general, the fixed partition is utilized for simplicity 

without considering the homogeneity of blocks; the number of the fixed blocks equals to (N/n)2, 
where here n = 4, so the number of blocks equals to (256/4)2 = 64×64 blocks.  

Represent the coefficients using the iterative based techniques& encode the parameters 

For a0 Coeff. 

Find a0Mean 

Iteratively subtract 

a0Meanfrom the a0Coeff. 

Remindera0 Iterationa0 

For a1,a2Coeff. 

Mapped into positive values 

of even odd bases 

Iteratively subtract 2from 

the a1,a2 Coeff. 

Remindera1,a2 Iterationa1,a2 

Original 

image I Apply linear polynomial coding 

Find the coefficients (a0,a1and a2)  

Reconstruct the coefficients (a0,a1anda2) identically of error- free base 

Create the predicted image and find the residual image 

Represent the residual iteratively using the Positions & Number of Division and encode 

the parameters 

Reconstruct the compressed image using the prediction image of lossless base and the 

reconstructed approximated residual of lossy base 

Reconstructed 

approximated 

image  

Compression 

Decompression 
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3.3 Compute the coefficients of the linear polynomial coding according to equations (1-4) 
[13,15,1,6,19], which implies three coefficients, where a0 corresponds to the mean value of each 

block of size n×n, a1 and a2 represent ratios of cumulative distances to both coordinates, and xc, 
yc correspond to the centre of the block.  
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Here we have three arrays of the three computed coefficients each of size 64×64 blocks. 

 

3.4 Represent the computed a0 coefficients of mean block values using iteration-based 
techniques. In other words, we introduce a new technique to model the a0 coefficient values, 

which can be considered as adaptive of the DPCM used in JPEG to encode the DC values, but 
with a recursive base of computed mean seed values. Put simply, start by computing the mean 

value of a0 coefficients such as a0Mean according to equation (5). Initially we compare each value 

in the a0 coefficients array with the computed a0Mean: if the value is less than or equal to a0Mean 
then we keep the values as it is in Remainder with Iteration equal to zero, then for the values 

greater than the a0Mean we compare it recursively; namely for every iteration we subtract the 
mean value a0Mean from the a0 coefficients with increments the iteration by one, until a0 

coefficient value becomes less than the threshold computed mean value a0Mean. Table 1 

illustrates the steps using an example of one-dimension a0 values with eight mean values; also, 
Algorithm (1) summarizes the techniques. 
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Table 1: Example of a0 recursive representation of Remainder and Iteration values, where the mean values of 

the eight a0 values here equals to 62. 

 

 

 

 

 

 

 

 

 

 

 

 

a0 original 

values 

a0(1) a0(2) a0(3) a0(4) a0(5) a0(6) a0(7) a0(8) 

12 13 67 163 3 34 114 90 

Remaindera0    101     

12 13 5 39 3 34 52 28 

Iterationa0 0 0 1 2 0 0 1 1 
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Algorithm (1): Recursive differencing a0 coefficients encoding of mean-based techniques 

 

 

3.5 Represent the other computed coefficients (a1&a2) effectively using the iteration principle, 
though here the scenario is different from a0, since these values (a1&a2) may be either negative 

or positive. Consequently, the first step is to map them into positive numbers of even and odd 

bases using equation (6) [13]. 
 

)6.........(..........
else           12

0Coffi if                2  





−


=

Coffi

Coff
Mapi

i

Values

 

 

Here Coff corresponds to (a1&a2) values, MapiValues mapped positive values, where positive 

values are mapped into even bases, while negative values are mapped into odd bases. Basically, 
the idea is to iteratively subtract a number – here we use base 2 since 2 is easily distinguished 

either even or odd base –from each value, which results in a binary representation of zeros and 
ones along the iteration number. It is important to remember to initially check these values in 

case the values are equal to zeros or ones, with iteration number equal to zero. Table 2 illustrates 

an example of one-dimension a1 values of eight mean values; also, Algorithm (2) summarizes 
the techniques. 

 

Input: a0 coefficient image of size (N/n)2 (i.e., 64x64 for N=256, n=4) 

 Sm = 0; a0Mean = 0;  
  Output: Remaindera0, Iterationa0 each of size (N/n)2 and a0Mean   
  Begin  

     //1- find size of a0 image  
       [Rows, Cols] = size (a0) 

    //2-  calculate the mean (average)  of a0 image 
for i = 1 : Rows 
   for j = 1 : Cols  

     Sm = Sm +a0 (i,j)  
  End  

End 
     a0Mean=Sm/(Rows x Cols) 
//3-  Initialize the two-output array (Remaindera0 and Iterationa0) each of size (N/n)2 with values equal to zeros 

  Iterationa0(N/n)2 =0 ,   Remaindera0(N/n)2 =0 
//4- Apply the proposed differencing technique 

for i = 1 : Rows 
   for j = 1 : Cols  
      if a0(i,j)<=floor(a0Mean) Remaindera0(i,j)=a0(i,j) ,  Iterationa0(i,j) =0.  
            if a0(i,j)- a0Mean >=1  
             begin 

                 If Remaindera0(i,j)<=a0Mean  Remaindera0(i,j)= a0(i,j)  ,Iterationa0(i,j) =Iterationa0(i,j)+1. 
                Else a0(i,j)=Remaindera0(i,j), Iterationa0(i,j =Iterationa0(i,j)+1. 
            End if 

          End if  
    End if  

 End  
End 
End 
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3.6 Encode/decode the compressed information of coefficients representation (Remainder a0 

,a1, a2, Iteration a0, a1, a2) along the extra information (a0Mean, 2) using different coding 

techniques (Huffman coding/LZW) according to the parameter’s nature.  
 

 

3.7 Reconstruct the coefficients identically using the equations below, also illustrated in Tables 
3a, and 3b. 

𝑎0 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑎0 + (𝑎0𝑀𝑒𝑎𝑛 ×  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎0) … … … . . (7) 

𝑎1 , 𝑎2 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑎1 , 𝑎2 + (2 ×  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎1 , 𝑎2) … . … . (8) 

 

For the reconstructed coefficients of (a1&a2) bases the de-mapping process is required, such as 
described in [13]: 

)9.........(..........
else           2/)1,(Re

even if                 2)/ ,(Re

21

21


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DeMapi  

Where Reca1,a2 corresponds to reconstructed coefficients of even/odd bases.  

 
Table 2: Example of a1 recursive representation of Remainder and Iteration values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a1 original 

values 

a1(1) a1(2) a1(3) a1 (4) a1(5) a1(6) a1(7) a1(8) 

0 -3 -2 5 4 8 3 -1 

a1values after 

mapping 

0 5 3 10 8 16 6 1 

Differencing  3 

1 

1 8 

6 

4 

2 

0 

6 

4 

2 

0 

14 

12 

10 

8 

6 

4 

2 

0 

4 

2 

0 

 

Iteration a1 0 2 1 5 4 8 3 0 

Remainder a1 0 1 1 0 0 0 0 1 
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Algorithm (2): Recursive differencing a1, a2 coefficients encoding proposed technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3a: Example of a0 construed using the representation of Remainder and Iteration values along the 

mean 

 

 

 

 

 

Table 3b: Example of a1 construed using the representation of Remainder and Iteration values along the base 

of 2. 

 value.  

 

 

 

 

 

Input: a1,a2 coefficient images each of size (N/n)2 (i.e., 64x64 for N=256, n=4) 

Output: Remainder a1,a2, Iteration a1,a2 each of size (N/n)2  
Begin  

//1- find size of a1 images  

[Rows, Cols] = size (a1) 
// 2- Mapped the values of a1,a2 images into even and odd values 

 for i = 1 : Rows 
   for j = 1 : Cols  
     if (a1 (i,j) or a2 (i,j))>=0 MapiValues=(2x a1 (i,j)) or MapiValues= (2x a2 (i,j)) 

       else MapiValues=(2x abs(a1 (i,j))-1) or MapiValues=(2x abs(a2 (i,j))-1) 
    End if 

 End  
End 
//3-  Initialize the two-output array (Remainder a1,a2 and Iteration a1,a2) each of size (N/n)2 with values equal to zeros 

Iteration a1,a2 (N/n)2 =0 ,   Remainder a1,a2 (N/n)2 =a0(i,j) 
//4-  Apply the proposed differencing technique 

  for i = 1 : Rows 
     for j = 1 : Cols  
       If MapiValues(i,j) =0 orMapiValues (i,j)=1    Iterationa1,a2=0 ,  Remaindera1,a2=MapiValues(i,j) 

        if MapiValues (i,j)- 2>=1  
        begin 

          If  Remainder a1,a2 (i,j)<=2 , Remainder a1,a2 (i,j)= a1,a2 (i,j),  Iteration a1,a2 (i,j) =Iteration a1,a2 (i,j)+1. 
          Else a1,a2 (i,j) =Remainder a1,a2 (i,j)  ,Iteration a1,a2 (i,j) =Iteration a1,a2 (i,j)+1. 
         End if 

       End if  
     End if  

   End  
End 
End 

 

Remainder a0 12 13 5 39 3 34 52 28 

Iteration a0 0 0 1 2 0 0 1 1 

Use the encoded/decoded information using equation7 

a0 error-free 

reconstructed 

values 

12 13 67 163 3 34 114 90 

 

Iteration a1 0 2 1 5 4 8 2 0 

Remainder a1 0 1 1 0 0 0 1 1 

Use the encoded/decoded information using equation8 

a1 error-free 

reconstructed 

values before 

demapping 

0 5 3 10 8 16 5 1 

Use the encoded/decoded information using equation9 

a1error-free 

reconstructed 

values after 

demapping 

0 -3 -2 5 4 8 -3 -1 
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3.8 Create the predicted image I
~

using the original coefficient values of lossless base coding 

(Namely create the predicted image using the deterministic part), such as in [13,15]: 

 

)10...(..........).........()(
~

210 cc yiaxjaaI −+−+=  

 

3.9 Find the residual (difference) between original image I and the predicted one from the step 
above, this part corresponding to the probabilistic part in [13,15]: 

)11(........................................).........,(
~

),(),(Re jiIjiIjisI −=  

 
The residual is the vital part of the modelling process due to the prediction limitation 

(insufficiency) of capturing all the image characteristics using the same or various models for an 

image of varying details. Hence all the unpredicted information found in the residual which is 
essential for reconstructing the image, and in the same way is the core of the excessive bytes due 

to large uncorrelated data values that are difficult to manipulate directly, is traditionally solved 
using the lossy encoder of quantizer base, either of scalar base, which means the uniform/non-

uniform techniques, or of vector base followed by a symbol encoder. 

 
3.10 Represent the lossy residual and iteratively using the scalar uniform base with 

predetermined thresholds of minimum and maximum values; this is necessary to preserve the 
quality of a minimum loss. In other words, each residual value is divided by 2 iteratively while it 

is within the quality range limited by maximum and minimum values. Each time, the remainder 

is kept with an increasing number of iterations. The main reason of using the value of 2 for 
division is the ability to exploit the values bit by bit (i.e., forcing the least significant bit to be the 

remainder until having forced all the other bits). Figure 2 illustrates an example of the residual 
iterative base; also, Algorithm (3) summarizes the techniques. 

 
100    -64   - 12    78 50.0   -32.0   -6.0   39.0 25.0   -16.0    -3.0   19.5 

23    24    65    90 11.5   12.0   32.5   45.0 5.75    6.0   16.25   22.5 

34    76    56    -80 17.0  38.0   28.0   -40.0 8.5   19.0   14.0   -20.0 

9    17    30    33 4.5    8.5 15.0   16.5 2.25   4.25    7.5    8.25 

Iteration #0 (Original) Iteration #1 (Divide by 2) Iteration #2 (Divide by 2) 

12.5   -8.0    -1.5    9.75 6.25   -4.0    0     4.87 3.12   -2.0    0    2.43 

2.87    3.0    8.12   11.2   1.43     1.5    4.06    5.62      0        0    2.03    2.81 

4.25    9.5    7.0   -10.0 2.12    4.75   3.5   - 5.0   1.06     2.37   1.75    -5 

1.12  2.12    3.75    4.12                 0      1.06   1.87   2.062    0       0          0        1.03 

Iteration #3 (Divide by 2) 

Save RED values in matrix called 

Position (according to their X,Y) 

Iteration #4 (Divide by 2) 

Save RED values in matrix called 

Position (according to their X,Y) 

Iteration #5 (Divide by 2) 

Save RED values in matrix called 

Position (according to their X,Y) 

1.56    -1.0    0     1.21     0    0    0    0 

0          0     1.01   1.4     0    0    0    0 

0        1.18     0    -1.25     0    0    0    0 

0           0       0     0     0    0    0    0 

Iteration #6 (Divide by 2) 

Save RED values in matrix called 

Iteration #7 (Stop) 
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Position (according to their X,Y) 

1.5  -1.0  -1.5  1.2 6 6 3 6 

1.4 1.5 1.0 1.4 4 4 6 6 

1.0 1.1 1.7 -1.2 5 6 5 6 

1.1 1.0 1.8 1.0 3 4 4 5 

 Position Matrix  

(corresponds to precision matrix of remainder base that 

is limited between maximum and minimum quality 

measures) 

 Number of Divisions  

(comes from the number of iterations; at each stage when data 

are zero means stop counting for that data, replace it by 

iteration value) 

Figure 2: Example of residual image block of size 4x4 with quality measures of maximum=2 and minimum=1. 

 

Algorithm (3): Recursive division of residual based encoding techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

3.11 Encode/decode the residual iterative representation, where the Number of Division 
parameter is coded using the popular Huffman coding, while the Position parameter which 

corresponds to the precision matrix of floating-point values is subject to arithmetic coding. Our 
goal is to retain high accuracy with minimum degradation which is essential for conversion into 

integer number of preserving values, such as: 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ×  10) … … … … … . . (12) 
 

Here we convert the Position matrix into integer by keeping one significant digit after the 

decimal point. The integer position matrix is then coded using efficient arithmetic coding 
techniques. 

 

3.12 Reconstruct the approximated residual image values based on iterative lossy using the 
equations below. The coded data illustrated in Figure 2 is recovered and illustrated in Figure 3. 

 

Input: Residual image of size (N×N) (256×256), QuantizationFactor=2 
Output: Positions and Number of Division each of size (N×N) 
Begin  

//1- find size of a1 images  
[Rows, Cols] = size (Residual) 

//2- Initialize the two-output array (Positions, Number of Division) each of size (N×N) with values equal to zeros values  
Positions(Rows, Cols)=0 ,   Number of Division(Rows, Cols) =0 
 

//3- Check if the residual values equals to zero  
for i = 1 : Rows 

 for j = 1 : Cols  
if (Residual (i,j) =0) Positions(i,j)=0 ,   Number of Division(i,j) =0 
End if 

End  
End 

Step 4:// Apply the proposed technique for non- zero residual values 
While (all value in Residual not zero)  
    Matrix = Residual./QuantizationFactor; // Dot Division matrix by 2 ….  

   Iteration ++ ; //  Increment iteration  
  If (Residual (i,j) >=MinimumQuality and <MaximumQuality)  

    Positions(i,j)=Residual ,   Number of Division(i,j) = Iteration 
End if 
End    

End 
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𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

10
… … … … (13) 

𝑉𝑎𝑙𝑢𝑒𝑠 =  2𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 … … … … (14) 

𝐼𝑅𝑒�̂� = 𝑟𝑜𝑢𝑛𝑑(𝑉𝑎𝑙𝑢𝑒𝑠 ×  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) … … . . (15) 

 

 

 

 

 

 

 

 

 

Figure 3: Example of reconstructed residual image block of size 4x4 using the iterative lossy technique 
 

3.13 Rebuild the compressed image Î by adding the approximated reconstructed residual 

image from the step above to the predicted the image from step 8, such as in [13,15]: 

𝐼(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝐼𝑅𝑒�̂�(𝑥, 𝑦) … … … (16) 

 

4. Experimental Results 

In the experiments described here, we report on the amount of compression (number of 

bytes) compared using Huffman, Arithmetic Coding and the LZW-Lempel-Ziv-Welch algorithm. 

Concerning image quality, we use the objective fidelity criteria of PSNR (peak-signal to noise 
ratio) and NRMSE (normalized root mean squared error) (see equations 17-18), for simplicity, 

speed, and to facilitate comparisons with other related work. Test images of different types are 
shown in Figure (4). This includes natural, medical, and biometric images of varying details. All 

images are greyscale (8bits/pixels) of square size (256×256), and the block size used is 4×4. The 

proposed compression method was tested on a laptop computer with a processor Intel Corei 5-
2450 CPU at 2.50GHz, 6 GB or RAM, using Matlab programming language. The fidelity 

measures defined as [1, 3-6]: 
 

)17)........(
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NN

IIPSNR  

15 -10 -15 12 1.5 -1.0 -1.5 1.2 

14 15 10 14 1.4 1.5 1.0 1.4 

10 11 17 -12 1.0 1.1 1.7 -1.2 

11 10 18 10 1.1 1.0 1.8 1.0 

Converted into integer 

numbers by multiplying 

by 10 

Original Position matrix 

(precision values of real 

numbers)  

64 64 8 64 96 -64 -12 77 100    -64   - 12    78 

16 16 64 64 22 24 64 90 23    24    65    90 

32 64 32 64 32 70 54 -77 34    76    56    -80 

8 16 16 32 9 16 29 32 9    17    30    33 

Values according to equation 13 Reconstructed residual values of 

minimum loss using the iterative 

based technique 

Original residual values 
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Where I  represents the original uncompressed image and Î  represents the decoded compressed 

image.  
 

 
  

 

 

 

Figure 4: Test images are categorized into three groups, where (a) Lena and (b) Rose correspond to natural 

images, (c) Brain and (d) Knee correspond to medical images, and(e) Iris and (f) Fingerprint correspond to 

biometric images.   

 

 

4.1. Experiment 1 
The first experiment tested our proposed technique to lossless encoding polynomial 

coefficients (a0, a1, a2), and comparing it to the traditional techniques of Huffman, arithmetic 

coding and LZW. Figure (5) shows the coefficients of the test images. Generally, for each of the 
coefficients (a0, a1, a2) one byte was required (i.e., 64×64=4096 bytes for each coefficient). 

Tables (4 and 5) illustrate the size in bytes for the (a0,a1,a2) coefficient values for the test images 

using the selected traditional techniques. In our proposed method, we use Huffman coding for 
iteration parameters and LZW for remainder parameters. This is because despite high repetition 

a b c 

d 

e 
f 
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of iteration values meaning that arithmetic coding would perform better than Huffman coding, 
the latter is simpler and, moreover, results showed that there are only small differences between 

them. Results clearly show that the proposed method has higher compression efficiency, which 
exceeds more than 2 times on average for all coefficient representations parameters. Table (3) 

and Figure (6) demonstrate the total number of bytes required for polynomial coefficients 

(a0,a1,a2) using the Huffman coding and the adopted techniques. Figure (7) shows the 
performance comparison for the coefficients between the traditional coding techniques (Huffman 

coding, Arithmetic coding, LZW) and the proposed iterative techniques of error-free based. 
 

 

 
Tested 

images 

a0 coeff.  a1 coeff. a2coeff. 

Lena 

 
  

Rose 

 
 

 
Brain 

(MRI) 

 
  

Knee(M

RI) 
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Iris 

   
Fingerp

rint 

 
  

 

Figure 5: Test image coefficients (a0, a1, a2) with range values. 

 

 

 

Table 4: A comparison between coded techniques of a0 coefficients using traditional techniques and iterative 

base techniques.  

Tested 

Images 

 

Number 

of bytes 

a0 

Lossless encoding of the a0 coefficients 

values, number of bytes 

Lossless encoding of the a0 coefficients for 

Iteration based techniques, number of bytes 

Huffman 
Arithmetic 

coding 
LZW Remaindera0 Iterationa0 Total 

Lena 4096 3832 3820 3311 748 378 1126 

Rose 4096 3924 3909 3462 754 430 1184 

Brain  4096 3108 3003 2631 836 422 1258 

Knee 4096 3166 3151 2492 817 452 1269 

Iris 4096 3558 3541 2957 792 344 1136 

Fingerprint 4096 3694 3683 3657 805 549 1354 

 

Table 5: A comparison between coded techniques of a1, a2 coefficients using traditional techniques and 

iterative base techniques.  

Tested 

Images 

 

Coefficients 

Number of 
bytes 

Lossless encoding of the a1, a2 

coefficients values 

Lossless encoding of the a1,a2 

coefficients for iteration based techniques 

Huffman 
Arithmetic 

coding 
LZW 

Remainder 
parameter 

Iteration 
parameter 

Total 

Lena 
a1 4096 2796 2779 2612 863 490 1353 

a2 4096 2392 2380 2152 790 348 1138 

Rose 
a1 4096 2680 2668 2527 948 410 1358 

a2 4096 2582 2566 2355 779 380 1159 

Brain 
a1 4096 2566 2547 2337 986 358 1344 

a2 4096 2462 2442 2350 840 352 1192 

Knee 
a1 4096 2486 2462 2220 652 415 1067 

a2 4096 2008 1978 1791 715 356 1071 

Iris 
a1 4096 2286 2270 2256 862 466 1328 

a2 4096 2268 2254 2012 866 356 1222 
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Fingerprint 
a1 4096 3440 3428 2987 1060 367 1427 

a2 4096 3078 3064 2780 865 467 1332 

 

 

 

 

 

 

Table 6: Total number of bytes for the coefficients using the Huffman coding techniques and the proposed 

iterative based system for the test images. 

 

 

 

 

 

 

 

 

 
 

 

 

Tested images Huffman coding Proposed techniques 

Lena 8958 3617 

Rose 9186 3701 

Brain 8136 3794 

Knee 7660 3407 

Iris 8112 3686 

Fingerprint 10212 4113 

Figure 6: Comparison of the coefficients required bytes in Huffman coding and the proposed 

techniques. 
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Figure 7: Comparison performance of the coefficients encoding techniques of traditional base (Huffman, 

arithmetic, LZW) and iterative base techniques. 

 

 

4.2. Experiment 2  
Figure (8) shows the predicted and residual images of the test images. The second 

experiment results are shown in Table (7) and Figure (9) which measuring the amount of residual 
image information before utilizing the representation of the iterative process of lossy base using 

the popular objective quantitative measure of root mean square error as follows [1]: 

).......(19..............................       ),(Re
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The RMSE Res simply measures the amount of uncaptured image information due to the 

limitation of the prediction model which is directly affected by the image details or 

characteristic, around the edges of non-smooth details. 
 

Tested images Predicted Image Residual Image 

Lena 
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Huffman coding

Arithmatic coding

LZW coding
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Rose 

 
 

Brain  

  
Knee 

  
Iris 

  
Fingerprint 

  
 

Figure 8: Tested prediction and residual images with block size of 4x4 
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Table (7): The size of residual or prediction error for the tested images. 

 

 
 

 
 

 

 

 

Figure 9: The amount of residual image information for each tested image in terms of RMSE. 

 

 

 

4.3. Experiment 3 
This experiment is conducted to test how the parameters affects the residual iterative 

process of lossy base, namely the quality that is limited between maximum and minimum values. 
Here, three quality parameters were adopted that range between 1 and 2, 1 and 10, and 1 and 20, 

respectively. The PSNR (equation 16) between the original residual image and the reconstructed 

image was adopted, as shown in Table (8) and Figure (10 a,b). Additionally, SSIM measurement 
used to calculate the quality between residual image and the reconstructed image [31].    

 
Table 8: The proposed residual iterative performance using different quality measures. 

Test 

Images 

Limited by 

Quality 

Size of residual of iterative 

based techniques, in bytes 

Quality between 
original and residual 

images 

Quality 

between 

original and 

residual 
images 

 

Structural 

Similarity index 

measure between 
original and 

residual images  

Min Max Position 
Number 

of 

Divisions 

Total 

 

PSNR  

(IRes, sI eR̂ ) 

 

NRMSE 

(IRes, sI eR̂  ) 

 
 

SSIM 

(IRes, sI eR̂  ) 

Lena 

1 2 9851 7898 17749 47.6225 0.0335 0.712 

1 10 7053 5633 12686 42.6848 0.1098 0.673 

1 20 3763 3005 6768 39.6978 0.2625 0.505 

Rose 

1 2 7460 6088 13548 48.6833 0.0643 0.772 

1 10 5146 5133 10279 41.7028 0.1218 0.642 

1 20 4494 2760 7254 40.7046 0.2013 0.613 

Brain 1 2 9030 7165 16195 49.5700 0.0190 0.683 

0

5

10

15

1 2 3 4 5 6

R
M

SE
R

es

Test images

Tested images RMSE Res 

Lena 12.0464 

Rose 7.2657 

Brain 14.1352 

Knee 8.7756 

Iris 8.6346 

Fingerprint 13.4981 
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1 10 6987 6084 13071 42.7363 0.0657 0.593 

1 20 5622 4176 9798 39.7744 0.1303 0.492 

Knee 

1 2 6229 6755 12984 47.8947 0.0339 0.630 

1 10 4959 5128 10087 42.9530 0.1061 0.605 

1 20 3994 3755 7749 39.9585 0.2106 0.588 

Iris 

1 2 7366 7845 15211 46.0677 0.0521 0.693 

1 10 6075 6229 12304 40.1043 0.1161 0.622 

1 20 5175 4845 10020 39.1086 0.2466 0.487 

Finger

print 

1 2 12070 13138 25208 49.2169 0.0197 0.711 

1 10 8582 9894 18476 43.3734 0.0719 0.701 

1 20 5850 7872 13722 40.0380 0.1843 0.532 

 
Certainly, the quality of residual images and byte consumption improves as the range of 

maximum and minimum values decrease; it is a trade-off between them, namely the higher the 
quality, the larger number of bytes related by a small range of values, and vice versa.     

 

 
 

Figure 10 (a,b): Total size of the residual versus (a)PSNR and (b) NRMSE. 

 

4.4. Experiment 4 
The last experiment was concerned with measuring the performance in terms of quality, 

compression time and compression ratio, which meant measuring the amount of encoded 
information in bytes which should be smaller than the original image. The compressed image 

size depends on the size of coefficients of lossless base and size of the residual of lossy base, 
along with the overhead information (a0Mean, base2 for a1, a2 and the base2 for division) of three 

extra bytes. So, the size of compressed information can be formulated such as in [1]:   

 

𝑆𝑖𝑧𝑒𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = 𝑆𝑖𝑧𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 + 𝑆𝑖𝑧𝑒𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑆𝑖𝑧𝑒𝐸𝑥𝑡𝑟𝑎𝐼𝑛𝑓𝑜 … … … (20) 

 

Table (9) and Figure (11a,b) demonstrates the compression ratio versus the PSNR and NRMSE 
respectively for the tested images. Figure (12) shows the original and compressed tested images 

of high and low quality.  

 
 

 

a b 
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Table 9: Compression performance for tested images. 

 

 

 

Figure 11(a,b): Compression ratio versus the PSNR and NRMSE for the tested images. 

 

 

 

Tested 

Images 

Coeff, 

in 
bytes 

Limited by 

Quality Position, 

in bytes 

Total 
size, in 

bytes (eq. 

20) 

CR 
PSNR 

(I, Î ) 

Quality 

NRMSE  

(I, Î ) 

 

SSIM 

(I, Î ) 

 

Total time in 

sec Min. Max. 

Lena 3617 

1 2 17749 21369 3.0669 52.6356 0.0178 0.972 7.0512 

1 10 12686 16306 4.0191 48.7623 0.0584 0.866 7.0356 

1 20 6768 10388 6.3088 46.2578 0.0755 0.892 6.9264 

Rose 3701 

1 2 13548 17252 3.7989 53.8307 0.0215 0.876 7.3164 

1 10 10279 13983 4.6869 49.8702 0.0614 0.811 7.1760 

1 20 7254 10958 5.9807 46.3887 0.0847 0.833 6.8660 

Brain 3794 

1 2 16195 19992 3.2781 55.6287 0.0145 0.931 5.9436 

1 10 13071 16868 3.8852 51.9552 0.0496 0.895 5.8344 

1 20 9798 13595 4.8206 49.0311 0.0737 0.877 5.7865 

Knee 3407 

1 2 12984 16394 3.9976 53.9435 0.0207 0.934 6.1308 

1 10 10087 13497 4.8556 51.0609 0.0557 0.953 6.0020 

1 20 7749 11159 5.8729 48.0721 0.0848 0.833 5.9804 

Iris 3686 

1 2 15211 18900 3.4676 52.0969 0.0199 0.812 6.9732 

1 10 12304 15993 4.0978 49.1702 0.0555 0.864 6.8640 

1 20 10020 13709 4.7805 47.1879 0.07933 0.798 6.6371 

Fingerprint 4113 

1 2 25208 29324 2.2349 56.0829 0.0118 0.941 6.1528 

1 10 18476 22592 2.9009 52.3889 0.0429 0.953 6.0996 

1 20 13722 17838 3.6739 50.4090 0.0695 0.875 5.9592 
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Test Image Original image  Compressed at higher quality Compressed at lower quality 

Lena 

   
Rose 

   
Brain 

   
Knee 

 
  

Iris 
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Figure 12: Examples of original test images and compressed images of high/low quality by our proposed 

method. Each image is 256x256 pixels, 65 KB. 

 

 

 
As expected, results showed an inverse relation between compression ratio and quality 

that is directly affected by the image details (characteristics) along with the effect of the quality 
residual measure minimum and maximum values. Also, the results illustrate that the total 

compression time - encoding of iterative based techniques and direct decoding process – is 

inversely related to the range of the residual quality measures; a small range has a large number 
of division iterations, and as the range increases the division iteration numbers decrease, with 

decreasing time. The interesting point is the excellent near perfect quality of the decoded 
compressed images. It is subjectively impossible to differentiate between the compressed image 

and the original one. This is due to preserving image information in terms of lossless coefficients 

causing minimum degradation or minimum residual loss. 
Finally, the comparison with the well-known standard techniques JPEG and JPEG2000 is 

given in Table (10), based on measuring the compression ratio and the quality in terms of PSNR 
for the test images shown in Figure (4). Also, other test natural images added for comparative 

analysis of performance are shown in Figure (13). They follow the same criteria adopted for the 

previous images, namely they are greyscale square images of size (256×256). Figures 14 and 15 
show a direct comparison of JPEG and JPEG-2000 set at the highest image quality with our 

technique compressed at lower quality. The decoded images in JPEG/JPEG2000 are inferior to 
our method, even when our method is set to low quality (to yield similar compression ratios as 

JPEG/JPEG2000). Therefore, it is demonstrated the superior performance of our method with 

higher PSNR values as compared to JPEG/JPEG2000, for similar compression ratios. Also, the 
other comparison performed with traditional polynomial and two adaptive works relied on the 

Lena/Rose test images from [24] and [28] is given in Tables (11a-11b); where superior higher 
quality is achieved compared to [24,28]. Even with high compression ratios performed by [28], 

still our results are promising with a clear trade-off between quality and compression ratio. 

 
 

Fingerprint 
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(a) 

 
(b) 

 
(c) 

 

Figure 13: Other tested natural images, where (a) Card and (b) Apple correspond to natural images, and (c) 

Guitar images. Each image is 1200x1200 pixels, 1.37MB. 
 

 
 

Table 10: PSNR of JPEG set on the highest quality compared to the original image. 

Tested 

Images 

JPEG JPEG-2000 

Total size 

in bytes 

 

CR PSNR  SSIM 

Total size in 

bytes 

 

CR PSNR SSIM 

Lena 11366 5.7659 38.8708 0.761 10879 6.0240 41.3328 0.901 

Rose 10762 6.0895 41.0337 0.721 8704 7.5294 43.7361 0.987 

Brain 11858 5.5267 39.8728 0.812 10137 6.4650 42.4219 0.954 

Knee 9728 6.7394 41.2240 0.952 9113 7.1914 45.0710 0.899 

Iris 8908 7.3567 40.3316 0.912 10235 6.4031 43.9751 0.879 

Fingerprint 15698 4.1747 38.8799 0.912 11035 5.9389 40.1820 0.946 

Card 14336 4.5614 34.5320 0.871 10822 6.0558 36.7908 0.932 

Apple 13207 4.9622 41.0911 0.911 11666 5.6176 44.8534 0.923 

Guitar 11288 5.8085 39.8915 0.991 9830 6.6669 43.1997 0.988 
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Figure 14: PSNR of JPEG/JPEG2000 versus the proposed technique for the tested images. 
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Figure 15: Examples of original tested images and compressed images of JPEG technique set at the highest 

quality and the suggested technique set at low quality.  

 

 

 

 

 

Table (11a). Comparison with traditional polynomial, adaptive techniques [24,28] and the proposed system 

for Lena image 

 

Image Compression Techniques of traditional coding, adaptive 
coding and the proposed 

Performance for 
Lena Tested image 

CR PSNR SSIM 

Traditional polynomial coding block size 4x4, Quantization Coeff.1,2,2, 
and Quantization Res 5 

3.3227 45.0201 0.889 

Traditional polynomial coding of 2D base, block size 4x4, Quantization 

Coeff.1,2,2, and Quantization Res 40 
4.4329 31.1426 0.432 

adaptive polynomial coding of 2D hard thresholding base, block size 
4x4, Quantization Coeff.1,2,2, and thresholding of subbans coding 

20,20,40 and approximation subband 2[24] 

5.1312 29.9972 0.219 

adaptive polynomial coding of 2D soft thresholding base, block size 4x4, 
Quantization Coeff.1,2,2, and thresholding of subbans coding 20,20,40 

and approximation subband 2[24] 

4.9201 33.3726 0.495 

Adaptive polynomial  with Quantization Steps of Coefficients are 1,2,2, 
LHThr=21,HLThr=36,HHThr=32, Using the Seven Midtread 

Quantization base adopted by Burget & Das that utilized the minimum 

standard deviation value of residual image [28] 

8.5556 31.7175 0.456 

Proposed system with quality between 1to 2 3.0669 52.6356 0.972 

Proposed system with quality between 1to 10 6.3088 46.2578 0.892 
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Table (11b). Comparison with traditional polynomial, adaptive techniques [28] and the proposed system for 

Rose tested image 

 

Image Compression Techniques of traditional coding, adaptive 
coding and the proposed 

Performance for 
Rose Tested image 

 
 

CR PSNR SSIM 

Traditional polynomial coding block size 4x4, Quantization Coeff.1,2,2, 
and Quantization Res 5 

3.7186 45.4949 0.828 

Traditional polynomial coding of 2D base, block size 4x4, Quantization 

Coeff.1,2,2, and Quantization Res 40 
4.4783 33.2660 0.638 

Adaptive polynomial with Quantization Steps of Coefficients are 1,2,2, 
LHThr=21,HLThr=36,HHThr=32, Using the Seven Midtread 

Quantization base adopted by Burget & Das that utilized the minimum 

standard deviation value of residual image [28] 

9.6718 35.5568 0.532 

Proposed system with quality between 1to 2 3.7989 53.8307 0.876 

Proposed system with quality between 1to 10 5.9807 46.3887 0.833 

 

5. Conclusion 

This paper proposed a novel iterative image coding technique based on an efficient 
hybrid lossy technique. The significance of our proposed methods is that they are convenient for 

a variety of image types including natural, medical and biometric grey level images. For the 
latter two types compression is critical, and is normally coded in lossless manner (error-free) as 

priority is given to keeping all information from the image.  The experiments shown here 

demonstrate our proposed technique to a wide range of images where the quality of all tested 
images in terms of PSNR exceeds the well-known standard techniques of JPEG and JPEG-2000.      

The iterative part constitutes the core of the paper and uses two different schemes, a 
lossless followed by a lossy method.  First, the lossless method is based on a set of polynomial 

coefficients a0 and (a1,a2) where a0 is characterized by efficiently embedding correlations by 

subtracting the mean value at each iteration and keeping the number of iterations with the 
remainder. The mapping/de-mapping process is essential for converting the coefficients (a1,a2) 

values from negative and positive values into even/odd base to overcome the sign problem of 
negative numbers which requires a large number of bytes. The iterative process applies base2 

differential techniques with superior representational performance converting uncorrelated, large 

byte consuming values into efficient representation of number of iterations and remainder 
parameters. Second, the lossy method is based on the residual that represents the number of 

divisions along the remainder. It is used to reconstruct an approximated value with minimum 
loss controlled by a maximum and minimum quality range that resembles the non-uniform 

quantization process. 

The considerations above highlight the main limitations of our proposed method in 
relation to complexity, which may represent obstacles to its wide use. The average time 

complexity of the methods is estimated as O (n log n). Before the methods can be widely adopted 
(at par with other techniques such JPEG/JPEG2000) the following aspects are required to be 

addressed: 

 
1. Standardization/practical issues: the proposed system produces high quality images with 

good compression ratios, but is still complex and needs to be optimized. 

2. Performance issues: the polynomial coding is promising and simple to implement, 

however, there are a number of related issues that need to be developed further: 
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• The simplicity of the utilized symbol encoder techniques. 

• Extending the system to utilize a hybrid system of the transform coding, by 

incorporating frequency techniques such as discrete wavelet transforms (DWT) or 

discrete cosine transform (DCT). 

• Extending the system by mixing between the linear and the non-linear polynomial 

based techniques allowing the block nature to efficiently reduce the residual. 

• Exploiting the region of interest (ROI) based segmentation process, especially in 

medical or frontal face images, to use the lossy background effectively. 
3. Extending the proposed system to work with colour images; an initial solution could be 

simply repeat the method for each image plane. 
 

Research on the above issues is under investigation and results will be reported in related works. 
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