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ARTICLE OPEN

An enzymatically controlled mucoadhesive system for
enhancing flavour during food oral processing
Vlad Dinu1,2, Arthur Gadon2, Katherine Hurst2, Mui Lim2, Charfedinne Ayed2, Richard B. Gillis 3, Gary G. Adams 3,
Stephen E. Harding1,4 and Ian D. Fisk 2

While a good mucoadhesive biopolymer must adhere to a mucus membrane, it must also have a good unloading ability. Here, we
demonstrate that the biopolymer pullulan is partially digested by human salivary α-amylase, thus acting as a controlled release
system, in which the enzyme triggers an increased release of flavour. Our oral processing simulations have confirmed an increase in
the bioavailability of aroma and salt compounds as a function of oral pullulan degradation, although the release kinetics suggest a
rather slow process. One of the greatest challenges in flavour science is to retain and rapidly unload the bioactive aroma and taste
compounds in the oral cavity before they are ingested. By developing a cationic pullulan analogue we have, in theory, addressed
the “loss through ingestion” issue by facilitating the adhesion of the modified polymer to the oral mucus, to retain more of the
flavour in the oral cavity. Dimethylaminoethyl pullulan (DMAE-pullulan) was synthesised for the first time, and shown to bind
submaxillary mucin, while still retaining its susceptibility to α-amylase hydrolysis. Although DMAE-pullulan is not currently food
grade, we suggest that the synthesis of a sustainable food grade alternative would be a next generation mucoadhesive targeted for
the oral cavity.

npj Science of Food            (2019) 3:11 ; https://doi.org/10.1038/s41538-019-0043-y

INTRODUCTION
Mucadhesion describes the ability of a biochemical material to
adhere to a mucosal membrane1,2 and has been a subject of
research for the food industry and academia in recent years.3–5

However, it still remains a loosely understood and poorly applied
concept. Several theories were proposed to describe mucoadhe-
sion, particularly the wetting theory, mechanical interlocking,
electron transfer, adsorption and fracture theories.6 Its main
clinical relevance is to enhance drug loading capacity and
residence time at tissues of interest. However, a good mucoadhe-
sive must also have a very good unloading capability at the site of
action.2 Oral mucoadhesion has recently attracted the attention of
the food industry with regard to flavour maximisation during oral
processing, particularly in “healthy” low calorie reformulated
foods. This is because sensory properties, such as texture and
flavour are the two most important factors impacting consumer
choice, after cost7,8 however, mucoadhesion targeted at the oral
cavity does not come without complications. The fate of the
flavour perceived during oral processing will be determined by
the rate of release of aroma and taste compounds from the
salivary bolus and availability at aroma and taste receptors. The
vast majority of flavour, alongside other bioactive compounds, are
rapidly lost through ingestion and are therefore not available for
perception.
Food grade biopolymers have always been an attractive option

for the food industry. Many of them are anionic polysaccharides
which have widely been applied as stabilising agents and
thickeners. While many research groups have tried to characterise
and compare their mucoadhesive properties,4,5 there is limited

evidence to suggest that anionic polysaccharides are, in chemical
terms, mucoadhesive. In order to understand the fundamental
molecular processes involved in adhesion, we need to better
understand the physico-chemical composition of mucus, which
consists of an anionic mucin glycoprotein as its main structural
component. Within the saliva, mucin is identified as the second
most abundant component, after salivary α-amylase which varies
upon stimulation.9 It is characterised as having much lower
molecular weights (<500 kilo Daltons, kDa) and lower degree of
glycosylation (~60%) as compared to gastric, intestinal or colonic
mucins. Oral and salivary mucins consist of gel forming mucins
derived from the MUC5B gene and low molecular weight, soluble
mucins encoded by MUC7 genes.10 However, it is very difficult to
obtain human salivary mucins in any useful quantity for
performing mucoadhesive experiments. Therefore, in our study,
as in most oral formulation research, mucin from bovine salivary/
submaxillary glands (BSM) is employed as a close surrogate for its
human equivalent.
Like other mucins, submaxillary mucins have an amino acid

domain rich in serine and threonine that forms a bridge with the
hydroxyl groups of the N-acetylgalactosamine residues of the
carbohydrate fraction.11,12 The carbohydrate region consists of up
to five different monosaccharides, such as sialic acids, galactose,
fucose, N-acetylglucosamine and N-acetylgalactosamine. They can
form weak hydrophobic interactions at their carbonyl and methyl
groups, or can form electrostatic interactions via carboxylic acids
or through the sulphate groups of the protein region.2,11,12 As a
result of the negatively charged overall configuration of mucins,
neutral and anionic food biopolymers such as
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hydroxypropylmethyl cellulose (HPMC), carboxymethyl cellulose
(CMC), pectin, alginate, guar, carrageenan or xanthan cannot
chemically interact with mucus under the dilute solution
conditions of the bolus. While these polysaccharides can mix in
the aqueous environment, and physically interact to define the
rheology and tribology of the bolus, they lack the molecular ability
to bind to the mucus membranes. Yet, various food polysacchar-
ides are still considered mucoadhesive because they have been
shown to extend the residence time and release kinetics of
bioactive compounds, as a result of the physical and chemical
properties of the food thickener i.e. high viscosity, gelation.
However, the process by which these anionic hydrocolloids
increase flavour intensity is still a matter of debate, whether it is
a chemical or a purely rheological mechanism.
By contrast, polycations such as chitosan (pKa ~5.5–7), have

extensively been studied for their ability to form strong
mucoadhesive electrostatic interactions with mucins, however
chitosan applications are limited.13 While chitosan was found
useful in mucoadhesive applications targeted at the gastro-
intestinal region, its applications in the oral cavity are restricted, as
chitosan is so strongly charged that it can precipitate mucins and
other functional glycoproteins present in the saliva.3,13 Protein
precipitation is also attributed to an unpleasant and astringent
mouthfeel response, thereby negatively modifying the organo-
leptic properties of food.14 Besides, chitosan mucoadhesives are
limited in their ability to “unload”, since a large proportion of the
bioactive molecule remains trapped in the mucus/chitosan
complex and is passed along the alimentary canal. Thiomers or
thiolated polymers are an example of a more recent development
of mucoadhesive formulations. They are principally synthesised by
coupling thiol containing functional groups (SH), capable of
forming stable hydrogen bonds with sulphate rich protein
domains in mucin.15 However, the use or sulphur containing
polymers is limited in flavour applications.
For food applications, there is a need to develop a tasteless,

non-toxic and milder mucoadhesive, which has a good loading
capacity, but which must also be able to unload the flavour
compounds during mastication or during ingestion (via retronasal
olfaction). Diethylaminoethyl-dextran or DEAE-Dextran, is an
example of a much milder mucoadhesive that was shown to
interact with mucin.16 However, its mucoadhesive properties were
too modest considering the high charge density of the modified
polymer. It was suggested that the α(1–3) branches of dextran and
the presence of ethyl groups limit the access of the charged
amino groups for the sialic acid groups of mucin, due to steric
hindrance.
The polysaccharide pullulan, is produced by bacterial fermenta-

tion using Aureobasidium pullulans17 and is particularly used in
Asia, as a partial replacement for starch as a low calorie ingredient
in food and drink.18 It forms clear, odourless and tasteless
solutions which do not gel, but can form transparent and oxygen
impermeable films upon drying. Due to its film forming properties,
it has been extensively used as a coating agent in confectionery,
edible films, as well as a replacement for gelatin in medicinal
applications.18 The use of pullulan has strong potential for
encapsulation and release of flavour compounds due to its quick
dissolution properties. For example, used as a breath freshener
due to its ability to dissolve rapidly on consumption, and release
the bound menthol molecules.18

It is a linear polymer consisting of α(1–4) linked maltotriose and
infrequent maltotetraose units, linked together by α(1–6) glyco-
sidic bonds. Previous studies suggested that some α-amylases are
able to digest the polysaccharide at its maltotetraose units, thus
rendering the polymer partially hydrolysed.19 It has previously
been established that at equivalent polymer viscosities, starch
thickened products have a good flavour and taste profile, and this
is partially due to the decrease in viscosity in the mouth, resulting
from salivary α-amylase digestion. In a comparable way, it is

suggested that the partial in-vivo degradation of pullulan would
result in an increased release of flavour, similar to starch based
ingredients, which has been shown previously to enhance
perception as a result of an increase in the concentration of
volatile aroma compounds reaching the olfactory receptors.20

Thus, the polymer is expected to act as a controlled release
excipient of aroma and taste molecules, in which salivary α-
amylase releases actives close to the point of perception. Our
hypothesis is that the synthesis of a mild pullulan mucoadhesive
would reduce the loss of flavour through ingestion by increasing
adhesion to the oral surface along with associated flavour
compounds, provided the cationic polymer does not interfere
with the normal functioning of the enzyme.
In the present study, we tested whether pullulan can be

hydrolysed by human salivary α-amylase. Then, we evaluated its
ability to modify flavour and salt release from model and real food
systems by using Gas Chromatography-Mass Spectrometry
(GC–MS), Atmospheric Pressure Chemical Ionization- Mass Spec-
trometry (APCI-MS), and also conductivity analysis using the
INSENTTM electronic tongue tasting system (E-tongue) and a
standard conductivity probe. Then we synthesised a cationic
pullulan analogue, dimethylaminoethyl pullulan (DMAE-pullulan),
which was confirmed by Fourier-transform infrared spectroscopy
(FT-IR). The newly synthesised polymer was subsequently eval-
uated for its mucoadhesive ability using a range of matrix/column
free hydrodynamic techniques such as: Viscometry, Dynamic Light
Scattering (DLS) and Sedimentation Velocity- Analytical ultracen-
trifugation (SV-AUC). To the best of the authors’ knowledge, this is
the first synthesis of DMAE-pullulan. The advantage of dimethy-
laminoethyl compared to previously characterised diethylami-
noethyl (DEAE) synthesis, is that the shorter methyl groups, as
opposed to the ethyl groups, may increase the availability of the
positively charged amino groups to the negatively charged
carbohydrate residues of mucin.

RESULTS
The impact of pullulan hydrolysis by α-amylase on flavour release
Pullulan consists primarily of α(1–4) linked trisaccharide units
linked together by α(1–6) glyosidic bonds (Fig. 1). However,
depending on the fermentation conditions, the linear polymer has
been found to contain up to 6% tetrasaccharide units, allowing
access to the active site of α-amylase to hydrolyse the polymer19

(Fig. 1-top). We employed an SV-AUC experiment to analyse the
resulting interaction between human salivary α-amylase (HSA) and
pullulan. The analysis was performed using highly purified 200 kDa
molecular weight pullulan standard, which yielded a single,
monodisperse peak at ~4.6S (Fig. 1b). The addition of α-amylase
revealed the formation of two distinct degradation fragments
corresponding to a major peak at ~2S and a minor peak at ~0.8S
(Fig. 1c). Note that a proportion of the monodisperse peak at
~0.8S is partly due to the presence of the smaller component
present in the α-amylase control (Fig. 1a). The relative molecular
weight for the digested fractions are approximated using 10 and
49 kDa molecular weight pullulan standards. For the rest of the
investigation, we used an unfractionated, food grade 200 kDa
commercially available source of pullulan. Next, an experiment
was employed to determine the ability of HSA to digest the
commercial product. For this we used dynamic light scattering
(DLS) to examine changes in the molecular hydrodynamic size of
pullulan before and after the addition of α-amylase.
Undigested pullulan showed an z- average apparent hydro-

dynamic radius, rz, of ~8.5 nm, which was not visible upon the
addition of α-amylase, resulting in a z- average of ~5 nm (Fig. 2a).
The addition of HSA also resulted in a two fold decrease in
viscosity, as indicated by the Solomon-Ciuta extrapolation for
intrinsic viscosity, [η] (Fig. 2b). Taken together, we can confirm that
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human salivary α-amylase is capable of partially digesting pullulan,
producing smaller fragments of lower molecular weights and
lower viscosity. The next important question became whether
partial polymer hydrolysis correlates to an increase in the release
of flavour from dilute systems. It is interesting to suggest that in
thicker systems, such as starchy food, a decrease in the in mouth
viscosity generated by the action of HSA is directly related to an
enhanced flavour perception through a cross-modal interactions
related to the perceived changes in mechanical stress.20 We
therefore sought to analyse the release of taste and aroma
compounds as a function of pullulan degradation. A selection of

volatile aroma molecules used in this analysis were ethyl butyrate,
hexanal, linalool, citral and α-ionone, while model taste com-
pounds included sodium (Na+) and potassium (K+) ions. The
results in Fig. 3a illustrate the release intensity and persistence of
α-ionone from model solutions, before and after pullulan
digestion. In the presence of undegraded pullulan solutions
(4 mgmL−1), the headspace concentration for the majority of
volatile aroma compounds reached a plateau, while it continued
to increase for an additional ~20 s when the pullulan was digested
by HSA. Although the time scale of this analysis is not
representative of the very short amount of time needed to
consume food and drink, the model system confirms the effect of
pullulan digestion on aroma release. However, the rate of release
may be increased during oral processing, unlike the current
simulated in-vitro conditions. This is because, under real in mouth
conditions, constant salivary secretion accompanied by mechan-
ical changes due to mastication may enhance aroma release.21

A similar trend is observed in Fig. 3b, in which the conductivity
analysis indicated an increase in the rate of release of sodium ions.
This suggests that the availability of sodium can be increased by
the oral degradation of pullulan. Similarly, in the next step we
evaluated the intensity of potassium ions before and after enzyme
hydrolysis, using the taste evaluation INSENT E-tongue (Fig. 3c).
Although not statistically significant, results indicate that increas-
ing the α-amylase concentration can increase the availability of K+

ions. The hypothesis was further tested in the presence of a
commercial fruit drink. For its simplicity, we have chosen to
analyse the effect of α-amylase hydrolysis on the release of aroma
compounds from a dilute orange squash preparation ‘R’ in the
presence and absence of pullulan ‘P’ (Fig. 3d). Interestingly, α-
amylase (A), which is naturally present in saliva, reduced the
headspace concentrations of the compounds, in a positive
concentration dependent manner (A1, A2 in Fig. 3d). However, if
pullulan is present, the aroma suppression of the orange squash is
mitigated and the volatile aroma compounds are released into the
headspace at higher concentrations. Furthermore, we performed
in vivo simulations looking at the release of ethyl butyrate from a
model drink containing sucrose and citric acid, in which we
compared carboxymethylcellulose (CMC) with pullulan, corrected
for viscosity (Fig. 3e). The retronasal ion intensity was recorded
after swallowing the model drinks. For the drinks containing
pullulan, it was observed that a late swallow (20 s) was correlated
with a higher intensity of ethyl butyrate, compared to drinks
containing CMC. Although results are not significantly different,
this confirms our hypothesis that it is possible to maximise the
release of flavour as a function of matrix viscosity, even in dilute
solution conditions.
Given that α-amylase can be secreted to elevated concentra-

tions during oral processing of food, our ex-vivo and in-vivo
results are in excellent agreement and suggest that the release of
aroma compounds can be enhanced in the presence of pullulan,
despite the presence of other food constituents which might
interfere with the normal functioning of the enzyme i.e. citric
acids. However, as shown in Fig. 3, there are limitations in whether
enzyme hydrolysis can significantly increase aroma release and
perception in-vivo, in time for ingestion, which for some products,
such as cordials or soft drinks, corresponds to only a couple of
seconds. These simulations form the basis for our development of
a mucoadhesive polymer system, which can be initiated by the
action of the enzymes naturally present in the saliva. We suggest
that by modifying the chemical properties of the polymer, such
that it becomes adhesive towards the oral mucus, the loss of
bioactive associated with the rapid ingestion can be mitigated.

Developing a functional mucoadhesive pullulan analogue
Initially our studies began with the coupling of amino functional
groups onto the polysaccharide backbone to produce a functional

Fig. 1 Structural representation of pullulan showing the its
tetrasaccharide units which can be hydrolysed by α-amylase (top);
and the sedimentation velocity- c(s) analysis (bottom), showing the
sedimentation coefficient distributions of α-amylase a, 200 kDa
pullulan standard b, and the result of their interaction c. A constant
concentration of 1mgmL−1 was used for the α-amylase and pullulan
controls, and the mixture. Note that some of the material at ~0.8 S is
also present in the α-amylase control, therefore some of it will
contribute to an overestimate of peak ~0.8 S in the mixture. Rotor
speed: 45,000 rpm (130,000 × g), 20.0 °C

Fig. 2 Changes in the apparent z-average hydrodynamic radius of
pullulan before and after the addition of HSA a and Solomon–Ciuta
results showing a change in the intrinsic viscosity of pullulan upon
the addition of HSA b. DLS size distributions are given as an average
of three measurements. Experiments performed at 20.0 °C, concen-
tration of pullulan was 5mgmL−1
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cationic pullulan analogue, without impeding access for enzyme
hydrolysis. The most promising candidate was for
dimethylaminoethyl-pullulan (DMAE-pullulan), synthesised, as
shown in Fig. 4a. The polymer was purified and the resulting
material analysed by FT-IR (Fig. 4b). In comparison with the
unmodified pullulan spectra, the absorption bands detected at
~900 and ~3050 cm−1 correspond to stretching and wagging
vibrations of the amino group while the strong absorption at 1390
and 1460 cm−1 correspond to the CH2 and CH3 vibrations of the
dimethylaminoethyl chain. A characteristic CO group is observed
around 1720 cm−1, while broader and weaker vibrations are
observed in the region 1800–2500 cm−1, which indicate the
presence of the CN bonds of the amino group (Fig. 4b). Therefore,
the results indicate that the DMAE group was grafted onto the
pullulan backbone.
Then, our next goal was to evaluate the ability of the newly

modified cationic pullulan to interact with our two main salivary
components, mucin and α-amylase. First, a combined viscosity
and particle size analysis approach has confirmed the ability of α-
amylase to reduce the hydrodynamic particle size (radius) of the
newly modified polymer from ~8 to ~5 nm (Fig. 5a-top). In the
presence of submaxillary mucin (~6.5 nm) an increase in a particle
size distribution was observed, suggesting mucoadhesive phe-
nomena, corresponding to a z-average hydrodynamic radius of rz
of ~12 nm (Fig. 5a-bottom). Similarly, we evaluated changes in the
intrinsic viscosity (Fig. 5b), which corresponded to a 32% decrease

upon the addition of α-amylase. By contrast, the intrinsic viscosity
of the DMAE-mucin mixture was 23% higher than the viscosity of
submaxillary mucin (Fig. 5b).
The interaction analysis was further reinforced by a SV–AUC

interactions experiment which allowed us to directly monitor
changes in the sedimentation coefficient distribution of DMAE-
pullulan upon the addition of α-amylase and submaxillary mucin
(Fig. 6). By itself, DMAE-pullulan revealed a rather broad
macromolecular sedimentation profile, indicative of a heteroge-
neous composition, but nearly identical to the native unfractio-
nated food grade pullulan used for the synthesis, which confirms
that the chemical synthesis did not cause the polymer to degrade.
At a constant concentration of 0.5 mgmL−1, the sedimentation
coefficient distribution ranged from 1S to ~12S (Fig. 6b). An initial
assessment reveals an increase in the sedimentation coefficient
distribution to ~25S upon the addition of mucin, indicative of an
interaction, although a large proportion of sedimentation species
(~70%) remained the same (Fig. 6a). One of the methods
previously used to assess for mucoadhesion is measuring the
sedimentation coefficient distribution ratio of the mucin/polymer
complex to that of the mucin (scomplex/smucin)

2. Our results showed
that the ratio ranged from 1.1 to 2 (Fig. 6a). These values are
similar to DEAE-dextran which are still fairly modest compared to
stronger mucoadhesive polymers such as chitosan, which has
been shown to give sedimentation ratios of up to ~40. However,
chitosan mucoadhesion is an extreme example which would not

Fig. 3 Results from APCI-MS, Na+ conductivity analysis and E-tongue showing the impact of polymer hydrolysis on the release of flavour from
model solutions of pullulan, showing the real time data for α-ionone a, sodium ions b and potassium ions c, respectively; d GC–MS results
showing the effect of pullulan hydrolysis on the relative headspace concentration of volatile aroma compounds from in Robinson’s orange
squash, where ‘R’ represents the standard squash dilution, ‘A1’ and ‘A2’ are increasing α-amylase concentrations of 0.1 and 1mgmL−1, and ‘P’
represents pullulan at a constant concentration of 2mgmL−1; and e APCI in vivo analysis showing the comparative release of aroma
compound ethyl butyrate from model drink solutions containing either pullulan or carboxy-methyl cellulose (CMC). Values are expressed as
mean ± SD (n= 3)
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only lead to the precipitation of mucin glycoproteins, but also
other anionic glycoproteins present in the saliva, causing a very
unpleasant astringent sensation. Overall, our results demonstrate
that up to 30% of DMAE-pullulan can bind mucin, as given by the
area under the sedimentation curve (Fig. 6a).

By contrast, the addition of α-amylase caused a reduction in the
sedimentation coefficient distribution of the modified polymer
from ~12S to ~9S (Fig. 6c). This translates to a ~25% loss in higher
z-average molecular weight fractions, and an increase in the
concentration of lower molecular weight DMAE-pullulan fractions.
These values are qualitatively consistent with the results from
viscosity and DLS (Fig. 5). In addition, we have compared the
aroma release ability of the modified polymer to its native pullulan
counterpart in a model ex-vivo system containing saliva and
aroma compounds (Fig. 6d). To our surprise, it was shown that the
release of the volatiles was significantly increased in the presence
of DMAE-pullulan, as opposed to pullulan. The additional increase
can be explained by the loss in molecular weight and viscosity of
the modified polymer, and perhaps due to a reduction in the
damping effects other proteins present in the saliva.
It is worth mentioning that our preliminary results tentatively

indicate that the interaction mechanisms of DMAE-pullulan with
saliva may lead to very minor changes in the in mouth rheology of

Fig. 4 Schematic representation of the chemical modification of
pullulan showing the addition of the tertiary amine, dimethylami-
noethyl (DMAE) chloride a and FT-IR spectra of pullulan before after
synthesis highlighting the qualitative changes in the spectral
intensity correlating to the new functional groups b. The reaction
was performed using an adapted version from San Juan et al.31 Five
gram of Pullulan (Carbosynth, 200 kDa) was dissolved in 25ml of
distilled water and mixed with a 25 mL 10M sodium hydroxide
solution to activate the pullulan hydroxyl functions. Then, 35gm of
2-chloro-N,N dimethylethylamine hydrochloride was added to the
mixture and left stirring at 60 °C for 1 h. After the reaction was
completed, the mixture was washed four times with 50ml diethyl
ether and after was diluted in water to a concentration of
10mgmL−1 and adjusted to pH 7 using HCl

Fig. 5 Results showing changes in the apparent z-average hydro-
dynamic radii of DMAE-pullulan, mucin, α-amylase, and the result of
their interactions a, and viscosity results showing the Solomon-Ciuta
estimations of the intrinsic viscosities of DMAE-pullulan, mucin, α-
amylase, and their mixtures b. The concentrations represent
dilutions of each sample. DLS size distributions are given as an
average of three measurements. Performed at 20.0 °C, macromole-
cular concentrations were in a ratio of 1:1

Fig. 6 Sedimentation velocity, g(s) analysis showing the sedimenta-
tion coefficient distributions for DMAE-pullulan at 0.5 mgmL−1 b
and the result of the addition of mucin at 0.5 mgmL−1 a and α-
amylase at 0.1 mgmL−1 c; and the GC–MS volatile analysis from
modified and unmodified pullulan and solutions upon the addition
of saliva d. Rotor speed: 45,000 rpm (130,000 × g), 20.0 °C. The
distributions reflect the real time migration of molecules driven by
the centrifugal force. For the same type of macromolecule, i.e.
DMAE-pullulan, a larger S value corresponds to a larger
molecular weight
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the bolus, since the viscosity increase due to adhesive interactions
is counterbalanced by the degree of hydrolysis. As a result, the
sensory properties of the food/saliva mixture, i.e. mouthfeel, are
expected to be the same. However, we would further need to
perform in-vivo trials and take into account factors such as
mastication and salivation, which have been shown to play a key
role in the release of volatile aroma compounds.21 Although this
would be more applicable to solid food systems where the
breakdown of the food structure which can influence the rate of
release of aroma compounds, as well as altering the proportions of
hydrophilic compounds.21 Similarly, mucoadhesion may play a
role in the after taste, by increasing the residence time of flavour
compounds onto the oral surface. Though in order to analyse this
effect we would first require an approved food grade cationic
pullulan analogue.
Research is currently being undertaken to identify greener ways

to produce cationic pullulan analogues that would meet the
required quality and purity criteria of food ingredients, but we
suggest that a food grade cationic pullulan could become one of
the next generation mucoadhesive biopolymer candidates tar-
geted at the oral cavity. Regardless of the final chemical product
and instrumental analysis, we must remember that flavour is not
just a group of attributes or a group of chemicals, but a perceptual
phenomenon that will strongly depend on the physiological status
of the individual.

DISCUSSION
The oral processing simulation experiments have shown that
pullulan can be used for the targeted release of bioactive flavour
compounds, as a result its partial in-vivo digestion. The time scale
of polymer hydrolysis was over 20 s, however for a lot of liquid and
semi-liquid foods such as juices or yoghurts, the oral transit time is
no longer than a few seconds which results in a rapid loss of
flavour through ingestion. To address this issue, we have
synthesised a cationic pullulan analogue, DMAE-pullulan, which
was assessed for its mucoadhesive ability, whilst ensuring it
retains its inherent susceptibility to α-amylase hydrolysis. We have
shown that the cationic polymer binds to submaxillary mucin,
aimed at increasing the oral retention of flavour compounds.
Then, we have shown that the release of flavour compounds can
be enhanced through the action of salivary α-amylase, which
partially degrades the modified polymer. Once a food grade
cationic pullulan becomes available, sensory experiments would
add to our analysis and provide a broader explanation of its
impact on flavour perception.
To conclude, we developed a unique concept of a controlled

release mucoadhesive system targeted for the oral cavity which
may have strong resonances for enhancing the release of flavour
and other bioactive compounds during oral processing.

METHODS
Sample preparation
Bovine submaxillary mucin (type I-S, M3895), human salivary α-amylase
(type IX-A, A0521), 200 kDa pullulan standard (01615) and volatile aroma
compounds used in this study were purchased from Sigma Aldrich (Dorset,
UK). The food grade 200 kDa sample was purchased from Carbosynth, UK.
The 0.1 M phosphate buffered saline (PBS) was made according to Green
(1933),22 (Fisher Scientific, UK). Saliva samples were from the Centre for
Biomolecular Sciences, University of Nottingham. All samples were
collected in accordance with the ethical approval R12122013, Faculty of
Medicine and Health Sciences Research Ethics Committee, Queens Medical
Centre, Nottingham University Hospitals.23 Participation was voluntary and
informed written consent was obtained. All data were held in accordance
with the Data Protection Act. The pooled samples were centrifuged
(6000 g), dialysed against 0.1 M phosphate chloride bugger using a 14 kDa
dialysis membrane and filtered through a 0.45 µm membrane filter to
remove larger aggregates, such as gelled mucus and small molecular

weight peptides, respectively, then stored at −80 °C until use. Loading and
unloading of samples was carried out in a Level 2 microbiological safety
cabinet.

Orange squash
Robinson’s sugar free orange squash concentrate was purchased from the
local supermarket. Final samples used for the GC analysis were diluted
according to the manufacturer, one part concentrate and four parts water/
solution. The samples were mixed with the polymer solutions such that the
concentration of squash is always constant. Highly purified RO (reverse
osmosis) water was used throughout the sample preparation.

Sedimentation Velocity-Analytical ultracentrifugation (SV-AUC)
Experiments were performed at 20.0 °C using the Optima XL-I analytical
ultracentrifuge (Beckman, Palo Alto, USA) equipped with Rayleigh
interference optics. Samples of 395 μL (and 405 μL solvent) were injected
into the 12mm double sector epoxy cells with sapphire windows and run
at 40,000 rpm (120,000 × g). Scans were taken at 2 min intervals. The
interference system produced data derived by recording changes in
concentration (in fringe units) versus radial displacement. The results were
analysed in SEDFIT using the least squares ls-g*(s) or ‘g(s)’ and the diffusion
corrected c(s) processing methods (the latter valid because of the high
degree of fractionation/low polydispersity of the P200 pullulan), by
generating sedimentation coefficient distributions, s20,w (in Svedberg
units, S= 10–13 s) normalised to standard conditions (viscosity & density
of 0.1 M PBS at 20.0 °C).24–26

Gas chromatography–mass spectrometry (GC–MS)
The Trace 1300 series Gas Chromatograph coupled with the single-
quadrupole mass spectrometer (Thermo Fisher Scientific, Hemel Hemp-
stead, UK) was used. Samples were incubated at 37.0 °C for 20min with
intermittent stirring. Then, the solid phase microextraction (SPME) fibre
(50/30 μm DVB/CAR/PDMS, Supelco, Sigma Aldrich, UK) was used to extract
for 40min then desorb for 1 min. Separation was carried out by a ZB-WAX
capillary gas chromatography column (length 30m, internal diameter
1 mm, 1.00 μm film thickness). The column temperature was initially at
40.0 °C for 2 min, then increased by 6.0 °C every minute up until 250.0 °C
and held for 5 min. Full scan mode was chosen to measure volatile
compounds (mass range from 20 to 300 Da). A splitless mode was used,
and a constant carrier pressure of 18 psi was applied. Volatiles were
identified by comparison of each mass spectrum with either the spectra
from the NIST Mass Spectral Library.

Atmospheric Pressure Chemical Ionization-Mass Spectrometry
(APCI-MS)
The APCI-MS (Platform II, Micromass, Manchester) was used to analyse the
real time concentration of volatile compounds under static conditions. A
final concentration of ~10–50 ppm (parts per million) was sampled with an
air flow adjusted to 50ml/min. The instrument was set in Selective Ion
Recording (SIR) mode to monitor the selected mass to charge ions (m/z).
The ion intensity was measured at cone voltage of 50 V, source
temperature of 75 °C and dwell time of 0.02 s. The in-vivo analysis shown
in Fig. 3d was performed by consuming model drink solutions of sucrose,
citric acid in which pullulan or CMC were added, and the retronasal ion
intensity was captured by exhaling into the MS-NOSE interface of the APCI.
Sampling took place until the signal plateaued and started to decrease.

The curves were integrated in Mass LynxTM (Waters, UK).

Dynamic Light Scattering (DLS)
The experiments were performed using the Zetasizer Nano-ZS detector
and low volume (ZEN0112) disposable sizing cuvettes (Malvern Instru-
ments Ltd, Malvern, UK). The samples were measured at (20.00 ± 0.01)°C
using the 173° scattering angle collected for 3 runs of 10 s. For
polydisperse particles, DLS can provide useful information about the size
(radius) of molecules by calculating an estimate for z-average hydro-
dynamic radius, rz, and translational diffusion coefficient, Dtrans, via the
Stokes–Einstein equation:

Dtrans ¼ kBT
3πηd

(1)

where the hydrodynamic diameter d= 2rz, kB is the Boltzmann constant, η
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is the solvent viscosity, T is absolute temperature (K), and Dtrans (cm
2s−1).

The contribution of rotational diffusion effects to the autocorrelation
function is assumed negligible (see Burchard, 1992).7

Capillary viscometry
Flow times of solvent (t0) and solutions (ts) were measured using a semi-
automated (Schott Geräte, Hofheim, Germany) U-tube Ostwald capillary
viscometer immersed in a temperature controlled water bath at 20.0 °C. A
constant volume of 2.0 ml was sampled at a series of mucin concentrations
(0.2–1.0 mgmL−1), sufficiently low to allow the assumption that no
correction was needed for solution density, assuming ηs/η0 is equal to
ts/t0. The intrinsic viscosity [η] plot is shown as according to the
Solomon–Ciuta equation and extrapolated to zero concentration to
account for non-ideality.27,28

E-tongue
Digested and undigested pullulan solutions were made in 30mM
potassium chloride buffer and poured into the sample cups for the
electronic tongue in triplicate (Taste Sensing System TS-5000Z). Manu-
factures guidelines were used for analysis and data extraction. The
experimental design was kindly performed by New Food Innovation
specialists as in previous studies.29,30

Conductivity metre
Dissolution of sodium was evaluated using a Mettler Toledo conductivity
metre (Ohio, USA). A 1ml sodium chloride solution (0.1 mgmL−1) was
dissolved in a beaker containing normal and digested pullulan solution.
Data were recorded every 2 s until a plateau was reached (~20 s). For this
analysis, a 1 mL solution of sodium was added at a concentration of
1 mgmL−1 into a 50ml pullulan solution, equivalent to the dissolution of
0.2 mg of sodium, under constant magnetic stirring and maintained at
25.0 °C. Three replicates were performed and normalised by conductivity.

Synthesis of dimethylaminoethyl (DMAE) pullulan
The reaction was performed using an adapted version from San Juan
et al.31 Five gram of Pullulan (Carbosynth, 200 kDa) was dissolved in 25ml
of distilled water and mixed with a 25mL 10M sodium hydroxide solution
to activate the pullulan hydroxyl functions. Then, 35gm of 2-chloro-N,N
dimethylethylamine hydrochloride was added to the mixture and left
stirring at 60 °C for 1 h. After the reaction was completed, the mixture was
washed four times with 50mL diethyl ether and after was diluted in water
to a concentration of 10mgmL−1 and adjusted to pH 7 using HCl. The
solution was further cleaned of organic solvents and concentrated in a
rotary evaporator, after which was dialysed in PBS buffer on a 14,000 Da (g/
mol) membrane for two days. The resulting solution was freeze-dried
which resulted in the formation of white odourless powder. The powder
was stored at 4 °C until needed.

Fourier-transform infrared spectroscopy (FT-IR)
The resulting powder was subjected to FT-IR analysis. Measurements were
performed in transmission mode on an IRAFFINITY-1S spectrometer
equipped with an A219653 attenuated total reflection (ATR) module
(Shimadzu, Japan). For each sample, the spectrum was taken as the
average of three different measurements at various sites of the dry sample
Spectra were acquired between 500 and 3500 cm−1 at a resolution of
4 cm−1. Dry pullulan samples were pressed against the diamond surface to
ensure good contact. Measurements were repeated twice for reliability.

Statistical analysis
GC–MS and conductivity samples were analysed in triplicate in a
randomised sample order, and the error is given as a as mean ± SD (n=
3). Figures were made in Origin 7.5 (OriginLab, USA).

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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