
BPM2DDD: A Systematic Process for Identifying Domains
from Business Processes Models

DA SILVA, Carlos Eduardo <http://orcid.org/0000-0001-9608-439X>, GOMES,
Eduardo Luiz and BASU, Soumya Sankar

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30781/

This document is the Published Version [VoR]

Citation:

DA SILVA, Carlos Eduardo, GOMES, Eduardo Luiz and BASU, Soumya Sankar
(2022). BPM2DDD: A Systematic Process for Identifying Domains from Business
Processes Models. Software, 1 (4), 417-449. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Citation: da Silva, C.E.; Gomes, E.L.;

Basu, S. BPM2DDD: A Systematic

Process for Identifying Domains from

Business Processes Models. Software

2022, 1, 417–449. https://doi.org/

10.3390/software1040018

Academic Editor: Sanjay Misra

Received: 28 July 2022

Accepted: 24 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

BPM2DDD: A Systematic Process for Identifying Domains
from Business Processes Models
Carlos Eduardo da Silva 1,∗ , Eduardo Luiz Gomes 2 and Soumya Sankar Basu 1

1 Department of Computing, Sheffield Hallam University, Sheffield S1 2NU, UK
2 E-Masters Tecnologia, Natal 59151-600, Brazil
* Correspondence: c.dasilva@shu.ac.uk

Abstract: Domain-driven design is one of the most used approaches for identifying microservice ar-
chitectures, which should be built around business capabilities. There are a number of documentation
with principles and patterns for its application. However, despite its increasing use there is still a lack
of systematic approaches for creating the context maps that will be used to design the microservices.
This article presents BPM2DDD, a systematic approach for identification of bounded contexts and
their relationships based on the analysis of business processes models, which provide a business view
of an organisation. We present an example of its application in a real business process, which has also
be used to perform a comparative application with external analysts. The technique has been applied
to a real project in the department of transport of a Brazilian state capital, and has been incorporated
into the software development process employed by them to develop their new system.

Keywords: domain-driven design; business process management; context map; bounded context
identification

1. Introduction

Domain-Driven Design (DDD) is an approach to develop complex systems from the
early 2000’s. It consists in a series of design patterns and general guidance on their appli-
cation, where the implementation is deeply connected to models that represent the main
business or domain concepts [1]. DDD has gained a renewed interest with the appear-
ance of microservice architecture (MSA) [2]. Microservices can be currently interpreted as
an implementation tactic of a service oriented architecture, where software systems are
composed by several small services, each running individually in its own process and
communicating with each other through lightweight mechanisms [3].

There is a consensus in the literature (e.g., [3–7]) that microservices should be built
and maintained around a specific business capability. However, one of the great challenges
of MSA is the decomposition of the system into services properly aligned to the business
context [4]. Amiri [6] identifies this challenge as the Microservices Identification Problem.
A number of studies explored this problem, for example, systematic literature reviews [8]
and interviews and surveys with industry practitioners [9,10], and have identified that “a
combination of domain-driven design and business capability is the most used strategy to decompose
an application into microservices” [11].

One of the main concepts of DDD is the bounded context. According to Evans &
Fowler [1] a “bounded context” is the limited application of a specific domain model.
The use of bounded contexts to define structured interfaces around the boundaries of the
business domain favours the definition of loosely coupled and highly cohesive services [5],
being highly recommended and explored for the definition of microservices. However,
the use of DDD is a complex activity in which the results obtained often depends on
the level of experience of the development team [12] This is further demonstrated by the
existence of approaches to help in the use of incomplete DDD artefacts [2].

Software 2022, 1, 417–449. https://doi.org/10.3390/software1040018 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1040018
https://doi.org/10.3390/software1040018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0001-9608-439X
https://doi.org/10.3390/software1040018
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1040018?type=check_update&version=1

Software 2022, 1 418

One can find a number of documentation with principles, patterns and examples of
the use of DDD for identifying MSA (e.g., [1,5,13,14]). However, based on the literature
review, there is no defined systematic process that guides the creation of DDD artefacts. In
fact, approaches that do mention the design of DDD artefacts do so with references to the
general guidance (e.g., [12,15]).

Moreover, one of the ways to properly identify software services taking into account
business capabilities is through the business view, which can be done by the analysis
of business processes [16]. It is well established that business process models provide
system analysts with information that captures realistic business needs, being crucial
for the requirements elicitation activity, with noticeable improvement in the quantity
and quality of the requirements collected [17,18]. Thus, it is only natural that business
process models would be used in conjunction with DDD to improve the requirements
gathering and design of software systems. In complex scenarios, business processes can
use more than one service, belonging to different areas or business contexts to perform
their operations, providing important insights in the modelling of more complex logic,
including the interaction between different services [5].

In this context, this article tackles the following research problem: “How to identify
domains and build context maps based on knowledge extracted from business process models”.

We present BPM2DDD, an approach for the identification of bounded context and
their relationship from business process models. BPM2DDD defines a concrete systematic
process to support the definition of DDD context maps. Our approach favours the use of
business processes earlier in the development life cycle contributing for a design that is more
aligned with business needs of organisations. BPM2DDD has been applied in the context
of a real project in a department of transport of a Brazilian state capital. BPM2DDD com-
plements the software development process employed by them, the SPReaD process [19],
an instantiation of the mainstream SOA methodology for the development of MSA.

We demonstrate the application of BPM2DDD using a real business process as example.
The technique has been applied to other business processes in the institution and the
resulting DDD context map was used to develop systems that provides services for the
citizens today. We have also performed a comparative application of the technique with
external analysts who provided valuable feedback and demonstrated that BPM2DDD can
indeed be used to support the creation of DDD artefacts by other people.

The remainder of this article is organised as follow: Section 2 presents a discussion
on the background and related work. Section 3 describes the BPM2DDD process, while
Section 4 presents an example of its application using a real business process. Section 5
presents an evaluation and discussion of our approach. Finally, Section 6 concludes the article.

2. Background and Related Work

This section presents a brief background on business process management and domain-
driven design, followed by a discussion on related work.

2.1. Background on BPM and DDD

Business processes management (BPM) is a discipline that combines knowledge of
the areas of information technology (IT) with the science of administration, to support
the management and improvement of operational business processes [20,21]. In the IT
context, the term is usually associated with workflow management (WFM) software that
automates, controls and supports operational processes, while in the business context,
the term has a broader scope that encompasses everything from automation, analysis of
processes, operations management and work organisation [20].

A process is a set of activities performed by humans or machines in order to achieve
one or more results [22]. Within the context of BPM, business processes are treated as assets
of the organisation and represent a set of activities that aim to support other organisational
processes, achieve business objectives and deliver value to customers, whether internal or
external to the organisation [21,22]. Among the activities of BPM is process modelling.

Software 2022, 1 419

Process modelling concerns the creation of detailed and accurate representations of
a business process that already exists or will be proposed [22]. Models serve to commu-
nicate different perspectives of a business process and have been used by companies to
capture, design, document and analyse their processes, providing a common basis for
discussion [21]. There are several types of notations to represent these process models, such
as, Petri nets, UML and EPC (Event-driven Process Chain) [20]. Among them is the BPMN
(Business Process Model and Notation) [23], selected in this work as the standard notation
for representing business process models, since they can be understood by different target
audiences, including systems analysts and customers.

BPMN has several elements that allow the creation of models of the most varied
types of processes. Even complex processes can be represented initially using few BPMN
elements. These models can be iteratively improved over time. Among the elements that
make up the BPMN notation, one can find: pools, lanes, flows, activities, sub-processes,
events, data objects, gateways, among others. This is the notation used to describe our
approach and an example of a real business process using BPMN is presented in Section 4.
The following is a brief explanation of these elements, as defined by [23] and represented
in the Figure 1:

Activity A Sub-process B

Pr
oc

es
s

A

Activity Sub-process

Sequence flow

Message flow

Start event End event

Time event Message
event

Group

LanePool
Data

object

Parallel
Gateway

Exclusive
Gateway

BPMN
Elements

Po
ol

La
ne

 1
La

ne
 2

Figure 1. A sub-set of the main elements defined by the BPMN specification [23] .

• Events : Represents something that happens during the course of a process. Events
usually have a cause (trigger) or an outcome. Represented by a circle, there are three
basic types of events, namely: start event, intermediate event and end event.

• Activities: Represents a job to be performed within the process flow. An activity can
be a task or a sub-process (set of tasks).

• Gateways: Represents a divergence or a convergence of sequence flows in a process.
A gateway determines a branching, forking, merging and joining of paths.

• Sequence flows: Demonstrates the order in which activities are performed within
a process.

• Message flow: Demonstrates communication between two process participants (rep-
resented by two separate pools in a collaboration diagram).

• Pool: Represents a participant in a collaboration. It acts as a container partitioning a
set of activities from other pools.

• Lane: Represents a sub-partition of of a pool and serves to organise and categorise ac-
tivities.

• Messages: Represents the content of a communication between two participants.
• Data objects: Represent a set or collection of information. Data objects can serve as

input or be produced in process activities.

Software 2022, 1 420

• Groups: Represents a grouping of elements within the same category. Groups are
typically used for documentation and analysis purposes and do not change the flow
of the process.

Domain-Driven Design (DDD) is an approach to develop complex systems, where
the implementation is deeply connected to models that represent the main business or
domain concepts [1]. One of the main concepts of DDD is the bounded contexts. According
to Evans & Fowler [1] a “bounded context” is the limited application of a specific domain
model, that is, a bounded context is a model that represents part of a larger domain. In this
way, a large data model can be divided into small contexts, allowing business objects to be
modelled based on specific needs. Newman [5] indicates that the use of bounded contexts
to define structured interfaces around the boundaries of the business domain ensures a
better ability to respond to changes in the business process. This favours the definition of
loosely coupled and highly cohesive services [5].

To represent the overview of the domain model, DDD proposes the context mapping
approach. In this approach, the context map is a high-level diagram that holistically com-
municates which bounded contexts are present in the worked domain [13]. This diagram
should be simple enough that technical staff and domain experts can understand and
reflect on the realities of the domain. The main responsibility of the context map is to
define explicit boundaries between bounded contexts, identifying the points of contact,
communication and/or information exchange between them. Thus, each bounded context
must have an explicit interface where it decides which models it will share with other
contexts [5]. This information sharing creates a need for a relationship between these
contexts and/or between the teams that maintain the systems in these contexts.

According to Evans [1] these relationships can be classified in two ways: downstream
which can be called consumer, as it needs to consume the resources and services of other
teams’ systems; and the upstream that can be called supplier, as it provides the other teams
with resources and services through their systems. Furthermore, according to Vernon [24],
there are several organisational and DDD integration patterns to represent the relationship
between two bounded contexts, among them:

• Partnership: Teams define a process to plan, develop and manage the integration
between systems. They cooperate with each other in the evolution and maintenance
of the interfaces of both systems.

• Customer-Supplier Development: The upstream team (supplier) can be successful
independent of the downstream team (customer). The needs of Downstream team are
handled in various ways with consequences. However, the priorities of the downstream
team are considered in the planning of the upstream team.

• Conformist: The upstream team has no motivation to meet the needs of the downstream
team. The translation complexity between the bounded contexts is eliminated and the
downstream team faithfully adheres to the upstream team model.

• Open Host Service: Defines a protocol for accessing subsystems as a set of services.
Make the protocol explicit/public so that everyone who needs it can integrate into the
system. The protocol can be improved and expanded when new requirements arise,
except when a single team has an unusual need.

• Published Language: Translating communication between models from two linked
contexts requires a common language. A well-documented shared language must be
maintained to express domain information necessary for communication.

To manage the complexity of large domains, these can be divided into subdomains.
Subdomains can represent business areas or large system functionality, representing large
placeholders of the domain problem [13]. According to Vernon [24], subdomains are
classified as:

• Core: Represents the main contexts or core of the business. It is usually linked to the
organisation’s purpose activities.

Software 2022, 1 421

• Support: Represents contexts created to support the core business. They are not
usually the organisation’s purpose activities, but they support it.

• Generic: Represents contexts that don’t capture anything special for the business,
but are needed for general solution.

2.2. Related Work

The main focus of our work is in the definition of a systematic approach for the use
of business process models to build DDD artefacts in support of MSA. In conducting
our literature review we used existing systematic literature reviews (SLR) on the topics
mentioned above as starting point. We started by identifying SLR in the identification
of MSA, and then extracted those works that explicitly explore business processes for
identification of MSA. This has been complemented by searching the main indexing tools
(i.e., ACM DL, IEEExplorer, and Science Direct) for works published after the SLRs. This
was followed by a discussion on the use of DDD to build MSA. The same procedure has
been applied, starting with existing SLRs complemented by searches for newly published
works. The main criteria considered for inclusion was the definition of some systematic
approach around DDD. We then focused our search for works that explicitly mention
experiences in the building of DDD artefacts.

Business process models have been used as part of requirements engineering [16] with
demonstrated improvement in the quantity and quality of requirements [25]. In fact, a num-
ber of works have explored business processes for identification of MSA. Götz et al. [26]
proposed an approach to design microservices based on data objects of business process
models, from the identification of relevant entities, their attributes, relationships and analy-
sis of the frequency of use of this data. Analysing the approach, we can see a tendency for a
given microservice to have too many responsibilities, due to the fact that it frequently uses
a data object originally belonging to another business context, or the construction of very
granular microservices, as it only takes into account the perspective of using a specific set
of data. Costa and de Oliveira [27] proposed an approach to modelling SOA applications
based on business objectives. From the process models, service requirements to achieve
business objectives are extracted and converted into service specifications. Amiri et al. [6,28]
proposed a method to identify microservices based on the analysis of the structural de-
pendence between tasks of a business process, and data dependence of business objects
that evaluate the readings and writings performed on these objects. Daoud et al. [29]
extended the work of Amiri et al. [6,28] proposing a graph-based approach to identify
microservices using clustering techniques. However, these works consider only two of the
three aspects of the logical relationship of the process activities, observed in [29], namely:
flow control and data dependence. When analysing these approaches it can be seen that
only activities that are directly related or interrelated through a gateway are grouped to
compose a microservice. The functional dependence between activities, which reveals how
business contexts interact, is not considered. This means that if there is an activity that
participates in the same business context and that does not have a connection with other
activities in the same context, this activity will compose another separate microservice,
erroneously fragmenting the services. On the other hand, composing a microservice based
on the dependence of data objects can lead to a wrong grouping, since the same entity
present in the business process can be used in different contexts, through specific mod-
els. Moreover, these approaches do not explore DDD in their identification efforts. The
context map produced by BPM2DDD can be seen as an intermediate model, providing an
overview of business contexts and their relationships. Compared to the works that explore
business process models, BPM2DDD presents a new approach which takes into account
not only the activities are directly related in the BPMN model (or only the data), but also
other existing BPMN elements such as actors, pools, events and data objects to determine
bounded contexts and their relationships.

As previously mentioned DDD is an approach from the beginning of 2000’s and
has been used in different domain before the appearance of microservices. For example,

Software 2022, 1 422

Landre et al. [30] demonstrated in 2006 how DDD have been used to improve the software
architecture of a large enterprise system by exploring context maps with bounded context
and different types of relationships. More recently, Shenglin et al. [15] described how the
use of DDD improved the development of prototypes for military information systems.
However, those approaches do not detail how the context maps is constructed.

When we look at more systematic approaches involving DDD we can find a number
of works that supports the creation of microservices from DDD artefacts. For example,
the context mapper tool (https://contextmapper.org accessed on 28/09/2022) is a well-
established framework to support the creation of DDD artefacts and their use for definition
of microservices [31]. It provides a domain specific language for definition of DDD artefacts
together with a set of tools based on model-driven engineering for the creation of context
maps from source code or functional requirements, architectural design and code genera-
tion. Another work has been presented by Giallorenzo et al. [32], in which DDD models
expressed in LEMMA domain data modelling language are automatically translated into
microservice APIs using the Jolie programming language. Rademacher et al. [2] presented
a methodology based on model-driven engineering to transform domain models into mi-
croservice architecture models that are then used to generate code where each microservice
is mapped to a bounded context. In fact, a number of studies have identified DDD as one
of the most used approaches for creating microservices [8–11].

However, existing literature in the subject is mainly focused on defining its base
concepts and principles [1], or in identifying a number of design patterns with examples
of their respective use [5,14,33]. The works that do mention the construction of DDD
artefacts are usually focused on describing their respective domain model and how the
different patterns have been used, e.g., [34], or point to general guidance to be used for
this particular activity [35].

There are approaches that include some degree of systematisation in the construction
of DDD artefacts based on the decomposition of functional requirements (usually use
cases). For example, Santos et al. [36] presented an approach for modelling architectures
in agile software development in which one of the steps in their process is the application
of DDD to help in the requirements elicitation. Their approach explores “use case models
structured by decomposing functionalities in a tree-like form” in which the different groups of
use cases correspond to domains and sub-domains and reflect the frontiers used to identify
bounded contexts [37]. Other approaches [38,39] use functional decomposition of use cases,
through the analysis of relationships between system operations (use cases) and data read
or written by such operations. These are then modelled as graphs and clustering techniques
are used to group data and operations into a business capability, which is then considered
as a microservice candidate.

The approach that is closest to ours is presented by Hippchen et al. [12,40], which
proposed a systematic method for the use of DDD to create microservices. They define a
process in which the several activities of DDD are positioned in the software development
life-cycle [40]. This process includes as one of their steps the construction of DDD artefacts
(bounded contexts, their relationships and context maps) based on the use of behaviour
driven design features to identify the initial domain model [12]. However, their approach
direct the reader to the initial DDD book by Evans [1] for guidance in how to define
bounded contexts. Moreover, their approach defines a new purpose for context maps,
different from the original definitions, which is used by the majority of works.

Finally, it is worth mentioning that there is a variety of works in the literature to
identify microservices using other strategies [8] (e.g., API specifications [41], analysis of
legacy monolithic systems [42] and functional decomposition [43]), but these will not be
explored here as they are considered out of scope of our approach.

In fact, we could not identify any systematic approach that builds context maps from
business process models. Thus our approach not only fills an existing gap, but can be easily
be treated as complementary to existing approaches.

https://contextmapper.org

Software 2022, 1 423

3. The BPM2DDD Approach

The objective of the BPM2DDD is to create a context map based on the analysis of
business process models. The context map captures the business domain of the organisation,
serving as one of the inputs to the modelling phase of the software development process,
and contributing for the identification of the candidate services that will compose a service-
oriented solution.

The approach expects as input a BPMN model which is then processed through three
main phases: In phase 1 we analyse the input BPMN model according to a minimal set of
requirements established by the approach. In phase 2 we process the BPMN model, extract-
ing information to identify bounded contexts and their relationships. Finally, in phase 3 we
review the created context map with domain specialists, going back to phase 2 if needed.
The approach assumes the availability of domain specialists during all phases.

In the subsequent subsections, we present a contextualisation and describe the method-
ology employed in the development of BPM2DDD, followed by a description of its
three phases.

3.1. Contextualisation and Methodology

The BPM2DDD approach has been developed and applied between June/2019 and
March/2020 as part of a real software development project in a Brazilian governmental
organ of urban transit control. One of the authors was part of an outsourced team composed
of six developers working together with a team of nine developers in a project for the
reengineering of their internal systems together with the addition of new functionalities.
This project was being developed according to the SPReaD (Service-oriented Process for
Reengineering and Devops) process [19], an instantiation of the mainstream SOA methodology
that defines a set of concrete steps and techniques to support the development of service-
oriented systems. This project involved the use of business process models to aid in the
requirements elicitation, resulting in the creation of BoAT (Box Analogy Technique) [16],
an agile-based approach for the capture of business process models in group interviews
with domain specialists. BoAT was the technique applied for the construction of the
business processes models explored in this work.

In this context, we identified the need for a systematic approach to help in the analysis
of business process models for identifying bounded contexts and context maps. This was
the main motivation for the BPM2DDD approach, which has been developed according
to the methodology presented in Figure 2. We started by conducting a background and
literature review in the topics of business process management as part of requirements
engineering, service oriented architecture and microservices, and domain-driven design.
Our review was targeted at approachs for creation of context maps with identification of
domains and bounded contexts, which has been presented in Section 2.

BPM2DDD Development

Definition of
BPM2DDD

First application of
BPM2DDD

Background and
literature review

Start End

Extraction Refinement Evaluation

Second
application of
BPM2DDD

Figure 2. Graphical representation of the methodology employed in the development of BPM2DDD.

The development of the BPM2DDD approach happened in two stages. During the
extraction stage we systematised the different steps and best-practices from the literature in
a concrete process. We then applied the BPM2DDD approach to a real business process,
together with the domain specialists that defined the business process model. This provided

Software 2022, 1 424

us feedback that has been incorporated during the refinement stage and then applied to a
second business process, resulting in the description presented in this article.

Finally, we performed an evaluation of our approach by (1) validating the created
context map with domain specialists and the development team; and (2) by conducting a
comparative application of BPM2DDD by two external analysts. The evaluation details are
presented in Section 5.

In the sequence we present the three phases that compose the BPM2DDD approach.

3.2. Phase1: Review Input BPMN

The BPM2DDD technique is sensitive to the level of detail present in the BPMN model,
and the quality of the model provided is a determining factor for the quality of the context
map generated. This phase analyses the provided BPMN model taking into consideration
the following points:

• Pools The BPMN model must have at least one pool, which represents a clear organi-
sational boundary like a company. Separate pools should be used for external organi-
sations.

• Lanes Pools must have at least one lane, which represents one actor in the process. An
actor is formed by a role (function) plus an organisational unit (e.g., department).

• Systemic actors Automated activities performed by some system should be explicitly
modelled with a systemic actor.

• Activities Activities should represent a job to be performed and always be assigned
to a lane.

• Sub-processes and groups: Activities can be grouped together using sub-processes
or the BPMN group element.

• Control flow: The control flow (sequence, merge and split gateway) should be explic-
itly used.

• Events Each process should have explicit start and end events. Each event should
have a start event and an end event to denote the completion of the event.

• Communication and message flows Communication between actors should be ex-
plicitly modelled with communication events and message flows. Message flows
should be used to communicate between pools.

• Data objects Data objects and data stores should be explicitly used to represent
documents, artefacts or information flow throughout the process.

These provide general guidance to the elements that we expect in a BPMN model
and their absence does not prevent the execution of the technique, but makes it difficult to
identify the respective domain elements, resulting in context map with fewer details and
that does not adequately reflect the domain of the organisation.

To help with this we have defined a set of questions that can be used to query the
BPMN model together with business analysts and domain specialists.

1. Does the business process model actually mirror the operational reality?
2. Are there pools or lanes that demonstrate which actors are involved in the process?
3. Do the actors make their role and organisational unit of origin explicit?
4. If there are external actors, are they allocated in separate pools/lanes?
5. If any, are automated activities allocated to systemic actors?
6. If any, are related activities grouped into BPMN sub-processes or groups?
7. If any, are communications explicit in the model through communication events and

message flows?
8. If any, are there data objects that demonstrate the sharing of information between

process activities?

If there is any negative response to this assessment, the BPMN model is considered not
sufficient, and therefore needs to be refined by business analysts before the technique can be
applied. The construction and refinement of the BPMN model, as well as the indication if a

Software 2022, 1 425

model is right or wrong, is out of scope of this work and can employ any of the techniques
available (e.g., [16]) together with domain specialists.

3.3. Phase2: Build Context Map

In this phase we produce the context map from the BPMN model. Figure 3 presents
the main activities of this phase using a BPMN notation and identifying all the artefacts
produced/consumed by each step. The end-to-end process contains six main steps (a)
Identify bounded contexts and subdomains, (b) Identify groups of related activities, (c) Identify
Message Flows and communication events, (d) Identify Business Objects, (e) Identify relationships
and (f) Build Context Map.

B
P

M
2D

D
D

A2. BPMN-CM
elements

Are there groups
or sub-

processes?

Identify groups
of related
activities

A1. BPMN
model

A4. Related
activities

A1. BPMN
model

Identify
message flows

and
communication

events

A2. BPMN-CM
elements

A5.
Communication

events

Are there
message flow s

and events?

A1. BPMN
model

Are there data
objects?

Identify
business
objects

Is there more
than one bounded

context?

A4. Related
activities

A5.
Communication

events

Start

A3. Sub-domains

A6. Business
objects

Build context
map

A7. Relationships

A2. BPMN-CM
elements

A3. Sub-domains

A9. Context map

A8. Domains

A1. BPMN model

Identify
relationships

No

Yes

No
No

No

Yes

Yes

Yes

Identify
bounded

contexts and
subdomains

Figure 3. BPMN description of the main steps of the BPM2DDD approach.

We describe the steps in the following sub-sections. The description will contain a brief
explanation about the step, the activities to be carried out during the step and an outline of
its output, which is used in the subsequent steps. We will not present the template of the
outputs here as example outputs are shown in subsequent section where we demonstrate
how we have applied our BPM2DDD approach in real life scenario, and the structure of
each artefact is presented in the Appendix A.

3.3.1. Identify Bounded Contexts and Subdomains

The first step in our approach is to identify the bounded contexts and the subdomains.
This step receives as input the BPMN model (A1) and produces two artefacts: BPMN-CM
(BPMN Context Map) elements (A2) and Sub-domains (A3). A2 contains different elements
of the BPMN model while A3 contains the subdomains names and types. Figure 4 presents
a BPMN description of this step, which will be detailed in the sequence.

Id
en

tif
y

B
ou

nd
ed

 C
on

te
xt

s
an

d
S

ub
do

m
ai

ns

Identify groups
of activities

Identify
business
functions

Identify
bounded
contexts

Identify
subdomains

and types

Identify
activities and

actors

A10. Activities
/actors

A3. Sub-domains

A2. BPMN-CM
elements
[business
functions]

A2. BPMN-CM
elements
[activities]

A2. BPMN-CM
elements
[contexts]

A2. BPMN-CM
elements

Start

A1. BPMN model

A2. BPMN-CM
elements [actors]

Figure 4. BPMN description of the steps of the Identify bounded context and subdomains step.

Software 2022, 1 426

We start by identifying the actors (based on lanes) and activities of the BPMN model,
which are stored in A10 (Activities/actors), an auxiliary artefact with the list of actors,
their activities, the objective and the obtained results of each activity. Each actor and its
respective organisational unit (OU) are added to the A2 artefact, where they are classified
according to their nature (internal/external based on its pool in the BPMN) and type
(consumer/provider based on whether the actor provides or consumes services - an actor
can do both in a single process). We also record the purpose and/or responsibility of each
organisational unit in A2 and identify from which OU the actor consumes or provides
services to.

In order to classify the actors we provide the following guidance: For each pair of
actors A and B in A2 the following points should be considered:

1. What is the role or responsibility of organisational unit of actor B in the business
context under consideration?

2. What is the objective of each activity performed by actor B?
3. Is the result produced by the activities of an actor B of interest, direct dependence or

acceptance criteria for the organisational unit of actor A to fulfil its role, achieve its
objective or perform some activity? Yes or No.

4. Does the result produced by the activities of actor B modify the state of some BPMN
data object used by actor A? Yes or No.

If the answers to questions 3 and 4 are yes, actor A must be classified as “Consumer”
while actor B must be classified as “Provider”.

Once a relationship of consumer-provider has been established between actors A and
B in A2, actor A must be marked with “Yes” in column Consumer and the organisational
unit of actor B must be registered in column Consumes from, while actor B must be marked
with “Yes” in the Provider column and the organisational unit of actor A must be recorded
in the Provides to column. At the end of this, the objective of both organisation units
in this business context are added to the column Purpose/Responsibility of the respective
Organisational Unit.

Next, the activities of A10 are ordered and grouped together in the A2 artefact, for each
actor, based on the similarity of their objectives and produced results (Identify groups of
activities). These are then used to identify all possible business functions in A2 (Identify
business functions). Business functions conceptualise the mission and services provided
by organisational unit. We consider the purpose of the organisational unit, in addition to
activities objectives and obtained results from A10, to arrive at business functions. Multiple
activities in a group can be realised through one or more business function, and on the
contrary one business function can realise multiple activities across different groups. We
suggest the naming of business functions to be done with name plus the name of the
organisational unit to which it belongs.

We suggest two approaches for the identification of business functions:

• Approach by activity: Based on the analysis of the objectives and obtained results
produced by the activities (or group of activities).

• Approach by organisational unit: Based on the analysis of the objectives or responsi-
bilities of each organisational unit.

Once the business functions are defined we generalise them to identify bounded contexts.
These contexts depict a broad level solution structure and at this point are considered as
candidate bounded contexts. They can be defined based on domain information, or directly
converted from business function names if it can not be generalised. Information about
bounded contexts is stored in A2.

Based on the organisation units and bounded contexts we can identify subdomains and
types, which are stored in A3. Autonomous organisational units (i.e., not subordinate to
another organisational unit) are strong candidates to be mapped into subdomains. External
organisational units can also be mapped to subdomains as long as they are properly
identified as external in the context map. Bounded contexts can be directly mapped or

Software 2022, 1 427

grouped (e.g., by level of similarity) into a new abstraction that will be their subdomain.
The entire set of subdomains should cover all bounded contexts, and each bounded context
can only be mapped to a specific subdomain. In a worst-case scenario, there will be only
one subdomain. Subdomains are then classified into types (core, support and generic)
based on the definition of Section 2.

3.3.2. Identify Groups of Related Activities

This step is applicable if the main BPMN model contains sub-processes or groups. In
this step, we aim to identify activities within different sub-processes or groups that are
related to similar business activities and group them together. This kind of grouping help
us in identifying the relationship between bounded contexts.

This step generates the artefact Related activities (A4), which stores a name for the
group, the activities of the group and their respective bounded contexts. First we observe
sub-processes and BPMN groups extracting the related activities into A4. These activities
can be from different actors and/or business contexts. The groups are then named and the
bounded contexts associated with those activities are obtained from A2.

3.3.3. Identify Message Flows and Communication Events

This step is applicable if the process contains events or message flows. In this step,
we capture the communications between different elements in the BPMN model. Com-
munication can occur during or after the execution of an activity, sub-process or external
process, either within the same or between different bounded contexts. This step generates
the artefact communication events (A5), which stores information about the elements that
initiated and received the communication, i.e., the sender/receiver event, its associated
elements and bounded contexts.

We start by identifying all launch events (e.g., messages or signal) and the activities
that precede these events, followed by their respective received elements (events and
associated activities). Communication events that occur at the end of the process can be
ignored, as they only represent a notification that the process has ended, and no return
communication is expected. Finally, we attach the already identified bounded contexts
with the sender and receiver associated elements. The information identified during this
step is updated in A5.

Special care is needed with sender bounded contexts that are associated with generic
subdomains, as these are usually not involved in specific business logic. In this case, it
is necessary to identify which bounded context is responsible for triggering the generic
bounded context and classify the first as the source of the communication, while the second
will be the receiver of the communication.

3.3.4. Identify Business Objects

This step is applicable if the BPMN model contains data elements (business objects
and/or data storage objects). In this step, we extract and classify the data elements in the
artefact Business objects (A6).

A business object can be classified according to its type: document (physical or digital)
or BDM for Business Data Model. Each object is related to an associated BDM, which can be
the object itself or another term that represents an enterprise data model or entity. Once
the business objects are identified, we capture the activities associated with the object
and their respective bounded contexts. In particular, we are looking to differentiate the
source bounded context (in which the object belongs to) from those bounded contexts (and
respective activities) that use the business object. We also look at how the business object is
used by each activity, i.e., read, write or both.

We have identified a set of questions that can help in this step:

• In what bounded context is the business object created? If an activity is responsible
for creating a business object, it is likely that the source of this object is the bounded
context to which this activity belongs to.

Software 2022, 1 428

• How often is this business object used in activities in the same bounded context? If a
business object is used by several activities that belong to the same bounded context,
it is likely that this object belongs to that context.

• Is the data object’s name, terminology, and meaning closely related to the bounded
contexts in which it is used? If when comparing a business object with a bounded
context that uses it, their names, terminology, or meanings are close, it is likely that
the object belongs to that context.

3.3.5. Identify Relationships

This step is applicable if there are more than one bounded context. In this step, we
identify the relationships between bounded contexts, and their types, which are stored
in the artefact Relations (A7). This is done based on the produced artefacts A4 (related
activities), A5 (communication events) and A6 (business objects).

At the beginning, we identify the bounded contexts participating in a group from
artefact A4. We take each pair of bounded contexts as an ordered pair (Context A, Context
B) in A7. As generic bounded contexts are not directly related to business objective,
they cannot be Context A. The exception to this rule is only if both contexts belong to a
subdomain of the type generic.

We now do the same for artefact A5 (Communication events). A sender bounded context
is mapped as Context A and the receiver bounded contexts are mapped as Context B. Then
for each pair of contexts in A7 we record the reason for the relationship. We do not include
duplicate pairs or reasons.

Similarly, we identify relationships and their reason for each pair of bounded contexts
from artefact A6 based on their interaction with business objects. In this case, the source
bounded context is mapped to Context B, while associated bounded contexts are captured
as Context A. If there is already a combination for these contexts in A7, it can be reused.

After these sub-steps, we discard duplicate relationships, relationships in which
Context A is equal to Context B, and those relationship for which an explicit reason for its
existence can not be identified.

Then for each pair having a relationship reason, we identify the direction and type
from both sides of the relationship. The direction can be upstream or downstream based on,
for example, the use of business objects or the communication between bounded contexts.
Considering business objects (A6), when a given context depends on information from
another context, the context holding the information (the source context) will have its
direction defined as upstream and the context that needs the information as downstream.
Considering communication events (A5), a receiver bounded context will normally only
be able to continue with the execution of its activities when the sender bounded context
of the communication completes its actions. Thus, the receiver context can be classified
as downstream and the communication sender bounded context as upstream. Generic
bounded contexts are classified as upstream, unless they depend on or needs to access
resources from another generic context, in which case it can be classified as downstream.

Relationship types can be any of the types provided by DDD, and exemplified in
Section 2. Although DDD makes it clear which types of relationships can exist, this
technique only helps the systems analyst to discover which bounded contexts exist and
which they will relate to based on the analysis of the business process model. Therefore,
the definition of relationship types should take into account the relationships between
contexts, project resources/constraints and team limitations.

3.3.6. Build Context Map

This is the final step of the technique, in which we create the context map, and that
will be used by the development team to create the services. At this point, we have the
domains (A8), the subdomains (A3), bounded contexts (A2) and the relationship between
them (A7). Using this information this step generates two artefacts: domains (A8) and
context map (A9).

Software 2022, 1 429

To begin with, we capture the organisation’s domains in A8. The domains directly
map with the organisation’s business process and will involve all subdomains identified
before. Eventually, other sources of information might be need for this step, which will
also identify the main domain of the organisation. Then the remaining artefacts are used to
draw the context map. After the initial drawing we can reorganise the map elements to
make the diagram easier to read.

3.4. Phase3: Review

In this phase, we present the artefacts and context map to the business analysts and/or
domain specialist to get their feedback. Business process models do not always reveal all the
information needed to create a complete context map, as they may represent only a small
portion of an organisation’s operations, providing a limited view of its domain. Thus, we
have identified the following set of questions to guide the review of the produced artefacts:

• Do the domains represent the organisational focus?
• Do the identified subdomains maps with organisational objectives?
• Do bounded contexts represent existing business contexts of the organisation?
• Is the mapping between sub-domains and bounded contexts aligned with organisa-

tion business?
• Are business functions implemented as part of a context reflecting the business func-

tions of the organisation?
• Are the relationships between the bounded contexts aligned with the business?

If any inconsistency is detected we can go back to phase 2, re-executing previous
steps that extract information from the business process for the purpose of improving the
information and adjusting the context map.

4. Application of the Technique

This section presents an example of the application of the BPM2DDD using a real busi-
ness process. We start by contextualising the business process and scenario used as example,
followed by a description according with the three phases of the BPM2DDD approach.

4.1. Contextualisation of the Example Application

As previously mentioned, BPM2DDD was initially applied to two business processes
as part of the development of new services in a real project. These have produced the
context map that was used by the team in their development of the identified services. It
is important to mention that this article focuses on the use of BPM2DDD to identify the
context map, while its use in the other activities of the software development life-cycle
is considered out of scope. In this particular case, the development team followed the
guidance of the SPReaD process [19], a service-oriented approach for the development of
microservice architectures after the context map has been delivered.

In this section we present the application of BPM2DDD to the IRB process (Inclu-
sion/Removal of buses), the business process responsible for including or removing buses
from the fleet serving the city. This process has been chosen here because it is simple
enough to be explored in the article but also covers all aspects of the BPM2DDD approach.
This business process has been captured and refined (as part of phase 1 of BPM2DDD)
together with domain specialists using the BoAT [16] technique. We present phases 1 and 2
in this section describing examples of the generated artefacts following the step-by-step
description of BPM2DDD. Phase 3 is detailed in the next section as part of the evaluation of
the approach.

4.2. Phase 1: Review Input BPMN—IRB Process

Figure 5 presents the BPMN model of the process for Inclusion/Removal of Buses
(IRB) which is briefly described in the sequence. This process is used by bus companies to
include or remove buses from the running fleet. It starts by a bus company creating a new
request (Create request), which is analysed by a system (Analyse request). If the request is

Software 2022, 1 430

incomplete (e.g missing information) it is returned to the bus company which can update
and re-submit the request (Update request).

In
cl

us
io

n/
R

em
ov

al
 o

f B
us

es

S
ys

te
m

 /
R

ev
en

ue
A

na
ly

st
 /

D
O

P
S

ys
te

m
 /

D
O

P
In

sp
ec

tio
n

ag
en

t

Request refused

Analyse request

IRB request
[Accepted /

refused]

Request accepted

Request under
analysis (up to 72

hours)

Is it bus inclusion?

Payment slip

Generate
inspection debt

Generate
payment slip

Payment slip
available

Inspection fee
paid

Confirm
payment

Payment
confirmed

Inspection
created

Schedule
inspection

Bus re-submitted
received

Inspection
scheduled

Wait for inspection

Perform
inspection

Inspection
criticised

Inspection
approved

Inspection report

IRB request
[inspection
approved /
rejected /
criticised]

Request
approved

Effect inclusion
/ removal
request

Emit electronic
seal

Electronic seal

Request archivedRequest
concluded

Debt

Analyse
implementation

of request

Yes

No

In
cl

us
io

n/
R

em
ov

al
 o

f B
us

es

R
eq

ue
st

er
 /

B
us

 c
om

pa
ny

Start

Create request Update request

Request archived

IRB Request
[submitted]

Request refused
received

Bus re-submitted

Re-submit bus
for inspection

Inspection
criticised received

Resolve
inspection

critique

Pay inspection
fee

Inspection fee
paid

Payment slip
available

72 hours

Vehicle inspection
(1.1)

Vehicle inspection
(1.2)

Request
confirmed

Request
confirmed
received

Figure 5. BPMN model of the process for inclusion/removal of bus after refinement.

Once the request is considered as accepted it can then proceed in the process. If the
request involves the removal of buses it goes for analysis (Analyse implementation of request)
before being effected into the system (Effect inclusion / removal request) and emission of
the electronic seal that confirm the conclusion of the process as indicated by the message
end event request archived. Bus inclusions require the payment of a fee before the bus
can be inspected. An inspection fee constitutes a debt in name of the company within
the city council (Generate inspection debt), which is then used to generate a payment slip
(Generate payment slip). Once the payment is confirmed (Confirm payment) an inspection

Software 2022, 1 431

can be scheduled by an inspection agent (Schedule inspection). Upon inspection (Perform
inspection) the bus can be considered as approved, which moves the process towards the
final analysis (Analyse implementation of request) and effective inclusion of the bus in the
system (Effect inclusion / removal request) and emission of electronic seal. An inspection can
be “criticised”, in which case the bus company acts upon to resolve the problems pointed
(Resolve inspection critique) and then re-submit the bus for inspection, which will be scheduled
and performed by an inspection agent.

The BPMN model wass discussed together with domain specialists and business
analysts using our set of questions (presented in Section 3.2). Upon analysis it was agreed
that the process does reflect the operational reality, and employs pools and lanes for
identifying internal and external actors, with their respective role and organisation unit.
Automated activities are allocated to systemic actors, and BPMN groups are used for related
activities, together with explicit communication elements and business objects.

4.3. Phase 2: Build Context Map—IRB Process

In the sequence we present examples of the artefacts created when following the
instructions presented from Section 3.3.

4.3.1. Identify Bounded Contexts and Subdomains—IRB Process

The first step was to identify actors and activities in the auxiliary artefact A10. Figure 6
presents an snapshot of this artefact for two activities of the actor Requester/Bus Company.
We also record the objectives and obtained results of each activity in A10.

A10. Activities

Activities Actor …

Create request Requester / Bus company …

Update request Requester / Bus company …

… … …

1

2

1

Figure 6. Extracting activities and actors from the bpmn model into the artefact A10. Activities.

The five actors and their respective organisational unit are extracted from pools and
lanes into artefact A2. From the pools we find out that Requester/Bus company is an external
actor and the other four actors are internal to the system. An example of the artefact A2
after this step is presented in Figure 7.

A2. BPMN-CM Elements

Actor Organisational unit Actor
nature …

Requester/Bus company Bus company External …

Analyst/DOP DOP (Department of Operations and Permits) Internal …

System/DOP DOP (Department of Operations and Permits) Internal …

Inspection agent Inspection Internal …

System/Revenue Revenue Internal …

1

2

3

Figure 7. Populating the artefact A2. BPMN-CM Elements with actors and their natures (inter-
nal/external).

Software 2022, 1 432

Actors are also classified as consumer/provider (as shown in Figure 8) following the
guidance of Section 3.3.1. For example, the role of organisation unit DOP is to manage
the operations and emission of licences, concessions and authorisation for exploitation
of public transport services; The activity Analyse request has the objective of analysing
the submitted request to check whether all required information has been provided. The
result of this activity is of interest of organisation unit Bus company as the request must be
accepted in order to include/remove a bus from the fleet. This activity also alters the state
of object IRB request to Accepted or Refused. Thus, we understand that the actor Requester/Bus
company consumes business functions from on organisation unit DOP. This is recorded in
A2 (Figure 8). On the other hand, the link between activities Analyse request and Update
request does not represent any business function, being a return of a previous request.

A2. BPMN-CM Elements

Actor Organisational
unit

Actor
nature Purpose/Responsibility Consumer Consumes

from Provider Provides to …

Requester/Bus
company Bus company External

Provide public transport
services. X - DOP …

Analyst/DOP
DOP (Department
of Operations and
Permits)

Internal

Manage operations, permits,
concessions and licenses for
the exploitation of public
transport services.

X
- Inspection

X - Bus company …
- Finance

System/DOP
DOP (Department
of Operations and
Permits)

Internal Main system of the
department. X - Inspection

- Finance X - Bus company …

Inspection agent Inspection Internal
Carry out inspection on
vehicles used in the provision
of public transport services.

X
- Bus company …

- DOP

System/Revenue Revenue Internal
Control of payment of fees
and taxes required by the
municipality.

X
- Bus company …

- DOP …

Figure 8. Snapshot of artefact A2. BPMN-CM Elements with actors, their natures (internal/external)
and identification of consumers/providers.

Next we look at the functional similarities between the activities recorded in the
artefact A10 and group them accordingly in A2. For example the Create request and the
Update request activities of Requester/Bus Company relates to request of inclusion or removal
of bus from road. So we group these two activities together as shown in the example of
Figure 9.

A2. BPMN-CM Elements

A10. Activities

Activities Actor …

Create request Requester / Bus company …

Update request Requester / Bus company …

Resolve inspection critique Requester / Bus company …

Re-submit bus for inspection Requester / Bus company …

Pay inspection fee Requester / Bus company …

… … …

Actor … Activity

Requester/Bus company …

- Create request
- Update request

- Re-submit bus for inspection
- Resolve inspection critiques

- Pay inspection fee

… … …

System/DOP …
- Analyse request
- Effect inclusion / removal request

Figure 9. Grouping of activities from artefact A10. Activities into artefact A2. BPMN-CM Elements
based on their similarity of functionality.

Software 2022, 1 433

From the group of activities in A2 we identify business functions, as shown in the
example of Figure 10. We notice that one function can realise multiple activities. For
example the group of activities Create request and Update request of the actor Requester/Bus
company can be realised through a business function Include/Remove bus to/from fleet/DOP.
This business function is also associated to other groups of activities. Other business
functions are also identified in this example, and one activity (Pay inspection fee) has been
considered not associated to any business function, and thus discarded. On the other hand,
when considering organisation units, the actor System/Revenue has been associated with the
business function control fee payment/revenue based on the objectives of its organisation unit
previously identified.

A2. BPMN-CM Elements

Actor … Activity Business functions Bounded contexts

Requester/Bus company …

- Create request
- Update request Include/Remove bus to/from fleet / DOP Permits

- Re-submit bus for inspection
- Resolve inspection critiques Vehicle inspection / Inspection Vehicle inspection

Analyst/DOP … - Analyse implementation of request Include/Remove bus to/from fleet / DOP Permits

System/DOP …
- Analyse request
- Effect inclusion / removal request Include/Remove bus to/from fleet / DOP Permits

Inspection agent …
- Schedule inspection
- Perform inspection Vehicle inspection / Inspection Vehicle inspection

System/Revenue …

- Generate payment slip Print documents / Generic Document printing

- Generate inspection debt
- Confirm payment Control fee payment / Revenue Payments

Figure 10. Example of artefact A2. BPMN-CM Elements with identified business functions and
bounded contexts.

To identify bounded contexts we generalise business functions, as shown in Figure 10.
For example the Include/Remove bus function identified above are related with the alteration
on a permit to exploit public transport and thus can be abstracted to a candidate context
Permits. It is part of the solution and can represent all business functions related to permits.
A similar reasoning was applied to identify the candidate bounded context vehicle inspection.

Sub-domains are identified based on the organisational units and bounded contexts.
Figure 11 shows a snapshot of artefact A2 with the sub-domains identified. In this example
we can identify three business sub-domains Operation and permits, Utilities and Revenue.
We may think of putting Operation and Permits as two different sub-domains, but the
organisation unit DOP (Department of Operations and Permits) reveals an organisational
structure specifically defined to deal with operations and permissions of public transport,
thus encompassing both bounded contexts Permits and Vehicle inspection. The bounded
context Payment has been associated with the sub-domain Revenue due to its existence in
the organisational structure (represented through the OU revenue).

A2. BPMN-CM Elements

Actor … Business functions Bounded contexts Sub-domains

Requester/Bus company …
Include/Remove bus to/from fleet / DOP Permits Operations and permits

Vehicle inspection / Inspection Vehicle inspection Operations and permits

Analyst/DOP … Include/Remove bus to/from fleet / DOP Permits Operations and permits

System/DOP … Include/Remove bus to/from fleet / DOP Permits Operations and permits

Inspection agent … Vehicle inspection / Inspection Vehicle inspection Operations and permits

System/Revenue …
Print documents / Generic Document printing Utilities

Control fee payment / Revenue Payments Revenue

Figure 11. Example of artefact A2. BPMN-CM Elements with identified sub-domains.

Software 2022, 1 434

Next we populate artefact A3 with all sub-domains and their respective types, as shown
in Figure 12. The sub-domain Operations and Permits is directly related to the organisational
objective, so it is categorised as type Core. The sub-domain Revenue helps in organisational
objective, so it is categorised as type Support. The sub-domain Utilities does not contain any
specific business logic and can be potentially used in other sub-domains as well, so it is
categorised as type Generic.

A2. BPMN-CM Elements

A3.Sub-domains

Sub-domains Sub-domain type

Operations and permits Core

Revenue Support

Utilities Generic

Actor … Bounded contexts Sub-domains

Requester/Bus company …
Permits Operations and permits

Vehicle inspection Operations and permits

Analyst/DOP … Permits Operations and permits

System/DOP … Permits Operations and permits

Inspection agent … Vehicle inspection Operations and permits

System/Revenue …
Document printing Utilities

Payments Revenue

Figure 12. Example of artefact A2. BPMN-CM Elements being used to isolate the identified sub-
domains into the artefact A3. Sub-domains.

4.3.2. Identify Groups of Related Activities—IRB Process

This step is applicable as there are two group of activities in the BPMN related to
Vehicle Inspection. We go through all activities of this group populating the artefact A4 as
shown in Figure 13. The bounded contexts of these activities are obtained from artefact
A2. For example here we group three activities (Generate inspection debt, Confirm payment
and Generate payment slip) of the actor System/Revenue, which are then ordered based
on their respective bounded contexts (Payments and Document printing). The same is
done with two activities (Schedule inspection and Perform inspection) of the actor Inspection
agent and two activities (Resolve Inspection Critique and Re-submit bus for inspection) of the
actor Requester/Bus company together as all are associated with the bounded context Vehicle
Inspection.

A2. BPMN-CM Elements

A4. Related activities

Group Activities Bounded contexts

Vehicle inspection

Generate inspection debt
Payments

Confirm payment

Generate payment slip Document printing

Schedule inspection

Vehicle inspection
Perform inspection

Resolve inspection critiques

Re-submit bus for inspection

Actor … Activity Business functions Bounded contexts

Requester/Bus
company …

- Re-submit bus for inspection
- Resolve inspection critiques Vehicle inspection / Inspection Vehicle inspection

… … … … …

Inspection agent …
- Schedule inspection
- Perform inspection Vehicle inspection / Inspection Vehicle inspection

System/Revenue …

- Generate payment slip Print documents / Generic Document printing

- Generate inspection debt
- Confirm payment Control fee payment / Revenue Payments

1

2

Figure 13. Extracting related activities based on BPMN “groups” into the artefact A4. Related
activities, which is then complemented with the respective bounded contexts from artefact A2.
BPMN-CM Elements

Software 2022, 1 435

4.3.3. Identify Message Flows and Communication Events—IRB Process

As the BPMN model contains message flow and events, we need to perform this step.
Figure 14 shows an example of this step, in which we captures all message flows and
events with their sender and receiver. It also identifies the associated elements with the
sender/receiver and attach the respective bounded contexts. For example, let us consider
the Payment slip available event (indicated with “1” in the figure). The associated sender
element is Generate payment slip activity, which is linked with bounded context Document
printing. The receiver element is the event Inspection fee paid, which is associated with
Confirm payment activity part of the bounded context Payments.

A5. Communication events

Sender element Associated sender
element

Sender bounded
contexts

Associated receiver
elements

Receiver bounded
contexts

… … … … …

Event: Payment slip
available

- Activity: Generate
payment slip - Document printing

- Event: Inspection fee paid
- Activity: Confirm payment - Payments

Event: Payment
confirmed - Activity: Confirm payment - Payments

- Event: Inspection created
- Activity: Schedule
inspection

- Vehicle inspection

… … … … …

1
2

Figure 14. Populating the artefact A5. Communication events based on the BPMN model message
flows and communication events.

The same reasoning is applied with Schedule inspection activity (identified with “2” in
the figure). In this case the sender element is the event Payment confirmed associated to
the Confirm payment activity of the Payments bounded context, while the receiver elements
include the event Inspection created and the activity Schedule inspection of the Vehicle inspection
bounded context.

4.3.4. Identify Business Objects—IRB Process

The BPMN model of the IRB process contains data elements, so we need to identify
business objects. As shown in Figure 15, from the BPMN we identify the business objects
and their associated activities. This is followed by the identification of the type of object,
associated business data models and usage type. Finally, the bounded contexts are obtained
from artefact A2. For example let us consider the IRB Request object. It is of type BDM,
and its associated BDM is IRB Request itself. The associated bounded context is Permits.
Create request, Update request, Analyse request, Analyse implementation of request, Effect inclu-
sion/removal request and Perform inspection are the associated activities. Apart from Permits,
the Vehicle inspection bounded context also uses the IRB Request object. We also identify
how each associated activity uses the IRB Request object.

Software 2022, 1 436

A6. Business objects

Business objects Type Associated BDM Source bounded
context Associated activities Usage type Associated bounded

contexts

IRB request BDM IRB Request Permits

- Create request
- Update request

Write:
- Confirmed

- Permits
- Analyse request

Write:
- Accepted
- Refused

- Analyse implementation of
request

Write:
- Approved

- Effect inclusion/removal request Write:
- Concluded

- Perform inspection

Write:
- Inspection approved
- Inspection criticised
- Inspection rejected

- Vehicle inspection

Debt BDM Debt Payments - Generate inspection debt Write - Payments

… … … … … … …

1 2
A2. BPMN-CM Elements

… Activity … Bounded contexts

…
- Create request
- Update request … Permits

… … …

…
- Analyse request
- Effect inclusion / removal request … Permits

… - Schedule inspection
- Perform inspection … Vehicle inspection

3

Figure 15. Populating the artefact A6. Business objects based on the data objects of the BPMN
model, their use by the different activities and the bounded contexts identified in artefact A2. BPMN-
CM Elements.

4.3.5. Identify Relationships—IRB Process

In our current example we have identified three bounded contexts based on the BPMN
model, thus this step is applicable.

We start by considering artefact A4, creating an ordered pair of bounded contexts
(Context A, Context B) from Payments, Document printing and Vehicle inspection, as shown in
Figure 16. As generic bounded contexts cannot be Context A we do not consider Document
printing as Context A.

A7. RelationshipsA4. Related activities

Group Activities Bounded contexts

Vehicle inspection

Generate inspection debt
Payments

Confirm payment

Generate payment slip Document printing

Schedule inspection

Vehicle inspection
Perform inspection

Resolve inspection critiques

Re-submit bus for inspection

Context A … Context B …

Payments … Document printing …

Payments … Vehicle inspection …

Document printing … Payments …

Document printing … Vehicle inspection …

Vehicle inspection … Payments …

Vehicle inspection … Document printing …

Figure 16. Identifying relationships for artefact A7 based on combinatorial of bounded context
identified in artefact A4. Related activities.

In the sequence we consider artefact A5, extracting each pair of context from this
artefact into A7, as shown in Figure 17. Sender bounded context maps with Context A
and the receiver bounded context maps with Context B. For example, Payments and Vehicle
inspection. We also write down the reasons for the relationship in A7. We do not repeat
existing pairs (identified in the previous step from artefact A4).

Software 2022, 1 437

A7. Relationships

A5. Communication events

Sender element … Sender bounded contexts … Receiver bounded contexts

… … … … …

Event: Request accepted …. - Permits
…. - Payments

… - Permits

Event: Payment slip available … - Document printing … - Payments

Event: Payment confirmed … - Payments … - Vehicle inspection

… … … … …

Context A … Context B … Relationship reason

Payments … Document printing …

Bounded context “payments”
depends on bounded context
“document printing” to generate
payment slip.

Payments … Vehicle inspection …

Bounded context “vehicle
inspection” can only proceed after
bounded context “payments”
finishes its actions

… … … … …

Permits … Payments …
“Payment” can only proceed after
“Permits” finishes its activities.

1 2

3

Figure 17. Identifying relationships for artefact A7 based on message flows and communication
events (A5).

We then observe artefact A6, registering each pair of bounded context into A7, shown
in Figure 18. Now the Source bounded context from A6 is mapped into Context B and
Associated bounded context mapped into Context A, for example, the bounded contexts
Permits and Vehicle inspection. We also write down the reasons for the relationships.

A7. Relationships

A6. Business objects

Business objects … Source bounded
context … Usage type Associated bounded

contexts

IRB request … Permits …

… - Permits
Write:
- Inspection approved
- Inspection criticised
- Inspection rejected

- Vehicle inspection

Debt … Payments … Write - Payments

… … … … … …

Context A … Context B … Relationship reason

… … … … …

Vehicle inspection … Permits …

Bounded context “vehicle inspection”
alters the state of business object “IRB
request” which belongs to bounded
context “permits”.

… … … … …

1
2

3

Figure 18. Identifying relationships for artefact A7 based on business objects identified in A6.

For each pair having a relationship reason, we identify the direction in each side of
the relationship, as shown in Figure 19. Those relationship pairs with not explicit reasons
(e.g., Vehicle inspection and Document printing) are discarded. For example, the bounded
context Vehicle inspection alters the state of business object IRB request, which belongs to the
bounded context Payments, therefore Vehicle inspection was classified as downstream, while
bounded context Permits as upstream.

This is then followed by the identification of the relationship types. In this example,
this involved discussions with the project software architect and other members of the
development team, which resulted in the identification of Payments with a relationship

Software 2022, 1 438

type of customer-supplier, as the systems associated with this context are maintained by
a different team from the Vehicle inspection context. On the other hand, the relationship
type for Vehicle inspection was defined as conformist as the Payments context does not meet
any specific need from the Vehicle inspection, while the last must adequate their system to
existing interfaces. The Document printing relationship type was defined as open host service
and published language, as this is a generic context that can be used by any other context
inside the organisation. The relationship type between Vehicle inspection and Permits was
defined as partnership in both ends, as the same team will be responsible for maintaining
the associated services. Figure 19 presents an example of this artefact at the end of this step.

A7. Relationships

Context A Direction from
context A Type from context A Context B Direction from

context B Type from context B Relationship reason

Payments Downstream Customer-Supplier Document printing Upstream
- Open host service
- Published
language

Bounded context “payments”
depends on bounded context
“document printing” to generate
payment slip.

Payments Upstream Customer-Supplier Vehicle inspection Downstream Conformist

Bounded context “vehicle
inspection” can only proceed
after bounded context
“payments” finishes its actions

Vehicle inspection Payments

Vehicle inspection Document printing

Vehicle inspection Downstream Partnership Permits Upstream Partnership

Bounded context “vehicle
inspection” alters the state of
business object “IRB request”
which belongs to bounded
context “permits”.

Permits Downstream Conformist Payments Upstream Customer-Supplier
“Payment” can only proceed
after “Permits” finishes its
activities.

Figure 19. Example of the artefact A7. Relationships after including directions and types for all
participants of the identified relationships.

4.3.6. Build Context Map

This is the final step where we use the information from the produced artefacts to
create context map, which is presented in Figure 20. We start by capturing the organisation’s
business domains in the artefact A8, which are then inserted into the context map (artefact
A9) in the region reserved for core domains. The Traffic domain was identified as part
of the second business process, but not detailed here as the focus was on the examples
identified by the IRB process. Based on artefact A3 (sub-domains) we insert Operations
and Permits inside the Transport domain; Revenue as a support sub-domain; and Utilities
as a generic sub-domain. Based on the artefact A2 (BPMN-CM Elements) we identify
the respective bounded contexts, for example, Vehicle inspection and Permits inside the
sub-domain Operations and Permits. Finally, artefact A7 (Relationships) is used to extract
the relationships and their directions, with the letter “D” representing downstream and “U”
representing upstream. Regarding types, we used the following abbreviations: “CO” for
conformist; “P” for partnership; “CS” for customer-supplier; “OHS” for open host service;
and “PL” for published language.

Software 2022, 1 439

Revenue

Payments
Context

Support

Generic

Core

Document
Printing
Context

Utilities

Transport

Traffic

Operations and Permits

Permits
Context

Vehicle Inspection
Context P

P
D

U

CO D

CS
U

CS

OHS / PL
U

D

A9. Context
Map

A8. Domains
 Domains
 Traffic
 Transport

A3. Sub-domains
 Sub-domains Sub-domain type
 Operations and permits Core
 Revenue Support
 Utilities Generic

CO

CS
U

D

A7. Relationships
Context A … Context B …
Payments … Document printing …
Payments … Vehicle inspection …
Vehicle inspection … Permits …
Permits … Payments …

A2. BPMN-CM Elements
… Bounded contexts …
… Permits …
… Vehicle inspection …
… Document printing …
… Payments …

Figure 20. Generated context map based on the artefacts produced by the BPM2DDD technique.

The phase 3 of the process is presented in the next section.

5. Evaluation and Discussion

This section presents an evaluation of the BPM2DDD technique. We discuss how it has
been used with two real business processes in a governmental body for transit management.
We have also conducted a comparative application in order to assess its feasibility. Finally,
we present some discussions on the results obtained.

5.1. Validation of the Context Map

This section presents the phase 3 of the technique: review of the produced artefacts
with domain specialists. Validating the context map is an important activity as it was pro-
jected to be used as a basis to implement the services and build the software solution. The
main objective of the review/validation is to confirm if the bounded contexts, subdomains

Software 2022, 1 440

and other elements of the context map discovered by the technique make sense for the
business and reflect the domain of the organisation.

We applied our approach to two business processes to derive context maps. The appli-
cation in the IRB process was used as example for the different artefacts of the technique
presented in Section 4. The second process is named “replacement of licensed vehicle”
(RLV) and aims in replacing small vehicles involved in public transport, such as taxis
and other modalities of permissions. The RLV process is way more complex than the IRB
process presented above, and has been used to improve and validate the different activities
of the technique. Those two processes have been chosen based on the scope defined for the
ongoing software project.

The resulting context map is presented in Figure 21 in which we can observe the
bounded contexts of internal and external domains. INMETRO (Instituto Nacional de
Metrologia, Qualidade e Tecnologia) is the Brazilian National Institute of Metrology Stan-
dardization and Industrial Quality and DETRAN (Departamento Estadual de Trânsito) is
responsible for driver’s licenses and vehicle registration. Regarding the relationship types,
we used the following abbreviations: “CO” for conformist; “P” for partnership; “CS” for
customer-supplier; “OHS” for open host service; “SW” for separate ways; and “PL” for
published language.

Revenue

Payments
context

Support

Generic

Core

Document printing
context

Utilities

Transport

Traffic

Operations and Permits

Permits
context

Vehicle inspection
context P

P
D/U

U/D

CO D

CS

CS

OHS / PL
U

D

Context
Map

Department of
urban transport

Document
download
context

DETRANINMETRO

Processes
context

Processes

Layout approval
context

Studies and projects

Taximeter
certification

context

Metrology
and product
evaluation

Traffic
inspection

P

P D/UU/D

SW

SW

Vehicle
registration

context
SW

CS

OHS / PL

CO
D

U

D

U

CS

U

Figure 21. Resulting context map after application of the BPM2DDD technique in two business
processes.

Software 2022, 1 441

The validation happened in two steps using the set of questions defined in Section 3.4.
The first validation was conducted using the artefacts of the IRB process (presented in
Section 4). After that the technique was applied in the RLV process and a new validation
was performed. The domain experts confirmed the identification of bounded contexts
and subdomains applying our technique except for one observation. This was related
to two bounded contexts that belong to an external body: Payments and Processes (This
is a bounded context identified during the second application of the technique in the
RLV process). Further analysis revealed that this detail was not specified in the original
BPMN model and as a result our technique could not capture these bounded contexts.
This reinforced the importance of good process modelling and participation of domain
experts. Additionally, domain experts have identified other business areas not involved
in the business processes under consideration (IRB and RLV), and tried to introduce them
in the context map under validation. This demonstrates that the insight provided by the
context map can improve communication and discovery of relevant information both for
the domain and for the systems that will support the business.

After domain experts review and approval of the context map, the development team
proceeded to build services to realise the identified bounded contexts. Each bounded
context has become a service. The operations of each service were defined using the
SPReaD process [19].

The following services have been implemented and are in production: Permissions,
Vehicle Inspection, Document Printing and Download Documents. The Layout Approval service
has been deferred for future implementation. The Processes and Payments contexts repre-
sent existing systems. The contexts of Vehicle Records and Taximeter Certification represent
bounded contexts that are external to the organisation, with no need to implement any
service at the moment, but in the future there may be an integration between systems.

However, despite the initial expectation of deploying the new systems as independent
microservices, in practice, their implementation followed some restrictions established by
the project supervisors, where: (1) the application data should reside in a single shared
database; and (2) the business logic should reside in the database using the stored pro-
cedures facility. To circumvent these restrictions and observing the bounded contexts
defined by the technique, the development team adopted some actions, such as: (1) using
database-specific schemas for each identified bounded context, creating a logical separation
and facilitating a future extraction to a separate and de facto standalone database and mi-
croservice; and (2) building a thin application layer, containing only flow control, capable
of being executed in multiple instances, each one triggering a set of stored procedures that
represent the business logic for a given limited context.

5.2. A Comparison

In order to evaluate BPM2DDD we have conducted a comparative analysis of our
approach. Comparative methods have been used for a long time in cross-cultural studies
and social sciences to identify, analyse and explain similarities and differences across
societies [44]. In our case we requested an independent team to apply the BPM2DDD
approach to the IRB process and compare their results with ours. Figure 22 presents an
overview of the methodology employed for the comparative analysis.

Our comparative application has three objectives: (1) to assess the ease of use of
BPM2DDD approach by other people; (2) to observe differences between applications by
different people; and (3) observe possible impacts of these differences in the development
process, comparing the results obtained with the application presented in Section 4. The IRB
process was selected for the comparative analysis because its results have been validated
with domain specialists and used for the implementation of the actual system.

Software 2022, 1 442

Selection of the
business process

Definition of steps to
be applied

Definition of the
objectives of the

comparative
application

Identify bounded
contexts and sub-

domains

Process for
inclusion/removal of
buses (IRB processo)

Selection of external
appliers

Business analysts

System analysts

Execution of the
comparative
application

Definition of roles
for the comparative

applications

Researchers

Domain specialist

External appliers

Evaluation of the
obtained results

Assess the ease of use
of the technique

Observe differences
between applications

Observe possible
impacts in the

development process

Explanation about
BPM2DDD and DDD

Conduct steps and fill
artefacts

Capture comments
and feedbacks from

participants

Reflect on the
aplication of the

technique

EndStart

Reflect on the
differences between

applications

Reflect on impact in
the development

process

Figure 22. An overview of the method employed for the comparative application of the technique.

The following roles were defined: researcher, represented by one of the authors of this
article and responsible for explaining the BPM2DDD approach, providing details on how
to carry out its activities and observing the application; domain specialist, represented by a
software architect from the development team and responsible for providing information
about the organisation’s domain; and external appliers, represented by a business analyst and
a systems analyst, both external to the project. The business analyst has experience in the
analysis, mapping and optimisation of processes in a franchising company that has more
than 100 stores throughout Brazil. The systems analyst works in the survey and analysis of
requirements in a systems development company in the city of Natal/RN, which has more
than 50 clients in its portfolio. They were selected based on their availability and their prior
knowledge about BPMN. Unfortunately they were not familiar with DDD concepts and
the domain of the organisation.

Due to time constraints the comparative application focused on the step Identify
bounded contexts and subdomains because at the end of these it would be possible to com-
pare the bounded contexts and subdomains identified with the context map presented in
Section 4. Initially we have planned for a single session with three hours, in which the first
30 min were reserved for explaining the BPM2DDD process and the main concepts of DDD,
and the last 30 min for collection of feedback from external appliers.

We used three questions in a questionnaire to assess the effectiveness of our technique:
(1) Did the artefacts of BPM2DDD help in the discovery of domain information? (2) What
is the biggest difficulty encountered in applying the BPM2DDD approach? and (3) What
aspects of the BPM2DDD approach could be improved?

Initially the external participants were provided information about the BPM2DDD
and DDD techniques. The different participants were introduced and the format of the com-
parative application was explained. The IRB process model was presented and explained
by the domain specialist and the exercise started. After two hours the application was
paused and a new session scheduled to be performed the following day. The first session
completed the identification and classification of all actors and identification of all activities
in the respective BPM2DDD artefacts. The second session lasted for three hours. In this
session the bounded contexts and sub-domains have been identified in their respective
artefacts. The session finished with the collection of feedback from the participants.

In both sessions the external participants performed the activities, producing the
artefacts recommended by the technique, according to the researcher’s guidelines and
details provided by the domain specialist. The results were then analysed based on the
collected data, the researcher’s observations and the participant feedbacks.

Regarding objective (1) to assess the ease of use of the BPM2DDD technique by other
people, we have noticed the following:

Software 2022, 1 443

1. The external participants reported that the activities for direct extraction of informa-
tion from the business process models with the support artefacts were carried out
without difficulties. This indicates that supporting artefacts help appliers to make
gradual progress in extracting information about the domain.

2. The external participants expressed their difficulties about how to perform some
activities. These difficulties could have been reduced if they had a more in-depth
knowledge of the BPM2DDD process. This indicates that more time should have been
allocated for explaining the approach.

3. From the difference between the planned duration and actual time spent in the
application, it is obvious that the BPM2DDD process with all its steps can be time
consuming. This leads to the need to divide the application into different sessions.
This also relates to the previous observation about spending more time in in-depth
understanding of the BPM2DDD approach before using,

4. The greatest challenge reported is that activities that require domain knowledge
demanded more time, even with a domain expert providing information.

5. Manual filling in the artefacts by the applicators, can be time consuming, especially if
the process model has many elements. This indicates the need for support tools that
help applicators to extract information from the BPMN model in an automated way.

Regarding objective (2) to observe differences between applications by different people,
Figure 23 presents the bounded contexts and sub-domains identified by the researcher and
by the external appliers, where we observe the following points:

1. The external participants did not register generic contexts and subdomains such as
Document printing. This indicates the need to address such DDD concepts in the
explanation of the technique.

2. There was a difference between the terms used to describe the bounded contexts and
subdomains, where the context of Permits has been identified as Operations or Vehicle
Control; and Payments has been identified as Finance.

3. The bounded context Vehicle Inspection has been associated with the new sub-domain
Inspection instead of the existing subdomain Operations and Permissions. This indicates
a lack of more comprehensive knowledge about the organisation.

PM2DDD Application - External appliersPM2DDD Application - Researcher

Bounded contexts Sub-domains

Permits
Operations and permits

Vehicle inspection

Document printing
Utilities

Document download

Payments Revenue

Bounded contexts Sub-domains

Vehicle control Operations and permits

Operations Operations and permits

Vehicle inspection Inspection

Finance Revenue

X

Figure 23. Comparison of the bounded context and sub-domains identified by our application and
by external appliers.

The differences in the produced artefacts emphasise the need for more in-depth
knowledge about the domain of the organisation. This is reinforced by the feedback of
the external participants, when they point out that the lack of a deeper knowledge about
the organisation’s operations hampered the process of abstraction and generalisation of
the elements identified in the support artefacts for the definition of business functions,
bounded contexts and subdomains.

There was one observable difference. During this application, the independent par-
ticipants’ interaction with the domain specialists was limited to two sessions, while in
the application of Section 4 the analyst had constant contact with domain specialists dur-
ing the entire execution of the technique. Furthermore, it is possible to infer that the

Software 2022, 1 444

lack of knowledge about the concepts of DDD was an important factor for the produced
support artefacts.

Assuming that the context map generated by the technique will serve as a basis for
defining the software services, it was possible to verify the following points in relation to the
objective (3) to observe possible impacts of those differences in the development process:

1. Creating services based on the bounded contexts and subdomains identified in the
comparative application could lead to building a system not aligned with the business,
which could lead to more frequent changes in the software solution.

2. The separation of the bounded context Permits, observed in the first application,
in Vehicle Control and Operations, observed in the comparative application, could lead
to a greater effort to maintain separate representations for the same domain model.

3. Failure to discover the generic context of Document printing would lead to a late
identification of this service, which could compromise the development flow and
project schedule.

After analysing the data collected and the differences observed we believe that the
BPM2DDD approach can be applied by other professionals. However, the current results
are not deterministic, that is, the experience and knowledge of the applicators in relation
to business processes, organisation domain and DDD are key factors that will influence
the way information is transformed into the support artefacts of the technique, and how
bounded contexts and subdomains are defined.

5.3. Discussion, Threats and Limitations

In this section we present a brief discussion over the results obtained with the
BPM2DDD approach together with the main threats to the study and its limitation.

BPM2DDD presents a higher level of complexity compared to other approaches to
service identification (discussed in Section 2.2), as it seeks to first explore the complexity of
domain concepts, requiring more time to analysis by systems analysts. However, to the
best of our knowledge, BPM2DDD is the first approach that provides a systematic way of
identifying domains from business process models, and despite its extra complexity, this
cost can be offset in a better quality of the resulting systems. This is highly consistent with
the service design practices reported in [45] and with what is exposed in [5], since building
services around business concepts, rather than technical concepts, makes systems more
stable, in addition to improving responsiveness to business changes, making the technique
presented in this work relevant. However, these quality aspects were not covered in this
assessment and need to be explored in the future.

Our evaluation involved the application of the technique in a real project, although with
the development team that was involved in its definition. This clearly points to implicit
knowledge about DDD, the organisation domain and the technique itself, that contributed
to the results obtained with its application. However, DDD has been proposed as an ap-
proach to build an “ubiquitous language shared by the team, developers, domain experts, and other
participants” [1]. This require a deep understanding of the business, which BPM2DDD
helps in acquiring by systematising its extraction from business process models. Our expe-
rience with the review of the context map with domain specialists also demonstrated the
importance of having a context map as an effective communication tool. This encourages
our technique.

The technique expects a BPMN model with some level of details about the business
in order to be effectively applied. Although the construction of the BPMN model is out
of scope of BPM2DDD, requiring this amount of detail restricts its usefulness, as only
organisations with well-established practices for business process management would have
this level of detail in their captured business process models.

We employed two independent participants to apply our approach and tried to assess
if BPM2DDD can be implemented by different people who are not directly involved with
the work. The comparative application has provided us the following insights: (a) the need
of domain knowledge about the organisation; (b) the need of basic knowledge about BPMN;

Software 2022, 1 445

and (c) the need of knowledge about DDD; The main lesson learned is that, before future
deployment of our approach, we should make sure to enable the appliers in these aspects.

When discussing the threats to our work we consider the guidance and references
provided by Staron [46], in which four main types of threats to validity are presented:
construct, internal, conclusion and external. Construct threats are those related to the
research design. It is important to mention that BPM2DDD was developed and applied
in the context of a real-world project, and thus a controlled experiment setting was not
available from the start. In particular, we point to two main threats in this category. Mono-
operation bias, as we worked with a single development team in a short period of time; and
Interaction of different treatments, as the same team was also involved in the introduction of
business process management practices and models to the organisation. These have been
mitigated by bringing in external analysts in a comparative application of our approach,
and by adopting extra care in separating the scope of the approach and their effects. Internal
threats relate to the actions taken in the research. In particular, one could argue that we have
the threat of biased selection of subjects (which can be slightly related to the threats of history
and maturation) as the domain specialists were involved in the project since its start and
evolved together with the team in the use of business process models. Unfortunately this is
outside our control as we have been brought into a live project and thus have to be bounded
by the different constraints that this impose. Regarding conclusion threats we recognise the
threat of Finding a relationship when there it not one about the possible improvement in the
quality of the produced context map. It could be argued that a rigorous comparison with
other approaches for establishing context maps is needed. However, no such systematic
approach exists which does not allow us to compare our approach. Regarding external
threats, we have identified a main threat to be of multiple treatment interference as there is an
overlap within the development team in the adoption of new techniques to support the
capture of business processes (BoAT [16]) and BPM2DDD. Again, the mitigation approach
we adopted was to bring in external analysts to apply the BPM2DDD process as part of the
evaluation.

6. Conclusions

This article presented BPM2DDD, a systematic approach for the definition of domain-
driven design artefacts, supporting the identification of bounded contexts and their rela-
tionships captured in context maps from business process models. The main contribution
of our article lies in articulating the BPM2DDD process. To the best of our knowledge, this
is the first approach with a systematic step-by-step directions on how to create context
maps from BPMN models. There has been mentions about usage of DDD and creation of
context maps, but with no concrete instructions, and purely dependent on individual skills
and disciplines.

Our approach receives as input a BPMN model, which is then reviewed against a
number of requirements in terms of the elements present in the model. This is done so the
generated context map reflects the business reality as close as possible. This can also be
used by BPM teams when evaluating their own business process.

We have applied the technique into a real project, producing a context map that has
been validated by domain specialists, and then used by a software development team
to implement a number of services as part of their solution. We have also performed a
comparative application with analysts that are external to the software development team.
Although this was not a rigorous evaluation, it provided some initial insight that will be
taken on-board as we move forward and look for its application in other business processes
and organisations.

The main limitation of the technique is its complexity and required previous knowl-
edge about DDD and the organisation domain. This is true to any project that employs
DDD, and indicate the need for some specific training before the technique can be applied.
Nevertheless, BPM2DDD still helped analysts in extracting information from business pro-
cesses, which can then be used in discussions with domain specialists. Another difficulty

Software 2022, 1 446

encountered with the technique is the filling of its interim artefacts when the input BPMN
has huge number of elements. Thus we intent to address this in our future work. We plan
to work on the relationship between the interim artefacts, so they can be captured as a
meta-model that can be used to provide some automation in the extraction of information
from BPMN source files. Another future work involves the integration of our approach with
some of the existing tools for automatic generation of microservices from DDD artefacts,
such as the context mapper tool [31] or LEMMA models [32]. Such integration would
require the use of the tools metamodel to represent the DDD artefacts.

Author Contributions: Conceptualization, C.E.d.S. and E.L.G.; methodology, C.E.d.S. and E.L.G.;
software, E.L.G.; validation, C.E.d.S. and S.K.B.; formal analysis, E.L.G.; investigation, C.E.d.S. and
E.L.G.; resources, C.E.d.S. and E.L.G.; data curation, E.L.G.; writing—original draft preparation,
E.L.G. and C.E.d.S.; writing—review and editing, C.E.d.S. and S.S.B.; visualization, E.L.G. and
C.E.d.S.; supervision, C.E.d.S.; project administration, C.E.d.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in the scope of the professional
master programme in information technology of the Metropolis Digital Institute of the Federal
University of Rio Grande do Norte. Formal ethical approval was deemed not necessary, nevertheless
the study counted with internal approval of the programme and the participant institution.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thanks all the participant of the comparative analysis
that kindly volunteered their valuable time for this exercise.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BDM Business Data Model
BPM Business Process Management
BPMN Business Process Model and Notation
DDD Domain-Driven Design
IRB Inclusion/Removal of Buses
IT Information Technology
MSA Microservice Architecture
OU Organisational Unit
WFM Workflow Management

Software 2022, 1 447

Appendix A

This appendix presents the general structure of all artefacts used by the technique and
explained throughout the text.

A2. BPMN-CM elements

Actor

Organisational unit

Actor nature

Purpose / Responsibility

Consumer

Consumes from

Provider

Provides to

Activity

Business functions

Bounded contexts

Sub-domains

A3. Sub-domains

Sub-domains

Sub-domain type

A7. Relationships

Context A

Direction from context A

Type from context A

Context B

Direction from context B

Type from context B

Relationship reason

A4. Related activities

Group

Activities

Bounded contexts

A5. Communication events

Sender element

Associated sender elements

Sender bounded contexts

Associated receiver elements

Receiver bounded contexts

A6. Business objects

Business object

Type

Associated BDM

Source bounded context

Associated activities

Usage type

Associated bounded contexts

A10. Activites

Activity

Actor

Objective

Obtained results

A8. Domains

Domain

{ Internal, External }

Organisational unit

{ Main, Support, Generic }

{ Read, Write, Both }

Figure A1. General structure of all template for artefacts used by the BPM2DDD technique.

References
1. Evans, E.; Fowler, M. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley: Boston, MA, USA, 2004.
2. Rademacher, F.; Sachweh, S.; Zündorf, A. Deriving Microservice Code from Underspecified Domain Models Using DevOps-

Enabled Modeling Languages and Model Transformations. In Proceedings of the 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 26–28 August 2020; pp. 229–236. https://doi.org/10.1109/
SEAA51224.2020.00047.

3. Lewis, J.; Fowler, M. Microservices. 2019. Available online: https://martinfowler.com/articles/microservices.html (accessed on
28/09/2022).

4. Alpers, S.; Becker, C.; Oberweis, A.; Schuster, T. Microservice Based Tool Support for Business Process Modelling. In Proceedings
of the 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop, Adelaide, Australia, 21–25 September
2015; pp. 71–78. https://doi.org/10.1109/EDOCW.2015.32.

5. Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2015; p. 280.
6. Amiri, M.J. Object-Aware Identification of Microservices. In Proceedings of the 2018 IEEE International Conference on Services

Computing (SCC), San Francisco, CA, USA, 2–7 July 2018; pp. 253–256. https://doi.org/10.1109/SCC.2018.00042.
7. Cerny, T.; Donahoo, M.J.; Pechanec, J. Disambiguation and Comparison of SOA, Microservices and Self-Contained Systems. In

Proceedings of the International Conference on Research in Adaptive and Convergent Systems RACS ’17, Krakow Poland, 20–23
September 2017; ACM: New York, NY, USA, 2017; pp. 228–235. https://doi.org/10.1145/3129676.3129682.

8. Huergo, R.; Pires, P.; Delicato, F.; Costa, B.; Batista, T. A Systematic Survey of Service Identification Methods. Serv. Oriented
Comput. Appl. 2014, 8, 199–219. https://doi.org/10.1007/s11761-014-0161-y.

https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/EDOCW.2015.32
https://doi.org/10.1109/SCC.2018.00042
https://doi.org/10.1145/3129676.3129682
https://doi.org/10.1007/s11761-014-0161-y

Software 2022, 1 448

9. Di Francesco, P.; Lago, P.; Malavolta, I. Migrating Towards Microservice Architectures: An Industrial Survey. In Proceedings of
the 2018 IEEE International Conference on Software Architecture (ICSA), Seattle, WA, USA, 30 April–4 May 2018; pp. 2900–2909.
https://doi.org/10.1109/ICSA.2018.00012.

10. Singjai, A.; Zdun, U.; Zimmermann, O. Practitioner Views on the Interrelation of Microservice APIs and Domain-Driven Design:
A Grey Literature Study Based on Grounded Theory. In Proceedings of the 2021 IEEE 18th International Conference on Software
Architecture (ICSA), Stuttgart, Germany, 22–26 March 2021; pp. 25–35. https://doi.org/10.1109/ICSA51549.2021.00011.

11. Waseem, M.; Liang, P.; Shahin, M.; Di Salle, A.; Márquez, G. Design, Monitoring, and Testing of Microservices Systems: The
Practitioners’ Perspective. J. Syst. Softw. 2021, 182, 111061. https://doi.org/10.1016/j.jss.2021.111061.

12. Hippchen, B.; Schneider, M.; Giessler, P.; Abeck, S. Systematic Application of Domain-Driven Design for a Business-Driven
Microservice Architecture. Int. J. Adv. Softw. 2019, 12, 343–355.

13. Millett, S.; Tune, N. Patterns, Principles, and Practices of Domain-Driven Design; Wiley: Hoboken, NJ, USA, 2015.
14. Richardson, C. Microservices Patterns: With Examples in Java; Manning: Shelter Island, NY, USA, 2019.
15. Shenglin, L.; Qinghui, R.; Chen, C. Application of DDD Theory in Analysis and Design of Equipment Maintenance System. In

Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019 ; pp.
3275–3280. https://doi.org/10.1109/SSCI44817.2019.9003028.

16. da Silva, C.E.; Medeiros, L.; Justino, Y.; Gomes, E. A Box Analogy Technique (BoAT) for Agile-based Modelling of Business
Processes. In Proceedings of the 2022 IEEE 30th International Requirements Engineering Conference (RE), Melbourne, Australia,
15–19 August 2022.

17. Cardoso, E.C.S.; Almeida, J.P.A.; Guizzardi, G. Requirements Engineering Based on Business Process Models: A Case Study. In
Proceedings of the 2009 13th Enterprise Distributed Object Computing Conference Workshops, Auckland, New Zealand, 1–4
September 2009; pp. 320–327. https://doi.org/10.1109/EDOCW.2009.5331974.

18. Unger, A.; Spinola, M.; Pessôa, M. Requirements Engineering Approaches to Derive Enterprise Information Systems from
Business Process Management:A Systematic Literature Review. In Requirements Engineering Und Business Process Management
(REBPM), Proceedings of the Workshops at Modellierung Braunschweig, Germany, 21 February 2018 ; Schaefer, I.; Cleophas, L.; Felderer,
M., Eds., CEUR-WS.org, online 2018 ; pp. 261–271. http://ceur-ws.org/Vol-2060/rebpm6.pdf

19. da Silva, C.E.; Justino, Y.d.L.; Adachi, E. SPReaD: Service-Oriented Process for Reengineering and DevOps. Serv. Oriented Comput.
Appl. 2021, 16, 1–16. https://doi.org/10.1007/s11761-021-00329-x.

20. Van Der Aalst, W.M. Business Process Management: A Comprehensive Survey. ISRN Softw. Eng. 2013, 2013, 1–37.
21. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer: Berlin/Heidelberg,

Germany, 2018. https://doi.org/10.1007/978-3-662-56509-4.
22. Benedict, T.; Bilodeau, N.; Vitkus, P.; Powell, E.; Morris, D.; Scarsig, M.; Lee, D.; Field, G.; Lohr, T.; Saxena, R.; et al. BPM CBOK

Version 3.0: Guide to the Business Process Management Common Body of Knowledge, 3rd ed.; CreateSpace/ABPMP—Association of
Business Process Management Professionals , Pensacola, FL, USA, 2013.

23. OMG. Business Process Model and Notation (BPMN), Version 2.0.2; Technical Report Formal/2013-12-09; Object Management
Group: Needham, MA, USA, 2013.

24. Vernon, V. Implementing Domain-Driven Design; Pearson Education: London, UK, 2013.
25. Lai, H.; Peng, R.; Ni, Y. A Collaborative Method for Business Process Oriented Requirements Acquisition and Refining. In

Proceedings of the 2014 International Conference on Software and System Process, ICSSP, Nanjing China, 26–28 May 2014; ACM:
New York, NY, USA, 2014; pp. 84–93. https://doi.org/10.1145/2600821.2600831.

26. Götz, B.; Schel, D.; Bauer, D.; Henkel, C.; Einberger, P.; Bauernhansl, T. Challenges of Production Microservices. Procedia CIRP
2018, 67, 167–172. https://doi.org/10.1016/j.procir.2017.12.194.

27. Costa, I.C.; de Oliveira, J.M.P. GO4SOA: Goal-oriented Modeling for SOA. In Proceedings of the 12th International Conference
on Web Information Systems and Technologies—Volume 1: WEBIST, INSTICC, SciTePress, Rome, Italy, 23–25 April 2016; pp.
247–254. https://doi.org/10.5220/0005800902470254.

28. Amiri, M.J.; Parsa, S.; Lajevardi, A. Multifaceted Service Identification: Process, Requirement and Data. Comput. Sci. Inf. Syst.
2016, 13, 335–358. https://doi.org/10.2298/CSIS151105011A.

29. Daoud, M.; el Mezouari, A.; Faci, N.; Benslimane, D.; Maamar, Z.; Fazziki, A. Automatic Microservices Identification from a Set of
Business Processes. In Proceedings of the Smart Applications and Data Analysis. SADASC 2020, Communications in Computer
and Information Science, Marrakesh, Morocco, 25–26 June 2020; Volume 1207, pp. 299–315. https://doi.org/978-3-030-45183-7_
23.

30. Landre, E.; Wesenberg, H.; Rønneberg, H. Architectural Improvement by Use of Strategic Level Domain-Driven Design. In
Proceedings of the Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, Portland, Oregon, USA, 22-26 October 2006 ; Association for Computing Machinery: New York,
NY, USA, 2006; pp. 809–814. https://doi.org/10.1145/1176617.1176728.

31. Kapferer, S.; Zimmermann, O. Domain-Driven Architecture Modeling and Rapid Prototyping with Context Mapper. In Model-
Driven Engineering and Software Development; Hammoudi, S., Pires, L.F., Selić, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; Volume 1361, pp. 250–272. https://doi.org/10.1007/978-3-030-67445-8_11.

https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA51549.2021.00011
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1109/SSCI44817.2019.9003028
https://doi.org/10.1109/EDOCW.2009.5331974
http://ceur-ws.org/Vol-2060/rebpm6.pdf
https://doi.org/10.1007/s11761-021-00329-x
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1145/2600821.2600831
https://doi.org/10.1016/j.procir.2017.12.194
https://doi.org/10.5220/0005800902470254
https://doi.org/10.2298/CSIS151105011A
https://doi.org/978-3-030-45183-7_23
https://doi.org/978-3-030-45183-7_23
https://doi.org/10.1145/1176617.1176728
https://doi.org/10.1007/978-3-030-67445-8_11

Software 2022, 1 449

32. Giallorenzo, S.; Montesi, F.; Peressotti, M.; Rademacher, F. Model-Driven Generation of Microservice Interfaces: From LEMMA
Domain Models to Jolie APIs. In Coordination Models and Languages; ter Beek, M.H., Sirjani, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; Volume 13271, pp. 223–240. https://doi.org/10.1007/978-3-031-08143-9_13.

33. Singjai, A.; Zdun, U.; Zimmermann, O.; Pautasso, C. Patterns on Deriving APIs and Their Endpoints from Domain Models. In
Proceedings of the 26th European Conference on Pattern Languages of Programs, EuroPLoP’21, Graz, Austria, 7–11 June 2021;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–15. https://doi.org/10.1145/3489449.3489976.

34. Wesenberg, H.; Landre, E.; Rønneberg, H. Using Domain-Driven Design to Evaluate Commercial off-the-Shelf Software. In
Proceedings of the Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, Portland, Oregon, USA, 22-26 October 2006 ; Association for Computing Machinery: New York,
NY, USA, 2006; pp. 824–829. https://doi.org/10.1145/1176617.1176730.

35. Cabrera, E.; Cárdenas, P.; Cedillo, P.; Pesántez-Cabrera, P. Towards a Methodology for Creating Internet of Things (IoT)
Applications Based on Microservices. In Proceedings of the 2020 IEEE International Conference on Services Computing (SCC),
Beijing, China, 7–11 November 2020; pp. 472–474. https://doi.org/10.1109/SCC49832.2020.00072.

36. Santos, N.; Pereira, J.; Ferreira, N.; Machado, R.J. Modeling in Agile Software Development: Decomposing Use Cases towards
Logical Architecture Design. In Proceedings of the Product-Focused Software Process Improvement, Wolfsburg, Germany, 28–30 November
2018; Kuhrmann, M., Schneider, K., Pfahl, D., Amasaki, S., Ciolkowski, M., Hebig, R., Tell, P.; Klünder, J., Küpper, S., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; pp. 396–408.

37. Santos, N.; Salgado, C.E.; Morais, F.; Melo, M.; Silva, S.; Martins, R.; Pereira, M.; Rodrigues, H.; Machado, R.J.; Ferreira, N.; et al.
A Logical Architecture Design Method for Microservices Architectures. In Proceedings of the 13th European Conference on
Software Architecture—Volume 2, ECSA ’19, Paris, France, 9–13 September 2019; Association for Computing Machinery: New
York, NY, USA, 2019; pp. 145–151. https://doi.org/10.1145/3344948.3344991.

38. Gysel, M.; Kölbener, L.; Giersche, W.; Zimmermann, O. Service Cutter: A Systematic Approach to Service Decomposition. In
Proceedings of the Service-Oriented and Cloud Computing, Vienna, Austria, 5–7 September 2016; Aiello, M., Johnsen, E.B.,
Dustdar, S., Georgievski, I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 185–200.

39. Tyszberowicz, S.; Heinrich, R.; Liu, B.; Liu, Z. Identifying Microservices Using Functional Decomposition. In Proceedings of the
Dependable Software Engineering. Theories, Tools, and Applications, Beijing, China, 4–6 September 2018; Feng, X., Muller-Olm,
M., Yang, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 50–65.

40. Hippchen, B.; Giessler, P.; Steinegger, R.H.; Schneider, M.; Abeck, S. Designing Microservice-Based Applications by Using a
Domain-Driven Design Approach. Int. J. Adv. Softw. 2017, 10, 432–445.

41. Baresi, L.; Garriga, M.; De Renzis, A. Microservices Identification through Interface Analysis. In Proceedings of the Service-
Oriented and Cloud Computing, Oslo, Norway, 27–29 September 2017; De Paoli, F., Schulte, S., Broch Johnsen, E., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 19–33.

42. Mazlami, G.; Cito, J.; Leitner, P. Extraction of Microservices from Monolithic Software Architectures. In Proceedings of
the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; pp. 524–531. https:
//doi.org/10.1109/ICWS.2017.61.

43. De Alwis, A.A.C.; Barros, A.; Polyvyanyy, A.; Fidge, C. Function-Splitting Heuristics for Discovery of Microservices in Enterprise
Systems. In Proceedings of the Service-Oriented Computing, Paris, France, 19–22 November 2018; Pahl, C., Vukovic, M., Yin, J.,
Yu, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–53.

44. Boeije, H. A Purposeful Approach to the Constant Comparative Method in the Analysis of Qualitative Interviews. Qual. Quant.
2002, 36, 391–409. https://doi.org/10.1023/A:1020909529486.

45. Garriga, M. Towards a Taxonomy of Microservices Architectures. In Proceedings of the Software Engineering and Formal
Methods, Toulouse, France, 27–29 June 2018; Cerone, A., Roveri, M., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 203–218. https://doi.org/10.1007/978-3-319-74781-1_15.

46. Staron, M. Action Research in Software Engineering: Theory and Applications, 1st ed.; Springer International Publishing: Cham,
Switzerland, 2020. https://doi.org/10.1007/978-3-030-32610-4.

https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1145/3489449.3489976
https://doi.org/10.1145/1176617.1176730
https://doi.org/10.1109/SCC49832.2020.00072
https://doi.org/10.1145/3344948.3344991
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1023/A:1020909529486
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-030-32610-4

	Introduction
	Background and Related Work
	Background on BPM and DDD
	Related Work

	The BPM2DDD Approach
	Contextualisation and Methodology
	Phase1: Review Input BPMN
	Phase2: Build Context Map
	Identify Bounded Contexts and Subdomains
	Identify Groups of Related Activities
	Identify Message Flows and Communication Events
	Identify Business Objects
	Identify Relationships
	Build Context Map

	Phase3: Review

	Application of the Technique
	Contextualisation of the Example Application
	Phase 1: Review Input BPMN—IRB Process
	Phase 2: Build Context Map—IRB Process
	Identify Bounded Contexts and Subdomains—IRB Process
	Identify Groups of Related Activities—IRB Process
	Identify Message Flows and Communication Events—IRB Process
	Identify Business Objects—IRB Process
	Identify Relationships—IRB Process
	Build Context Map

	Evaluation and Discussion
	Validation of the Context Map
	A Comparison
	Discussion, Threats and Limitations

	Conclusions
	Appendix A
	References

