
Generating Layered Enterprise Architectures with 
Conceptual Structures

BAXTER, Matt, POLOVINA, Simon, LAURIER, Wim and VON ROSING, Mark

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30795/

This document is the Accepted Version [AM]

Citation:

BAXTER, Matt, POLOVINA, Simon, LAURIER, Wim and VON ROSING, Mark 
(2021). Generating Layered Enterprise Architectures with Conceptual Structures. In: 
BRAUN, Tanya, GEHRKE, Marcel, HANIKA, Tom and HERNANDEZ, Nathalie, (eds.)
Graph-Based Representation and Reasoning. 26th International Conference on 
Conceptual Structures, ICCS 2021, Virtual Event, September 20–22, 2021, 
Proceedings. Lecture Notes in Computer Science, 12879 . Cham, Springer, 34-47. 
[Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Generating Layered Enterprise Architectures
with Conceptual Structures

Matt Baxter1, Simon Polovina2, Wim Laurier3, and Mark von Rosing4

1 Conceptual Structures Research Group, Sheffield Hallam University, UK
a7033771@my.shu.ac.uk

2 Conceptual Structures Research Group, Sheffield Hallam University, UK
S.Polovina@shu.ac.uk

3 Université Saint-Louis, Belgium wim.laurier@usaintlouis.be
4 LEADing Practice, France mvr@leadingpractice.com

Abstract. Enterprise Architecture (EA) uses metamodels to document
and align organisations’ business, information, and technology domains.
This structure then enables these domains to work in harmony. Lay-
ered Enterprise Architecture Development (LEAD) builds upon EA by
introducing layered metaobjects connected by semantic relations that
make up LEAD’s layered metamodel. Previously, an algorithm was de-
veloped to elicit active semantic relations to achieve a view highlight-
ing the metaobject dependencies. Subsequently, CG-FCA (Conceptual
Graph and Formal Concept Analysis) and a LEAD case study were used
to develop an enhanced algorithm that also generates the LEAD layers.
The resulting layered FCA lattice shows a way to discover the hitherto
hidden insights in LEAD, including the relationship between business
and information technology.

Keywords: Business Problem Solving · Conceptual Graphs and Formal
Concept Analysis · Layered Enterprise Architecture.

In Press: ICCS 2021 (https://iccs-conference.org/), Springer LNAI

1 Introduction

Enterprise Architecture (EA) promotes the alignment of business, information,
and technology domains within organisations by a principled framework, method,
and approach that draws on holistic thinking. The Layered Enterprise Architec-
ture Development (LEAD) Ontology adds to this rigour by structuring that
thinking according to 91 metaobjects arranged in business, information, and
technology layers and categorised further via various sublayers [4, 7]. These
metaobjects are linked by semantic relations both within and across layers, thus
describing how a metaobject views itself in relation to another. Consequently,
the interdependencies within organisations can be elucidated and used to the
benefit of industry decision-makers.



2 M. Baxter et al.

Conceptual Graphs (CG) represent knowledge via the formalised ordering of
concepts and their relations [6]. Formal Concept Analysis (FCA) uses a princi-
pled approach to ascertain the conceptual hierarchy of a set of objects and their
attributes [3], meaning LEAD’s metaobjects can be ordered using their shared
attributes. Ergo, the CG-FCA application allows us to convert the ternary se-
mantic relations of LEAD into binary relations, which are then mathematically
validated as a conceptual hierarchy by the FCA element of the application [1].
By complementing CG-FCA with an algorithm that identifies the active seman-
tic relations (defined as those relations whereby a metaobject directs another),
we aim to create a Formal Concept Lattice (FCL) that is ordered according to
LEAD’s three business, information, and technology layers.

2 The Metamodel Diagram

Figure 1 is a metamodel created using the Enterprise Plus (E+) software (www.
enterpriseplus.tools). LEADing Practice (www.leadingpractice.com) is a
not-for-profit group of LEAD practitioners, and are the developers of E+. This
software captures LEAD’s comprehensive reference content, including its metaob-
jects, semantic relations, and supporting artefacts. Figure 1 reflects the ware-
house pick pack process of a UK manufacturer, based on the LEAD Enterprise
Ontology (LEAD ID#-ES20001ALL) [7]. Figure 1’s semantic relations are two-way,
revealing how a metaobject views itself in relation to another and vice versa. The meta-
model in the figure includes 30 two-way semantic relations, with a modeller-imposed
limit of one relation between each adjacent sublayer, and zero instances of relations
that span more than one sublayer. These choices were made with two objectives in
mind. Firstly, preservation of readability—the LEAD metamodel contains 147 two-
way semantic relations for the chosen metaobjects—and secondly, the promotion of
accessibility for inexperienced EA users within the case study organisation. Thus, the
salient semantic relations were selected to develop a robust and digestible narrative for
those users. The metamodel was created to facilitate the deconstruction of its abstract
concepts and their subsequent relation to known real-world organisational elements.

3 Activating And Layering The Metamodel

The CGtoFCA algorithm implemented in the CG-FCA application translates the
ternary relations of CGs into binary relations, thereby preparing them for process-
ing by FCA [1]. The concepts are then presented in a Formal Concept Lattice (FCL),
which visualises the mathematical rigour of FCA. CG-FCA was augmented with an
algorithm to create a graph of active verbs that supports a chain of command, high-
lighting objects that act upon other objects [2]. However, this approach took little
account of LEAD’s layers, adversely impacting the readability of the active direction
graph. The proposed revised algorithm introduces LEAD layering, delivering a more
lucid, mathematically validated representation of the metamodel.

3.1 Methodology

The proposed algorithm is depicted in Figure 2. The stages are identification of active
semantic relations, resolution of cycles, then the introduction of layering. The variables



Generating Layered Enterprise Architectures with Conceptual Structures 3

Fig. 1. Warehouse pick pack metamodel (based on LEADing Practice Meta Model)



4 M. Baxter et al.

are A active model, B bidirectional model, o triple object, s triple subject, and v triple
verb. While the human interpretation required by the algorithm renders it more of a
’pseudo-algorithm’ at present, it remains suitable for our current purposes.

begin1

A = ∅2

foreach ((o, v, s), (s, v′, o)) ∈ B do3

if isPassive(v) then4

A = A ∪ (s, v′, o)|((o, v, s), (s, v′, o)) ∈ B5

else6

A = A ∪ (o, v, s)|((o, v, s), (s, v′, o)) ∈ B7

C = TriplesInCycles(A)8

foreach (o, v, s) ∈ C do9

if inMultipleCycles(o, v, s)) or isImplicityPassive(v)) then10

A = A\(o, v, s)11

A = A ∪ (s, v′, o)|((o, v, s), (s, v′, o)) ∈ B12

if isTransitive((o, v, s)) then13

A = A\(o, v, s)14

S = ConceptsInSupremum(A)15

foreach (o, v, s) ∈ A|o ∈ S and Count((o, α, β) ∈ A) > 1 do16

A = A\(o, v, s)17

A = A ∪ (s, v′, o)|((o, v, s), (s, v′, o)) ∈ B18

I = ConceptsInInfimum(A)19

foreach (o, v, s) ∈ A|s ∈ I and Count((α, β, s) ∈ A) > 1 do20

A = A\(o, v, s)21

A = A ∪ (s, v′, o)|((o, v, s), (s, v′, o)) ∈ B22

end23

Fig. 2. Layered active semantic relations algorithm

The initial steps mirror an earlier study, whereby an active direction graph is cre-
ated by determining the active relations and resolving any unwanted semantic cycles [2].
Subsequently, LEAD layering was introduced by examining and modifying the compo-
sitions of the supremum (the top-most formal concept) and infimum (the bottom-most
formal concept) in the FCL. Beginning with the supremum, the triples containing the
incorrectly layered metaobject were reviewed so that the triple determined to be the
least active could be inverted. Encompassed within this stage was the consideration
of the wider data set. We were mindful that the number of instances of a metaobject
could be either a source or a target in a triple. Therefore, we could avoid a scenario
whereby resolving one metaobject’s erroneous presence in the supremum or infimum
would see it replaced by another. Such a situation could lead to a cycle of layering issues
(incidentally, not to be confused with a cycle defined by the CG-FCA application). In
situations where a least active triple could not be determined (e.g., due to identical
semantic relations), the relation furthest down the LEAD index would be inverted. We



Generating Layered Enterprise Architectures with Conceptual Structures 5

now describe our findings from the algorithm in Figure 2 according to the EA layering
and usability principles highlighted in Figure 1.

3.2 Findings

The 30 active semantic relations were selected from the two-way relations included
in the metamodel and compiled in the 00ActiveAll.csv file, which was then processed
by the CG-FCA application. The subsequent ‘00ActiveAll report’ file presented two
cycles, shown below:

1. Cycle: Data Object - includes - Data Entity - logically specifies - Data Table -
instantiated in - Data Service - encapsulates - Data Object

2. Cycle: Data Table - instantiated in - Data Service - uses - Data Media - logically
specifies - Data Table

Fig. 3. 00ActiveAll lattice

Figure 3 shows the 00ActiveAll lattice, with a cycle indicated by the Data Table +
Data Service object with no attributes. Furthermore, the Application Task, Platform
Device, Data Media, Data Channel, and Data Object + Data Entity concepts are
linked to an infimum formal concept that is empty, i.e. one with no objects.



6 M. Baxter et al.

Fig. 4. 00ActiveAll lattice without Attributes, LEAD layers indicated

Figure 4 reveals that LEAD layering is not a distant proposition for the 00Ac-
tiveAll lattice, although Platform Component and Platform Device are not presented
in the appropriate LEAD layers. We note that while the 00ActiveAll lattice is (mostly)
visually displayed in the LEAD layers, it is not so mathematically, e.g., Location and
Business Service are positioned preceding the infimum at the bottom of the lattice
(along with several other concepts). This outcome is evident by their direct line to the
bottom-most empty concept. Overall, the 00ActiveAll lattice appears to suggest that
LEAD layering is, to an extent, included in the activation of the semantic relations.

In Table 1, we initiate the refactoring of the lattice, whereby the 00ActiveAll file
is broken down and rebuilt step-by-step to remove unwanted cycles1.

1 Due to space considerations and only two files presenting cycles, not all the steps
are included in this paper.



Generating Layered Enterprise Architectures with Conceptual Structures 7

Table 1. Refactoring the Capability sublayer of the metamodel – Active Organisation
and Active Role.

File, Operation, & Outcomes

File: 01ActiveOrganisation.csv
Operation: Adding all active (o, v, s) ϵ 00ActiveAll.csv with o or s = Organisation
to empty file
Outcome: No semantic cycles in 01ActiveOrganisation report.txt

File: 02ActiveRole.csv
Operation: Adding all active (o, v, s) ϵ 00ActiveAll.csv with o or s = Role to 01Ac-
tiveOrganisation.csv
Outcome: No semantic cycles in 02ActiveRole report.txt

Table 2. Refactoring the Data sublayer of the metamodel – Active Data Table.

File, Operation, & Outcomes

File: 18ActiveDataTable.csv
Operation: Adding all active (o, v, s) ϵ 00ActiveAll.csv with o or s = Data Table to
17ActiveDataEntity.csv
Outcome: One semantic cycle in 18ActiveDataTable report.txt

File: 18v2ActiveDataTable.csv
Operation: Replacing the implicitly passive ‘Data Object - includes – Data Entity’
with ‘Data Entity – included in – Data Object’
Outcome: No semantic cycles in 18v2ActiveDataTable report.txt

Table 3. Refactoring the Data sublayer of the metamodel – Active Data Service.

File, Operation, & Outcomes

File: 19ActiveDataService.csv
Operation: Adding all active (o, v, s) ϵ 00ActiveAll.csv with o or s = Data Service
to 18v2ActiveDataTable.csv
Outcome: One semantic cycle in 19ActiveDataService report.txt

File: 19v2ActiveDataService.csv
Operation: Replacing the implicitly passive ‘Data Table – instantiated in – Data
Service’ with ‘Data Service – instantiated in – Data Table’
Outcome: No semantic cycles in 19v2ActiveDataService report.txt

18ActiveDataTable.csv and 19ActiveDataService.csv were the only two files to
present any cycles, which were resolved using the operations documented in Tables
2 and 3.

Figure 5 displays the FCL for 25ActiveInfrastructureService, highlighting the ef-
fects of the refactoring process. Namely, both the Data Table + Data Service object
without attributes and the empty formal concept linking various other formal concepts
have been resolved. However, while the operation carried out in 19v2ActiveDataService
(replacing ‘Data Table – instantiated in – Data Service’ with ‘Data Service – instanti-
ated in – Data Table’) resolved an unwanted cycle, it also displaced Data Service from
its appropriate position in the LEAD layers to within the supremum. This outcome
suggests that the refactoring of the 00ActiveAll file has caused us to take a step back-



8 M. Baxter et al.

wards, away from our goal of an active, layered lattice. This position is supported by
the continued presence of seven concepts (from all three layers) preceding the infimum,
but with the addition of Data Service in the supremum. Furthermore, Figure 5 over-
lays the 25ActiveInfrastructureService lattice with the LEAD layers, highlighting the
absence of Data Service and Platform Component in the Information and Technology
layers, respectively.

The absence of a metaobject as either a target or source metaobject in the triple
composition—where the first triple element is the source, and the third is the target—
corresponds with its presence in the FCL as either supremum or preceding infimum,
respectively. To maintain the LEAD layer hierarchy, reorienting these metaobjects is
the driving force behind the operations carried out and documented in Tables 4 and 5.

Fig. 5. 25ActiveInfrastructureService lattice without Attributes, LEAD layers indi-
cated

Table 4 displays the operations performed to reposition Data Service and Plat-
form Component to their appropriate LEAD layers while also removing Process from
the supremum (as its presence there suggests it being equal to Organisation as a
driving force). 25v2ActiveInfrastructureService and 25v7ActiveInfrastructureService
are examples of operations that had active relations replaced with the passive rela-
tions (‘Data Service – uses – Data Media’ replaced with ‘Data Media – used by –



Generating Layered Enterprise Architectures with Conceptual Structures 9

Data Service’ and ‘Process – delivers – Business Service’ replaced with ‘Business Ser-
vice – delivered by – Process’). We also reversed the identical semantic relations in
25v6ActiveInfrastructureService (where distinguishing active/passive relations was not
possible).

Table 4. Refactoring 25ActiveInfrastructureService lattice to achieve LEAD layering
– supremum focus.

File, Operation, & Outcomes

File: 25v2ActiveInfrastructureService.csv
Operation: Replacing ‘Data Service – uses – Data Media’ with ‘Data Media – used
by – Data Service’
Outcome: Data Service no longer in supremum

File: 25v3ActiveInfrastructureService.csv
Operation: Replacing ‘Platform Component – provides the specification for – Plat-
form Device’ with ‘Platform Device – specified by – Platform Component’
Outcome: Platform Component no longer in supremum. Platform Device now in
supremum

File: 25v4ActiveInfrastructureService.csv
Operation: Replacing ‘Platform Device – hosts – Data Media’ with ‘Data Media –
hosted on – Platform Device’
Outcome: Platform Device no longer in supremum. Data Media now in supremum

File: 25v5ActiveInfrastructureService.csv
Operation: Replacing ‘Data Media – logically specifies – Data Table’ with ‘Data
Table – specified by – Data Media’
Outcome: Data Media no longer in supremum. One semantic cycle in
25v5ActiveInfrastructureService report.txt
Cycle: Data Service - instantiated in - Data Table - specified by - Data Media - used
by - Data Service

File: 25v6ActiveInfrastructureService.csv
Operation: Replacing the implicitly passive ‘Data Service – instantiated in – Data
Table’ with ‘Data Table – instantiated in – Data Service’
Outcome: No semantic cycles in 25v6ActiveInfrastructureService report.txt

File: 25v7ActiveInfrastructureService.csv
Operation: Replacing ‘Process – delivers – Business Service’ with ‘Business Service
– delivered by – Process’
Outcome: Process no longer in supremum

Table 5 shows how we approached positioning a Technology-layer concept as the in-
fimum. Active relations were again substituted for the passive relation. There were two
further instances of reversing identical semantic relations (25v8ActiveInfrastructureService
and 25v14ActiveInfrastructureService). Interestingly, the first operation performed is
also the last, whereby reversing ‘Data Service – uses – Data Media’ to remove Data Ser-
vice from the supremum is then itself reversed to complete the LEAD layered lattice.
Other modellers could conceivably make different operation choices consistent with the
algorithm, which provides the overarching context under which such decisions can be
made.



10 M. Baxter et al.

Table 5. Refactoring 25ActiveInfrastructureService lattice to achieve LEAD layering
– infimum focus.

File, Operation, & Outcomes

File: 25v8ActiveInfrastructureService.csv
Operation: Replacing ‘Product – at – Location’ with ‘Location – at – Product’
Outcome: Location no longer preceding infimum

File: 25v9ActiveInfrastructureService.csv
Operation: Replacing ‘Application Task – implements – Application Function’ with
‘Application Function – implemented by – Application Task’
Outcome: Application Function no longer preceding infimum

File: 25v10ActiveInfrastructureService.csv
Operation: Replacing ‘Application Task – provides – Information Object’ with ‘In-
formation Object – provided by – Application Task’
Outcome: Information Object no longer preceding infimum

File: 25v11ActiveInfrastructureService.csv
Operation: Replacing ‘Data Channel – distributes – Data Component’ with ‘Data
Component – distributed through – Data Channel’
Outcome: Data Component no longer preceding infimum. Data Channel now pre-
ceding infimum

File: 25v12ActiveInfrastructureService.csv
Operation: Replacing ‘Data Service – means of distribution is – Data Channel’ with
‘Data Channel – means of distribution for – Data Service’
Outcome: Data Channel no longer preceding infimum. One semantic cycle in
25v12ActiveInfrastructureService report.txt
Cycle: Data Object - generalisation of - Data Component - distributed through - Data
Channel - means of distribution for - Data Service - encapsulates - Data Object

File: 25v13ActiveInfrastructureService.csv
Operation: Replacing the implicitly passive ‘Data Service – encapsulates – Data
Object’ with ‘Data Object – encapsulated by – Data Service’
Outcome: Data Service now preceding infimum. No semantic cycles in
25v6ActiveInfrastructureService report.txt

File: 25v14ActiveInfrastructureService.csv
Operation: Replacing ‘Data Table – instantiated in – Data Service’ with ‘Data Ser-
vice – instantiated in – Data Table’
Outcome: Data Service no longer preceding infimum. One semantic cycle in
25v14ActiveInfrastructureService report.txt
Cycle: Data Service - instantiated in - Data Table - specified by - Data Media - used
by - Data Service

File: 25v15ActiveInfrastructureService.csv
Operation: Replacing the implicitly passive ‘Data Media – used by – Data Service’
with ‘Data Service – uses – Data Media’
Outcome: No semantic cycles in 25v15ActiveInfrastructureService report.txt

3.3 Layered Formal Concept Lattice

Figure 6, the visualisation of 25v15ActiveInfrastructureService, shows a successfully
layered lattice. While the lattice is predominantly active, it includes various passive
relations due to the operations performed to introduce LEAD layering.



Generating Layered Enterprise Architectures with Conceptual Structures 11

Fig. 6. 25v15ActiveInfrastructureService lattice, LEAD layers indicated

For example, ‘Business Service – delivered by – Process’ is passive compared to
‘Process – delivers – Business Service’. However, the other option was inverting ‘Process
– uses to indicate options/choices – Gateway’, which would have removed Process from
the supremum but replaced it with Gateway. This route would have an adverse effect



12 M. Baxter et al.

on the link between the Business and Information layers (‘Gateway – partially or fully
automates –Application/System’), hence disrupting the layering.

4 Discussion

4.1 Implications

We have shown that an active direction graph can be rebuilt and visualised to display
LEAD layering. While the initial 00ActiveAll graph and refactored 25ActiveInfras-
tructureService graph were largely layered, this demonstrates the contrast between
how humans process information and how a computer does. Certain concepts in the
00ActiveAll and refactored 25ActiveInfrastructureService FCLs (Location, Business
Service, Application Function, Information Object, Data Component, and Data Ta-
ble), while not mathematically appropriately layered, could be positioned in a way
that exhibits LEAD layering to the human eye. Our principled approach introduced
this mathematical layering to narrow the gap between human and computer interpreta-
tion of the metamodel2. Readability is patently improved when contrasting the layered
25v15ActiveInfrastructureService graph with the purely active graphs (00ActiveAll
and 25ActiveInfrastructureService), which has value for business decision-makers when
identifying the levers required to effect change in an organisation. By attempting to
create a directed graph that is both active and layered, we could elucidate that layer-
ing can be included in the remit of semantic relations. We also observed that LEAD’s
overall active flow is primarily top-down, nudged along by the occasional bottom-up
active flow, suggesting that business mostly drives technology, with some instances
where technology demonstrates that the reverse is possible.

4.2 Current Limitations

While a layered lattice was attained, there remains room for ongoing development of
our approach. Firstly, the manual nature of the current approach means that there is
room for interpretation and that the rigour in the execution of the pseudo-algorithm
depends on the human executor. As the size of the data set increases, a human modeller
can inadvertently stray from the proposed refactoring logic. While this challenge could
be overcome by executing the logic in a computer-implemented algorithm, there are
various considerations before such an approach can be developed. For example, the
logical conclusion of selecting the ’least active’ triple when applying FCL layering is that
the semantic relations would need to be ranked to be interpreted by a computer, such as
by using a passivity scale. However, other criteria could be included, such as the impact
of the proposed operation on the lattice’s intended (layered) structure. We created a
layered lattice without introducing further relations to the metamodel portrayed by
Figure 1, but including other relations could add value. Within the omitted 117 two-way
semantic relations possible with Figure 1, other active relations may have resolved the
supremum and infimum issues by other means while also minimising or even eradicating
the need for the inclusion of semantically passive relations. Furthermore, there are more
than 3,300 semantic relations in the LEAD ontology, thus fertile ground to explore.

2 Thus aligning information processing in mind and machine in accordance with the
subtitle of Sowa’s seminal text on Conceptual Structures [5].



Generating Layered Enterprise Architectures with Conceptual Structures 13

4.3 Future Research

Given the above considerations, by inserting LEAD’s integrated ontology elements that
are only implicit in the case study metamodel, it would be possible to highlight further
the levers that can be pulled to effect the desired change. This future work would also
tease out more of LEAD’s hitherto hidden insights. Furthermore, refinement of the algo-
rithm could be pursued to integrate the activation and layering stages of the approach.
We seek ways it can be more automated. One such method is by considering layering
(and supremum and infimum composition) at the point of concept introduction. We
could then conceivably resolve undesirable, complex-to-handle situations whereby the
operations of one stage adversely impact another, contributing to expressive lattices
dynamically modified according to any given organisational situation.

5 Conclusion

We have demonstrated a principled approach that successfully introduces LEAD lay-
ering to an active direction graph. Consequently, the outcome is an improved value
proposition for industry, in the form of an inherently more readable illustration of
change levers for business decision-makers. It would promote understanding of Layered
Enterprise Architecture Development (LEAD) and the LEAD Enterprise Ontology, al-
lowing organisations to exploit their information technology assets instead of being
exploited by them.

References

1. Simon Andrews and Simon Polovina. Exploring, Reasoning with and Validating
Directed Graphs by Applying Formal Concept Analysis to Conceptual Graphs. In
Madalina Croitoru, Pierre Marquis, Sebastian Rudolph, and Gem Stapleton, edi-
tors, Graph Structures for Knowledge Representation and Reasoning, volume 10775
LNAI, pages 3–28, Cham, 2018. Springer International Publishing.

2. Matt Baxter, Simon Polovina, Wim Laurier, and Mark von Rosing. Active seman-
tic relations in layered enterprise architecture development. In Michael Cochez,
Madalina Croitoru, Pierre Marquis, and Sebastian Rudolph, editors, Graph Struc-
tures for Knowledge Representation and Reasoning, pages 3–16, Cham, 2021.
Springer International Publishing.

3. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Berlin
Heidelberg, 1999.

4. Simon Polovina, Mark von Rosing, and Georg Etzel. Leading the Practice in Layered
Enterprise Architecture. In CEUR Workshop Proceedings, volume 2574, pages 62–
69, 2020.

5. John F Sowa. Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc., 1984.

6. John F. Sowa. Conceptual graphs, chapter 5, pages 213–237. Elsevier, 2008.
7. Mark von Rosing and Wim Laurier. An introduction to the business ontology.

International Journal of Conceptual Structures and Smart Applications (IJCSSA),
3(1):20–41, Jan 1, 2015.


