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Abstract: Efficiently recognising severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
symptoms enables a quick and accurate diagnosis to be made, and helps in mitigating the spread of
the coronavirus disease 2019. However, the emergence of new variants has caused constant changes
in the symptoms associate with COVID-19. These constant changes directly impact the performance
of machine-learning-based diagnose. In this context, considering the impact of these changes in
symptoms over time is necessary for accurate diagnoses. Thus, in this study, we propose a machine-
learning-based approach for diagnosing COVID-19 that considers the importance of time in model
predictions. Our approach analyses the performance of XGBoost using two different time-based
strategies for model training: month-to-month and accumulated strategies. The model was evaluated
using known metrics: accuracy, precision, and recall. Furthermore, to explain the impact of feature
changes on model prediction, feature importance was measured using the SHAP technique, an
XAI technique. We obtained very interesting results: considering time when creating a COVID-19
diagnostic prediction model is advantageous.

Keywords: COVID-19; diagnosis; machine learning; feature importance; eXplainable AI

1. Introduction

The COVID-19 pandemic started in December 2019 and has since continued to spread
worldwide without any clear signs of eradication. Many global health systems collapsed
at that time due to the large number of people who became infected. The polymerase
chain reaction (PCR) test, which detects genetic material from a pathogen or abnormal cell
sample, is considered to be the gold standard for diagnosing COVID-19; however, due to
the high demand for examinations within short periods of time, PCR tests often end up
being delayed and the results are not provided in a timely manner. Although lateral-flow
rapid tests provide results more quickly, their availability is often low due to high demand.
Thus, using symptoms as a diagnostic tool has a significant advantage: diagnoses can be
made quickly, which solves the crucial problem of making timely COVID-19 diagnoses in
the context of a pandemic [1,2].

Data classification approaches based on machine-learning (ML) techniques have
played an important role [3]. More specifically, on the basis of previous diagnoses of
patients who tested positive or negative for COVID-19, supervised learning algorithms
built a model that represents the relationship between symptoms (features) and diag-
nosis through patterns relevant to COVID-19, increasing the probability of COVID-19
identification among other syndromes and illnesses.

However, the emergence of new variants has caused constant changes in the symp-
toms associate with COVID-19. Because each COVID-19 strain is different, its symptoms
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can change, are not necessarily the same for all variants, and may not have the same
importance in characterising each variant [4–6]. Thus, as COVID-19 symptoms vary over
time, the features used by machine-learning models to predict the disease also change,
directly affecting the performance of machine-learning-based diagnostics. Therefore, it is
necessary to observe the impact of these feature changes on classification performance and
to recognise them. In addition, since COVID-19 is a respiratory syndrome, its symptoms
are very similar to those of other respiratory syndromes, and COVID-19 is often confused
with these other diseases [7].

Thus, obtaining an accurate symptom-based model for COVID-19 diagnosis is still
a challenge. Here, we propose a machine-learning-based methodology for COVID-19
diagnosis that considers the importance of changes in symptoms over time and, thus,
considers the importance of time for model performance. The approach analyses two
different time-based strategies for model training.

• In the month-to-month (mm) strategy, the model is trained using the i-th monthly
data and validated using the data from the next i + 1-th month.

• The second approach, the accumulated strategy, consists of using data from the months
ranging from i = 1 to i + 1 for training, and using the data from month i + 1 + 1 (the
month following the period of data accumulation) to validate the model.

In addition, the SHAP approach [8], which is an eXplainable artificial intelligence (XAI)
technique, was used to analyse the influence of features on the performance of machine
learning models. To validate the proposed method, we used the Xtreme Gradient Boosting
(XGBoost) classifier, a decision tree technique based on a gradient-boosting framework. To
evaluate the experiments, three classification performance metrics were chosen: accuracy,
precision, and recall. COVID-19 cases from Severe Acute Respiratory Syndrome Brazilian
datasets were selected as the data.

The remainder of this paper is organised as follows. In Section 2, the literature on
symptom-based diagnostics is presented. Section 3 explains the two concepts of XAI and
SHAP. Section 4 describes the proposed approach. The experimental setup is described
in Section 5. Section 6 presents the results and analysis of the experiments, and Section 7
discusses the findings and future proposals.

2. Related Works

Different machine-learning approaches to COVID-19 diagnosis have been reported
in the literature, such as those proposed by Khasawneh et al. [9], and Fraiwan et al. [10],
who applied convolutional networks to recognise pulmonary diseases related to COVID-19.
The first study used a dataset of chest X-ray images from 368 patients with confirmed
diagnoses of COVID-19 collected locally and data from three publicly available datasets.
Model performance was evaluated four different ways. The results showed high COVID-19
detection accuracy: 98.7%. The second study explored the ability of the model to recognise
pulmonary diseases using electronically recorded lung sounds. A dataset of lung sounds
collected from 103 patients using a stethoscope, and data from 110 patients from a publicly
available challenge database were used. Metrics such as accuracy and precision were used
to evaluate the model performance. The results showed that the developed algorithm
achieved the highest average accuracy, 99.62%, and precision of 98.85% when classifying
patients with pulmonary disease.

Koushik et al. [11] and Devi et al. [12], proposed a methodology to distinguish between
positive and negative cases on the basis of symptoms using a public dataset provided by the
Israeli Ministry of Health and a variety of machine-learning models with the best accuracy,
precision, and recall, over 86%. In the second model, similar experiments were performed
using the best model, obtaining 94% accuracy.

Miranda et al. [13] used public data from three states in Brazil (Alagoas, Espírito Santo,
and Santa Catarina) and classical machine-learning models and achieved the best accuracy,
sensitivity, and specificity, over 85%.
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Ahamad et al. [14] and Syed and Khan [15] proposed a methodology to quickly
identify COVID-19 using symptoms and a variation of ensembles such as XGBoost. On the
other hand, Qomariyah et al. [16] and Gorji et al. [17] explored the symptoms effective for
COVID-19 diagnosis, obtaining accuracies of over 75%.

Babu et al. [18] proposed an approach using an ARM-based APRIORI algorithm.
A dataset containing 303 cases from the World Health Organisation (WHO) was used.
Seven features remained after being discarded by association rules. A support vector
machine (SVM), artificial neural networks (ANNs), and random forests (RFs) were used to
determine the prediction, accuracy, f1-score, and recall evaluation. The results showed that
the APRIORI algorithm achieved the best results, over 97% for both metrics, whereas SVM
achieved similar values, over 96% for both.

Zoabi et al. [19], and Arshed et al. [20] both used the SHAP technique and determined
that a cough, fever, contact with confirmed cases, the male sex, and age were the most
important factors in predicting COVID-19 diagnoses. For classification, similar classical
machine-learning models were used, with a prediction performance of 90% for the former
and 87% for the latter.

Different from existing work, our work focuses on supervised machine-learning
applications for COVID-19 symptom-based diagnosis. Additionally, in most previous work
on different machine-learning approaches to COVID-19 symptom-based diagnosis, the
features used by the algorithms for prediction are not discussed, and which features are
considered to be the most important for building a prediction model of the disease remain
to be determined. In the next section, we introduce a feature-importance-based technique
that aims to explain the impact of features on model prediction.

3. Explainable Artificial Intelligence and SHAP

Increasingly complex problems following the surge in the use of AI to solve real-life
problems has resulted in black-box systems being used extensively, particularly in various
fields and for different purposes in which the probability of an answer, the reason for the
obtained result, and the factors that affect the prediction became increasingly important.

To provide an understandable model of internal operation and prediction, a suite of
ML techniques called eXplainable AI (XAI) have been used. To satisfy the psychology of
explanation, the goal of these techniques is to maintain a high prediction performance while
producing more explainable models, because black-box models often trade explainability
for high performance.

Among machine-learning models, models can be categorised as interpretable by
design (transparent models), i.e., models that can be explained in human terms and those
that can be explained by external techniques (post hoc explainability).

In contrast to black-box models, transparent models, even if the name suggests full
transparency, are classified as such only if they can be understood by themselves because
transparency is a property. Most models have some degree of interpretability in the domain
in which they are interpretable, such as algorithmic transparency, decomposability, and
simulatability. Known models, such as k-nearest neighbours (kNN), decision trees, rule-
based learning, and Bayesian networks, are considered to be transparent to some degree.

Post hoc explainability is used in models that are not easily interpreted by design. It
consists of methods that enhance the interpretability. These techniques can be categorised
according to internal model processing: post hoc to shallow models; deep-learning models
and convolutional networks; hybrid models that include neural networks and transparent
models; and model-agnostic techniques that can be applied to any ML model without
considering inner processes. Different post hoc means of explanation, such as text, vi-
sualisation, localisation, examples, simplifications, and feature relevance, can be used to
improve interpretability.

Feature relevance explanation is one of the most commonly used means of explanation
in many machine-learning problems because a very common goal is selecting the most
important features of a problem, i.e., the best ones to describe the problem. Many different
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approaches that assign importance to features to explain the contribution of each feature to
the problem description have been proposed. Among them, a technique that is commonly
used to explain the prediction of models using the relationship between the output and
the features used to produce it was chosen: the Shapley additive explanation (SHAP)
is a technique derived from the cooperative game theory Shapley values dating back to
the 1950s. The SHAP technique is model-agnostic because it is necessary to compute the
values to know only its inputs and outputs without previous knowledge about the model’s
internal operation [21]. This characteristic is a defining feature of the concept as it allows
for a comparison of input feature values across different model types.

Intuitively, the computation of Shapley values can be explained using the example
of a cooperative game. Suppose that there is a set of players (features) with each player
contributing to the result of the game (model). If it is possible to determine the total payoff,
the average marginal contribution of each player to the result (output) of the game is
determined using the Shapley values. Therefore, the Shapley value of a feature can be
considered its contribution to the model score [22].

Continuing to use this game as an example, suppose that we have n players and val
is a function that returns the payoff of the game from a subset of players if only those n
individuals play. Contribution Φ can then be measured as follows [23]:

Φj(val) = ∑
S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!
p!

(val(S ∪ {j})− val(S)) (1)

where S is the subset of features used, p is the number of features, and valx(S) is a prediction
using the features in S.

In summary, the Shapley value is the incremental contribution of each feature to the
prediction; it is the weighted average gain that player j adds when included in all subsets
that exclude j.

4. Proposed Approach

Considering that the symptoms caused by COVID-19 variants have been changing
over time, to maintain the performance of machine-learning-based models for COVID-19
diagnosis, it is necessary to consider this dynamic behaviour in the training strategy of these
models. With this in mind, here, we evaluate the performance of two time-based strategies
for training machine-learning models for COVID-19 diagnosis: the month-to-month and
accumulated time-based strategies.

In the first training strategy, the month-to-month strategy, the classification model was
trained every month using only data from the previous month and tested using data from
the current month. Thus, for the i-th month, only data from the i − 1-th month was used to
train the machine-learning model, as indicated in Figure 1.

The second training strategy, the accumulated strategy, trained the model every month
using the data from the first month to the previous month in the database. Thus, for the
i-th month, the training dataset consisted of data from the months ranging from i = 1 to
i − 1 and data from the i-th month was used for test data, as shown in Figure 2.

Other contributions of this work include an analysis of how the symptoms change over
time and how to better evaluate the model performance. In this way, the SHAP XAI-based
technique was used to explain how each feature (symptom) influences the machine-learning
model performance over time, and the accuracy, precision, and recall performance metrics
were considered to evaluate the performance of the machine-learning models.
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Figure 1. Month-to-month time-based strategy: months highlighted in red indicate training data, and
those in blue indicate test data.

Figure 2. Accumulated time-based strategy: months highlighted in red indicate training data, and
those in blue indicate test data.

5. Materials and Methods

This section presents the process followed when performing the experiments, also
shown in Figure 3, which consists of six steps: data acquisition, in which the data were
chosen; feature selection, in which the features suitable for the problem were selected; class
balance, which was performed on the samples to prepare them for classification; time-based
training–test process, in which the data were split according to time-based strategies, and
the training and test sets were selected; classification, in which the chosen classifier was
used for prediction; lastly, results and analysis, in which evaluation metrics were used to
measure the performance of the model prediction, and a feature importance technique was
used to explain the model output.
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Figure 3. Proposed approach.

5.1. Data Acquisition

As data for the experiments, the 2020 and 2021 datasets for severe acute respira-
tory syndrome syndrome (SARS) obtained from openDataSUS [24], a publicly accessible
database regarding the Brazilian health situation, were used. These datasets were chosen
because they had the highest number of infections and deaths across the country, rendering
the data a significant source of information for testing our hypotheses.

The datasets contain social demographics, symptoms, risk factors, comorbidities, and
laboratory findings for all states.

5.2. Feature Selection

Because the disease impacted distinct regions of the country differently during the
same time period, São Paulo (SP) state data were chosen as the most representative COVID-
19 dynamics in the country. The dataset contains information on 652,498 individuals. Next,
we describe the 12 features used in the experiments.

1. DESC_RESP (RESP_DIS) indicates whether the patient presented with respira-
tory distress.

2. DIARREIA (DIARRHOEA) indicates whether the patient presented with diarrhoea.
3. DISPNEIA (DYSPNEA) indicates whether the patient presented with dyspnoea.
4. DOR_ABD (ABD_PAIN) indicates whether the patient presented with abdominal pain.
5. FADIGA (FATIGUE) indicates whether the patient presented with fatigue.
6. FEBRE (FEVER) indicates whether the patient presented with fever.
7. GARGANTA (THROAT) indicates whether the patient presented with a sore throat.
8. PERD_OLFT (LOSS OF SMELL) indicates whether the patient presented with a loss

of smell.
9. PERD_PALA (LOSS OF TASTE) indicates whether the patient presented with a loss

of taste.
10. SATURACAO (SATURATION) indicates whether the patient presented with low

oxygen saturation (O2 < 95%).
11. TOSSE (COUGH) indicates whether the patient presented with a cough.
12. VOMITO (VOMIT) indicates whether the patient presented with vomiting.
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5.3. Class Balance

Class imbalance is a significant issue in the datasets used. Commonly, classes of
problems have fewer examples than other classes do. However, most classifiers tend to
assume that the classes in a dataset are balanced and biased toward the class, with more
examples of the majority class having partial performance in the class with fewer examples
(minority class), which is usually the most significant [25].

In this problem, the minority class (CLASSI_FIN = 1) indicates a positive COVID-19
diagnosis, whereas the majority class (CLASSI_FIN = 0) indicates a negative diagnosis.
To mitigate this issue, the synthetic minority oversampling technique (SMOTE) was used
to oversample examples from the minority class. For the experiments, we use k = 4 and
sampling_strategy = 0.7, which is the sampling used to resample the minority class.

5.4. Time-Based Strategies for Training and Testing

This step consists of applying two time-based strategies for training and testing, as
mentioned before.

5.5. Classification Model

To classify the data, a machine-learning technique frequently applied to different
COVID-19 diagnostic approaches was used [16,26]. The Xtreme Gradient Boost (XGBoost)
is an algorithm based on the gradient-boosting framework. It is an optimised library
designed to solve different ML problems and is considered fast, accurate, and highly
efficient. The algorithm was used as a classifier (XGBClassifier) and was found in Python’s
scikit-learning library [27]. The algorithm was trained using default hyperparameters.

5.6. Performance Analysis and Explainability

The accuracy, precision, and recall classification metrics [28] were used to evaluate the
models and are described here:

• Accuracy is the percentage of samples correctly predicted by the classifier in terms of
the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision refers to the percentage of true positive samples in relation to the total
number of samples classified as positive.

Precision =
TP

TP + FP
(3)

• Recall is the percentage of true positive cases among those expected to be true, i.e., TP
and FN.

Recall =
TP

TP + FN
(4)

TP represents the true positive cases, FP represents the number of false positive cases,
TN represents the true negative cases, and FN represents the number of false negative cases.

In addition, to perform model explainability, the feature importance technique SHAP
was used, which is found in the SHAP library [29] for the Python language.

6. Results and Analysis

In this section, we present the results obtained using the two time-based strategies
proposed to train the machine-learning models. In addition, the obtained results were
analysed using graphics from SHAP, an XAI-based Python package. In the experiments,
we used data collected from January 2020 to November 2021.
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6.1. Results

Accuracy, precision, and recall were used as performance metrics [28] to evaluate
the performance of the two time-based training strategies, the month-to-month and ac-
cumulated strategies. Figures 4 and 5 show the impact of changes in the symptoms on
model performance over time using these three performance metrics for the two time-based
training strategies. Although the model’s performance was low for most time periods,
there were periods of high performance, especially from January to June, in both years.
In addition, the performance of the metrics between time periods showed the impact of
sudden changes in COVID-19 symptoms. For all graphics, the x axis corresponds to the
period of time in months for each approach, and the y axis corresponds to the performance
of each metric in percentage (%).

The classification used by the Brazilian public health system to label SARS cases
classifies COVID-19 cases as positive or unspecified SARS (cases in which no other eti-
ological agent was identified; it was not possible to collect/process clinical samples for
laboratory diagnosis, or to confirm by clinical–epidemiological criteria, clinical imaging,
or clinical diagnosis). However, it is not possible to separate samples that are negative for
COVID-19 from other sample types, which hinders distinguishing each type of case using
this classification.

Figure 4. Performance of classification metrics vs. month-to-month strategy.

Figure 5. Performance of classification metrics vs. accumulated strategy.
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The accuracy and precision metrics had similar results, tending towards 50%, because
the base was balanced. However, as a consequence of database labelling, the few TN cases
and nonexistent FP cases decreased the accuracy, whereas precision was only affected by
FP cases; the metric only considered TP cases. This is evident from the results shown in
Figure 4 because the training and test sets are different. However, for the results shown
in Figure 5, TN and FN accumulated cases increased the accuracy, becoming more similar
to precision.

On the other hand, the recall metric presented different symptom dynamics because
this performance metric only measured TP and FN cases when symptoms did not change.
Thus, the classifier tended not to identify FN cases because of mislabelling, resulting in
high performance. However, when symptoms change from one period to another, there
may be an increase in the FN evaluation. FN cases affected performance according to the
significance of the symptom change. In the month-to-month strategy for the OCT20 period,
where the symptoms substantially changed related to SEPT20, decreasing the recall, the
same occurred with NOV20, where the symptoms were more important in identifying
a case related to OCT20, increasing the performance. In the month-to-month approach.
These dynamics are apparent because the training and test datasets are different, making it
possible to detect changes in symptoms of the COVID-19. In the accumulated approach,
the accumulation of information dampened sudden changes in performance because the
same symptoms appeared in all the training sets.

6.2. Model Explanation

Waterfall plot SHAP graphics were chosen for the model explanation. These figures
show the contribution of each feature to the final prediction. On the y axis, the features
used by the model are indicated. At the bottom, the x axis is the base value (E[ f (x)]), and
the average number of predicted cases for these samples and the top x axis are the ending
values f (x), which is the predicted number of cases for the samples used. The bars in the
left direction indicate a negative impact (−) on the prediction, whereas the bars in the right
direction indicate a positive impact (+). In addition, blue indicates low impact, and pink
indicates high impact. Each graph was plotted using 1000 samples.

To understand the impact of symptom changes on COVID-19 prediction, SHAP graphs
were plotted for some of the periods when the performance changed significantly, specifi-
cally, a shift in the peaks, because in these periods, the changes in symptom importance
were more evident.

Figures 6 and 7 show the feature importance of the periods OCT20 and NOV20 in the
month-to-month strategy. Initially, symptoms that had occurred in OCT20 contributed to a
decrease in prediction accuracy, whereas the features of NOV20 increased the prediction
accuracy, which was clear from the initial and final prediction values. For OCT20, the
prediction started 0.18% after the contribution of the features. Subsequently, it decreased to
0.10. For NOV20, the prediction started at 0.50%, and after adding features, it increased
to 0.51%.

These features also did not have the same importance. For example, on OCT20, FEBRE
contributed the most to the identification of a case, while on NOV20, FADIGA contributed
the most. Both decreased performance. The PERD_PALA feature appeared to be the second
most important feature that affects prediction for both months. For OCT20, it decreased the
prediction accuracy, whereas for NOV20, it increased prediction accuracy. VOMIT was the
only feature that contributed equally to prediction for both months.
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Figure 6. Feature importance for the period of OCT20 using the month-to-month strategy.

Figure 7. Feature importance for the period of NOV20 using the month-to-month strategy.

Figures 8 and 9 show the feature importance of the OCT20 and NOV20 periods
in the accumulated strategy. The most important feature for OCT20 (FEBRE) using the
accumulated strategy decreased the prediction accuracy. It started at 0.29%, and after
adding features, it decreased to 0.10%, whereas for NOV20, the features increased the
prediction accuracy, increasing the prediction rate from 0.31% to 0.36%. In addition, for
OCT20, this feature contributed negatively; however, for NOV20, it contributed positively.
Another important aspect to be emphasised is that the second most important feature for
OCT20 is SATURACAO, whereas that for NOV20 is DOR_ABD, but both have a negative
impact on model prediction. Additionally, unlike for the previous strategy, GARGANTA
has an unimpressive contribution.
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Figure 8. Feature importance for the OCT20 period using the accumulated strategy.

Figure 9. Feature importance for the NOV20 period using the accumulated strategy.

Lastly, except the FEBRE and FADIGA features for the accumulated strategy and the
VOMITO feature in the month-to-month strategy, the features from one period to another
did not have the same order of importance and often contributed to prediction accuracy
differently, increasing or decreasing the accuracy of prediction by different percentages.
This significant difference between the symptoms that characterise the cases results in
errors in prediction, since a case is identified as TP in a given period and in the subsequent
period, the features are not the same, labelling the case as FN.

7. Conclusions

In this study, two time-based strategies were proposed and analysed to obtain accurate
machine-learning-based models for COVID-19 diagnosis considering changes in symptoms
over time. These two time-based strategies were the month-to-month and accumulated
strategies. Both used different training and test datasets to obtain COVID-19 diagnostic
models. This approach proved to be more realistic and allowed for the importance of
changes in COVID-19 symptoms over time to be determined. More specifically, the results
show that the recall performance metric was more efficient than the accuracy and precision
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performance metrics in detecting changes in symptoms. Thus, the recall metric was able to
identify variations in symptoms that had been classified as FN, indicating that it is better
suited for data analysis of the changes over time. However, mislabelling affects the accuracy
and precision metrics. Because there are few to nonexistent TN and FP cases, accuracy is
most affected by FN and TP cases, whereas precision is affected only by TP cases, which
renders the performance metrics similar for both approaches. Moreover, the XAI technique
was adequate for showing symptom changes and their impact on the model predictions.

Consequently, to improve the prediction of this type of data, it is important to consider
techniques that seek to improve performance while considering the issue of mislabelling. As
an improvement to this study, semisupervised machine-learning and incremental-learning
techniques such as incremental DBSCAN should be considered.
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SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
XGBoost Xtreme Gradient Boost
SHAP SHapley Additive explanations
XAI eXplainable AI
PCR Polymerase chain reaction
ML Machine learning
ARM Association rule mining
WHO World Health Organisation
SVM Support vector machine
ANN Artificial neural network
RF Random forest
kNN k-nearest neighbours
SP São Paulo
DESC_RESP (RESP_DIS) Desconforto Respiratório (Respiratory Discomfort)
DOR_ABD (ABD_PAIN) Dor Abdominal (Abdominal Pain)
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SMOTE Synthetic minority oversampling technique
XGBClassifier Xtreme Gradient Boost Classifier
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