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Experimental: 

The Goldschmidt tolerance factor for a double perovskite, A2BB'O6 as follows: 
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where rA, rB, rB′, and rO are the ionic radii as taken from Shannon [1] for the A, B, B′ cations and oxygen 

anions, respectively. This parameter provides a measure of how well the A-site cations fits the twelve-

fold (cubo-octahedral) coordination space within the corner-shared octahedral network formed by the 

B-site cations. It is well known that this tolerance factor depends on the size of ions located in A and B 

sites of double-perovskite structure. If the size of the A cation is greater than the size of the B cation, 

this factor is > 1. In contrast, t < 1 when the size of A cations is smaller than B cations. For t = 1 the 

structure is cubic [2].  

The optical properties of the materials were studied by diffuse reflectance UV/Vis spectroscopy 

(DR-UV/Vis) with a Shimazdu, UV2600 spectrometer. Spectra were recorded over a wavelength range 

of 200 - 850 nm at room temperature. Barium sulfate was used as a standard. The band-gap energy was 

obtained from the reflectance spectra by employing Tauc’s method [3] to transform the function: 
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into the Kubelka - Munk function [4] to obtain the function F(R), which is related to the absorption and 

scattering coefficients k(λ) and s(λ):  
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where F(R) is the Kubelka-Munk absorption, ‘R’ is the diffuse reflectance, h is the Planck constant, c is 

the speed of light, λ is the wavelength of the impinging light, and 𝐸𝑔 is the optical band gap in eV, B is 

a proportionality constant. The exponent n is the type of transition: n = 2 for indirect transitions, n = 1/2 

for direct transitions [3 - 5]. Nevertheless, from such a treatment it can often be difficult to determine 

the nature of the optical transition and therefore an accurate band gap energy. An alternative is to apply 

a derivation of absorption spectrum fitting (DASF) [6] without knowing if the transition is direct or 

indirect, which is expressed by the following equation: 
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where D = B(hc)n−1z/2.303, z is thickness of the reflecting layer, A is the absorbance at a wavelength λ, 

λg is the wavelength for corresponding band-gap energy. We can also use this Equation (3) in the 

followed form: 
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In this method, the Kubulka-Munk function F(R) (equation 3) is assumed to be correlated to the 

absorption spectrum A(λ) [A(λ) = F(R)], that is by means of the scattering coefficient s(λ) which can be 

expressed as follow s(λ) = s (this coefficient can be independent of the wavelength). Consequently, the 

obtained data from the transformed reflectance of Kubelka-Munk function can be utilized to estimate 

transition wavelength [7].  

The equation (5) helps to calculate the absolute value of band-gap energy Eg, which could be expressed 

by: Eg = 
ℎ𝑐

𝜆𝑔
 = 

1239.81

𝜆𝑔
 [𝑒𝑉] [8]. The idea is to get rid of the fixed transition exponent "n" by calculating 

the derivative of the absorption spectrum [8]. To its original successful use with thin films, this method 

was recently utilized for powders to determine the band gap energy [8]. The experimental work 

described herein demonstrates the possibility of employing the Reflectance-Absorption-Tauc-DASF 

(RATD) method [6], for deriving the transition types and band-gap energies of a series of isostructural 

compounds with varying composition. 
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