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Abstract

This paper explores the use of machine learning algorithms and narrative sen-

timents when applied to the task of forecasting and trading Bitcoin. The fore-

casting framework starts from the selection among 295 individual prediction

models. Three machine learning approaches, namely, neural networks, sup-

port vector machines, and gradient boosting approach, are used to further

improve the forecasting performance of individual models. By taking data-

snooping bias into account, three different metrics are applied to examine the

forecasting ability of each model. Our results suggest that the machine learn-

ing techniques always outperform the best individual model whereas the gradi-

ent boosting framework has the best performance among all the models.

Finally, a time-varying leverage trading strategy combined with narrative sen-

timents and volatility is proposed to enhance trading performance. This sug-

gests that the hybrid leverage strategy provides the highest Bitcoin profits

consistently among all trading exercises.
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1 | INTRODUCTION

Along with the explosive growth in machine learning
(ML) algorithms and hardware development, prosperity
in Fin-tech, Big-data, blockchain technology (BCH), and
other high-tech fields is gradually changing the world.
Carbonell et al. (1983) stated that the three primary
research needs of ML methods are task-oriented,
cognitive-simulated, and theoretical-analyzed. Based on
the required tasks, ML methods can be categorized into

classification problems, regression problems, anomaly-
detection problems, clustering problems, and reinforce-
learning problems (Alzubi et al., 2018). Compared with
the classical ML algorithms, the modern-art neural net-
works (NNs), gradient boosting (GB), support vector
regression (SVR), and other step-forward techniques
enormously improve both computational efficiency and
accuracy. The wide application of ML algorithms in
stock, exchange-traded funds (ETF), and other conven-
tional financial markets motivates our hypothetical suc-
cess in the Bitcoin (BTC) market (Sermpinis et al., 2017).

Due to the highly volatile property of cryptocurrency
and decentralization of BCH, prediction in BTC thereby
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becomes the most challenging target. Prior studies focus
on the traditional statistical models (e.g., GARCH),
which are well documented (Gourieroux et al., 2020;
Katsiampa, 2017; Zhang et al., 2021). However, only lim-
ited work has been done in cryptocurrency prediction
using ML algorithms. In terms of NNs techniques,
McNally et al. (2018) perform empirical results that the
benchmark model is less accurate than NNs in BTC
prediction. Ma et al. (2018) show GB styled methods are
particularly efficient in P2P loan default prediction and
the BTC market. Sun et al. (2020) display that SVR is
more precise than benchmark models in forecasting BTC
prices. Akyildirim et al. (2021) find ML classification
algorithms have high accuracy in terms of cryptocurrency
prediction. Chen et al. (2021) provide empirical evidence
that a combination of ML techniques and economic and
technology factors can predict the BTC exchange rate. A
clear gap lies between past studies and recent exploration
of ML applications in cryptocurrency, especially the BTC
market.

Prior studies provide empirical evidence that the
leverage trading strategy is profitable in the stock market
(Sermpinis et al., 2014; Stasinakis et al., 2016). A more
recent work by Kahraman and Tookes (2017) shows that
leverage trading has a causal effect on market liquidity in
the stock market. Inspired by these studies, the authors
hence argue that a leverage trading strategy can be a
solver on such occasions, allowing transactions when vol-
atility is relatively low but avoiding trading when volatil-
ity is relatively high. Härdle et al. (2020) proposed that
price dispersion driven by sentiment in the cryptocur-
rency market could be more significant than conven-
tional financial markets. Unlike the traditional leverage
strategy, the authors adopt the sentiment index as
our leverage because an analysis of the influence of
sentiment indicates that narratives and online media, like
Twitter, Wikipedia, and Google Trends, are associated
with BTC prices (Ciaian et al., 2016; Urquhart, 2018).
The recent literature shows that BTC prices can be
affected or even predicted by social media sentiment.
Online media play a significant role in influencing behav-
ior impacting the market and cannot be neglected (Mai
et al., 2018; Zhang et al., 2018). With the growth of BCH
and cryptocurrency, other media sources, like narratives
or publications, should influence the BTC market.

Karalevicius et al. (2018) find that intraday BTC
prices follow the direction of sentiment extracted from
expertise news while leaving a short time gap for traders
to react. Online board discussion is associated with
extremely high volatility and jumps in BTC prices
(Ahn & Kim, 2019). Caviggioli et al. (2020) argue that
adopting BTC technology improves corporate reputation
by studying Twitter data. Yao et al. (2019) find that news

articles can influence BTC prices at a certain level.
Azqueta-Gavald�on (2020) further find bidirectional
causal relationships between narrative sentiment and
BTC prices by applying a dynamic system model,
whereas Süssmuth (2022) explains that mutual causality
exists between web search dynamic and BTC prices
before 2018. L�opez-Cabarcos et al. (2021) provide a simi-
lar finding that the BTC market is connected with the
investor sentiment and this relationship will be more sig-
nificant in the stable period. These studies encourage the
authors to employ a sentiment index constructed by nar-
ratives or formal publications as our leverages. The cur-
rent study's objective is to explore the forecasting of BTC
returns using a leverage trading strategy combined with
the sentiment.

We have set up a two-step framework. At first, a large
pool of conventional models is applied, including simple
moving averages (SMA), exponential moving averages
(EMA), autoregressions (AR), autoregressive moving
averages (ARMA), and log prices to moving averages
(PMA). Unlike traditional financial assets, conventional
fundamental indicators cannot be found in cryptocurren-
cies. Thus, technical indicators could be one of the possi-
ble answers to the BTC prediction puzzle. Another
reason should be attributed to the generalization and
simplification of prediction. Our study examines whether
the preliminary models have any predictive power in
BTC prediction. We apply two dimensionality-reduction
techniques and extract a certain number of critical factors
for succeeding experiments, which are principal compo-
nent analysis (PCA) and recursive feature elimination
random forest (RFE-RF) algorithm. Finally, we use ML
techniques, including multi-layer perceptron (MLP), a
long-short term memory (LSTM), Extreme Gradient
Boost Decision (XGB), Light Gradient Boost Decision
(LBM), and SVR sets as forecast combination models to
improve the predictive ability of individual models. The
most accurate predictive model from the pool of
individual models has been set as the benchmark based
on three statistical measures, namely, the mean-squared
error (MSE), root of mean-squared error (RMSE), and
mean absolutely error (MAE). To formally examine the
influence of over-fitting issue and data-snooping bias,
we jointly apply three measures, which are the
superior predictive ability (SPA) test of Hansen (2005),
the modified Diebold and Mariano (MDM) (Harvey
et al., 1997), and the model confidence set (MCS) of
Hansen et al. (2011).

Secondly, we examine the usage of leverage trading
strategy combined with sentiment and volatility and the
traditional strategy to explore the profitability of forecast
models. Unlike other financial markets, it is rather tricky
for investors to understand and analyze fundamental
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information without a certain level of knowledge. Thus, a
trading strategy via technical analysis becomes a vitally
important tool in the cryptocurrency market. Notably,
we apply the time-varying leverage strategy in this
study motivated by its robust performance in stock and
exchange markets (see Sermpinis et al., 2014). Because of
the subjectivity of sentiments, the polarity score is a
popular proxy used in the natural language processing
(NLP) field (Liu, 2012; Wei et al., 2020). Past studies have
mainly used polarity or other sentiment scores to predict
BTC prices (Ciaian et al., 2016; Guégan & Renault, 2021).
Valencia et al. (2019) suggest that sentiment analysis
using social media data can predict the direction of price
movement for cryptocurrencies. L�opez-Cabarcos et al.
(2021) also prove that sentiment affects BTC volatility.
Caferra (2022) also provided empirical evidence that
investment strategies can be influenced by sentiment in
the BTC market. By benchmarking the buy-and-hold
strategy, we start with two different leverage trading
strategies: pure volatility and pure sentiment leverage
strategies. Moreover, we further apply a hybrid strategy
by combing sentiment and volatility leverage. Our results
show that all leverage strategies significantly improve
trading performance and that the hybrid strategy outper-
forms other strategies.

The motivations behind our framework are the
characteristics of BTC prices along with the unique
flaws and merits of each model. Takaishi (2018) sug-
gested that the distribution of daily BTC returns is
multifractal with no volatility asymmetry. Like GARCH
or ARIMA, traditional statistical models may not
possess explanatory power on BTC prediction. Recent
studies (e.g., Ji et al., 2019; Lahmiri & Bekiros, 2020;
Mallqui & Fernandes, 2019; McNally et al., 2018) show
that ML approaches are efficient and accurate in terms
of cryptocurrency predictions. Schapire (2003) suggested
that it is easier to obtain many rough rules of thumb
than a highly accurate forecasting rule. Therefore, the
forecast combination techniques lead to a more accu-
rate result.

The results show that XGB is the best predictor
among all the applied forecast combination models. Our
investigation finds that all forecast combination models
perform better than the benchmark in forecasting accu-
racy. By jointly applying three tests, our results control
the data-snooping bias and over-fitting issue. We show
that all forecasting combination models are more profit-
able than the benchmark model in terms of the overall
trading performance. Among all models, we find that
XGB has the best performance. The results are consistent
with both the traditional trading strategy and the hybrid
trading strategy. Our hybrid trading strategy generates
much higher returns than the traditional trading strategy.

Unlike previous papers, we consider the semantic defini-
tion of sentiment indices and extract reliable information
sources from narratives.

The rest of the paper is organized as follows:
Section 2 describes BTC returns and sentiment index.
Section 3 summarizes the proposed individual models
and combination forecast techniques. Forecasting and
trading performance are given in Sections 4 and 5,
respectively. Finally, Section 6 presents the conclusion
of our study.

2 | DATA

2.1 | BTC

We have collected a total number of 1749 daily prices of
BTC from January 1, 2014 to January 1, 2019 in three
rolling forecasting exercises (F1, F2, and F3). The original
data source can be found in Bitstamp. The data structure
of this study is presented in Table 1.

We then obtain the daily series of returns in the
following way:

Rt ¼ Pt

Pt�1

� �
�1: ð1Þ

Table 2 reflects the summary of descriptive statistics
for BTC returns. The Jarque–Bera and augmented
Dickey–Fuller (ADF) test also provide confirmative
results and further justification for our statements.
Meanwhile, the return series follows non-normal distri-
bution and does not have a unit root at the 99% confi-
dence level.

2.2 | Sentiment index

To construct the sentiment index, we have collected pub-
lications and news articles describing BTC from Factiva,
containing massive reports, news, and other kinds of
narratives from the worldwide business press, such as
The Financial Times, The Economist, and things in that
regard. Our main aim was to extract daily sentiment
scores from these documents to generate a time-series
sentiment index as the measure of leverage. In the cur-
rent study, we collect a total number of 31,436 articles
from January 1, 2014 to January 1, 2019. We first ran an
ML algorithm for every article; this method is called
Latent Dirichlet Allocation (LDA), developed by Blei
et al. (2003). We have provided a brief introduction to
LDA and the implementation process in Appendix S1.
LDA is a widely used topic modelling technique (Chen
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et al., 2019; Feuerriegel & Pröllochs, 2018) with the
distributions of word and topic, respectively, where
documents are generated accordingly to these two
distributions.

We obtain the sentiment of each article and further
augment the sentiments of articles belonging to the top
10 topics on a daily basis. To generate time series of senti-
ments, we use a public library in the natural language
process called TextBlob. TextBlob takes negation and
modified words into account, measuring words with
adjectives. To illustrate as an example, very good will be
given a higher weight when calibrating the sentiment
score of bad and not before good or bad will be assessed
rightly as to their original meaning. Moreover, we can
measure the sentiment from polarity (positive
vs. negative, ranging from 1 to �1) and subjectivity (rang-
ing from 0 to 1). Polarity scores reflect the sentimental
attitude towards studied topics. When polarity scores are
above zero, we believe the sentiment is positive and nega-
tive polarity scores vice versa.

To fit the NN models properly, we normalize the sen-
timent series by centralizing its mean to zero and unit
variance, which is used to keep the magnitude of input
data at the same level.

3 | FORECASTING MODELS

3.1 | Individual prediction models

As the first step, we apply a large number of single fore-
cast models. As discussed in the earlier sections, quite a
few cases focus on BTC prediction, and the majority of
studies provide successful answers with high complexity
models (Akyildirim et al., 2021; Ma et al., 2018; McNally
et al., 2018). This study starts with a pool of linear
models, including SMA, EMA, AR, ARMA, and PMA, in
case of missing trials with easy models. Moreover, we
take PMA ratios extended from the equilibrium model
proposed by Detzel et al. (2021) into our model pool as
the nonlinear component. PMA ratio is the difference
between log prices and moving averages. In an economy
like the cryptocurrency market, fundaments and other
sources of information are difficult to find or trust. Under
such circumstances, technical indicators constructed by
past prices may become a unique weapon for investors. A
detailed description of the models is provided in Table 3.

The total number of individual models is 295. In
order to reduce the influence of the over-fitting issue
caused by dimensionality issues, we apply the PCA

TABLE 1 Summary of dataset

Forecasting exercise Data split Number of observation Start date End date

F1 Total dataset 1232 01/01/2014 31/06/2017

In-sample dataset 1132 01/01/2014 01/03/2017

Out-of-sample dataset 110 02/03/2017 31/06/2017

F2 Total dataset 1395 01/07/2014 30/06/2018

In-sample dataset 1255 01/07/2014 04/02/2018

Out-of-sample dataset 140 05/02/2018 30/06/2018

F3 Total dataset 1389 01/01/2015 01/01/2019

In-sample dataset 1250 01/01/2015 07/08/2018

Out-of-sample dataset 139 08/08/2018 01/01/2019

Note: F2 is organized by rolling the dataset of F1 6 months ahead, and F3 is rolling forward 6 months ahead of F2. The different length in each period is caused

by missing values or zero.

TABLE 2 Summary statistics of

Bitcoin (BTC) returns
Return Min Mean Max SD JB ADF S K LB (5)

BSP �1 0.001 0.269 0.047 108*** 0*** �5.51 122 0.33

Note: This table reports the sample statistics of cryptocurrency prices and returns. SD is the standard
deviation; S is the skewness; K is the excess kurtosis; and ADF is the augmented Dickey–Fuller statistic. LB
(5) are the Ljung–Box statistics with lag 5, respectively, distributed as χ2 with n degrees of freedom, where n

is the number of lags. JB is the Jarque–Bera test. The number of observations is 1749 for all series.
*Significance level: 10%.
**Significance level: 5%.
***Significance level: 1%.
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technique to extract the best set of predictors and discard
high-correlated variables. PCA components account for
95% of the total variance, and only the selected compo-
nents are used as inputs for all the remaining models. In
total, we have 30 principal components selected from the
linear pool of predictors. Previous studies, for instance,
Chen et al. (2021) and Conn et al. (2019), show that the
RF algorithm performs good feature selectivity. We have
provided a general description of the RFE-RF process in
Appendix S1. In order to make factor comparison with
PCA more explanatory, we have also selected the best
30 factors based on individual feature importance. By
applying RFE-RF, we have ranked predictors based on
the order of their importance and set the best-performing
benchmark model as our benchmark model. Table 4
summarizes the best predictor selected from the pool of
individual models.

Table 4 shows that short-term lags may have better
predictive power than longer lags. So then, we use ML
algorithms to further improve the predictive ability of
individual models.

3.2 | Combination forecast techniques

3.2.1 | MLP model

MLP is a traditional NN in the forecasting literature.
Prior studies show the predictive power of MLP in BTC
as well as conventional financial areas (Sin &
Wang, 2017). The training process of MLP is relatively

straightforward, that is, a perceptron with more than one
set of layers. The input layer is generally considered the
first step used to feed the training data into the model.
The way from the input layer to the output layer is indi-
rect, which shall go through an intermediary layer called
the hidden layer. Finally, the output is the last step, pro-
ducing the estimated value. For more details regarding
the training process, the reader should refer to Shapiro
(2000).

3.2.2 | LSTM

Similar to the recurrent NN (RNN), LSTM has a chain of
repeating neural models with the above layers. However,
to solve the long-term dependency issues, LSTM has
added control gates, that is, the input gate, forget gate,
and output gate. The main difference between RNN and
LSTM is the cell state, which controls the information

TABLE 3 Summary of individual forecast models

Linear models Description Total individual forecasts

SMA(q) E Rtð Þ¼ Rtþ…þRtð Þ=q,q¼ 3…30 28

EMA(q’)

E Rtð Þ¼Rt�1þ 1�α
0� �
Rt�2þ…þ 1�α

0� �q0 �1
Rt�q0

α0 þ 1�α0ð Þþ…þ 1�α0ð Þq0 �1
,

q
0 ¼ 3…30, α0 ¼ 2= 1þNdays

� �
, Ndays is the number of trading days

28

AR(q”)
E Rtð Þ¼ β0þ

Pq00
i
0 ¼1

βi0Ri�i
0 ,q

00 ¼ 1,…,24,β0,βi0 are the regression coefficients
24

ARMA (m, n)
E Rtð Þ¼φ0þ

Xm0

j
0 ¼1

φj
0Rt�j

0 þα0þ
Xn0
k
0 ¼1

wk
0 αt�k

0

m
0
,n

0 ¼ 1…15,φ0,φj
0 are the regression coefficients,

α0, αt�k
0 are the residual terms,wk

0 is the weights of the residual terms

210

PMA(L) PMAt Lð Þ¼ pt �mat Lð Þ, wheremat Lð Þ¼ 1
nL

PnL�1
l¼0 pt�l

5

Note: The total number of individual inputs calculated is 290. In all the specifications above, Rt is the factor return at time t. Pt is the log price of the Bitcoin,

and n is the number of days per week in L= 1, 2, 4, 10, and 20weeks.
Abbreviations: AR, autoregressions; ARMA, autoregressive moving averages; EMA, exponential moving averages; PMA, log prices to moving averages; SMA,
simple moving averages.

TABLE 4 Summary of best individual predictor set

Forecasting exercise MAE MSE RMSE

F1 EMA (3) EMA (3) EMA (3)

F2 SMA (1) EMA (2) PMA (2)

F3 PMA (1) PMA (2) PMA (1)

Note: The numbers in the parenthesis correspond to the lags in the
individual model.
Abbreviations: EMA, exponential moving averages; MAE, mean absolutely

error; MSE, mean-squared error; PMA, log prices to moving averages;
RMSE, root of mean-squared error; SMA, simple moving averages.
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regulated by three gates. Intuitively, sigmoid layers are
used to determine how much information is to be
restored. The range of [0,1] represents the kept informa-
tion from nothing to all. Prior studies have shown the
success of LSTM in many fields, but in this paper, we
focus on their success in time-series prediction
(Phaladisailoed & Numnonda, 2018). Compared with
simple MLPs or other feed-forward NNs, LSTM has
bidirectional neural connections. The latter implies that
current data can be passed to the previous or the same
layer. LSTM can thus keep the short-term memory as
well as the long-term memory by control gates.

3.2.3 | SVR

SVR has been widely used in time-series prediction
(Tay & Cao, 2001; Zhao et al., 2019). SVR follows the
same principle as support vector machine (SVM) but
aims to solve regression problems. Using kernel func-
tions, SVR can project data into high-dimension space
and find a hyperplane to control the error within a
certain threshold. Unlike linear regression, the objective
function of SVR is to minimize the L2-norm of the coeffi-
cient vector. In contrast to SVM, SVR tries to obtain as
many samples as possible within decision boundary lines
using slack variables. In a nutshell, SVR allows users to
define their tolerance rate of errors and find an accept-
able tolerance range by tuning.

3.2.4 | GBDT family: XGBoost (XGB) and
LightGBM (LBM)

As one crucial branch of ensemble learning algorithms in
the ML field, the gradient boost decision tree (GBDT)
developed by Friedman (2001) is a multiple-task solver

used in a myriad of aspects. According to the statistics of
Kaggle, GBDT-based algorithms win the championship
for more than half of ML competitions and are widely
used in computer visualization, medicine, biology, and
finance (Nobre & Neves, 2019; Rao et al., 2019; Wang &
Gribskov, 2019). Intuitively, GBDT combines gradient
boost (GB) and decision tree (DT). The former algorithm
focuses on finding a strong learner F xð Þ by aggregating a
bunch of weak learners T xð Þ, whereas the latter is used
to construct the judgement condition for learning
power through iteration. Therefore, the training
process of GBDT is additive. That is, the final prediction
is based on the sum of previous predictions
(F xð Þ¼F1 xð ÞþF2 xð Þþ…þFm xð Þ).

Figure 1 provides a flowchart of GBDT structure, and
the training process is described as follows
(Friedman, 2001; Rao et al., 2019):

Input: Denote xi, yif gni¼1 as training instances, where
xi ¼ x1i, x2i, …, xkið Þ denotes the features, k denotes the
number of features, and yi denotes the target value.

Step 1: Denote the initial constant value w and
initialize the predictors as follows:

F0 xð Þ¼ argmin c
Pn
i¼1

L yi, wð Þ, where L yi, wð Þ denotes
the loss function.

Step 2: For data i¼ 1,2,…,n, we have the negative
gradient or the residual along the gradient direction,
rim ¼� ∂L yi, F xið Þð Þ

∂F xið Þ
h i

f xð Þ¼f m�1 xð Þ
where m denotes the num-

ber of iterations.
Step 3: We fit sample instances into the initial tree

T xi;anð Þ and obtain the parameter an through the least

square method as amargmina,w
Pn
i¼1

rim�wT xi;að Þð Þ2.
Step 4: To acquire the minimal loss function, the

current weight of each base learner is described as

wm ¼ argminw

Xn
i¼1

L yi, Fm�1 xð ÞþwT xi;amð Þð Þ: ð2Þ

FIGURE 1 Flowchart of gradient boost

decision tree (GBDT) structure Note: The

residuals obtained from previous base learner is

fed into the following base learner as training

data (instance)
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Step 5: The current prediction based on strong learner is
given as follows

Fm xð Þ¼Fm�1 xð ÞþwmT xi;anð Þ: ð3Þ

The above steps will keep running until the convergence
condition or the specified iteration times are met.

XGBoost
Based on the structure of GBDT, Chen and Guestrin
(2016) propose a scalable end-to-end gradient tree
boosting model, XGB system, standing for “Extremely
Gradient Boosting.” Like other ML algorithms,
XGB is designed to find a predictive model that
best fits the training set (xi) and target values (yi).
The following objective function needs to be
minimized in order to measure how good the predictive
model is:

OBJ θð Þ¼L θð ÞþΩ θð Þ,
L θð Þ¼PI

i¼1
yi�byið Þ2,

Ω θð Þ¼ PM
m¼1

Ω f mð Þ,

8>>><
>>>:

9>>>=
>>>;, ð4Þ

where L θð Þ denotes training loss function,1 Ω θð Þ denotes
regularization terms, byi is the prediction value, and m
denotes the number of trees. The upper function (L θð Þ) is
used to measure the forecasting ability of the tested
model, and the below function (Ω θð Þ) is used to control
the model complexity. Particularly, the regularization
term Ω is a function of the total number of leaves in the
tree (N) and leaf weights (ω), which can be described as
follows:

Ω¼ αΝþ1
2
β ωk k2, ð5Þ

where α denotes the complexity of leaves and β denotes
the penalty parameter. The regularization term thus
reduces the overfitting probability by leading to a predic-
tive model with a simple structure. Intuitively, traditional
optimization algorithms cannot be used for the objective
function above.

For the tree ensemble model like XGB, the final
prediction is the sum of the scores of each tree. Denote byi
as the prediction in ith instance (xi), and f m denotes
a tree structure to mainly improve our model in mth
iteration. We therefore have the prediction score

byi ¼ PM
m¼1

f m xið Þ for xi.

Then, second-order Taylor expanding is used to opti-
mize the objective function as follows:

Obj¼
XN
j¼1

Gjωjþ1
2

Hjþβω2
j

� �� �
þαN ,

	
ð6Þ

where Ij denotes the instance set for jth leaf, Gj ¼
P
i � Ij

gi is

a constant, denoting the sum of the first-order
partial derivation of all samples in jth leaf, and Hj ¼P
i � Ij

hi is a constant, denoting the sum of the second-order

partial derivation of all samples in jth leaf. Therefore, the
optimization of the objective function is transferred into
a minimum determination problem of a quadratic
function.

Based on the definition of the loss function, XGB is
capable of solving both classification and regression
tasks. In general, XGB is an improved version of
GBDT, optimizing the objective function by adding the
regularization terms and increasing the prediction
accuracy using the second-order Taylor expansion.
Moreover, two more techniques are applied to tackle
the overfitting issue during tree growth, which is
shrinkage and column subsampling (see Chen and
Guestrin, 2016, and Friedman et al., 2000, for a
detailed discussion).

LightGBM
Similar to XGB, LBM is an open-source framework
developed by Microsoft Research Asia in 2016
(Ke et al., 2017). Generally, LBM is designed to solve
the lack of computation efficiency in mass data with-
out losing much accuracy. Compared with XGB, LBM
mainly has two advantages in time complexity reduc-
tion: finding the optimal splitting node and trees
growth strategy. Regarding the first side, LBM has
three aspects of improvement: reducing the number of
splitting nodes, the size of training data, and the num-
ber of features. At first, LBM applies a histogram-based
DT algorithm instead of a presorted approach in
splitting points to reduce the number of splitting
nodes. The principle of the histogram algorithm is dis-
cretizing the continuous floating-point eigenvalues into
k number of small bins and constructing k-width histo-
grams. The discrete values index the accumulation of
histograms in each bin. Then, the sum of gradients
and the number of samples in each bin, as required
statistics, are gradually stored in the histogram. With
the necessary statistics in histograms after the first tra-
verse of data, it is possible to find the optimal segment
point based on the discrete value indices. Compared
with the presorted method, the histogram algorithm
reduces the memory cost by storing only the discrete
values. Productive discussion of both the presorted and
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histogram-based methods is well documented already
(Shafer et al., 1996; Ke et al., 2017). Secondly, LBM
develops the gradient-based one side sampling (GOSS)
technique to control the size of training instances.
Unlike AdaBoost, no sample weights are given in
GBDT, but the gradient of instances is also a good
indicator for searching for the optimal split point. Intu-
itively, training instances with small gradients have rel-
atively smaller training errors, indicating these parts of
data are well-trained and should be abandoned. This is
similar to GBDT in that large deviations from the tar-
get value will be penalized harder. In AdaBoost, the
sample weight serves as a good indicator to determine
the importance of samples. However, the data distribu-
tion may be distorted by the loss of instances and
influence the accuracy of trained models. In order to
keep the balance between reduction of data size and
accuracy of learning decision trees, GOSS applies a
constant multiplier to instances with low gradients
when computing information gains. Exclusive Feature
Bundling (EFB) is another critical technique in LBM,
which is used to reduce the feature number. This

method is inspired by the sparsity of high-dimension
data and is designed to reduce the feature numbers by
combining mutually exclusive features (values are
simultaneously nonzero).

LBM applies a leaf-wise growth strategy with a
depth controller, which searches for the maximum
profit from leaf splitting, whereas a level-wise strategy
splits every leaf. Unavoidably, the level-wise strategy
used in XGB may generate redundant data and reduce
computing efficiency. On the contrary, the leaf-wise
growth strategy only focuses on the leaf with the most
significant information gained on the same layer,
enhancing algorithm speed. To control the possible
overfitting issue, this method needs to manually set
and tune the max depth of trees and minimum data
in each leaf.

4 | STATISTICAL PERFORMANCE

In order to examine the statistical significance of each
predictor, we employ three famous metrics, MSE, RMSE,

TABLE 5 Summary of out-of-sample statistical performance

Metrics Forecasting exercise Best MLP LSTM ε-SVR ν-SVR XGB LBM

Panel A: Set of selected factors based on RFE-RF

MAE F1 0.0334 0.0185 0.0089 0.0080 0.0059 0.0042 0.0050

F2 0.0416 0.0202 0.0083 0.0068 0.0057 0.0050 0.0347

F3 0.0369 0.0093 0.0043 0.0087 0.0084 0.0034 0.0042

MSE F1 0.00185 0.0011 0.00014 0.00011 0.00006 0.00003 0.00006

F2 0.0025 0.0016 0.00037 0.00028 0.00027 0.00006 0.00092

F3 0.00235 0.0013 0.00007 0.00017 0.00009 0.00002 0.00008

RMSE F1 0.0430 0.0333 0.0119 0.0105 0.0079 0.0056 0.0075

F2 0.0450 0.0403 0.0611 0.0167 0.0163 0.0075 0.0303

F3 0.0484 0.0362 0.0087 0.0132 0.0095 0.0042 0.0089

Panel B: Selected principal components

MAE F1 0.0334 0.0284 0.0173 0.0195 0.0179 0.0056 0.01925

F2 0.0416 0.0304 0.0198 0.02129 0.02134 0.01007 0.02234

F3 0.0369 0.0291 0.0256 0.03226 0.02809 0.00702 0.01735

MSE F1 0.00185 0.00113 0.00050 0.00158 0.00064 0.00005 0.00028

F2 0.0025 0.00162 0.00063 0.00089 0.00085 0.00021 0.00079

F3 0.00235 0.00213 0.00062 0.00062 0.00072 0.00035 0.00072

RMSE F1 0.0430 0.0334 0.02231 0.03978 0.02521 0.00564 0.0235

F2 0.0450 0.0392 0.02506 0.02978 0.02914 0.01457 0.02804

F3 0.0484 0.0462 0.02494 0.02495 0.02683 0.01875 0.02689

Note: Numbers in bold style denote the lowest statistics under corresponding metric.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MAE, mean absolutely error; MLP, multi-layer perceptron; MSE, mean-
squared error; RMSE, root of mean-squared error; RFE-RF, recursive feature elimination random forest; SVR, support vector regression; XGB, Extreme

Gradient Boost Decision.
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and MAE2 Instinctively, lower statistics indicate a more
accurate prediction of the examined model. Table 5
reports the summary of out-of-sample statistical
performance.

The above results show that the models' statistical
ranking is consistent across three forecasting exercise
periods and two sets of factors. Unsurprisingly, the
best-performing benchmark selected from the pool of
individual models is beaten by all ML models. In terms
of the forecasting performance of ML algorithms,
XGB provides the best statistical accuracy among the
forecasting combination models. Although SVR sets
are inferior to XGB in terms of out-of-sample perfor-
mance, their predictive power is better than other
models. The result is in line with several studies that
suggest SVR can be a robust prediction tool supporting
individual predictors (Sermpinis et al., 2014; Zhao
et al., 2019). Finally, although LSTM falls short of the
GBDT family, it has more accurate results than the
benchmark, in line with recent experiments in BTC
prediction (Ji et al., 2019; McNally et al., 2018).

One possible reason could be our study's relatively
short sample period.3

In order to formally validate the consistency of fore-
casting ability rank in the above results, we perform the
MDM test suggested by Harvey et al. (1997). The MDM
test statistic is calculated as follows:

MDM¼T�1=2 Tþ1�2kþT�1k k�1ð Þ½ �1=2DM,

ð7Þ

where T denotes the number of observations in the
out-of-sample period and k denotes the number of
step-ahead forecasts. Based on the forecasting perfor-
mance of XGB, we apply MDM by benchmarking XGB
and comparing it with the rest models one by one. A
negative realization of the MDM test statistic implies
XGB performs better than the second forecast model in
prediction accuracy. The results of MDM tests are
summarized in Table 6.

Unsurprisingly, the statistical outcomes of MDM
from Table 7 confirm the consistency of the statistical

TABLE 6 Summary results of modified Diebold–Mariano statistics for MSE and MAE loss functions

Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

F1 Panel A: Set of selected factors based on RFE-RF

MDM1 �16.513*** �11.028*** �10.865*** �9.632*** �3.675*** �2.750** -

MDM2 �15.980*** �12.414*** �10.268*** �8.869*** �5.293*** �5.899*** -

F1 Panel B: Selected principal components

MDM1 �15.423*** �12.028*** �10.865*** �9.632*** �3.675*** �2.750** -

MDM2 �15.165*** �12.414*** �10.268*** �8.869*** �8.293*** �8.899*** -

F2 Panel A: Set of selected factors based on RFE-RF

MDM1 �17.416*** �11.325*** �8.816*** �4.858*** �3.330*** �10.709*** -

MDM2 �19.413*** �11.144*** �7708***. �4.329*** �3.223*** �9.291*** -

F2 Panel B: Selected principal components

MDM1 �20.471*** �11.437*** �13.620*** �14.725*** �14.808*** �13.651*** -

MDM2 �17.527*** �11.267*** �11.830*** �11.011*** �10.987*** �9.845*** -

F3 Panel A: Set of selected factors based on RFE-RF

MDM1 �17.970*** �11.489*** �3.304*** �7.097*** �9.171*** �2.982** -

MDM2 �23.822*** �20.282*** �4.781*** �14.677*** �6.311*** �3.782*** -

F3 Panel B: Selected principal components

MDM1 �22.417*** �20.604*** �11.780*** �18.627*** �15.524*** �10.834*** -

MDM2 �22.527*** �18.255*** �6.493*** �6.505*** �6.618*** �6.632*** -

Note: MDM1 and MDM2 are the statistics computed for MAE and MSE loss function, respectively. Missing sections represent the benchmark model.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer perceptron; RFE-RF, recursive feature elimination
random forest; SVR, support vector regression; XGB, Extreme Gradient Boost Decision.
*Significance level: 10%.
**Significance level: 5%.

***Significance level: 1%.
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ranking presented in Table 6. For both sets of factors
(RFE-RF and PCA), we shed light on the predictive
power of the GBDT family (XGB and LBM) because of
all the negative statistics of the MDM test. Zhao et al.
(2019) suggested that when the superiority of forecast-
ing models suffers from data-snooping bias, the predic-
tive performance may be attributed to luck. In order
to further validate the superiority of the XGB model,
we then apply two statistical tools, namely, the SPA
test and the MCS test. The results are given in
Table 7.

SPA test focuses on comparing the predictive abili-
ties of multiple methods within a full set of models.
High SPA p-values imply that at least one of the com-
pared models may outperform the benchmark model.
In our case, we examine the superior predictive power
by benchmarking each model in turn and comparing it
with the bundle of rest forecasting models. Based on
the null hypothesis of SPA (no model is more accurate
than the benchmark model), we declare that the predic-
tive ability of XGB is superior to alternative models. All
models from Table 8 are also used as benchmarks in

turn in our second test (MCS), starting from the best-
performing benchmark. MCS is a data-driven statistic
that the more informative the data are, the fewer
models are chosen (Hansen et al., 2011). By controlling
the family-wise error, MCS determines the statistically
insignificant set compared with the alternative model.
High p-values indicate that the benchmark model
should belong to the most accurate model set. The con-
sistent results of both SPA and MCS across three fore-
casting exercises suggest the superior performance of
XGB in terms of two sets of factors, which follows the
logic of model forecasting performance. Moreover,
the overall performance of predictive algorithms also
suggests that encompassing robust forecasts can boost
forecasting accuracy (Diebold & Pauly, 1990). In a
nutshell, the outperformance of the XGB in the out-of-
sample is genuine.

Through a comprehensive investigation, we provide
evidence that ML techniques improve the predictive
power of individual models. This is in line with our pro-
posed hypothesis. The GBDT family has the best perfor-
mance among the forecasting model pool.

TABLE 7 Summary results of MCS

and SPA statistics
Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

F1 Panel A: Set of selected factors based on RFE-RF

MCS 0 0 0.001 0.001 0.001 0.007 1

SPA 0 0 0 0.001 0.002 0.042 0.522

F1 Panel B: Selected principal components

MCS 0 0 0 0 0 0 0.564

SPA 0 0 0 0 0 0 0.758

F2 Panel A: Set of selected factors based on RFE-RF

MCS 0 0 0 0 0 0 1

SPA 0 0 0 0 0 0 0.622

F2 Panel B: Selected principal components

MCS 0 0 0 0 0 0 1

SPA 0 0 0.001 0 0 0 0.928

F3 Panel A: Set of selected factors based on RFE-RF

MCS 0 0 0 0 0 0 1

SPA 0 0 0 0 0 0 0.868

F3 Panel B: Selected principal components

MCS 0 0 0 0 0 0 1

SPA 0 0 0.005 0.001 0.001 0.002 0.613

Note: MCS and SPA are the statistics computed for the model confidence set (MCS) of Hansen et al. (2011)
and superior predictive ability test (SPA) of Hansen (2005), respectively. This table reports the p-value of
aforementioned two statistics, high value of SPA indicates the benchmark model is superior to at least one
of the other models and high value of MCS implies the benchmark model belongs to the set of top
performing models. Numbers in bold style denote the top performing model set.

Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer
perceptron; RFE-RF, recursive feature elimination random forest; SVR, support vector regression; XGB,
Extreme Gradient Boost Decision.
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5 | TRADING PERFORMANCE

In order to examine the trading efficiency, we apply two
approaches to our forecasting models. In Section 5.1, we

apply the traditional trading strategy and a hybrid lever-
age trading strategy combining sentiment and volatility
in Section 5.2. Formulas for both statistical and profitabil-
ity measurements are given in Appendix S1.

TABLE 8 Summary results of out-of-sample traditional trading performance

Forecasting exercise Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

Panel A: Set of selected factors based on RFE-RF

F1 SR 0.0945 0.3665 0.3756 0.3873 0.4053 0.4189 0.5164

AR 0.0111 0.021 0.0214 0.0221 0.0224 0.0228 0.0229

SOR 0.1774 1.7485 1.9477 2.0374 2.099 2.1321 2.2788

MDD �0.2679 �0.3179 �0.3351 �0.349 �0.4063 �0.4087 �0.4505

IR 0.1571 0.5795 0.5939 0.6123 0.6409 0.6624 0.8164

F2 SR 0.1031 0.2395 0.2489 0.297 0.3632 0.4047 0.481

AR 0.0125 0.0219 0.0223 0.0241 0.031 0.0373 0.0378

SOR 0.1998 1.7409 2.1774 2.4479 3.8398 4.9542 5.7908

MDD �0.4464 �0.526 �0.5454 �0.5493 �0.6349 �0.6938 �0.7633

IR 0.163 0.3786 0.3935 0.4696 0.5742 0.6399 0.7605

F3 SR 0.0865 0.3472 0.3473 0.3567 0.3596 0.363 0.4664

AR 0.0104 0.0216 0.0224 0.0228 0.0229 0.023 0.0231

SOR 0.1741 1.8199 1.836 1.8549 1.8858 2.03 2.045

MDD �0.5377 �0.492 �0.5377 �0.5417 �0.5594 �0.5595 �0.5991

IR 0.131 0.549 0.5492 0.564 0.5686 0.574 0.7374

Panel B: Selected principal components

F1 SR 0.0945 0.3552 0.3691 0.3707 0.3821 0.4063 0.4945

AR 0.0111 0.0183 0.0192 0.0196 0.02 0.0219 0.0238

SOR 0.1774 1.2744 1.54 1.6322 1.708 2.0238 2.7958

MDD �0.2679 �0.4064 �0.4124 �0.4319 �0.4363 �0.4367 �0.5317

IR 0.1571 0.5617 0.5836 0.5862 0.6041 0.6424 0.7819

F2 SR 0.1031 0.3808 0.3854 0.4098 0.4126 0.4143 0.4468

AR 0.0125 0.021 0.0212 0.0223 0.0225 0.0226 0.0241

SOR 0.1998 1.6755 1.6796 1.7388 1.8399 1.8557 2.1192

MDD �0.4898 �0.5454 �0.5631 �0.6009 �0.6305 �0.6321 �0.7307

IR 0.163 0.6022 0.6093 0.6479 0.6524 0.6551 0.7064

F3 SR 0.0865 0.3208 0.3401 0.3461 0.3531 0.3648 0.4134

AR 0.0104 0.0189 0.0194 0.0194 0.0196 0.0201 0.0226

SOR 0.1741 1.189 1.2938 1.3033 1.3527 1.4823 2.0439

MDD �0.5377 �0.5383 �0.6155 �0.6247 �0.641 �0.6519 �0.6745

IR 0.131 0.5072 0.5377 0.5472 0.5583 0.5767 0.6537

Note: SR stands for Sharp ratio, AR stands for annualized return, SOR stands for Sortino ratio, MDD stands for maximum drawdown, and IR stands for
information ratio. Benchmark rates used in metrics are the annualized returns of buy-and-hold strategy in each forecasting exercise, which are 0.01826,
0.01185, and 0.01881.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer perceptron; RFE-RF, recursive feature elimination

random forest; SVR, support vector regression; XGB, Extreme Gradient Boost Decision.
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5.1 | Trading performance of traditional
trading strategy (LT)

Intuitively, we choose to stay “long” when the forecast
return at day t is above zero and stay “short” when the
forecast return at day t is below zero. The “long” position
is defined as buying BTC/USD at the current price, and

the “short” position is defined as selling BTC/USD at the
current price. Due to the lack of regulation in the crypto-
currency market, no unified trading cost is defined across
different cryptocurrency exchanges. In particular,
exchanges set variable standards of trading fees based on
the payment area, payment type, and payment amount.
For example, most cryptocurrency exchanges like Huobi

TABLE 9 Summary results of out-of-sample volatility (LV ) leveraged trading performance

Forecasting exercise Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

Panel A: Set of selected factors based on RFE-RF

F1 SR 0.2964 0.3837 0.394 0.3951 0.4019 0.4033 0.5443

AR 0.0143 0.0262 0.0264 0.0278 0.028 0.028 0.0285

SOR 0.3617 1.9878 2.0253 2.2054 2.2054 2.2926 2.3613

MDD �0.3936 �0.4427 �0.4692 �0.6898 �0.7684 �0.7843 �0.7877

IR 0.4687 0.6067 0.623 0.6248 0.6355 0.6377 0.8607

F2 SR 0.1983 0.2419 0.2444 0.3386 0.3673 0.4455 0.6042

AR 0.0163 0.0256 0.0268 0.0294 0.0388 0.0452 0.0462

SOR 0.5821 2.144 2.8063 2.8396 4.3663 5.8737 7.1256

MDD �0.8703 �0.8818 �0.9243 �0.9322 �0.9539 �0.9936 �0.9942

IR 0.3135 0.3825 0.3865 0.5355 0.5807 0.7044 0.9553

F3 SR 0.3441 0.398 0.3984 0.4154 0.4161 0.4162 0.5562

AR 0.0146 0.0296 0.0318 0.0326 0.0327 0.0327 0.0328

SOR 0.4782 2.6665 2.7737 2.9582 3.043 3.1201 3.1601

MDD �0.6954 �0.6999 �0.7337 �0.7644 �0.7776 �0.7819 �0.8875

IR 0.5441 0.6293 0.6299 0.6569 0.6579 0.658 0.8794

Panel B: Selected principal components

F1 SR 0.2964 0.4466 0.451 0.4581 0.4584 0.4591 0.4797

AR 0.0143 0.0247 0.0259 0.0267 0.0269 0.0296 0.0303

SOR 0.3617 1.9268 2.1219 2.3214 2.3913 2.8035 2.8818

MDD �0.4427 �0.5847 �0.5864 �0.5894 �0.5947 �0.6153 �0.7235

IR 0.4687 0.7062 0.7132 0.7243 0.7247 0.7258 0.7585

F2 SR 0.3386 0.4484 0.4547 0.4553 0.4646 0.4658 0.4802

AR 0.0163 0.0293 0.0303 0.0305 0.0306 0.0306 0.0328

SOR 0.5821 2.2314 2.3158 2.3238 2.3613 2.4116 2.5739

MDD �0.8044 �0.8095 �0.8703 �0.9002 �0.9214 �0.9223 �0.9554

IR 0.5355 0.709 0.7189 0.72 0.7346 0.7366 0.7592

F3 SR 0.3441 0.4414 0.4438 0.4595 0.4696 0.4713 0.4819

AR 0.0146 0.0259 0.0272 0.0274 0.0277 0.0283 0.0315

SOR 0.4782 2.2043 2.3159 2.5488 2.6624 2.814 3.1049

MDD �0.6999 �0.7389 �0.818 �0.8233 �0.8339 �0.877 �0.9125

IR 0.5441 0.6978 0.7017 0.7265 0.7424 0.7452 0.762

Note: SR stands for Sharp ratio, AR stands for annualized return, SOR stands for Sortino ratio, MDD stands for maximum drawdown, and IR stands for
information ratio. Benchmark rates used in metrics are the annualized returns of buy-and-hold strategy in each forecasting exercise, which are 0.01826,
0.01185, and 0.01881.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer perceptron; RFE-RF, recursive feature elimination

random forest; SVR, support vector regression; XGB, Extreme Gradient Boost Decision.
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or OKCoin used to charge no trading fees until the
intense talk with Peoples Bank of China in 2017. None-
theless, some exchanges preserve such rules and even set
free costs for deposit and withdrawal fees, like SimpleFX
and Coinfloor. Therefore, we do not consider the
trading costs in our strategies. In Table 8, we present the
out-of-sample trading performances of our models and
NNs' techniques.

Forecasting models display positive trading perfor-
mance for two sets of factors (see Table 8). Taking a
look at the general ranking, the overall profitability
performance of our models coincides with their forecast-
ing performance. Forecasting combination techniques
outperform the best-performing benchmark under all
metrics in terms of model comparison. XGB is the supe-
rior model under most trading measures, which are
annualized return (2.29%), Sharpe ratio (51.64%), Sortino
ratio (2.2788), and information ratio (81.64%). Nonethe-
less, we can see maximum drawdown (MDD) of XGB
(�45.05%) is also the highest because models with high
returns come from high risk. We note that the MDD of
all forecasting models ranges from 26% (the best-
performing benchmark) to 45% (XGB), indicating that
investors may lose nearly half of their funding for
extreme cases. Compared with the performance of ML
algorithms in the exchange market (�15%), the average
MDD in the BTC market (�35%) is much higher
(Sermpinis et al., 2014). Nonetheless, the average Sortino
ratio is higher than 2 for all ML techniques, implying that
investment in BTC is operating efficiently by taking those
high risks. Across three forecasting exercises, F2 has the
best performance whereas the worst subperiod is F1. The
profits in BTC can be high, although it is also undeniable
that investment in BTC should be cautious with its inten-
sive volatility.

5.2 | Trading performance of volatility
leverage, sentiment leverage, and hybrid
leverage strategy

Because of the dramatic volatile property of BTC, we
apply hybrid leverage based on two time-varying parame-
ters, the first leverage based on daily volatility forecasts
(LV ) and leverage based on sentiment (LP). A detailed
explanation of our strategy is given as follows.

The principle of the volatility forecasts (LV ) is to
exploit transaction days when the return volatility is rela-
tively low while reducing transaction days with extremely
or relatively high volatility. In this way, we can quickly
achieve the time-varying leverage by assigning inverse
scale positions to recent risk measures while maintaining
the information from market behavior.

At first, we employ a GJR (1,1) in the out-of-sample
periods and forecast the 1 day ahead realized volatility of
BTC returns. We further split the total test period into six
subperiods, ranging from days with significantly low volatil-
ity to days with extremely high volatility. Based on the dif-
ferent volatility level of each day, we set up two parameters
to classify our subperiods. The first parameter is the average
(μ), which is the difference between the actual volatility in
day t and the predicted for day (t + 1) and its corresponding
standard deviation as the measure of volatility (σ). The
parameters of our strategy are updated every 3 days by
rolling forward the estimation period. That is, we classify
periods when the difference is between μ and μ plus one
σ as “Lower High Volatility.” Similarly, we define periods
with volatility larger than μþ2σð Þ as “Extremely High
Volatility” and periods with volatility between μþσð Þ
and μþ2σ as “Medium High Volatility.” Following the
same method, we denote periods with volatility ranging
from μ�σð Þ to μ�2σ as “Medium Low Volatility” and
periods with volatility below μ�2σ as “Extremely Low
Volatility.” As for the leverages (LV ) assigned for each
period, we give 0 for periods with extremely high
volatility and 2 for periods of extremely low volatility.
Both parameters (μandσ) used in our method are
updated every month by rolling forward the estimation
period. This setup is consistent with the approach of
Sermpinis et al. (2014).

Secondly, we construct sentiment leverage (LP) based
on the same approach of LV . We replace μ and σ with the
mean of polarity index μ0ð Þ and its standard deviation
σ0ð Þ, respectively. Following the same classifying method
of LV , we split the test period into six subperiods and
assign 0 for periods with extremely high volatility and
2 for periods of extremely low volatility. For robustness
check, we then assign the leverages for each trading day
based on the sign of the daily forecast. The goal is to
boost profitability by exploiting more positive returns
while shrinking losses incurred by negative returns.

1. If the forecast sign is positive (we are “long”), we
apply leverage (LþV ) of more than 1.

2. If the forecast sign is negative (we are “short”), we
apply leverage (L�V ) of less than 1.

5.2.1 | Volatility leverage (LV )

LV is available for each trading day. We apply LV to each
model and examine their trading performance following
previous metrics. The results are given in Table 9.4

Table 9 summarizes trading performance for volatility
leveraged strategy. Firstly, the trading performance of LV
is positive, and the ranking is consistent with its
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performance in LT . Across three forecasting exercises, F2
still takes the first place whereas F1 is the worst period.
For model comparison, XGB still has the best perfor-
mance under each measure, except for MDD (�78.77% in
F1). For the RFE-RF factors, the overall risk grows higher
because MDD of LV ranges from �39% to �78% for F1.
Similar results can be found in F2 and F3. Compared
with the traditional trading strategy (Table 8), volatility
leverage strategy amplifies high returns although it fails
to shorten the corresponding risk. One possible reason
could be attributed to the daily volatility variations.
Although the volatility leverage strategy decreases the
extreme negative returns, the variations from lowest
returns to highest returns still grow much larger because
of the significant increase in positive returns. In terms of
ratio comparison between LT and LV , annualized returns
increase above 0.2 times, whereas the Sortino ratio and
Sharpe ratio at least increase above 0.04 times. In conclu-
sion, the general performance of LV is better than LT .

5.2.2 | Sentiment leverage (LP)

Sentiment has been widely used in financial areas, but
recently, Chen and Hafner (2019) showed that the crypto-
currency market has a certain level of relationship with
the news-driven sentiment. In this study, we apply a
hybrid leverage strategy (LH) combined with sentiment
(LP) and volatility to further improve our strategy's profit-
ability. We also demonstrate sentiments (polarity and
subjectivity) in Figure 2.

In order to generate LH , we introduce two sentiment
indices, polarity and subjectivity indices.5 Polarity index
is a prevalent indicator in sentiment analysis, commonly
treated as a classifier for the trend moving by labelling
either “positive” or “negative.” However, recent articles
do not notice the reliability of their information sources
(Raju & Tarif, 2020). Nonetheless, it is vital to consider
the subjectivity of comment or news when analyzing the
sentiment (Subirats et al., 2018). In the present study, we
employ two sentiment indices and use their literal defini-
tion as well as mathematical variations in our strategy.
The first index can be interpreted as the different levels
of attitude variation, whereas the second index is used to
describe the subjectivity of collected documents. Natu-
rally, we will only proceed to polarity measurement once
the corresponding subjectivity score is above the thresh-
old because measurement of the credibility of the infor-
mation source into consideration is essential (Archak
et al., 2011). Thus, the subjectivity index is regarded as
the reliability measure of narratives, representing how
much investors can trust (Nunkoo & Ramkissoon, 2012).
Polarity gauges the sentiment from two sides, one for
negative sentiment and the other for positive sentiment.
Investors are thereby aware of the attitude variations
from public recognition in cryptocurrency market and
catch possible leverage opportunities. Nonetheless, it is
possible to have unreliable sentiment sources. That is,
narratives are full of too subjective descriptions or mean-
ingless hypotheses. Under such circumstances, volatility
leverage becomes the best option instead of sentiment
leverage. Considering the range of subjectivity, we use

FIGURE 2 Sentiments and Bitcoin (BTC) returns Note: The x-axis denotes the number of days in a year
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the moving average of 1 month as the threshold for sub-
jectivity and employed volatility leverage when the sub-
jectivity score is above the threshold.

The trading performance of LP is summarized in
Table 10.

As evidenced in Table 10, we note that the trading
performance of LP stays positive, and the general ranking

is consistent with LV and LT . F2 has the best performance
out of the three forecasting exercises, whereas F3 remains
the worst period. As for model comparison, all ML
models outperform the best-performing benchmark, and
XGB is the superior model among all forecasting combi-
nation techniques. Similar to the performance of LV , LP
improves the overall trading performance for most

TABLE 10 Summary results of out-of-sample sentiment (LP) leveraged trading performance

Forecasting exercise Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

Panel A: Set of selected factors based on RFE-RF

F1 SR 0.4208 0.5321 0.5468 0.5473 0.5589 0.5949 0.7427

AR 0.0157 0.0295 0.0298 0.0307 0.0312 0.0319 0.0323

SOR 0.6425 3.4612 3.6569 3.7646 3.9059 3.9153 4.457

MDD �0.4321 �0.4769 �0.5184 �0.5186 �0.6058 �0.6096 �0.6608

IR 0.6653 0.8414 0.8646 0.8654 0.8837 0.9406 1.1743

F2 SR 0.2765 0.3441 0.346 0.4978 0.502 0.5668 0.6974

AR 0.0181 0.0308 0.0312 0.0342 0.0438 0.052 0.0525

SOR 1.0624 3.4922 4.2986 5.0811 6.815 8.4348 9.9046

MDD �0.6511 �0.7275 �0.76 �0.789 �0.8197 �0.9525 �0.968

IR 0.4371 0.544 0.5471 0.7871 0.7937 0.8962 1.1027

F3 SR 0.4331 0.4996 0.5122 0.516 0.5222 0.5242 0.7089

AR 0.0145 0.0302 0.0309 0.0316 0.0316 0.0319 0.032

SOR 0.5234 3.69 3.7381 3.8228 3.8382 4.2082 4.218

MDD �0.631 �0.7174 �0.7263 �0.7504 �0.7893 �0.8001 �0.8713

IR 0.6848 0.7899 0.8099 0.8159 0.8257 0.8289 1.1209

Panel B: Selected principal components

F1 SR 0.4208 0.606 0.6068 0.615 0.6168 0.6208 0.6837

AR 0.0157 0.0261 0.0276 0.028 0.0286 0.0313 0.0339

SOR 0.6425 2.8291 3.4197 3.4654 3.6127 4.1762 5.4981

MDD �0.4769 �0.5583 �0.574 �0.5924 �0.5972 �0.5994 �0.712

IR 0.6653 0.9581 0.9594 0.9724 0.9753 0.9816 1.081

F2 SR 0.4978 0.5715 0.5775 0.5857 0.5864 0.5868 0.6175

AR 0.0181 0.0295 0.0298 0.0313 0.0315 0.0316 0.034

SOR 1.0624 3.451 3.458 3.4993 3.5783 3.5947 4.1888

MDD �0.6667 �0.7275 �0.7383 �0.8037 �0.8232 �0.8258 �0.8953

IR 0.7871 0.9036 0.9131 0.9261 0.9271 0.9279 0.9764

F3 SR 0.4331 0.5505 0.5715 0.5935 0.5965 0.6003 0.6195

AR 0.0145 0.0262 0.0269 0.0269 0.027 0.0278 0.0313

SOR 0.5234 2.6373 2.8021 2.8386 2.9215 3.2667 4.2978

MDD �0.7263 �0.7493 �0.8571 �0.8603 �0.8833 �0.8914 �0.9155

IR 0.6848 0.8704 0.9037 0.9384 0.9432 0.9491 0.9794

Note: SR stands for Sharp ratio, AR stands for annualized return, SOR stands for Sortino ratio, MDD stands for maximum drawdown, and IR stands for
information ratio. Benchmark rates used in metrics are the annualized returns of buy-and-hold strategy in each forecasting exercise, which are 0.01826,
0.01185, and 0.01881.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer perceptron; RFE-RF, recursive feature elimination

random forest; SVR, support vector regression; XGB, Extreme Gradient Boost Decision.
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profitability metrics. Taking F1 as example, annualized
returns of XGB increases from 2.29% (LT) to 3.23 (LP),
Sharpe ratio increases from 51.64% (LT) to 74.27% (LP),
Sortino ratio increases from 2.2788 (LT) to 4.457 (LP), and
information ratio increases from 81.64% (LT) to 1.1743
(LP). Although LP still amplifies the general volatility, it

seems to work better than LV in solving extreme cases
since MDD decreases from �78% (LV ) to �66% (LP). In
addition, XGB at least increases by 39% across three fore-
casting exercises under each profitability metric. In con-
clusion, we state the success of the sentiment leverage
strategy.

TABLE 11 Summary results of out-of-sample hybrid leveraged trading performance

Forecasting exercise Metrics Best MLP LSTM ε-SVR ν-SVR LBM XGB

Panel A: Set of selected factors based on RFE-RF

F1 SR 0.428 0.526 0.5288 0.5399 0.5475 0.5493 0.7229

AR 0.017 0.031 0.0329 0.0339 0.034 0.0343 0.0379

SOR 0.820 3.573 3.9301 4.2511 4.2646 4.4093 4.737

MDD �0.484 �0.511 �0.5603 �0.5608 �0.7123 �0.727 �0.7287

IR 0.677 0.831 0.8362 0.8537 0.8657 0.8685 1.143

F2 SR 0.248 0.313 0.3211 0.4491 0.464 0.5125 0.7115

AR 0.019 0.033 0.0343 0.0376 0.0482 0.0569 0.0578

SOR 1.172 4.163 5.5072 5.9065 7.9759 10.5002 12.6815

MDD �0.802 �0.863 �0.906 �0.9494 �0.9571 �0.9961 �0.9969

IR 0.392 0.495 0.5077 0.71 0.7337 0.8104 1.125

F3 SR 0.443 0.471 0.4826 0.4922 0.4953 0.4976 0.6778

AR 0.016 0.033 0.0351 0.0359 0.036 0.0361 0.0362

SOR 0.781 4.491 4.503 4.5694 4.6788 4.992 5.0014

MDD �0.729 �0.784 �0.826 �0.852 �0.878 �0.887 �0.9414

IR 0.701 0.7458 0.7631 0.7783 0.7832 0.7867 1.0717

Panel B: Selected principal components

F1 SR 0.4286 0.5778 0.5783 0.5784 0.581 0.5814 0.6304

AR 0.0171 0.0288 0.0303 0.0311 0.0316 0.0347 0.0373

SOR 0.8201 3.1777 3.5642 3.8757 3.9319 4.8625 5.9532

MDD �0.5109 �0.6171 �0.6194 �0.6448 �0.6492 �0.6515 �0.7557

IR 0.6776 0.9135 0.9143 0.9145 0.9186 0.9193 0.9967

F2 SR 0.4491 0.5536 0.5555 0.5556 0.5564 0.5666 0.5927

AR 0.0193 0.0327 0.0332 0.0346 0.0348 0.035 0.0376

SOR 1.172 3.8486 3.9254 4.0158 4.1704 4.2243 4.711

MDD �0.8579 �0.8632 �0.8823 �0.9154 �0.9351 �0.9354 �0.9618

IR 0.71 0.8753 0.8783 0.8784 0.8798 0.8958 0.9371

F3 SR 0.4433 0.5321 0.5476 0.5638 0.5724 0.5759 0.5909

AR 0.0162 0.0295 0.0303 0.0304 0.0304 0.0312 0.0353

SOR 0.7814 3.2532 3.3726 3.4429 3.5415 3.9141 4.8992

MDD �0.7846 �0.8416 �0.9193 �0.921 �0.9258 �0.9326 �0.9645

IR 0.7009 0.8414 0.8659 0.8915 0.905 0.9106 0.9343

Note: SR stands for Sharp ratio, AR stands for annualized return, SOR stands for Sortino ratio, MDD stands for maximum drawdown, and IR stands for
information ratio. Benchmark rates used in metrics are the annualized returns of buy-and-hold strategy in each forecasting exercise, which are 0.01826,
0.01185, and 0.01881.
Abbreviations: LBM, Light Gradient Boost Decision; LSTM, long-short term memory; MLP, multi-layer perceptron; RFE-RF, recursive feature elimination

random forest; SVR, support vector regression; XGB, Extreme Gradient Boost Decision.
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5.2.3 | Hybrid leverage (LH)

With both LP and LV , we describe the approach of hybrid
strategy as follows:

LH ¼ 1Ssub �LH
LH ¼ LP, whenSsub ≥MAsub 30ð Þ
LH ¼ LV , otherwise


 �
, ð8Þ

where MAsub 30ð Þ denotes the 30-day moving average of
subjectivity scores, Ssub denotes the daily subjectivity, and
LP denotes leverage based on polarity. Once Ssub is lower
than the threshold (a rejection of the usage of sentiment),
we should depend on the volatility indicator. Similar to
the volatility and sentiment leverage strategies, we then
assign the leverages for each trading day based on the
sign of the daily forecast.

We apply the hybrid trading strategy to each model
and examine their trading performance by following pre-
vious metrics (see Table 11).

In conclusion, we argue that the hybrid trading
strategy was successful based on the above findings.
Compared with the traditional trading strategy, the
annualized return of the hybrid strategy for each model
is at least 1.4 times larger for both RFE-RF and PCA
factors in all three forecasting exercises. For RFE-RF
factors, XGB has the highest annualized return, Sharpe
ratio, and information ratio, consistent with its perfor-
mance in traditional strategy ranking for all three fore-
casting exercises. Similar results can be found in other
ML techniques, which provides strong evidence that
the application of sentiment leverage strategy signifi-
cantly improves the profitability of forecasting tech-
niques. Our findings align with the previous studies
(Azqueta-Gavald�on, 2020; Karalevicius et al., 2018;
Yao et al., 2019) that an interactive relationship exists
between BTC and narratives, thus leading to the
extraordinary profitability of the hybrid trading
strategy.

6 | CONCLUSION

This study has examined the predictive power of forecast
combination techniques and individual models. In terms
of profitability examination, we propose a hybrid leverage
trading strategy combining sentiment and volatility. Our
investigation finds that forecast combination techniques
outperform individual models in prediction accuracy.
These results are roughly consistent with our hypothesis
that ML techniques can improve the accuracy of simple
individual models. Particularly, XGB has the best perfor-
mance among all ML techniques. Moreover, our results

are free of data-snooping bias through examining SPA,
MCS, and MDM.

As for our examination of profitability, we apply
two kinds of trading strategies, namely, a traditional
strategy and three different leverage trading strategies:
volatility leverage strategy, sentiment leverage strategy
based on LDA, and hybrid leverage strategy by combin-
ing sentiment and volatility. Unsurprisingly, the annu-
alized returns of ML techniques, especially for XGB,
perform much better than other models for traditional
strategy. Furthermore, with the application of a hybrid
trading strategy, we find that the trading performance
of all our forecasting models increases. These findings
are in line with our hypothesis that strategies combined
with sentiment indices can exaggerate the profitability
of BTC.

In conclusion, XGB is the optimal forecast model
based on remarkable trading performance and signifi-
cant predictive accuracy. Furthermore, the success of
our hybrid trading strategy indicates the importance of
volatility and narrative sentiment in the cryptocurrency
market. Although former research has suggested the
usage of sentiment in the cryptocurrency market,
the impact of online sentiment sources is limited
(Urquhart, 2018). Prior studies showing sentiment as
either a significant predictor or related factor apply
their empirical results from 2010 to 2017 (Garcia &
Schweitzer, 2015). Considering cryptocurrency's tempo-
ral influence and public recognition, exploring the sen-
timent indicator using a more recent period instead of
a large scale or entirely early period data is essential.
Due to limited information sources and uncertainty of
new technology, preliminary indicators, such as Google
Trends or post numbers on the website, may directly
influence the early cryptocurrency market. We believe
the development of BCH and consensus will strengthen
the influence of the narrative sentiment index on the
cryptocurrency sphere.

This study contributes to current literature in BTC
forecasting and sheds light on trading strategies using
sentiment and volatility leverage. Nonetheless, there is
scope for further research on this topic. This paper adopts
daily data rather than intraday data, which may not fully
capture the price movements. Zhang et al. (2021) suggest
that BTC returns can be used to predict BTC volatility by
using aggregation of intraday information. In addition,
Süssmuth (2022) provides evidence that Baidu–Google
search statistics forecast BTC price dynamics at relatively
high frequencies. Milunovich and Lee (2022) show that
advanced ML techniques have high accuracy in predict-
ing cryptocurrency exchange activity. Future work
should focus on social media's influence on the aggrega-
tion of intraday trading information. Then, more hybrid

WEI ET AL. 17



and advanced ML techniques should be explored in terms
of their predictive performance and investment benefits.
With the appropriate application of ML techniques,
crypto-investment strategies could be more accurate and
reliable and could be combined with mainstream trading
approaches to capture the investment utilities and risk
preferences of more investors.
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ENDNOTES
1 This is a common MSE function. In addition, XGB is a highly
compatible algorithm, allowing to employ a variety of metrics
based on specific task.

2 The statistical and trading performance metrics used in this study
are standard in the literature. The relevant formulas are presented
in Appendix S1.

3 By grid search, we also try several parameters and several
approaches of data preprocessing to seek for a beautiful predic-
tion, but the result suggests LSTM cannot give a better result
based on our sample. We do not deny the predictive ability of
LSTM since its main usage is in NLP and recommendation algo-
rithms where sufficient data are provided.

4 To better understand our results, three tables illustrating the com-
parison between traditional strategy and each leverage strategy
are provided in Appendix S1.

5 We use the popular Python library, TextBlob, to generate senti-
ment indices. TextBlob is a popular and accurate tool in the NLP
field.
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