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Abstract—The quality of features is one of the main factors
that affect classification performance. Feature selection aims to
remove irrelevant and redundant features from data in order
to increase classification accuracy. However, identifying these
features is not a trivial task due to a large search space.
Evolutionary algorithms have been proven to be effective in
many optimization problems, including feature selection. These
algorithms require an initial population to start their search
mechanism, and a poor initial population may cause getting stuck
in local optima. Diversifying the initial population is known as
an effective approach to overcome this issue; yet, it may not
suffice as the search space grows exponentially with increasing
feature sizes. In this study, we propose an enhanced initial
population strategy to boost the performance of the feature
selection task. In our proposed method, we ensure the diversity
of the initial population by partitioning the candidate solutions
according to their selected number of features. In addition, we
adjust the chances of features being selected into a candidate
solution regarding their information gain values, which enables
wise selection of features among a vast search space. We conduct
extensive experiments on many benchmark datasets retrieved
from UCI Machine Learning Repository. Moreover, we apply
our algorithm on a real-world, large-scale dataset, i.e., Stanford
Sentiment Treebank. We observe significant improvements after
the comparisons with three off-the-shelf initialization strategies.

Index Terms—feature selection, evolutionary computation, ini-
tial population, multiobjective optimization, binary classification

I. INTRODUCTION

Dimensions of the available data have increased massively
with the advances in data acquisition and processing tech-
niques. In a classification task, it is desirable to have a high
amount of data to improve learning performance. However,
some insignificant features in the data may degrade the clas-
sification performance. Moreover, a high amount of data may
cause the curse of dimensionality [1]. Feature selection is an
effective preprocessing technique that opts for a subset of
features that represent the data most informatively. It aims
to remove redundant and irrelevant features from data with
a constraint of not reducing the learning performance [2].
Therefore, it requires multiobjective optimization, as it has
two conflicting objectives [3].

Feature selection contributes to the classification task in
many ways [4]. First, it improves learning performance, e.g.,

classification accuracy. Other than that, it decreases the size
of the search space, which reduces the computation time and
space requirements. Moreover, it increases the interpretability
of the model by converting a complex model to a simpler one.
It plays an essential role in many real-world problems such as
gene selection [5], natural language processing [6], and image
analysis [7].

In the literature, feature selection methods are divided into
two main categories: filter- and wrapper-based [1]. Filters
calculate each feature’s value with a designated function such
as chi-square. On the other hand, wrappers assess feature sub-
sets iteratively by incorporating the learning performance of a
classifier. Therefore, filters are computationally cheaper than
wrappers. However, wrappers generally achieve higher learn-
ing performance. Furthermore, there exist hybrid methods that
combine filters and wrappers to leverage their strengths [8].

Wrapper-based feature selection is a combinatorial opti-
mization problem with two objectives: minimizing the number
of features and maximizing classification performance. When
there are n features in a dataset, finding the best subset of fea-
tures requires 2n computations. Therefore, exhaustive searches
are not feasible for medium or large-scale datasets. For this
reason, many heuristic methods have been proposed for the
feature selection problem in the literature [9]. Recent studies
presented that metaheuristic algorithms are also very effective
for the feature selection task [10]. They provide near-optimal
solutions in a timely manner. These algorithms begin their
search with an initial population. Therefore, their performance
relies on the quality of the initial population. It has been
shown that wise selection of the initial population leads to
better results [11]. In this study, we leverage this information
to improve the performance of the feature selection task.

The main contributions of this study are as follows. We
propose a new initial population generation mechanism that
combines randomness with information gain. Moreover, we
enforce a more diverse search space exploration with initial
population segmentation. We carry out experiments on the
well-known UCI benchmark datasets. In addition, we further
experiment on a text-based classification dataset with a large
number of features. Finally, we analyze our proposed method,
along with three off-the-shelf initialization strategies and com-
pare them with empirical results.978-1-7281-8671-9/22/$31.00 © 2022 IEEE
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The rest of this paper is arranged as follows. Section II
includes a formal description of the multiobjective feature
selection problem along with available initial population gen-
eration methods. Section III provides a detailed description of
our proposed algorithm. We describe the experimental envi-
ronment in Section IV. Section V includes the experimental
results of our model and its comparison with other methods.
Finally, we summarize our findings and share our future work
plans in Section VI.

II. BACKGROUND

A. Multiobjective Feature Selection

Dash and Liu [12] defined feature selection as choosing the
minimal feature subset that has remarkably similar represen-
tation with the original dataset. Formally, given a dataset D
with the features F = ⟨f1, f2, ...fn⟩, feature selection finds the
most promising subset Fs, i.e., Fs ⊆ F , that improves the
classification performance for D. Therefore, the feature selec-
tion task requires optimizing two objectives: minimizing the
number of features and maximizing classification performance.
In this task, one solution dominates another one if and only if it
provides better value for at least one objective while providing
no worse value for the other one. Formal representation of a
solution Si dominating another solution Sj in the solution set
SS is presented below:

Si ≺ Sj ⇔ |Si| < |Sj | and acc(Si) ≥ acc(Sj)

or |Si| ≤ |Sj | and acc(Si) > acc(Sj)

where Si, Sj ∈ SS

(1)

Consequently, in multiobjective optimization problems,
there exist multiple solutions which any other solution cannot
dominate [13]. These solutions are called non-dominated solu-
tions. Non-dominated solutions fit a Pareto-curve [14]. A non-
dominated solution Si is formally presented as given below:

Sk ≺ Si ¬∃Sk ∈ SS (2)

All the non-dominated solutions in the solution set consti-
tute the candidate solutions. The dataset domain plays a vital
role in determining the final solution among the candidate so-
lutions. For the feature selection task, some domains prioritize
classification performance over feature size, while minimizing
the feature size is more critical for some others.

B. Metaheuristic Algorithms for Feature Selection

In 1998, Yang and Honavar [15] presented that the genetic
algorithm has merit for the solution of the feature selec-
tion problem. Since then, various metaheuristic approaches
have been proposed for the feature selection problem in the
literature [16], including Particle Swarm Optimization [8],
Tabu Search [17], Artificial Bee Colony Optimization [18].
Teaching-Learning-Based Optimization (TLBO) is another
metaheuristic optimization algorithm proposed by Rao et
al. [19]. It mimics the information conveyed between teachers
and students to solve global optimization problems. Recently,

Zou et al. [20] elaborated on TLBO by providing a detailed
description of the algorithm, different variants, hybridized ver-
sions, and application areas. TLBO has been applied to many
different problem domains, including feature selection [21].

TLBO consists of two phases, namely teacher and learner.
In the teacher phase, the best individual in the population is
selected as the teacher, and the remaining are named students.
Then, the teacher shares its information with the students with
the aim of improving the knowledge of the whole population.
After the teacher phase ends, the learner phase begins. In the
learner phase, the students interact with each other in order to
enhance the performance of all the students in the population.

An individual in the population is represented with a bit
string of length equal to the number of features. In this bit
string, 1s and 0s indicate that the respective feature is in the
selected feature subset or not, respectively.

In order to exchange knowledge between individuals and
enhance the exploration and exploitation capability, we utilize
crossover and mutation operators. In the teacher phase, the half
uniform crossover operation is applied between the teacher and
every student in the population regarding the equation below:

xS
i =

{
xT
i , if xT

i = xS
i

rand(0, 1), otherwise
∀i ∈ xT (3)

where xT is the teacher, xS is the student, and rand(0, 1)
is a function that randomly returns 0 or 1. The subscript i
indicates the i-th feature of the individual, e.g., xS

i is the
i-th feature of the student. Then, in the learner phase, both
crossover and mutation operators are utilized to increase the
algorithm’s search capability. First, the crossover is applied
among students with regard to the equation below:

xS2
i =

{
xS2
i , if xS1

i = xS2
i

rand(0, 1), otherwise
∀i ∈ xS1 (4)

where xS1 and xS2 represent two randomly selected students.
After crossover, all the students are altered regarding the bit-
flip mutation equation below:

xS
i = {1− xS

i : rand ≤MP} ∀i ∈ xS (5)

where rand is a random number between 0 and 1 to represent
the probability of the feature i being mutated, and MP is the
predefined mutation probability.

As there is no single best solution in a multiobjective envi-
ronment, determining the teacher is not a trivial task. Kiziloz
et al. [22] proposed three variants of TLBO for multiobjective
optimization. In this study, we utilized multiobjective TLBO
with minimum distance. In this version of the algorithm, the
teacher is decided by calculating the distance between the
candidate solution and the ideal point, (1,1), where the number
of features is minimum and accuracy is maximum. The shorter
the distance, the better the candidate is.



Algorithm 1: RANDOM INITIALIZATION

Input: total feature size D; population size N;
probability P

Output: initial population Pop
1 Function RandomInit(D, N , P):
2 for i=1,...,N do
3 for j=1,...,D do
4 if rand < P then
5 xi

j ← 1
6 else
7 xi

j ← 0

8 Pop(i)← xi

9 return Pop

Algorithm 2: INFORMATION GAIN RANKING INI-
TIALIZATION [26]
Input: total feature size D; population size N; sorted

information gain ranks of features R
Output: initial population Pop

1 Function IGRInit(D, N , R):
2 size← min(D,N)
3 x0 ← ⟨0, 0, . . . , 0⟩
4 for i=1,...,size do
5 xi ← xi−1

6 xi
R[i] ← 1

7 Pop(i)← xi

8 return Pop

C. Initialization Methods

Population initialization is one of the critical factors that af-
fect the performance of evolutionary computation techniques.
In the literature, it has been shown that a better initial
population speeds up the convergence and improves the quality
of the solutions [11], [23]–[25]. In the following subsections,
we share three available initial population generation methods
that we compare our results with.

a) Random initialization (Rnd): This method is a com-
monly applied initial population generation technique. All
the individuals are populated in a completely random way,
each feature in each individual having equal chances of being
selected or not (see Algorithm 1).

b) Information Gain Ranking (IGR): This method was
proposed by Deniz and Kiziloz [26]. In this method, first,
the information gain values of each feature are calculated
and sorted in decreasing order. The first individual is then
generated by selecting the feature with the highest information
gain value, i.e., the first feature in the rank list. The selection
of the first two features in the rank list constitutes the second
individual. The third individual has three features selected: the
first three features in the rank list. This process continues until
either all features are selected or the population size is met.

Algorithm 3: SEGMENTED INITIALIZATION [27]
Input: total feature size D; population size N
Output: initial population Pop

1 Function SegmentedInit(D, N):
2 τ ← ⌈N/3⌉
3 subPop1 ← RandomInit(D, τ, 0.25)
4 subPop2 ← RandomInit(D, τ, 0.5)
5 subPop3 ← RandomInit(D,N − 2τ, 0.75)
6 Pop← subPop1 ∪ subPop2 ∪ subPop3
7 return Pop

Algorithm 4: PROPOSED INITIALIZATION

Input: total feature size D; population size N;
information gain values of features V; number
of sub-groups M; maximum ratio of selected
features K; deviation size of feature ratio δ

Output: initial population Pop
1 Function ProposedInit(D, N , V , M , K, δ):
2 Bins← FindBins(D,V )
3 τ ← ⌈N/M⌉, τ ′ ← N − (M − 1)τ
4 φ← ⌈K/M⌉
5 for i=1,...,M − 1 do
6 βi ← i× φ
7 subPopi ← CreateSub(D, τ,Bins, βi, δ)

8 subPopM ← CreateSub(D, τ ′, Bins,K, δ)
9 Pop← subPop1 ∪ subPop2 ∪ . . . ∪ subPopM

10 return Pop

The algorithm of this method is provided in Algorithm 2.
c) Segmented Initialization (SI): This method was pro-

posed by Xu et al. [27]. It provides a simple, yet, powerful
modification to Rnd in terms of exploration capability. Rather
than providing equal chances for selecting each feature for
each individual, it splits the population into three similar-sized
groups. They obtain a segmented initial population by varying
the probabilities of selecting a feature in each group to 25%,
50%, and 75%, respectively, as presented in Algorithm 3.

III. PROPOSED METHOD

In our proposed method, Algorithm 4, we boost random
initialization with information gain and population segmen-
tation. First, we partition the features into four bins, B1 to
B4 (Algorithm 5). For this purpose, we calculate the first,
second, and third quartiles of information gain values of the
features. The bin B1 consists of the least important features,
i.e., the ones having information gain values less than the first
quartile. In contrast, the bin B4 includes the most important
features, i.e., the ones having information gain values greater
than the third quartile. The contents of the remaining two
bins, B2 and B3, are determined similarly. Next, analogous
to the SI method, we create M similar-sized sub-groups to
increase diversity. Each sub-group populates its individuals



Algorithm 5: FIND BINS

Input: total feature size D; information gain values of
features V

Output: bins B
1 Function FindBins(D, V ):
2 thr1 ← FirstQuartile(V )
3 thr2 ←Median(V )
4 thr3 ← ThirdQuartile(V )
5 for i=1,...,D do
6 if Vi < thr1 then
7 B1 ← B1 ∪ i
8 else if Vi < thr2 then
9 B2 ← B2 ∪ i

10 else if Vi < thr3 then
11 B3 ← B3 ∪ i
12 else
13 B4 ← B4 ∪ i

14 return B

independently, within their predetermined range of feature
ratios. In this study, we define feature ratio as given below:

fratio =
selected # of features

total # of features
(6)

In the feature selection domain, it may be wise to eliminate
a proportion of the features in the initial population. Therefore,
we introduce the maximum ratio of selected features, K, as
a parameter to the proposed method. This parameter enforces
an upper limit to fratio, and shrinks the search space. Then,
this search space is split into M equal portions to determine
the feature ratio of each sub-group. Accordingly, each sub-
group is provided with a baseline fratio value, β, as multiples
of K/M , up to K. In particular, β1 = K/M , β2 = 2K/M ,
and βM = KM/M = K are the baseline values of first,
second, and M -th sub-groups, respectively. Finally, to boost
the diversity within the sub-groups, we introduce another
parameter, δ, which indicates the deviation size of the feature
ratio. This parameter allows the fratio value to span the range
of [βi − δ, βi + δ].

Individual generation of sub-groups is given in Algorithm 6.
In a sub-group, each individual determines its number of
selected features within its fratio range. Then, until this
number of features is selected, it selects features one-by-
one, as follows. It spins a roulette wheel having 40%, 30%,
20%, and 10% probabilities for the bins B4, B3, B2, and
B1, respectively. According to the roulette wheel selection,
a random feature is selected from its respective bin to be
included in the current individual. This process is iterated for
the population size of the sub-group. Finally, all the sub-groups
are merged to generate the initial population.

To emphasize the novelty of our proposed algorithm, we
state its differences with the IGR and SI methods as follows.
The IGR method ranks the features based on their information

Algorithm 6: CREATE SUB-POPULATION

Input: total feature size D; population size N; bins B;
feature ratio F; deviation size of feature ratio δ

Output: sub population SubPop
1 Function CreateSub(D, N , B, F , δ):
2 x0 ← ⟨0, 0, . . . , 0⟩
3 for i=1,...,N do
4 xi ← x0

5 size← ⌈(D/100)× ((F − δ) + (rand× 2δ))⌉
6 size← min(D,max(1, size)) // range check
7 while

∑
j

xi
j < size do

8 if rand < 0.4 then
9 k ← RandomlySelectItem(B4)

10 else if rand < 0.7 then
11 k ← RandomlySelectItem(B3)
12 else if rand < 0.9 then
13 k ← RandomlySelectItem(B2)
14 else
15 k ← RandomlySelectItem(B1)

16 xi
k ← 1

17 SubPop(i)← xi

18 return SubPop

gain scores. Then, the first N of them are selected, where
N is the population size. There are two shortcomings of
this approach. The first one is the static assignment of the
number of selected features. In IGR, the number of selected
features can only increase as high as the population size.
Therefore, the fratio value will approximate 0 when the
dataset size is enormous compared to the population size. The
second shortcoming of IGR is the selection of the identical
features for every individual in the population as the first N
ranks are included iteratively. On the contrary to IGR, the
SI method does not utilize the information carried within the
dataset but executes in a completely random fashion. Briefly,
it sets the selection probability of all features and randomly
decides whether a feature is selected or not independent
from the selection of others. As a result of this approach,
less informative features may be selected while discriminative
features are filtered out. In addition, all or no features may be
selected in extreme cases. Even though our proposed algorithm
utilizes the information gain scores and population segmenta-
tion at its core, both ideas are implemented differently. First,
our proposed algorithm prohibits the selection of individuals
having more than (K + δ)% of the total feature size into our
initial population since one of our objectives is to minimize the
number of features. Then, the sub-groups are partitioned with
their guaranteed fratio ranges. Moreover, these fratio ranges
are determined dynamically with respect to the dataset size.
Finally, the feature selection in the initial population process
is boosted with information gain scores, i.e., more informative
features are given higher probabilities to be selected than the



TABLE I
DATASET SPECIFICATIONS

dataset # of
features

# of
instances

# of
classes

Pima Indian Diabetes (PM) 8 768 2
Breast Cancer (BC) 9 699 2
Mushrooms (MR) 22 8124 2
Wisconsin Breast Cancer (WBC) 30 569 2
Ionosphere (IO) 34 351 2
Waveform (WF) 40 5000 3
Connect-4 Opening (C4) 42 67,557 3
Covertype (CT) 54 581,012 7
Spambase (SB) 57 4601 2
Sonar (SON) 60 208 2
Musk (MU) 168 6598 2
Stanford Sentiment Treebank (SST) 18,296 10,242 3

less informative ones.

IV. EXPERIMENTAL SETUP

A. Datasets

We held the experiments on twelve datasets, eleven of
which are benchmark datasets commonly used in feature
selection studies and retrieved from the UCI Machine Learning
Repository [28]. Table I presents the key characteristics of
the datasets. In these datasets, the number of features varies
between 8 and 18,296, and the number of instances ranges up
to 600,000. Some datasets have more than two classes. In the
experiments, we utilized the two classes, which have more in-
stances than the other classes. Other than that, for the datasets
having more than 10,000 instances, we sampled the dataset
by selecting 10,000 instances proportional to the classes’
original distribution. Apart from the benchmark datasets, we
applied our proposed model on a well-known, real-world
dataset, i.e., Stanford Sentiment Treebank (SST). SST was
introduced in 2013 by Socher et al. [29]. It contains movie
reviews that are sentence-based labelled for their sentiments
as positive, negative, or neutral. There exist more than 10,000
sentences split into train and test sets. Before performing any
experiments on this dataset, we applied four preprocessing
operations: conversion to lowercase, punctuation removal,
tokenization, and stop words removal, in respective order.
Then, we extracted features using Bag-of-Words. We obtained
18,296 features with this approach, which gave us the chance
to verify the efficiency of our proposed model on datasets with
an extreme amount of features.

B. Performance Evaluation

We utilized Logistic Regression (LR) to evaluate the perfor-
mance of each feature subset. LR calculates the likelihood of
an event to occur by building a probabilistic model. We used
the scikit-learn library1 for the implementation of LR.

We used the hypervolume indicator to compare the overall
performance of the methods. Hypervolume indicator has been
a favored metric in multiobjective optimization problems as

1https://scikit-learn.org/

it measures the convergence and the diversity of the solu-
tions [30]. It calculates the area between a reference point and
the set of solutions. For this reason, it captures the distance
of the solutions to the ideal point and the distribution of the
solutions over the objectives. A higher hypervolume indicates
better results. In the hypervolume calculation, we utilized both
objective values. One of the objectives, accuracy, has a value
range of [0,1]. On the other hand, the other objective, selected
feature size, has a wider value range and may increase up
to the original feature size of the dataset. To equalize their
contributions to the hypervolume, we represented the feature
size objective value with fratio, which also has a value range
of [0,1]. Finally, in the hypervolume calculation, we selected
the reference point as (1,0), i.e., all the features are selected,
and the accuracy is 0. Apart from hypervolume comparisons,
we also utilized accuracy to compare all methods in terms of
the achieved maximum accuracy value.

Finally, we applied a one-way Anova test to measure
whether the differences between the groups are significant,
followed by pairwise post hoc two independent scores t-tests
if found significant. The significance levels of these tests were
set to 0.05.

C. Parameter Settings

In this subsection, we share the parameter settings used
in the experimentation part of the study. The population
size and the number of generations were set to 40 and 60,
respectively. Moreover, the crossover rate was set to 1, and the
mutation rate was set to 0.02. To obtain statistically significant
results, we ran each algorithm 30 times independently for each
dataset [27]. The only exception is the SST dataset, with 15
independent runs, as its execution time is enormous compared
to others. We set the parameters of LR as follows: l2 for
penalty, 1e5 for c, and liblinear for solver. Finally, we applied
5-fold cross-validation when testing our proposed method on
the benchmark datasets.

The parameters of our proposed algorithm were selected
as follows. We set the number of sub-groups, M , as 6 in
this study. Moreover, we set the maximum ratio of selected
features, K, and deviation size of feature ratio δ as 75% and
2.5%, respectively. Therefore, in our experiments, there are
6 sub-groups, with the baseline fratio values as 12.5%, 25%,
37.5%, 50%, 62.5%, and 75%. Considering the 2.5% deviation
size, individuals in the first sub-group can select 10% to 15%
of the features, while individuals in the sixth sub-group can
select 72.5% to 77.5%. Moreover, none of the individuals may
consist of more than 77.5% of the features selected in our
initial population. We note that these parameters are highly
problem/domain-dependent. In this study, we do not optimize
these parameters per dataset; rather, we execute them with the
same values to observe their reaction to the change of the
initialization method.

V. RESULTS AND DISCUSSION

In this section, we share the experiment results along with
analysis and discussions. The mean and standard deviation

https://scikit-learn.org/


TABLE II
HYPERVOLUME COMPARISON OF INITIAL POPULATION GENERATION METHODS

Dataset (ANOVA) Rnd IGR SI Proposed Method

PM (+) 0.769± 0.001(↑) 0.770± 0.000(↑) 0.770± 0.000(↑) 0.769± 0.001
BC (+) 0.964± 0.000(↑) 0.963± 0.001(↓) 0.964± 0.001(◦) 0.964± 0.001
MR (−) 0.939± 0.003 0.939± 0.002 0.939± 0.002 0.938± 0.003

WBC (−) 0.978± 0.001 0.978± 0.001 0.978± 0.001 0.978± 0.001
IO (−) 0.901± 0.003 0.900± 0.003 0.901± 0.002 0.901± 0.002

WF (+) 0.917± 0.001(↓) 0.920± 0.001(↑) 0.917± 0.001(↓) 0.919± 0.001
C4 (+) 0.791± 0.009(↓) 0.809± 0.000(↑) 0.801± 0.004(↓) 0.805± 0.001
CT (+) 0.769± 0.006(↓) 0.775± 0.001(◦) 0.772± 0.006(↓) 0.775± 0.001
SB (+) 0.892± 0.009(↓) 0.912± 0.001(↑) 0.899± 0.009(↓) 0.906± 0.008
SO (+) 0.812± 0.014(↓) 0.834± 0.007(↑) 0.823± 0.013(◦) 0.826± 0.010

MU (+) 0.863± 0.014(↓) 0.925± 0.002(↑) 0.883± 0.011(↓) 0.904± 0.006
SST (+) 0.380± 0.004(↓) 0.694± 0.010(↑) 0.543± 0.008(↓) 0.670± 0.007

TABLE III
MAXIMUM ACCURACY COMPARISON OF INITIAL POPULATION GENERATION METHODS

Dataset (ANOVA) Rnd IGR SI Proposed Method

PM (+) 0.776± 0.001(↑) 0.777± 0.000(↑) 0.777± 0.001(↑) 0.775± 0.002
BC (+) 0.971± 0.001(◦) 0.970± 0.001(↓) 0.971± 0.001(◦) 0.970± 0.001
MR (+) 0.953± 0.003(↑) 0.954± 0.003(↑) 0.954± 0.004(↑) 0.951± 0.003

WBC (−) 0.981± 0.001 0.981± 0.001 0.981± 0.001 0.981± 0.001
IO (−) 0.906± 0.004 0.904± 0.003 0.905± 0.003 0.905± 0.003

WF (+) 0.924± 0.002(↓) 0.927± 0.001(◦) 0.925± 0.001(↓) 0.927± 0.001
C4 (+) 0.807± 0.007(↓) 0.831± 0.000(↑) 0.822± 0.006(◦) 0.823± 0.003
CT (+) 0.778± 0.001(◦) 0.777± 0.001(↓) 0.777± 0.001(◦) 0.777± 0.001
SB (+) 0.918± 0.002(↓) 0.923± 0.000(◦) 0.923± 0.002(◦) 0.923± 0.002
SO (−) 0.842± 0.010 0.838± 0.007 0.838± 0.011 0.837± 0.008

MU (+) 0.941± 0.001(↓) 0.927± 0.002(↓) 0.948± 0.001(◦) 0.947± 0.001
SST (+) 0.724± 0.008(↓) 0.697± 0.011(↓) 0.715± 0.011(↓) 0.752± 0.007

TABLE IV
EXECUTION TIME COMPARISON OF INITIAL POPULATION GENERATION METHODS

Dataset (ANOVA) Rnd IGR SI Proposed Method

PM (+) 0.7± 0.2(↓) 0.7± 0.1(◦) 0.7± 0.1(↓) 0.6± 0.1
BC (+) 1.0± 0.1(↓) 0.9± 0.1(◦) 1.0± 0.1(↓) 0.9± 0.1
MR (+) 28.1± 4.6(↓) 26.4± 4.8(↓) 29.9± 6.8(↓) 21.8± 4.1

WBC (+) 5.6± 0.4(↓) 5.0± 0.3(◦) 5.0± 0.5(◦) 4.9± 0.5
IO (+) 4.8± 0.6(↓) 3.6± 0.3(↑) 4.1± 0.5(◦) 4.0± 0.6

WF (+) 25.1± 3.0(↑) 27.2± 1.9(↑) 27.3± 3.0(↑) 28.8± 2.3
C4 (+) 79.4± 9.0(↑) 112.6± 4.8(↓) 98.1± 8.6(↓) 88.8± 5.3
CT (+) 111± 16.6(↓) 57.2± 3.6(↑) 92.7± 9.6(↓) 78.0± 11.4
SB (+) 156.6± 22.2(↑) 156.9± 14.7(↑) 195.8± 30.6(↓) 169.3± 18.5
SO (+) 5.7± 0.5(↓) 4.4± 0.4(↑) 5.4± 0.4(↓) 4.9± 0.4

MU (+) 1221.1± 127.1(↓) 126.5± 14.9(↑) 1209.0± 141.1(↓) 934.3± 93.8
SST (+) 10627.5± 313.8(↓) 929.7± 98.8(↑) 5239.8± 270.0(↓) 2878.4± 112.4

of the experiment results achieved by four initial population
generation methods are presented in Tables II, III, and IV.
To provide a clear presentation, we sorted the datasets in
ascending order with respect to their feature sizes in the tables.
Moreover, we presented the statistical test results in these
tables. At the left-most column, next to the dataset name, a (−)
symbol means that the one-way ANOVA test indicates no sig-
nificant differences between the initial population generation
methods; hence, post hoc pairwise analysis is not necessary.
On the contrary, a (+) symbol indicates that the differences
are significant. In such cases, post hoc pairwise test results
were presented with the (↑), (↓), and (◦) symbols next to the

results of Rnd, IGR, and SI methods, indicating whether they
perform significantly better than, worse than, or not different
than our proposed method, respectively. A result is considered
better if it is higher for hypervolume and accuracy and lower
for execution time.

In Table II, we present the hypervolume scores achieved
by each initial population generation method. For the datasets
having less than 40 features, all the methods achieve a similar
hypervolume. The ANOVA test indicates no significant dif-
ferences for MR, WBC, and IO datasets. It can be observed
that the IGR method is superior in terms of the hypervolume
metric as the feature size increases. It significantly achieves
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Fig. 1. Distribution of initial populations for all initial population generation methods in the large-scale SST dataset.

the maximum hypervolume score for all the datasets having
more than 40 features. In the table, IGR is followed by our
proposed method. Similarly, our proposed method significantly
outperforms the other two methods, i.e., Rnd and SI, for all
the datasets having more than 40 features.

The reason behind this outcome is the inclusion of indi-
viduals with minimal fratio values in the IGR method. As
stated before, the hypervolume indicator values the diversity
of the solutions, as well as their convergence to the ideal point.
IGR method begins with an individual having only one feature
selected. The second individual consists of two features, and
so on. These individuals with small fratios remain in the pop-
ulation with respect to the employed evolutionary algorithm’s
elitism property. Moreover, these diverse solutions provide
a non-negligible classification performance as they have the
highest information gain values. Hence, they contribute largely
to the hypervolume score. Other methods may struggle to
explore such a diverse space closer to the ideal point.

However, higher hypervolume scores do not solely mean
that IGR is the best initial population generation method. In
Table III, we present the maximum accuracy values achieved
by each method. We observed that IGR could not achieve
the maximum accuracy value when the dataset’s total feature
size is larger than the population size (40 in this study). This
failure gets even more remarkable as the dataset size increases.
Especially for the MU and SST datasets, even the Rnd method
performs better than IGR. For the datasets with more than
40 features, our proposed method consistently achieves the
highest accuracy values, except for the SO dataset, where the
ANOVA test indicates that the differences are insignificant.
Apart from the SST dataset, the SI method can also achieve
high maximum accuracy values that are indifferent to our
proposed method.

Finally, in Table IV, we compare the methods in terms
of their execution times as the ANOVA test indicates sig-
nificant differences for every dataset, regardless of the size.
Our proposed method executes significantly faster than Rnd

(the only exception is the SB dataset) and SI (exceptions
are WBC, IO, and WF datasets). IGR is the fastest initial
population generation method for the datasets having more
than 40 features. The difference exists regarding the search
spaces of the methods. Training a machine learning model
with a higher number of features requires more time. IGR has
the smallest mean fratio, followed by our proposed method,
SI, and Rnd, in respective order. The employed evolutionary
algorithm builds new generations upon the initial populations;
hence, the initial population has a high effect on the execution
time. Therefore, the obtained results are consistent with theory.

To sum up, all the methods achieve a similar result for
both hypervolume and maximum accuracy when the dataset is
small. As the dataset grows larger, the IGR method executes
fast and achieves high hypervolume scores. However, it tends
to get stuck in a local optimum in terms of maximizing
accuracy. SI and our proposed method can handle this task
well, i.e., as the dataset grows larger, they both find the
maximum accuracy values with significant differences. How-
ever, the SI method cannot produce diverse solutions; hence,
its hypervolume scores remain low. Moreover, its execution
time is significantly larger. Our proposed method consistently
achieves high accuracy values while keeping the hypervolume
score high, with an acceptable execution time.

To provide a better understanding of the initial population
generation methods, we visualize the initial populations gen-
erated by the four methods for the SST dataset in Figure 1.
In this plot, the x-axis represents the number of features, and
the y-axis represents the accuracy values. The distributions
in the figure support our findings above. In high-dimensional
datasets, the difference between the methods becomes clear. In
Rnd method (orange markers), all individuals cluster around
the center (fratio ≈ 0.5). IGR method (pink markers) gen-
erates individuals with significantly fewer features. However,
like the Rnd method, it clusters around one point and does
not provide an exploration area to the search algorithm. In
the SI method (blue markers), a more diverse population



is obtained when compared to Rnd and IGR methods. It
provides three cluster points that increase the searching ability
of the algorithm. Nevertheless, our proposed method (green
markers) generates the most diverse individuals among all
methods. It provides a large space for the search algorithm
for exploration and exploitation. Moreover, it achieves the
highest accuracy values among all methods as it leverages
the information obtained from the information gain metric.
As a result, when finding the most promising features, the
evolutionary algorithm is challenged as the number of features
increases. Therefore, a diverse initial population boosted with
intrinsic knowledge can enhance the searching ability of the
algorithm by broadening its exploration space.

VI. CONCLUSION

Feature selection is one of the key parts of a data analysis
process, as a machine learning model’s performance depends
on the quality of data. Contributions of feature selection are
two-fold: reducing the data amount by identifying irrelevant or
redundant features and enhancing the model’s learning perfor-
mance. Recently, population-based metaheuristic algorithms
have been commonly proposed for the feature selection task.
These algorithms begin their search for the optimal feature
subset with an initial population, and the initial population
has a high impact on the final solution.

In this paper, we introduced a novel initial population gen-
eration mechanism for evolutionary algorithms in the feature
selection domain. Specifically, our proposed method aims to
generate a diverse initial population that can provide a wiser
and larger search space to the optimization algorithm. To
verify our proposed method’s efficiency, we designed various
experiments using 12 well-known datasets. Moreover, we com-
pared our method with three off-the-shelf initial population
generation methods. The experimental results showed that
the proposed method significantly outperforms other methods,
especially when the dataset is high-dimensional.

In future work, we plan to further analyze the impact of
different methods on generating the initial population. More-
over, we aim to improve the initial population by hybridizing
different methods.
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