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An Investigation into the Design and Performance of 

an Automatic Shape Control System for a Sendzimir 

Cold Rolling Mill 

Ken Dutton 

SYNOPSIS 

Shape (or flatness) control for rolled steel strip 
is becoming increasingly important as customer requirements 
become more stringent. Automatic shape control is now more 
or less mandatory on all new four-high cold mills, but no 
comprehensive scheme yet exists on a Sendzimir mill. This 
is due to the complexity of the control system design on 
such a mill, where many more degrees of freedom for control 
exist than is the case with the four-high mills. 

The objective of the current work is to develop, from 
first principles, such a system; including automatic 
control of the As-U-Roll and first intermediate roll 
actuators in response to the measured strip shape. This 
thesis concerns itself primarily with the As-U-Roll control 
system. 

The material presented is extremely wide-ranging. Areas 
covered include the development of original static and 
dynamic mathematical models of the mill systems, and test-
ing of the plant by data-logging to tune these models. A 
basic control system philosophy proposed by other workers 
is modified and developed to suit the practical system 
requirements and the data provided by the models. The 
control strategy is tested by comprehensive multivariable 
simulation studies. Finally, details are given of the 
practical problems faced when installing the system on the 
plant. These include problems of manual control inter-action 
bumpless transfer and integral desaturation. 

At the time of presentation of the thesis, system 
commissioning is still in progress and production results 
are therefore not yet available. Nevertheless, the 
simulation studies predict a successful outcome, although 
performance is expected to be limited until the first 
intermediate roll actuators are eventually included in 
the scheme also. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background to the Shape Control Problem 

By the end of the 1960 l s and beginning of the 1970~s7 

the problem of designing automatic gauge (i.e. thickness) 

control systems for cold metal rolling mills had largely 

been solved. (See for example Bryant (1). The re

sultant improvements in consistency of strip gauge, 

coupled with an increasing demand for ever thinner prod

ucts, inevitably led to an increase in customer rejections 

of rolled metal strip on the grounds of poor flatness -

e.g. material having wavy edges or a buckled middle. 

The controlling of such defects falls within the field 

of shape control, and the desire for shape control systems 

grew rapidly within the metal rolling industry. 

The term "shape" is, in truth an unfortunate ml.S

nomer, and can lead to some confusion during discussions. 

Let us define the meaning which will attach to the term 

"shape" throughout this work. Rolled strip is said to 

have tlgood shape" if it is free (or almost free) from 

internal stresses when removed from the mill. Such strip 

will lie flat if placed upon a flat surface. Bad shape 

rolled into a strip (whose shape was previously good) 

arises basically because of non-conformity between the 

cross-sectional profile of the incoming strip7 and the 

profile of the roll gap through which it is rolled. Such 

non-conformity will cause the profile of the rolled strip 

to change, thus causing differential elongation at 
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different points across the strip width (neglecting width-

"vise spread). If this strip were to be slit into narrow 

lengthwise ribbons~ some would then be found to be longer 

than others. Within the as-rolled strip~ these length 

differentials must be accommodated within the boundaries 

set by the strip length. This clearly gives rise to in-

ternal stresses which will remain in the strip after 

rolling~ and results in a tendency for the strip to buckle. 

If these stresses are large enough to overcome the section 

modulus of the stripi visible buckling will occur~ and 

"Manifest bad shape" is the result. If however., the 

stresses are less than this level i the strip will still 

appear to be flat~ and is said to possess "latent bad 

shapello (It should be noted that in the literature some 

workers have confusingly used the term "latent" bad shape 

to refer solely to shape which is masked by tension during 

rolling i and which then becomes "manifest" when the tension 

is removed). Figure 1.1 shows the "latent" and "manifest" 

effects which may result from a certain internal stress 

distribution. Manifest bad shape may take a number of 

forms dependent upon the nature of the internal stress 

distribution in the strip. Figure 1.2 illustrates some 

of the more common forms (2). 

There have arisen over the years several methods of 

quantifying strip shape. A literature survey was carried 

out by the author in 1976 (published as an internal 

British Steel Corporation document only) which yielded 

some 73 papers and other documents pertaining to research 

2 



Before Slitting 

'Manifest' shape 
(thin strip) 

Stress, cr 

After Slitting 
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in this area, and no less than seven methods of assigning 

a numerical value to "shape" had been proposed at that 

time. Of these 9 only two are of direct relevance to the 

present work i the remainder being of academic interest 

only or used o~ly by other workers (e.g. in Japan). As 

mentioned above j if strip having bad shape is slit into 

lengthwise ribbons i length differentials ,viII result 

between the ribbons • Pearson (3) in 1964 defined shape as 

being given by .61 4 
~.lO "mons per unit width". 
}..w Where Lll 

represents the length difference between longitudinal 

filaments of mean length ~ i and w is the transverse spacing 

of the filaments. A second definition based upon the 

different filament lengths in slit strip defines shape in 

dimensionless"I-units lt , one I-unit being equal to ~2 .1oS 
where ~i here refers to the difference between the longest 

and shortest filaments (4)0 

Some sensors of strip have been developed over the 

years , .. hich attempt directly to measure ~i. but these will 

measure only manifest shape which is not obscured by 

rolling tension, and are therefore of limited application 

(see for example (3». Many different designs of in-

struments for shape measurement have been reported in the 

literature, some using rollers in various arrangements in 

contact with the strip (e.g. (5-8», others based upon 

non contact methods of various types «9-11) and several 

others besides). The two most well-established "shapemeters" 

in commercial use however are of the segmented-roll type, 

being the ASEA "stressometer" roll (4,5) and the Loewy-

Robertson "Vidimon" roll (6) which was originally designed 
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by Br~tish Aluminium. These two dev~ces both measure 

shape indirectly, by measuring the different~al stresses 

at a number of po~nts across the strip width (which could 

then be converted to the shape definitions above if desired, 

using knowledge of Young's Modulus for the strip.) The 

ASEA device is the one used in the present project, and 

is described in detail in Chapter 2. 

These reliable devices for shape measurements have 

only become commerc~ally available in the last ten years 

or so, yet they have already been applied to many rolling 

mills around the world. In the majority of cases, they 

are used simply to display to the mill operator what 

the shape of the strip he is rolling looks like, and he 

will then adjust the mill controls accordingly so as to 

achieve a better shape - i.e. the operator forms part of 

the "closed-loop" control scheme. (Note that on mills 

without shapemeters, the only ways in which the operator 

can assess strip shape are to stop the m~ll and release 

the roll~ng tnesion so that a v~sual assessment of man~

fest shape can be made, or to str~ke the str~p - e.g. 

with a broom handle - and use his exper~ence to assess 

the results - neither method having the attribute of 

ultimate accuracy). Some shapemeters however have been 

incorporated in closed-loop automatic shape control (ASC) 

schemes. The first well documented scheme was the 

application of an ASEA stressometer roll to a Canadian 

aluminium mill (4). The first appl~cat~on (known to the 

author) of an ASC scheme to a steel mill, involves the 
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use of the Loewy-Robertson Vidimon roll on a large 

tandem mill at British Steel Corporation's Shotton works 

(12). Several other ASC systems are known around the 

world, but they are all operating on conventional four

high mill stands (i.e. stands having two workrolls, 

supported by one backup roll each, in a vertical plane -

Fig. 1.3). It is a much more difficult matter to apply 

an ASC system to a Sendzimir type mill (this will be 

clarified later), and although several Sendzimir mills 

are known to be equipped with shapemeters, at this time 

it is believed that only one other mill is actively con

sidering an AFC scheme. It is hoped that the work des

cribed in this thesis will therefore lead to one of the 

first Sendzimir mill ASC systems ever to operate. 

It should perhaps be mentioned at this point, that 

Slnce the thesis includes work on an ongoing industrial 

development, some aspects of the work (especially the 

implementation of the scheme) will not be finished before 

the thesis submission date. Hence, it will not be 

possible to include, say, operating results in the 

discussion. Nevertheless, the various modelling aspects 

of the work have been made as self-contained as possible 

so that "completion" is possible in several areas. 

7 



F- Application of Rolling Load by Screwdown Systems 
A , B - See Text (Sect. 2·1) 

F F 

B -----. ............,B 

F F 

Fig.1'3 Side View of Roll Stack (4- High Mill) 
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~. 2. Mea~~.~()f, ~hape Control in Four-High Stands •.• /"'J~". ______ • _____ _ "_. ____ .,~ ____ _ 

If strip having good shape is rolled by a mill and 

found to have bad shape after rolling~ the reason is that 

the cross sectional profile of the strip being rolled did 

not coincide with the profile of the roll gap (see 

section 1.1). There is a number of reasons '\V"by this may 

be so. Referring to figure 1.3, when a rolling load is 

applied, since the only support for the rolls is by means 

of their neck bearings, the rolls will bend giving a 

"crowned" profile to the strip (i.e. thickest in the 

centre). Since cold rolled steel strip is normally re-

quired to have a small parobolic crowned cross section~ 

this is acceptable in principle. Nevertheless) the amount 

of crown caused in the roll gap by roll bending must 

accurately match the crown in the incoming strip, other-

wise bad shape will result. Workrolls are usually ground 

with parabolic crowns, carefully calculated so that under 

normal rolling conditions the roll gap profile will match 

the cross section of the incoming strip. Further crown 

is imparted to the workrolls in the form of "thermal 

camber ll during rolling. This arises because the heat 

generated during rolling can more readily escape from the 

ends of the rolls than the centre, and the centre therefore 

expands more than the edges. Now, if the mill rolls are 

correctly ground for steady state rolling (including the 

effects of thermal camber)9 it can be seen that the roll 

gap profile will be incorrect whenever the rolls are cold 

(e.g. at the beginning of a coil). Thus bad shape can 
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result when the rolls are not at their correct temp

erature i or if the crown ground onto the rolls is in

correct (which can occur due to roll wear even if it was 

originally correct)i or if the profile of the incoming 

material is different from that for which the rolls are 

designed (which can often be the case, especially when 

material is bought from different suppliers), also the 

preceding stand in a tandem mill may have upset the shape 

if not scheduled correctly. 

The foregoing description, in itself, suggests the 

normal methods of adjusting shape in rolling stands. 

Firstly, to control thermal effects, differential cooling 

is often employed, whereby cooling sprays arranged at many 

points across the rolls are selectively switched on or off 

as required. This means of control is particularly 

favoured by operators of aluminium rolling mills - see 

for example (4) - but is also used on steel mills. The 

major control on most mills where shape control is possible 

is to bend the workrolls during rolling. In the 4-high 

type of mill, this is usually achieved by hydraulic jacks 

situated between the roll chocks as indicated in figure 1.J. 

"A" represents jacks placed between the backup roll and 

w'orkroll chocks, whilst ttBtl represents jacks placed 

between the \vorkroll chocks. Either method can be used, 

each having its own advantages. Stone and Gray (13) have 

shown that in general~ backup roll bending (i.e. with jacks 

operating between the backup roll necks, outboard of the 

chocks) is the best system, but it is very expensive to 

engineer and maintain and is not used much in the steel 
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industry except in heavy plate mills (to the best of the 

author's knowledge). 

The reasons for using a Sendzimir type of mill 

rather than a four-high mill for certain purposes will 

be outlined in Chapter 29 but the foregoing description 

of mechanisms for control of shape in four-high mills 

has been included here for completeness. 

1.3 Description of the Present Project and the Thesis 

In the mid 1970 ' s two large Sendzimir mills were 

built at British Steel Corporation's Shepcote Lane works. 

These mills are described in Chapter 2. Each mill is 

equipped wi th ASEA "Stressometer" shapemeter rolls which 

provide the mill operators with information about the 

shape of the strip being rolled (the shapemeters are also 

described in Chapter 2). It was decided at an early stage 

that these mills would eventually be furnished with closed 

loop automatic shape control schemes~ Likely suppliers 

of such schemes were contacted, but for various reasons 

BSC decided to develop the scheme locally; and so the 

project was born. 

A great deal of original work has been necessary to 

progress this project, as will be made clear in the 

following chapters. Any collaboration with other workers 

which has taken place will also be made clear at the 

appropriate points. 

Prior to the control system design9 a large amount 

of mathematical modelling and simulation had been carried 

out. Chapter 3 describes the development of models per-

11 



taining to the static behaviour of the mill stand and 

its various control actuators. These models attempt to 

predict the effects upon strip shape of any combination of 

mill actuator movements. The resultant information is 

used in Chapter 4 1vhere a model is developed pertaining 

to the dynamic behaviour of all parts of the plant rele

vant to shape control (i.e. the mill actuators 1 the 

characteristics of the strip between the mill and the 

shapemeter, the shapemeter itself and its electronic 

systems, and the shape controller). Chapter 5 describes 

plant testing which was carried out to check the accuracy 

of the various models. "The development of the control 

system itself is covered in Chapter 6~ whilst Chapter 7 

introduces the dynamic simulation methods used to test 

the various systems developed. (These were all developed 

by the author, as no dynamic modelling package was other-

wise available to him). Chapter 8 includes as much as can 

be said at the time of writing concerning the actual 

installation of the control system on the plant~ and 

concluding remarks end the work in Chapter 9. 

12 
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2Ql. Introduction 

CHAPTER 2 

PHYSICAL DESCRIPTION OF THE 

SENDZIMIR MILL INSTALLATION 

The major limitations of the 4-high mill stand from 

the point of view of shape control are twofold~ FirstlY9 

any change made to the scre1vdown mechanism on the stand 

for purposes of gauge control, will change the degree of 

roll-bending evident in the workrolls. This will cause a 

shape change in the strip leaving the mill t which may be 

significant for certain gauges and materials. Secondly, 

since roll bending is only applied at the roll necks 9 only 

a limited amount of roughly parabolic bending is possible. 

This severely limits the amount of shape correction possible, 

and the forms of shape ,.y-hich can be corrected (eog. on a 

4-high mill no correction could be made to the "herringbone" 

or "quarter buckle" shapes shown in fig. 1.2 by means of 

roll bending; and if differential:cooling is available, 

even this is of limited use due to the magnitude of 

corrective action possible and sometimes to the relatively 

long time constant involved). A further limitation of the 

4-high mill becomes apparent if it is desired to take high 

reductions on hard materials (e.g. stainless steel). 

Under these circumstances, rolling theory suggests the use 

of small diameter workrolls, and if used in a 4-high stand 

these would be prone to an unacceptable degree of bending 

under the high rolling loads required. 

The Sendzimir rolling stand is designed to overcome 
f 

to a large extent these limitations. It is, hO\feVer, an 
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extremely complex mechanical system, and the primary 

purpose of this chapter is to describe the mechanics of 

the system so that the later chapters on modelling can be 

readily reconciled with the plant. The follo'\ving section 

describes the general layollt of the mill stand~ ~nd thi3 

is followed by a section devoted entirely to a description 

of the control actuators, which are not at all easily 

described lD writing! The final section describes the 

opera tion of the ASEA "Stressometer" shapemeter system. 

2.2 Mechanical Description of the Sendzimir Stand 

The Sendzimir mill permits the use of small diameter 

workrolls by providing massive support, in an extremely 

rigid housing. Various configurations are available, but 

the mills at BSC, Shepcote Lane, are of the twenty roll 

type. Figure 2.1 shows an end view of the roll stack 

(or cluster) of such a mill, using standard notation for 

the various rolls. Each of the backup roll assemblies 

(A-H
j 

fig. 201) is segmented into seven separate short 

rolls, with support to the housing being provided by a 

saddle (~.vhich is bolted to the housing) bet,'feen each pair 

of segments as indicated in figure 2.2. Each segment is 

kno\ffi as a "backing bearing", and is free to rota te on 

the shaft which passes through the saddles. The complete 

mill housing is of monoblock construction (i.e. machined 
, 

from a single piece of steel) and is extremely stiff. 

The other rolls in the cluster (I-T, fig. 2.1) have no 

neck bear~ngs, but are free to float (the upper half of 

the cluster is prevented from collapsing during threading 

of the mill, by means of tie rods which allow rolls 

I-KjO and P to move downwards by only a limited amount when 
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the upper workroll is removed). The mill drive (from a 

single motor) is applied to the outer second inter

mediate rolls (I~K~L and N) and transm~ts to the workrolls 

by inter-roll friction. This means of construction provides 

great support to the thin workrolls, and unwanted roll 

bending is minimized. The mill type under consideration is 

designated ZR21B-63, wherein liZ" stands for the Polish 

ItZimna" meaning "coldtl , "R" stands for "reversing"~ "21" 

is an indication of the mill housing bore sizes j "B" 

indicates a modification to the mill housing dimensions to 

allo,V" slightly larger workrolls than standard to be used 

if required and tl63t1 is the mill width in inches (1600uun). 

The layout of the plant is indicated in figure 2.3. 

To give an idea of scale a typical set of nomi3al 

roll diameter may be as follows: 

Backing Bearings (A-H) 0.406 m 

Second Intermiediate (Drive) Rolls (I,K~L .. N)0.235 m 

Second Intermediate (Idler) Rolls (J .. M) 0.230 m 

First Intermediate Rolls (O-R) 0.135 m 

Workrolls (S-T) 0.075 m 

The distance from the roll gap to each shapemeter is 

~pproximately 2.91m, from the shapemeter to the deflector 

roll 0.56m and from the deflector roll to the coiler 1.85m. 

The mill housing weighs some 200T. 
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2.3 Mechanical Description of the Mill's Control Actuators 

The mill is equipped with various actuators which 

allow the cluster to be opened up for roll changing and 

strip threading~ the pass line height to be adjusted (i.e. 

the path taken by the strip during rolling) and also per-

form functions of gauge and shape control. During the 

author's reading of the literature~ no description of 

the operation of these actuators (other than the most 

rudimentary details~ which would only be of use to those 

already in possession of the appropriate facts) could be 

found. Even Sendzimir's brochures appeared rather vague 

in this area. Therefore, many hours were spent in study-

ing BSC's sets of plant drawings~ and also studying the 

plant itself, in order to gain sufficient insight into 

the working of these systems to allow them to be modelled. 

The information thus gleaned is described in this sectionj 

and the author has also passed it on in discussions with 

other workers~ 1n this field, to help their work to 

proceed (14-18). 

Referring back to fig. 2.2, it will be recalled that 

each of the outer rolls (A to H) in the Sendzimir mill 

cluster is segmented into seven backing bearings, mounted 

on roller bearings, and running on a shaft supported by 

eight saddles which are bolted to the mill housing. 

Wherever the shaft passes through a saddle~ it is keyed 

into an eccentric disc which can rotate in the saddle 

bore on roller bearings (see figure 2.4). Thereforelj if 

the shaft is rotated through some angle (as indicated at 
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nAtt in fig. 2.4), since it is keyed to the eccentric disc'j 

both shaft and disc will rotate in the saddle bore together. 

This causes the centre of the shaft (C2 in fig.2.4 - which 

is also of course the centre of the backing bearings at 

each side of the saddle) to move around the fixed centre of 

the saddle bore (Cl in fig.2.4 - which is also the centre 

of the mill housing bore). Due to the geometry of eccentric 

motion~ the locus of C2 is' a circle about CI, whose radius 

is equal to the eccentricity in the disc - this will not 

be proved here. Thus, rotation of the shaft causes the 

backing bearings at either side of the saddle to move 

relative to the mill housing. Since the shaft is keyed to 

an identical eccentric disc in each of the eight saddles, 

rotation of the shaft causes an identical motion at each 

saddle, and therefore the entire set of backing bearings 

on the shaft moves relative to the mill housing and 

parallel with its original position. 

2.3.1 Push-up System Operation 

The lower backup roll assemblies (F and G in fig.2.1) 

each have the construction described above~ If figure 2.q 

is taken to represent a saddle on shaft G j then the 

corresponding saddle on shaft F is constructed as a mirror 

image of fig.2.4. The necessary rotational movement is 

simultaneously imparted to shafts F and G by means of a 

rack and pinion arrangement as shown in fig. 2.5. There 

is such an arrangement at each end of the shafts, the 

racks being constrained to move simultaneously. The mill 

operator sets the position of the racks by operating an 
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electrical solenoid valve which controls the hydraulic 

push-up cylinder connected to the racks. The way in which 

this affects the magnitude of the roll gap is indicated 

by the arrows in fig.2.5o 

The major function of the push-up system is to allow 

the mill cluster to be opened up for strip threading and 

roll changing. Under normal rolling conditions the racks 

are usually in the fully closed (down) position, and are 

not used for any control action. 

2.3.2 Side Eccentrics Operation 

The pairs of backup roll assemblies (A~H) and (D,E) 

at each side of the mill are equipped with similar 

mechanisms to the push-up system described in the previous 

sub-ection. The main difference is that the operation 1S 

via electric drives and pinions situated only at; the 

back of the millo The shafts of assemblies A and Hare 

simultaneously contra-rotated as described above, and so 

are the shafts of assemblies D and E. Note, however, 

that the two systems (A,H) and (D,E) are adjusted 

independently. 

The function of these eccentrics is to allow the 

mill pass line to be correctly set (as otherwise the pass 

line would vary according to the combination of roll 

diameters - especially workrolls - in use at the time). 

The side eccentrics are usually set at the beginning of 

a pass~ and then left undisturbed. 
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2.3.3 Screwdown System Operation for Gauge Control 

The term "screwdown" is somewhat misleading for a 

mill equipped with hydraulic cylinders, but it is still 

employed by convention. It arises from the fact that until 

recent years~ all four-high rolling stands employed 

electrically or mechanically driven screws to position the 

rolls and vary the rolling load. Many modern mills 

(including almost all Sendzimir mills) employ hydraulic 

"screws" which are in reality ttramsH. 

The two upper backup roll assemblies (B and C in 

fig. 2.1) are equipped with an identical arrangement to 

that described for the push-up system in sub-section 2.3.1 

above (and figo2.5 - inverted s and with the roll 

designations for the upper half of the cluster~). The 

difference is that whereas the push-up system is used only 

for roll changing and mill threading~ the screwdown system 

is used for control during rolling. It is used to control 

strip thickness (gauge) either manually by the operator 

or automatically as part of the automatic gauge control 

system shown in figure 2.3. In the latter case, the 

automatic system uses hydraulic servo valves to position 

the screwdown cylinders, in response to signals of strip 

gauge received from the X-ray gauges at each side of the 

mill. 

It is important to note that as described previously~ 

the operation of these eccentrics causes the backup roll 

assemblies to move parallel with their original positions. 

Due to the massive support provided by the monoblock mill 
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housing~ this motion remains essentially parallel even 

when it reaches the workroll. Therefore, compared with 

the four-high mill (section 1.2), there is very little 

effect upon strip shape due to maki~g gauge changes. 

is a primary advantage of the Sendzimir mill stand. 

This 

2.3.4 As-U-Roll Operation for Shape Control 

For purposes of shape control, it is necessary 

deliberately to be able to bend the workrolls during 

rolling (section 1.2). The system employed in the Sendzimir 

mill is referred to by Sendzimirs' trade name "As-U-Roll tl 

(since it allows roll bending "as-u-rolltl)~ this also 

operates on the upper pair of backup roll assemblies~ Band 

C. 

Each of the saddles supporting either of the two 

shafts Band C is fitted with an extra eccentric ringj 

interposed between the saddle bore and the screwdown 

eccentric disc as shown in figure 2.6. The eccentricity 

of this ring is much less than that of the screwdown disc 

(typically less than 20 percent of screwdown eccentricity) 

since workroll motion required for shape correction is 

exceedingly small. 

The As-U-Roll eccentric r1ng at each saddle can be 

rotated independently of the shaft and screwdown system 

(and of the As-U-Roll rings at the other saddles) by 

moving a forked rack which engages with cheek pieces 

fastened to each side of the ring as shown in figure 2.7 

and 2.8. The forked rack straddles the pair of saddles 

2~ 
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Fig.2·7 Form of As-U-Roll Cheek Piece and Rack 
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concerned, so that its teeth mesh with the four appropriate 

check pieces (one on each side of the As-V-Roll rings at 

the corresponding saddles on shafts B and C). The mill 

operator can raise or lower each of the eight As-V-Roll 

racks independently, by operating electric solenoid valves. 

These supply a hydraulic motor for the selected As-V-Roll 

system~ which raises or lowers the rack by a worm and rack 

arrangement. 

As one As-V-Roll rack is raised or lowered, it 

rotates the As-V-Roll eccentric rings at the corresponding 

pair of saddles on shafts B and·C via the check pieces 

(fig.2.8). Referring back to fig.2.6, this causes CJ to 

move around the fixed CIon a circular path whose radius 

equals the eccentricity in the As-V-Roll ring. Since we 

are assuming that the screwdown system is not being 

operated at this time C2 will follow a "parallel tl circular 

path to CJ. Now C2 is the centre of the shaft and of the 

backing bearings on each side of the saddle under con-

sideration. Therefore by moving one As-V-Roll rack onlY1 

the position of the backup roll assemblies Band C is changed, 

relative to the mill housing only adjacent to the saddle 

whose rack has been moved. Thus the roll is effectively 

bent, and this bending propagates down through the mill 

cluster onto the workroll. By manipulation of all eight 

racks
j 

various bending profiles can be forced onto the 

workroll (see for example figure 209)0 

28 



Racks at Zero Position 

2IR 

1 I R 
WR 

Aft er Mot i on (Grossly E xaggera ted) 

o D 

2IR 

1 I R 
R 

Fig.2·9 Effect of As-U-Roll Movement 

29 



It is worth reiterating that the design of the 

Sendzimir mill minimises interaction between gauge and 

shape control systems. When a shape change is made, only 

the As-U-Roll eccentric rings move, forcing a suitable 

profile onto the workrolls. The resultant change in gauges 

is extremely small, due to the small eccentricity in the 

As-U-Roll rings~ and the fact that there are constraints 

upon the amount of As-U-Roll control possible (this will 

be discussed later). The automatic gauge control system 

is fast-acting compared with shape control, and if a shape 

change does cause a net gauge change visible to the AGC 

system, it will be corrected very quickly. On the other 

hand~ when a gauge change is made, only the screwdown 

eccentric discs move (rotated by the shafts B and C) and 

as discussed in sub-section 2.3.3 above, the discs move 

an identical amount at each saddle. Thus the bending 

profile on the workroll is virtually unchanged, and an 

almost pure gauge change results. 

2.3.5 First Intermediate Rolls for Shape Control 

Although the As-U-Roll system permits a much wider 

range of bending profiles to be forced onto the workrolls 

than is the case in a four-high mill, it is not as flex-

ible as may at first appear. This is due to mechanical 

constraints upon the amount of bending which can be 

tolerated by the backup shafts Band C and the other rolls 

in the cluster under rotating conditions. The As-U-Roll 

actuators are set by the operator according to scales 

marked in ten arbitrary units. The manufacturers of the 
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mill and the mill engineers lay down a constraint that 

the position of any As-U-Roll actuator shall not deviate bv 

more than l~ of these units from the mean position of its 

two neighbours. Large gradients and sUdden maxima and 

minima are therefore ruled out. 

To allow much more freedom of control at the critical 

areas of the strip edges, a second means of shape control 

is provided. The first intermediate rolls 0 and P (in 

fig.2.1) are tapered off at the front of the mill~ and Q 

and R at the rear as shown in figure 2.10. These tapers 

can be moved laterally into or out of the cluster as 1n

dicated in the figureo The upper and lower pairs of rolls 

are independently adjustable, thus allowing separate control 

of shape at the front and back edges of the ~rip. The 

motion is imparted to these rolls by means of internally 

threaded thimbles which run on external threads cut on 

non-rotating extensions coupled to the back ends of the 

£irst intermediate rolls. The thimbles are laterally 

constrained with respect to the mill housing, so that if 

the thimbles are rotated, the screw action of the threads 

will move the first intermediate rolls in or out. The 

drive to the thimbles is by chain from hydraulic motors 

controlled by switches on the mill operator's desk via 

solenoid valves. (Described in more detail in Chapter 4). 

The control action obtainable by this method at the 

strip edges is very fine and very powerful. This is 

underlined by Urayama (19), although in Urayama's 

application it was actually desired to roll quarter buckle 
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into the strip, and it is known that the As-U-Roll system 

alone cannot produce two inflexions in the workroll) due 

to the mechanical constraints (20). Also, tapered 

intermediate rolls have recently been introduced for shape 

control in four-high mills by Hitachi (2l)~ thus forming 

the six-high mill~ which is making very rapid progress now 

in Japan. 

The automatic shape control system for the Shepcote 

Lane mills will incorporate control of the As-U-Rolls and 

the first intermediate rolls~ although initial effort has 

been directed at the As-U-Roll systems for various reasons 

which will become apparent. 

2.4 The ASEA Shapemeter System 

To conclude this chapter, a brief description will 

now be given of the system which measures strip shape on 

the mills in question. The system comprises the transducer 

itselfj which takes the form of a pass-line roll, and the 

electronics necessary to process the transducer signals and 

provide a shape display in the operator's pulpit. 

2.4.1 Description of the Str~someter Roll 

One Stressometer measuring roll (4,5) is placed at 

each side of the mill, approximately 2.91m from the roll 

gap. Each roll takes the form of a solid core~ having 

four axial grooves milled along it at equally spaced points 

about its circumference (figure 2.11). Each groove houses 

31 modified "Pressductor" loadcells j which are installed to 

be slightly proud of the core surface and then machined to 
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the correct height. These transducers are then covered 

by 31 hardened steel rings which are shrink-fitted over 

the core so as to pre-stress the transducers. Each ring 

is 52mm wide~ and is separated from its neighbours by 

small gaps of typically 20 to 40 microns. Each ring~ 

with its group of four transducers therefore forms an 

independent measuring zone. The four transducers in each 

zone are connected together in such a way that the pre

stressing forces due to the shrunk-on steel ring, thermal 

effects~ centrifugal force, bending of the roll due to 

strip tension and also stray magnetic effects are all 

effectively cancelled out. This leaves only the force on 

each zone due to the tension in the strip passing over it 

to be measured (because this affects only one transducer 

at a time, whereas the above mentioned are all common

mode effects). 

The roll is mounted in roller bearings~ and all the 

transducer signals are brought out by means of a multi

pole silver slipri~g and brush system at the rear of the 

mill. 

2.4.2 Description of the Signal Processing 

The primary windings of the transducers in each zone 

are connected in series, and energized with a 2kHz signal. 

If the four transducers in a zone are labelled A,B,C and D 

sequentially around the roll, then the secondary windings 

(the transducers operate on the principle of magneto

striction) are connected in series as follows 

Therefore, when strip under ten-

sion is passing over the rotating roll~ the output from 



each zone will take the form of an amplitude modulated 

wave, having a carrier frequency of 2kHz, a modulating 

frequency dependent upon strip speed, amplitude which 

exhibits four pulses per revolution of the roll-

alternatively less than and greater than the carrier 

amplitude, and of a magnitude dependent upon the load 

placed on the zone by the strip. This signal from each 

zone is fed to one channel of the signal processing 

electronics. Here, it is fed through phase-sensitive 

rectifiers and filters to obtain a direct voltage 

proportional to the radial force on the measuring zone. 

In order to obtain good filtering characteristics, a 

variable time constant is used in the signal electronics. 

This is selected automatically as a function of strip 

speed (Table 2.1). 

Strip Speed 0-90% Response 
(m/s) Time (s) 

0.3 - 1 10.0 

1 - 2 3.3 

2 - 5 1.7 

5 - 15 0.7 

15 - 50 0.25 

Table 2.1 

Automatically Switched Filter Time 
Constants 
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Having obtained values Fx \ for the radial 
x=1,3l 

force exerted by the strip on each measuring zone (N), ~he 

processing proceeds as follows: 

Let F = m mean force (N) 

o-x = stress in strip at zone x (Nm- 2 ) 

eJ'"m = mean stress (Nm- 2 ) 

.60- { = deviation of stress at zone x from mean (Nm- 2 ) 
x 

= shape 

T :; total strip tension (N) 

t = strip gauge (m) 

w = strip width (m) 

N = number of shapemeter rotors covered by the 
strip. 

The parameters T, t and ware available to the 

shapemeter electronics~ therefore 

Now 

also 

CT'm 

F 
m 

Therefore 

= 
<J'x 
F 

x 

o-'x 

~ 
m 

F 
m 

= F x 

T 
= w.t 

1 
N 

LFx = N 
x=l 

6""m 
· F 

m x=1,3l 

~ can be calculated as 
m 

(Nm- 2 ) 

(N) 

The quantity 0"'" m is 
F 
f~und 

evaluated by the elctronics j and 

so (S' can be 
x 

for each zone. 

Then finally 

Llo--
x = o-x - cr'm 
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-2 d d' The 31 values are then scaled in N mm an 1S-

played to the mill operator by means of 31 edge-meters 

arranged side by side. The range of the display is 

+ -2 
- 200 N mm for each zone. 

There 1S only one set of shapemeter electronics~ and 

this is switched to whichever of the two Stressmeter rolls 

is at the output side of the mill. 
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CHAPTER 3 

STATIC MATHEMATICAL MODEL OF THE MILL 

3.1 Introduction 

This chapter considers the non-dynamic aspects of 

the mill stand itself, including the various actuator 

mechanisms described in section 2.3. The purpose of the 

model is to predict, from any possible combination of 

actuator movements, the magnitude of the effects upon the 

transverse internal stress distribution of the strip 

leaving the roll gap (fig.3.1). Clearly~ for shape control 

considerations~ the major emphasis is placed upon a per

turbation analysis of the As-U-Roll and first intermediate 

roll taper effects upon the strip shape. However~ it should 

be borne in mind that the settings of the screwdown and 

side eccentric systems affect the range of control of the 

shape control actuators by mod~fy~ng the roll stack 

geometry. A unique feature of the present model is that 

it attempts rigorously to define these effects~ by careful 

modelling of the complex mechanical mechanisms by which 

the distribution of rolling load throughout the cluster is 

affected when any of the mill's actuators is moved. In 

addition, every effort has hEn made to keep the model non

iterative, so that the long computation times associated 

with such models are avoided. Some details of the 

computer mechanisation of the model are given. The 

chapter concludes with the derivation of a gain matrix 

by which the mill can be represented in~ for example, 

a state space derivation of a control scheme. 
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List of principal symbols, abbreviations and notations to 

~e found in this chapter and Appendices 1 to 4 

Subscripts (unless otherwise defined) 

General subscripts used are~-

B Quantity refers to backing bearings 

2 Quantity refers to second intermediate rolls 

1 Quantity refers to first intermediate rolls 

W Quantity refers to workrolls 

N Used as a count (i.e. N = 1,2,J~4 •••••• etc.) 

Common second subscripts used are:-

L 

R 

S 

T 

B 

o 

Quantity refers to the Left-hand side or end 

Quantity refers to the Right-hand side or end 

Quantity refers to the area over the strip being rolled 

(used 
with LI ) 

Refers to the top half of the roll stack ~ 
Refers to the bottom half of the roll-stack ) 

Indicates mill actuator datum positions (used with 

L 
s1 s 2) 

D Drive roli)(used with D2 ) 

I Idler rOll~ 
Main Variables and Abbreviations 

AUR 

A ) 
Ax) 

B ) 
Ax) 

) 

Motion of upper central backing shafts (roll B) 

towards centre of upper central second intermediate 

roll{J) at the Nth saddle from front of mill (i.e. 

due to motion of the Nth As-U-Roll rack). (m)(close 

approximation) (positive for roll B moving towards 

roll J). 

As-U-Roll 

General functions defined in beams-on-elastic 

foundations theory (Appendix 1) 

B.O.E.F. Beams-on-Elastic Foundations 

c 
s 

C ) 
Ax) 

D ) 
'\x) 

) 

Camber off diameter of roll specified by subscript s. 
(m) 

As A and B above 
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D 
s Maximum diameter (including camber) of roll specified 

by subscripts s (m) 

e Base of natural logarithms 

e ~e ~e Eccentricity of As-U-Roll rings~ screwdown and asp . 

E 

ECF 

F 

F 0 ) 
s ) 

F" ) o ) 
s ) 

F OA ) 
s) 

) 
FOB) 

s) 

-G 
p 

hN 

side Eccentric Discs respectively (m) 

Youngis Modulus for all rolls (Nm- 2 ). 

Abbreviated form of "end-conditioning-force" 

Intermediate values defined in beams-on-elastic 

foundations theory (Appendix 1). 

Value of concentrated force i subscripted as ap

propriate. (N) (positive downwards). 

Values of force defined for roll specified by 

subscript s in b.o.e.f. theory (N). 

mill gain matrix (N mm- 2 ) 

Strip input gauge over the centre of the Nth 

meter rotor covered by the strip. (m) 

shape-

HN Strip output gauge corresponding to h
N

• (m) 

h. 
].. 

h 
o 

I 
s 

J B 

J H 

J R 

J sF 

) Strip general entry and exit gauges used in rolling 

~ theory (m) 

) 

Second moment of area of roll specified by subscript 

s. Roll assumed cylindrical and of diameter Ds (m4 ) 

Number of backing bearings 

Number of shapemeter rotor centres covered by strip 

Number of rotors of shapemeter 

Number of concentrated forces taken to act on roll 

specified by subscript s. (Symmetrical about 

vertical centre-line of mill and equally-spaced). 
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k Yield stress of strip in roll gap (Nm -2 ), variable as k (~) 

k Foundation modulus defined in b.o.e.f. theory 
s l s2 

(Appendix 1) for roll specified ?y subscript sl 

resting on roll specified by subscript s2. (Nm- 2 ) 

1 Taper off base (i.e. uncambered) diameter of first 

intermediate rolls. (m) 

L t Length of lIR tapered portion (m) 

LB Length of each backing bearing. (m) 

Ll Length of tapered section of first intermediate rolls 

which is slid into the cluster. (m) 

LR Width of each shapemeter rotor. (m) 

LS Strip Width. (m) 

LT Total roll length (m). (Length of non-tapered portion 

of lIRs). 

LU Unsupported length of workroll overhanging each 

edge of the strip. (m) 

LH Abbreviated form of "left-hand". Note that the 

"left-hand" end of any roll is at the front of the 

mill. 

L Distance between centres of rolls specified by sub-
s l s2 

scripts sl and s2 (used in cluster angle and force 

analysis). (m) 

Various values of moment defined in the b.o.e.f. 

theory (Appendix 1) for roll specified by subscript 

s. (Nm) (Positive when clockwise onthe left of a 
section - i.e. in the direction of the positive 

shearing force Q on the left of the section. Thus 

M is positive for a sagging beam). 

42 



M 
p 

M 
s 

As-V-Roll Rack position (operator's units) 
(positive downwards) 

side eccentric position (operator's units) 

screwdown rack position ( " " ) 

Even nu~ber of points (symmetrical about the vertical 

centre line of mill and equally spaced) at which 

deflection is calculated for roll specified by 

subscript sl. 

PB Pitch of backing bearings (m) 

P
T 

Total Rolling Load (N) 

P v D' (Nm- l ) 1stributed Rolling Load 

q Value of uniformly-distributed loading~ 

subscripted as appropriate. (Nm- l ) (positive down

wards) 

Q
A s 

QI 
A 

s 
Q" A 

s 
QB 

s 

) 
) 
) 
) 
) 
) 
) 
) 

Values of 

(Appendix 

(Positive 

shear defined in b.o.e.fo theory 

1) for roll specified by subscript s. (N) 

when acting upwards on the left of a section). 

R Vndeformed roll radius (m) 

R' Deformed roll radius (m) 

RH Abbreviated form of "right-hand" 

rA~r sr s p 
Gain of As-V-Roll, screwdown and side eccentric 

actuators (rad/operator's unit) 

s Normal rolling pressure (Nm-
2

) (Variable as s(~». 

T. jT Entry & Exit Tensions (N) 
1 0 

(Nm- 2 ) Tension stresses T' TV 
i ~ 0 " tI 

tN Peak value of triangular-distributed loading due to 

backing bearing N. May be further subscripted 

if the Nth bearing produces two triangular-

distributed loads. (Nm-
l
). 

TDL Abbreviated form of "triangular-distributed loading" 

UDL Abbreviated form of tluniformly-distributed loading" 
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WR Abbreviated form of tlworkroll" 

w Strip width (m) used in rolling theory. 

x E Distance of front edge of Nth backing bearing 
N 

along second intermediate roll. Measured from 

front of mill. (A zero preceding the "Nt! indicates 

that the measurement is taken at zero As-U-Roll 

travel). (m) 

Array of distances of the M points from the 
s 

front of the mill. (m) 

Distance x I 

SFN\ 
N=I'jJ sF 

from front of mill of point of 
th 

application of N concentrated force 
acting on roll specified by subscript s. 

M=I~M s 

Definition of workroll at LH edge of strip 
th ) due to N element of array FW(JWF • (m) 

Deflection of workroll at RH edge of strip 
th ) () due to N element of array FW(JWF • m 

Deflection of roll specified by subscript s 

at the section x M• (m) 

A number of algebraic reduction factors 

used in section J.9.21~ defined as required. 

p.u. Reduction of strip gauge due to 
rolling 

Differential elongation (w~r.t. mean) of 

filament of strip corresponding to Nth 

covered shapemeter rotor centre from front 

of mill. (m) 

t1tr N Differential stress (shape) in the above 

N-I J (Nm- 2 ) - ~ H filament. 



eAt e t e s p 

9L 
N 

e~ 

ew 
x M 

I>st /Jp 

including: 

( 1J
0 ( 

( IJ. 
( 1 

( IJ 
( n 

Deviation of As-u-Roll~ Screwdown and side 

eccentric rings/discs from datum position 

(rad). (positive when clockwise viewed from 

the frontat shafts A,B,G,H) 

Deflection angle corresponding to YL . (rad.) 
N 

DEflection angle corresponding to Y~. (rad. ) 

Deflection angle corresponding to Yw • (rad. ) 
x M 

Cluster angles defined in figure 3.16 (rad.) 

Co-efficient of friction in roll gap. 

Poisson's Ratio for roll material. 

"Rotation" of screwdown~ side eccentric discs 

to achieve datum from "horizontal". (rad.) 

Angle subtended at workroll centre by the arc 

of contact between exit plane and some plane of 

interest (rad.) 

= p (exit plane) = O(rad.) 

= p (entry plane) = arc of contact of strip in 
roll gap (rad.) 

= neutral angle (rad.) 

lIR First Intermediate Roll 

ZIR Second Intermediate Roll 
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3.2 Modelling of the Control Actuators 

This section describes that part of the model which 

determines the effect upon the cluster geometry of moving 

the eccentric actuators (the first intermediate roll tapers 

are not discussed until section 3.8, as their effect is 

more sensibly included there). The next section considers 

the implications of the cluster geometry in terms of 

rolling load distribution. 

Consider first the upper half of the mill cluster. 

Section 2.3 has made it clear that when any of the ec-

centric actuators is moved (excepting here the push-up 

system, which acts' only on the lower half of the roll 

stack) the centres of the backing shaft assemblies A to H 

(fig.2.l) will move relative to the fixed mill housing 

and relative to each other. Furthermore, perusal of 

sub-sections 2.3.3 and 2.3.4 (and the analysis below) 

will show that since the eccentrics at shafts Band C 

always move together, a line joining the centres of 

shafts Band C will remain horizontal at all times. 

Therefore, given a knowledge of the roll diameters, the 

set of five parameters shown in figure 3.2 is necessary 

and sufficient to specify the complete geometry of the 

upper half of the cluster. (f is itself a function of 

the other 5 parameters). Note that the roll diameters 

are modified by roll flattening under the influence of 

rolling load. These effects are included in section 3.4 

(since they are so small as to make no appreciable 

difference to the cluster geometry effects under con

sideration here). 
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Let us establish a datum position from which all 

actuator movements will be measured. The positions of 

the operating mechanisms for the screwdown, push-up and 

side eccentric systems are displayed to the mill operator 

on scales graduated in arbitrary units from zero to ten. 

The zero positions correspond to the fully open mill 

position (maximum roll gap) and these will be taken as 

the datum position. The As-U-Roll rack positions are 

displayed on + scales of -5 divisions (+5 divisions being 

the position to which the rack is fully lowered), and 

the centre zero positions are taken as the datum here. 

The physical meaning of the datum position in terms of 

eccentric rotations is illustrated in figure 3.3. At 

each backing shaft position~ CI represents the (fixed) 

housing bore centre, C2 the centre of the backing bearing 

shaft assembly at the datum position and C3 (shafts B 

and C only) the centre of the inner diameter of the 

As-U-Roll eccentric ring. All eccentric movements in 

figure 3.3 have, of course, been grossly exaggerated for 

clarity, typical values of eccentricity being of the order 

of 9mm~ 4.5mm and 1.5mm for the screwdown, side eccentric 

and As-U-Roll respectively (compared with the typical 

backing bearing diameter of 406mm). The various angles 

of rotation of the eccentric discs in fig.3.3 are defined 

below~ and then the set of measurements between shaft 

centres (fig.3.2) is derived. At the datum positionj 

the parameters shown in figure 3.2 will be referred to 

as LA B ' LB C ' LC D 
o 0 0 0 0 0 

and LA D • 
o 0 

These can be calculated 

from the known housing dimensions and the known rotations 
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of the eccentrics required to achieve the datum position 

(measured from the horizontal). 

Consider one saddle of the backing shaft assembly 

B as shown with the eccentrics in the horizontal position 

in fig.3.4. The effect of moving the As-U-Roll eccentric 

ring only is illustrated in figure 3.5 1 and it is clear 

that since shaft C always moves as a mirror . 
image of 

shaft Bli then 

L 
1 

L
Be = - • 2 

Therefore, L
Be = 2(1

1 + eA·cos e + e ) 
A s 

Figure 3.6 shows the same situation with the 

addition of a screwdown rack movement causing a rotation 

of the screwdown eccentric ring of ¢S' when 

It can be shown that all other cases are a special 

case of equation 3.1. From figure 3.3 at the datum 

position'ij e
A

=07 and therefore from (3.1) 

LB C 
o 0 

= 
The situation at shaft A is shown in figure 3.7 7 whence 

e cos fJ • 
p p 

Now at the datum positionj the magnitude of the right-

hand side eccentric rotation will be the same as the 

left'ij therefore, 

= e 
p 

cos fJ ).0 ••••••••••••• (3.3) 
p 

The situation pertaining to the derivation of LA B (and 
o 0 

so 
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LC D ) is illustrated in figure 3.8. It can be shown 
o 0 

that 

14 = j I) 2 + (1
2 

1 )2 
1 

and OC tan -1 [ 13 

1 
= 

1 - 11 2 

This gives rise to the geometrical figure shown in fig.3.9, 

where 

X is the centre of housing bore A. 
o 

Y is the centre of the inner diameter of the As-V-Roll 
o 

eccentric ring (and therefore also the outer diameter 

of the screwdown eccentric ring) at the datum point. 

Z is the centre of housing bore B. 
o 

Note: Since X and Z are saddle bore centres they are 
o 0 

fixed with respect to the mill housing. 

Applying the cosine rule to the triangle X Y Z 
000 

figure 3.9 

= 

and also 

~ -1 I'J = cos 

Applying the 

L 2 2 
X Y + e A o 0 

1 2 
4 

cosine rule to the triangle X BY, 
000 

.es .cos (3 

and the sine rule gives 9 

. -1 Sl..n eS Sinf31 
liB 

o 0 
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FinallY,applying the cosine rule in triangle A B X 
000 

= ) 2 
+ e 

p - 2.L I v X B .e .cos( + ~S-~p-D) ••• (3.4) o 0 p 

and LC D 
o 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · . (3. 5 ) 

The fully open mill position is now completely specified 

as the datum position by equations (3.2) to (3.5), since 

11 to 14 , ~S and the various eccentricities are known from 

the investigation of the plant drawings. 

Having defined the datum configuration, we can now 

model the variations in the distances between the backing 

shaft assembly centres (figure 3.2) due to displacement of 

the actuators from their datum positions. The actuator 

positions are specified to the model in terms of the units 

displayed to the mill operators. These convenient 

arbitrary units are converted for use in the model using 

appropriate angular conversion constants calculated from 

mill drawings and plant tests. 

For a screwdown rack position of MS units indicated 

to the mill operator, the screwdown eccentrics will ro

tate through an angle of 9S radians from the datum 

as shown in figure 3.10 where 

8s = MS·rS 

Since the screwdown eccentric discs on shafts Band C 

always move in simultaneous contrarotion, it is clear 

that in figure 3.10, LB C will always remain parallel 
1 

with LB C • 
o 0 
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Therefore, 

Equation 3.6 is valid for all possible practical 

values of 8S with the As-U-Roll racks at the datum 

position. However j we shall now modify it to take account 

of the movement of the As-U-Roll racks. In the general 

case this will yield a different value for L
BC 

at each 

saddle position on shafts Band C. However, the effect due 

to rotation of the As-U-Roll ring at any given saddle 

is small compared with the effect due to screwdown motion. 

This is because firstly the screwdown eccentricity is 

much greater than the As-U-Roll eccentricity, and secondly 

the rotation of the screwdown eccentric disc from the 

datum will also be greater in general than that of the 

As-U-Roll eccentric ring. Therefore, in calculating the 

distribution of rolling load throughout the cluster, the 

mean As-U-Roll rotation BA will be used where 

8 
r A 00::::::: M 

L... An 8 n=l 
(n=l refers to the front 
As-U-Roll rack on the mill) 

Note that in general BAn = rA-MAn , and the re-

suIting sign of 9
An 

specifies clockwise (+ve) or anti-

clockwise rotation. Thus, positive (downward) motion of 

the As-U-Roll rack causes positive (clockwise) rotation 

of the ring at shaft B (see e.g. figure 2.8)0 This 

causes the backing shafts (and therefore the workroll) 

to move upwards (fig.3.5) which opens the roll gap. 

Therefore less reduction is taken at that area across 

the strip width and a positive change in differential 
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stress (tightening) results in the strip. The operators 

display of As-U-Roll rack position is wired to indicate 

positive rack motion upwardsgfrom zero~ so as to tie in 

with the shape display. Hence the equation for e
An 

above~ yields the correct sign. 

Motion of the As-U-Roll rack through an angle _~ 
A 

from the datum will modify figure 3.10 to figure 3.11. 

Since LB Y and LBy are equal and parallel~ the correction 
1 0 

to ~LB C is given by 
1 

correction = -eA (l-cos§A) •••••••••••••••• (3.7) 

which is very small for all practical purposes~ but is 

included for completeness. Therefore~ combining (3.6) 

and (3.7) we have 

LBC = LB C + 2eS(cos(~S-eS)-cOs~S)-2eA(1-coseA) 
o 0 

(3.8) 

Equation (3.8) is valid for all practical values. 

(if 9 is positive rather than negative, the cosine term 
A 

being an even function, automatically compensates of 

course). 

Considering now the side eccentrics i since the left 

and right hand units can be moved independently it is 

necessary to evaluate their separate effects. Figure 

3.12 depicts a saddle on shaft A. For a "rack" position 

of MpL units9 

The figure assumes that,for the present, shafts Band D 

are held at the datum position. From the figure (or more 
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clearly from figure 3.13), 

• • • • • • • • • • • • • 0 • ••••••••• • (3.9) 

which is valid for all practical values of B
pL

• 

A.lso since the datum position is symmetrical (Fig.3.3)') 

it can be seen that 

~= -1 cos •••••••••••••• 0(3.10) 

2.LA B 
o 0 

A.lso from Fig. 3.12') by cosine rule, 

Equation (3.11) above is correct for all practical values 

ofepL • Similarly at shaft D, 

and LDD 

SpR = ~R·rp 

= 2.e o p 
sin epR 

2 

· ...•....... 0·· .............. (3.12) 

The combined effects of moving both side eccentrics can 

now be used to calculate the value of LAD. Figure 3.13 

illustrates the situationj whence the cosine rule applied 

to triangle A D A gives o 0 

-1 cos 

Applying the cosine 

LAD = 

rule to triangle AD D gives 
o 
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Note LA D is given by equation (3.3) 
o 0 

LAD is given by equation (3.11) 
0 

LAA is given by equation (3.9) 
0 

LDD is given by equation (3.12) 
0 

Equation (3.13) can be shown to hold true for all possible 

practical combinations of apR and SpL. 

Having obtained general equations for LBC (3.8) and 

LAD (3.13) we now turn our attention to the somewhat more 

complex problem of LAB and LCD. Figure 3.14 comprises 

a geometrical figure which arises from the combination of 

the datum state of fig.3.10 and the final (general) state 

of fig.3.11. We assume that~ for the present, shaft A 

(the left hand side eccentric) remains at its datum 

position. From figure 3.14 j we see that (noting that 9A 

as shown in the figure is negative) 

Application of the 

yields 

and /"" 
-1 = cos 

Ie AI 
2 

cosine rule in triangle B Y Y then 
o 0 

2 ·L2 2 
LB Y + Y Y - e S 

o 0 
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Then from triangle BB Y 
o 

2 2 
LBB + LB Y _ e 2 

and ~ = -1 cos o 0 S 

I SAl 
2 ) 

Finally~ from triangle A B B we obtain similarly 
o 0 

• 
• · . . . . . (3.14) 

(where LA B 1S given by (3.4) and 6 by (3.10» 
o 0 

NOTE That if 9A is positive rather than negative (i.e. 

the As-U-Roll ring is rotated clockwise) certain altera-

tions are required in the above sequence of equations 

as follows:-

Ly y is calculated as before 
o 

LB y = I L~ Y + e ~ + 2 Ly yeS s in ( e A - J1 s ) 
o 0 0 2 

is calculated using this value of LB y 
o 

is calculated using this value of LBB 
o 
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It can be demonstrated by manipulation of figure 

3.14, that for 9A positive (rotating clockwise from the 

datum rather than anticlockwise as shown)i LA B is given 
o 

by one of two equations depending upon whether B lies 

above or below the line B Y. Thus 
o 

LA B =fi! B 
2 

2LA B LBB sin (0-_ ~;P' - SA ) •.. ( 3.15 ) + L BB -
0 0 0 0 0 0 0 2 

for reA> zero) and (11 - e ) ~ yt- 7C' SA ) - + S S 2 2 

or 
- 2 L B L s in ( - () - 61'- e A -f. • • ( 3 . 16 ) 

A BB -
o 0 0 2 

The equations for LAB and LCD can now be derived by 

considering these results in conjunction with the side 

eccentric motion evaluated previously. The geometrical 

figure arising from a combination of figures 3.12 and 3.14 

is shown as figure 3.15, whence 

I 
-1 = cos 

2 2 
+ LA B - LBB 

o 0 

where LA B is given by (3.4) 
0 0 

LA B J.S given by (3.14, 3.15 or 3.16 as appropriate) 

0 

LBB is given in the derivation of LA B above 

0 0 

and 

(see conditions of validity below) 

64 



-'. , 
\ 

\ , 
\ 

A 

JiQ.r i-..z .~_ 

Fig.3·15 Overall Effect Pertaining to Derivation of LAB 

• 

65 

I 
t Bore 

'Sl 
~ .-



where LAA is given by (3.9) 
o 

is given by (3.10) 

Equation (3.17) is true only if point B lies below 

line A B or its projection beyond B • 
000 

If the values of 

as and SA are such that B rises above this line, then 

(see conditions of validity below) 

Figure 3.15 can be drawn in many ways depending upon 

the relative magnitudes of 9pL ' 9s and eA. In fact over 

15 permutations which could conceivably yield different 

solutions for L were identified and analysed. All 
AB 

these permutations reduced to one of the two equations 

(3.17) or (3.18) according to the following conditions:-

For 

For eA~ zero (e.g. figs. 3.14 & 3.15) use (3.17) 

For SA> zero (clockwise) and (¢s - es)~Y-;+ eA ) 
2 

( 
7r _ & +0-'--/_ BA ) ~ zero (3.17) If 
2 

use 
2 

otherwise use (3.18) 

(clockwise) (¢S- e
S

)< y- "IT" eA ) 6 A > zero and 
2 + 

2 

If J"lr S &A ) ~ zero (3.17) (2""- _cr/_ use 
2 

otherwise use (3.18) 

These apparently cumbersome conditions are triv-

ially implemented in the computer model of course. It 

should also be pointed out that certain safeguards must 

be built into the model. For example, if the mean 
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rotation of the As-V-Rolls (SA) was zero, then the quantity 

Ly y in the derivation of (3.14) would be zero (see 
o 

figure 3.14). This would give an indeterminate result in 

the following equation for;". Therefore the condition 

9A=0 must be trapped, and;U set explicitly to a default 

1l 
value., which turns out to be 2 - ~S. Other similar 

situations are also trapped in this way. 

The derivation of LCD follows identical lines to 

that of LAB-

Then 

and 

or 

given by (3.5) due to the symmetry of the 

datum position. 

o is given by (3.10) 

J= 

LCD 

LCD 

given by (3.12) 

given by the appropriate equation for 

LBBo since LCD and LAB are identically 

affected by As-V-Roll and Screwdown motion 

propriate, for the same reason. 

-1 cos 

"/L~D 2 epR 
+ LD C - 2LDD • LD Csin(~-IJ -S+f) 

o p 
0 0 0 

• 
• • • • . (3.19) 

IL~D 2 . 8pR - b -J ) = + LD C - 2LDD ·LD CSlon (-2- - ¢p 
0 0 0 0 

. .. (30:20) 
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as appropriate - using the same conditions as were used 

for deciding between (3.17) and (3.18). 

The cluster geometry is fixed by the parameters 

shown in figure 3.2, and the only outstanding parameter 

is now the angle ~ • This is also indicated in figure 

3.15, whence from triangle AA B 
o 

where 

LAA 
0 

LAB 

LA B 
0 

-1 
€ = cos 

is given 

is given 

is given 

by 

by 

by 

2 2 
+ LAB - LA B 

o 

(3.9) 

(3.17) or (3.18) 

( 3 • 14 ) , (3.15 ) or 

as appropriate. 

(3.16) as 
appropriate 

Thus 
1l BpL 
2 - ¢p + ~ - € ••••••• 0 ••••••••••••• (3.21) 

The geometry-fixing parameters illustrated in 

figure 3.2 have now been completely specified for any 

combination of eccentric actuator settings as follows:-

LBC is given by (3.8) 

LAD J.s given by (3.13) 

LAB is given by (3.17) or (3.18) as appropriate 

LCD J.s given by (3.19) or (3.20) as appropriate 

~ is given by (3.21). 
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3.3 Modelling of Roll Force Distribution In the Cluster 

Considering still the upper half of the cluster, we 

shall now use the five cluster-fixing parameters derived 

in the previous section, together with knowledge of the 

roll diameter 9 to specify the various angles shown in 

figure 3.16. The distribution of rolling load will then 

be evaluated by resolution of forces. Note that roll-

flattening effects are not included at this stage, as 

their influence upon the cluster angles is negligible. 

It should be noted at the outset that if the left and 

right hand side eccentrics are set differently, then 

LAB and LCD in figures 3.2 and 3.16 will be of different 

lengths, and LEC and LAD will not be parallel. The angles 

in the left-hand and right-hand halves of the cluster 

will therefore differ and must be calculated separately. 

The angles will be distinguished by adding a subscript "R" 

to those in the right-hand half. The angles of importance 

are 9
1 

to 98 in figure 3.16, the other angles being 

intermediate values in the flow of calculation. 

Since LBC remains horizontal at all times, the 

cosine rule in triangle BCJ yields 96 and e6R directly as 

1 -1 = 2 cos 1 - .• ·(3.22) 

(where DB and D21 are the diameters of rolls (A-D) and J 

respectively 
1[" 

now e9 = 2" - 1[ 

e -1 
and 10 = cos 
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and since triangle ABI is isosceles, 

so that 9 is 
7 

e 
7 = 

and e = 5 

e = 11 

given by 

e
9 - e 11 

e _ e 
10 7 

Further~ it is evident that 

And from triangle IBJ~ 

. . . 

. . 

(where D2D is the diameter of rolls I and K) 

and 
. -1 

= Sln [ 
Now from triangle IJO 

e = 14 
-1 cos 

(where Dl is the diameter of rolls 0 and p) 

Therefore we can now obtain 8
J 

as 

. . (J.2J) 

. . . .(J024) 

• • • • • • (J • 25 ) 

Also from triangle 

and 

e 
15 

-1 = cos 

., • . • . • (J • 26 ) 
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Insufficient information is so far available to 

allow calculation of 9
2

, because J is not necessarily 

vertically above S, therefore the triangle OJS does not 

contain the simple angles 9
J 

and 9
2

• We therefore firstly 

calculate the angles in the right-hand half of the cluster 

which correspond to the left-half angles calculated so far:-

InitiallY1 calculate the angle f which appears in 

figure J.2 and J.16 1 and corresponds with the left-half 

angle ~ (it will be easier to refer to figure J.2 for 

this purpose). 

Applying the cosine rule in triangle ABC, we can 

find 

(where the parameters on the right of the equation are 

evaluated in section J.2). 

The sine rule then gives 

A 
-1 [ LA B sin ~ BCA = sin 

LA C 

and then f .1\ A 
= T\ -BCA - ACD 

Starting from the equation following (J022) and re-

placing ~ by if ' 
e 5R'j e l:2R' e IJR1 

we now claculate e 9Ri elORi e llR' e 7R' 

e e e de· th 14R9 JRi 15R j an 4R uS1ng e same 

equations as before. 

Now referring again to figure J.16 1 from the isosceles 
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and similarly, from tri~ngle OPS~ 

(where D 
w 

= diameter of roll S) 

so that we can write 

9 -1 [ LOp 
2 :: 2sin ~D-l--+~D~w-- J - 62R . . . . . (J. 27 ) 

Also~ the vertical separation of J and S can be calculated 

twice over (using the left-side and right-side angles) 

and equated~ giving 

e 
2R 

:: cos -1 

Equations (J.27) and (J.28) are then solved 

simul taneously to obtain e 2 and e 2R as 

S1nx - ~S1n - y 

.(J.28) 

-1 2tan 

. I I • • 2 x 2 
2 

2 
. 2 x 

Y - S1n '2 
,. • • • II .( J • 29) 

where x = 2sin- l [~L_OP~J 
Dl + DW 

y = 
(D2~ + Dl)(coseJ - cos BJR) 

Dl + Dw 

and from (J.28) 

6
2R 

= cos- l (cos&2 + y) . . , . . . 

Equations (J.22) to (J.26) and (J.29) and (J.JO) 

have therefore specified the angles which most of the 

component of rolling load (shown in fig.J.16) make with 

the vertical. The exceptions are 68 and e8R which cannot 
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yet be found, and 91 which is zero at all times since 

the rolling load is assumed for the present to act ver-

tically through the workroll. 

The distribution of rolling load throughout the 

cluster can now be specified. The force components 

Fl to F8 and Fl to F8R in figure 3.16 represent fractions 

of the total rolling load transferred between the various 

rolls as indicated. Let PT represent the total rolling 

load transferred between the strip and the upper workroll, 

thus 

. . . . • 

Vertical and horizontal resolution of forces at 

roll S(fig.3.16) assuming equilibrium to exist~ gives 

and 

which, when solved simultaneously~ and incorporating 

F 2R ::c 
sin8

2 . . . . . 

and = • • • • • (3.33) 

Regarding the quantities F3 and F4 as balancing F2 

at rollO, we can similarly solve for F3 and F4 by 

resolving in the direction of F2 and perpendicular to F
2

, 

when we obtain 

F3 = 
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and F3 sin(e3 +6 2 ) 

sin (e 4 - & 2) • • • • . .( 3 • 35 ) 

F3R and F4R are found using F2R~ 9 2R , 9
3R 

and 94R 

in the same equations. 

In a similar manner 9 considering equilibrium at 

roll I~ we obtain 

and 

F
4
sin(e

5 
c 9

4
) 

sinCe 5 + e 7) 

• 

. . . .(3.36) 

.(3.37) 

(The same equations will yield F7R and F5R as above). 

Now consider roll J. It is known that 9
6 

= 9
6R 

from previous discussion~ therefore sufficient information 

is available to obtain F6 and F6R by horizontal and 

vertical resolution as: 

and 

F
3
sin(8

6 
- e 3)+ F

3R
sin(e 6 + f)3R) 

sin29
6 

. - , (3.38) 

F6R = 
F 3 sin93 - F3Rsin63R 

sin e6 
..... (3.39) 

The remaining unknown angles 8 8 and e
8R 

can now 

be found. At roll B, resolving perpendicular to F8 

gives 

leading to 

-1 = tan .(3.40) 
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and solution in the direction of Fa gives 

Fa = F6 cos(S6 - 9 a ) + F
7

cos(e
7 

+ 8
a

) . . . .. (3.41) 

eaR ~nd FaR are of course obtainable by using 

F 6R' F
7R 

.. f1 6R and e 7R in the above equations. The reader 

may, if he so wishes, verify that the overall effect of 

reactions from the mill housing balances the rolling load 

i.eo 

The various equations in this section therefore 

completely specify the geometry and overall load dis-

tribution pattern ln the upper half of the mill cluster 

as shown in figure 3.16. A set of results is given below 

for screwdown rack at a operator's display unitsg left 

and right hand side eccentrics at 5 and 7 units respectively 

and mean As-V-Roll rack position at +1 unit. 

81 = 0 

82 = 37.5
0 

6
3 

= 22.4
0 

64 = 59.5 
o 

9
5 

= 77.a
o 

86 = 40.9
0 

87 = 3.a
o 

8a = 23.9
0 

82R = 38.3
0 

e
3R 

= 21.7
0 

64R = 59.2
0 

65R = 77.7
0 

S6R = 40.9° 

e 3.4 0 

7R = 

e = 24.6° 
8R 

Fl = PT 

F2 = 0.639 P
T 

F3 = 0.241FT 

F4 = 0.55 8P
T 

F 5 = Oo5 04P
T 

F6 = 0.282PT 

F7 = 0.177 PT 

F8 = 0.426PT 

F2R = 0.628PT 

F3R = 0.228PT 

F 4R = 0.551 PT 

F 5R = 0.495 P
T 

F6R = Oo294PT 

F7R = 0.176PT 

F8R = Oo43 8P
T 

Similar results are easily obtained for the lower half 

of the mill cluster by substituing the push-up rack 

position for the screwdown rack position, setting BA=zero 

(no As-V-Rolls in lower half) and applying the analysis 

from equation (3.5)ff. 
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Although this section has defined the overall 

pattern of load distribution, it is of course necessary 

to examine the way in which the load varies across the 

mill for shape control purpose. This is considered in 

a later section. 

3.4 Rolling Load and Roll Flattening Calculations 

In order to quantify the forces discussed in the 

previous section it is now necessary to obtain knowledge 

of the rolling load (PT ). On a four-high mill, this can 

be had from load cells placed between the mill screws and 

backup roll chocks. In the Sendzimir mill it would be 

difficult (not to mention extremely costly) to obtain a 

direct measurement of rolling load, and only an indirect 

indication is available. This takes the form of indication 

of the differential pressure in the hydraulic screwdown 

cylinderso From knowledge of the cylinder dimensions, 

this can be converted to rack-pull in some convenient 

units (e.g. MN). The mill manufacturers then provide a 

rule-of-thumb conversion from rack-pull to rolling load. 

Accurate measurement of rolling load is therefore un-

available. 

The measurement of rolling load is not however 

necessary for operation of the on-line control scheme, 

but only for use in the static mill model (which is run 

off-line). The value of rolling load used in the static 

model is calculated using a rolling load model, and can 

be represented in functional form as 

~~ 
I I 



PT = f ( w , h . ,h ,T., T ,k , /J.-, E , ~ , R) 
]. 0 ]. 0 j 

(where the various symbols are defined at the beginning 

of the chapter). 

The drawback is that since no accurate measure of 

m~ll rolling load is available,it is not easy to assess 

the accuracy of the value of P
T 

thus calculated. For 

this reason, steps have been taken to allow the use of a 

rolling load model which is well tested, but which has 

often been rejected in the past, for models requiring 

rapid execution, on the grounds of computational 

difficulties. 

The "yardstick" as it were, by which the accuracy 

of cold rolling models has traditionally been judged, 

is the work of Orowan (22), although this work itself is 

not suitable for efficient computer mechanization. The 

work of Orowan set this standard of accuracy by removing 

arbitrary simplifications imposed by previous models. 

Due to the need for more rapidly evaluated models, 

various workers have simplified the theory by judi~ious 

re-incorporation of some of the simplifying factors, made 

possible by the understanding of Orowan's work. Typical 

examples are given in (23) to (27), but the most widely 

accepted of these from an accuracy point of view is 

probably the theory of Bland and Ford (23). Unfortunately 

Bland and Ford's model involves iterative solution of 

implicit simultaneous equations; which renders it, at 

first sight, unsuitable for use in models (such as the 

present static model - see later sections) requiring 
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several rolling load evaluations. To overcome this 

difficulty~ Bryant and Osborn (26) have proposed an 

explicit solution by introducing further simplifications 

and Carlton, Edwards and Thomas (28) have subsequently 

extended this work. Despite the simplificationsj the 

model of Bryant and Osborn compares acceptably with the 

more accurate models under certain conditions j and has 

been used by other workers in the area under discussion(14). 

The author has removed some of the objections to 

the use of Bland and Fords' model (in a mill off-line 

static model) by the use of a fast, but little known~ 

algorithm for solution of the equations. (Note that for 

applications requiring on-line calculation of rolling 

load~ such as mill scheduling and automatic set up 

systems~ this method would probably still not be fast 

enough under stringent timing constraints). The algorithm 

involves the use of a modification to the secant method~ 

which can have a greatly beneficial effect upon the 

solution time under certain conditions - in the case of 

this static model, convergence to within 0.5% is achieved 

after typically only two iterations through the process 

outlined below. 

Bland and Ford's model assumes that the arc of 

contact remains circular during rolling, as depicted in 

figure 3.17. The deformed roll radius is given by 

Hitchcock (29) as 

cP' 
--) S 

o 
• • • • • I' • 

79 



./ 

/' 
./ 

/' 

h. 
4. 

a) Loaded Roll Gap 

Integral Evaluation 
Poi nts 

Angular 
Coordinate 

¢. 
( 

I 

P (N / m) 

-... -- -_ ..... ---
h (0) 

-

¢ ¢n 
(general) 

b) N or m a I Roll Pre s sur e C u rv e 

Fig.3·17 

80 

Normal Roll 
Pr essu e 



where c ~ 

Figure 3.17 shows the loaded roll gap as envisaged 

by Bland and Ford, where ~ is a general angle subtended 

at the roll centre by the exit plane and some plane of 

interest. A function H(~) is defined 

H ~ 2jRI 
h • 

o 

-1 fR;
tan if ho · ~ ' .. _ .• (3.43) 

The value (H ) of H at the neutral angle (where 
n 

slip of strip against rolls is zero) is given explicity 

from a different formula~ after which the position of the 

neutral angle is found from 

tan 
H 

n 
2 

Figure 3.17 also depicts the pressure distribution 

throughout the roll gap and according to Bland and Ford 

the normal roll pressure to the exit side of the neutral 

plane is given by 

s (.0) = 
o 

and to the entry side, by 

s. (.0) = 
1 h. 

1 

• 

• (1 -

TV 
~) ,p.H(¢) 
k • E1 

T' 
i 

k. 
1 

o 
- ... (3.44a) 

where k(¢),k. and k are known from curves of yield 
~ 0 

stress against reduction, h(.0) is easily found as 

h = h + 2R'(l-cos¢) and T! and T' are the input and exit 
o 1 0 

tension stresses corresponding to the known tension values 
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The values of H(¢) are found from equation 

The specific rolling load is then found as a 

function of the area under the curve of figure 3.17(b). 

Namely 

P' = R' s. (¢). d~ 
l. 

Equation (3.45) is solved by the author using a 

piecewise Simpson's rule integration procedure~ taking 

one intermediate point midway between 0 and ¢n~ and 

three intermediate points in the interval ¢ to 0 where 

greater accuracy is desirable. These points are indicated 

in fig. 3.17(b), and equations (3.4~(a) and (b) are used 

as appropriate to calculate the corresponding values of 

s or s .• o ]. 

Clearly, the magnitude of the value of pi given by 

(3.45), must be consistent with the value of P' used in 

(3.42) and an iterative procedure is therefore necessary. 

The system is solved by a fast modification of the secant 

method which is used to solve a rearranged version of 

equation 3.42, thus 

f (R') = R (I - cP' ) - R' = 0 
00 

(3.46) 

The secant method (see for example (30)~(31~ 

requires two starting values of the function. These must 

lie one at either side of the solution and are found by 

taking R' = 1.25R as an initial guess and using a forcing 

procedure to obtain via equations (3.45) and (3.46) two 
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values, f(R'~' being positive and f(RI)2 being negative. 

The next estimate for R' is then found by using the 

secant method~ i.e. 

R' = R' n n-l 

feR') (Rv _Rv ) 
n-l n-l n-2 ..... (3047) 

equations (3.45) and (3.46) then give P' & f(R') 
n n 

If lR'n - R'n_ll< £ .R'n_2 (where £ = convergence limit) 

then P' is taken as the solution. 
n 

Otherwise g the 

parameters are updated according to the modification to 

the secant method as follows; 

If feR') and f(R') 1 are of opposite sign 
n n-

then 

otherwise 

R' n-2(new) = R' 
n-l 

and R' remains unchanged. 
n-2 

In either case, R' I( ) = R'n n- new 

f(R ') = f(R') 
n-I(new) n 

and the procedure is repeated from equation (3.47). 
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When convergence is achieved, the final values are taken 

to be 

R' = R' 
n 

P v = P' 
n 

so that total rolling load 1S given by 

PT = P'.w (N) . . . . ,(3.48) 

The magnitudes of the various rolling load 

components given by equations (3.31) to (3.41) may now 

be calculated by sUbstitution of (3.48) into (3.31) to 

(3.41). 

Now,for purposes of calculating the roll bending in 

the mill cluster due to movements of the control 

actuators, the rolls are each treated as a beam resting on 

an elastic foundation formed by the surrounding rolls. 

Although this analysis is covered in a later section, it 

1S convenient to introduce it here. 

The theory used is Hetenyxs theory of beams on 

elastic foundations, which is given in reference (32). 

Since the roll bending model cannot be understood with

out knowledge of this theory, it has been considered 

prudent to include the basic derivations and results 

in Appendix 1 of this thesis. The calculation of de-

flection of a beam on an elastic foundation cannot proceed 

without a knowledge of the "foundation modulus" (see 

section AI.I). The magnitude of the foundation modulus 

is dependent upon rolling load as will be seen from its 

derivation given in Appendix 2. Therefore~ having a 

knowledge of the distributed loading acting upon any 

given pair of rolls (from the load components calculated 
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above, acting on a width equal to the strip width) the 

methods of ~pendix 2 can now be used to give the roll 

flattening between any pair of touching rolls, and the 

appropriate foundation modulus also. 

3.5 Philos9PQY of Roll Stack Deflection Model 

The foregoing sections have fixed, in terms of 

the actuator settings, the basic roll stack geometry 

(section 3.2), the distribution of rolling load throughout 

the cluster (section 3.3) and the magnitude of the mean 

loading at each roll interface (section 3.4). In addition, 

the methods of Appendix 2 have given values of roll flat

tening and the foundation modulus (required by Hetenyi's 

theory of beams on elastic foundations) ,for each inter-

face. The following sections give details of how this 

information is used to predict the tranverse workroll 

profile (and hence strip shape) due to any combination 

of the mill actuator settings. 

In an attempt to achieve relatively simple cal

culations and fast computation times, certain simplifying 

assumptions have been made, and these are stated as they 

occur, together with justifications. At this stage~ it 

is helpful to consider an overall flowchart of the roll 

deflection model, which is given in figure J.18. The 

results of the actuator modelling will be used in section 

3.6 to give the magnitude and distribution of the loading 

acting upon roll J (fig.J.16) due to movement of the 

eight As-V-Roll actuators in any specified manner. A 

major assumption is then made, in that the effects of 
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control actuator movements for purposes of shape cor

rection, whilst causing differential loadings across the 

mill of sufficient magnitude to cause the desired roll 

bending~ do not make a significant change to the total 

rolling load. This assumption is numerically sub

stantiated later, and has two major advantages so far as 

complexity and speed of calculation in the model are 

concerned. 

Firstly, it removes the need to iterate several 

times around each roll interface due to the local feed

back mechanism between roll force and roll bending and 

flattening. Secondly~ it becomes possible to assume that 

any feasible path between the As-V-Rolls and the roll gap 

can be used for calculation without reference to the other 

rolls in the cluster, due to the fact that the iterations 

around the entire roll stack (which would otherwise have 

been necessary) are obviated. Thus, the only path con-

sidered in this analysis is from the As-V-Rolls to roll 

B (fig. 3.16), then to roll J and then 0 and finally to 

the workroll~ S. The deviations of the lines of action 

of the various forces from the vertical (the angles e 

ln fig.3.16) are allowed for in the analysis. 

Having calculated the loading on roll B, the theory 

of beams on elastic foundations is used to obtain the 

resulting deflection profile of roll J~ which is modified 

by any camber existing on roll J (section 3.7 and 

Appendix 4). The profile is then converted into a load

ing pattern acting upon the first intermediate roll 0 

(section 3.8) modified by any camber on roll O~ and by 
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the amount of first intermediate roll tapers slid into 

the mill. This process is continued until a workroll 

deflection is obtained (when strip width is taken into 

account}(section 3.9). Finally~ section 3.10 combines 

known input strip dimensions with the calculated work-

roll deflection profile to yield strip shape. 

3.6 Calculation of the Loading Pattern on the Vpper 
Central Second Intermediate Roll 

We now consider a set of As-V-Roll actuator move-

ments and define the manner in which it affects the roll J 

in figure 3016. The starting point of this analysis is 

the distance by which displacement of the As-V-Roll 

rack at any given backing saddle moves the backing shaft 

radially relative to the central second intermediate roll 

(abbreviated to 2IR in future). The sense of this dis-

placement is indicated in figure 3.19~ and more detail is 

shown in figure 3.20. Note the assumption in figure 3.20 

that for this purpose point V~ is effectively fixed on 

the circumference of roll B. This is justified on the 

groums that the As-V-Roll motion only is being considered j 

and the maximum value of LB B due to full scale As-V-Roll 
1 

travel has been calculated to be of the order of 0.7mm, 

which is much more than will ever occur in practice. This 

is then greatly attenuated at point V due both to the fact 

that ~ is typically almost twice R2I , and the fact that 

~ 
the angle VBB

I 
is very obtuse in any case. 

The length LBC is given by equation (3.8)~ and it 

can be seen that [LBe ] -1 8C = cos 
2(RB+R21 ) 
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Now, in figure 3.20, only As-V-Roll motion is involved in 

moving point Bl to point B. 

parallelogram so that 

/'. 
and Y YV 

o 

= 

where Bl = centre of shaft B at the saddle in question~ 

consdering screwdown motion only 

and B = BI plus As-V-Roll motion 

The cosine rule in triangle BIVB then gives 

Rearrangement of figure 3.20 will show that equation 

(3.49) is also correct for values of SA and BS such that 

B falls above the line BlV. However, for the case SA 

rotating clockwise~ thus taking BY above BlYC~ it is 

necessary to use 

Finally, the motion of the shaft B along BV (i.e. towards 

the centre of the 2I~is given,to a very good approximation j 

by 

- ~ . . 

where a
BV 

will be called the "attempted motion ll towards 

the 2IR, and is considered positive for motion of B towards 
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the centre of roll J, LB V being given by (3.49) or (3.50) 
1 

as appropriate. 

This value a BV is calculated for the As-U-Roll 

motion at each of the eight As-U-Roll positions~ thus 

giving a set of 8 such values. Note that the set need 

only contain one value per As-U-Roll rack j as shaf~B and 

C always move by an identical amount. These dis-

placements a BV are~however~ restricted by the rolling 

load pushing up through the roll stack~ and hence a load-

ing profile results along the roll J. 

Figure 3.21 illustrates the general situation at a 

backing bearing on shafts B or C where the As-U-Roll racks 

have been raised at each side of the bearing~ but the 

front rack has been raised more than the rear. Together 

with figure 3.22 it shows how the As-U-Roll racks are 

used to place a bending profile onto the 2IRs. Note that 

fig. 3.22 has been chosen to illustrate seven out of the 

eight possible loading configurations which can exist at 

a backing bearing (the eighth' being the case where racks 

Nand N+l are both moved upwards equally). The 2IR is 

assumed to be able to respond to the negative loadings 

(e.g. c and d in fig. 3.22) because of the upward-acting 

effect of the rolling 10ad.I.e. since the motion of the 

As-U-Roll racks has caused bearings c and d to move away 

from the 2IR, the rolling load pushing upwards from 

below the 2IR will cause it to follow bearings c and d 

as if they had the capability of pulling it upwards. 

Returning now to fig. 3.21, we calculate the loading 

required in the following manner. 
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The distance Lp between each edge of the backing 

bearing and the centre-line of the adjacent saddle is 

assumed to be equal at the front and rear of the bearing 1 

and also to be independent of As-U-Roll motion (these 

assumptions are~ for all practical purposes~ entirely 

valid; bearing in mind the physical dimensions of the 

plant - a more rigorous analysis has been carried out1 

but was found to be completely unnecessary). Thus~ 

mind 

both 

and 

L =
P 

...... (3.52) 

Also, it is easily shown from fig.3.21 (bearing in 

that the quantities a BV and a as shown are 
BVN+l N 

positive) that 

L 

Yf = a BV - --E. (aBV - a ) .. (3.53) 
N N FB N BVN+l 

Yr = a BV -
N N 

L +LB 
P ( ) P a BV - a BV 

B N N+l N::l,o·JB 

where J
B 

= number of backing bearings. 

It will be seen from fig. 3.22 (ii) that there are 

eight possible loading conditions for any given backing 

bearing (labelled "a" to "h" in the figure). Re-

drawing of fig. 3.21 for each of these conditions shows 

that the pair of equations (3.53) need be re-written in 

only three forms to cover all eight cases~ thus~ 
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Yf = a
BV N N 

Yr = a
BV N N 

Yf = a BV + 
N N 

Yr = a BV + 
N N 

L J?·1 a PB BV
N - a BV N+lt 

L + LB p 

'1 a BV - a BV I P
B N N+l 

~'Ia -PB BV
N 

L 
P 

. . (3.54) 

N=l~··JB 

cases "all ,"c" 
and IIhll 

N=l,··JB 
cases "d","e" 

and Itg" 

For cases b and f~ two triangular loadings result as 

shown in fig. 3.23 (for case ~. Here~ 

L
f 

Yf = L
f 

L 
a

BV + N p N 
.(3 • .56) • . . 

[1 L 

L] Yr - a E N=19. ooJB - BVN+l 
P

B 
L - -N P lib" "f" cases and 

where Lf{see fig. 3.23) is given by 

.L 
p 

.•... (3.57) 

(from similar-triangles' geometry) 

The different cases are easily distinguished in the 

computer model by consideration of the relative signs and 

magnitudes of the appropriate pair of aBV values. Note 
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~SaddleN+1 
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X 
Fig.3·23 Loading due to Case "fll (in fig. 3-22) 
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I \ I 
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Upper Cen t ral 2IR 

L 

Fig.3·24 Backing Bearing Positions 

Upper Central 2IR 

Bearing I 8 

paddle J11 

I 
. 

11 
jl , 

I 
1 . 

J 

Fig.3·2S Loading due to As-U-Roll Action at Bearing N 
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however, that apparent occurrences of cases tlb" and 11ft! 

identified by this method may be erroneous. For example., 

consider a
BV 

N 
negative and a BV positive. This leads 

N+l 
to the assumption of case nf" (eog. fig. J02J). However, 

if is only very slightly positive, the '" zero 

crossing" of the loading may occur in the region labelled 

X in the figure. In this case, the loading is not of the 

form of cas.e Uf" , but rather case "e" (fig.J.22). In a 

similar way, apparent occurrences of case "b" may in 

reality be "a" or IIC" , and case "f" may also really be 

case "g". These occurrences are all trapped in the 

model by simple geometric tests. However, the region L 
p 

is small (typically some 29mm) compared with P
B 

(about 

227mm on the mills under consideration) so that this 

trapping and changing case is rarely called into action. 

Knowing these lIattempted motions t' towards (or 

away from) the second intermediate rolls at each end of 

every backing bearing, we must now evaluate the beams-

on-elastic-foundations constant ("foundation modulus") kB2 

so that the loading applied to the second intermediate 

roll can be found from an equation of the form 

q = k B2 ·y (c.f. equation (Al~l) -Appendix 1) 

An estimate of rolling load PT has already been 

obtained (equation (J.48)1 and reference to figure J.16 

shows that the component of this passing between roll J 

and the backing shaft assembly B is designated F6· 

Furthermore, F6 is given by equation (J.J8) so that the 

overall load transmitted via the path B-J is therefore 
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known (typically O.28PT - see end of section 3.3) 

The foundation modulus can therefore be found by the 

methods of Appendix 2 as 

where 

Now consider again fig. 3.21, and the relevant pair 

of equations (3.53). The magnitude of the uniformly 

distributed loads and triangular distributed load shown 

in fig. 3.21 (ii) and (iii) are now given as 

= 

and therefore qN = kB2 Yr (Nm- l ) 
N . . . . . (3.59) 

tN = k B2 (Yf - Yr 
) (Nm- l ) 

N N N::1,···JB 

Note however, that the TDL glven by tN is reversed in 

sense compared with fig. A.l.7(Appendix 1) in that the 

maximum magnitude of the loading occurs at the left rather 

than at the right. A flag is set in the computer model to 

indicate this fact~ which is taken into account in the 

2IR deflection model (next section). 
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Equations (3.59) may be generalized ln the same 

way as before i thus:-

= kB2 Yr 
N 

N=l~··JB 

cases "a"~"d"~"ell 
and IIh" 

(wi th flags set for IIreversedtl t ln cases II a tl and II e" ) 
N 

(note tN=O in cases ltd" and tlhll) 

qN = kB2 Yf 
(Nm- l ) . (3.61) . . 

N 

tN = kB2 (Y - Yf 
) (Nm- l ) N=l,··JB rN N 

" c 11 and II g PI cases 

Cases lib" and IIfll in fig. 3.22 each resolve into 

two TDL's as shown in fig. 3.23~ which will be 

called t
f 

N 

qN = 0 

t
f = kB2 

N 

t = kB2 rN 

and t where~ in each case~ 
rN 

Yf 
(Nm- l ) . . 

N 

Yr 
(Nm- l ) N=l~··JB 

. 

N tlb tl cases 

. . . (3.62) 

and ttfll 

(with flags set for tlreversedlt tN in the case of 

Note that in equations (3.53) to (3.62)j the sign 

conventions are automatically maintained, so that we 

finally obtain downward-acting loadings positive. Also, 

are set to zero in (3.60) and (3.61). 
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The final task of this section 1S to specify the 

points of application of the various loadings given by 

equations (3.60) to (3.62). These are trivially found 

from the mill geometry shown in figure 3.24 j whence 

= + 

where J B = number of backing bearings 

(= 7 for the mills in question) 

The loading due to each bearing is now fully 

specified as shown in figure 3.25~ and may take any of the 

forms of figure 3.22 (ii). To sum up, referring to 

fig. 3.25, 

a) X E 
N 

is glven by (3.63) 

b) LB is known, or is given by Lf in (3.57) for the 

"front" portion of loadings of the form tlb" or I1ftl j 

or is given by (LB-L
f

) for the ureartl portion 

of such loadings. 

are given by (3.60), (3.61) or (3.62) as 
tN appropriate 

d) Flags are set to indicate whenever the non-zero 

end of a TDL (t
N

) is at the left ("front tl ) of the 

loading. 
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3.7 Upper Central Second Intermediate Roll Deflection 
Calculation 

The previous section has specified loadings acting 

on roll J in figure 3.16 along the path denoted F
6

• We 

now wish to evaluate the deflection of roll J due to these 

loadings~ and eventually to apply this to roll 0 along the 

path denoted by F
3

• We must therefore apply some form of 

compensation to account for the fact that F6 and F3 are 

not colinear. It will be recalled from earlier sections 

in this chapter that the angles 9
6 

and G
6R

are always equal. 

Also~ from the previous section~ it will be appreciated 

that loadings along the path of F6 due to As-V-Roll motion 

(NOT to be confused with the general rolling load component 

F6 itself) for shape control, are exactly duplicated by 

an identical set of loadings acting along the path of 

Thus for a general loading of~ say~ qN(Nm-
l

) given 

by one of the equations (3.60) to (3.62) for a certain 

setting of the As-V-Roll racks~ there will be a total 

downward acting loading of 2 qNcose6 (Nm-
l

) on roll J 

(in addition to the rolling load before the As-V-Rolls 

were set). The component of this which acts in the 

direction of F3 is then given by 2qNcos86cOS 93 . 

Therefore a transformation of this type is made upon all 

the loadings given by (3.60) to (3.62): 

qN = qN • T2 (Nm- l ) 
effective 

tN = t N·T2 
(Nm- l ) 

effective 

t = t
f 

.T2 
(Nm- l ) (3.64) 

~effective N 

t = t .T~ (Nm- l ) 
rN rN 

effective 
N=l~··JB 

101 



where T2 = 2 

and e
6 

9
3 

N.B. 

cos B6 cosS
3 

is given by 

is given by 

equation (3.22) 

equation (3.25 ) 

and t below must now be 
rN 

read as qN ' 
effective 

tN etc.-i.e. as the 
effective 

transformed values. 

The foundation modulus k21 for tpe beam formed by 

roll J resting upon the foundation formed by roll 0 is 

given by the methods of Appendix 2 as 

where fl and f2 are as given in equation (3.58)ff~ 

F3 is given by equation ~3.34) 

Other constants which will be required in the 

analysis are as follows 

4 
IT D2I 

64 
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The general functional abbreviations 

A~x 
-Ax 

(cos(Ax) sin (Ax) ) = e + 

B
Ax 

-Ax 
sin (Ax) = e 

CAX 
-~x (cos(Ax) sin (Ax) ) = e 

D
Ax 

-~x 
= e cos(Ax) will also be widely 

employed. To avoid too much complication~ the effects 

of roll camber have been omitted from this section
i 

but 

are described separately in Appendix 4. 

The 2IR is now considered to be divided into an 

even number (M2 ) of equal sections across the mill~ and 

the deflection of the roll will be calculated at a point 

corresponding to the centre of each section. The distances 

of these points from the LH end of the roll (i.e. the 

front of the mill) are therefore given by 

· .... (3.66) 

The components of loading (UDL and TDL) due to each 

backing bearing are now considered in turn i applying the 

theory of beams on elastic foundations for each, and 

evaluating the resulting deflection at all the M2 points 

(x
M

) along the 2IR for each. The total deflection profile 

of the 2IR is finally found by algebraically summing the 

deflections found for all the components of all the J B 

loadings at each of the M2 points. As an example, consider 

the loading due to the Nth backing bearing shown in fig.3.26. 

We will consider firstly the UDL, magnitude qN(Nm- l ) 

due to this bearing. Applying the procedure of Appendix l~ 

section AI.4, the sequence of computation is as follows. 
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,..,..,.. 

qf 
"'r--r--

"':--r--r" 

'" qr
H 

k ~ Al etc. 1 21 

{ i } 
r' / / / / / / / / / / ~-/ ~ 77 / / / // / / / 

LT 
Xe-

N 
Lg 

I 
I 
J 

I 

(iii) \" 7 >??7 7

t:,=,Cj,;;;'JDJDJJn 
Where (i) .. (ii) + (iii) 

7 > > ?? 7 > 7 /7;> ); 777 177 ? ? ) J ~? 77 
I 

I 

Fig.3·26 Resolution of fig.l2S into UOL + TOL 

I, I I I , , ~lJ' h ;:~), , , , 7 7 ? 7 , 7 ,~ t; 7 I 

L,.. 

7 7 , 17 7 /771 

Fig.3·27 Reversal of fig. 3·26 (ii i) 
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We firstly evaluate the moments and shears due to 

this UDL (acting on an infinitely long 2IR) at points 

corresponding to the ends of the actual 2IRo For this~ 

equations (AI.21),(AI.25)<j(AI.22) and (AI.26) are used. 

Thus! (but see also Appendix 4, where the effect of roll 

camber is considered). 

(Nm) 

~2 
qN 

· (BA B~2·(LT-XEN L » (Nm) = 4~2 2· (LT-xE ) 
2 N B 

QA = qN 
· (CA c 

L » (N) ~ 2· x E A2 0 (xE + 2 B N N 

QB = 
qN 

• (C A CA ) (N) ~ 2· (LT - x E ) - 2· (LT-xE -LB ) 2 
N N 

Equations AI.40 then give 
, 

0.5 (MA 
) (Nm) MA = +~ 

2 2 2 

" 0 0 5 (MA -~ ) (Nm) MA = 
2 2 2 

(N) 

= (N) 

The end-condi~ioning forces (ECFs), which need to 

be applied to cause the portion of the infinite beam 

under consideration to behave precisely as if it were 

the 2IR of length LT with free ends~ subjected to the UDL 

q as sholVll in fig.J.26(ii),are then found using 
N 

equations (AI.41) and (AI.42) as 
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F' - 4E12 [~ (I+D A L )+ ~2' M~ . (I-A). L )] (N) 
°2 

-
2 2 T 2 2 T 

M' = 
-2E

12 
[ Q~2' (I+C A L ) + 2 ~ . 1 

(I-D>. L )1 (Nm) 
°2 MA · 

A2 2 T 2 2 2 T 

F" 4E22 [Q~ (I-D>. L ) II 1 °2 
:: + ~2·MA f (l+AA L ) (N) 

2 2 T 2 2 T 

Mil 
-2E

22 [ II (l-CA L ) 
II 

°2 
= 

A2 
QA + 2 A MA · (I+D). L ) ] (Nm) 

2 2 T 2 2 2 T 

And then 

F OA 
F' F ., (N) = + ° °2 2 2 

FOB :; F' - F" (N) 
_ 2 °2 °2 

MOA 
M' M If = 

°2 + ° 
2 2 

(Nm) 

M' " MOB = - MO °2 2 2 
(Nm) 

The deflection of the 2IR at each of the M2 points 

along the roll is then given for F OA by equation (AI.7) 
2-

(but see also Appendix 4, where the effect of roll camber 

is considered). 

:; . A\ (m) for M=I, ••• ,M2 1\2 x M 

where k21 is given by (3.65) 

and the x
M 

are given py (3.66) 

Similarly the deflection due to FOB 

= 
" k ~ :21 
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" 1S given by 
...... 

, •• (3.67) 



Equation Al.ll gives the deflections due to the moments:-

For MOA ' 
2 

= 

and for MOB 'I 

2 

= 

(m) for M=l ~ • • • • '1M2 . , . ,(J.69) 

for M= 1, ••• ,M2 . . . ( J • 7 0 ) 

Note that the sign here is positive (rather than 

negative as might at first be expected) because of the 

sense in which MOB is taken to act (c.f. figs. Al.5 and 
2 

AI. 8) • 

The four components of deflection calculated above 

are then algebraically summed at each of the M2 points to 

give the 2IR deflection profile due to the ECFs for the 

UDL: -

= 

+ 
k 

21 
, . . •. (J.71) 

Next, the deflection profile due to the UDL itself must 

be found at each of the M2 points along the 2IR. Here., 

equations Al.19, Al.15 or Al.2J are used, depending upon 

whether the point x
M 

falls to the left of the loading, 
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or to the right of the loading respectively:-

Y2 qN [ 
D )l = 

2 k21 A 2 (xE -xM) - D A ( _ L ) X M N 2 x E x M+ B ) 
N ) 

for O~ x M< x E 
) 
) 

(m) ... (3.72) N ) 

or ) 
) 
) 

qN 
[2_D},2(XM- X

EN
l r D ) 

Y2 = 
2 k21 A2 (xE +LB-xM) ) 

x M N ) for 

) M=l'j • • •• M2 
for xE~ xM~(xE +LB ) ) 

N N ) 

~ 
or ) 

) 

qN 

[ D>-2 (XM-X
EN 

l D.A2 (XM-XEN-LB l] 

) 

Y2 = ) 
x M 2k21 

) 
) 
) 

for (x
E + LB)<x~LT ) 

N ) 
) 

The total 2IR deflection due to the UDL of fig 3.26 

(ii) is then found by summing the results of equations 

(3.71) and (3.72) at each of the M2 points:-

= [(Y2 due to eqn.J.71l + (Y2 due to equn.J.72~ (ml 
x M x M J 

. . . ., . 

To this result must now be added the effect of the 

TDL (fig.3.26 (iii». It will be recalled that Appendix 1 

considers results only for TDLs whose non-zero end is to 

the rightj and the TDL of fig.3.26 (iii) does not conform 
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to this pattern. A simple method of overcoming this 

problem is to use a mapping which conceptually tlreverses" 

the roll and TDL as shown in fig. 3.27 the mapping being 

= L -T - L B 

This is applied by the computer model in response 

to the flags set at equations (3.60) and (3.62). 

The procedure below is then applied using x~ 
N 

throughout (as shown), and when the total 2IR deflection 

profile due to the TDL has been found (equation 3.77) 

the mapping is reversed by equation (3.78) so that the 

roll ·reverts to the ttcorrect way round tl
• 

As in the case of the UDL above, the whole procedure 

of Appendix 1, section Al.4 is applied. Equations Al.33j 

Al.37~ Al.34 and Al.38 yield the moments and shears at 

points corresponding to the roll-ends on an infinite beam 

as:-

MA 
-tN 

:= 

8~ 2 LB 

(Nm) 

~2 
-tN 

= 
8A3 

LB 2 

(Nm) 

-t N 
Q

A --
4'A2 2 LB 2 

(N) 

tN 
Q

B = C) 

2 4 A '-' LB 2 
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Equations Al.40., Al.41 and Al.42 are then applied 

as above to give the ECFs FOA ' FOB' MOA and MOB due 
222 2 

to the TDL. The deflection profile of the 2IR due to the 

ECFs for the TDL is then found as before (c.f. equation 

3.71) as 

+ 

. . . . . .( 3 .75 ) 

Where FOA ' FOB" MOA and MOB are evaluated for 
222 2 

the TDL of magnitude tN. 

The deflection due to the TDL itself must now be 

found at each of the M2 points along the 2IR. Equations 

Al.31, Al.27 or Al.35 are used, depending upon whether 

the point x
M 

is to the left of the loading of fig.].27 

under it, or to the right of it. Thus~ 

or 

[ CA2(X~N-XM) - CA2(X~N+LB-XM) 

DA2(X~N+LB-XM)] , 
f or O~xM'" x E 

N 
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) 

) (m) 
) for 
) 
) M=l'j ••• M

2 ) 
) 
) 
) 
) · .. ( 3 • '( 6 ) 

~ 
) 
) 
) 
) 
) 
) 
) 
) 



The total 2IR deflection profile due to the TDL of 

fig.3.27 is then found by summing the results of 

equations (3.75) and (3.76) at each of the M2 . t . pOJ..n siJ...e. 

(Y2 due to eqn.3.75) + (Y2 
x M x

M 

due to eQnoJo76)] em) 

for M= I , • • • • ,M 2 ..... ( 3 • 7 7 ) 

Now if the TDL had to be "reversed" as in this 

example~ the order of the M2 points must now be reversed 

to "correct" the mapping which was made at (3.74) above. 

This is accomplished by:-

= Y2 (m) for M=I, •••• iM2 
x

M 

then 

) 
) 
) 
) 
) 
) 
) 
) 

~ , . . . .( 3 • 78 ) 

= y; (m) for M=I, ••• ,M
2 

X(M
2

+I-M) 

The final deflection profile of the 2IR due to the 

loading of fig. 3.25 (c.f. fig.3.26 (i) ) is then found 

by 

at 

summing the contributions due to the UDL and the TDL 

each of the M2 points, thus 

= 
[

(Y2 due to eqn. 3.73) 
x M 

+ (Y2 due to eqn.3.78)] em) 
X M 

The overall deflection profile of the 2IR due to 

all As-V-Roll rack movements is found by applying the 

above procedure to each of the J B loadings caused by the 

backing bearings, and summing all the results at each 
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of the M2 points along the roll. Note, however~ the 

following points (refer to fig. 3.22 (ii)):-

NOTE A When a loading acts "upwards" (such as in cases 

c~ d and e)~ it is treated as if it in fact acted downwards 

(i.e. as above)~ and the sign conventions in the b.o.e.f. 

theory will automatically give the correct sign to the 

deflection profile. 

NOTE B When a TDL acts the tlcorrect" way round (i.e. with 

its non-zero end on the right~ such as cases c and g)~ 

the mapping of equation (3.74) is not applied. The sub-

I sequent analysis continues, using x
E 

rather than x
E 

• 
N N 

Equation (3.78) is also not applied, and the results of 

equation (3.77) are used directly in equation (3.79). 

NOTE C The cases band f, where the backing bearing is 

tilted about its horizontal axis, are treated as follows. 

Consider case f as depicted in fig. 3.23. Here we 

have two TDLs. The first acts over a length of roll L
f 

given by equation (3.57), and the second over a length 

of roll (LB-Lf ) (from fig.3.23). Furthermore, the position 

of the LH end of the first loading is already known from 

the appropriate value of x E given by equation (3.63), 
N 

and the position of the LH end of the second loading will 

be known as x E where x E 
N2 N2 

The 2IR deflection profile due to a loading of this 

form is therefore found by firstly applying the previous 

TDL analysis (i.e. from equation (3.74) onwards) to the 
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LH part (i.e. using t f instead of tN2 and Lf instead of 
N 

LB ) and storing the deflection profile yielded by equation 

(J.78). The analysis is then applied a second time for 

the RH part (i.e. using trN instead of tNi (LB-Lf ) 

instead of LB and x E instead of x E ), but this time the 
N2 N 

loading is the ttcorrect tt way round and so NOTE B above 

applies also. The deflection profile given for this RH 

part by equation (3.77) is then summed with that 

previously stored for the LH part to give the total 2IR 

deflection profile due to the loading of fig.J.2J as 

= [(Y2 
x M 

for the LH part of loading i due to eqn.J.78) 

+ (Y2 for RH part of loading, due to eqn.J.77~ (m) 
x M J 

. . . . (J.80) 

This is then added into the overall total deflection 

profile for the 2IR in the same way as the profile due to 

any other backing bearing (note that equation (3.79) is 

not needed here, as UDL is zero). 

For a loading of the form shown in case b (fig.J.22 

(ii)), precisely the same method is used, i.e. applying 

equation (J.74), etc. and obtaining the result at 

equatl"on (J 80) The b.o.e.f. sl"gn convention will • • 

automatically compensate for the fact that case f is the 

inverse of case b. 

To sum up, the final deflection profile of the 

upper central ~IR due to the J
B 

loadings transferred 

from the backing bearings is given by 
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= 

+ 

Deflection at section x
M 

due 

to UDL from bearing N 

Deflection at section 

to TDL from bearing N 

for 
M=1, ••••• M2 

· · . , .(3.81) 

where the deflection at x
M 

due to the UDL 

is zero for cases b and f 

or 1S given by equation (3.73) for all other cases. 

and the deflection at x M due to the TDL 

is zero for cases d and h 

or is given by equation (3.77) for cases c and g 

or 1S given by equation (3.78) for cases a and e 

or is given by equation (3.80) for cases b and f. 
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3.8 Treatment of the First Intermediate Rolls 

The second intermediate roll deflection profile 

given by equation (3.81) in the previous section will 

be converted into a system of loadings acting upon the 

now 

upper first intermediate roll labelled "0" in fig.3.16. 

The system of loadings is then used to calculate a 

similar deflection profile for roll O. The effects of 

roll camber are left out of the discussion for the 

present only, so as not to complicate matters any further, 

as are the effects of the tapered-off ends of the first 

intermediate rolls used for shape control. The inclusion 

of both these effects is described separately in 

Appendix 4. 

3.8.1 Conversion of the Upper Central 2IR Deflection 
Profile into a System of Loadings Acting on the 
First Intermediate Roll '0' 

The simplest system of loadings which can be en-

visaged to give accurate results is a set of concentrated 

forces, and this is the system which has been adopted. 

In order to simplify the calculations a condition is im-

posed that the number of concentrated forces chosen (JIF ) 

should be an integer sub-multiple of the number of sections 

along the roll at which the 2IR deflection is known (M2)~ 

whilst remaining large enough to yield a smooth and 

meaningful deflection profile of the IIR. (Typical values 

used in the model are M2 = 100j J
IF = 20) • As in the 

case of the x M values (equation 3.66) 'i the J IF forces are 

taken to act at the centres of equal divisions of the IIR 

so that the points of application of the forces from the 

front of the mill are given by 
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= (m) for N=l, •••• 'JIF 

The relationship between the Nth of these forces from 

the front of the mill, and the deflection values given by 

(3.81) is shown in fig~ 3.28 (assuming the ratio between 

the typical values of M2 and J
IF 

as given above). The 

local values of UDL due to each deflection value are 

found from equation (AI.I) In Appendix 1., as 

for M=1, ••• ,M2 
. . . . . .( 3 .83 ) 

where the Y2 are given by equation (3.81)9 
x M 

and the local value of concentrated force due to each 

value of deflection is therefore given by 

. . .( 3 . 84) 

The value of the Nth concentrated force FIN is then 
M2 

computed as the sum of the appropriate -- values of J IF 
local concentrated force given by (3.84). Thus 

FIN = 
(N) for N=l, ••• J IF 

. . 

where the Y2 are the appropriate results of equation 

(3. 81 ). 
xQ 
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Now, as in the case of the 2IR considered in the 

previous section, we must make compensation for the fact 

that we eventually wish to apply a loading along the path 

denoted F2 in fig. 3.16, from information pertaining to 

the path denoted by F
3

; the problem being that F3 arid 

F2 are not colinear. Strictly~ we should calculate the 

loadings on path F4 also~ and resolve forces as before 

to obtain the fraction of the loadings due to F3 and F4 

which should be considered to yield the correct mag-

nitude of F
2

• However, due to the mill geometry it 

was thought that a change in As-V-Roll actuators would 

provide a much greater percentage change in the direction 

of F3 than in the direction of F 4 • Therefore the effect 

of changes in F4 is ignored, and the vertical change 

acting upon roll 0 becomes FlNcos63 for one of the forces 

given by equation (3.85). The component of this acting 

in the direction of F2 is then given by FlNcos93cose2 · 

Therefore a transformation is carried out upon the forces 

given by (3. 85): 

(N) 
.. (3. 86) 

where Tl = cos B cos e 
3 2 

and 8
3 

is given by equation (3.25 ) 

9
2 

is given by equation (3.29) 

The values of FIN below must now be read as 

F - i.e. as the transformed values. 
INeffective 
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Note that the assumption above concerning changes in Fq 

has been called into some doubt by recent model results 

at the time of writing. There is therefore scope for more 

work in this area, whereby in addition to the present work 

a diagram such as figures 3.19 and 3.20 could be drawn 

and analysed for the motion of the backing bearings on 

shaft B relative to roll I (rather than J). This would 

give~ by identical methods to those used in sections 3.6 

and J.7~ a deflection profile for roll I. The proper 

values of loading upon the roll 0 would then be found from 

a combination of FIN values given by (3.85) for the 

loading due to roll J~ and another set of FIN values for 

the loading due to roll I along the path F qo The required 

modifications to the static model program are not 

particularly difficult in order to achieve this (the model 

being well-structured), but time has not yet permitted it 

to be carried out. 

3.8.2. Evaluation of First Intermediate Roll Deflection 
Profile 

The 1IR (0 ~n fig.3.16) is now treated as a beam 

subjected to the system of forces given by (3.86)~ and 

resting upon an elastic foundation formed by the upper 

workroll (WR). The foundation modulus (klw ) for the 

1IR/WR interface must therefore be found. The methods 

of Appendix 2 give us 

k 
lw = 

where fl and f2 are given by (3.58)ff 

F2 is given by equation (3.33) 
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Other required constants are 

\I D4 
(m 4 ) II 

1 = bl! 

Al 
k

lw 
l!EIl 

0.5 
AILT 

e 
El = sinh(XlLT)+sin(AlLT ) 

0.5 
AILT 

e 

E2l = sinh(XlLT)-sin(AlLT ) 

The effect of each of the J IF forces is now in

vestigated in turn, using the procedure of Appendix l~ 

section 4. Consider as an example the Nth concentrated 

force from the front of the mill (FIN) shown in fig.J.29. 

Firstly, equations A.9 and A.lO are used to specify 

the moments and shears which would be produced by FIN at 

points on an infinitely long beam which correspond with 

the ends of the WR:- (see also Appendix 4) 

MA 
FIN 

C AixlF = 
~ 

• 
1 N 

~l 
FIN 

C\i(LT-xlF ) = ~ 
• 

N 

QA 
FIN 

D = 2 • 
Ai.xIF 1 

N 

= • 

Equations (Al.4o), (Al.4l) and (Al.42) are then 

applied using klW~ Ell' E21 , ~l etc. to yield the ECFs 

1.20 



The deflection profile of the lIR due to the 

combined effect of these ECFs is then found as before 

(c.f. equation (3.71)):-

= 

+ (m) .. (3.88) 

for M=l, ••• ')M
l 

Note that Ml need not be the same as M2 used previously, 

bu"t it must nevertheless be an even number. If Ml 

differs from M2 the new x M values are given by using Ml 

in equation (3.66) rather than M
2

• 

The deflection profile of the llR caused by FIN 

itself is found by applying equation (Al.7) as:-

:: . . .. 
for M=l, •••• ,M

l 

The total deflection profile of the llR due to the Nth 

concentrated force is then found by summing the results 

of equations (3.88) and (3.89) at each of the Ml points:-

= 
[ 

(y 1 due toe qn. (3 • 88 ) ) + (y 1 due to 
x M x M 

.... '(3.90) 

for M=l, ••• ,Ml 

and the overall deflection of the llR due to all the J IF 

forces is then found by summing all the J IF results of 
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equation (3.90) at each of the Ml points:-

N=l 

Deflection due to FIN at 

section x
M 

• 

(m) 

for 
M=l ~ • • • ,Ml 

Where the deflection in question is given by (3.90). 

The effects of roll cambers and the lateral 

positions of the lIR tapers on this result are evaluated 

in Appendix 4. 

3.9 Treatment df the Upper Workroll 

The deflection profile at the first intermediate roll 

given by equation (3.91) in the previous section will now 

be converted into a system of loadings acting upon the 

upper workroll labelled tiS" in fig.3.16. The system of 

loadings is then used to calculate the workroll profile. 

The effects of roll camber are omitted at this stage~ as 

this section will be found quite complex enough without 

them! Appendix 4 gives the means by which they are 

included in the model. 

3.9.1 Conversion of the llR Deflection Profile Into a 
System Of Loadings acting on the Upper WR 

As in section 3.8.1 above, a system of (JWF ) con

centrated forces is chosen to act (at points x WF ) on the 
N 

workroll. The value J WF chosen for the WR need not be 

the same as J IF used for the IIR~ but it must be an 

integer sub-multiple of MI. Equation (3.82) yields 

the points of application of the forces as 

1~2 



X
WF 

N 
-- (m) for N=I, ••• ,J

WF ..... ·(3.92) 

and the values of the forces are given by(c.f.eqn.(3.85» 

• YI 
xQ 

(N-I) .MI 
Q= 1 + JWF 

. (3.93) 

where YI is the appropriate result of equation (3.91). 
xQ 

Also j as before j we must compensate for the non-

colinearity of the paths of F2 and Fl in fig. 3.16~ and 

once again a simplifying assumption has been made. This 

time~ we assume that since the only differences between 

the change in F2 and the change in F2R due to As-V-Roll 

rack changes~ are due to different settings of the mill 

side eccentrics j the differences will be negligible for 

practical purposes. Thus for this purpose only it is 

assumed that the changes in force acting along path F2 

(given by (3.93) above) also act along the path F 2R • 

This assumption can easily be removed if desired j by 

carrying out the analysis of sections 3.69 3.7 and 3.8 

for the path of rolls C-J-P in addition to the path 

B-J-O as given. Then equation (3.93) will yield the 

loading along the path F2R also~ which will then be 

rigorously incorporated. However j returning to the as-

sumption9 the vertical change acting upon roll S becomes 

FWN(COse2 + cos62R ) for one of the forces given by (3.93). 
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This is then colinear with FI (the rolling load)i so that 

the transformation upon the forces given by equation (3.93) 

is given by, 

FWN 
effective 

-- (N) 

and e 
2 

i·s given by equation (3.29) 

92R is given by equation (3.30) 

·(3.94) 

The values of FWN below must now be read as FWN • 
effective. 

3.9.2. Evaluation of WR Deflection Profile 

The situation here is more complex than that of 

section 3.8.2 due to the fact that the upper WR is not 

supported over its entire length. The presence of the 

strip being rolled means that the ends of the upper WR 

are completely unsupported as shown in fig. 3.30 (the 

Sendzimir mill having no neck bearings.) This in turn 

means that all the rolls in the cluster are in fact more 

firmly supported over the strip than at the ends~ which 

calls into question the practice of using a single value 

of foundation modulus (k
21 

or k lW above) over the entire 

mill width. The practice is def ended on the grounds 

that it is a relatively simple assumption~ and it should 

be accurate enough for present requirements since loadings 

which are not directly over the stripi and occur high up 

in the cluster, will have relatively small effects on the 

strip compared with forces which are directly over it. 
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Future work is clearly possible in this area~ should the 

need ever become apparent. 

In view of the points outlined above~ it is clearly 

not possible to use a foundation modulus which covers the 

entire length of the WR. The WR is considered as a beam 

subjected to the loadings specified by equation (3.94) 

and supported as shown in fig. 3.31 where LS is the strip 

width. The foundation modulus must only be evaluated for 

the supported section. For the purposes of this cal-

culation, it is assumed that the upper WR rests directly 

upon the lower to remove variable plastic effects due to 

the strip (this approximation could also be removed in 

future if desired). 

Thus, from Appendix 2~ we obtain 

kwws = 
(Nm- 2 ) ( ) .. . 3. 95 

where fl and f2 are given by (3.58)ff 

PT 
is the rolling load given by (3.48)(N) 

LS is strip width (m) 

Other required constants are 

ElWS = 

E 2WS = sinh eX L) - sine>\ LS) 
WS S WS 
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Also~ from figure 3.31 9 

.( 3.96 ) 

The deflection profile of the WR due to the J
WR 

forces specified by equation (3.94) must now be calculated. 

The point of application of each force (X
WF 

) is examined, 
N 

and the method of calculating WR deflection depends upon 

whether the corresponding force (F
WN

) acts over the LH 

unsupported end~ over the RH unsupported end~ or directly 

over the strip. These three cases are considered separately 

below. 

The deflection is calculated at ~ points along the 

workroll due to each of the J WF forces, using the results 

summarised at the end of the appropriate sub-section below 

(depending upon the point of application of the force under 

consideration)~ and the results at each of the ~ sections 

are summed as before to obtain the total bending profile 

of the upper WR. The value of ~ need not be the same as 

either M2 or Ml~ but must remain an even number. If ~ 

is different from M2 or Ml~ the new x M values are found 

by using ~ in equation (3.66). 

is evaluated in Appendix 4. 

The effect of WR camber 

3.9.2.1 WR Deflection due to a force acting on the 
LH unsupported end 

The free LH end of the WR under these conditions 1S 

treated as an elastically mounted cantilever according to 

the theory developed in Appendix 3. Most of the necessary 

equations for the deflection under this condition there-

fore exist in that Appendix. There are however, two out-

standing problems worthy of note, and requiring special 

solution. 



THE FIRST problem is to specify the deflection of the RH 

unsupported end of the WR due to the force acting on the 

LH end. It may be suggested that this is irrelevant as 

far as strip shape is considered~ but nevertheless it will 

be considered for completeness~ and in case a full-width 

WR deflection profile should be required for some future 

purpose. 

If the value of 9
R 

given by equation (A.J.14) is 
N 

non-negative, then the deflection is easily specified by 

considering the RH end to remain straight as shown in 

fig. J.J2 whence it can be seen that the deflection of the 

RH end is given by 

:: y~ + a.sine~ ·(J.97) 

and M=I~ •••• ~Mw 

If however~ the value of e~ is negative, this 

approach would result in the RH end of the WR continuing 

upwards in a straight line as shown in fig. J.JJ(i). This 

\ 

is impossible g as the presence of the IIRs above would 

stop it from happening. The problem is overcome by 

assuming that if &R is negative 9 then the RH end of the 
N 

WR will "bounce" back off the lIR until the angle e 
again becomes positive, after which the straight-line 

approach can again be used. This is achieved by re-

garditlg the values of YR
N 

and 8~ (fig.J.JJ(i) as having 
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i) Case YP, Positive} ell Negative 
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t Lu : Ls 
---~-- -------

_ LT 

7 77 7 7777 7 7 7 777/1 _ _ + Jcu_~ 
fig.3·34 Method of Handling WR with Negative F..wwon LH End 
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been caused by some unknown values of force and moment 

acting on the RH end at the point where it joins the 

supported section (i.e. at the point where y and e 
~ RN 

exist. The mill is now considered temporarily to be 

inverted so that the situation is as shown in fig.3.33(ii). 

The RH ttunsupported tt end of the WR now "rests" on an 

elastic foundation formed by the lIR, and the beam diagram 

for this appears in fig.3.33(iii)~ where FTN and MTN are 

the unknown force and moment "transmitted" from the 

supported section of the roll due to the Nth concentrated 

force acting on the LH end. Simultaneous equations 

can be formed and solved for FTN and MiN (see below)~ and 

the deflection profile for the beam of fig.3.33(iii) can 

then be evaluated in the usual way (but for the RH end 

of the WR above the IIR). As soon as a section is reached 

where the angle of deflection changes sign so that the 

WR tends to move away from the IIR'j the "bounce" is con-

sidered to be complete, and the "straight line" approach 

is adopted for the remainder of the roll to the extreme 

RH end. The analysis is as follows. 

Consider the case shown in fig.3.33(i) where y~ 

is positive but 8
R 

is negative. If the mill is now 
N 

considered to be inverted so that the WR is above the IIR, 

these values will change sign (fig.3.33(ii)). The RH end 

of the WR is now drawn as in fig. 3.33(iii)'j where FTN 

con-and MTN cause the known values of y~ and e~. The 

stants for the beam of fig.3.33(iii) are given by 

equation (3.87)ff'j the fact that the system is inverted 

being immaterial. 
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Fig.3.33(iii) bears obvious similarity to fig.A o 3.3 

and the equations for YL and eL in Appendix 3 (equations 
N N 

(A.3.12) and CA.3.13)) can therefore be employed to obtain 

expressions for in fig.3.33(iii). Firstly, 

the appropriate 

YR
N 

and e~ 

ECFs (F OA ' 
R 

FOB' MOA and MOB) must be 
R R R 

found in the usual way:

-FTN 

~ (Nm) 

= + 
(Nm) 

QA 

-FTN MTNAI 
(N) = 2 2 

R 

QB 
FTN 

DAILu 
MTN A I 

I A).. (N) = 2 2 ILU 
R 

Equations (AI.4q~(AI.41) and (A.I.42) are then applied 

( . k \ etc.) to give the ECFs. (But note that uSlng IW,1\1 

FTN and MTN are unknown, see below). 

-y~ 
(m) 

..... (3.98) 

2 

Al 
= . F OB . B >. L 

k lW R I U 

(rad) 

... • . (3.99) 

as the Note that -YR and -~R must be used j 

tlinversion" of the mill has changed their signs. 
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Now~ in these two equations, YR 
N 

and e 
~ 

are known 

from the previous application in Appendix 3 of equations 

(A.3.l2) and (A.3.l4), k lW ' 'AI and LU are also known. 

However~ F OAR ' FOBR~ MOAR and MOBR are functions of F TX 

and MTN which are as yet unkno,m. 

In the equations for these variables above~ let, 

giving MA = 
R 

~ = 
R 

QA = 
R 

QB = 
R 

-FTN 
Z4 4)\1 . 

-FTN 
2 

F 
TN ,Z5 

2 

(Nm) 

MTN 
Z5 + --# 

2 
(Nm) 

MTN .,\ 1 
2 

(N) 

MTN ' A . Z -
212 

(N) 

Now applying equations (A.l.41) and rearranging~ 

, ~[ -FTN - M 0 (l-Z l] (Nm) 
MA :: -4 2,Al' (1+Z4) TN 5 

R 

" [ -FTN 
MTN 0 (l+Z5 l] (Nm) 

MA =4 ~'(1-Z4) 
R 

I = ~ [ - F TN 0 (1 + Z 5 l - MTNo>- 1 0 (1-Z 2 l] (N) 
QA 

R 

II 1 [ -F
TN

(1-Z
5 
l MTN°~l° (ltZ 2 l] (N) QA =4 -

R 
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Now let l-Z 
2 

Applying equations (AI 1'1) then 'ld .~ y~e s:-

= 

Now let Z12 

(N) 

(N) 

(Nm) 

(Nm) 

Application of equations (A.l.42) then gives the ECFs as 
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) 
) 

(N) ) 
) 
) 

( Nm ) ) (J • 100 ) 

) 
) 
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) 
) 



Equations (3.100) can now be substitutec into equations 

(3.98) and (3.99) above, which after rearrangement into 

matrix form gives 

y~ 

• 

Z17 == Ell • (Z6 Z7 - Z3 Z14)+ E21 , (Z6 Z7+ Z3 Z15) 

Z18 = Ell 0 (Z3 Z12-Z8 Z9) + E21 • (-Z3 Z13 - Z8Z9) 

The matrix equation is easily solved to give 

,,2 

FTN 
1 

Z o(A l 'YRNZ1 9 - (7~. Z17) (N) ,(3.101) = k 1W 
. . . , 

20 

(Nm) ..... (3.102) 

These values are then substituted back into equations 

(3.100) give the values of the ECFs for fig.3.33(iii). 

The deflection and angle at any section "a" in fig.3.33(iii) 

can now be found from equations similar to (A.39) and 

(A.3.10):-
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-y 
W 

a 
= A>.. . (t -a) ] 

1 U 

B A . (L -a) ] 
1 U 

(m) 

• • ,(3.1°3) 

where a = 

- & :z: a B, + FOB 
Ala R B A • (L -a) ] 

1 U 

,. . .. 

(Rad.) 

. (3.104 ) 

Where "a tl on the R.H.S. will be given by a = xM-LS-L
U 

for M=l, ••• 'j~ 

Note the introduction of minus signs on the LHS of each 

equation to "re-inverttl the mill to its correct state. 

Now as soon as a value of "a" is reached where e 
a 

becomes posi tive (say a=a
l 

) j then the "bounce" of the 

WR off the lIR is considered complete as it is heading 

downwards again. Equa tion (3.103) is nOlv suspended 'j 

and subsequent deflection values are calculated by the 

tI straigh t-line11 principle (c. f. equa tion (3.97) as 

:: a' ) sin e , 
a 

and M=l, ••• ,}\r 
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THE SECOND problem of note occurs when the original force 

on the LH unsupported WR end is negative, i.e. in figs. 

A.3.l and A.3.2 FWN acts upwards rather than downwards. 

Under this condition~ equation (A.3.8) cannot be used to 

specify the deflection of the LH end of the WR (for the 

same reason that equation (3.97) could not be used for 

the RH end with a negative e~ value above). The procedure 

of "inverting" the mill is therefore once more adopted, 

but in this case it would be of little value to specify 

separate cases for the portion of the WR over the strip~ 

and the RH end, and so the entire WR width is considered 

in a single step. Figure 3.34 depicts the situation with 

the WR resting above the IIR. 

The deflection profile of the WR due to the force 

FWN is then found in the same way as was the IIR deflection 

profile due to any given force in section 3.8.2. i.e. 

MA z: -FWN C (Nm) 

~ 
AIXWF W N 

-FWN 
• C ) (Nm) 

MH = ~ Al (LT-xWF W N 

-FWN D 
Q

A = 2 · AI~F (N) w N 

(N) --
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Equations (A.l.40), (A.l.41) and (A.l.42) are then applied 

using k lW ' \1' etc. to give the ECFs FOA ,FOB' MOA 
W W ·W 

and MOBW' after which the deflection at each of the ~ 

sections across the roll is found by (c.f. equation (3.90»:-

~l 
[ _F WN AA·lxWR -xMI+FOA' AA +F OB · A\ (L- l) 

1 N W 1 x M W 1\1 T x M J 

[ MOAW' B AlX
M

+ MOBW· B Al (LT-x
M

) ] (m) 
for M=l~ ••• j~ 

. . . . .. (3.106 ) 

Note that -yW is found so as to tire-invert" the mill to 
x

M its correct state. 

We have now completely specified the deflection at 

the ~ points along the WR resulting from the application 

of a concentrated force FWN to the unsupported LH end of 

the WR. The results are summarised below for convenience. 

For the Nth concentrated force (F
WN

) from the front 

of the mill~ 

A) If FWN is negative 

is 

(i.e. acting upwards~ away from 
the roll gap) ~ 

given by equation (3.106 ) 

B) If FWN is non-negative 

For O~xM<xWF yw is given by equation (A.3.8a) 
N x M 

For xWF~ xM<LU YW is given by equation (A.3.8b) 
N x M 

For Lu~ xM~ (LU+LS) YW is given by equa tion (A. 3. 9) 
x M 



IFF e~ given by equa tion (A. 3.14) is 

positive for F
WN

' then 

is given by equation (3.97) 

(using y~ and eRN given by 

(A o 3.12) and (A o 3.14) 

OTHERWISE 

is given by equation (3.103) up 

to and including the first value 

of x M (say X) for which equation 

(3.104) gives e positive. For 
x M all values of x M to the right of 

this point, 

YW is given by equation (3.105) 

x M where a' = X 

Note that since the value of FWN affects everyone of these 

results, the whole procedure must be repeated for every 

value of N, and the resulting yw values summed at each 
x 

of the ~ points to give the tota¥ WR deflection profile 

due to all the elements of the array of J
W 

forces which 

act over the unsupported LH end (JU in number). 

3.9.2.2. WR Deflection due to a force acting on the RH 
unsupported end 

This case is a mirror-image of the case considered 

in section 3.9.2.1 and is treated as such. Therefore, 

the analysis of section 3.9.2.1 is used after replacing 

XWF with (LT - x WF ) 
N N 

Thus x WF and the x M values are effectively measured from 
N 

the RH end of the roll rather than the 1eft~ and the sit-

uation becomes identical to that of section 3.9.2.1. 
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The final set of ~ values of yW which result from 
x M 

the application of section 3.9.2.1 must then be reversed 

in order (using the method of equation (3.78») to correct 

for the "mirror-imagell approach. 

3.9.2.3. WR deflection due to a force acting directly over 
the strip 

For the portion of the WR over the strip (fig.3.35) 

this is the "normal" situation. The same method as used 

in section 3.8.2 therefore applies giving 

(Nm) 

~s = (Nm) 

= (N) 

= 
-FWN 
---.D\ ( L ) 2 AWS LS - x WF + U 

N 

(N) 

h \ . given following equation (3.95). were "WS J.. S 

Equations (A.l.40), (A.l.4l) and (A.l.42) (using kws'i 

~WS etc.) then give the ECFs FOAS'i FOBS' MOAS and MOBS· 

The resulting equations for deflection and angle are then 

= 

+ FOB· AA (L +L - x )] 
S WS U S M 

and N= 1, ••••• 'i ~ • • • .( 3 0107 ) 
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rFWN • Z. B, , L - AWS ~F -XM\ 
N 

(rad) 

. . . ( J • 108 ) 

and M=l'J ••• 'j~ 

where Z = 

(Note that these equations could be compared also with 

equations (A.J.9) and (A.J.10), except that here there is 

zero moment and the force does not act at the LH end of 

the supported section). 

equations 

in fig.l? 

we obtain Y
LN

, SL
N 

and Y~'j e~ as 

(c.f. Appendix J following equation 

indicated 

(A. J.l 0)) 

due to the Nth force from the front of the mill:-
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(m) . . . . ( 3 • 109 ) 

+ F OA • A \ L + F ] 
S I\WS S DBS 

(m) .... (3.110) 

(rad. ) 

.. ' .(3.111) 

F OA • 
S BAWSL~ 

MOBS] 
(rad. ) 

.. (3.112) . . 

The deflection at any section of the \vR where x M 

falls over the strip has been given by equation (3.107) 

but the question of the unsupported WR ends remains. For 

the RH end, the situation is absolutely identical to that 

discussed in section 3.9. 2 .l,above (figs.3.32 and 3.33) 

i • e. Y W i s g i v e n bye qua t ion (3 c,·9 7) ( u sin g Y R _ and e R _ ) 
x

N 
-~ --N 
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if the result of (3.112) is non-negative or by equations 

(3.1°3) and (3.105) (with the ECFs corresponding to the 

force FWN under investigation) if the result of (30112) 

is negative. 

For the LH :unsupported end, if 8
L 

(given by 
N 

equation (3.111) is negative, then the mirror image 

of fig. 3.32 applies, and it is easily shown that 

= - (L - x ) U M sin 

and M=lJ ••• '~ 

(3.113) 

If, however, e L 15 positive, then the situation is the 
N 

mirror-image of fig.3.33 and the analysis leading to 

equations (3.103) and (3.105) can be applied after re-

placing 

and YR 
N 

9R with 
N 

with YL 
N 

and using a = L -x 
u M 

It is then necessary to apply the analysis for 

INCREASING "a" (i.e. decreasing x M) so that the position 

can be found where the WR "bounces back" off the lIR. 

Thi s ,~ill be the value of x M for which e a ( given by 

equation (3.104)) becomes positive again (say point ~) 

after which equation (3.103) is suspended and yW is then 
x

M 

calculated by equation (3.105) for the remaining values 

of x M until the extreme LH end of the roll is reached. 
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The deflection of' the WR nas now· been completely 

Specified due to the action of a concentrated force FKX 

acting over the strip. The results are summarised below 

for convenience. 

negative'i then 

IFF 

yw 
x M 

9
L 

given by equation (3.111) 1S 

N 

is given by equation (3.113) 

OTHERWISE 

YW 
x 

M 

Yw 
x M 

is given by equation (3.103)(using 

a = 

and the corresponding values of FTN 
and MTN given by equations (3.101) 

and (3.102 »). The analysis must begin 

at the value of x
M 

nearest the top 

of the range (i.e. xM~Lu) and con-

tinue for decreasing x M until the 

section is reached (say x M = X) 

where e (given by (3.104) with 
x M 

values as abov0becomes positive. 

For all subsequent x
M 

values (i.e. 

x
M

< X):-

of 

is given 

as 

by equation (3.105) written 

= yW + (X-XM) sin eX 
X 

is given by equation (3.107) 

IFF e~ given by equation (3.112) is 

positive then 

is given by equation (3.97) 



OTHERWISE 

is given by equation (3.103) 

using the appropriate values of 

FTN and MTN given by equations 

(3.101) and (3.102) up to and 

including the section (sav 

x M = X) for which equation 

(3.104) gives e positive. 
x

M 
For all x M >X, is given by 

equation (3.105) using a' = X 

3.10 Calculation of Strip Shape 

The analysis of strip shape changes in response to 

roll gap geometry changes forms a literature in its own 

right (see for example (37)-(39)). However~ for the 

purposes of the present model, the philosophy of relative 

simplicity is maintained in this area, also and a purely 

geometric approach is taken. Any of the more complex 

methods could be used instead if desired. 

Consider a piece of strip having the cross-sectional 

gauge profile shown in fig. 3.36(i), where the strip is 

divided across its width into J H equal filaments, and the 

h values are measured at the centre of each. 

odd number so as to give a gauge measurement at the centre 

of the strip. Let the gauge profile after rolling be as 

shown in fig. 3.36(ii)~ where the measurements are taken 

at the same points, and zero width-wise spread is assumed. 

Furthe I~, consider the piece of strip to have a length 1 
o 
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prior to rolling) and after rolling let it be slit 

lengthwise into J H filamerrts as shown in fig.3.3? If 

the reduction of gauge profile between figs. 3.36(i) and 

(ii) is not uniform across the width of the strip9 then 

the filaments of fig.3.37(ii) will have non-uniform 

lengths as shown. 

Assuming zero internal stress prior to rolling') no 

lateral spread, and conservation of volume during rolling~ 

we can say that for the Nth filament, 

• • ·(3.114) 

Also, the mean length of the rolled filaments is given by 

10 
JH 

2 hN 
L • (m) .(3.115) = J

H ~ 
. . . . . 

N=l 

During normal rolling, the filaments obviously 

cannot extend rela ti ve to each other in the ,~ay shown in 

fig.3.37(ii)j but are either stretched or compressed so 

as to conform to the length L. This amount of stretching 

is called differential elongation, and is here defined as 

for N=l, ••• ~JH . ·(3.116) 

so that for a filament which is stretched (i.e. the strip 

is tight) 6L is positive. The differential strain in 

each £ilament is then defined as 

= for N=I~ ••• ~JH 

and therefore the differential stress distribution across 

the strip is given by 
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_0 

(Nm ~) for N=l, ••• ,J
H ... (3.117) 

where E~ = Youngs Modulus for the strip (Nm- 2 ) 
:::i 

This quantity of differential stress is a measure 

of strip shape~ and is displayed by the ASEA Stressometer 

shapemeters on the Sendzimir mill in question. 

Substituting (3.114)1 (3.115) and (3.116) into 

(3.117) gives 

. . .. (3.118) 
1 -

for N=l~ ••• ~JH 

Thus, shape is posi ti ve \V"here the strip is tighter 

than the mean, and negative where it is slacker. For 

strip to have "perfect" shape, this internal stress dis-

tribution equation should give ~~ = 0 for all N. Non-

zero values of 60"""N lead to the internal stresses in the 

strip forming "latent" (bad) shape. If these stresses 

grow large enough to overcome the section modul~s of 

the material, then the strip will visibly buckle, forming 

"manifest" (bad) shape (see section 1, chapter 1.). 

The input gauge profile of the strip (hN in equation 

(3.118) is known either from an estimate of "the 

characteristics of the incoming strip (on the first pass) 

or by reading the output gauge profile stored at a num~er 

of points during the previous pass. The output gauge 

profile (H
N

) is calculated as follows, using the knowledge 

of the mean output gauge (from the plant instrumentation) 

and the \vR profil e genera te<i by the model:-
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The values of 6.~ given by equation (3.118) must 

be given at poin~s which co Lncide wi th t:le centres of the 

rotors on the ASEA Stressometer, if any simple model/plant 

comparison is to be made. Let the shapemeter have J
R 

rotors of width LR(m). Note that J R 1S an odd number 

(31 for the present Z mill) so as to place a rotor centre 

at the strip centre. Fig.3.38 shows the strip passing 

over the segmented shapemeter roll. The numher of shape-

meter rotors covered by the strip is given by 

which will probably not be an integer at this stage~ but 

must be made such. Since J R is an odd integer, and fig. 

3.38 is symmetrical about its vertical centre-line, then 

the number of shapemeter rotor centres covered by the 

strip (J
H

) 

(3.119) is 

must also be odd. An integerised version of 

obtained by truncating its fractional part:-

= 
fractional part 
set to zero. 

This is then tested to ascertain whether it is even or 

odd (e.g. by dividing by 2 and testing for a remainder). 

Consideration of fig. 3.38 shows that if iH is even, 

whereas if iH is odd it needs no 

alteration. Therefore 

J H = l.H for l.H odd ) 
) 
) • • . . ·(3.120) 

or J
H = iH+l for l.H even ) 
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The value of L in fig. 3.38 is then found by ps 

L 
ps = 

The distance from the LH end of the mill at which 

th 
the N value of gauge must be calculated to coincide with 

a shapemeter rotor centre~ can then be found as 

Now the WR deflection is known at ~ points along 

the roll (from section 3.9)~ also measured from the front 

of the mill, but it is most improbable that the J
H 

values 

of x N given by (3.121) will correspond precisely with 

values from the set of ~ values of x
M 

used in section 3.9 

to find yw • To find WR def lection at points corresponding 
x M 

to (3.121) therefore~ a curve could be fitted to the ~ 

valuesof 

3.9) and 

yw previously calculated for the WR (section 
x M the J H values of y read off it. Fitting a 

x
N 

single high-order curve and interpolating in this ~vay~ 

'. is prone to numerical inaccuracies however~ and-the 

method employed instead (see below) is more accurate~ 

although somewhat laborious to set down on paper. (The 

computer mechanization is quite simple of course). 

For each x N value given by (3.121), a search is made 

through the ~\v values (a t ,"hich WR deflec tion is known) 

until the nearest value of x M to x N is found. The x
M 

values on either side of this value (i.e. xM_l and x M+ l ) 
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are also taken; so that three values of x
M 

are con-

sidered, with the value of x
N 

falling within the range 

f th th A d t ' f th f 2 b . o e ree. qua ra 1C 0 e orm Y= ax + X+c 1S 

then fitted to the three points. We therefore have 

= 

2 + b N x M + Yw = aN x M c N x M 

2 
b N xM+l + = aN xM+l + c

N Yw 
x M +1 

which 
ar~yeWSimUl ~aynweOUSIJY{XSM~~VXM~d_~tO+ fwive 

- YWXM_IJ{X~+l-X~-J 
x M_ l xM+l x M ~ 

XM+l J{x~-x~-~ + rM- XM- 1 }[x2 m+l X~_~ 

b
N 

• [XM-XM_~ 
2 

x -M 

The WR deflection corresponding to the point x
N 

measured from the front of the mill (i.e. corresponding 

to a shapemeter rotor centre) is then given by 

.... (3.122) 

where the x N are given by (3.121). 
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(Note that J..°f I f h I a va ue 0 x N s ou d fall so close to one 

end of the WR that the nearest x
M 

value is the last on the 

roll~ then the end three values of x
M 

are used). 

Since the number of forces taken to act on the WR 

(JWF ) and the number of points at which deflection of the 

WR was calculated (Mw) were chosen to be large enough to 

give a smooth deflection profile, the fitting of a quad-

radtic to any three consecutive points will introduce 

negligible errors. 

When rolling strip in a four-high rolling mill, the 

conditions around the roll-bite are such that if a bending 

profile is forced onto the upper WR, then the lower WR 

will always adopt the inverse profile. The strip will 

therefore always look symmetrical about its horizontal 

axis. It is thought however~ that this condition will not 

apply in a Sendzimir mill~ since the lower WR is not free 

to deflect to the same extent. Therefore, if the in-

coming strip has the gauge profile of fig. J.J9(i) and 

good shape, to maintain the good shape whilst imparting 

a per-unit reduction SR the roll-bite must adopt in the 

limit the profile shown in fig.J.J9(ii) (neglecting 

elastic recovery of gauge and the lower WR camber). As 

has been mentioned previously, although fig. J.J9(ii) 

looks extreme~ it is grossly exaggerated as C s is some 

four or five orders of magnitude less than LT. Due to 

this relatively minute lateral bending of the strip~ it 

is expected that it will elastically recover after rolling 
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to the profile of fig. 3.39(iii), and so the good shape 

will be maintained. 

The output gauge vector (H) for use in equation 

(30118) is therefore found by considering the roll-bite 

profile to be as per fig.3.39(ii). The mean output 

gauge H is known from the mill instrumentation, and the 

mean upper WR deflection for the J
H 

points across the 

strip can be found by 

where the yW are given by (3.122). 
x N 

We now assume that this mean value of WE deflection 

corresponds to the mean output gauge as shown in fig.3.40. 

The J H values of HN are then found by superimposing the 

deviation of the WR deflection from the mean onto H at 

each point:-

. . . . . .( 30123 ) 

Equation (3.118) can now be used with the results 

of equations (3.120) and (3.123) and the known input 

gauge profile, to give the change in strip shape tlue to 

all the actuator movements) at points across the strip 

which coincide with the centres of all the covered shape-

meter rotors. If the incoming strip has "perfect" shape 

(all ~orN = 0) thenequation (3.118) gi\-es absolute shape 
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after rolling. Otherwise, the stress profile given by 

(J.118) must be superimposed on that existing in the strip 

to obtain absolute shape. (This is thought to be the best 

simple approximation which can be made). The incoming 

shape must be estimated on the first pass, but on each 

subsequent pass the shapemeter_ output stored at a number 

of intervals during the preceding pass can be used. 

J.ll The Computer Model and the Mill Gain Matrix 

It is not proposed to enter into great detail con

cerning the actual algorithms and flowcharts of the model, 

since the previous discussion of the static model itself 

covers, in one way or another, all that would be said. 

Suffice it to say that the model is fundamentally a com

puter mechanization of the pseudo-flowchart shown in 

figure J.18, and as such it contains all the necessary 

programming to implement all the equations developed in 

sections J.2 to J.IO inclusive and appendies 1 to 4 

inclusive. The language of the model is FORTRAN (with 

DEC additions). 

The model started life mounted on an ICL190J in

stallation, where it was overlaid to run in J2k of memory. 

By force of circumstance, it presently resides on a 

Digital PDPll/70 installation under the RSTS/E operating 

system. This limits user memory to 28k, and no amount of 

overlaying could achieve this. Therefore, the program is 

split into two parts called ZMODEL and ZMODL2. The 

structure of each part is broken down into a large number 
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of function and subroutine subprogramsj but no details 

of these will be given here. The model can be run either 

interactively from a terminal, or ~n a batch mode. The 

overall function of each half of the model is as follows. 

Programme ZMODEL requires as input data: 

Young's Modulus and Poisson's Ratio for the rolls. 

The length of the rolls. 

The maximum (i.e. barrel-centre) diameter of every roll 

in the top half of the cluster (this allows for example j 

different diameters of the outer second intermediate 

rolls and the central second intermediate rolls - which 

is normal practice). 

The camber taken off these diameters for every roll. 

The length and magnitude of first intermediate roll 

tapers fitted. 

The geometry of the mill housing and backing bearings in 

the form of various plant dimensions j eccentricities, 

pitch circle radii, length and pitch of backing bearings etc. 

Number of backing bearings (variable so as to allow 

application to any 20-high Z mill). 

Strip width. 

Strip annealed gauge and yield stress. 

Entry and Exit gauges and tensions for the present pass. 

Setting of Screwdown rack (in operator's divisions). 

Setting of all eight As-V-Roll racks (perturbation) 

(operator's divisions). 

Setting of both side eccentrics (in operator's divisions). 

Setting of upper and lower first intermediate roll tapers. 
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Clearly, much of this data will not be varied from 

one run of the model to the next. Therefore such data 

are fixed at the beginning of the programme, and are only 

alterable by editing the appropriate file. The remainder 

of the data are input from the keyboard or batch file 

1n answer to programme prompts. 

The output data from ZMODEL includes the following 

land much more besides!):-

All input data for verification. 

Rolling load predicted by the roll force model~ together 

with accuracy indication. 

All force components and angles shown on figure 3.16. 

B.O.E.F. foundation moduli. 

Forms and magnitudes of loadings transferred via the 

backing bearings. 

All data required by the second half of the model 1S then 

written onto a disc file and the first programme terminates 

with a suitable prompt to the user or batch control 

programmes to run the second half of the model. 

Programme ZMODL2 requires as input data: 

All the data stored on disc by ZMODEL (which 1S checked 

for sensible values as it is read in automatically). 

The number of points along the various rolls at which 

deflection is to be calculated. 

The numbers of forces to be calculated to act on each rollo 

Options for graph plotting and shape calculation (see 

below). 

The output from ZMODL2 includes:-

Tables of deflection values taken along the 2IR, lIR and WR. 
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Optional graphs plotted on a ClL plotter to include any 

or all of the workroll deflection profiles due to each 

force acting upon the workroll, the total workroll de

flection profile, and an amplified version of the de

flection over the strip width. 

Tables of roll gap magnitude vs. distance across the mill~ 

together with strip gauges and shape. These may op-

tionally be given at the shapemeter rotor centres~ at 

eight points across the mill, or at eight points across 

the strip (see below). 

One set of model results occupies typically seven 

sheets of 120 character line-printer paper, and cannot 

therefore readily be reproduced in a form suitable for 

direct inclusion in this thesis. However, selected re-

suI ts and sample graphs are discussed below. 

Now for the purposes of a control scheme design, 

what we require is a gain matrix for the mill. This 

takes the form of a matrix of shape sensitivities to 

actuator movements. The initial work on the control 

system (Chapter 6) assumed for simplicity a system of 

eight As-V-Roll actuators controlling the shape at eight 

points measured across the mill, yielding obviously an 

8 * 8 system. The mill matrix for such a system (ttPlant 

matrixtt) is given as 
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gIl gl2 glJ· • • • • • • • • • • • • • • gl8 

g21 g22 g2J· • • • • • • • • • • • • • • g28 

- • • • • 
G = 

P • • • • 

• • • • 

g81 g82 g8J·············· ·g88 

where g .. represents the shape gain of the j th As-V-Roll 
J..J 

actuator from the front of the mill, at the ith section of 

strip from the front of the mill (in units of shape change 

-2/ per unit rack displacement, Nm m. 

more practical unit). 

However, Nmm- J is a 

To obtain such a matrix, the entire static model is 

run eight times J..n succession. Each time, one As-V-Roll 

rack only is moved by a given small amount. The vector 

of eight shape values across the strip given by the run 

is then divided by the As-V-Roll motion thus giving the 

column of the gain matrix corresponding to the As-V-Roll 

which was moved. Therefore eight runs give the entire 

matrix. 

For practical cuntrol schemes however (see chapter 

6), the matrix will not be 8*8 j but will be of size N*8 

where N is the number of covered shapemeter rotors. 

Nevertheless, the same procedure applies, and each of 

the eight runs of the model will yield an N-vector for 
N ,.. 

one column of G , where G is now:-
p p 
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0' 

°Il g12················· ··g18 

IV g2l 
G : 

g22· • • • • 0 • • • 0 • 0 • • • • • • • g28 
p 

• • • 
• • • 
• • • 

gNl gN2 • • • • • • • • • • • • • • • • • • • gNB 

3.12 Discussion of Results 

Very many runs of this static mill model have been 

carried out for various purposes~ bu~ it is not intenden 

to present here a vast anthology of results. Rather~ 

the mill gain matrices produced by the model will be dis-

cussed (since these are its major raison dietre). 

Furthermore~ the matrices for only a limited range of 

parameters will be considered - namely those most rel-

evant to the present studies. 

Many model parameters were held constant during all 

the runs to be described~ and these are as follows (based 

upon practical values in the main):-

For roll material~ Young's modulus = 203*109 Nm- 2 

Poisson's Ratio = 0.3 

Roll diamters (m):-

these runs) 

9acking Bearings 

All Second Inter.Rolls 

First Inter.Rolls 

Workrolls 

Length of roll barrels = 1.7m 

(zero roll cambers were used for 

0.405 

0.235 

Oo13! Plus a section 0.559m 
long tapered at 2mm/m 
off diameter. 
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Mill Geometry 

Separation of central backing shaft centres (e.g. B & C) 

= 0.419m 

Separation of outer backing shaft centres (e.g. A & D) 

= 1.094m 

Separation of central and outer backing shaft centres 

(e.g. A & B) 0.423m 

Number of backing bearings = 7 

Length of barrel of each bearing = O.171m 

Pitch of bearings = 0.221m 

Screv;down di sc ec centrici ty = 8.89 *10- 3m 

As-U-Roll ring eccentricity = 1.55*10-3m 

Side eccen~ric disc eccentricity = 4.44*10-3m 

Miscellaneous 

Amount of first inter-roll tapers in play = 0 

Strip incoming gauge = 2.4*10-3m 

Strip incoming camber = 0 

Roll gap coefficient of friction = 0.06 

9 -2 Young's Modulus for strip = 203*10 Nm 

Other model parameters were perturbed to investigate 

their effectsj but the values unless otherwise stated 

were as follows:-

Screw"down Position o (Datum) 

Side Eccentric Positions = 0 (Datum) 

As-U-Roll positions = 0 (Datum) except for the single 
As-U-Roll perturbed to produce 
the appropriate column of the 
gain matrix j which is moved to 
-0.54 operator's divisions.-

Strip width:: 1.61m (to give all 31 shapemetel~ rotors 
covered) 

I. - 3 Annealed gauge of strip = 2.~*10 m 

(Con-c'd.) 
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Yield stress curve = INCO curve of yield stress vs.reduction 
for ENJ04 stainless steel. 

Exit strip gauge = 2.0S*lO-J m 

Back Tension = lJ4*10JN 

Front Tensi'ln = 19l*10JN 

This set of data yields the cluster angles and force 

componen"ts (see fig.J.16) below') which may be compared 

with those given in sec'tion J.J (following equation (J.41». 

8
1 

.: 0° Fl = P
T 

6
2 = 40.J

o 
F2 = 0.555 PT 

e
J = 2J.J

o 
F

J 
I: 0.219 P

T 

8
4 = 59.7

0 
F4 :: 0.591 P

T 

e_ - 78.J
o 

F5 :: 0.5J6 P
T -) 

6
6 = 40.8° F6 :: 0.266 P

T 

e
7 

:: '±.4° F7 = 0.191 P
T 

88 
0 

F8 0.42J = 22.2 :: PT 

(the cluster is symmetrical under these conditions 

so the right-half valpes are iden'tical). 

The rolling load PT is calculated as Jo25*106 N under 

these conditions j with a deformed workroll radius of 

This represents a fairly light loading for 

this mill. 

The gain matrix corresponding to t~is standard set 

of data') and evaluated at eight points across the strip 

is given in Appendix 5 (section A5.8)o Every element 

in the matrix has been treated with a simple scalar 

multiplier (the same for each element) to give these 

values. This \\'"as done in the light of early plant tests 'j 

to give vailles in cl()ser agreement wi t~"l reali ty than 
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the untreated model. The multiplier is 0.0034. One 

possible reason for this requireme.n.t is the simplistic 

approach to the calculation of the actual strip shape 

(equation (J.118» in which Young's modulus is used as 

a multiplier. It is very probable that, due to the 

plastic natllre of the rolling process~ a value of gradient 

on the portion of the stress-strain curve above the yield 

point should be used ra ther than Young's modulus (~~hich 

is'l of course'l t~e gradient below the yield point). For 

the material in question~ this upper portion o~ tIle curve 

flattens out very significantly~ and the factor given 

above is qui~e feasible. All the matrices to be dis-

cussed have been processed in this way to allow direct 

comparison. 

The matrix of A5.B may be compared with that given in 

A5.9 which was derived by Gunawardene for simi13r 

con d i t ion s ( Re.f • 16 ~ sec t ion 6. 6 \I p. 151 ). It can he seen 

that the two models are in good basic agreement) although 

the present model's computer execution time is only a 

small fraction of that of Gunawardeneus model. Further-

more~ it can be seen thaL the matrix produced by the 

present model exhibits the absolute symmetry which is 

expected under the conditions for which it was run 

(i.e. g .. = g(9 .) (c\ .»~ whereas numerical errors in 
1J -1 , 7-J 

Gunal~ardene' s model have disl:'upted this to some extent 

in the matrix of A5.9. This is due to tile muc~1 greater 

computational comvlexi ty of Gunil.wardene' s model - ,~hich 

does~ however, payoff in other respects (see later). 
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Another feature of the matrix is that i as expected
j 

vertical columns sum to zero (within rounding errors); 

since shape is displayed with respect to mean the 

average value across the strip (down the colum~) must be 

zero. The horizontal rows should also sum to zero (if 

each As-U-Roll is moved by the same amount, a pure gauge 

change will result - not a shape change)~ but this is not 

actually the case ~ small errors being present. The 

discrepancy is due to numerical errors .. but is generally 

less than the errors in the matrix of A5.9. One unusual 

feature common to both models is that As-U-Roll number 2 

appears to have a greater effect upon the portion of strip 

nearer to As-U-Roll number 1 than does As-U-Roll nu~ber 1 

itself (i.e o g12>gll). This is at first sight, incorrect .. 

and has not been conclusively observed on the plant~ but 

a tentative explanation is possible (this applies to the 

present model i i.e. to the matrix given in A5.8) ftnd is 

now proffered. 

Figures 3.4l(a) to 3.4l(d) give the workroll deflection 

graphs produced by the model during calculation of the 

matrix of A5.8. Graph (a) is the deflection due to motion 

of As-U-Roll 1 only .. graph (b) is for As-U-Roll 2 only, 

etc. As-U-Rolls 8,7 .. 6 and 5 simply produced mirror 

images of the graphs for As-U-Rolls 1,2,3 and 4 re

spectively. Consider graphs (c) and (d), and notice that 

the deflection profiles are extremely similar both in 

form and magnitude, being simply shifted laterally to 

coincide with the appropriate As-U-Roll position. This is 

due to the fact that for both these As-U-Rolls there is 

164 



( -~ 

1-' I 
,-,'::::J -i 
1'_ .. I 

::: I 

-'I 1 

1- -! 
ill , 

Cl 
Z 

C) 

, 
i0 

I
, ,.,-

I~ 

(j'.':'; I 
'--' -

r~ 

1-'~ 
'-- , r-:: ;,:, 
, ,-y, 
-,-,", 

I I 

I 
'Ii 
. I, 

r---'\ .... '.., 
\.. ; 1 ... .,1 

-r-· 
CJ 
Z 

-...J 

, 
w 

Fig.3-41 

/ 

(a) 

( b) 

Workroll Deflections for 1·61m Strip 

165 



o 
z 

(...J 

I 
r-J 

_">. 

W 

C..J 

r-..; 

1---< 

o 
z 

I 
f'\..l 

-" w 

Fig.3·41 

I I 
J.·3l J.f)2 

o J STqNCE-~ 

(ontd. 

166 

I 
J.Cl2 

( ( ) 

R· "Nr . LLJ. 0 

I 

1 .21 

R,-.. : 
I 'I . U 

(d) 

I 
1 r:. ... 
.L • ....J • 

L 



plenty of strip to either side of the As-V-Roll location~ 

and the strip edges have no effect therefore. Consider 

now graph (b). Here~ the edge of the strip becomes 

significant. It is placed at 0.045m on the horizontal scale~ 

whilst As-V-Roll 2 is at 0.275m. The downward motion of 

the As-V-Roll rack will therefore cause a certain amount 

of force on that part of the workroll which is unsupported 

to the left of the strip edge. This is treated as a 

contilever and is expected to deflect much more than when 

strip is present (as will be seen by comparing the maxi-

mum deflection of graph (b) with graphs (c) or (d». 

Graph (b) exhibits two distinct portions to the deflection. 

The portion over the strip (from about 0.15m to 0.92m) 

exhibits similar behaviour to the right-hand portions of 

graphs (c) and (d)~ tending to IIbottom out ll at 

approximately -2.8*10-5m• The cantilevered portionj 

however, deflects more easily and causes thinning of the 

strip edge as it runs into the supported portion thus 

building up the entire graph. Now, in graph (a)~ 

As-V-Roll 1 is virtually coincident with the strip edge. 

Therefore j its influence on the supported portion of the 

strip is not as great as that of As-V-Rolls 2~3 and 4. 

The "supported tl portion of the deflection curve~ such as 

-5 it is, appears to tlbottom out" therefore at say -1.5*10 m. 

However, the As-V-Roll (1) is not actually over the un-

supported portion of the workroll (as would be the case 

for narrower strips) and its influence on the cantilevered 

portion is therefore not much greater than that of 

As-V-Roll 2. The net effect consequently is that the 

maximum deflection due to As-V-Roll 2 is greater than 
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that due to As-U-Roll 1, hence the entries in the gain 

matrix. It is stressed that the Author does not have 

great confidence in this "explanationtl9 and clearly more 

work is possible in this area. 

The 8 x 8 matrix discussed above is of little 

practical use, and was included simply to allow comparison 

with the work of Gunawardene. The practical matrix for 

1.61m strip is actually 31*8 (ioe. shape calculated at 

each covered shapemeter rotor) and is given in Appendix 59 

section A5.10. The same comments apply as for the matrix 

of A5.8 i which in fact describes precisely the same con-

ditions (for example, row 1 of the A5.8 matrix lies at a 

position on the strip between rows 2 and 3 of the A5.10 

matrix, whilst row 4 of A5.8 is almost coincident with 

the position on the strip of row 14 of A5.10 i etc.). 

This is the matrix which will later be used to represent 

the plant in simulation studies (Chapter 79 section 705). 

The model was run to produce such matrices for several 

different strip widths. Sections A5.11 and A5.12 of 

Appendix 5 give the matrices for 1.3m strip (25 covered 

rotors) and 0.99m strip (19 covered rotors) respectively. 

For an identical rolling schedule except for narrower 

material, the rolling load would be expected to reduce. 

This is found to be the case, the rolling loads for 1.61m 

6 
wide, 1.3m wide and 0.99m wide strip being 3.25*10 Ni 

2.53*106 N and 1.8l*106N respectively as given by the model. 

As the strip becomes narrower, the roll flattening 

therefore reduces. The elastic foundation constants are 
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therefore somewhat reduced, which implies that a given 

deflection forced onto the second intermediate rolls by 

the As-U-Rolls, will produce lower loadings upon the 

other rolls in the cluster i and less deflection of the 

strip. The elements in the gain matrices would there-

fore be expected to reduce as one progresses from section 

A5.10 to A5.12. It appears initially however, that this 

is not the case i as the eye automatically begins to scan 

the matrices from element gIl- However~ we can only 

directly compare the actions of As-U-Roll racks which are 

well over the strip for every width considered, so that 

strip edge effects are excluded. This limits the com-

parison to columns J,4,5 and 6 of the matrices. In ad-

dition, we can similarJy only compare the shape at rotors 

which are not much affected by As-V-Rolls other than 

J~4,5 and 6 for the same reason. This limits us to the 

middle 11 rows or so of each matrix. Thus only the 

central 11 rows and 4 columns may be compared fairly. 

When comparison is limited in this manner i it can be seen 

that the gains do in fact decrease with decreasing strip 

width. For example, taking the middle row and column 4 

in each matrix (A5.1 0 , A5.11 and A5.l2) as the strip 

width decreases 1.61m, 1.Jm, 0.99m; the gain decreases 

-J 1.IBNmm , -J B-J 0.9JNmm ,0.5 Nmm • The reason for the large 

gain increases in other parts of the matrix (e.g. element 

gIl) is that as the strip becomes narrower, the outer 

As-V-Rolls do not lie over the strip at all, but over 

the unsupported (cantilevered) sections of the upper 

workrolls. There is consequently only a relatively small 
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resistance to deflection, and some very large deflections 

indeed are given by the model at the workroll ends. The 

effect of this is to bend the cantilevered sections over 

the strip edges like a lever, giving much greater re

ductions in the edge zones than might be expected~ and 

therefore higher gains. That having been said~ it must be 

admitted that these peripheral gains are thought to be 

much too high under these conditions. There are various 

reasons for this~ but one of the main inac~uracies in the 

model is probably the manner In which loadings on the 

unsupported workroll ends are calculated and handled 

(section 3.9), and it has already been said that further 

work is required in this area. Also~ no facility has 

so far been included in the model to allow for the ends 

of the upper and lower workrolls coming into contact 

when rolling narrow strip. This would also reduce these 

large peripheral gains, as the leverage effects of the 

cantilevered roll ends on the strip edges would be 

greatly reduced. The lack of confidence in the mill 

matrices for very narrow strip is not a serious problem 

however, as most of the control system design and simu

lation (see later chapters) uses wid~strips. Where 

narrow-strip matrices were required~ the extreme elements 

were intuitively adjusted to more believable values. 

The srrip width 'vas held at 1.61m for all the remaining 

model runs reported in this section. 

The next area of investigation was the effect of strip 

hardness. The annealed gauge of the strip was changed to 

4.0mm j whilst the incoming gauge was maintained at ~.4mm. 
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This had the effect of simulating a much harder material j 

as a 40% reduction of the material must have occurred 

before the present pass, The input yield stress according 

t th d 1 h f 8 6 -2 8 6-2 o e mo e c anged rom 27 *10 Nm to 10 7*10 Nm due 

to this alteration. It would be expected~ all other things 

remaining unchanged, that the rolling load would heed to 

increase accordingly, and this was the case. The model 

6 gave a load of 8.2*10 N as opposed to the previous 

For harder materials then j any given loading 

has less effect, and the gains are therefore expected to 

decrease and this was found to be the case. The gain 

matrix is not reproduced here as it is similar to A5.10 

in structure; suffice it to say that all elements 

experienced a reduction of 2 to 5% compared with section 

A5.10. There was a tendency for the lower reductions 

to occur in the body of the matrixj but this was not 

exclusive. 

The next parameter to be changed was the reduction 

taken during the pass. Two runs will be considered. 

Firstly, an output gauge of 1.7mm instead of 2.05mm 

(an increase of 100% in reduction) and secondly an output 

gauge of 2.25mm (a decrease in reduction of about 60%). 

The 

and 

6 
rolling loads were given by the model as 5.9*10 N 

1.8*106N respectively. By the argument used previously 

to explain the effect of narrower strip widths~ the gains 

would be expected to increase for higher reductions and 

decrease for lower reductions. This was observed to 

occur. For the higher reductions~ all gains increased by 

an amount 18 to 20% uniformly distributed around the 
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matrix. For the lower reductions~ a similarly distributed 

reduction of 6 to 8% was noted. 

For an increase in (front) tension on the stripj the 

same reduction should require a lower rolling load. This 

is coftfirmed by the model. However, sufficiently large 

tension changes to cause meaningful load changes were 

not possible (due to pulling the neutral angle outside 

the roll gap for example), and therefore the effects on 

the gain matrices are not clear. From the previous 

arguments~ it would be expected that higher front tensions 

(lower rolling load) would decrease the gains. However, 

with a tension of 286*103 N instead of 191*103N , the 

rolling load decreased by some 0.8%, and the gains appeared 

actually to increase. Since the percentages involved 

(typically 0.008%) are negligible~ no further analysis 

was attempted. 

Finally~ the effects of changing the cluster geometry 

bear a mention. As an example~ if the screwdown rack 

and each side eccentric rack are moved from the datum. 

positions to +5 operator's divisions (half scale)~ the 

model gives the following geometry (see fig.3.16):-

8
1 = 0 0 

Fl = P
T 

8
2 = 38.1

0 
F2 = 0.635 PT 

8
3 = 22.1

0 
F3 = 0.236 P

T 
8

4 = 59.6
0 

F4 = 0.557 P
T 

8
5 = 78.3

0 
F5 = 0.502 P

T 

8
6 = 41.1

0 
F6 = 0.290 P

T 

e~ = 3.6
0 

F7 = 0.180 PT 
( 

8
8 = 24.3

0 
F8 = 0.437 P

T 

The rolling load P
T is still 3.25*106 N• 

172 



As a result, the gains are reduced by 7 to 11%. The 

reason for this is simply one of force resolution - more of 

the effort produced by the As-V-Rolls goes into the mill 

housing rather than the strip for this geometry. 

To sum up, the results have in general confirmed the 

correct qualitative operation of the model. Chapter 5 

describes an attempt to verify the quantitative operation. 

The resultant gain matrices for wide strips appear to be 

realistic enough to use in plant simulations and control 

system design (nothing more reliable being available). 

The model is very much faster in execution than that of 

Gunawardene (16), but results of the latter model appear 

more plausible for narrow strips at present. 
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CHAPTER 4 

DYNAMIC MATHEMATICAL DESCRIPTION OF THE PLANT 

4.1 Introduction 

In order to carry out a control scheme design~ it is 

necessary to know the plant transfer functions. Compared 

with the static model~ the dynamic description of the 

plant is fairly straightforward. The mill cluster itself 

is considered to be non-dynamic, and is represented only 

by the gain matrix relating shape changes to actuator 

changes (see Chapter J). That is to say, when an 

actuator moves, the response at the roll gap is taken to 

be instantaneous. 

This chapter therefore develops transfer function 

representations for the remaining elements of the plant; 

namely the As-U-Roll actuators, the first intermediate 

roll lateral motion, the dynamic transfer of strip 

shape from the roll gap to the shapemeter and the shape-

meter system i,tself. The controller dynamics are con-

sidered in Chapter 6. 

4.2 The As-U-Roll Actuators 

Figure 4.1 gives a schematic representation of the 

manual system of As-U-Roll control which has always 

existed on the mills in question. The mill operator is 

provided wi th a separate "Raise-Off-Lo,ver" swi tch for 

each of the eight actuators, and a position transducer 

(in the form of a linear variable potentiometric type 

of transducer) supplying a meter indicating the actuator's 

+ 
position to the operator on an arbitrary scale of -5 

17.+ 
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divisions. Whenever the operator engages the "Raise" 

or "Lower" switch positions, the As-U-Roll rack moves at 

a nominally constant rate, i.e. the system is "bang-bang". 

For each As-U-Roll the operator's switch controls relays 

which~ in turn, energize hydraulic solenoid valves feeding 

a hydraulic motor. 

rack. 

This motor is geared onto the As-U-Roll 

Clearly, closed-loop control of these actuators is 

desirable if they are to form part of an automatic scheme. 

The optimum means of providing such control would be to 

replace the bang-bang elements with a proportional 

servo valve system, but this was not possible for 

financial reasons. Therefore a simple closed-loop system 

around the existing plant has been incorporated in the 

system software. This takes the form of figure 4.2. 

The transfer function of the hydraulic valve (time 

constant) has been estimated from plant tests (see 

Chapter 5.). The transfer function of the rack is an 

integrator whose gain is found from the rack velocity. 

Although this velocity is nominally fixed j the hydraulic 

supplies to the hydraulic motors are fitted with variable 

restrictions in each direction, so that in practice each 

rack may raise and lower at different rates. Furthermore j 

the hydraulic supply to these motors is not rated to 

drive all eight actuators simultaneously~ therefore the 

rate at which any actuator moves will change depending 

upon how many other actuators are moving at the same 

time. The "demonstration" rack gain given in the figure 

is a value obtained for one actuator moving alone before 
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the plant engineers slowed down its response at the 

Author's request, - the "actual tl value was then obtained 

(see Chapter 5, section 5.4.1). Some backlash is to be 

expected in the rack mechanism, and this is therefore 

also shown in figure 4.2. The lIactual" magnitude of 

the backlash has also been estimated from plant tests. 

The controller simply takes the form of a small pro-

portional gain and an imposed dead-band to prevent system 

hunting (which would shorten the life expectancy of the 

mechanical components). The initial selections of con-

troller gain and dead-band were made by digital and 

analogue dynamic simulations discussed in Chapter 7. 

For the purposes of control system design and Slm-

ulation (see Chapters 6 and 7) the non-linear As-V-Roll 

system has been replaced by a second order system which 

gives a comparable response to the system of fig.4.2 

under simulated conditions. The resultant system is 

described by 

g (s) = 
a 

where 
K~ = 1.0 

a 

w = 1.95 a 

~a = 0.85 

K~ 2 tq 
a a 

2 2 s +2~ w s+w . 
a a a 

rad/s or 

(for "demonstration" system) 

KI' 
a 

w 
a 

~a 

(For 

and s = Laplace Operator 

...... (4.1) 

= 1.0 

= 0.4 rad/s 

= 1.0 

"actual" system) 



Figure 4.3 shows a step response as an example of 

the representation of the non-linear system by equation 

(4.1). The reason for using the somewhat unreal values 

of the "demonstration" system is to illustrate where the 

lack of fit occurs at the origin of figure 4.3 For the 

ltactual" values, the fit is much better in this area as 

the effective dead-band width (d /K ) is much smaller. 
a a 

(However, the fit at the "top" of the characteristic is 

not quite so good). 

Since the actuators are not mutually interactive j 

the block diagram matrix (Ga ) is simply G
a 

= ga(s).I
B 

where 

(4.1) 

g (s) is given by the tlactual" values J..n equation 
a 

,..., 
and 18 is the identity matrix (8 square). 

It is also worth reiterating at this point that 

constraints are imposed by the mill manufacturer upon 

the relative positioning of adjacent As-U-Roll actuators. 

This is designed to prevent attempts at excessive backing 

shaft bending gradients, or excessively sharp maxima or 

minima in the bending profile - any of which could 

damage the mill. The means of ensuring compliance with 

these constraints are discussed in detail in Chapter 8 

(section 8.2). 
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4.3 First Intermediate Roll Lateral Adjustment Actuators 

The manual system for control of the first inter

mediate roll lateral positions is very similar in concept 

to that previously described for the As-U-Roll systems. 

Again the operator is provided with three position 

switches (II In-Off-Outll ) which control "constant" speed 

hydraulic motors (about 590rpm) via relays and hydraulic 

valves • The major differences are that the drive is not 

directly transmitted to the rolls~ but is fed via quite 

long runs of chain drive and gear trains (overall 

reduction ratio about 18.7:1) which drive an internally 

threaded thimble (see figure 4.4). This thimble is 

rotated by the chain drive (at about 31.5rpm) and en

gages a non-rotating threaded section coupled to the end 

of the first intermediate roll~ which is therefore moved 

into or out of the threaded thimble depending upon the 

thimble's direction of rotation. The pitch of the thread 

is about 6mm9 giving a lateral velocity of 3.l5mm/s. 

In addition, the position indication device is more complex. 

A selsyn transmitter is driven by one of the intermediate 

shafts in the chain drive system. This is cabled to a 

matching selsyn receiver mounted at the front of the mill. 

The shaft of the receiver drives via a gear train onto a 

leadscrew arrangement 9 which linearly moves an indicating 

pointer visible to the mill operator. Apart from these 

differences (mechanical drive arrangement and trans

ducer)9 the system can be represented by the same 

schematic diagram and block diagram (minus the controller 

and feedback) as the As-U-Roll system (figs.4.1 and 4.2). 

180 



Chain 1 
Drive Coupl ing -

Threaded Couples Translation, 

,--+~--!-_Drfg-Link ( Isolates 11 R Rot ati on 

Inter. Roll 
~ .. ..... 

T T 
Key: 
R - Rot a t i on 0 nl y 
T - Translation Only 

Fig.4-4 First Intermediate Roll - Lateral Drive 

~ -I 
operator 

switch 

Wher e: 

TF = ·1 S 

KF = 3'15mm/s 

.. J. 
1 + STF 

valve and 
motor lag 

b = • 5 m m (e s t i ma ted) 
F 

Fig. 4·5 B to c k D i ag ram 

181 

~ 

I(~ zf ~ -S 

dr i v e b a c k l as h 
sy s t e m 

Lateral 
ition Pos 

• 



However, the coarse-pitch chain drive system gives rise 

to greater backlash than in the As-U-Roll system. Never

theless, when this backlash is referred to lateral first 

intermediate roll motion, its effect is greatly 

attenuated by the reduction gearing giving the system shown 

ln figure 4.5. 

The automatic scheme for these actuators takes the 

same form as fig.4.2, but extra transducers had to be 

introduced onto the plant to avoid the conversion of the 

selsyn signals (for financial reasons). These were of 

potentiometric type, of rugged construction so as to 

withstand the plant environment. 

4.4 Transfer of Strip Shape Between Mill and Shapemeter 

Consider initially a gauge (thickness) change 

occuring at the roll gap. If this is to be measured by 

a gauge transducer some distance downstream of the mill~ 

then a transport lag (distance/velocity lag) would exist 

between the gauge changes at the roll gap and at the 

transducer. Consider now a change in mill exit tension. 

Such a change would have instantaneous effects both at 

the roll gap and at a downstream tensio:meter. Since a 

change in strip shape is conceptually a hybrid of these 

two cases, it is to be expected that some transport lag 

will exist between the mill and the shapemeter~ but that 

this will not necessarily be of the magnitude expected 

due to strip velocity and the distance of the shapemeter 

from the roll gap. An ancient principle due to St. 

Venant (referenced in (J6)) suggests that stresses 
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existing at some section across a steel strip, will decay 

to zero (given that the strip is not subjected to 

external stresses also) within say one-and-one-half strip 

widths of the section. We can therefore postulate a 

transfer function for the strip between the roll gap and 

shapemeter of the form 

g (s) = 
s 

-sT e sl 

1 + sTs2 

. . . . . (4.2) 

where Tsl = distance/velocity lag for distance from 

mill to shapemeter minus l~*strip width 

Ts2 = time constant for the build-up of the 

differential tension readings to the maximum 

For plant values~ this suggests 

T ~ 
sl 

T ~ 
s2 

2.9 - 1.5w 
v 

w 
0.3 V 

where w = strip width (m) 

v = strip velocity (ms-
l

) 

. . . . . (4.3) 

Plant trials (see Chapter 5) have been carried out 

to test the validity of equations (4.3). 

As in the case of the As-V-Roll actuators~ there is 

assumed to be no interaction between the transfer 

functions of each "ribbon" of strip 

corresponding to one shapemeter rotor (although there 
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will in reality be some small cross-coupling) so that 

-the overall transfer function matrix G (s) contains one 
s 

independent g (s) per covered shapemeter rotor. 
s 

Further work is possible in this area which is very com-

plex if treated rigorously, and is not yet well understood 

judging by the dearth of available literature on the 

subject. 

4.5 The Shapemeter System 

The electronics of the shapemeter system are fairly 

complex, and therefore no attempt has been made to derive 

a transfer function by analysis of the circuitry. Perusal 

of the shapemeter manuals indicates that the system gain 

is switched under various conditions~ but this must clearly 

be done in order only to maintain the same input-output 

calibration under all conditions. Therefore this function 

is Utransparent U to the user, and need not be included in 

the transfer function o 

The system is apparently representable by two 

cascaded first-order lags, one of which is of fixed time 

constant and the other of switched time constant according 

to strip speed. The latter is always much greater than 

the fixed time constant, and therefore a representation 

(relating measured shape to strip shape) of 

I 

. . . . (4.4) 
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will be used, where 

T 4035 (0. 3<v~ 1.0 -1) = ms 
m 

T 
rn = 1.43 (1. O<v~2. 0 rns -1) 

T = 0.74 
m 

(2.0<v~5.0 ms -1) 

T 
m = 0.3 (5. O<v~15. 0 rns -1) 

T 
rn = 0.19 (15. 0<v~30. 0 ms -1) 

(All time constants in seconds) (c.f. Table 2.1 7 

Chapter 2). 

The shapemeter rotors do not interact with each other, 
,." 

so that the overall transfer function matrix G (s) simply 
m 

contains one g (s) per rotor. 
m 
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CHAPTER 5 

PLANT TESTING FOR MODEL VALIDATION 

5.1 Introduction 

In work such as the present project, heavily reliant 

upon modelling, it is a general principle that any mathe

matical model purporting to represent a physical plant or 

system, should be checked against the plant or system to 

confirm its accuracy. This laudable intent however, 

cannot always be accomplished for a variety of reasons -

unobservable plant, safety constraints, financial con

straints etc., (which indeed are often the reasons for 

modelling in the first place). Nevertheless, it is 

certainly good policy to validate models wherever possible. 

That having been said, anyone who has understood the 

preceeding two chapters will realise that there are great 

difficulties in validation of some of these models, and 

rigorous validation is virtually impossible. Logging 

equipment valued at well over £100000 has been employed 

(some of it specifically designed and constructed by the 

author) in efforts to prove the validity of the models, 

and this chapter describes these efforts and their results. 

It should be pointed out that at the time of writing, 

plant tests are still being carried out further to refine 

the models, and results are therefore to some extent 

open-ended. 
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5.2 Test Instrumentation and Set-Up 

Various conf~urations of test equipment have been 

employed from time to time, but figure 5.1 gives a good 

indication of the type of systems used. 

The equipment was installed in the mill computer room, 

where most of the required signals were available. Brief 

details of the equipment shown in the figure are given here 

for interest (other equipment was also used as required). 

Signal Isolation - Direct Current Isolator (DCI) units to 

isolate up to 2kV, designed by B.S.C. Sheffield 

Labs. and built by outside contractors. Multi

range inputs for ±lOVd.c. output. 

Signal Conditioning - Operational amplifier units connected 

to patch panels allowing various configurations, 

galns and filters to be selected. 24-channel 

units designed by B.S.C. Sheffield Labs. and 

built by outside contractors, 32-channel unit 

designed and built by the author. 

32-Channel Analogue Multiplexer Unit - Accepts up to 32 

analogue inputs in the range ±lOV d.c. 

Simultaneously samples and holds, then sequent

ially outputs to a single output channel. 

Single-Shot, or repeated sampling up to 10Hz. 

Designed and built by the author. 

l4-Channel Instrumentation analogue magnetic tape recorders -

Type SE7000 (Thorn Erl1 Datatech). 
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24 Ch ' {SE2ll2 - annel Ultra-Vlolet Oscillographs - Types SE6800 

(Thorn EMI Datatech). 

X-Y-t Analogue Plotter - Linseis - Type LY1800 or Bryans-26000. 

Microprocessor - based data logger - Uses a single-board 

microcomputer marketed by J.B. Microsystems Ltd. 

(see Appendix 7), software developed by B.S.C. 

Sheffield Laboratories (by englneers supervised 

by the author). 

The plant connections, and also the interconnections 

between the various items of instrumentation, were made ln 

such a manner that the set of recorded parameters could 

easily be changed for different investigations. 

A typical set of logged signals comprlses:-

All eight As-U-Roll rack positions (continuous) 

Upper and Lower First Intermediate Roll Lateral 

Positions (continuous) 

Strip shape at 31 points across the mill multiplexed 

to a single channel so as to mimic the operator's 

display (sampled at a rate appropriate to the 

purpose of the trial). 

Strip speed (continuous) 

Tensions 

Gauges 

Strip Width 

Other signals as appropriate 
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5.3 Static Model Validation 

The aim of these tests was to obtain a steady shape In 

the strip, make a small measured movement of a single 

As-U-Roll actuator, and record the effect upon strip shape. 

So long as records were made of the schedule being rolled; 

the actuator settings for screwdown, As-U-Rolls, side 

eccentrics and first intermediate rolls; tensions, speed 

and other mill parameters, then the same small As-U-Roll 

change should be able to be run VIa the static mill model, 

to produce a good approximation to the shape change observed 

on the mill. These small As-U-Roll changes could be made 

during normal mill production on the early passes of multi

pass coils without harming the eventual end product. 

As an aside, it may occur to the reader that correlation 

methods of identification (see for example (40)) could well 

be employed here. In fact, correlation equipment and pseudo 

random binary sequence generators were available at 

B.S.C. Sheffield Laboratories; but since the principal 

action of the actuators is that of an integrator, and since 

significant non-linearities were thought to exist In the 

system, and also it would not be easy to interface a PRBS 

with the "bang-bang" mill systems, this approach was 

rejected. 

In practice, it proved exceedingly difficult to obtain 

a change of shape on the plant (by the above means) which 

could be definitely tied down to As-U-Roll motion and no 

other cause. This was basically due to two effects. Firstl\" 

small random variations of the shape display occur con

tinuously at a frequency which is too low and irregular to 

190 



be ascribed to normal "noise". Their origin 1S therefore 

either in the strip itself, or due to sporadic electro

magnetic effects from other parts of the plant. In either 

case, their magnitude is significant compared with the 

changes in shape which can be deliberately introduced 

without risk of damaging the (very expensive) material 

being rolled on the mill. The second problem was that the 

mill operators were only prepared to make these deliberate 

As-U-Roll disturbances on the first or second pass of a 

mUlti-pass coil, so that plenty of opportunity existed to 

correct the deliberate errors thus introduced. On such 

passes, the strip is often travelling very slowly, when 

the shapemeter readings may not be accurate. Furthermore, 

it was not possible to conV1nce the mill operator to allow 

the "error" introduced to remain long enough for a steady

state to be achieved before he felt obliged to correct it 

again, fearing damage to the rolled material. In fact, 

up to the time of writing, no really satisfactory result 

has been achieved, in spite of many efforts spaced over a 

period of some four or five years! 

Typical of the results obtained is the following set. 

It does tend to confirm the philosophy of the model, as will 

be seen in the ensuing discussion, but there are areas of 

doubt which are unresolved. 
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Trial Parameters 

Rolls: 

DB = 405mm 

D2D = 235mm (D 21 assumed, no record available) 

Dl = 134mm, with 584mm length tapered off diameter 
at 2.5mm/m 

D = 84mm (top) , 101mm (bot tom) w 

Cambers:- 0.15mm (top idler), 0.36mm(bottom idler), 

O.lmm (workrolls - assumed) 

0.15mm (first intermediate rolls) 

Strip Material: EN304 stainless 1.016m wide, 

annealed gauge 2.95mm, input gauge 1.52mm, exit gauge 1.29mm 

Mill Setup: 

Front tension 450 kN, back tension 425 kN, screwdown 

position 4.5 operator's divisions, both side eccentrics 

4.2 divisions, pushup system 9.8 divisions, upper/lower 

first intermediate roll tapers positioned 110mm/lOOmrn 

over the strip respectively. As-U-Roll positions 

(operator's divisions) prlor to test, 2.0, 1.1, -0.2, 

-1.6, -1.7,-0.5, 0.8, 2.0 

Test: 

As-U-Roll 4 moved from -1.6 dive to -3.6 diVe 
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Shapemeter After Model 
Rotor Before Test Test Change Change 

(6) (-3.0) (-2.9) ( +0 . 1) -
7 +0.1 +0.2 +0.1 -0 . .+ 
8 - - - +0.01 
9 -2.0 - 2 . 1 -0.1 +0.03 

10 -1.7 -1.8 -0.1 -0.1'+ 
11 -0.7 -0.8 -0.1 -0.34 
12 0.4 0.1 -0.3 -0.54 
13 0.6 0.3 -0.3 -0.6'+ 
14 1.1 0.8 -0.3 -0.68 
15 1.3 1.1 -0.2 -0.64 
16 1.5 1 . 2 -0.3 -0.53 
17 1.0 0.8 -0.2 -0.38 
18 2.1 2.0 -0.1 -0.18 
19 0.8 0.7 -0.1 +0.04 
20 0.1 0.1 0.0 +0.26 
21 -0.4 -0.3 +0.1 +0. -+ 8 
22 -0.9 -0.8 +0.1 +0.67 
23 -1.1 -0.8 +0.3 +0.85 
24 -0.2 0.0 +0.2 +1.00 
25 +0.2 +0.7 +0.5 +1.14 

(26) (-1.5) (-1.1) (+0.4) -

Table 5.1 Comparison of Plant and Static Model Shape Values 

(All units are operator's divisions) 

Note that in table 5.1, rotors 6 and 26 were partially 

covered by the strip edges, and therefore gave very low 

readings. Calculations based upon strip width show that 

for a centrally-tracking strip these rotors should be 

covered by only 27% or so, and therefore should not be 

included in the shape display reading (see Chapter 8, 

section 8.6 for a discussion on this point). No reading 

IS available for rotor 8, due to a fault in the equipment 

at the time of the trial. (A crude interpolation based 

upon the mean of the neighbouring values would give - 0.1 

di~ both before and after the test). 
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As would be expected, 1n the fourth column of table 

5.1, the shapemeter rotors nearest to the position of 

As-U-Roll 4 (rotor 14 is below As-U-Roll 4) show a 

loosening of the strip, which gradually reduces and then 

changes to a tightening as one moves away from rotor l~ 

towards the strip edges (so as to preserve the mean level). 

It is likely that the apparently exceSS1ve tightening at 

the rear of the strip (rotors 23 to 25) is due to a first 

intermediate roll movement, which was made by the operator 

before the steady-state readings (given in the third column 

of the table) had been achieved at the shapemeter. 

The static mill model was run with the same set of 

mill and strip data, and the same change was applied to 

As-U-Roll 4. The resulting predictions of shape change 

in the strip are given in the right-hand column of 

table 5.1. It is known (see chapter 3) that there are 

inaccuracies in the static model at the strip edges for 

the case of narrow strips (which 1S the case here) and 

this is borne out by the predictions for rotor 7 and rotors 

20 to 25, the errors being due to the very large de

flections predicted for the workroll ends which are not 

over the strip, as discussed in Chapter 3. (As an aside, 

the model predicted that the front end of the workroll would 

deflect by approximately 0.7mm under these conditions). If 

these areas of significant doubt are excluded, it can be 

seen that the form of the model results is in accord with the 

experimental results, with the maximum loosening of the strip 

at rotor l~. However, the gain of the model appears from 

this test to be too great by a factor of, say, two. ~!uch of 

this error can be attributed to non-linearity in the mill. 
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The As-U-Roll change of -2 divisions represents 20% of 

full-scale, and therefore no longer constitutes a "small 

change". In table 5.2, the column of the mill gain 

matrix produced by the model whilst calculating the 

right-hand column of table 5.1, is compared with the 

19-rotor small-change version taken from column 4 of the 

matrix glven ln Appendix 5, section A5.l2. Indeed, 

if the ratio of the "small-change" to "large-change" column 

entries of table 5.2 is applied as a multiplier to correct 

the corresponding entry in the right-hand column of table 

5.1, m~ny of the entries for rotors 11 to 19 become 

identical to the plant trial results. 

Thus, although there are many uncertainties and 

inaccuracies, the plant tests tend to confirm the pre

dictions of the small-signal gain matrices, except at 

the areas of the strip edges. The edge-effects are much 

more apparent for narrower strip widths, and the model 

is therefore only to be trusted for wide strip. 
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Column 4 of "small- Column 4 of "large-change" 
Rotor change" gain matrix gain matrix (from the 
Number (from section A5.l2) present model run) 

7 1.07 0.72 
8 0.21 -0.01 
9 -0.04 -0.05 

10 0.07 0.25 
11 0.30 0.62 
12 0.55 0.98 
13 0.69 1.16 
14 0.74 1.23 
IS O. 71 1.16 
16 0.58 0.95 
17 0.41 0.68 
18 0.18 0.32 
19 -0.07 -0.07 
20 -0.33 -0.46 
21 -0.59 -0.86 
22 -0.83 -1.21 
23 -1.05 -1.53 
24 -1.23 -1.81 
25 -1.39 -2.06 

Table 5.2 Comparison of Model Gains 

5.4 Dynamic Model Verification 

This section describes the tests carried out to identify 

the transfer functional parameters of the various dynamic 

items of the plant, as modelled ln Chapter 4. 

5.4.1. The As-U-Roll Actuators 

Using the magnetic tape and UV recorders shown in 

fig.5.l, it was a relatively simple matter to move the 

As-U-Roll actuators whilst recording their positions. 

When such a test was first carried out it was found that the 

eight actuators moved at very different rates, a range 

of speeds of 3:1 being apparent. The plant engineers 

therefore adjusted the hydraulic flow regulators to 

achieve more closely matched actuator velocities. The 

resultant response of a single actuator is shown in figure 
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5.2 for the manual control system of fig.4.1 

From figure 5.2, it is clear that the response 1S 

primarily that of an integrator, having a gain of 

approximately IOmm/s. However, due to hydraulic flow

limiting, this gain varies according to the number of 

actuators mov1ng at any given time. If all eight 

actuators should move together for example the gain will 

be of the order of 6.5mm/s. For simulation purposes a 

compromise value of 8mm/s was therefore selected. 

Due to the difficulty of recording the instant at which 

the As-U-Roll rack was asked to move by moving the 

RAISE-OFF-LOWER switch (since the switches,solenoids and 

valves were remote from the recording gear and on a lower 

floor), estimation of the time constant of the hydraulic 

components (Tv in figure 4.2, Chapter 4) and the rack 

backlash (b R in figure 4.2) was postponed until the 

automatic system was capable of closed loop control of the 

actuators. (The controlling digital outputs would then 

be cabled from a position immediately adjacent to the 

recording gear). This is described in section 5.4.4 below. 

5.4.2. First Intermediate Roll Lateral Adjustment Actuators 

At the time of writing, effort has been concentrated 

upon automatic control of the As-U-Rolls,with control of the 

first inter. rolls to be added later. One reason for this 

is the lack of easily calibrated instrumentation around 

these rolls, and the difficulty of providing readily 

zeroed position transducers. The existing transducers Jre 

driven from a leadscrew arrangement running via J gear train 
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from a selsyn recelver, and any measurement of backlash 

using this arrangement would be misleading. For the 

present then, a value of O.5mm is estimated, although 

this may turn out to be rather high. Nevertheless, since 

the first intermediate roll dynamics are not under active 

consideration (at the time of writing) in simulation work 

or controller design, the value will pass for the present. 

The integrator galn was measured by recording the 

speed of the hydraulic motor uSlng an optical tachometer, 

and then dividing this down by the various gear ratios 

and thread pitch effects ln the drive train (see section 

4.3 in Chapter 4) giving an overall figure of 3.l5mm s-l. 

The valve and motor time constant is roughly 

estimated also, for the reasons given above (see fig.4.5). 

More accurate results will be obtained as soon as they are 

required for simulation purposes. 

5.4.3. The Transfer of Strip Shape Between the Mill and 
Shapemeter (Including the Shapemeter Dynamics) 

,Since the only way of measuring the dynamics of strip 

shape is by using the shapemete~ it is not possible to 

separate the dynamics of the shapemeter itself from those 

of the transfer of strip shape between the roll gap and 

the shapemeter. Furthermore, since the As-U-Roll 

actuators move at only say lOmm/s maximum it is also 

impossible to inject a true step change in strip shape 

into the system. These two factors, taken together with 

the random shape variations discussed in section 5.3, make 

this particular identification exercise inordinately 

difficult , and in the end it is perhaps one area where at 
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least the philosophy of the modelling simply has to 

be taken on trust (which is somewhat unfortunate, since 

it is also one of the areas most open to inaccuracy and 

incorrect assumption!). 

The test method employed was to make deliberate changes 

to a single As-U-Roll rack, of as large a magnitude as was 

deemed permissible, during the first or second pass of a 

coil (exactly as was done in the attempts to verify the 

static model). The rotors of the shapemeter which 

corresponded most closely to the area of strip directly 

below the As-U-Roll in question were added to the con

tinuous magnetic tape record. Thus, recordings were ob

tained which contained a reasonably large As-U-Roll move

ment (albeit a ramp, rather than a step) and the time

amplitude responses of the shapemeter rotors most closely 

related to the As-U-Roll being moved. 

Figure 5.3 shows a typical recording, and is a 

tracing of a UV recording obtained during plant trials. 

It shows the mill operator's movement of As-U-Roll number 

4, and the corresponding response (according to the 

shapemeter) of shapemeter rotor 14. Several points should 

be noted. 

a) The "stepped" nature of the injected (i.e. As-U-Roll) 

signal is entirely typical of these trials. The mill 

operators were 10th to inject such large changes In a 

single ramp. 

b) The shapemeter signal has been passed through a lOOms 

first-order filter to attenuate the ripple to the 

level shown. 
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c) The shapemeter signal "zero" level was estimated from 

30cm or so of chart preceding the event in figure 5.3. 

d) The shapemeter signal "final" level is estimated 

from the figure. No other information is available, 

as the operator induced a change on another pair of 

As-U-Rolls after 9.5s, and the shapemeter signal 

then began to decrease agaln. 

Turning now to an analysis of the figure, if we 

regard the two initial movements of the As-U-Roll as a 

single change, then we have two distinct changes, one from 

o to 0.53 and the other from 0.53 to 1.00 on the normalized 

scale (the total actual movement was 2 operator's divisions, 

i.e. 40% of f.s.d, and the shape response 3% of f.s.d.). 

If these levels are translated to the shapemeter rotor 

trace, we can in fact see the two resulting responses 

postulated by the dashed lines. (Although, in truth, 

a straight line approximation would have been just as valid 

for the first of the two!). Support for assuming the 

presence of two separate responses in this manner comes 

from the fact that the time of 2.8 seconds, between the 

"starts" of the dashed responses, corresponds fairly 

closely with the time of 2.9 seconds marked on the 

As-U-Roll trace at the centre-points of each ramp (again 

considering the two small initial ramps as a single event). 

If the transport delay is measured from the ramp 

centre-points in the As-U-Roll trace, to the start of 

the corresponding dashed response drawn on the shapemeter 

trace, then Ke obtain 2.1 seconds for the first response 

201 



and 1.9 seconds for the second response. If we assume 

-sT a transport delay given by e sl, from section 4.4 

T 2.9 - X.w. = where w= strip width (m) sl v 
1.016 = for this trial 

v= strip speed -1 (ms ) 

= 1.833 for this trial 

then we obtain x as -0.75. The negative value implies a 

transport lag longer than the pure distance/velocity lag 

between the roll gap and the shapemeter, by 75% of the strip 

width. This is not reconcilable with the present under

standing of the system, and an alternative explanation 

must exist. This presumably will include the fact that a 

ramp is injected, rather than a step, but even measurlng 

from the ends of the ramps, the value of Tsl is still 1.6 

seconds, giving x~ o. This implies that a shape change 

does not propagate away from the roll gap, and should be 

treated in the same way as a gauge change so far as its 

dynamics are concerned. 

If this is the case, then the shapemeter should 

measure a straightforward stepchange in shape. Now the 

shapemeter time constant for a strip speed of 1.83 ms- l 

is 1.43s (from the table following equation (4.4) in the 

previous chapter). If the two dashed responses of 

figure 5.3 are plotted on a sheet of graph paper, together 

with the step response of the shapemeter (assuming the 

shapemeter to be represented by 1+1~~3S)tthen the two 

responses lie one on either side of the shapemeter response. 

This does initially suggest that step changes are being 
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measured, but it must be borne in mind that the time constant 

of the exponential rise in measured shape expected from 

equations (4.2) and (4.3) can be very small. For the 

values used in the trial, equation (4.3) predicts a time 

constant of approximately 0.17s. This would be entirely 

swamped by the shapemeter dynamics, and so cannot be 

discussed further. 

It should be pointed out that other trials have yielded 

similarly puzzling results also, whilst still others have 

supported the theories of Chapter 4, section 4.4, con

cerning the propagation of shape from the mill to the 

shapemeter. It is concluded that more variables affect 

this problem than was anticipated (for example, strip 

tension may have an effect), but due to the difficulties 

in executing a well-controlled trial, with well-scaled 

results and low noise disturbances, the proposed model will 

be accepted for simulation purposes. 

5.4.4. Closed Loop Controlled As-U-Rolls 

As mentioned in section 4.2, the As-U-Roll actuators 

must be closed-loop position controlled in the overall scheme, 

and this is done as per figure 4.2. The design and 

implementation of the controller are discussed in sections 

7.6 and 8.5 respectively. 

During the early commissioning of these systems step 

responses were obtained for these closed-loops, and figure 

5.4 depicts one such, with the control loop being executeJ 

every SO ms by the microcomputer system. The deadband in 
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the controller was tuned in order to obtain a response 

which occasionally exhibited a little overshoot (as ln 

the figure); but usually settled on the final value 

immediately, thus saving wear on the mechanical components. 

The deadband selected was of total width 0.833mrn in 

figure 4.2. Therefore, including the effect of the 

gain k , the total effective deadband was 2.5mm or a 

±1.25% of total rack travel. 

In the figure (5.4), the command for the As-U-Roll to 

ralse was issued by the microcomputer at time=O. It can be 

seen therefore, that a deadtime of approximately 89ms 

existed. This constitutes the time taken for the varlOUS 

relays and hydraulic valves to operate. When the rack was 

returned to the zero position and the test repeated, the 

deadtime amounted to approximately 107ms. For the first 

test, the rack had previously been moved to zero from the 

negative direction, and for the second test from the positive 

direction. The differences in these deadtimes, of l8ms, 

may therefore be tentatively ascribed to the presence of 

rack backlash. The measurements are very imprecise however, 

due to the difficulty in distinguishing from plant recording 

the exact instant at which the rack begins to move, in the 

presence of measurement nOlse pickup. Nevertheless, for a 

rack velocity of 10mm s-l, this gives a backlash of 0.18mm. 

Allowing some time for acceleration of the rack from rest, 

an estimate of 0.3mm was reached (see fig.4.2, "actual" 

values) . 
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It is not particularly clear from figure 5.4, but 

some very slight evidence of rack acceleration was present, 

which appeared to be complete after approximately 190ms. 

If a first-order lag approximation for the valve and 

hydraulic motor is made (see fig.4.2) this leads to a time 

constant estimation of say SOms (visible acceleration 

complete two time constants after start of motion, and 

some time for pressure build-up to overcome stiction 

etc before that). 
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CHAPTER 6 

CONTROL SYSTEM DESIGN 

6.1 Introduction 

This Chapter describes the design of the control 

scheme itself. Since this scheme is to be implemented on 

the plant, the design must be practically applicable. 

After much discussion with the present author concerning 

the operation of the Sendzimir mill~ and the requirements 

of such a control scheme~ Fotakis and Grimble «17)~(18)) 

developed the basic principle of the scheme to be used. 

Their work is acknowledged wherever appropriate~ but 

their results given in (17) and (18) are not immediately 

applicable in practice. Therefore, although the design 

principles of Fotakis and Grimble are preserved intact, 

the present author has re-worked a number of aspects of 

the scheme so a~ to achieve a practically realisable 

system o The most important of the author's contributions 

are in the area of parameterization of the measured strip 

shape signals, and the expansion of the square system of 

Fotakis and Grimble (in which eight shape measurements 

were considered throughout for convenience in matching 

the number of As-V-Roll actuators) to a non-square 

system coping with a variable number of measured shape 

signals, depending upon the width of strip being rolled. 

6.2 Parameterization of Shape Measurements 

The shapemeter devices used on the Sendzimir mills 

ln question, are furnished with thirty one measuring zones 

across the mill width. Clearly~ for different widths 

of strip being processed, there will be a different 
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number of measuring zones registering the strip shape. 

In fact, in the present application, this number may lie 

in the range seventeen to thirty one. This variable 

number of plant measurement signals, if used directly~ 

would pose problems to the control system. It is 

therefore desirable to reduce the number of signals 

representing the measured shape to a number of parameters 

which is independent of the number of signals involved. 

This may be done by fitting a series of polynomials to 

the strip shape measurements as described below. 

From observations of the plant during rolling~ and 

the recordings referred to in Chapter 5, it was found 

that a typical shape of strip produced on the mill before 

the automatic system was introduced took the form of a 

central maximum of internal stress together with two 

internal stress minima more or less symmetrically placed 

on either side of the maximum (figure 6.1). It is 

consequently possible to represent this shape to a 

reasonable degree of accuracy using fourth order poly-

nomials. Higher order behaviour has, however, been 

noted, and the effects of this are discussed in Chapter 8 

(section 8.6). It does not affect what follows. 

L P () . th d 1 . 1 (h f et . w. be an 1 or er po ynomla w ose orm 
1 J 

will be chosen later) in w, evaluated at the value of w 

given in the jth element of a vector w, and write 

P .. = P.(w.) for short, where 
lJ 1 J 

i = order of polynomial j i=1,4 

j = section across strip width, j=l,N ~here 

N= number of covered shapemeter rotors. 
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Note that the zeroth order polynomial (i=O) is not re-

quired. (since shape is always measured as deviation from 

the mean there will never be any zeroth order offset). 

Let the vector ~ E RN represent N measured values of 

strip shape. 

A 4: 
Let the vector ~ e R represent the four parameter 

values corresponding to ~ (assuming a 4th order fit 

for the present). 

Thus~ 

.( 6 .1) 

where ~ERN represents a vector of fitting errors. 

In matrix form~ we rewrite equations (6.1) as 

. . . . . .( 6 • 2 ) 

-where X is given by x .. = P .. ~ i=1,4'j j=l,N 
o 1J 1J 

" We therefore have the problem of determining ~(t) 

-given ~(t) and Xo ' so as to minimise the fitting error S. 

This is accomplished by linear regression (least-squares), 

when it can be shown (see for example (44» that the 

best estimate for ~(t) to minimise 6 1S given by 

1\ 
~(t) = 

,.., 
(Note the interchange of X o 

·(6.3) 

--T and X compared with the stan
o 

dard classic equationi due to the form of (6.2». 
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Now, there is likely to be much computation involved 

ln the calculation of (XoX!)-l in equation (6.) for a 

general X matrix. 
o However, this is greatly reduced if 

the set of polynomials P. 
1 

is chosen to contain 

i=I,4 « 

only orthogonal polynomials. In this case, from the 

definition of orthogonality, 

and it therefore follows that all off-diagonal elements 

,.., ..... T 
of the matrix (X X ) are zero. The required matrix 

o 0 

(X XT)-l which will be called i, is therefore given 
00' 

simply by 

= 0 

1 

i=k~i=1~4 
k=1,4 

if a set of orthogonal polynomials from first to 

fourth order is chosen for the P.(w.). 
1 J 

There are many such sets of polynomials in the 

literature, but one set in particular has a number of 

astonishing properties. This is the set of Chebyshev 

(6.4) 

polynomials, and it can be sho"n (see ref.(45» that one 

such property is that if a function is approximated by 
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a number of different sets of polynomials, of equal degree, 

then the least maximum fitting error will always exist 

when the Chebyshev polynomials are used. This is called 

the Itminimax tl approximation, (but is to be had only at 

the expense of a larger mean square error than other 

methods). Grimble and Fotakis chose the Chebyshev poly-

nomials for parameterization in their work because of the 

minimax benefit~ but unfortunately these polynomials are 

not practically suited to the problem in hand for other 

reasons which will now be discussed. 

The Chebyshev polynomials are orthogonal over the 

following set of N discrete points equally spaced in the 

angular domain:-

e = 
C) • • • • • • • 

(N- 2)/r 

N-l 
, but are not 

orthogonal over equally-spaced points in the linear 

domain as assumed by Fotakis and Grimble. 

When translated into the linear domain as 

w. 
J 

= cos 9. we obtain 
J 

w = [ 1 , cos ( N~ 1 ) ••••••• , cos [ 
( N - 2 )-rr J _ ] T 

N-l ' 1 

i.e. w. = cos [(j-l)7f J 
J N-l 

j=l~N 

for the same N 

points. 

Thus, for say twenty one covered shapemeter rotors 

(N=2l above)~ the Chebyshev polynomials would require 

data at points across the strip (normalized to lie in 

(-1,1)) the first few of which would be given by 
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w = (-1'.1 -0.9 8 77, -0.9511, -O.8910~ -0. 8090, etc. ) T 

(for 
21, 20, 19, 18') J= 17 etc.) 

. .( 6.5 ) 

whereas the shapemeter rotor centres for twenty one 

covered rotors similarly normalised would lie at evenly 

spaced points in the linear domain:-

w= (-l'j -0.9') -0.8,) -0.7, -0.6 
T 

etc) .. ·(6.6) 

(see (6.7)below) 

Clearly the values in (6.5) are not those which occur 

in practice (6.6),) and correct interpolation of (6.6) to 

the Chebyshev points would be out of the question for 

reasons both of accuracy at the extreme ends of the 

vector wand the expense involved in terms of com-

putational effort. We therefore reject the Chebsyhev 

polynomials in favour of a set of polynomials whicD, 

whilst retaining the properties of orthognality to allow 

the use of the simple equation (6.4),will operate on data 

given at equally spaced points across the strip in the 

linear domain. 

As an aside at this point') it is to be noted that for 

N covered shapemeter rotors, the vector ~ of equally spaced 

points in the linear domain j normalized in ~£(-l'il)'.i is 

given by 

w. = 
J 

2(j-l) 

N-l 
-1 

j=l"N 

(by which the values of (6.6) were enumerated) 

, 1-~ j 

. (6.7) 



Returning to the choice of polynomials~ the author, 

together with Dr. John Barrett (46),decided that the 

Gram polynomials were a much better choice. These may 

be constructed by applying the G~am-Schmidt orthogon

alization method to the sequence 19w~W2gW3 etc.(47)g 

but for computer usage the present author prefers to use 

a set of recurrence relationships. A suitable recurrence 

relation is given in (48) after Forsythe g and takes the 

form 

P. ;: P. (w) = ( w- ~. ) P. 1 ( w) - 6. P. 2 ( w ) 
~ ~ ~ 1- 1 1-

subject to P (w) = 1, 
o 

P_l(w)=O 

where 

Now let 

v = \l • 
~ 

c- = o. 
~ 

N. 

2 
j=l 

2 
w.P. 1 . 

J 1- ~ J 

N 2 
c::::::::::: P. 1 . 
~ 1- ,J 
j=l 

N 
~w.P. P. 2 . 
~ J 1-1,j 1- gJ 
j=l 

N 2 
~P. 2. 
~ 1- 'iJ 
j=l 

N 

~ (w.
k

) f;l J 

21-l 

i=1~4 



then for w. equally spaced 'n ( 1 1) J ~ - ~ ~ which is our 

concern~ 

~l = ,3 5 
.L L. = L et c. = 0 

and it will be found in the recurrence relations (6.8) 

that this leads to v 0 f 11· o. = or a ~. 
~ 

This simplifies 

the recurrence relations sufficiently to obtain the first 

four polynomials explicit~y as: 

x = Pl(wj ) ::: w. 
°lj J 

x P
2

(w
j

) 2 1:. ::E 2 
= = w. -

°2j J N 

4 

x PJ(wj ) w~ L . (6.9) = = w. 
0Jj J J • 

. . . 
22 

2 4 6 2 6 4 

P4 (w. )=w4+w~r~: L 
- N~ 22 _ (2 )2 

x = + 
°4j J J J N1 (22 )2 N'2.

4 (2.2) 2 - -
N 

k ~(w.~ j=1,2'i. o .'i N where 2: = as above, 
J= J 

In practice, the first two polynomials are cal-

culated explicitly, and the remainder by the recursion. 

,..,T 
Appendix 5 gives examples of the X matrix generated o 

by (6.9) at the points given by (6.7) for a fourth order 

fit, and N=8 (to allow direct comparison with the matrix 

of Fotakis and Grimble given in (49)> and for the more 
T ,...,,..., -1,.." 

practical case of N=21. The matrix (X X )= L is also o 0 

given for each case. (Where x = P .. as above). 
o. . ~J 
~J 
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To check the accuracy of fit using these polynomials~ 

an arbitrarily selected vector of measured plant values 

~ for N=19 covered shapemeter rotors was taken (see 

fig.6.l). Using the Gram polynomials (6.9)i the 

A estimated parameter values ~ corresponding to ~ "\\"ere 

calculated using equation (6.3). An "estimate" of the 
T 1\ .1\ ,.." 1\ 

measured shape ZE was then obtained using YE = Xo~ 

(c.f. equation (6.2»and the result 1S plotted ontop of 

the original data (of fig.6.l) in figure 6.2. 

It can be shown that for a large number of points 

N~ the Gram polynomials approximate to the Legendre 

polynomials in suitably normalised form. The Legendre 

polynomials are calculated by a much simpler recursion 

than (6.8) (see for example (50)) and these were there-

fore also tried on figure 6.2 to see if N€(17~3l) was 

large enough to allow their use instead. However i 

the lack of fit was not encouraging~ and therefore the 

Gram polynomials are retained. 

6.3 Target Shape for the Control System 

The purpose of the control scheme is to maintain the 

strip shape at some desired form of internal stress dis-

tribution in the face of varying plan± conditions. 

In line with the work of Fotakis and Grimble j this is 

achieved by parameterizing the measured shape values 

(at regular intervals in time) using equation (6.3)1 and 

controlling the resulting vector of parameter values. 

A set of four reference parameter values at which the 

resultant vector of (6.3) should be held constant (as-

suming again a fourth order fit) must therefore be given, 
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but how are these to be provided? 

In one mode of operation, the mill operator can 

press a button labelled "hold present shapell'j in case some 

shape is transiently achieved which is considered de-

sirable for some particular reason. In this case 9 the 

vector of parameter values given by (6.3) (at the instant 

the button is pressed) is used as the reference vector, 

for the remainder of the current pass through the mill 

(unless the 'hold' mode is cancelled by the operator 1n 

the meantime). This mode was installed in response 

to mill personnels' suggestions. 

Of greater interest'j and more conventional for 

control purposes'j is the case where a certain "target shape" 

is specified to the controller from the outset. For 

reasons of plant operation'j this may differ on pass 

number 1 of a coil from subsequent passes, but in 

general the desired shape laid down by the plant per-

sonnel takes the following form. For all strip widths'j 

the extreme outer rotors covered by the strip should 

be at -1.0 units on the operators' shape display (which 

1S arbitrarily scaled from +5.0 to -5.0 units). The 

next rotor towards the strip centre from each edge should 

be at -0.5 units. All the remaining rotors should be 

as near to zero as possible - they will have to be at 

some small positive value in practice of course'j as 

shape is displayed with respect to mean tension. It 1S 

therefore necessary to determine the parameter values 

which correspond with these ideal shapes. To do this.., 

the vector ~ used in the previous section is calculated 

'I; '- i 



as follows. For a strip width corresponding to N covered 

shapemeter rotors~ ideally 

Yml 

.l.m. 
J 

= -1.0 dive 

= -0.5 dive 

= 0 dive 

YmN = -1.0 divo 

Ym = -0.5 dive 
N-l 

J = 3~N-2 

giving the form of figure 6.3(i). However~ since shape 

is displayed with respect to the mean~ the horizontal 

zero axis in fig. 6.3(i) must be moved do,~wards (as 

shown by the dashed line) until the sum of the values 

at rotors 1~2~N-l and N balances the sum of the values 

at rotors 3 to N-2. If the extreme end values are to 

be maintained at a true level of -1.0 division~ it can 

be shown~ by a trivial exercise in geometry~ that the 

target shape having zero mean is then given by 

.l.ml 
:i£ -1.0 diVe 

N-6 

.l.m2 
= - 2N-6 

dive 

~. = 3 div. 
N-3 

J 

~llN = 

~N-l= 

j=3~N-2 

-1.0 dive 

N-6 
- 2N-6 

diVe 

, 
I 
I 

J 

,.(6.10) 

The reader may verify that.l.m + Y + Lm + 
1 -rn 2 N-l 

~ + (N-4)Lm. = 0 
N J 
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Thus, for 17 covered rotors~ (see figure 6.3(ii» •• 

~l = 

~ to 
3 

Lm17 
= -1.0 dive 

~ = +0.214 dive 
15 

Whilst for 31 covered rotors, 

~l = ~31 = -1.0 dive 

~ to Xrn = +0.107 dive 
3 29 

~2 = Xrn
16 

= -0 0 393 dive 

-0.446 dive 

Whilst employing these values to obtain the cor

" responding parameter values Xrn from equation (6.]) using 

-appropriate X matrices given by (6.9)~ it was noted that o 

the resulting values for seventeen or thirty one covered 

rotors were not greatly different9 especially in the 

fourth order parameter. Therefore similar values for all 

possible cases of covered rotors (N= all odd numbers 

from 17 to 31 inclusive) were calculated, and the mean 

value of each parameter was selected. Figure 6.4 shows 

the fitting errors introduced by this practice for the 

case of seventeen covered rotors - the worst case due to 

the lowest number of points making the ideal shape least 

attainable of all cases by a fourth order curve. However~ 

were this shape to be obtained in practice the plant 

personnel would certainly not object (since such a flat 

shape is not easily attained under manual control). 

Zero mean is automatically retained due to non-use of 

the zeroth-order polynomial. 
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This use of a single target vector for any strip 

width is a significant discovery by the Author as it 

completely removed any need to select target shapes 

according to strip width~ thus saving on computing time 

and storage of data. 

6.4 Control System Philosophy 

Since we have here a plant with up to 31 shape 

measurements~ plus measurements of speed~ tension~ width~ 

gauges etc.; and we need to control eight As-U-Roll 

actuators and two sets of first intermediate roll 

actuators~ a multivariate design would seem appropriate. 

-However'j the mill matrix G given by the static model 
p 

has some unusual properties which must be considered. 

Due to the symmetrical nature of the mill~ given that 

the left and right hand side eccentrics are set at 

equal points, a movement of As-U-Roll 1 will cause an 

identical shape change from front to rear of the strip 

as the same movement of As-U-Roll 8 would from the rear 

to the front. Thus if the mill matrix is partitioned 

where the gi are all N-vectors'j then g8 = gl 

with the order of elements reversed'j g7 = g2 with the 

order of elements reversed and so on. Also'j since shape 

is displayed with respect to mean'j the elements of each 

of the g. vectors must sum to zero. 
1 

Furthermore 1 if all 

eigllt As-V-Roll actuators were to be changed by the same 

amount, then no shape change would occur (cnly a very 

222 



small gauge change)~ therefore every row of G also sums 
p 

to zero. These properties mean that for the case where 
~ 

the strict inverse of G is defined (i.e. for N=8) the 
p 

matrix will be singular and the inverse therefore mean-

~ 

ingless. In the general case of G as an N*8 matrix 
p ~ . 

the natural inverse could be found (see for example 

Lanczos (51» but this tDO would have no significance. 

This problem would appear to rule out the direct use of 

the Characteristic Locus (MacFarlane and Kouvaritakis (52» 

or Inverse Nyquist Array (Rosenbrock (53» methods
j 

as 

these would both produce a controller highly dependent 

~ -1 
upon G due to the fact that all the interactions in 

p 

the system occur in G • 
p 

Optimal control methods applied 

to a state-space representation of the system could be 

considered (54)~ but would be expected to be sensitive 

to parameter variations due to the presence of non-

linear elements. The method chosen by Fotakis and 

Grimble and maintained here~ is therefore to linearise 

the plant and use the parameterization of the measured 

signals (given correctly by the present author in 

section 6.2 above) to introduce a measure of redundancy 

which can be used to obtain an invertible transformed 

system (see below). This can then be compensated by its 

inverse so as to form four identical single-loop 

systems which can be treated by classical concepts 

(e.g. Bode diagramJ to obtain the required controllers. 
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6.5 Control System Design 

Figure 6.5 depects the control system in block 

diagram form. 

'" mill matrix G 
p 

"-
The actuator transfer functions G (s) 

a ~ 

~ strip G (S)9 shapemeter G (s) and 
s m 

'" parameterization Xo matrices have all been previously 
~ 

defined. The matrix L which compensates for the fact 

that the Gram polynomials are only orthogonal (rather 

than orthonormal) has ·also been defined as 

L = eX x T)-l (if the Gram polynomials were orthonormal o 0 
rW 

L would reduce to the unit matrix). The means of pro-

viding the reference parameters ~ has also been discussed. 
r 

Having controlled (in some manner) the four para-

A A 
meters ~ by operating upon the error vector ~=~r-Ym~ 

4 we obtain the control vector u E R (assuming the use of 
-p 

fourth order polynomial fitting). This must be depara-

meterized so as to give suitable control signals to the 

eight As-V-Roll actuators (note that the control of the 

first intermediate roll lateral adjustment will be in-

eluded at a later date). This could be achieved in a 

number of ways. There are~ however, constraints upon the 

motion of the As-V-Roll actuators relative to each other 

which are imposed by the mill manufacturer (see Chapter 8 j 

section 8.2)i and therefore the As-V-Roll actuator 

positions are constrained to lie on a smooth curve. For 

this reason~ and to be consistent with the method of 

parameterizing strip shape discussed in section 6 0 2 above 

it was decided to use the appropriate X T matrix for this 
o 

purpose. Now, since the location of tIle As-V-Roll actuators 
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is fixed relative to the mill housing and shape 

measurement points, it would seem sensible that a constant 

deparameterization matrix could be used. 

Referring back to equation (6.2), if the fitting 

error S has been minimized in a least squares regression~ 

then 

In the same way~ on figure 6.5~ the u are (con
-p 

trolled) parameter estimates for the actual control 

signals ~, and we therefore write 

-T = X.u ...... (6.11) 
-p 

-T 
where X is calculated according to the method of 

equation (6.9) with- N=8 and therefore j=1~8. This gives 

X as a 4*8 matrix~ so that iT is 8*4 (which is 

dimensionally correct). 

It can therefore be seen from the block diagram that 

we now have the entire knowledge of the transformed 

plant given by 

~s) = 

~(s ) 
~ '" ,.., .... T 

'L.X.G.X.u (s) p( s) 0 p -p 
·(6.12) 

which is a four input~ four output system. 

where pes) and z(s) are the poles and zeros respectively 

of g (s),g (s ).g _ (s). 
m s a 

Now, let the transformed plant matrix be given by 

= 
,.., ,..., 
L X 

o 
. . . . . 
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(Note that we are about to investigate the symmetry 

properties of G
T 

and so we 
,... 

than X for convenience). 
o 

can now consider X rather 

L X ~ ~ T ,..., 
et be partitioned into (Xl X

2
) such that Xl 

contains the low order (first and second) terms and 

X2 the high order (third and fourth) terms. 

and X2 are both 2*8 matrices). 

The transformed plant matrix (6.1J) can then be 

expressed in partitioned form as 

.. (6.14) 

The contents of the four terms in the partitioned 

matrix (6.14) are identical to those found by Fotakis(56) 

,.., ...... T 
and Grimble~ but note that the notation of X and X is 

interchanged here due to the conventions of polynomial 

evaluation adopted, and the matrix L is omitted from 

Fotakis and Grimble's work as they assumed their poly

nomials to be orthonormal (giving L=I4 ), which is not 

the case in practice. 

,." 

During calculation of the matrix GT by (6.14) using 
,.., 

various versions of the plant matrix G ~ Fotakis and 
p 

Grimble noted that the two blocks on the diagonal of 
".., ,...., ,..., T 

(6.14) namely X.G X. tended to become diagonal. 
1 p 1 

Furthermore, 
,...., ,..." ,..,., T 

the lower off-diagonal term (X
0

G Xl ) 
.... P 

tended to vanish compared with the upper off-diagonal 

,..,., """ ,.."" T 
term (X1 GpX2 ), which remained significant in comparison 

with the diagonal blocks. Thus the entire matrix GT 

was of a dominantly upper-triangular form (the L matrix 



being purely diagonal as given by (6.4)) and was there-

fore invertible. This allows the possibility of de-

composing the entire plant to four single-loop systems 

by multiplying by a precompensating matrix equal to 

the inverse of the transformed plant. Therefore, for 

use in figure 6.5~ 

p = . . . . (6.15) 

These matrix characteristics noted by Fotakis and 

Grimble however, would appear to be characteristics due 

to the use of the Chebyshev polynomials~ as they have not 

been reproducible by the present Author using the Gram 

polynomials. Similarly useful characteristics are 

however apparent. The transformed plant matrix 

".,., ,..., ""T 
produced by using the Gram polynomials to give L~X and X 

in equation (6.1)) always tends to the multi-diagonal 

form:-

a 

o 
e 

o 

,... 

o 
c 

o 
g 

for all G matrices investigated. 
p 

b 

o 
f 

o 

o 
d 

o 
h 

-The version of GT 
\ 

corresponding to the case of eight (theoretical) covered 

rotors is given in Appendix A5.6. The determinant of 

the G
T 

matrix is given by 

= acfh - agfd - hecb+bdeg 

and the terms (agfd), (hecb), (bdeg) are all small compared 

with the diagonal product (acfh). The matrix is therefore 
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again always considered to be full rank~ and the pre-

compensator given by 

p = 
as before. 

Fotakis and Grimble have investigated the use of 

such a precompensator (17),(18) bearing in mind the un-

-certainties and inaccuracies in the computation of G , 
P 

and showed that it is acceptable. 

Having reduced the problem to four single loop 

systems, we return to equation (6.12) and having effectively 

removed any matrix interaction we are left with a system 

including the precompensator as 

= ilil. I u (s) f (s) 4-c 

The dynamic terms, as mentioned before, are identical 

in each loop and are given (from the block diagram) as 

= 

Using the various values given previously (for a 

medium strip speed of 3ms- l and 1.2m wide strip) we thus 

obtain from equations (4.2),(4.3)j(4.4) and (4.1) 

~= p{ s) 
6 -0.37s 

0 0 1 e 2 .. ·(6.16) 
(1,+ 0.74s)(l+0.12s)(s +0.8s+0.16) 

For which a Bode plot is given In figure 606, and 

Nyquist plot in figure 6.7. These indicate a system baving 

a gain margin of 14.8 dB, and a phase margin of 180
0

• 
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An integral controller will ensure that this system has 

zero steady-state error~ and can also be designed to give 

a gain margin having the usual value of say about 12 dB. 

Kr 
We may write the controller transfer function as 

s 

where Kr is the integral gain. 

Using the conventional classical design techniques 

on the Bode plot~ we obtain Kr = 0.1 for the dynamic 

compensator, giving the overall open loop transfer function 

as 

0.016 e- 0 • 37s 
-------------------------------------··(6.17) 
s(1+0.74s)(1+0.12s)(s2+0.8s+0.16) 

for which the Bode plots are given ln figure 6.8, and the 

Nyquist plot in figure 6.9. The gain and phase margins 

are then 12.4 dB and 56.3 0 respectively. 

Using the same controller at low (lms- l ) and high 

(say 8ms- l ) strip speeds, we obtain (for the same strip 

width) the following:-

Gain Margin (dB) Phase Margin 
(Degrees) 

Low speed : 

High Speed: 

6.4 35.2 

60.6 

rt can be seen that at low speeds, the system 

response will be more oscillatory than one would like. 

This leads to the possibility that a different controller 

may be required at very low speeds. Furthermore j at 

high speeds, although undoubtedly stable, the controller 

is fairly slow. Nevertheless, this is not a severe 

proble~, as changes in the controlled variable (strip 

shape) are generally fairly slow phenomena. Alternatively 
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the integral galn could be reduced so as to give a 

greater margin of stability at low speeds) at the expense 

of response time at other speeds. This may well prove 

acceptable j due both to the reason just mentioned and to 

the fact that the limits of As-U-Roll relative motion will 

probably be reached fairly quickly whatever the response 

time (within reason) - see chapter 7. 
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CHAPTER 7 

DYNAMIC SIMULATION STUDIES 

7.1 Introduction 

A complete multivariable dynamic computer simulation 

of the plant, as described in the previous chapters, was 

written in order to compare the relative performance of 

various controllers j test the effects of different 

controller parameters and investigate the systemis 

robustness in the face of uncertain gain matrices and 

mis-matched matrices and operating conditions. 

The model is written in FORTRAN (specifically 

FORTRAN 77) and implemented on the PDPll/70 computer at 

B.S.C. Sheffield Laboratories under the RSTS/E operating 

system. 

Appendix 6 gives the mathematical techniques used for 

the simulation routines. The package was written by the 

authorj since no dynamic simulation package was other-

wise availableo From the appendix it will be seen that 

the routines in the package (with the exception of that 

for the transport delay) are all single-input-single-

output routines. This is of no consequence in the present 

context, as all the system dynamical blocks are non

interative, and so the full state-space treatment would 

reduce to purely diagonal systems in any case. 
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7.2 Description of the Simulation 

The system as simulated is shown in figure 7.1, and 

comprises the mill gain matrix produced by the static 

model (Chapter 3)9 the dynamical elements of the plant 

(as modelled in Chapter 4) and the control system (of 

chapter 6.) The system state vectors for 8 control 

actuators, 4 controlled parameters and N covered shape-

meter rotors are identified as follows •• o 

positions of the eight As-V-Roll actuators at 

the start of the simulation (mm from datum~ 

positive downwards). Also allows injection of 

Itnoise lt onto the As-V-Roll control signals. 

8 ~d€ R As-V-Roll actuator position setpoints (mm from 

datum~ positive downwards)o 

Actual As-V-Roll actuator measured positions 

(mm from datumj positive downwards) 

upon a • -p 

'" Shape at roll gap caused by G operating 
p 

(Nmm- 2 ). N depends upon strip width 

and the y are given at positions 
p. 

l.. i=I,N 

corresponding to the centres of covered shape-

meter rotors. 

Vector of shape disturbances at the 

roll gap, used to simulate incoming strip shape 

variation effects. (See also 4 belo,~) 

-2 
Shape in strip at shapemeter (Nmm ). 

~ E RN , 17~N~31 Shape measured by shapemeter (Shape-

m meter system output)(Nmm-
2

). 

" ~oE RN, 17sN~)1 Shape offset vector (Nmm--)o Allows 

~ to be initialized to any desired value at 

the start of the simulation (,,-hen ~ would 
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1\ 4 
Xt E R 

X e R4 
r 

e E R4 
-
u E R4 
-c 

u E R4 
-p 

otherwise be unalterably fixed by the values 

given in ~o). Also allows injection of 

"measurement noise" onto the measured shape 

signals and simulation of out-of-action 

measuring zones. 

Shape parameter values given when the matrix 
,.., 
Xo operates upon the measured shape signals. 

Least squares estimate of the shape parameters 

corresponding to ~. 

Setpoint values for shape parameters. 

Shape parameter error. 

Controller outputs due to the error e. 

Controller signals operated upon by the diagonal

izing matrix P. 

As-U-Roll actuator correction signals (to be 
"'T added algebraically to a ) given when X 

-0 

operates upon u 0 
-p 

(mm g positive downwards). 

Version of Xp perturbed by Xct 

The system matrices are identified as follows: 

,..., 
G (s) is the 8x8 diagonal matrix of linearized As-V-Roll 

actuator transfer functions given by 
a 

,..., 
G 

P 
1S 

-"Y 

G (s) = 
a 

where 18 

0.16 
(c.fo equation 

4.1) 

is the 8x8 identity matrix. 

the Nx8 g 17~N~Jl, matrix given by the static mill 

model relating strip shape to As-V-Roll positionso 

(Nmm-J)(equation 30124) 



tv 

Gs(s) is the NxN~ l7~N~Jl~ diagonal matrix of strip 

,.., 

transfer functions given by 

G (s) = 
s 

e[-(2.9-l.5w)s] ~ 
v oIN 

1 + w,. s 
3.3v 

(cofo equation 4.J) 

Gm(s) 1S the NxN~17~N~Jl~ diagonal matrix of shapemeter 

,..., 

transfer functions, given by 

G (s) = 
m 

1 

1 + s.T 
m 

(c.fo equation 
4.4) 

However, this is shown switched "out of circuit" 

as it were~ because since ~ (s) was identified 
s 

by plant tests upon the measured shape signals 

~~ then Gm may be automatically included in 
,--

G unless G is specifically extracted o s m 

X is the 4xN~ l7~N$Jl matrix which parameterizes the 
o 

measured shape vector ~ into first~ second, 

third and fourth order orthogonal components. 

,..., 
L is a 4x4 diagonal matrix which compensates for the 

..... T ,.., 
fact that X and X are not orthonormal~ and 

o 0 

is given by 

1\ 
Hence ~ is obtained as the least squares 

estimate of the parameters • 

.v 

G (s) is a 4x4 diagonal matrix of controllers given 
c 

by for example 

g (s) 0.1 g (s) 
0 0 1 

= c
ll = c 2 :2 s 

s 

g (s) 
0 0 1 g (s) 

0 0 1 
= ::; 

c
JJ 

s c44 s 

(Provision is made for proportional terms to be 

introduced if required)o 
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'" P is the ~x4 matrix which diagonalizes the system to 

allow use of non interactive controllers. It 

is given by 

P = (LX 
o 

"'T 
X is the 8x4 matrix which deparameterizes the con-

troller outputs so as to give the As-V-Roll 

positions changes a • 
-c 

7.3 Calculation of Initial States 

It is assumed that the system is at steady-state 

before the simulation beginso The method 1S to specify 

existing As-V-Roll positions and existing strip shape~ 

and from these to calculate a consistent set of initial 

values of all the other s~es in figure 7.10 This in-

cludes an initial calculated value for the shape set-

point ~ vectorj since this must be consistent with the 
r 

existing shape given above i£ a steady state is assumed - ~ ,..., 
to exist. The matrices X j Land P are obtained as per 

o 

Chapter 6~ based upon a knowledge of strip width. The 

,.., 
G matrix is obtained as in the previous section, using 

s 

knowledge of strip width and speed. All other matrices 

are fixed~ so all the necessary information is now to 

hand. 

Given the existing shape vector ~, we can immediately 

1'\ 1\ 
calculate ~t and ~ as 

Now, for steady state 

e = 0 

X 
o 



Given also the existing As-V-Roll rack position vector 

a p and assuming steady state conditions~ the transient 
,.., 

response of the actuators G makes no contribution-a , 

therefore~ since the gain of each diagonal element of G 
a 

is unity~ it must be the case that 

:: a 
-p 

Furthermore, at steady state~ no change ln actuator 

positions can be demanded, therefore 

a :: 0 
-c 

and a = ~ -0 

Since a is zero~ we see that -c 

u = 0 
-p 

• 0 • • u = -c 

and since we have previously shown that the error 

vector e = 0, then in order for u to be zero it is 
-c 

clear that the outputs of the proportional and integral 

portions of all the controllers must be zero o 

Finally'j 

= 
,.., 
G a 

p -p 
and, since :: 0 initiallYi Y 

~v 

and j since the strip transfer functions are of unity 

gain, and steady state obtains,) 

:: ~p 

Therefore'j in order to make this consistent Kith ~n' 



The initial condition of the simulation is therefore 

completely defined~ and can be summarized as:-

Given ~p and ..l.m~ * 

e = u = u = 0 - -c -p 

a = 0 -c 

~d = 0 

a = ~ = a 
-0 -p 

,.,. 
(7.1) 

~p = ~s = Zw = G a 
p-p 

:i..a = ~ - ~s 

1\ ,.." 

~t = X ~ 0 

1\ ,." 1\ 

..l.m = L ~t 

All controller outputs (p&r) = 0 

*Note that these vectors are specified to the program 

in terms of divisions on the operators displays for 

convenience. The program converts a to mm of rack 
-p 

movement from the datum position, and ~ -2 to Nmm 0 
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7.4 Post-Initialization Operaticn of the Simulation 

After the system vectors have been assigned their 

initial values (equations (7.1», the simulation may 

proceed in a number of ways, depending upon the reasons 

for which it is being run. These include:-

a) In order to simulate the "bumptt which would Occur 

b) 

when the mill operator selects automatic control~ 

(unless measures are taken to prevent it - see 

section 8.3), the vector ~ may be replaced with a 
r 

new set of target parameters o Thus~ the setpoint 

shape for which the controller is to seek can 

replace the present (manually) rolled shape as a 

st.ep function o 

The vector a may be perturbed in any desired manner 
-0 

to investigate the ability of the controller to hold 

the initial shape in the face of "noisy" As-V-Roll 

control signals. It will also be possible for the 

mill operator to move the actuators whilst in the 

ttauto" mode under certain conditions. 

effects can also be simulated at a 0 
-0 

These 

c) The vector ~ may be perturbed in any desired manner 

to investigate the ability of the controller to hold 

the initial shape in the face of "noisy" and/or 

non-operational shapemeter segments o 

d) The effects of variations of shape in the incoming 

stock to the mill (including possible step changes 

in shape where incoming coils are welded together) 

can be investigated by appropriate perturbations of 

the vector ~o 



Whichever of these modes is employed~ the procedure 

by which the simulation progresses is identical~ and 

be summarized as follows. 

may 

Firstly~ the integration step size is selected as 0.1 

times the smallest of the system time constants
o 

(The user is given the option of selecting a 

different step size 9 should he so wish). 

The number of integration steps over which the sim

ulation is to run is entered. 

The user can then select listing and/or plotting of 

any of the state vectors. 

A step in input shape may be selected, to be applied 

after a specified interval. 

The user must enter the interval between samples of 

the strip shape by the controller. This allows 

the effect of different controller sample times to 

be investigated. The inclusion of this effect is 

considered important, since a computer-based con

troller sampling at an ill-chosen rate can easily 

destabilize an otherwise stable scheme. 

The method of limiting relative As-V-Roll actuator 

movements (as mentioned in section 4.2 and dis

cussed in section 8.2) may be selected to allow 

the "unlimited" operation of the control scheme 

to be investigated, which is not allowed in 

practice. Thus the As-V-Roll actuators can be 

limited correctly (as in Chapter 8) or they can 

be completely unconstrained~ or they can be 

limited to the working range of the racks but 
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without the relative motion constraints. The pur-

pose of these choices~ to allow simulations to 

reach steady-state~ so that the meeting of design 

criteria can be checked. Otherwise~ it is 

that the relative motion constraints would 

likely 

come 

into action~nd restrain further control action) 

before the system had reached its natural steady 

state. 

Several options are then offered to the user (by the 

program) pertaining to outputting of results o 

Any state vector or vectors in figure 7.1 can be 

output to a terminal, to a disc-based data file,or 

both~ in tabular or plotted (time response) form. 

The data sent to file can be subsequently offlined 

to a line printer for examination. 

The simulation then runs 1n a manner fundamentally 

identical to the simple example given in section 7 of 

Appendix 6~ with results being updated and output as 

previously specified by the user. 

7.5 Simulation Results 

The vast range of tests which could be performed 

using this extremely flexible model will be appreciated 

from the foregoing sectionso It will also be appreciated 

that the number of such tests which can be practically 

performed on a time-sharing installation of mediocre 

power (slowed mainly by its operating system in tllis case) 

is somewhat more limited~ In fact it is considered a 

feat of programming that this model (occupying up to 



lOOk byte of memory on another machine) was overlaid 

into the 28k byte available space on the PDPll/~O at all! 

Nevertheless, many useful runs were carried out, and some 

of the findings follow. 

For the basis of comparisons in the results which 

follow,a"standard" set of input data to the model was 

used. The strip width was taken to be 1610mm so that all 

31 shapemeter rotors were covered. The initial input 

strip shape was a typical early-pass shape measured 

from the plant, and is given in Table 7.1 

Rotor No. Shape Shape 

(from front) (Nmm- 2 ) (Operator's Display 
Units) 

1 78 1.95 
2 36 0.9 
3 8 -0.2 
4 -36 -0.9 
5 -52 -1.3 
6 -60 -1.5 
7 -60 -1.5 
8 -52 -103 
9 -42 -1.05 

10 -24 -0.6 
11 0 0.0 
12 28 0.7 

13 54 1.35 
t4 72 1.8 

15 76 1.9 
16 80 2.0 

17 72 1.8 

18 64 1.6 

19 48 1.2 
20 28 0 07 

21 6 0.15 

22 -16 -0.4 

23 -32 -0.8 

24 -48 -1.2 

25 -56 -104 
I 

26 -56 -1.4 

27 -52 -1.3 

28 -44 -1.1 
29 -:20 -0.5 

30 24 0 06 
:2.0 I 

31 80 I 

TABLE 7.1 "STANDARD" INCONING STRIP SHAPE 
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The As-U-Roll initial pOSl.'tl.'ons 1 were a ways set to 

zero. An integral controller having a gain of 0.1 was 

used upon each parameter error. The parameterization and 

precompensating matrices are computed as per Chapter 6~ 

using the 31*8 mill gain matrix given in Appendix 5 

(section A5.10). The target shape was calculated using 

equations (6.10) with N=31,and was then parameterized 

using the calculated parameterization matrixo This gives 

us the parameter values of Table 702 

Order of Parameter 1 2 3 4: 

Initial (Table Shape 
7.1) -1 0 04: -26.13 -9.4:1 +570.28 

Target Shape 0 -25.57 0 -84:.60 

Initial Parameter Error 1.04: 0.56 9.4:1 654:.88 

TABLE 7.2 II STANDARD II PARAMETER VALUES (Units to 
give shape in Nmm-2) 

For a strip speed of 3ms- l (a medium speed)~ the 

simulation was allowed to achieve steady-state from these 

initial conditions. In order to permit the target shape 

to be achieved~ the As-U-Rolls were not limited in any 

manner whatsoever. The resultant time responses of the 

four parameters of measured shape are sho,~ in figure 7.2 

by the traces labelled 1 to 4: (the traces denoted by the 

IIprimed ll indicators will be discussed later)o It can be 

seen that the system is IIs10w ll by the normal standards of 

rolling mill control schemes j but it must be remembered 

that strip shape is in general a slowly-varying parameter, 

there is a transport delay in the control loop (although 

-1) 
this is only relatively small at a strip speed of 3ms ~ 

2.+8 
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and the As-U-Roll actuators themselves are slow. It will 

also be noted that the fourth-order parameter response 

exhibits an overshoot of some 8% even at this speed of 

response (i.e. the overshoot taken from initial position). 

This suggests that attempts to increase the speed of 

response would be unwise~ which has been borne out by 

other simulation runs using different controllers. 

Although the target parameters were achieved by the 

control system, the final strip shape did not coincide 

with the target shape in the simulationo This is il-

lustrated in figure 7.3 which shows the initial~ target 

and final shapes corresponding with the parameter 

responses given in figure 7.2 and discussed above. The 

discrepancy is principally due to the errors in the gain 

matrix discussed in Chapter 3 (section 3.12)~ whereby 

As-U-Rolls 2 and 7 have disproportionately large effects 

at sections of strip below As-U-Rolls 1 and 8 re-

spectively. This has led in this instance~ to a pro-

nounced "turning" in strip shape at the strip edges (see 

the figure) which would not occur in practice. The strip 

shape has thus become markedly sixth-order in appearance, 

and will not adequately be represented by the fourth-

order parameter fitting. Therefore j although the 

parameters have been controlled to their target values~ 

the strip shape thus represented is itself in error. 

Even so~ it is a great improvement over the initial shape. 

The major difficulty with figures 7.2 and 7.3 is that 

in order to achieve this performance, the As-U-Roll 

actuators (,vhich were unconstrained) have had to adopt 
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totally impractical values. This is sho,VIl in figure 7. J, 

where the dotted lines on the As-V-Rolls graph represent 

the physical limits of absolute As-V-Roll motion (! 5 

divisions on the operator9 s scales), not to mention 

the relative motion constraints which also apply in 

practice! This simulation run was therefore repeated 

with the correct As-V-Roll limiting algorithm (described 

in section 8.2 of Chapter 8) included to constrain the 

As-V-Roll motion. The resulting final shape and 

As-V-Roll positions are shown in figure 7.4 together with 

the same initial and target shapes previously given in 

figure 7.). The obvious feature of figure 7.4 is the 

negligible improvement in shape which was achieved before 

the As-V-Roll constraints prohibited any further action. 

This underlines dramatically the very limited gain of the 

As-V-Roll system alone as a means of shape control. 

However, in practice the As-V-Rolls would not be expected 

to cope alone with such a large shape error. The first 

intermediate roll tapers would be positioned over the 

strip in such a way as to greatly loosen the strip edges 

(initially by the mill operator, but eventually auto-

matically when the first I .R. s are included in the 

control system) • As the shape ~s displayed as a de-

viation from mean, this loosening of the edges will be 

reflected in the display not only at the edges, but as 

a relative tightening of the strip centre also. This 

calls for an increase in mill crown (or camber) to 

counteract it, and the As-V-Rolls are much more suited to 

making such a change than to trying to remove the \{ shape 
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as shown in figure 7.4. Observations on the mill, of the 

operators at work, confirm that this is in fact a typical 

mode of operation. The weakness of the As-U-Rolls in 

correcting the defect of figure 7.4 unaided is therefore 

not serious. So far as these simulation studies are 

concerned~ the As-U-Rolls were always allowed to run un-

constrained (unless otherwise stated) so as to permit a 

realistic steady-state to be achieved and to allow a 

consistent basis for comparisons. 

Having obtained an initial satisfactory response, 

the simulation was repeated under varying conditions. 

The first of these was to investigate the effects of 

non-operative shapemeter rotors. One rotor was selected 

randomly (rotor 6) and was caused to fail after 8 seconds 

of the simulation. The mode of failure chosen was a 

shape reading which is permanently off-scale in the 

( -2) negative direction -225 Nmm as this has been ob-

served in practice. The resulting time responses of the 

I ,/ I / 

parameters are shown as traces 1 , 2 ,) and 4 in 

figure 7.2. (Note that the step in the )rd order 

parameter caused saturation of the plotting routine -

hence the gap!). It can be seen that in spite of this 

failure of rotor 6, the target parameters are achieved 

after the failure, albeit in a more oscillatory manner. 

The strip shape represented by these final parameters 

is however not good. It takes the form of the final 

shape in figure 7.), but with the first positive peak 

about three times as large (peaking at 1.6 operator's 

divisions). 

254 



A further run was performed in which both rotors 6 

and 7 were caused to fail in this manner. The parameter 

"steps" at the instant of failure were much larger~ as 

would be expected (except for the second-order parameter 

whose step was the same). Again the target values ''lere 

~chieved within a total time of 60 seconds from the 

failure~ and again the shape represented by these para

meters was most abnormal, the three major maxima being 

+3~ -1.5 and +1.0 divisions. A run with rotors 11 and 26 

failing gave a result only about 20% worse than the final 

shape of figure 7.3. The As-U-Rolls also moved to more 

extreme positions in all these cases in order to achieve 

the target shape. 

One reason for the magnitude of these disturbing 

results (apart from the obvious one of the measured shape 

being not representable by the fourth order fitting due 

to the discontinuities at the failed rotors) is that the 

model continues to use the failed rotors in its calculations 

of mean stress. The plant equipment mayor may not do 

this, depending upon precisely in which part of the shape-

meter system the failure occurs. If~ for example, the 

failure was only in the display drivers, then the mean 

stress would be correct, and the effect upon the shape 

display much less pronounced. These results suggest 

however
9 

that, if sufficient time is eventually available 

in the control scheme software, it would be possible to 

cope with a single failed rotor by replacing the "failed ll 

measured shape value (which can be detected by its 

magnitude) with the mean of the two neighbouring values. 
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As an example~ at the instant before rotor six failed in 

the first of the three failure cases studied
i 

the shape 

measured at rotors 5~6 and 7 was -l.02J~ -1.084 and 

-l.OOJ operator's divisions respectively. Taking the 

mean for the rotor 6 value immediately after failure 

would have given -1.02J~ -l.OlJ and -l.OOJ at rotors 

5,6 and 7. The minimum of the waveform which previously 

occurred at rotor 6 (see Itinitial shape trace in figure 

7.J) has been moved to rotor 5 by this operation~ but the 

change is small, and the target parameters would be 

achieved with a much more acceptable final shape. In the 

case where rotors 11 and 26 were caused to fail~ the 

values at rotors 10, 11 and 12 would be changed from 

(-0.J42, 0.059~ 0.545) to (-0.J42, 0.102, 0.545); and 

the values at rotors 25, 26 and 27 from (-0.91l~ -0 0 9 8 6, 

-1.016) to (-0.911, -0.96J, -1.016). Both these are in-

significant errors~ and would allow continuation of 

reasonable control as opposed to simply switching back 

to MANUAL mode. 

Next, the effect of severe disturbances in input 

shape (which may occur at a weld for example) were 

examined by re-running the simulation of figures 7.2 

and 7.J. and injecting a huge disturbance onto the In

coming strip shape after some IJ.5 seconds of the 

simulation (traces 1 to 4: in fig. 7.2 show that the 

original shape was well under control by this time). 

The disturbance added to the incoming shape took the form 

of the initial shape with all values in table 7.1 

multiplied by 125% and the order of the rotors reversed. 

256 



The performance of the parameter values due to the dis-

turbance are summarized in Table 7.3. (Tolerances are 

due to measurement from low-resolut~on 1 t ) ...... p 0 s :-

Parameter order 1 2 3 4 

Error just prior to 
disturbance -0.4!0.2 O!l + -2 0 8-0.2 

+ 
+120-6 

Maximum error im-
mediately following + 

+1.2-0.2 + 
-32-1 

+ +10.4-0.2 > +600 
disturbance (satur-

Time from disturbance 
to first crossing of no 
target value (s) crossing 20.9 21.7 

Overshoot (~) none 7.5 9.2 ""' """ 

Time from disturbance to 
stable achievement 
of target values (s) 17.7 34.9 40.8 

TABLE 7.3 Dynamic Response of Parameters to a Large 
Step Disturbance 

ated) 

18.2 

8.5 

41.3 

The final shape was approximately 75% further away 

from target than that of figure 7.3, but this was due 

solely to the fact that the much larger As-U-Roll 

motions required (As-U-Rolls 1 and 8 at -34 divisions, 

for example!) exacerbated the effects of the inaccuracies 

in the mill gain matrix, causing an extremely marked 

edge turn-up effect. 

All the runs described so far were carried out at 

-1 
the medium strip speed of 3ms • In order to examine 

the performance of a fixed controller over the range of 

practical strip speeds, the basic simulation of figures 

7.2 and 7.3 was repeated, firstly at a strip speed of 

-1 8 -1 Ims and then at ms • The final shape achieved in 
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each case was virtually identical to that of figure 7.3. 

The dynamic performances are summarised in table 7.4~ 

from which it appears likely that the single controller 

will suffice. This of course is only strictly true for 

a strip width of 1610mm (31 covered shapemeter rotors). 

At the time of writing sensible simulation results are 

not available for narrower strips due to problems with 

the accuracy of the mill gain matrices. However~ a 

qualitative judgement is possible based upon the fact that 

narrower widths only affect the dynamics directly in the 

transfer function of the strip between the mill and the 

shapemeter (the effects of speed were examined in 

Chapter 6). The controller employed in the simulations 

was actually designed for a 1200mm wide strip (equation 

(6.16». 
th 

The oscillatory nature of the 4 order parameter 

f, -1 response in Table 7.~ for Ims strip speed tends to 

confirm the predictions made in Chapter 6 following 

equation (6.17), but is not thought to justify a 

different controller. For narrower strips~ the transport 

lag between the mill and shapemeter increases i and the 

time constant of the build-up of shape decreases (see 

equations (4.2) and (4.3) in Chapter 4). The controller 

was designed for a transport lag of 0.37s and a time 

constant of 0.12s. For extreme values of width and speed 9 

the transport delay can vary between (approximately) 

whilst the corresponding time constant 

varies between (approximately) 0.03s and 0.48s. To limit 

changes to a single variable at a time~ Table 7.5 S110~S 
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N 
VI 
~ 

I 

Order of Parameter 1 - - - - - - 2 - - - - - -
1- -3 - 4-

3 , 3 -1 3 3 1 8 1 8 1 8 - 1 (Fig. Line Speed (ms ) (Fig.7.2) (Fig.7.2) (Fig,7.2) 7.2) 

Time to first crossing NO CROSSING NO CROSSING 19.6 20.4 21.1 19.32* 19.9 
of target value (s) 

Overshoot(%) 0 0 0 0 0 0 12.5 8.3 4.2 14.5t 7.3 

Time to Stable 

Target achievement(s) 15.9 15.6 15.5 0 0 o I 
I 

40.6 38.6 37.9 58.4 42.9 

I 
I I 
I I 

, 

* This was followed by a second crossing (to undershoot) after 44.2 s 
t 

undershoot was 1.8% 

TABLE 7.4 COMPARISON OF DYNAMIC PERFORMANCE FOR THREE DIFFERENT LINE SPEEDS 

. 

8 

'\ 

20.8 

5.5 

43.2 

I 
i 



the ranges of transport lag and time constant which obtain 

as the width changes from 1.61m to 0091m~ for each of the 

three speeds considered above. The controller has already 

been tested (simulations above) for conditions of 

(transport lag = 0.485s~ time constant = 0.483s) (transport 

lag! = 0.16s, time constant = 0.16s) and (transport 

lag = 0.06s~ time constant = 0.06s) by the runs described 

Strip speed (ms- l ) 1 3 8 

Strip width (m) 1.61 0 091 1.61 0.91 1.61 0.91 

Range of 
Transport Lag (s) (0.48 1.5 4) (0.16 0.5 1) (0.06 

\ 
O.l~ 

Range of Time 
(0.48 0.27) \0.16 0.09) (0.06 Constant (s) 

TABLE 7.5 Variation of Strip Transfer Function with 
Width & Speed 

O.O~ 

previously; and was tested (control design in Chapter 6) 

by Bode and Nyquist analysis over ranges of (transport 

lag = l.ls~ time constant = 0.36s)(transport lag~= 0.37s, 

time constant = 0.12s) and (transport lag = 0.14s, time 

constant = 0004s). The entire range of possibilities 

with the exception of the combination of extreme narrow 

width and slow speed has therefore been examined by one 

means or another, and has generated some confidence in 

the use of a single controller. 

The final simulations to be discussed here test the 

effect of the controller sampling rate upon system per-

formance. The original setup leading to fi~ures 7.:2 and 

The controller sampling rate for 7.3 was again employed. 

all simulations discussed previ9usly was set at one 
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integration step of the simulation 9 which happended to be 

37.3Hz. The sampling rate was varied, for these tests, 

between this value and 0.2Hz. Over the whole of this 

range~ the target values were in fact achieved
9 

and the 

final shapes did not significantly differ from the final 

shape of figure 7.3. However 9 at the very slow sampling 

end of the range (5s sampling period)j the dynamic 

behaviour of the parameters was becoming greatly de-

graded~ and approaching instability. For example, the 

response of the fourth order parameter overshot by 24% 

and then took approximately 90 seconds to settle after 

a number of minor oscillations about the setpoint. Up 

to Is controller sampling periods however, the dynamic 

behaviour of all four parameters was almost in-

distinguishable from traces I to 4 of figure 7.2. This 

is most encouraging for the final system as for various 

reasons (see Chapter 8) a microcomputer system will be 

used j and there is much IInumber-crunching" for such a 

system to perform. Low sampling rates may therefore be 

found necessary in order to provide sufficient 

calculation time. 

7.6 Hybrid Simulation of As-U-Roll Control 

It will be recalled that in Chapter 4, a control 

scheme was introduced for closed-loop position control 

of the non-linear "As-U-Roll" actuators. Since the per-

formance of this loop is crucial to the performance of 

the final control scheme and the accuracy of the dynamic 

plant simulation, it was to be investigated 

as close to reality as possible. 
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The chosen method was to employ an analogue computer 

simulation of the As-U-Roll system, including the non-

linear characteristics~ and to then place around this 

simulation the controller which was to be used on the 

plant~ programmed into the same computer which would be 

used on the plant. The only differences between the 

simulation and reality were therefore the accuracy of the 

representations of the hydraulic components and non-

linear characteristics (the "integrator" type rep-

resentation of the rack itself being well kno,~ from the 

plant trials - Chapter 5~ section 5.4.1). 

Figure 7.5 shows the anaolgue simulation diagram~ 

using the normal conventions for such diagrams. Amplifer 

A2 performs the function of a first order lag i simulating 

the transfer function of the relay, valve and hydraulic 

motor shown in figure 4.2 (Chapter 4) using the "correct" 

plant values. Amplifier AJ represents the integrator 

action of the rack, and amplifiers BJ, Bl and A4 create 

the backlash function, whose width is set by potentiometers 

B2 and B4 to represent O.lmm (c.f. figure 4.2). The rack 

position is read by the microcomputer (see Chapter 8 and 

Appendix 7 for details) which performs the necessary 

control algorithm (the error calculation~ gain and dead-

space shown in figure 4.2 - equivalent to a variable Kidth 

deadspace)~ and applies a "raise rack"'j "loKer rack tt or 

"off ll signal back to the analogue simulation. 

Various response tests were carried out uS1ng this 

simulation to tune the microcontroller for optimum 

performance. f · 11 b t· d .Tel'e extreme ly The responses 1na y 0 a1ne ,~ -
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close to the response of fig.5.4 which was obtained 

during plant commissioning • In order to reduce wear on 

the mechanical components, it 1S necessary to minimize 

any hunting around the set point due to limit cycling. 

This can be achieved for any given set of conditions 

by tuning of the controller gain (or deadspace width _ 

the effect is the same). However, it is also necessary 

for the controller to be able to respond to small changes 

in set point (of say one percent of full travel) for an 

accurate position control system. The controller 

parameters necessary for this are somewhat at variance 

with the requirement for minimum hunting. 

Although (as is usually the case) suitable com-

promise values were achieved by using this simulation j 

consideration was therefore also given to an alternative 

controller. This may be described as a pulse width 

modulation (pwm) controller. In this controller, rather 

than simply asking the rack to "raise" j "lower" or remain 

stationary, a Itraise lt or Itlowerlt signal is applied for a 

given time whenever the controller output leaves the 

deadspace (of figure 4.2). The duration of this pulse 

is proportional to the magnitude of the~ror signal 

generated in the controller, and is calculated so as to 

remove the error when the rack has moved for the specified 

time (pulse width). Thus, for a rack integral charact-

8 -1 
eristic of say mms , the pulse width is given (in 

seconds) by taking 0.125 of the magnitude of the error 

signal (in mm). 
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This pwm controller has several advantages over the 

simple deadspace controller, but is more difficult to 

program (and more expensive in terms of run time) since 

it involves the use of timed interrupts for each of 

sixteen digital outputs ("raise" and "lower" for eight 

actuators). The advantages include better dynamic per

formance (i.e. less hunting around the set point; 

although this is dependent upon accurate knowledge of the 

rack "ramp" rate) and, most significantly from the plant 

maintenance viewpoint~ fewer on/off cycles of the hy-

draulic controls. The main reason preventing its use in 

practice is the fact that the As-U-Roll ramp rates vary 

enormously depending upon how many racks move simultan

eously. For example~ a rack moving alone may travel at 

say IOmm/s, but if all eight racks move together this 

may be reduced to about 6.5mm/s. The effect is due to 

flow limiting in the hydraulic supplies~ which is 

necessary to keep the rack rate down to a manageable 

level for the mill operators under manual control. 

attempt an algorithm which was only allowed to move 

As-U-Roll at a time (thus fixing the ramp rate) was 

sidered impractical. 
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CHAPTER 8 

SYSTEM IMPLEMENTATION ON THE MILL 

8.1 Introduction 

As this was always a practical project~ with a 

working system as the end result~ the thesis would be in

complete without this Chapter. At the time of writingj 

installation and commissioning work is still in progress j 

and is not expected to reach fruition for several months. 

However, certain aspects of the installation are complete j 

whilst others are specified in detail j and information 

about these can therefore be giveno 

The scope of the Chapter therefore covers the choice 

of computer hardware j its configuration~ the operator 

and plant interfaces and so forth. Also of great im-

portance are the safety factors such as the limiting 

of relative As-V-Roll rack travels as laid down by the 

mill manufacturer~ and the behaviour of the control system 

under fault conditions. 

8.2 Limiting of Relative Actuator Travel 

The As-V-Roll actuator racks have a working range of 

some lOOmm~ which is displayed to the operator on 

arbitrarily scaled meters of -5 to +5 divisions. The 

mill manufacturer and plant personnel lay down limits of 

relative motion between the actuators, so as to safeguard 

the mechanical components of the plant. The limit 

criterion may be expressed as follows, "the position of 

any As-V-Roll actuator shall not deviate by more than 1.5 

operator's scale division from the mean position of its 

two immediate neighbours, or from the position of its 
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only neighbour if it is an end As-U-Roll." The control 

system therefore must not impose Upon the plant a vector 

of As-U-Roll position set-points which would violate 

these constraints. 

After much consideration, it was concluded that the 

only point at which this limiting could be carried out 

is upon the vector of As-U-Roll setpoints, ~ in figure 

7.1 9 so that the controller would continue to operate 

at all times unaware that its outputs were being tampered 

with. This however, leads to the well known problem of 

integrator wind-up in the P+I controller elements 
rv 

G (s) (see (57) for example), which is considered in the 
c 

next section. 

In limiting the relative As-U-Roll movements, two 

fundamentally different approaches are possible. Either 

the As-U-Roll(s) which will violate the constraints may 

be restrained whilst all other As-U-Rolls are allowed to 

move to the updated setpoints unhindered~ or all the 

As-U-Rolls can be moved to a scalar submultiple of the 

proposed vector of updated setpoints j which does not 

violate the constraints (i.e. the system gain is 

effectively reduced). Both these methods have their 

drawbacks, and they will now be discussed in turn. 

If the As-V-Roll(s) which violate the constraints 

are to be restrained, whilst the others are allowed full 

motion~ it is clearly necessary to develop some means of 

deciding which are the offending As-V-Rolls. This 
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inevitably involves placing a bias Upon the sy t h s em j w ere-

by certain As-V-Rolls will be moved in preference to 

others. Since the strip edges are acknowledged to be 

the most critical areas~ it is reasonable that the edge 

As-V-Rolls should be allowed maximum response whenever 

possible. An exceedingly sophisticated algorithm was 

developed which optimized the motion of the As-V-Rolls 
j 

so as to allow the absolute maximum number of actuators 

to move to their new setpoints without the constraints 

being violated and gave preference to motion of 

As-V-Rolls near the strip edges. However~ the routine 

was so complex that although it funtioned well in the 

simulation model j it would be impractical to use it on-

line for reasons of storage and execution time (the 

routine involved twenty-four decision nodes, arranged in 

nineteen interconnected loops around which several 

iterations were typically necessary)! A second routine 

was therefore developed giving a sub-optimal solution j 

but in a much simpler algorithmj an outline flowchart 

for which is given in figure 8.1. The philosophy here 

is firstly to test as a whole the set of actuator set-

points demanded by the controller. If the constraints 

are not violated then all the actuators are allowed to 

move. If the constraints are breached, then the present 

set of actuator positions (which are considered to lie 

within the constraints otherwise they would not have been 

achieved - apart from plant faults) is takenjthe present 

positions of the edge two As-V-Rolls in the mill are 

replaced with the demanded setpoints. The set of demands 

thus formed is then tested against the constraints. If 
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the result is acceptable, the next two As-V-Roll positions 

inwards from the edges of the mill are replaced with their 

demanded setpoints also~ and the procedure repeated. If 

the constraints are violated on the other hand~ then the 

outer two As-V-Roll positions in the "allowable" setpoint 

vector which is being built up~ revert to their present 

positions before trying the next inboard pair. This 

procedure is repeated four times so that all eight of the 

proposed set points are tried in the admissible setpoint 

vector one pair at a time, and accepted or rejected as 

appropriate. Flags are set at "A" in fig.B.I to indicate 

which pairs of demands have been admitted. If the flag 

at "B" has not been set at-.:all during these four iterations 

none of the new setpoints are acceptable and the setpoint 

vector has not therefore been updated from its previous 

values before exiting at "e" (hence there will be no 

As-V-Roll movement). If however the flag at "B" has been 

set~ then the admissible setpoint vector is now different 

from the existing As-V-Roll positions and it is worth

while trying the whole procedure again as another pair of 

demands which were rejected at the first try, may now 

become admissible (loop "D" in fig.B.I). The flags set 

at "All are now used at "E" to avoid including any new 

demands more than once. If the test at "Fit is true'j 

then the procedure has gone as far as it can'j since it is 

already known that no more than three pairs can be in-

cluded as a result of the test at "G". This procedure 

works well~ but suffers from the disadvantages that the 

demanded As-U-Roll "profile" is distorted j and the 
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As-U-Rolls are limited in pairs whereas only a single 

As-U-Roll may need to be IJ.°mJ.°ted J.°n to prac J.ce, thus a 

degree of freedom is to some extent lost. Nevertheless~ 

it is anticipated at the time of writing1 that this 

method will be used in practice. 

The alternative of reducing the effective system 

gain is achieved by the algorithm of figure 8.2. Here~ 

the vector of demanded setpoints is progressively re-

duced by a percentage of its initially proposed values~ 

until either the constraints are observed~ or zero is 

reached in which case no action is possible and the 

existing set of positions is maintained. The flowchart 

of figure 8.2 allows ten iterations~ removing 10% of the 

initial values at each. This method has the advantages 

of extreme simplicity and of maintaining the form of the 

required bending profile, but the severe disadvantage that 

all eight As-U-Rolls are restrained whenever a single 

demand causes violation of the constraints. 

8.3 Integral Desaturation J.n the Controller and 
Bumpless Transfer 

Since it is necessary to limit the relative 

As-U-Roll rack movements as discussed in the preceding 

section, it is almost inevitable that the control system 

as a whole will never achieve the shape demanded by the 

setpoint vector ~r in fig.6.5. Thus some error e will 

always exist, even when no further control action is 

allowed. Since the controller for each parameter contain~ 

an integral term (see fig.8.3(i»~ the outputs from tllese 
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integrators will "wind-up" until the maximum of the 

computeri s number range is reached
1 

after which the 

will wrap around, and thus totally unrepresentative 

count 

values will occur. Furthermore, catastrophic failures 

may occur due to various overflows etc. in the computer. 

This phenomenon of integral wind-up is well known 

~n digital P+I controllers (57)~ and many methods have 

been used to overcome it1 some being extremely sophis

ticated. However, it is felt that in the present case
j 

once the As-V-Roll travel has been limited 1 and the 

integral of the error begins to build up~ it will often 

be the case th~t no further control action will be 

feasible during the current pass of the coil (due to the 

slowly-varying shape function). Therefore~ the simplest 

method of integral desaturation is employed~ namely to 

clamp the output of the integral term at the level it 

has attained when the controller output reaches some 

specified maximum value. This value is different for 

each parameter and is chosen on the basis of measured 

strip shapes from the plant. Figure 8.J(ii) shows the 

digital equivalent of the controller of fig.8.J(i) with 

this clamping included. The integrators are, of course j 

reset for each new pass of a coil j and each time the 

"AUTO" mode is entered from manual. Which leads con-

veniently to the consideration of bumpless transfer. 

Since the automatic system controls the As-V-Rolls 

by using the identical relays to the manual system~ there 

is no problem when transferring from tlAUTO tl to "~\1A~CALII 
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modes - the operator simply takes over adjustment of the 

same ("ON/OFFH) controls. However 1 when changing from 

"MANUAL" to "AUTO", steps must be taken to ensure that 

the control signals applied to the As-U-Rolls begin at 

the existing As-U-Roll positions so as to give a bumpless 

transfer. It is clear from fig.8.] that if the integrator 

output ("running sumt!) is held at zero'j then the con-

troller output is due solely to the proportional con-

troller gain acting upon the error signal. Thus ~ 

referring to figure 7.1'j even when in "manual" mode there 

will be a non-zero vector at a (given that some error 
-c 

exists). This must be held at a level which will cause 

no immediate As-U-Roll motions when transferring from 

"Manual" to "Auto" control. Therefore, in the "Manual" 

mode'j every cycle through the control algorithm~ the 

"running sum" of errors is held at zero, and the vector 

u (fig.?l) is updated as 
-c 

we then calculate a 
-c = 

k::I,4 

"'T-
X Pu 

-c 

(for four controlled 
parameters). 

and set a = a - a 
-0 -p -c 

where a is the vector of measured 
-p 

As-U-Roll positions. Thus ~ (which is given by 

I t 1· n the "manual" mode. is always held equa 0 ~p 

a 
-c 

+ a ) 
-0 

Therefore 

when transfer from "manual" to "Auto" is effected, the 

automatic control scheme will begin by applying a \'ector 
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~ of demanded setpoints to the As-V-Rolls~ which J..5 

identical to the vector ~p of As-V-Roll measured position5o 

Thus a true bumpless transfer is achieved. 

8.4 Computer Hardware 

The choice of computer hardware was not straight-

forward. A mini computer system already exists on each 

of the mills in question~ and i t ,~as originally en

visaged when the mills were laid down that automatic 

shape control would be included~ at some time in the 

future, in this machine. However~ rather than attempt to 

interface with the presently operating software~ with 

which neither the author nor his colle9gues was familiar 

(and also for various other reasons) it was decided that 

the automatic shape control system would be better in-

stalled as a tlstand-alone" system with its own hardware. 

Financial strictures within BSC also limited available 

capital and therefore a microcomputer system was really 

the only choice - but which? 

Many microcomputer systems were considered~ but most 

were considered immediately unsuitable due either to 

tlnon-industrialized" construction j insufficient input/ 

output capacity, lack of a fast (compi+ed) high level 

language for ease of program development, cost etc. 

It was realized that a system which could be guaranteed 

fast enough to perform the complex calculations required j 

and having sufficient I/O capability would be fairly 

expensive (say of the order of at least £IOjOOO per system). 
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A decision was therefore made to employ on each mill ., 

two single-board microcomputers, which together should be 

perfectly capable of implementing the scheme., but which 

were of extremely low cost and well-known to the author. 

A brief specification of the computer is given in 

Appendix 7, and two such machines are wall-mounted side

by-side in rugged steel enclosures in each of the 

existing mill computer rooms. 

The computers are sited remotely from the plant 

(several tens of metres) and new cabling was installed 

as required~ by the plant personnel. The majority of 

the required signals'j however'j was already available at 

the existing computer interfaces in the computer rooms. 

8.5 Plant Interfaces 

The purpose of this section is briefly to outline 

the interaction between the automatic control scheme and 

the mill operators. The operator's controls which are 

allowed for, and are being installed at the time of 

writing, are as follows. 

MANUAL (Push-Button) Pressing of this button gives the 

mill operator sole control of strip shape. Relay 

interlocking is arranged so that even if the micro

computer system has completely failed'i the ~~XUAL 

push button will still give control back to the 

opera tor. A relay in the LTAC board (knoKll as the 

ttAUTO ON" relay) is disabled., which disconnects all 

the microcomputer control signals from the As-V-Roll 

controls. Furthermore., the microcomputer (unless a 
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failure occurs) will never attempt to 

As-U-Roll in MANUAL mode in any case. 

move an 

Thus double 

IIf . I f tI • a1 -sa e measures have been 1ncluded to ensure that 

the mill operator can regain and maintain }~XUAL 

control under any circumstances, and at any time. 

Additionally~ the microcomputer system itself 

(if in AUTO mode) returns control to the operator by 

switching to MANUAL whenever the strip speed falls 

outside the range 60m/min to 550m/min (when the 

shapemeter readings are unreliable). This will 

occur automatically at the end of every pass of course, 

and also perhaps at welds and faults. The operator 

himself must re-engage AUTO if he requires it -

(the computer will never of itself assume that AUTO 

mode is required). 

As a further safety measure 1 the microcomputer 

performs regular self-checking of a nature which will 

identify faults in many parts of the computer (although 

it obviously is far from exhaustive in a real-time 

system) • Should this self-check fai11 the computer 

will again revert to the MANUAL mode 1 giving control 

back to the mill operator. 

MANUAL (Indicator Lamp). This indicator is illuminated 

whenever the system is in MANUAL mode. It is inter-

locked by relays so that it will illuminate under the 

correct conditions even if the microcomputer should 

fail. 
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CONTROL AVAILABLE (Indicator Lamp). This indicator tells 

the mill operator that the microcomputer system will 

accept an AVTO push-button demand. It is only 

illuminated when the microcomputer system is healthv-. , 

the strip speed is between 60 and 550 m/min
i 

and the 

control software has performed certain calculations 

required for each pass~ and dependent upon strip 

width etc. 

AUTO (Push-Button) If this button is pressed when the 

CONTROL AVAILABLE indicator is extinguished, it will 

have no effect. 

If the CONTROL AVAILABLE lamp is illuminated~ then 

pressing the AUTO button will cause the microcomputer 

system to attempt to assume AUTO control. This will 

not occur~ however~ if the mill operator has set the 

As-V-Roll actuators in a set of positions which 

violates the relative motion constraints. Ifj on the 

other hand~ the As-U-Roll positions are acceptable 

to the microcomputer system, then AUTO mode will be 

enetered. The "AUTO ON" relay will be energized 

(see above) and the microcomputer system will move 

the As-U-Roll actuators in a controlled manner so as 

to obtain and maintain a strip shape which is as 

near as possible to the target shape for the pass in 

question. The microcomputer system does not permit 

itself to violate the As-U-Roll relative motion COll-

straints, and possible control action may necessarily 

therefore be limited on some occasions. 
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If the microcomputer should fail, or the strip 

speed falls outside the range 60 m/min to 550 m/min~ 

control is passed back to the MANUAL mode immediately 

via the fail-safe hardware (see above). 

If the mill operator at any time presses the MA~~AL 

push button~ he will immediately obtain MANUAL control. 

Under certain circumstances, the mill operator will 

find himself able manually to adjust the As-U-Rolls 

whilst running in AUTO mode. However~ this will up-

set the microcomputer systemas error signals~ and 

the microcomputer will immediately return the 

As-U-Roll to its previous position when the operator 

releases the switch. 

AUTO (Indicator Lamp). This indicator is illuminated 

whenever the computer system is controlling the strip 

shape in either AUTO or HOLD PRESENT SHAPE modes. 

HOLD PRESENT SHAPE (Push-Button). Pressing the HOLD 

PRESENT SHAPE push-button will enter the micro

computer system into a mode in which the shape at 

the moment the button is pressed becomes the target 

shape~ and is therefore maintained until either the 

MANUAL button is pressed, the strip speed falls out

side the range 60 m/min to 550 m/min j or the micro-

computer system fails. Under any of these circum-

stances~ control immediately reverts to ~~~UAL mode. 

If the CANCEL button is pressed~ control reverts to 

AUTO mode. 

The fact that the microcomputer system ,,-ill not 
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permit itself to violate the As-U-Roll relative 

motion constraints still applies
o 

HOLDING PRESENT SHAPE (Indicator Lamp). This lamp is 

illuminated to tell the mill operator that a HOLD 

PRESENT SHAPE request is being obeyed. 

CANCEL (Push-Button). If this pushbutton is pressed 

whilst the HOLDING PRESENT SHAPE indicator is ex-

tinguished, it will have no effect. Otherwise~ 

control is returned from the HOLD PRESENT SHAPE 

mode to the auto mode~ with the appropriate target 

shape for the pass in question. 

TAKE LOG (Push-Button). It was mentioned in Chapter 5 

that a microprocessor-based data-logger was used 

during plant trials. The control microcomputers 

do not have the capacity to perform this function 

at the same time as the control function~ and a 

separate machine has not been installed purely for 

this purpose. Nevertheless~ if at any time the 

plant personnel require hard-copy logging of strip 

shape for a limited period~ this can be had at the 

expense of automatic shape control by replacing the 

set of PROM chips in one of the control computers. 

The TAKE LOG button then initiates the printing 

of a log. 

When the auto control PROM set is mounted~ the 

TAKE LOG button has no effect. 
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8.6 Shapemeter Edge Rotor Compensation 

Some consideration was also given to the behaviour 

of shapemeter rotors which are only partially covered by 

the edges of the strip. Consider a strip 1000mm ,,"ide. 

For a shapemeter rotor width of LR = 52mm~ equation 

(3.120) in Chapter 3, section 3.10~ gives the number of 

shapemeter rotor centres covered by the strip as J H = 19. 

The equation following equation (30120) then gives the 

value of L in figure 3.38 (section 3.10) as 
ps 

L = ps 

L - L (J -1) 
s R H 

2 = 32 mm ...... (8.1) 

The fractional coverage of the rotors at the strip 

edges ~ay be found as follows: 

C 
e = 

L frac 
LR 

(p.u. ) 

where LR = length of shapemeter rotor (m) 

L = length 
frac 

= 

= 

strip 

L + ps 

L ps 

of covered 

edge (m) 

LR for 
2 

LR 
for 

2 

portion of 

L ~ 
LR 

ps 2 

LR 
L > ps 2 

Thus for the value given at (8.1)~ 

rotor under 

(see fig0303 8 
for clari-
fication) 

C 
e = 0.115 p.u. coverage of rotors at strip 

edges. 

Now~ the shapemeter electronics systems on the mill 

under consideration make no allowance for such partially 

covered rotors (an omission which has been corrected on 

later generations of the ASEA equipment). Therefore) 
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these partially covered rotors will register a small radial 

force as the strip passes over them, which will be 

included in the signal analysis of the shapemeter system 

in precisely the same way as a fully covered rotor (see 

Chapter 2 section 2.4.2). Thus~ the 19 fully covered 

rotors (rotors 7 to 25 inclusive) will give the operator 

his display of strip shape (as shown in figure 6.1 in 

Chapter 6 for example)~ but rotors 6 and 26 will also 

show some stress differential. Since the forces on these 

two edge zones are comparatively light~ the strip is 

shown as being relatively loose, and the two edge 

rotors (6 and 26) can often be seen to be displayed at 

very low values of differential stress outboard of the 

extreme rotors shown in fig.6.1 (for 1000 mm strip) -

see figure 8.4. This~ of course~ implies that a fourth

order parameter fit will fail~ as the behaviour is 

apparently sixth-order and there are few data points. 

However~ in reality the behaviour is predominantly 

fourth-order, and it is only the false readings of the 

shapemeter rotors at the strip edge which cause the 

lack of fit over the entire widtho 

Some means therefore had to be found to compensate 

for such partially-covered rotors. This could be done 

rigorously by going right back to the force measurements 

in the ASEA equipment and compensating for the fractional 

coverage before performing the shape calculations of 

section 204.20 This approach is impractical however i due 

to the cabling and calculation requirements which would 
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be involved in interfacing the force signals for each 

rotor (which are derived within the ASEA electronic systems) 

with the (remote) control microcomputers~ and then per-

forming the necessary compensation to the edge two signals 

before finally duplicating the calculations performed by 

the ASEA equipment to generate the strip measured shape 

vector for further processingo 

Compensation cannot be carried out upon the measured 

shape signals at the control computers~ as there is no way 

of evaluating the mean stresso Therefore the only 

practical solution is to disregard the readings of edge 

rotors which are less than say 50% covered. This is done 

by only considering the number of rotors given by J H 

above. Therefore, for a shapemeter having 31 rotors 7 the 

only rotors which are considered are from rotors 33-J H 
2 

to Jl+JH d t b t k" inclusive i for strip assume 0 e rac lng 
2 

centrally. 

This however, leads to a problem in that the area 

under the shape display must be maintained at zero. 

Table 8.1 shows in the central colllmn j the values plotted 

in figure 8.4. It can be seen from the "overall sum" 

entry that the area under the curve is zero (within 

rounding errors). Now consider the omission of rotors 

6 and 26 (since we know that these rotors are only 11.5% 

covered for this strip width). The table entry now shoKs 

-2) 
a large discrepancy (60.78~mm · 
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Let the number of rotors covered by at least 50% = J
H 

Let the sum of shape readings of these covered rotors 

be given by 

where 

s = 

~ (j' is 
x 

(Nmm- 2 ) 

th the shape at the x rotor of 31 from the 

front of the mill (Nmm- 2 ). 
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Shapemeter 
Rotor 
Number (x) 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
i8 
19 
20 
21 
22 
23 
24 
25 
26 

Positive Sum 
Negative Sum 

Overall Sum 

Sum excluding 

Actual Strip 
Shape measured 
on the plant 
(see fig.8.4) 
(Nmm- 2 ) ~O"" ) 

-21.95 
40.85 

- 4.31 
-35.55 
-23.95 
-13.95 
- 1.95 
- 1.95 

6.45 
6.45 

13.65 
4.45 
2.85 

- 1.96 
- 1.95 
-11.15 
-18.15 
-11.15 

36.05 
76.05 

-38.75 

186.80 
-186.72 

0.08 

x 

Rotors 6 & 26 S =60.78 

Adju.3ted strip 
Shape used for 
Control (see 
fig.6.1) 

(Nmm- 2 ) 

37.65 
- 7.51 
-38.75 
-27.15 
-17.15 
- 5.15 
- 5.15 

3.25 
3.25 

10.45 
1.25 

- 0.35 
- 5.16 
- 5.15 
-14.35 
-21.35 
-14035 

32.85 
72.85 

161.55 
-161.57 

TABLE 8.1 "Edge Compensation ll for partially covered 
rotors 

In order to remove this value of S from the sum~ we 

simply correct the reading at each of the J H rotors bY 

algebraically adding a value b 9 where 

& = 

For the values above S = , 
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The right hand column of table 8.1 gives the values 

corrected by this amount 0 and it can be th . seen at the area 

under the curve is maintained at zero. These are the 

values wnich were plotted in figure 6.1, and upon which 

the control system will operate. 

It 1S somewhat unfortunate that, for certain widths 

of strip, this loss of resolution must be tolerated at 

the strip edges. It is however fairly insignificanti 

and has caused no noteworthy problems during simulation 

studies at least. 

8.7 System Interaction with First Intermediate Roll Control 

Although the first intermediate roll tapers (which can 

be slid laterally into and out of the mill cluster for 

shape control purposes) have been considered in the 

static and dynamic modelling work (Chapter 3-section 3.8, 

Appendix 4-section A4.3 and Chapter 4-section 4.3)i 

nothing has so far been said about their control. The 

reason for this is that initially the automatic system 

will control the As-U-Roll actuators only, the first IRs 

being still manually controlled. Work is still proceeding 

into the means by which control of the first IRs may be 

included in the automatic scheme. Consideration must 

therefore be given to interaction between the manually 

controlled first IRs and automatically controlled 

As-U-Rolls. 

The mill operator may be observed during rolling 

almost invariably to have a parabolic type of bending 
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profile set on the As-U-Roll actuators (typically in such 

a manner as to tend to tighten the strip at the edges and 

slacken it in the centre). From intuitive reasoning 

however, and also from the results of the dynamic 

simulation studies in Chapter 7, it would be expected 

that since the shape in the strip is typically of a W 

nature~ the As-U-Roll profile required to correct it 

would be M-shaped. 

This apparent discrepancy 1S due to the operator's 

use of the tapered first IRs. The operator mentally 

divides the strip into two edge zones and a centre zone. 

On the first pass of a coil, the first IR tapers and 

As-U-Rolls are set by experience to obtain the 

characteristic W shape profile. On subsequent passes, 

the operator (typically) gradually withdraws the tapered 

portions of the first IRs from the cluster so as to 

lengthen the strip edges and thus bring "down" the 

extremes of the W in an attempt to reach the target shape 

(see Chapter 6-section 6.3 for details of target shape). 

Since shape is displayed with respect to mean, this also 

raises the central peak of the W. The As-U-Roll 

actuators are then used to alter the mill camber so as 

to reduce this central peak. No As-V-Roll action is 

required to assist the first IRs at the edges, as the 

gain of the first IRs is large for shape control. This 

explains the parabolic type of As-V-Roll bending profile 

used by the mill operators - it is simply an adjustment 

of mill crown~ with the fourth-order beluviour at the 

strip edges being taken care of by the (higher gain) first 

IRs. 
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From observations on the plant~ the W shape is always 

likely to exist to some extent when the operator switches 

to AUTO. The control system will therefore tend to move 

the As-U-Roll actuators into the M profile discussed 

above. This is especially true as the algorithm which 

limits relative As-U-Roll motion (section 8.2) gives 

preference to movements which will tend to correct shape 

at the strip edges. Only time will tell whether this 

behaviour will be acceptable to the mill operators. There 

are alternative philosophies of operation which may be 

adopted should it prove necessary during commissioning. 

One of these is to give preference to As-V-Roll motions 

which tend to correct the shape at the strip centre. 

This appears very sensible at first sight~ as the mill 

operator is still manually controlling the edges in any 

case (via the first IRs). However, in the interests of 

safety~ since the automatic control scheme will attempt 

to control shape over the entire width using the As-V-Roll 

actuators, it is more desirable to allow maximum control 

at the most critical area - i.e. the strip edge. 

A second option is to rely heavily upon the operator 

maintaining the strip edges correctly with the first IRs~ 

and bias the automatic scheme (including alteration of 

the target parameters for example)~ towards control of 

the central area of the strip only. This could be 

achieved by limiting the set of As-V-Roll positions to 

roughly parabolic forms (as used by the mill operator) 

and generating an error vector corresponding only with 

some central region of the strip. 
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Clearly this 1S all conjecture at this stage. The 

modelling effort necessary to investigate these con

ditions is formidable, and would probably not be completed 

before the system is 1n operation in any event. There-

fore, it was decided at the time of writing to adopt an 

empirical approach to these problems as and when they 

arise during commissioning. The main point is that no 

detrimental effects are expected due to continued manual 

operation of the first IRs - they will merely make the 

strip shape closer to the target, which can only assist 

the automatic system. 
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CHAPTER 9 

CONCLUDING REMARKS 

In response to ever increasing customer demands for 

rolled strip quality, the introduction of automatic gauge 

control schemes onto rolling mills has been ~ell under

stood for several years now (i.e. automatic control of 

strip thickness along the length of a coil). Such AGC 

systems are virtually mandatory on all new steel rolling 

mills i and it is proving essential in many areas also to 

retro-fit such schemes to existing mills in order to 

maintain competitiveness and market share. 

Having solved the AGC problem i researchers in the 

metal rolling field turned their attention to the 

problem of automatic shape (or flatness) control1again 

stimulated by market pressures. The purpose of AFC 

systems is to allow the roll gap profile to be adjusted 

so as to conform with the cross sectional profile of the 

incoming material~ thus obtaining a rolled product free 

of internal stresses; or to alter the roll gap profile 

in a manner calculated to remove existing internal 

stresses in the strip. Strip free from internal stresses 

is free from any tendency to warp or buckle ~ or to bow' 

sideways when sli t into narrower w·idths. Thus it is more 

saleable, and also easier to feed through any further 

processing lines after the rolling process. 

Such AFC systems were first installed on four-high 

aluminium mills~ and then on four-high steel mills (for 
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both strip and plate). Most new four-high steel mills are 

now built incorporating rOll-bending jacks so as to 

allow for shape control systems to be installed~ and many 

such automatic systems are now in use around the world
o 

Although AFC systems on four-high mills are now 

widely accepted~ the problem of AFC on a Sendzimir cluster 

mill has not yet been fully solved. This is largely 

due to the multivariate nature of the control problem j 

since the Sendzimir mill has many more degrees of freedom 

for control than does the four-high mill. The four-high 

mill for example may only have roll-bending jacks for 

shape control (in addition to the inherent facility of 

differential adjustment of the mill screws). Thus limiting 

control action to linear and quasi-parabolic forms of roll 

bending. (It should be noted that differential cooling 

across the roll barrel is becoming more widespread in the 

steel industry however~ having been more favoured in the 

aluminium sector to date). On the other hand~ the type 

of Sendzimir mill discussed ln this thesis (a large, 

twenty-rollj 1-2-3-4 stack type of mill) has eight separate 

shape control actuators distributed across the mill width 

and two further sets of actuators specifically designed for 

high gain shape control at the strip edges. Movement of 

anyone of these ten actuators will cause a shape change 

of greater or lesser magnitude to be registered at every 

measuring zone (of the thirtyone segment shapemeter) "'hich 

the strip covers. Furthermore, it is conceivable that 

shape errors of fourth order beha\-iour and more could be 
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controlled by an automatic system using these actuators. 

The content of this thesis is concerned with the develop

ment of an AFC scheme for such a mill. 

The thesis describes the work carried out on a pro-

ject of great practical value~ and covers the entire course 

of the project from conception to implementation on the 

plant. This is justified firstly on the ground that it 

gives a complete overview of the work; and secondly on 

the basis that the entire project taken as a \vhole is 

original work~ which has been done nowhere else in the 

world to the author's knowledge~ although since the 

thesis covers such a wide range of subject~matter there 

is inevitably a fair amount of standard work distributed 

through it. 

During the course of this project~ the author was 

employed by British Steel Corporation~ Research Services, 

and was effectively for most of the time the project 

engineer responsible for the work. The author carried 

out virtually all the theoretical work (except for the 

basi~ development of the control strategy) and computer 

modelling single-handedly, but was assisted (of course) 

in the plant trials and plant implementation phases of 

the work by his own engineers and by personnel employed 

by BSC Stainless on the Sendzimir mill site (see 

acknowledgement). 

The first Chapter of the thesis forms an intro-

duction to tIle shape control problem including some 

historical background into various methods of shape 

measurement and control. The Sendzimir mill installation 
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together with details of the various control actuators 

on the mill and the strip shape measuring system are 

described in detail in Chapter two~ so as to provide a basis 

of understanding for the following Chapters. Chapter 

three describes the development of a mathematical model 

of the static behaviour of the mill stand, including 

very detailed modelling of the various control actuators. 

Some details of the computer mechanization of this model 

are also given. The work of Chapter three is entirely 

original, including a more rapid solution of Bland 

and Ford's roll force model than has been reported before. 

The model can be run for an infinite variety of plant 

conditions 9 and therefore only a few representative 

results are discussed in any detail. The result of running 

the model ~s a plant gain matrix relating movement of any 

As-U-Roll actuator to the resulting shape change at 

various points across the strip. Many runs of this model 

have shown that different matrices are produced for 

different mill conditions. For example 9 when rolling 

harder materials 9 the gains in the matrix are reduced. 

When rolling narrower materials, the gains also reduce 

and so on. Various portions of the static model re

quiring further work are mentioned in Chapter three~ but 

in essence the matrices for wide strip are thought to be 

more reliable than those for narrower strip due to edge 

effects. The model is much faster in execution than that 

of Gunawardene (16) due to the non-iterative structure. 
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Chapter 4 describes the dynamic (transfer functional) 

analysis of the plant items including the As-U-Roll 

actuators for shape control (which contain non

linearities), the shape measuring equipment and the pro

gress of shape changes between the mill and the shape

meter. By the end of Chapter Four therefore~ a proposed 

model of the entire plant exists. This takes the form of 

transfer functional descr~ptions of all the dynamic 

plant elements, together with a static model providing 

a gain matrix for the mill stand i tself ~ "w"hich is non-

dynamic. A controller design is specified for the 

position control of the non-linear As-U-Roll actuators, 

and the resulting closed loop system is linearised for 

use in control scheme design (the actuators were originally 

open-loop on the plant, being controlled by "RAISE-OFF

LOWER" switches by the mill operator). 

Chapter Five gives details of attempts to verify the 

various models and tune them to the plant. This proved 

to be an exceedingly time-consuming (and not wholly 

successful!) task~ and involved the use of over £100000 

worth of test equipment'i much of \vhich had to be custom 

designed by the author. Verification of some of the 

dynamic modelling was successful, notably the As-V-Roll 

actuator transfer functions and As-U-Roll controller 

simulations, but verification of the transfer function 

of the strip between the mill and shapemeter and 

verification of the static model~ proved very difficult 

for a number of reasons. Included among these are 

unex.plained (but significant) variations in recorded strip 
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shape which made it virtually impossible on many occasions 

to distinguish spurious from deliberately induced effects 

(the magnitude of induced test signals being limited by 

operational constraints, and the use of PRES testing 

being unreliable due to the plant construction and design.) 

As a result of these tests confidence was generated in 

most of the transfer-functional modelling and the intuiti,-e 

confidence in the gain matrices produced for wide strip 

was upheld (if not totally vindicated~). The most reliable 

mathematical description of the plant available had thus 

been generated for use in control system design and 

simulation. 

The basic philosophy of the multivariable controller 

design was proposed by Grimble and Fotakis (17,18), but 

was not directly useable in the form presented by them. 

Chapter 6 describes the Author's w6rk in modifying this 

basic philosophy into a practically realizable scheme. 

The major areas of the Author's contribution are in the 

parameterization of the measured shape signals, and the 

introduction of non-square plant matrices (the dimensions 

depending upon strip width). Work was also enacted 

pertaining to the selection of target (reference or 

set-point) shapes for the control scheme, and it was 

discovered that a width independent target was feasible, 

thus removing some selection programming. The control 

scheme involves the parameterization of the measured 

shape signals (using orthogonal polynomials) into four 

values (orders 1 to 4 of the polynomials). Errors 1n 

these parameters are then calculated and fed into 

controllers. Each controller takes the form of nIl inte~ral 
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only controller of fairly low gain (provision for 

proportional terms being made in case it should prove 

necessary). The four loops are designed separately due 

to the fact that the transformed plant (including the 

parameterization, deparameterization and plant matrices) 

can be shown to be invertible and can be operated upon 

by a precompensator comprising its inverse. 

Chapter seven describes a multivariable dynamic 

simulation of the entire plant and control scheme 9 to 

allow investigations of stability and performance under 

varying conditions. The simulation is an extremely 

flexible and powerful tool, and uses packages exclusively 

written by the Author (no simulation suites being 

available on the computer installation in question). 

The operation and facilities of the model are described, 

and the results of several aspects of simulation are 

discussed. These include the reaction of the system 

to changes in strip speed~ shape disturbances in the 

incoming strip, failure of parts of the measurement 

system and changes in the sampling rate of the control 

computer, which is itself simulated. It was concluded 

that a suitable controller design had been selected for 

initial commissioning on the plant9 and various other 

points were also highlighted - for example, a means of 

coping with single failed shapemeter rotors was proposed 

which ,v-ould allow the system to continue working ill 

AUTOMATIC mode with reasonable results'j rather than simply 

passing control back to the operator. It was also found 
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that a relatively slow-sampling control computer system 

would be well tolerated (e.g. one sample per second)~ so 

as to allow as much calculation time per scan as possible. 

A hybrid computer simulation of the local As-U-Roll 

actuator position control loops is also described, by 

which the controller for these loops - f 11 was'success u y 

designed. 

Chapter eight completes the picture by giving details 

of the system implementation on the plant, and some 

rather specialised considerations which arise for this 

particular scheme. An algorithm is developed for limiting 

the relative motion of the control actuators, as laid 

down by the mill manufacturers and plant engineers. 

Consideration is then given to the problems of integral 

desaturation and bumpless transfer in the controller. The 

computer hardware and operator interfaces are then des-

cribed. Attention is also directed to the problem of 

compensating for shapemeter rotors which are only 

partially covered by the strip edges, and thus distort 

the shape measurements. In fact, the distortion was 

often found to be so great~ that the fourth-order 

parameter fitting would completely fail without this 

compensation, as the appearance of the strip shape was 

predominantly sixth order. A suitable practical method 

of compensation was developed. Finally, since the 

initially installed system will only control the 

As-U-Roll actuators and not the first intermediate rolls j 

a short section is included to explain how the system will 

interact with the mill operator. 
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In conclusion~ a system has been developed through a 

comprehensive programme of theoretical modelling and 

design 7 plant testing and extensive computer simulation j 

which shows great promise of providing an excellent aid 

to the production of better quality strip on a Sendzimir 

mill. Initially the system will control the As-U-Roll 

actuators only, but work is still progressing towards 

inclusion of the tapered first intermediate rolls into 

the automatic scheme (until this is done, performance 

will necessarily be limited by As-U-Roll mechanical 

constraints). At the time of writing, the control com-

puters have been installed on the plant, all necessary 

cabling modifications have been carried out and tested~ 

and the vast majority of software has been designedo 

Most of the software has been written and tested under 

laboratory conditions 7 and currently the software is 

being gradually installed on plant. Some aspects, such 

as the closed loop position control loops around the 

As-U-Roll actuators, have already been successfully 

commissioned. Several months will pass yet however j 

before the first trials of the entire system. 
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Appendix I 

Hetenyi's Theory of beams~on Elastic Foundations 

(Reference 32) - Basic Derivation 

AI.I. Differential Equation of the Elastic Line 

Figure AI.I depicts an originally straight beam AB j 

entirely supported by a foundation which is assumed to 

obey Hooke's law, and acted upon by various vertical 

loadings (i.e. a concentrated force F at point a, and a 

distributed loading q between points b and c). These 

loadings produce a distributed reaction in the foundation 

of qR(Nm- l ) which is proportional to the deflection (y) 

of the beam at any section, hence, 

(AI.I) 

A foundation modulus is defined, being equal to 

that force which when distributed over unit area of the 

foundation will cause unit deflection. It is written as 

Therefore, if the beam AB has uniform cross-

sectional-area, and a width b (m) in contact with the 

foundation, unit deflection will cause a reaction of bk O 

(Nm- 2 ) in the foundation, i.e. 

However, for brevity, the foundation modulus is 

tIre-defined" as k = bk
O 

giving (AI.I) above. 

The well known equation for a bending beam is 

EI . = -M (Nm) 

where E = Young's Modulus (Nm- 2 ) , 
I = Second moment of area ( m't ) 

v = deflection (m) at section x 
~x 

x = distance along beam (m) 
M = bending moment (Nm) 

Al.l 



o 
~~~~------------------~--------~~~~~X 

Fig. '\.1-1 Effect of Loading a Beam on an 
E las tic F 0 U nd a t ion 

F 

Fig.A.1·2 B.O.E.F. With a Single Concentrated Force 
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Double differentiation yields 

EI . = (Al.2) 

By considering an infinitely small element of the 

beam of length dx, at a point where the beam is under a 

UDL of q (Nm- l ), it can be shown that 

= ky - q 
x 

therefore, from (AI.2) 

EI = - ky + q x 

Therefore, along unloaded portions of the beam 

(q=O) we can state the differential equation of the 

deflection curve as 

d
4

y 
EI. x = _ ky 

dx4 x 
(AI.)) 

By substituting y = e nx we obtain the characteristic 
x 

equation 

4 
n = - k which leads to the general solution of (AI.)) 

. 'E":[' 

as glven below. 

Y
x 

= e).X(C
l 

cosAx + C
2 

SinAxl+e-AX(CJCOSAX+ Cl; sin A xl 

(AI.4) 

where 

and C
I 

to C4 are constants. 

AI.3 



This therefore represents the deflection of a 

straight bar resting on an elastic foundation and subject 

to transverse bending forces, but with no q loading. 

An additional term is necessary when q ~s present. 

AI.2. Beams of Infinite Length 

From equation Al.4, we can now derive equations 

for deflection (y ), 
x 

moment[Mx = ::~x] 

and shear [ ~ = 

deflection angle (9 
x = dy ) 
~ , 
dx 

along the infinite beam for 

various types of loading. Positive quantities are as 

defined in sec tion 3.1, chapter 3. 

At a point infinitely far from the point at which 

loading is applied, deflection must be zero. I.e., 

as x---.oo 9 Y ~o. 
X 

This can only be true if the terms 

Ax in e vanish in equation AI.4. Therefore 9 

and so the deflection curve for the RH half of the 

beam takes the form 

(AI.5 ) 

AI.2.1 Results for a concentrated force acting on the beam 

Consider figure Al.2. Due to the symmetrical nature 

of the deflection which will be caused by such a loading~ 

we can say that 

= 0 

Al.-+ 



so 

Therefore, from equation AI.5, C
J 

= C
4 

= C~ 
that y = Ce-Ax(cosAX + sinAx) (m) 

x 

say~ 

(AI.6) 

Also~ the sum of reactions from the foundation must 

balance the force F, i.e. 

2 

00 

J kyx' dx = F 

o 

leading to C = FA 
2k 

(N) 

Therefore, from (AI.6) above 

however, if let AAX 
-~x we = e 

BXx 
-Ax = e 

-Ax C
AX = e 

-~x 
DAx = e 

we obtain 

(cos~x + si~x) 

sinAx 

(cosAx - sinAx) 

cosAx 

By taking successive derivatives of (AI.?) we similarly 

obtain equations for e ,M and Q as shown in fig.AI.], x x x 

where 
F)..2 

e -'B~ = k x 
(rad) (AI.B) 

x 

F 
M = 

~.C x 
(Nm) 

x 

Q 
-F 

·D = x 2 x 
(N) (AI.IO) 

Note that e and Q change sign to the left of the 
x x 

point of application of the force. 
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AI.2.2 Results for a concentrated moment acting on the beam 

Consider fig. AI.4. The loading shown at (a) can be 

considered as the limiting case of that shown at (b)~ 

assuming that as d~09 Fd --..MO• Examination of equations 

AI.? to AI.IO shows that all involve proportionality to F9 

therefore s~per-position and reciprocity principles applyo 

We can therefore use equations (AI.?) to derive the 

deflection result for fig i AI.4 (equation (Aloll) below)9 

and then successively differentiate this to obtain the 

other results (see fig. AI.5):-

MO 
A2 

(m) Yx = • -·B 
k Ax 

(AI.II) 

ex = MO 
).,9 

c 
(rad) k ~x (AI.12) 

M = MO . D (Nm) (AI.13) x 
Ax 

2 

Qx -M • 
A ·A (N) (AI.14) = 2 0 ~x 

Note that y and M change sign to the left of the x x 

point of application of MO. 

Alo2a3 Results for a UDL acting on the beam 

Fig.AI.6 depicts a UDL of q(Nm- l ) acting over a 

portion AB of the infinite beam. We wish to find the 

effects of the loading at a third point C i which is at a 

distance a (m) from A and b (m) from B. We regard the 

loading as an infinite number of infinitely small con-

centrated forces, each of magnitude q.~Xi and sum their 

results at point C. 
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Using equation AI.7~ 

where x = distance from point Co 

Integration over the a-b limits of the loaded 

portion of the beam yields equations Alol5~ Alol9 and 

AI.23 belowo Equations for 8 ~ M and Q are obtained c c c 

by performing similar operations on equations Alo8 to 

AI.IO respectively. Three cases arise (note that x~a and b 

are always taken positive):-

AI.2.3.1 When point C 1S under the loading 

Yc = .9- (2-D - D ) (m) (AI.15 ) 
2k ~a ~b 

e = .91 (A - A ) (rad.) (AI.16) 
c 2k Aa ~b 

M = .9-
(BAa + B

Ab 
) (Nm) (AI.I?) 

c 4\ 2 

Q
c = %>: (C

Aa 
- CAb ) (N) (AloI8) 

Al o 2.3.2 When C is to the left of the loading 

Yc = --9- (D
Aa 

- D ) (m) (AI.19) 
2k Ab 

ec = qA 
(AAa - AAb 

) (rad) (Al o 20) 
2k 

M = _ --9- (B - B ) (Nm) (AI.:2I) 
c 4'A2 Aa -- Ab 

Qc = %>: (C -
CAb 

) (N) (AI.22) 
Aa 

AI.II 



AI.2.3.3 When C is to the right of the loading 

M 
c 

= 

= 

= 

= 

3 (D - D ) 
2k \b Aa " 

.91. (A 
2k \ 

I\a 

(rad) 

(Nm) 

(N) 

(Al.:23) 

(Al.:24) 

AI.2.4 Results for a triangular loading acting on the beam 

Consider fig.AI.? We wish to find the deflection 

at point C as in the case of the UDL. Again three cases 

arise, and x, a and b are always positiveo 

AI.204.1 When point C lS under the loading 

Measuring x from point C, 

In the region AC 
t (a-x) qx = d 

and in the region CB 

t (a+x) qx = d 

Equation AI.? therefore gives the deflection at C as 

tA 
Yc = 2kd 

which yields 

a 

j (a-x) AAX dx + 

o 

Al.12 

(Al.:27) 



similarly~ from Al.8 to Al.10:-

e = c 

M = c 

-t 
2kd 

Similarly for the other two cases:-

(rad) 

(Nm) 

(N) 

Al.2.4 0 2 When C is to the left of the loading 

y = c 

M = c 

t 

t 
2 kd 

Al.2.4.J 

t 
Yc = 4\kd 

f1c 
-t = 2kd 

M 
-t = 
8 >(d c 

t 

When C is to the right 

(C
Aa - CAb + 2Ad D~b ) 

(DAa - D~b +,AdA\b) 

(A\a - A A b + 2 Ad BA b ) 

Qc = 
4 A2d 

(BAa - BAb -Ad CAb) 

Al.13 

(rad) 

(Nm) 

(N) 

of the loading 

(m) 

(rad) 

(Nm) 

(N) 

(Al.28) 

(Al.29) 

(AI.JO) 

(AI.JI) 

(AI.JJ) 

(AI.J4) 

(AI.J5) 

(AI.J6) 

(AI.J?) 

(AI.J8) 



AI.J. Beams of Finite Length 

The present application to rolls in a rolling mill 

obviously is concerned with beams of finite length. It is 

assumed that the rolls can be regarded as beams having 

free ends (with the exception of the backing bearings)~ 

and so the theory for beams with free ends only is out-
.. 

lined here. 

Consider an infinitely long beam on an elastic 

foundation subject to loadings as shown in fig. AI.8(a). 

Due to this loading, certain values of y~ 8 ~ M and Q will 

exist at points A and B on the infinite beam. By super-

imposing pairs of concentrated forces and moments acting 

infinitely closely to the left of point A (FOA~ MOA ) and 

the right of point B (FOB' MOB) as shown in fig. AI.8(b) 

the elastic curve can be modified in such a way that the 

required end-conditions for the finite beam AB exist at 

A and B on the infinite beam (hence these forces and 

moments are collectively called the tlend-conditioning-

forces tl). For a beam having free ends~ (eog. fig. AI.8(c)~ 

the values of M and Q at points A and B must be zero. 

Therefore, the ECFs must make the values of MA , QA~ MB 

and Q
B 

vanish on the infinite beam of figo AI.8(a) to 

create the conditions of fig. AI.8(c) so that the in-

finite beam between points A and B will behave as if there 

were a finite beam of length L with free ends at A and B. 

Thus the combination of all four ECFs must produce 

-MA and -QA at A~ and -MB and -QB at B. From equations 

AI.9, AI.IO, AlolJ and AI.14, the required conditions are:-

Al.l-+ 
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FOA FOB MOA MOB ) 

MA + + C~L + + DAL = 0 ) 
4~ 4~ 2 2 ) 

AMOA A MOB 
) 

FOA FOB ) 
QA - -+ -- DAL - 2 A~L 0 ) 2 2 2 = 

) 
) 

FOA FOB MOA MOB ) 
(AI. J9) 

~+ l±I CAL + ~+ -- DAL + = 0 ) 2 2 ) 

~ AMoB 

) 

FOA FOB MOA ) 
Q - 2 DAL + 2 2 AAL - = 0 ) B 2 ) 

The simultaneous solution of these equations is 

greatly simplified by resolving the original loading into 

symmetrical and antisymmetrical components as shown for 

the example of a single concentrated force In fig~AI.9. 

It is clear from the figure that 

M = M' A A + 

~ = Q~ + 

giving 

Q" 
A 

M' 
A = O.5(MA+~) 

QI 
A = 0.5 (QA-QB) 

(Nm) 

(N) 

(Nm) 
II 

MA = 

(N) Q" 
A = 

" - M A 
(Nm) 

(N) 

O.5(MA-~) (Nm) ) 
) 

0.5(QA+QB) (N) 
) (AI.40) 
) 

where M
A

, ~, Q
A 

and Q
B 

are found from the original loading 

using equations AI.9 and AI.IO i AI.IJ and AI.14~ AI.21 

and AI.22 etc. as appropriate. These moments and shears 

are now removed from A and B by applying ECFs as in 

fig.AI.IO which shows the assumed positive directions of 

the necessary ECFs. 
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The equations Al.39 now reduce to two pairs of 

easily soluble simultaneous equations~ one set for F~ 
I II I, 

and MO~ and the other for FO and MO. The solutions are:-

/ 

q E 1 • [ Q; . (l+D
AL

) + \M~ • (hAAL )] (N) 
) 

FO = ) 
) 

-2E ·l Q~ 2~M~. (l-D}.L) J 
) 

I 1 
, (l+C~L) + 

) 
MO = A 

(Nm) ) 

) 
) 

(Al.41) 1/ 

[ II A II J ) 
FO = 4E 2 · QA' (l-D AL ) + MA · (l+AAL) (N) ) 

) 

-2E 
+ 2AM: • (l+Dh) J 

) 
1/ 2 

[ /1 
) 

Mo = A 
. QA , (1- C). L ) (Nm) ) 

0.5 
~L e 

where El = sinh 51: L+ sinAL 

0.5 e 
AL 

E2 = sinh OX L - sinAL 

Then it is clear from fig. Al.lO that 

I " / /1 
(N) 

) 
F OA = F 0 + FO (N) FOB = FO - FO ) 

) 
) (Al.42) 

I 1/ I 1/ 
(Nm) 

) 
MOA = MO + MO (Nm) MOB = MO - MO ) 

) 

AI.IS 
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Al.4 Summary of Procedure 

Al.4.1 Evaluate MA'i ~, QA and QB on the infinite beam 

Al.4.2 

Al.4.3 

Al.4.4 

Al.4.6 

Al.4.? 

for all components of the loading under investi-

gation g using the appropriate equations of 

section Al.2. 

Use these values in equations Al.40 o 

, H I H 
Use the resulting values of MA~ MA~ QA and Q

A 
to 

/ " 1 I' 

evaluate FO'i FO~ MO and MO using equations Al.4l. 

Use equations Al.42 to evaluate the ECFs (which 

will make the portion AB of the infinite beam 

behave like a beam of length L with free ends at 

A and B and subject to the loading under 

investiga tion) • 

Use equations AI.? to AlolO arid AI.ll to Alo14 

to find the value of the desired quantities 

( y, e 'i M 0 r Q) due to all four E C F s ( at the 

required section of the beam)o 

Use the appropriate section Al.2 equations to 

find the value of the desired quantities 

(Y'i e 'i M or Q) due to all the applied loadings 

(at the required section of'the beam). 

Sum the values found at Al.4.5 (i.e. one value of 

the required quantity per ECF) and Al.4.6 (i.e. 

one value of the required quantity per applied 

loading) above to yield the total Y'i e 'i :'-1 or Q 

at the required section of the beam. 
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Appendix 2 

Calculation of Foundation Modulus (References 33-35) 

Consider two cylindrical rolls loaded by a distributed 

loading q(Nm- l ) as shown in fig. A.2. Due to local 

deformation of the roll material along the line of contact, 

a narrow contact rectangle of width b will be formed~ and 

the roll axes will move together by a distance d. 

The width of the contact rectangle is given in 

Hertz's contact stress theory (Ref.33) as:-

b = 

where V = Poisson's Ratio 

E = Young's Modulus (Nm- 2 ) 

DJf2 = Roll diameters (m) 

Also from 

Ref.34-35 d = 

The foundation modulus is given by 

k = ..9.. 
d 

(A.2.1) 

(m) 

(A.2.:2) 

which gives, upon substitution of (A.2.1) and (A o 2.2):-

k = In(f 2 ) + In(D I +D 2 )- In I q I 
TrE 

where fl :: 

AZ.l 



q, (N/m) 

diameter= 0, 

diameter = 0 

Fig. A . 2 Roll F I a t ten in 9 0 u e to L oa din 9 

A~.2 



Note that the absolute magnitude of q has been used 

in (A.2.3). This is because in the main model~ q Kill 

occasionally be negative and the log of a negative number 

is non existent. The fact that q is negative has no 

significance in the context of Fig.A.2 

in the main model. 

A2.3 
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Appendix J 

Bendin Theor for a Cantilever havin an Elasticallv 
Supported Root Original 

Consider a conventionally supported cantilever as 

shown in fig.AoJ.l. At a section x
M 

from the unsupported 

LH end 5 the bending moment is given by 

The equation of the elastic line of the cantilever 

over this range is given by 

M 
= EI = 

Integrating yields 

= = 

and integrating 
FWN 

yx = EI (LV 
M 

again~ 

(rad) 

(A.J.2) 

At this stage in the analysis it is usual to prove 

However~ consider the LH unsupported 

end of the WR as a cantilever as shown in rig.A.J.2o The 

above results still apply~ but since this cantilever's 

root is elastically supported rather than rigidly rixed~ 

it is clear that values or derlection and angle will exist 

at the point of suspension. Let these "initial conditions" 

be given by 
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s ec-f(~ ..... 

x'\ __ L~u=--_~ 

Fig. A. 3·1 Basi c Cantilever Bending 

,,- '7 
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and 

b=O b=O 

Note that 9L 1S negative according to the sign con-

vention of sectio n 3.1 l.n Chapter 3 (see figure A.3.2.) , 
but for the present analysis a positive value is required~ 

hence the sign change above. 

Substituting these values into (A.J.l) and (A.J.2) 

we see that c l = - 8 L and c 2 = YL. Furthermore 

b = (LU-xM)~ and substituting back into (A.J.l) and 

(A.J.2) gives:-

= 

= 

Now,at the point of application of the force, 

X M = ~F therefore 

SWF 
FWN 2 - 8

L 
(Rad) = 2E1W 

(LU-xWF ) 

FWN 
(LU-xWF)J (LU-XWF)BL+YL (m) YWF = -- -

JE1W 
(A.J.6) 

The portion of the cantilever to the left of the 

force is considered to remain straightj so that 
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Fig, A.3·2 Representation of Workroll as a Be~m 

k \ etc, 
wws t "ws' 

a 

Fig . A . 3 . 3 C en t r a I Sup p 0 r t ed Po r ti on 
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= 

Substituting (A.J.S) and (A.J.6) into (A.Jo7), and 

gathering the equations together, we have:-

= FWN J 
JElo(LU-xWF ) - eLo(LU-xWF) + YL W 

+ (XWF-xM)sin [:~W (LU-~F)2 - e L] 

(A.J.7) 

(A.J.8a) 

(A.J.8b) 

To solve these, we must evaluate Y
L 

and eLo The 

force FWN of fig.A.J.2 will exert a force and moment on 

the LH end of the supported section of the WR as shown in 

fig.A.J.J'i where 

The procedure of Appendix 1, section AI.4 is used 

to find expressions for deflection and angle at any point 

along the "beam" of fig. A.J.J (i.e. the section of the 

WR over the strip) as follows:-
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For the force Fa, equations AI.9 and AI.IO ( using 

as given following equation (3.95) in Chapter 3) 
yield:-

= 

~F = 

= 

= 

FWN 

4AWS 

FWN 
- oC A 4AWS ws LS 

FWN 
2 

(N) 

(Nm) 

(Nm) 

(N) 

For the moment MO' equations AI.13 and AI.14 yield 

~M = 

-M o 
2 

MO 

2·DAws LS 

-MJ.ws 
2 

Summing these effects, 

(Nm) 

(Nm) 

(N) 

(N) 

(N) 

Application of equations AI.40 j AI.41 and Al.4~ 

(using the values of k WWS • 'A ws ' EIWS and E~\.JS given bv 

equation (3.95)ff l..n the main text then yields the ECFs 

(FOAL FOBL MOALand MOBLo Equations AI.i, Al.8 j Al.lI <lnd 

AI.12 are then used with these ECFs and the original 
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FO and MO to give the deflection and angle at 

point on the supported section of the WR as:-

e = 
W 

a 

= 

_0 

+ kWWS 

where a is given by x M - LV and M=I~.o.~~ 

any 

(rad) 

(A.J.lO) 

Note the use of the minus sign associated with 

MOB ln the 9 w equa tion. This is due to the sense in 
L 

which MOB acts (c.f. 
L 

Figs.AI.IO and AI.5) 

These equations can now be used to find YL ~ 8 L ' 
N )! 

and th due to the N force FWN by substituting 

a = a and a = LS. Note here that AAO ~ CAO = DAO = 1 

and BAa = O. Therefore for the Nth force from the 

front of the mill (FWN )' 

A ~ -
j • " 



'Aws [ 
= 2kwws FWN + FOA 

L + FOB 
L 

(A.3.l1) 

Y~ = >"ws [ l 2k.__ (FWN+ F OA ) .AA L + F OB
L 

+ 
--WWS L WS S 

2 

~WS 
= k . FOB' BA L + 

WWs L WS S 

e = 
~ 

The values of YL 
N 

3 

~,[ 
kwws 

(A.3ol2) 

MO+MOA -MOB' C,\ LJ (rad) 
L L 'V-S S 

A~s [ J ~ (Mo+MOA )C\ L -~10B 
WWS L WS S 

(rad) (A.3.l4) 

can now be used in 

equation (A.3.8) to give the deflection at any section 

on the LH end or over the strip due to a force acting on 

the LH end of the WR. The values of Y~ and 9~ are used 

ln the main text (section 3.9.2.1) to study the behaviour 

of the RH unsupported end. 
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APPENDIX 4 

Effects of Non-Right-Cylindrical-Rolls on the Beam 
Theory: 

The analysis of Chapter J considered only parallel-

ground rolls to avoid too much complication. However, 

any of the rolls in the mill cluster may be ground with a 

camber as shown in figure A.4.1. This camber is taken 

here to be ground off the roll diameter used in Chapter J. 

Furthermore, the first intermediate rolls are also ground 

with tapered-off ends, which are slid into or out of the 

mill cluster for shape control purposes. This appendix 

sets forward a method whereby these effects may be in-

corporated in the model of Chapter J. 

A.4.1 Roll Camber Definition 

Consider a general roll, N. 

assumed to be parabolic, so that if the upper surface 

only of the roll is considered, and Cartesian axes are 

drawn as in fig.A4.2 then the equation of the roll sur-

face is given by 

= = 

If the y-axis is now shifted to the LH end of the roll, 

we see that 

= 

The true value of' the roll diameter at any point (x~l) 

measured from the LH end of the roll is therefore 

(.\ • 'I • 1 ) 
= 

for lob I OJ ••• ) ~1~ 

.. '1.1 1 



Fig. A.4-1 Cambered Roll (roll N) 

- L,./ 2 

-(N/2 

Fig. A. 4 . 2 U pp e r Sur f 2 ( e 

A-l.2 

F 



A.4.2. Incorporation in the Theory 

The b.o.e.f. theory of Appendix I considered a 

parallel roll resting upon a foundation. If the cambered 

roll is now considered as resting upon an elastic found

ation as shown in fig.A.4.1, we may make the following 

observations. 

For a force F applied as shown~ a reduced amount of 

foundation deflection will occur below the point of 

application compared with the case for a parallel-ground 

roll of equivalent stiffness. In fact, one can conceive 

that for F very small, whereas some small deflection of 

the foundation would occur in the parallel case, none may 

occur in fig.A.4.1 if F is not large enough to close the 

gap ~y. 

Therefore~ whereas equation (AI.l) gives us the value 

of local distributed reaction as 

= 

the reaction in the case of figure A.4.1 will be 

q R = k ( Y - ~ y) (Nm -1) 

~lere y = deflection of lower surface of the roll (m). 

Now
9 

if the force F is taken to be equivalent to the 

loading ac ting over a length of the roll gi yen by /J. x j 

(which is how equivalent loadings were represented for 

the first intermediate rolls and workrolls in Chapter J), 

then we may imagine the same effect to be produced 

locally by assuming a parallel roll lI1 contact with the 
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foundation9 and reducing F by an amount equal to 

(N) • 

Now" Ay" is the gap between the fou d t' • • n a 10n and the surface 

of the roll and is therefore easily found from the values 

given by equation (A.4.l) as 

. . . . . . (A. 4 • ~ • ) 

Furthermore~ if the elastic foundation 1S itself 

formed by a cambered roll~ the effect of the second camber 

must be similarly included. Thus~ consider for example 

roll Y resting upon a foundation formed by roll Z'i both 

of which are cambered. Equation (A.4.1) is used to 

evaluate both Dy and 
x

M 

DZ ' and then (A.4.2) gives 
x

M 

. . . . . (A .4. J ) 

M=l ~ •••• ,H 
n 

Therefore, whenever the theory of beams on elastic 

foundations is used in the model~ the above correction 

is included. Thus for example, equation (AI.?) become~ 

A · (F - k.~y • ~ x) x H 

2k 

where x
M 

is the section under consideration 

k~A are the constants of the interface under consider0.tion 

~y 1S given by equation (A.4.J). 
x M 

A • • b f ample L IJ in fig.J.:28 Ux lS g1ven y or ex r IF 

S · 'lIt' (AI.B) to (AI.IO) are modified 1011 ar y equa lons 

placing F ,,"i th (F - k. L1y .6 x). 
x}1 

A-l.-l 

by }"I'-



A4.J Tapered First Intermediate Rolls 

Consider now the IIRs. These have a length Lr lvhic}} 

may be cambered in the same way as the other rolls 

(fig.A4.1), but also an additional tapered-off length 

Lt is provided as shown in fig.A.4.J(i). The facility 

exists to slide these tapers into or out of the mill 

cluster, so that more or less of the tapered section lS 

over the strip edge. This allows the reduction taken at 

the strip edges to be varied with respect to the reduction 

taken over the rest of the stripi so that shape control 

of the edges is facilitated. Fig.A4.J(ii) shows an 

upper I!R slid a distance LIT into the mill cluster. 

In fig.A4.J{i), with the x-axis dra\Yn as in fig.A'l.:2 

but with the y-axis shifted to the extreme LH end of the 

roll, the equation of the upper surface of the roll 

becomes 

and YI = 

1 • (L - x) (m) for O~ x <Lt 2L
t 

t 

-2c 
I --. (x-L 

L2 t 

2 
- ~) 

2 
T 

In fig.A4.J{ii), x
M 

is measured from the front of the 

other (laterally fixed) mill rolls in order to obtain 

values at the same points across the mill as in the main 

model. These equations therefore give the mapli tude or 

the deflection correction due to either surface of the 

shifted IIR as 
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l 112 
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(i) 

(ij) 

----

... x 
M 

--

, 

I relative position of other rolls 

Fig. A.4·3 1IR Profile &. Control Action 

I 
I 

I 
I 
I ~ 

1 I R 

WR 

WR ~~ .. - -

11 R 

.L,. 

Fig. A.4·4 Upper & Lower 1IR Effects 
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c
l + ~ 

(LIT - x M) (m) ) Yl = 2L
t 

-
x M 

2 ) 
) 

for O~xM<LIT 
) 
) 
) 
) (A4 • ~± ) 

2c
l (x - LT )2 

) 
and LIT - (m) ) 

Yl = -- . M 2 
L2 ) for ~1= 1 ; ... 'i }1

1 x M T ) 
) 

for LIT.$ x M ~ LT ) 
) 
) 

The upper lIRs are tapered off at the front of the 

mill, and the lower lIRs a t the rear as shown in fig .A4 •. '!. 

To obtain the magnitude of the deflection correction due 

to each surface of the lower lIR'i equations (A4.4) are 

I applied measuring x M from the RH end of the mill rather than 

the left'j i.e. 

, c
1 

Y1 = - + 
x' 2 

M 

= 

~ 
(LIB - x') 

2Lt 
M 

for 0< / <L "xM IB 

2 

(x~ - LIB - ~T ) 

(m) 

for M=1, ••• ,M1 

The order of the set of values is then reversed so that 

x again runs from front to rear:
M 

= 



Although the lower I!Rs are not in the Upper half of 

the cluster~ their effect must be taken into accoun~ 

during the analysis of Chapter 3. The conditions around 

the roll bite during rolling are such that a profile 

change forced onto the lower WR only, will have the same 

effect on strip shape as the inverse profile change forced 

onto the upper WR only. Therefore, to a reasonable 

approximation, if the lower IIRs are conceptuallv moved 

into the upper half of the cluster i their effect upon 

strip shape should remain the same. An imaginary roll is 

therefore postulated whose surface profile incllldes all 

the effects due to the shifted upper and lower IIRs. Two 

obvious properties of such a roll can be stated. Firstly. 

when neither the upper nor lower IIR tapers are slid into 

the cluster at all, then the deflection cor~tion due to 

its surface must be the same as that due to the camber 

only on either the top or bottom IIRs. Secondly, if both 

the upper and lower IIR tapers are slid into the mill to 

the maximum possible extent, then the deflection correction 

would be expected to be symmetrical about the vertical 

centre-line of the mill, and to be a maximum at eLlch end 

of the roll. These conditions are met by assuming that 

the magnitude of the deflection correction due to all I!R 

effects (at one surface of the imaginary roll) is simply 

the arithmetic mean of the corrections for the upper and 

lower IIRs. Thus, 

= 
2 
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where YT is given by equation (A4.4) 
x

M 

YB is glven by equation (A4.5) 
x M 

The value of roll diameter for this composite roll 

is then found as before (c.f. equation (A4.1)), viz •. 

= 

When the first intermediate roll is involved in 

Chapter J, the effects of this are included by using 

Dl and Dr (given by (A4.7) above) in equation (A4.J) 
x

M 

instead of D or D • 
Y Z 

A4.9 



APPENDIX 5 
Examples of Matrices Generated 

A5.l Transpose of Parameterization Matrix (i. e. X T) for 
the Theoretical Case of 8 Covered Rotors o~---

-1.000 0.571 -0.245 
-0.714 0.082 0.175 
-0.429 -0.245 0.245 

-T -0.143 -0.408 0.105 
Xo = 0.143 -0.408 -0.105 

0.429 -0.245 -0.245 
0.714 0.082 -0.175 
1.000 0.571 0.245 

(Note that the .th column contains the 1 coefficient 
the .th Gram polynomial) 1 

A5.2 (X X T)-l Corresponding to the matrix of A5.l 
o 0 

(X X T ) -1_ 
o 0 -

0.292 
0.000 
0.000 
0.000 

0.000 
0.893 
0.000 
0.000 

0.000 
0.000 
3.095 
0.000 

0.000 
0.000 
0.000 

12.440 

These matrices were computer generated, and are 

0.080 
-0.148 
-0.034 
0.103 
0.103 

-0.034 
-0.148 
0.080 

of 

-= L 

rounded to the gIven accuracy. The greatest of the off

diagonal terms in this particular matrix is actually -

0.44*10- 5 . When compared with the matrix given by 

-T ...... -1 .. () evaluating (X X) for the equivalent matrIx In ref. 49 , 

the mistaken assumptions of Fotakis and Grimble concernIng 

the Chebshev polynomials are evident (off-diagonal terms of 

significance being present). 
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AS.3 

-T 
X = 

0 

-T 
X Matrix for 21 Covered Rotors o 

-1.000 0.633 -0.34~ 
-0.900 0.443 -0.137 
-0.800 0.273 0.014 
-0.700 0.123 0.118 
-0.600 -0.007 0.179 
-0.500 -0.117 0.204 
-0.400 -0.207 0.199 
-0.300 -0.277 0.170 
-0.200 -0.327 0.124 
-0.100 -0.357 0.065 
0.000 -0.367 0.000 
0.100 -0.357 -0.065 
0.200 -0.327 -0.124 
0.300 -0.277 -0.170 
0.400 -0.207 -0.199 
0.500 -0.117 -0.204 
0.600 -0.007 -0.179 
0.700 0.123- -0.118 
0.800 0.273 -0.014 
0.900 0.443 0.137 
1.000 0.633 0.342 

0.166 1 0.000 
-0.08-
-0.11~ 
-0.105 
-0.070 
-0.02~ 
0.026 
0.066 
0.093 
o .10~ 
0.093 
0.066 
0.026 
-0.02~ 
-0.070 
-0.105 
-0.117 
-0.087 
0.000 
0.166 

Again, column contains the coefficients of the .th 
1 1 

Gram polynomial e c . f. column 1 with equation (6 .6) and 

x o .. of equations e 6 . 9)J. 
1J 

eX X T ) -1 Corresponding ""T of A5.3 AS.4 to X o 0 0 

0.130 0.000 0.000 0.000 
0.000 0.446 0.000 0.000 

eX X T ) -1 0.000 0.000 1.605 0.000 = = o 0 0.000 0.000 0.000 5.949 

Here, the greatest off-diagonal term is - 0.18*10- 6 . 
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A5.5 A"Theoretica1" 8x8 G Matrix (Nmm- 3) 
p 

(As used by Fotakis in.ref. (17)) 

3.79 3.46 -0.75 -1.44 -1.38 -1.18 
1.30 2.30 1.03 -0.41 -0.62 -1.43 

,., -0.44 0.86 1.88 0.67 0.23 -1.04 
G = -1.02 -0.75 1.29 1.61 1.35 0.10 

P -0.96 -1.34 0.10 1.35 1.61 1.29 
-0.80 -1.33 -1.04 0.23 0.67 1.BB 
-0.87 -1.60 -1.43 -0.62 -0.41 1.03 
-0.96 -1.56 -1.18 -1.38 -1.44 -0.75 

-1.56 -0.96 
-1.60 -0.B7 
-1.33 -O.BO 
-1.34 -0.96 
-0.75 -1.02 
0.86 -0.44 
2.30 1.30 
3.46 3.79 

A5.6 Transformed Plant Matrix for "Theoretical" BxB Srstem 
,.., ,., ,.,. ,.., -T GT = L X G X 

0 P 0 

,., 
where L lS glven 1n appendix A5.2 

..... T 
appendix A5.1 X lS glven 1n 

0 
,., 

A5.5 G lS glven 1n appendix 
p 

8.37 0 -0.52 0 

0 6.19 0 -0.62 

0 (Greatest "0" ,.., 0.80 0 3.04 term = GT = 
0 -2.34 0 1.08 -0.16*10- 5 ) 

AS.7 Precompensator for "Theoretical" BxB srstem 

,.., ,.., -1 
P = GT 

0.18 0 0.02 0 

0 0.21 0 0.12 . (Greatest "0" 
"'-I 

0 0.32 0 term = 
P = -0.03 

0.26*10- 6 
0 0.45 0 1.lB 
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-A5.8 Calculated 8x8 Gp matrix for 1.61m strip (Nmm- 3) 

1.60 2.14 -0.06 -0.94 -1.05 -1.00 -0.92 -0.'+5 
0.68 1.43 1.13 -0.06 -0.90 -1.02 -0.93 -0.45 

-0.05 0.54 1.44 0.98 -0.19 -0.91 -0.93 -0 . .+ 5 
-0.43 -0.43 0.73 1.36 0.80 -0.29 -0.90 -0.46 

IV 
-0.46 -0.90 -0.29 0.80 1.36 0.73 -0.43 -0.'+3 

G = -0.45 -0.93 -0.91 -0.19 0.98 1.44 0.54 -0.05 
P -0.45 -0.93 -1.02 -0.90 -0.06 1.13 1.43 0.68 

-0.45 -0.92 -1.00 -1.05 -0.94 -0.06 2.14 1.60 

A5.9 Comparable Matrix after Gunawardene (16) -3 (Nmm ) 

2.74 2.95 -0.12 -1.22 -1.17 -0.97 -0.92 -0.99 
0.73 1.80 1.39 0.00 -1.04 -1.27 -1.18 -1.21, 

-0.47 0.32 1.70 1.24 -0.23 -1.11 -1.26 -1.27 
-0.73 -0.70 O. 76 1.67 1.03 -0.34 -1.19 -1.22 

~ 

-0.64 -1.10 -0.42 0.87 1.69 0.90 -0.70 -0.77 G = -0.33 1.06 1.71 0.48 0.43 P -0.57 -1.18 -1.08 
-0.54 -1.12 -1.22 -1.04 -0.19 1.22 1.91 1.99 
-0.52 -0.98 -1.02 -1.19 -1.16 -0.14 2.86 3.04 
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,., 
AS.10 31*8 Gp Matrix for 1.61m strip (~mm-3) 

2.49 3.12 -0.63 -1.12 -1.04 -1.00 -0.94 -0.46 1.80 2.35 -0.23 -1.00 -1.05 -1.00 -0.95 -0.46 
1.36 1.91 0.15 -0.85 -1.05 -1.00 -0.95 -0.4~ 
1.11 1.72 O. SO -0.65 -1.04 -1.00 -0.95 -0.47 
0.91 1.59 0.81 -0.41 -1.00 -1.00 -0.95 -0.47 
0.73 1.46 1.06 -0.15 -0.93 -1.00 -0.95 -0.47 
0.54 1.30 1.28 0.14 -0.81 -1.00 -0.95 -0.4~ 
0.34 1.08 1.40 0.42 -0.65 -1.00 -0.95 -0.4~ 
0.14 0.84 1.46 0.69 -0. SO -0.98 -0.95 -0.4-: 

-0.04 0.57 1.45 0.93 -0.23 -0.92 -0.96 -0.47 
-0.19 0.29 1.35 1.12 0.01 -0.83 -0.96 -0.4-: 
-0.31 0.03 1.22 1.28 0.28 -0.69 -0.96 -0.47 
-0.40 -0.22 1.00 1.35 0.54 -0.51 -0.96 -0.47 
-0.45 -0.44 0.76 1.37 0.79 -0.30 -0.93 -0.48 
-0.48 -0.62 0.49 1.32 1.02 -0.05 -0.86 -0.48 
-0.48 -0.76 0.21 1.18 1.18 0.21 -0.76 -0.48 

,., -0.48 -0".86 -0.05 1.02 1.32 0.49 -0.62 -0.48 
G = -0.48 -0.93 -0.30 0.79 1.36 0.76 -0.44 -0.45 

P -0.47 -0.96 -0.51 0.54 1.35 1.00 -0.22 -0.40 
-0.47 -0.96 -0.69 0.28 1.28 1 . 22 0.03 -0.31 
-0.47 -0.96 -0.83 0.01 1.12 1.35 0.29 -0.19 
-0.47 -0.96 -0.92 -0.23 0.93 1.45 0.57 -0.04 
-0.47 -0.95 -0.98 -0. SO 0.69 1.46 0.84 0.14 
-0.47 -0.95 -1.00 -0.65 0.42 1.40 1.08 0.34 
-0.47 -0.95 -1.00 -0.81 0.14 1.28 1.30 0.54 
-0.47 -0.95 -1.00 -0.93 -0.15 1.06 1 .45 0.73 
-0.47 -0.95 -1.00 -1.00 -0.41 0.81 1.59 0.91 
-0.47 -0.95 -1.00 -1.04 -0.65 O. SO 1.71 1.11 
-0.47 -0.95 -1.00 -1.05 -0.85 0.15 1.91 1.36 
-0.46 -0.95 -1.00 -1.05 -1.00 -0.23 2.35 1.80 
-0.46 -0.94 -1.00 -1.04 -1.12 -0.63 3.12 2.49 
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,.., 
A5.11 25x8 G Matrix for 1.3m Strip (Nmm- 3) :Q 

9.52 13.82 2.32 -0.82 -1.33 -1.21 -1.09 -0.51 2.62 3.98 1.14 -0.61 -1.26 -1.22 -1.12 -0.54 -0.29 -0.03 0.71 -0.38 -1.17 -1.22 -1.13 -0.55 -1.02 -0.96 0.75 -0.10 -1.05 -1.22 -1.13 -0.55 -0.88 -0.71 0.92 0.17 -0.89 -1.22 -1.13 -0.55 -0.55 -0.22 1.09 0.44 -0.70 -1.19 -1.13 -0.54 -0.34 0.59 1.17 0.68 -0.48 -1.14 -1.13 -0.54 -0.28 0.08 1.13 0.87 -0.24 -1.04 -1.14 -0.54 -0.32 -0.07 1.01 1.03 0.03 -0.90 -1.14 -0.54 
-0.41 -0.31 0.79 1.10 0.29 -0.72 -1.13 -0.55 
-0.48 -0.55 0.55 1.11 0.54 -0.51 -1.10 -0.55 
-0.52 -0.76 0.28 1.07 0.77 -0.26 -1.04 -0.55 

,.., -0.55 -0.93 0.00 0.93 0.93 0.00 -0.93 -0.55 
G = -0.55 -1.04 -0.26 0.77 1.07 0.28 -0.76 -0.52 P -0.55 -1.10 -0.51 0.54 1.11 0.55 -0.55 -0.48 

-0.55 -1.13 -0.72 0.29 1.10 0.79 -0.31 -0.41 
-0.54 -1.14 -0.90 0.03 1.03 1.01 -0.07 -0.32 
-0.54 -1.14 -1.04 -0.23 0.87 1.12 0.08 -0.28 
-0.54 -1.13 -1.14 -0.48 0.68 1.17 0.59 -0.34 
-0.54 -1.13 -1.19 -0.70 0.44 1.09 -0.23 -0.55 
-0.55 -1.13 -1.22 -0.89 0.17 0.92 -0.71 -0.88 
-0.55 -1.13 -1.22 -1.05 -0.10 0.75 -0.96 -1.02 
-0.55 -1.13 -1.22 -1.17 -0.38 0.71 -0.02 -0.29 
-0.53 -1.12 -1.22 -1.26 -0.61 1.14 3.98 2.62 
-0.51 -1.09 -1.21 -1.33 -0.82 2.32 13.82 9.52 

rw -3 A5.12 19x8 G Matrix for 0.99m Strip (Nrnrn ) 
:Q 

18.38 29.18 8.81 1.07 -1.39 -1.51 -1.36 -0.56 
2.22 3.90 2.37 0.21 -1.23 -1.49 -1.41 -0.63 

-3.37 -4.42 -0.15 -0.04 -1.05 -1.46 -1.43 -0.65 
-4.11 -5.58 -0.61 0.07 -0.83 -1.41 -1.44 -0.66 
-3.09 -4.18 -0.30 0.30 -0.59 -1.31 -1.44 -0.65 
-1.86 -2.48 0.10 0.55 -0.33 -1.17 -1.43 -0.65 
-1.01 -1.35 0.28 0.69 -0.07 -0.99 -1.40 -0.63 
-0.59 -0.87 0.25 0.74 0.18 -0.76 -1.32 -0.60 
-0.47 -0.83 0.06 0.71 0.41 -0.49 -1.17 -0.55 - -0.99 -0.21 0.58 0.58 -0.21 -0.99 -0.49 G = -0.49 

P -0.55 -1.17 -0.49 0.41 0.71 0.06 -0.83 -0.47 
-0.60 -1.32 -0.76 0.18 0.74 0.25 -0.87 -0.59 
-0.63 -1.40 -0.99 -0.07 0.69 0.28 -1.35 -1.01 
-0.65 -1.43 -1.17 -0.33 0.55 0.10 -2.48 -1.86 
-0.65 -1.44 -1.31 -0.59 0.30 -0.30 -4.18 -3.09 
-0.66 -1.44 -1.41 -0.83 0.07 -0.61 -5.57 - 4 . 11 

-0.65 -1.43 -1.46 -1.05 -0.04 -0.14 -4.42 -3.37 

-0.63 -1.41 -1.49 -1.23 0.21 2.37 3.90 2 .22 

-0.58 -1.36 -1.51 -1.39 1.07 8.81 29.18 18.38 
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APPENDIX 6 

Details of The Author's Dynamic Simulation Package , 

Digital simulation of dynamical systems relies
j 

as 

does analogue simulation'i upon solution of the system 

differential equations. Many computer installations 

linked with academic institutions are furnished with 

software packages which will simulate dynamical systems 

expressed in state-space form. Such a package was not 

available to the author, and therefore a simple package 

previously written by the author for single-variable 

transfer functiOn simulation was modified and extended. 

Details are now given of the various subroutines in t~e 

package, which take the form of one routine per block 

diagram element. Thus there is an "integrator" routine, 

a "first order lag" routine etc., and these are linked 

together by a main program to form block diagram simu-

lations of arbitrary complexity. 

A6.l Fundamental Method of Solution of Differential 
Equations 

References on numerical analysis (see for example 

(3 0 ),(31) and (41)) provide any number of methods of 

greater or lesser accuracy and complexity for the solution 

or ordinary differential equations. Perhaps the most 

widely used of these are the class of Runge Kutta methods. 

However, these need typically three or four intermediate 

function evaluations per step of the integration pro-

cedure ( accurate versions of the method) for the more 

f th t es of simulation w~ri ch is often inconvenient or e yp 
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for which the present package is required o The simpler 

methods~ such as Euler's method~ have the disadvantage 

that a smaller integration step size is needed for 

acceptable results, and are also somewhat less accurate. 

In the cnrrent application, the step size requirements of 

Euler's method are almost acceptable, and this therefore 

is the basis of the package. In order to obtain 

sufficient accuracy and allow an increa~ in step size, a 

"predictor-corrector" method based upon Euler's method is 

used. This is strictly the "Fox-Euler" method (42~(4J). 

Consider the differential equation 

y (a) = y 
o 

Over an interval (a'jb) choose a step length 

whence t 
o 

h = 

= a , 

(b-a) 
N 

t 
n 

(second) 

= a+nh'j 

yet ) = y(a+nh) 
n 

= b 

(A6.l) 

Euler's method (which equates to Taylor's method of 

order 1) then states that 

Y = Y + h.f(t ,y ) 
n+l n n n 

i.e. = + h. y' Yn n 
(A6.2) 
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It can be shov.Yn that the local error of this method 

given by 

E = b 2 
- y"(~) 
2 t <~ <t + 11 n n 

A more accurate solution can be obtained by In-

tegrating the original equation A6.1 from t to t 
n n+l 

is 

giving Yn+l = Y + n f(t,y(t»dt (.\6.3) 

Approximating A6.3 by the trapezoidal formula for 

numerical integration gives 

11 = Y + -2(f(t ,y ) + f(t l~y 1» n n n n+ n+ 

which is clearly an implicit formula for y 1. 
n+ 

The local error is now much better than Euler's 

method, and is given by 

h
3 

y/" (e) 
E = - i2 15 t < ~ <:: t +h n n 

(A6.4) 

In order to solve the implicit equation above (A6.4) 

an "inner iteration" is used (to distinguish it from 

the "outer iterationtt on n) as follows:-

1) Use Euler's method (A6.2) to obtain a first 

approximation 

(0) 
Yn+l = Y + h.y' n n 

( ( 0) ) and use i n ( A ~ • It) too: ) t a in Evaluate f tn+l' Yn+l 

the approximation 

(1) h ( , (0) » 
Y = Y + - Y + f(tn+1'Yn +1 n+l n 2 n 
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J) Continue to apply step (2) using the updated estimates 

as an iteration on k:-

y + h2 (y/ + f(t (k-l») 
n n n+l,Yn +l k 1 2 J = ~ , oq •• until 

finished 

(A6.S) 

until two successive iterates agree to the required 

accuracy~ i.e. until 

(k) (k-l) I 
Yn +l - Yn +l 
----~~-.!.. < E 

(k) 
where £. is the pre
scribed accuracy. 

Yn + l 

(In the present context, the independent variable is 

d d
2

v always time~ thus Y' = cit ' yll= -=---..,;.... etc.) 
dt

2 

A6.2 Simulation of an Integrator 

Consider the trivial block diagram of figure A6.l(a)'j 

which may be redrawn as fig .. A6.l(b). This represents a 

general integrator in transfer functional form, and by 

inspection the variable at the unity-gain integrator 1n-

put in (b) mU3t be y/. Hence, it can be seen that 

y' = 

Substitution in (A6.2) yields 

Y = Y + h.kI·x n+l n n 
(A6.6) 

(There is no need to apply the "corrector" part of the 

process here~ as Euler's method alOllt~ is accurate for it 

pure integrator). 

Hence, a subroutine is provided which is used Ll=, 

follows:-

A6.-l 



(a) 

x .j ~ 1 -y 

( b) 

-1 Kr f 

y' 

~I ~ I x -y 

Fig.A.6·1 Integrator Block 

(a) 

y 

(b) 

x 
y' 

KL, + 1 1 - -
TL. S -

y 

Fi 9 . A. 6 ·2 Fir 5 tOr d e r Lag B lo c k 

(a) 

Kl w~ 
X --~-.I ----- ~--y 

52 + 2~w,..5 + w~ 

( b) 

x 
T £.,)1 

K2., +tn, 1\ Z -- '\'Y -
5 1 +5T 

y 

-

where and z = l o 

T 

Fig.A.6·3 Second Order System Block 

A6.S 



CALL INTEG(K,X,YiH,YNXT) 

where K = (real) integral gain 

x = existing input at present time 

YNXT 

A6.) 

Y 

H 

= 
= 

= 

existing output at present time 

integration step length (s) 

value of output which will exist one time step 

(H) later. 

Simulation of a First Order Lag 

Figure A6. 2 (a) sholvs a block diagram of a first order 

lag in transfer functional form. and f' A6 2(b) h J 19.. s 0 ',\'5 

an equivalent representation. From fig.A6.2(b), we see 

that 

y' = 1 -·(Kx-y) 
TL L 

Substitution into (A6.2) glves 

(0) 
= y + 

n 
h - • (K .x -y ) 
TL L n n 

(A6.,) 

This value is then used as the starting point for an 

"inner iteration" around the corrector equation (A6.5). 

It is usually found that for a correct choice of h (i.e. 

onlY two "inner iterations" will be needed. 
"" 

Therefore the subroutine allows only five iterations 

before printing a warning message and the value or Yn+l 

as the result. The routine is used by issuing the 

statement 
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where K = 

T = 
x = 

XNx'r = 

Y = 
H = 

(real) gain 

Time constant(s) 

existing input at present time 

input which will be kno\m to exist 
time step (H) later 

existing output at present time 

integration step length (s) 

one 

YNXT = value of output which will exist one 
time step (H) later 

A6.4 Simulation of' a Second Order System 

The generalized second order system is shown in 

figure A6.3(a), and in rearranged form in A6.3(b). Here 

the intermediate variable z is introduced to simplify 

matters. It is clear that fig.A6.3(b) makes use only of 

transfer functional blocks already dealt with in sections 

A6.2 and Af).3. Therefore the procedure here is simply 

to issue the calls (written in pseudo code for brevity). 

CALL INTEG (w 2 , (K x - y), z, H ~ ZNXT) 
n 2 

(where ZNXT = integrator output one time step (I-I) 

la ter), follo\ved by 

CALL LAG (--=1_ 
2t;UJ 

n 

1 
, 2~w 

n 

,z,ZNXT,y,H,YNXT) 

The call to the second order simulation subroutine 

which does this is written 

CALL SECORD (K, ZTA, \.jN ,X, Y, Z ,H, YNXT, ZXXT) 
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where K = 

ZTA = 

WN = 

.X, Y 

Z = 

H = 
YNXT as 

ZNXT = 

as 

system gain 

damping ratio (~ ) 

natural frequency (w ) (rad s-l) 
n 

before 

existing value of intermediate value at 
present time* 

Integration step length (s) 

before 

value of intermediate variable which h"ill 
exist one time step Cn) later. 

*On the first call~ this can be given as Z = Y Ir 
o 0 

A6.5 Simulation of a Lead-Lag (Phase Advance) Network 

The transfer functional representation of a phase 

advance compensator is given in figure A~.4(a). From the 

rearranged version (fig.A6.4(b» it can be seen that only 

a first-order lag block is required. Here, however, a 

call to the LAG routine cannot be used, as the new value 

of output will affect the input. Therefore, the following 

procedure is used:-

Euler's method is used as in the LAG routine 

(equation A6.7) to obtain a first estimate for the next 

value of z as 

(0) h 
z = z + - (y - z ) 
n+l n T n n 

Then, from fig Al).4(b) 

(0) 1- 0<. .[ K tX. X n+l z(O)] 
-E. - -

y n+l = oc 1 -r:X.. n+l 
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(a) 

( b) 

x 
KpeX. + 1-0(. 

-0 1-cX. 0(.. - y 

z 1 
wh ere z= 'i 

1+s1;, o 0 

Fig. A.6·4 Lead - Lag N etw ark Block 

Fig. A.6·S Transport Delay Block 

A + B ·3 C 32 -
s:l+4s + 16 s 

j 

o 
-

E 

1 
-

1 +·1 s 

Fig. A.6·6 Example System 
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The "corrector" formula (A6.5) is then applied 

iteratively as follows, until Z J..s obtained vri th suf-

ficient 
(k) (k) accuracy, when the values 

Yn+l and z 
n+l 

are given as the outputs. 

(k) .L.[ (y 
(k-l) (k=l l] z 

n+l = z + - z )+ (y 
zn+l) n 2T n n n+l 

[k OG x z (kl] k=I,:2, ••• 
(k) 1-0(. • p n+l until 

Yn + l oC 1 - cI:. - finished = n+l 

The call to the routine takes the form 

CALL LEDLAG(K,A,T,X,XNXT,Y,Z,H,YNXT,ZNXT) 

where K = gain (real) 

A = lead-lag factor (oc; ) 

T = -4-' 'Jlme constant (s) 

Other variables as before. 

N.B. on first step, Z may be given as Z = Y 
0 0 

A6.6 Simulation of a Transport Lag 

Discussion of this routine is a little out of place 

here, as no differential equations are involved. 

However j it is included for completeness. The routine 

simulates the transport lag of figure A6.5 and is used 

by the call: 
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CALL DELAY (N,X,Y,YNXT,RI) 

with the named common block: 

COMMON / DELAY / 11 J 

(
Wrhegerared NN __ = number of parameters stored at each st~p 

1 for the moment) 

I = number of simulation integration steps (H) 
comprising the transport lag, i.e. 

I = T/H 

J = number of current delay table entries in 
use (automatically updated by the routine 
after being entered as zero on the first 
step) • 

x = input to the delay element at the present 
time ~ this is placed into a rotating 
shift register created on a disc file. 

Y = output from the delay element at the present 
time (read from the rotating shift register 
I places after X). 

YNXT = output from the d81ay element one step (H) 
later (needed for use in the routines 
described above). (Read from the rotating 
register I-I places after X) 

RI = value existing initially at output of delay 
element (= y). The rotating register is 

o 
initiallY filled with this value which will .., 
therefore be output until I steps have 
been executed. 

A6.7 Use of Simultation Package Routines 

In order to use these routines, a maln program must 

be written which controls the calling of the routines, 

sets up the initial state of the system, and handles the 

output. To illustrate the principles involvcd j con:"ider 

the simple fictitious system given in figure A5.6. Let 

us take as an example a ramp input of A ~ O.lt units, with 

an initial value A = 5 and D = 5. o 0 
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Firstly~ it is necessary to calculate all system 

states at the initial values of A and D (it is assumed 
o 0 

that steady state exists before the ramp is applied). 

Assuming steady-state conditions, we can say that tOn _ e 

time-varying (transient) responses of the first and 

second order blocks make no initial contribution. The 

I, -1 second order block has a natural frequency of ~ rad s , 

and gain of 2~ therefore C = D /2 = 2.5. 
o 0 

It is not 

possible to w'ork ltbackwards" to obtain B via the in
o 

tegrator, since an integrator can have (in theory) any 

output at steady state. Therefore we ,york in the other 

direction viz. E = D /1 = 5, B = A -E ~ O. Now j we 
o 0 000 

choose the step length H to be 0.1 times the smallest 

time constant in the system for accuracy. The first order 

t · sta t . sOls the second order "tl' me constant!' = lme con n 1 • ~ 

1 
= 2*.5*4 = 0.25s therefore we choose 

H = 10 ms. Further~ we must initialize the variable Z 

inside the second order block (see fig.A6.]). This is 

given as 

D D 
0 0 20 Z = = = 

0 ( 2~(..I.) )-1 .25 
n 

We can now state the problem as 

A=5 B=O C=2.5 Z=20 H=O.Ol 

It is now necessary to call the appropriate simula-

t · J.'n such a way as to update the system tion rou J.nes 

states AS A CONSISTENT SET. Let us assume we ~ish to 

simulate 5 seconds of real time. Then ~=5/H=500 steps. 

The nec essary ps eudo code (FOH.'~""\RAN) to perform the 

simulation would then be:-
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T :: 

DO l~~ I = 1,5~~ 
T = T+H 

C*** RA~P INPUT ON NEXT LINE ••• 

ANEXT = 5 + T/l~ 

C*** CALCULATE CORRESPONDING SYSTEM S .r TATES ... 

BNEXT :: A-E 

CALL INTEG(.3,B,C,H,CNEXT) 

CALL SECORD (2~.5~4,C~DiZ,H,DNEXT,ZNEXr) 

CALL LAG(l~.ljDiDNEXTiE~J.f,ENEXT) 

OUTPUT OR PLOT SYSTEM STATES A TO E(FOR T::T-H) 

C*** UPDATE PARAMETERS ... 

A :: ANEXT~ B = BNEXT, Co: CNEXT<j D :: DNEXT, Z=ZNEXT,E=ENEXT 

l~fJ CONTINUE 

It can thus be seen how easily these routines permit 

system simulation. Note that in general j when a routine 

requires knowledge of the input variable at the next time 

step (e.g. the LAG routine), it has always just been 

calculated by the routine for the previous block in the 

system (e.g. DNEXT calculated by SECORD in the example 

above). 
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APPENDIX 7 

Outline Specification_of Singrle Board M' ~~"::'::~':::'-...:;:...I_~~~~_",;,,;;;;~:'::"-_,':::":=--=-:::~_~-:::~-=:~~:!.....~l~C~l~'~o~c~o~m~pu t e r s C sed 

(For more detail~ see Ref. (58)~ which is the manu

facturer's literature). 

Manufacturer: 

Type: 

Processor: 

System Clock: 

J.B. Microsystems Ltd.~ Ashly-de-Ia-Zouc~. 

MERLIN MRL V3/1 

Intel 8085 

3 MHz 

Communication: Three RS232-c Serial Link Interfaces 

One RS422 Data Link 

Memory: ak RAM, plus six bytewide memory sockets 

which are all link-selectable for R\~ or 

EPROM memory chips. 

Maths Facility: High Speed Maths functions are available 

using the AMD9511 mathematics processor 

chip on-board. 

l~ OV ) ) A 1 s 0 6 - bit 
)TTL memor\"

Digital Inputs: Sixteen, opto-isolated (15V to 

Digital 
Outputs: 

Analogue 
Inputs: 

Analogue 
Outputs: 

Programming: 

Sixteen, opto-isolated (60V~O.5A) 
)mapped I/O 
)port. 
) 

Thirty~ l2-bit,single-ended. (Expanded 

to sixty-one on one of the machi~es in 

the present scheme by adding external 

multiplexers, addressed by some of the 

digital outputs). 

Eight, 8-bit 

Two~ l2-bit 

) 
) (Voltage outputs) 
) 

(This application is of course unique, 

other users may use other methods an~ 

other languages). Parts of the software 

which do not require especially fast 

execution are wTitten in the high-level 

FORTRAN language on a disc-based de\-clopr1cnt 
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Other 
features: 

system (of DAI manufacture); and compiled 

into into machine code and blown into EPRO~~ 

using this development system. These EPRONS 

can then be plugged into the sockets on the 

MERLIN board, and the programme can be run 

using the hardH"are reset and ROM-based 

monitor on the MERLIN board (the monitor 

programme is an optional purchase). 

Parts of the programme requiring rapid 

execution are programmed directly in 8085 

machine code which can be incorporated 

"in-line tl with the FORTRAN source. 

FORTRAN was chosen for the following reasons: 

i) Extremely ~amiliar to the author. 

ii) It was definitely necessary (for reasons o~ 

execution speed) to use a compiled language 

rather tnan an interpreted language (such 

as BASIC). 

iii) A FORTRAN compiler was readily available for 

DAI development system used. 

Many other features could be mentioned) but 

are not relevant here. 
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